1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLOB Allocator: Simple List Of Blocks
4 *
5 * Matt Mackall <mpm@selenic.com> 12/30/03
6 *
7 * NUMA support by Paul Mundt, 2007.
8 *
9 * How SLOB works:
10 *
11 * The core of SLOB is a traditional K&R style heap allocator, with
12 * support for returning aligned objects. The granularity of this
13 * allocator is as little as 2 bytes, however typically most architectures
14 * will require 4 bytes on 32-bit and 8 bytes on 64-bit.
15 *
16 * The slob heap is a set of linked list of pages from alloc_pages(),
17 * and within each page, there is a singly-linked list of free blocks
18 * (slob_t). The heap is grown on demand. To reduce fragmentation,
19 * heap pages are segregated into three lists, with objects less than
20 * 256 bytes, objects less than 1024 bytes, and all other objects.
21 *
22 * Allocation from heap involves first searching for a page with
23 * sufficient free blocks (using a next-fit-like approach) followed by
24 * a first-fit scan of the page. Deallocation inserts objects back
25 * into the free list in address order, so this is effectively an
26 * address-ordered first fit.
27 *
28 * Above this is an implementation of kmalloc/kfree. Blocks returned
29 * from kmalloc are prepended with a 4-byte header with the kmalloc size.
30 * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls
31 * alloc_pages() directly, allocating compound pages so the page order
32 * does not have to be separately tracked.
33 * These objects are detected in kfree() because PageSlab()
34 * is false for them.
35 *
36 * SLAB is emulated on top of SLOB by simply calling constructors and
37 * destructors for every SLAB allocation. Objects are returned with the
38 * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which
39 * case the low-level allocator will fragment blocks to create the proper
40 * alignment. Again, objects of page-size or greater are allocated by
41 * calling alloc_pages(). As SLAB objects know their size, no separate
42 * size bookkeeping is necessary and there is essentially no allocation
43 * space overhead, and compound pages aren't needed for multi-page
44 * allocations.
45 *
46 * NUMA support in SLOB is fairly simplistic, pushing most of the real
47 * logic down to the page allocator, and simply doing the node accounting
48 * on the upper levels. In the event that a node id is explicitly
49 * provided, __alloc_pages_node() with the specified node id is used
50 * instead. The common case (or when the node id isn't explicitly provided)
51 * will default to the current node, as per numa_node_id().
52 *
53 * Node aware pages are still inserted in to the global freelist, and
54 * these are scanned for by matching against the node id encoded in the
55 * page flags. As a result, block allocations that can be satisfied from
56 * the freelist will only be done so on pages residing on the same node,
57 * in order to prevent random node placement.
58 */
59
60 #include <linux/kernel.h>
61 #include <linux/slab.h>
62
63 #include <linux/mm.h>
64 #include <linux/swap.h> /* struct reclaim_state */
65 #include <linux/cache.h>
66 #include <linux/init.h>
67 #include <linux/export.h>
68 #include <linux/rcupdate.h>
69 #include <linux/list.h>
70 #include <linux/kmemleak.h>
71
72 #include <trace/events/kmem.h>
73
74 #include <linux/atomic.h>
75
76 #include "slab.h"
77 /*
78 * slob_block has a field 'units', which indicates size of block if +ve,
79 * or offset of next block if -ve (in SLOB_UNITs).
80 *
81 * Free blocks of size 1 unit simply contain the offset of the next block.
82 * Those with larger size contain their size in the first SLOB_UNIT of
83 * memory, and the offset of the next free block in the second SLOB_UNIT.
84 */
85 #if PAGE_SIZE <= (32767 * 2)
86 typedef s16 slobidx_t;
87 #else
88 typedef s32 slobidx_t;
89 #endif
90
91 struct slob_block {
92 slobidx_t units;
93 };
94 typedef struct slob_block slob_t;
95
96 /*
97 * All partially free slob pages go on these lists.
98 */
99 #define SLOB_BREAK1 256
100 #define SLOB_BREAK2 1024
101 static LIST_HEAD(free_slob_small);
102 static LIST_HEAD(free_slob_medium);
103 static LIST_HEAD(free_slob_large);
104
105 /*
106 * slob_page_free: true for pages on free_slob_pages list.
