1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/page_alloc.c
4 *
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
7 *
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16 */
17
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84
85 /* No special request */
86 #define FPI_NONE ((__force fpi_t)0)
87
88 /*
89 * Skip free page reporting notification for the (possibly merged) page.
90 * This does not hinder free page reporting from grabbing the page,
91 * reporting it and marking it "reported" - it only skips notifying
92 * the free page reporting infrastructure about a newly freed page. For
93 * example, used when temporarily pulling a page from a freelist and
94 * putting it back unmodified.
95 */
96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
97
98 /*
99 * Place the (possibly merged) page to the tail of the freelist. Will ignore
100 * page shuffling (relevant code - e.g., memory onlining - is expected to
101 * shuffle the whole zone).
102 *
103 * Note: No code should rely on this flag for correctness - it's purely
104 * to allow for optimizations when handing back either fresh pages
105 * (memory onlining) or untouched pages (page isolation, free page
106 * reporting).
107 */
108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
109
110 /*
111 * Don't poison memory with KASAN (only for the tag-based modes).
112 * During boot, all non-reserved memblock memory is exposed to page_alloc.
113 * Poisoning all that memory lengthens boot time, especially on systems with
114 * large amount of RAM. This flag is used to skip that poisoning.
115 * This is only done for the tag-based KASAN modes, as those are able to
116 * detect memory corruptions with the memory tags assigned by default.
117 * All memory allocated normally after boot gets poisoned as usual.
118 */
119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2))
120
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124
125 struct pagesets {
126 local_lock_t lock;
127 };
128 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
129 .lock = INIT_LOCAL_LOCK(lock),
130 };
131
132 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
133 DEFINE_PER_CPU(int, numa_node);
134 EXPORT_PER_CPU_SYMBOL(numa_node);
135 #endif
136
137 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
138
139 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
140 /*
141 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
142 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
143 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
144 * defined in <linux/topology.h>.
145 */
146 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
147 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
148 #endif
149
150 /* work_structs for global per-cpu drains */
151 struct pcpu_drain {
152 struct zone *zone;
153 struct work_struct work;
154 };
155 static DEFINE_MUTEX(pcpu_drain_mutex);
156 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
157
158 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
159 volatile unsigned long latent_entropy __latent_entropy;
160 EXPORT_SYMBOL(latent_entropy);
161 #endif
162
163 /*
164 * Array of node states.
165 */
166 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
167 [N_POSSIBLE] = NODE_MASK_ALL,
168 [N_ONLINE] = { { [0] = 1UL } },
169 #ifndef CONFIG_NUMA
170 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
171 #ifdef CONFIG_HIGHMEM
172 [N_HIGH_MEMORY] = { { [0] = 1UL } },
173 #endif
174 [N_MEMORY] = { { [0] = 1UL } },
175 [N_CPU] = { { [0] = 1UL } },
176 #endif /* NUMA */
177 };
178 EXPORT_SYMBOL(node_states);
179
180 atomic_long_t _totalram_pages __read_mostly;
181 EXPORT_SYMBOL(_totalram_pages);
182 unsigned long totalreserve_pages __read_mostly;
183 unsigned long totalcma_pages __read_mostly;
184
185 int percpu_pagelist_high_fraction;
186 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
187 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
188 EXPORT_SYMBOL(init_on_alloc);
189
190 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
191 EXPORT_SYMBOL(init_on_free);
192
193 static bool _init_on_alloc_enabled_early __read_mostly
194 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
early_init_on_alloc(char * buf)195 static int __init early_init_on_alloc(char *buf)
196 {
197
198 return kstrtobool(buf, &_init_on_alloc_enabled_early);
199 }
200 early_param("init_on_alloc", early_init_on_alloc);
201
202 static bool _init_on_free_enabled_early __read_mostly
203 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
early_init_on_free(char * buf)204 static int __init early_init_on_free(char *buf)
205 {
206 return kstrtobool(buf, &_init_on_free_enabled_early);
207 }
208 early_param("init_on_free", early_init_on_free);
209
210 /*
211 * A cached value of the page's pageblock's migratetype, used when the page is
212 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
213 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
214 * Also the migratetype set in the page does not necessarily match the pcplist
215 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
216 * other index - this ensures that it will be put on the correct CMA freelist.