107 */
slob_page_free(struct page * sp)108 static inline int slob_page_free(struct page *sp)
109 {
110 return PageSlobFree(sp);
111 }
112
set_slob_page_free(struct page * sp,struct list_head * list)113 static void set_slob_page_free(struct page *sp, struct list_head *list)
114 {
115 list_add(&sp->slab_list, list);
116 __SetPageSlobFree(sp);
117 }
118
clear_slob_page_free(struct page * sp)119 static inline void clear_slob_page_free(struct page *sp)
120 {
121 list_del(&sp->slab_list);
122 __ClearPageSlobFree(sp);
123 }
124
125 #define SLOB_UNIT sizeof(slob_t)
126 #define SLOB_UNITS(size) DIV_ROUND_UP(size, SLOB_UNIT)
127
128 /*
129 * struct slob_rcu is inserted at the tail of allocated slob blocks, which
130 * were created with a SLAB_TYPESAFE_BY_RCU slab. slob_rcu is used to free
131 * the block using call_rcu.
132 */
133 struct slob_rcu {
134 struct rcu_head head;
135 int size;
136 };
137
138 /*
139 * slob_lock protects all slob allocator structures.
140 */
141 static DEFINE_SPINLOCK(slob_lock);
142
143 /*
144 * Encode the given size and next info into a free slob block s.
145 */
set_slob(slob_t * s,slobidx_t size,slob_t * next)146 static void set_slob(slob_t *s, slobidx_t size, slob_t *next)
147 {
148 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
149 slobidx_t offset = next - base;
150
151 if (size > 1) {
152 s[0].units = size;
153 s[1].units = offset;
154 } else
155 s[0].units = -offset;
156 }
157
158 /*
159 * Return the size of a slob block.
160 */
slob_units(slob_t * s)161 static slobidx_t slob_units(slob_t *s)
162 {
163 if (s->units > 0)
164 return s->units;
165 return 1;
166 }
167
168 /*
169 * Return the next free slob block pointer after this one.
170 */
slob_next(slob_t * s)171 static slob_t *slob_next(slob_t *s)
172 {
173 slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK);
174 slobidx_t next;
175
176 if (s[0].units < 0)
177 next = -s[0].units;
178 else
179 next = s[1].units;
180 return base+next;
181 }
182
183 /*
184 * Returns true if s is the last free block in its page.
185 */
slob_last(slob_t * s)186 static int slob_last(slob_t *s)
187 {
188 return !((unsigned long)slob_next(s) & ~PAGE_MASK);
189 }
190
slob_new_pages(gfp_t gfp,int order,int node)191 static void *slob_new_pages(gfp_t gfp, int order, int node)
192 {
193 struct page *page;
194
195 #ifdef CONFIG_NUMA
196 if (node != NUMA_NO_NODE)
197 page = __alloc_pages_node(node, gfp, order);
198 else
199 #endif
200 page = alloc_pages(gfp, order);
201
202 if (!page)
203 return NULL;
204
205 mod_node_page_state(page_pgdat(page), NR_SLAB_UNRECLAIMABLE_B,
206 PAGE_SIZE << order);
207 return page_address(page);
208 }
209
slob_free_pages(void * b,int order)210 static void slob_free_pages(void *b, int order)
211 {
212 struct page *sp = virt_to_page(b);
213
214 if (current->reclaim_state)
215 current->reclaim_state->reclaimed_slab += 1 << order;
216
217 mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
218 -(PAGE_SIZE << order));
219 __free_pages(sp, order);
220 }
221
222 /*
223 * slob_page_alloc() - Allocate a slob block within a given slob_page sp.
224 * @sp: Page to look in.
225 * @size: Size of the allocation.
226 * @align: Allocation alignment.
227 * @align_offset: Offset in the allocated block that will be aligned.
228 * @page_removed_from_list: Return parameter.
229 *
230 * Tries to find a chunk of memory at least @size bytes big within @page.
231 *
232 * Return: Pointer to memory if allocated, %NULL otherwise. If the
233 * allocation fills up @page then the page is removed from the
234 * freelist, in this case @page_removed_from_list will be set to
235 * true (set to false otherwise).
236 */
slob_page_alloc(struct page * sp,size_t size,int align,int align_offset,bool * page_removed_from_list)237 static void *slob_page_alloc(struct page *sp, size_t size, int align,
238 int align_offset, bool *page_removed_from_list)
239 {
240 slob_t *prev, *cur, *aligned = NULL;
241 int delta = 0, units = SLOB_UNITS(size);
242
243 *page_removed_from_list = false;
244 for (prev = NULL, cur = sp->freelist; ; prev = cur, cur = slob_next(cur)) {
245 slobidx_t avail = slob_units(cur);
246
247 /*
248 * 'aligned' will hold the address of the slob block so that the
249 * address 'aligned'+'align_offset' is aligned according to the
250 * 'align' parameter. This is for kmalloc() which prepends the
251 * allocated block with its size, so that the block itself is
252 * aligned when needed.
253 */
254 if (align) {
255 aligned = (slob_t *)
256 (ALIGN((unsigned long)cur + align_offset, align)
257 - align_offset);
258 delta = aligned - cur;
259 }
260 if (avail >= units + delta) { /* room enough? */
261 slob_t *next;
262
263 if (delta) { /* need to fragment head to align? */
264 next = slob_next(cur);
265 set_slob(aligned, avail - delta, next);
266 set_slob(cur, delta, aligned);
267 prev = cur;
268 cur = aligned;
269 avail = slob_units(cur);
270 }
271
272 next = slob_next(cur);
273 if (avail == units) { /* exact fit? unlink. */
274 if (prev)
275 set_slob(prev, slob_units(prev), next);
276 else
277 sp->freelist = next;
278 } else { /* fragment */
279 if (prev)
280 set_slob(prev, slob_units(prev), cur + units);
281 else
282 sp->freelist = cur + units;
283 set_slob(cur + units, avail - units, next);
284 }
285
286 sp->units -= units;
287 if (!sp->units) {
288 clear_slob_page_free(sp);
289 *page_removed_from_list = true;
290 }
291 return cur;
292 }
293 if (slob_last(cur))
294 return NULL;
295 }
296 }
297
298 /*
299 * slob_alloc: entry point into the slob allocator.
300 */
slob_alloc(size_t size,gfp_t gfp,int align,int node,int align_offset)301 static void *slob_alloc(size_t size, gfp_t gfp, int align, int node,
302 int align_offset)
303 {
304 struct page *sp;
305 struct list_head *slob_list;
306 slob_t *b = NULL;
307 unsigned long flags;
308 bool _unused;
309
310 if (size < SLOB_BREAK1)
311 slob_list = &free_slob_small;
312 else if (size < SLOB_BREAK2)
313 slob_list = &free_slob_medium;
314 else
315 slob_list = &free_slob_large;
316
317 spin_lock_irqsave(&slob_lock, flags);
318 /* Iterate through each partially free page, try to find room */
319 list_for_each_entry(sp, slob_list, slab_list) {
320 bool page_removed_from_list = false;
321 #ifdef CONFIG_NUMA
322 /*
323 * If there's a node specification, search for a partial
324 * page with a matching node id in the freelist.
325 */
326 if (node != NUMA_NO_NODE && page_to_nid(sp) != node)
327 continue;
328 #endif
329 /* Enough room on this page? */
330 if (sp->units < SLOB_UNITS(size))
331 continue;
332
333 b = slob_page_alloc(sp, size, align, align_offset, &page_removed_from_list);
334 if (!b)
335 continue;
336
337 /*
338 * If slob_page_alloc() removed sp from the list then we
339 * cannot call list functions on sp. If so allocation
340 * did not fragment the page anyway so optimisation is
341 * unnecessary.
342 */
343 if (!page_removed_from_list) {
344 /*
345 * Improve fragment distribution and reduce our average
346 * search time by starting our next search here. (see
347 * Knuth vol 1, sec 2.5, pg 449)
348 */
349 if (!list_is_first(&sp->slab_list, slob_list))
350 list_rotate_to_front(&sp->slab_list, slob_list);
351 }
352 break;
353 }
354 spin_unlock_irqrestore(&slob_lock, flags);
355
356 /* Not enough space: must allocate a new page */
357 if (!b) {
358 b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node);
359 if (!b)
360 return NULL;
361 sp = virt_to_page(b);
362 __SetPageSlab(sp);
363
364 spin_lock_irqsave(&slob_lock, flags);
365 sp->units = SLOB_UNITS(PAGE_SIZE);
366 sp->freelist = b;
367 INIT_LIST_HEAD(&sp->slab_list);
368 set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE));
369 set_slob_page_free(sp, slob_list);
370 b = slob_page_alloc(sp, size, align, align_offset, &_unused);
371 BUG_ON(!b);
372 spin_unlock_irqrestore(&slob_lock, flags);
373 }
374 if (unlikely(gfp & __GFP_ZERO))
375 memset(b, 0, size);
376 return b;
377 }
378
379 /*
380 * slob_free: entry point into the slob allocator.