217 */
get_pcppage_migratetype(struct page * page)218 static inline int get_pcppage_migratetype(struct page *page)
219 {
220 return page->index;
221 }
222
set_pcppage_migratetype(struct page * page,int migratetype)223 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
224 {
225 page->index = migratetype;
226 }
227
228 #ifdef CONFIG_PM_SLEEP
229 /*
230 * The following functions are used by the suspend/hibernate code to temporarily
231 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
232 * while devices are suspended. To avoid races with the suspend/hibernate code,
233 * they should always be called with system_transition_mutex held
234 * (gfp_allowed_mask also should only be modified with system_transition_mutex
235 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
236 * with that modification).
237 */
238
239 static gfp_t saved_gfp_mask;
240
pm_restore_gfp_mask(void)241 void pm_restore_gfp_mask(void)
242 {
243 WARN_ON(!mutex_is_locked(&system_transition_mutex));
244 if (saved_gfp_mask) {
245 gfp_allowed_mask = saved_gfp_mask;
246 saved_gfp_mask = 0;
247 }
248 }
249
pm_restrict_gfp_mask(void)250 void pm_restrict_gfp_mask(void)
251 {
252 WARN_ON(!mutex_is_locked(&system_transition_mutex));
253 WARN_ON(saved_gfp_mask);
254 saved_gfp_mask = gfp_allowed_mask;
255 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
256 }
257
pm_suspended_storage(void)258 bool pm_suspended_storage(void)
259 {
260 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
261 return false;
262 return true;
263 }
264 #endif /* CONFIG_PM_SLEEP */
265
266 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
267 unsigned int pageblock_order __read_mostly;
268 #endif
269
270 static void __free_pages_ok(struct page *page, unsigned int order,
271 fpi_t fpi_flags);
272
273 /*
274 * results with 256, 32 in the lowmem_reserve sysctl:
275 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
276 * 1G machine -> (16M dma, 784M normal, 224M high)
277 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
278 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
279 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
280 *
281 * TBD: should special case ZONE_DMA32 machines here - in those we normally
282 * don't need any ZONE_NORMAL reservation
283 */
284 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
285 #ifdef CONFIG_ZONE_DMA
286 [ZONE_DMA] = 256,
287 #endif
288 #ifdef CONFIG_ZONE_DMA32
289 [ZONE_DMA32] = 256,
290 #endif
291 [ZONE_NORMAL] = 32,
292 #ifdef CONFIG_HIGHMEM
293 [ZONE_HIGHMEM] = 0,
294 #endif
295 [ZONE_MOVABLE] = 0,
296 };
297
298 static char * const zone_names[MAX_NR_ZONES] = {
299 #ifdef CONFIG_ZONE_DMA
300 "DMA",
301 #endif
302 #ifdef CONFIG_ZONE_DMA32
303 "DMA32",
304 #endif
305 "Normal",
306 #ifdef CONFIG_HIGHMEM
307 "HighMem",
308 #endif
309 "Movable",
310 #ifdef CONFIG_ZONE_DEVICE
311 "Device",
312 #endif
313 };
314
315 const char * const migratetype_names[MIGRATE_TYPES] = {
316 "Unmovable",
317 "Movable",
318 "Reclaimable",
319 "HighAtomic",
320 #ifdef CONFIG_CMA
321 "CMA",
322 #endif
323 #ifdef CONFIG_MEMORY_ISOLATION
324 "Isolate",
325 #endif
326 };
327
328 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
329 [NULL_COMPOUND_DTOR] = NULL,
330 [COMPOUND_PAGE_DTOR] = free_compound_page,
331 #ifdef CONFIG_HUGETLB_PAGE
332 [HUGETLB_PAGE_DTOR] = free_huge_page,
333 #endif
334 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
335 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
336 #endif
337 };
338
339 int min_free_kbytes = 1024;
340 int user_min_free_kbytes = -1;
341 int watermark_boost_factor __read_mostly = 15000;
342 int watermark_scale_factor = 10;
343
344 static unsigned long nr_kernel_pages __initdata;
345 static unsigned long nr_all_pages __initdata;
346 static unsigned long dma_reserve __initdata;
347
348 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
349 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
350 static unsigned long required_kernelcore __initdata;
351 static unsigned long required_kernelcore_percent __initdata;
352 static unsigned long required_movablecore __initdata;
353 static unsigned long required_movablecore_percent __initdata;
354 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
355 static bool mirrored_kernelcore __meminitdata;
356
357 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
358 int movable_zone;
359 EXPORT_SYMBOL(movable_zone);
360
361 #if MAX_NUMNODES > 1
362 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
363 unsigned int nr_online_nodes __read_mostly = 1;
364 EXPORT_SYMBOL(nr_node_ids);
365 EXPORT_SYMBOL(nr_online_nodes);
366 #endif
367
368 int page_group_by_mobility_disabled __read_mostly;
369
370 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
371 /*
372 * During boot we initialize deferred pages on-demand, as needed, but once
373 * page_alloc_init_late() has finished, the deferred pages are all initialized,
374 * and we can permanently disable that path.