381 */
slob_free(void * block,int size)382 static void slob_free(void *block, int size)
383 {
384 struct page *sp;
385 slob_t *prev, *next, *b = (slob_t *)block;
386 slobidx_t units;
387 unsigned long flags;
388 struct list_head *slob_list;
389
390 if (unlikely(ZERO_OR_NULL_PTR(block)))
391 return;
392 BUG_ON(!size);
393
394 sp = virt_to_page(block);
395 units = SLOB_UNITS(size);
396
397 spin_lock_irqsave(&slob_lock, flags);
398
399 if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) {
400 /* Go directly to page allocator. Do not pass slob allocator */
401 if (slob_page_free(sp))
402 clear_slob_page_free(sp);
403 spin_unlock_irqrestore(&slob_lock, flags);
404 __ClearPageSlab(sp);
405 page_mapcount_reset(sp);
406 slob_free_pages(b, 0);
407 return;
408 }
409
410 if (!slob_page_free(sp)) {
411 /* This slob page is about to become partially free. Easy! */
412 sp->units = units;
413 sp->freelist = b;
414 set_slob(b, units,
415 (void *)((unsigned long)(b +
416 SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK));
417 if (size < SLOB_BREAK1)
418 slob_list = &free_slob_small;
419 else if (size < SLOB_BREAK2)
420 slob_list = &free_slob_medium;
421 else
422 slob_list = &free_slob_large;
423 set_slob_page_free(sp, slob_list);
424 goto out;
425 }
426
427 /*
428 * Otherwise the page is already partially free, so find reinsertion
429 * point.
430 */
431 sp->units += units;
432
433 if (b < (slob_t *)sp->freelist) {
434 if (b + units == sp->freelist) {
435 units += slob_units(sp->freelist);
436 sp->freelist = slob_next(sp->freelist);
437 }
438 set_slob(b, units, sp->freelist);
439 sp->freelist = b;
440 } else {
441 prev = sp->freelist;
442 next = slob_next(prev);
443 while (b > next) {
444 prev = next;
445 next = slob_next(prev);
446 }
447
448 if (!slob_last(prev) && b + units == next) {
449 units += slob_units(next);
450 set_slob(b, units, slob_next(next));
451 } else
452 set_slob(b, units, next);
453
454 if (prev + slob_units(prev) == b) {
455 units = slob_units(b) + slob_units(prev);
456 set_slob(prev, units, slob_next(b));
457 } else
458 set_slob(prev, slob_units(prev), b);
459 }
460 out:
461 spin_unlock_irqrestore(&slob_lock, flags);
462 }
463
464 #ifdef CONFIG_PRINTK
kmem_obj_info(struct kmem_obj_info * kpp,void * object,struct page * page)465 void kmem_obj_info(struct kmem_obj_info *kpp, void *object, struct page *page)
466 {
467 kpp->kp_ptr = object;
468 kpp->kp_page = page;
469 }
470 #endif
471
472 /*
473 * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend.
474 */
475
476 static __always_inline void *
__do_kmalloc_node(size_t size,gfp_t gfp,int node,unsigned long caller)477 __do_kmalloc_node(size_t size, gfp_t gfp, int node, unsigned long caller)
478 {
479 unsigned int *m;
480 int minalign = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
481 void *ret;
482
483 gfp &= gfp_allowed_mask;
484
485 might_alloc(gfp);
486
487 if (size < PAGE_SIZE - minalign) {
488 int align = minalign;
489
490 /*
491 * For power of two sizes, guarantee natural alignment for
492 * kmalloc()'d objects.