375 */
376 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
377
378 /*
379 * Calling kasan_poison_pages() only after deferred memory initialization
380 * has completed. Poisoning pages during deferred memory init will greatly
381 * lengthen the process and cause problem in large memory systems as the
382 * deferred pages initialization is done with interrupt disabled.
383 *
384 * Assuming that there will be no reference to those newly initialized
385 * pages before they are ever allocated, this should have no effect on
386 * KASAN memory tracking as the poison will be properly inserted at page
387 * allocation time. The only corner case is when pages are allocated by
388 * on-demand allocation and then freed again before the deferred pages
389 * initialization is done, but this is not likely to happen.
390 */
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)391 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
392 {
393 return static_branch_unlikely(&deferred_pages) ||
394 (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
395 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
396 PageSkipKASanPoison(page);
397 }
398
399 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)400 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
401 {
402 int nid = early_pfn_to_nid(pfn);
403
404 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
405 return true;
406
407 return false;
408 }
409
410 /*
411 * Returns true when the remaining initialisation should be deferred until
412 * later in the boot cycle when it can be parallelised.
413 */
414 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)415 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
416 {
417 static unsigned long prev_end_pfn, nr_initialised;
418
419 /*
420 * prev_end_pfn static that contains the end of previous zone
421 * No need to protect because called very early in boot before smp_init.
422 */
423 if (prev_end_pfn != end_pfn) {
424 prev_end_pfn = end_pfn;
425 nr_initialised = 0;
426 }
427
428 /* Always populate low zones for address-constrained allocations */
429 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
430 return false;
431
432 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
433 return true;
434 /*
435 * We start only with one section of pages, more pages are added as
436 * needed until the rest of deferred pages are initialized.
437 */
438 nr_initialised++;
439 if ((nr_initialised > PAGES_PER_SECTION) &&
440 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
441 NODE_DATA(nid)->first_deferred_pfn = pfn;
442 return true;
443 }
444 return false;
445 }
446 #else
should_skip_kasan_poison(struct page * page,fpi_t fpi_flags)447 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
448 {
449 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
450 (fpi_flags & FPI_SKIP_KASAN_POISON)) ||
451 PageSkipKASanPoison(page);
452 }
453
early_page_uninitialised(unsigned long pfn)454 static inline bool early_page_uninitialised(unsigned long pfn)
455 {
456 return false;
457 }
458
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)459 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
460 {
461 return false;
462 }
463 #endif
464
465 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(const struct page * page,unsigned long pfn)466 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
467 unsigned long pfn)
468 {
469 #ifdef CONFIG_SPARSEMEM
470 return section_to_usemap(__pfn_to_section(pfn));
471 #else
472 return page_zone(page)->pageblock_flags;
473 #endif /* CONFIG_SPARSEMEM */
474 }
475
pfn_to_bitidx(const struct page * page,unsigned long pfn)476 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
477 {
478 #ifdef CONFIG_SPARSEMEM
479 pfn &= (PAGES_PER_SECTION-1);
480 #else
481 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
482 #endif /* CONFIG_SPARSEMEM */
483 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
484 }
485
486 static __always_inline
__get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)487 unsigned long __get_pfnblock_flags_mask(const struct page *page,
488 unsigned long pfn,
489 unsigned long mask)
490 {
491 unsigned long *bitmap;
492 unsigned long bitidx, word_bitidx;
493 unsigned long word;
494
495 bitmap = get_pageblock_bitmap(page, pfn);
496 bitidx = pfn_to_bitidx(page, pfn);
497 word_bitidx = bitidx / BITS_PER_LONG;
498 bitidx &= (BITS_PER_LONG-1);
499
500 word = bitmap[word_bitidx];
501 return (word >> bitidx) & mask;
502 }
503
504 /**
505 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
506 * @page: The page within the block of interest
507 * @pfn: The target page frame number
508 * @mask: mask of bits that the caller is interested in
509 *
510 * Return: pageblock_bits flags
511 */
get_pfnblock_flags_mask(const struct page * page,unsigned long pfn,unsigned long mask)512 unsigned long get_pfnblock_flags_mask(const struct page *page,
513 unsigned long pfn, unsigned long mask)
514 {
515 return __get_pfnblock_flags_mask(page, pfn, mask);
516 }
517
get_pfnblock_migratetype(const struct page * page,unsigned long pfn)518 static __always_inline int get_pfnblock_migratetype(const struct page *page,
519 unsigned long pfn)
520 {
521 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
522 }
523
524 /**
525 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
526 * @page: The page within the block of interest
527 * @flags: The flags to set
528 * @pfn: The target page frame number
529 * @mask: mask of bits that the caller is interested in
530 */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)531 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
532 unsigned long pfn,
533 unsigned long mask)
534 {
535 unsigned long *bitmap;
536 unsigned long bitidx, word_bitidx;
537 unsigned long old_word, word;
538
539 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
540 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
541
542 bitmap = get_pageblock_bitmap(page, pfn);
543 bitidx = pfn_to_bitidx(page, pfn);
544 word_bitidx = bitidx / BITS_PER_LONG;
545 bitidx &= (BITS_PER_LONG-1);
546
547 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
548
549 mask <<= bitidx;
550 flags <<= bitidx;
551
552 word = READ_ONCE(bitmap[word_bitidx]);
553 for (;;) {
554 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
555 if (word == old_word)
556 break;
557 word = old_word;
558 }
559 }
560
set_pageblock_migratetype(struct page * page,int migratetype)561 void set_pageblock_migratetype(struct page *page, int migratetype)
562 {
563 if (unlikely(page_group_by_mobility_disabled &&
564 migratetype < MIGRATE_PCPTYPES))
565 migratetype = MIGRATE_UNMOVABLE;
566
567 set_pfnblock_flags_mask(page, (unsigned long)migratetype,
568 page_to_pfn(page), MIGRATETYPE_MASK);
569 }
570
571 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)572 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
573 {
574 int ret = 0;
575 unsigned seq;
576 unsigned long pfn = page_to_pfn(page);
577 unsigned long sp, start_pfn;
578
579 do {
580 seq = zone_span_seqbegin(zone);
581 start_pfn = zone->zone_start_pfn;
582 sp = zone->spanned_pages;
583 if (!zone_spans_pfn(zone, pfn))
584 ret = 1;
585 } while (zone_span_seqretry(zone, seq));
586
587 if (ret)
588 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
589 pfn, zone_to_nid(zone), zone->name,
590 start_pfn, start_pfn + sp);
591
592 return ret;
593 }
594
page_is_consistent(struct zone * zone,struct page * page)595 static int page_is_consistent(struct zone *zone, struct page *page)
596 {
597 if (zone != page_zone(page))
598 return 0;
599
600 return 1;
601 }
602 /*
603 * Temporary debugging check for pages not lying within a given zone.