493 */
494 if (is_power_of_2(size))
495 align = max(minalign, (int) size);
496
497 if (!size)
498 return ZERO_SIZE_PTR;
499
500 m = slob_alloc(size + minalign, gfp, align, node, minalign);
501
502 if (!m)
503 return NULL;
504 *m = size;
505 ret = (void *)m + minalign;
506
507 trace_kmalloc_node(caller, ret,
508 size, size + minalign, gfp, node);
509 } else {
510 unsigned int order = get_order(size);
511
512 if (likely(order))
513 gfp |= __GFP_COMP;
514 ret = slob_new_pages(gfp, order, node);
515
516 trace_kmalloc_node(caller, ret,
517 size, PAGE_SIZE << order, gfp, node);
518 }
519
520 kmemleak_alloc(ret, size, 1, gfp);
521 return ret;
522 }
523
__kmalloc(size_t size,gfp_t gfp)524 void *__kmalloc(size_t size, gfp_t gfp)
525 {
526 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, _RET_IP_);
527 }
528 EXPORT_SYMBOL(__kmalloc);
529
__kmalloc_track_caller(size_t size,gfp_t gfp,unsigned long caller)530 void *__kmalloc_track_caller(size_t size, gfp_t gfp, unsigned long caller)
531 {
532 return __do_kmalloc_node(size, gfp, NUMA_NO_NODE, caller);
533 }
534 EXPORT_SYMBOL(__kmalloc_track_caller);
535
536 #ifdef CONFIG_NUMA
__kmalloc_node_track_caller(size_t size,gfp_t gfp,int node,unsigned long caller)537 void *__kmalloc_node_track_caller(size_t size, gfp_t gfp,
538 int node, unsigned long caller)
539 {
540 return __do_kmalloc_node(size, gfp, node, caller);
541 }
542 EXPORT_SYMBOL(__kmalloc_node_track_caller);
543 #endif
544
kfree(const void * block)545 void kfree(const void *block)
546 {
547 struct page *sp;
548
549 trace_kfree(_RET_IP_, block);
550
551 if (unlikely(ZERO_OR_NULL_PTR(block)))
552 return;
553 kmemleak_free(block);
554
555 sp = virt_to_page(block);
556 if (PageSlab(sp)) {
557 int align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
558 unsigned int *m = (unsigned int *)(block - align);
559 slob_free(m, *m + align);
560 } else {
561 unsigned int order = compound_order(sp);
562 mod_node_page_state(page_pgdat(sp), NR_SLAB_UNRECLAIMABLE_B,
563 -(PAGE_SIZE << order));
564 __free_pages(sp, order);
565
566 }
567 }
568 EXPORT_SYMBOL(kfree);
569
570 /* can't use ksize for kmem_cache_alloc memory, only kmalloc */
__ksize(const void * block)571 size_t __ksize(const void *block)
572 {
573 struct page *sp;
574 int align;
575 unsigned int *m;
576
577 BUG_ON(!block);
578 if (unlikely(block == ZERO_SIZE_PTR))
579 return 0;
580
581 sp = virt_to_page(block);
582 if (unlikely(!PageSlab(sp)))
583 return page_size(sp);
584
585 align = max_t(size_t, ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN);
586 m = (unsigned int *)(block - align);
587 return SLOB_UNITS(*m) * SLOB_UNIT;
588 }
589 EXPORT_SYMBOL(__ksize);
590
__kmem_cache_create(struct kmem_cache * c,slab_flags_t flags)591 int __kmem_cache_create(struct kmem_cache *c, slab_flags_t flags)
592 {
593 if (flags & SLAB_TYPESAFE_BY_RCU) {
594 /* leave room for rcu footer at the end of object */
595 c->size += sizeof(struct slob_rcu);
596 }
597 c->flags = flags;
598 return 0;
599 }
600
slob_alloc_node(struct kmem_cache * c,gfp_t flags,int node)601 static void *slob_alloc_node(struct kmem_cache *c, gfp_t flags, int node)
602 {
603 void *b;
604
605 flags &= gfp_allowed_mask;
606
607 might_alloc(flags);
608
609 if (c->size < PAGE_SIZE) {
610 b = slob_alloc(c->size, flags, c->align, node, 0);
611 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
612 SLOB_UNITS(c->size) * SLOB_UNIT,
613 flags, node);
614 } else {
615 b = slob_new_pages(flags, get_order(c->size), node);
616 trace_kmem_cache_alloc_node(_RET_IP_, b, c->object_size,
617 PAGE_SIZE << get_order(c->size),
618 flags, node);
619 }
620
621 if (b && c->ctor) {
622 WARN_ON_ONCE(flags & __GFP_ZERO);
623 c->ctor(b);
624 }
625
626 kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags);
627 return b;
628 }
629
kmem_cache_alloc(struct kmem_cache * cachep,gfp_t flags)630 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
631 {
632 return slob_alloc_node(cachep, flags, NUMA_NO_NODE);
633 }
634 EXPORT_SYMBOL(kmem_cache_alloc);
635
636 #ifdef CONFIG_NUMA
__kmalloc_node(size_t size,gfp_t gfp,int node)637 void *__kmalloc_node(size_t size, gfp_t gfp, int node)
638 {
639 return __do_kmalloc_node(size, gfp, node, _RET_IP_);
640 }
641 EXPORT_SYMBOL(__kmalloc_node);
642
kmem_cache_alloc_node(struct kmem_cache * cachep,gfp_t gfp,int node)643 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t gfp, int node)
644 {
645 return slob_alloc_node(cachep, gfp, node);
646 }
647 EXPORT_SYMBOL(kmem_cache_alloc_node);
648 #endif
649
__kmem_cache_free(void * b,int size)650 static void __kmem_cache_free(void *b, int size)
651 {
652 if (size < PAGE_SIZE)
653 slob_free(b, size);
654 else
655 slob_free_pages(b, get_order(size));
656 }
657
kmem_rcu_free(struct rcu_head * head)658 static void kmem_rcu_free(struct rcu_head *head)
659 {
660 struct slob_rcu *slob_rcu = (struct slob_rcu *)head;
661 void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu));
662
663 __kmem_cache_free(b, slob_rcu->size);
664 }
665
kmem_cache_free(struct kmem_cache * c,void * b)666 void kmem_cache_free(struct kmem_cache *c, void *b)
667 {
668 kmemleak_free_recursive(b, c->flags);
669 if (unlikely(c->flags & SLAB_TYPESAFE_BY_RCU)) {
670 struct slob_rcu *slob_rcu;
671 slob_rcu = b + (c->size - sizeof(struct slob_rcu));
672 slob_rcu->size = c->size;
673 call_rcu(&slob_rcu->head, kmem_rcu_free);
674 } else {
675 __kmem_cache_free(b, c->size);
676 }
677
678 trace_kmem_cache_free(_RET_IP_, b, c->name);
679 }
680 EXPORT_SYMBOL(kmem_cache_free);
681
kmem_cache_free_bulk(struct kmem_cache * s,size_t size,void ** p)682 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
683 {
684 __kmem_cache_free_bulk(s, size, p);
685 }
686 EXPORT_SYMBOL(kmem_cache_free_bulk);
687
kmem_cache_alloc_bulk(struct kmem_cache * s,gfp_t flags,size_t size,void ** p)688 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
689 void **p)
690 {
691 return __kmem_cache_alloc_bulk(s, flags, size, p);
692 }
693 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
694
__kmem_cache_shutdown(struct kmem_cache * c)695 int __kmem_cache_shutdown(struct kmem_cache *c)
696 {
697 /* No way to check for remaining objects */
698 return 0;
699 }
700
__kmem_cache_release(struct kmem_cache * c)701 void __kmem_cache_release(struct kmem_cache *c)
702 {
703 }
704
__kmem_cache_shrink(struct kmem_cache * d)705 int __kmem_cache_shrink(struct kmem_cache *d)
706 {
707 return 0;
708 }
709
710 struct kmem_cache kmem_cache_boot = {
711 .name = "kmem_cache",
712 .size = sizeof(struct kmem_cache),
713 .flags = SLAB_PANIC,
714 .align = ARCH_KMALLOC_MINALIGN,
715 };
716
kmem_cache_init(void)717 void __init kmem_cache_init(void)
718 {
719 kmem_cache = &kmem_cache_boot;
720 slab_state = UP;
721 }
722
kmem_cache_init_late(void)723 void __init kmem_cache_init_late(void)
724 {
725 slab_state = FULL;
726 }
727