604 */
bad_range(struct zone * zone,struct page * page)605 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
606 {
607 if (page_outside_zone_boundaries(zone, page))
608 return 1;
609 if (!page_is_consistent(zone, page))
610 return 1;
611
612 return 0;
613 }
614 #else
bad_range(struct zone * zone,struct page * page)615 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
616 {
617 return 0;
618 }
619 #endif
620
bad_page(struct page * page,const char * reason)621 static void bad_page(struct page *page, const char *reason)
622 {
623 static unsigned long resume;
624 static unsigned long nr_shown;
625 static unsigned long nr_unshown;
626
627 /*
628 * Allow a burst of 60 reports, then keep quiet for that minute;
629 * or allow a steady drip of one report per second.
630 */
631 if (nr_shown == 60) {
632 if (time_before(jiffies, resume)) {
633 nr_unshown++;
634 goto out;
635 }
636 if (nr_unshown) {
637 pr_alert(
638 "BUG: Bad page state: %lu messages suppressed\n",
639 nr_unshown);
640 nr_unshown = 0;
641 }
642 nr_shown = 0;
643 }
644 if (nr_shown++ == 0)
645 resume = jiffies + 60 * HZ;
646
647 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
648 current->comm, page_to_pfn(page));
649 dump_page(page, reason);
650
651 print_modules();
652 dump_stack();
653 out:
654 /* Leave bad fields for debug, except PageBuddy could make trouble */
655 page_mapcount_reset(page); /* remove PageBuddy */
656 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
657 }
658
order_to_pindex(int migratetype,int order)659 static inline unsigned int order_to_pindex(int migratetype, int order)
660 {
661 int base = order;
662
663 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
664 if (order > PAGE_ALLOC_COSTLY_ORDER) {
665 VM_BUG_ON(order != pageblock_order);
666 base = PAGE_ALLOC_COSTLY_ORDER + 1;
667 }
668 #else
669 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
670 #endif
671
672 return (MIGRATE_PCPTYPES * base) + migratetype;
673 }
674
pindex_to_order(unsigned int pindex)675 static inline int pindex_to_order(unsigned int pindex)
676 {
677 int order = pindex / MIGRATE_PCPTYPES;
678
679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
680 if (order > PAGE_ALLOC_COSTLY_ORDER) {
681 order = pageblock_order;
682 VM_BUG_ON(order != pageblock_order);
683 }
684 #else
685 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
686 #endif
687
688 return order;
689 }
690
pcp_allowed_order(unsigned int order)691 static inline bool pcp_allowed_order(unsigned int order)
692 {
693 if (order <= PAGE_ALLOC_COSTLY_ORDER)
694 return true;
695 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
696 if (order == pageblock_order)
697 return true;
698 #endif
699 return false;
700 }
701
free_the_page(struct page * page,unsigned int order)702 static inline void free_the_page(struct page *page, unsigned int order)
703 {
704 if (pcp_allowed_order(order)) /* Via pcp? */
705 free_unref_page(page, order);
706 else
707 __free_pages_ok(page, order, FPI_NONE);
708 }
709
710 /*
711 * Higher-order pages are called "compound pages". They are structured thusly:
712 *
713 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
714 *
715 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
716 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
717 *
718 * The first tail page's ->compound_dtor holds the offset in array of compound
719 * page destructors. See compound_page_dtors.
720 *
721 * The first tail page's ->compound_order holds the order of allocation.
722 * This usage means that zero-order pages may not be compound.
723 */
724
free_compound_page(struct page * page)725 void free_compound_page(struct page *page)
726 {
727 mem_cgroup_uncharge(page);
728 free_the_page(page, compound_order(page));
729 }
730
prep_compound_page(struct page * page,unsigned int order)731 void prep_compound_page(struct page *page, unsigned int order)
732 {
733 int i;
734 int nr_pages = 1 << order;
735
736 __SetPageHead(page);
737 for (i = 1; i < nr_pages; i++) {
738 struct page *p = page + i;
739 p->mapping = TAIL_MAPPING;
740 set_compound_head(p, page);
741 }
742
743 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
744 set_compound_order(page, order);
745 atomic_set(compound_mapcount_ptr(page), -1);
746 if (hpage_pincount_available(page))
747 atomic_set(compound_pincount_ptr(page), 0);
748 }
749
750 #ifdef CONFIG_DEBUG_PAGEALLOC
751 unsigned int _debug_guardpage_minorder;
752
753 bool _debug_pagealloc_enabled_early __read_mostly
754 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
755 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
756 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
757 EXPORT_SYMBOL(_debug_pagealloc_enabled);
758
759 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
760
early_debug_pagealloc(char * buf)761 static int __init early_debug_pagealloc(char *buf)
762 {
763 return kstrtobool(buf, &_debug_pagealloc_enabled_early);
764 }
765 early_param("debug_pagealloc", early_debug_pagealloc);
766
debug_guardpage_minorder_setup(char * buf)767 static int __init debug_guardpage_minorder_setup(char *buf)
768 {
769 unsigned long res;
770
771 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
772 pr_err("Bad debug_guardpage_minorder value\n");
773 return 0;
774 }
775 _debug_guardpage_minorder = res;
776 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
777 return 0;
778 }
779 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
780
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)781 static inline bool set_page_guard(struct zone *zone, struct page *page,
782 unsigned int order, int migratetype)
783 {
784 if (!debug_guardpage_enabled())
785 return false;
786
787 if (order >= debug_guardpage_minorder())
788 return false;
789
790 __SetPageGuard(page);
791 INIT_LIST_HEAD(&page->lru);
792 set_page_private(page, order);
793 /* Guard pages are not available for any usage */
794 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
795
796 return true;
797 }
798
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)799 static inline void clear_page_guard(struct zone *zone, struct page *page,
800 unsigned int order, int migratetype)
801 {
802 if (!debug_guardpage_enabled())
803 return;
804
805 __ClearPageGuard(page);
806
807 set_page_private(page, 0);
808 if (!is_migrate_isolate(migratetype))
809 __mod_zone_freepage_state(zone, (1 << order), migratetype);
810 }
811 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)812 static inline bool set_page_guard(struct zone *zone, struct page *page,
813 unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)814 static inline void clear_page_guard(struct zone *zone, struct page *page,
815 unsigned int order, int migratetype) {}
816 #endif
817
818 /*
819 * Enable static keys related to various memory debugging and hardening options.
820 * Some override others, and depend on early params that are evaluated in the
821 * order of appearance. So we need to first gather the full picture of what was
822 * enabled, and then make decisions.
823 */
init_mem_debugging_and_hardening(void)824 void init_mem_debugging_and_hardening(void)
825 {
826 bool page_poisoning_requested = false;
827
828 #ifdef CONFIG_PAGE_POISONING
829 /*
830 * Page poisoning is debug page alloc for some arches. If
831 * either of those options are enabled, enable poisoning.
832 */
833 if (page_poisoning_enabled() ||
834 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
835 debug_pagealloc_enabled())) {
836 static_branch_enable(&_page_poisoning_enabled);
837 page_poisoning_requested = true;
838 }
839 #endif
840
841 if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
842 page_poisoning_requested) {
843 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
844 "will take precedence over init_on_alloc and init_on_free\n");
845 _init_on_alloc_enabled_early = false;
846 _init_on_free_enabled_early = false;
847 }
848
849 if (_init_on_alloc_enabled_early)
850 static_branch_enable(&init_on_alloc);
851 else
852 static_branch_disable(&init_on_alloc);
853
854 if (_init_on_free_enabled_early)
855 static_branch_enable(&init_on_free);
856 else
857 static_branch_disable(&init_on_free);
858
859 #ifdef CONFIG_DEBUG_PAGEALLOC
860 if (!debug_pagealloc_enabled())
861 return;
862
863 static_branch_enable(&_debug_pagealloc_enabled);
864
865 if (!debug_guardpage_minorder())
866 return;
867
868 static_branch_enable(&_debug_guardpage_enabled);
869 #endif
870 }
871
set_buddy_order(struct page * page,unsigned int order)872 static inline void set_buddy_order(struct page *page, unsigned int order)
873 {
874 set_page_private(page, order);
875 __SetPageBuddy(page);
876 }
877
878 /*
879 * This function checks whether a page is free && is the buddy
880 * we can coalesce a page and its buddy if
881 * (a) the buddy is not in a hole (check before calling!) &&
882 * (b) the buddy is in the buddy system &&
883 * (c) a page and its buddy have the same order &&
884 * (d) a page and its buddy are in the same zone.
885 *
886 * For recording whether a page is in the buddy system, we set PageBuddy.
887 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
888 *
889 * For recording page's order, we use page_private(page).
890 */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)891 static inline bool page_is_buddy(struct page *page, struct page *buddy,
892 unsigned int order)
893 {
894 if (!page_is_guard(buddy) && !PageBuddy(buddy))
895 return false;
896
897 if (buddy_order(buddy) != order)
898 return false;
899
900 /*
901 * zone check is done late to avoid uselessly calculating
902 * zone/node ids for pages that could never merge.
903 */
904 if (page_zone_id(page) != page_zone_id(buddy))
905 return false;
906
907 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
908
909 return true;
910 }
911
912 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)913 static inline struct capture_control *task_capc(struct zone *zone)
914 {
915 struct capture_control *capc = current->capture_control;
916
917 return unlikely(capc) &&
918 !(current->flags & PF_KTHREAD) &&
919 !capc->page &&
920 capc->cc->zone == zone ? capc : NULL;
921 }
922
923 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)924 compaction_capture(struct capture_control *capc, struct page *page,
925 int order, int migratetype)
926 {
927 if (!capc || order != capc->cc->order)
928 return false;
929
930 /* Do not accidentally pollute CMA or isolated regions*/
931 if (is_migrate_cma(migratetype) ||
932 is_migrate_isolate(migratetype))
933 return false;
934
935 /*
936 * Do not let lower order allocations pollute a movable pageblock.
937 * This might let an unmovable request use a reclaimable pageblock
938 * and vice-versa but no more than normal fallback logic which can
939 * have trouble finding a high-order free page.
940 */
941 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
942 return false;
943
944 capc->page = page;
945 return true;
946 }
947
948 #else
task_capc(struct zone * zone)949 static inline struct capture_control *task_capc(struct zone *zone)
950 {
951 return NULL;
952 }
953
954 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)955 compaction_capture(struct capture_control *capc, struct page *page,
956 int order, int migratetype)
957 {
958 return false;
959 }
960 #endif /* CONFIG_COMPACTION */
961
962 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)963 static inline void add_to_free_list(struct page *page, struct zone *zone,
964 unsigned int order, int migratetype)
965 {
966 struct free_area *area = &zone->free_area[order];
967
968 list_add(&page->lru, &area->free_list[migratetype]);
969 area->nr_free++;
970 }
971
972 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)973 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
974 unsigned int order, int migratetype)
975 {
976 struct free_area *area = &zone->free_area[order];
977
978 list_add_tail(&page->lru, &area->free_list[migratetype]);
979 area->nr_free++;
980 }
981
982 /*
983 * Used for pages which are on another list. Move the pages to the tail
984 * of the list - so the moved pages won't immediately be considered for
985 * allocation again (e.g., optimization for memory onlining).
986 */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)987 static inline void move_to_free_list(struct page *page, struct zone *zone,
988 unsigned int order, int migratetype)
989 {
990 struct free_area *area = &zone->free_area[order];
991
992 list_move_tail(&page->lru, &area->free_list[migratetype]);
993 }
994
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)995 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
996 unsigned int order)
997 {
998 /* clear reported state and update reported page count */
999 if (page_reported(page))
1000 __ClearPageReported(page);
1001
1002 list_del(&page->lru);
1003 __ClearPageBuddy(page);
1004 set_page_private(page, 0);
1005 zone->free_area[order].nr_free--;
1006 }
1007
1008 /*
1009 * If this is not the largest possible page, check if the buddy
1010 * of the next-highest order is free. If it is, it's possible
1011 * that pages are being freed that will coalesce soon. In case,
1012 * that is happening, add the free page to the tail of the list
1013 * so it's less likely to be used soon and more likely to be merged
1014 * as a higher order page
1015 */
1016 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)1017 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1018 struct page *page, unsigned int order)
1019 {
1020 struct page *higher_page, *higher_buddy;
1021 unsigned long combined_pfn;
1022
1023 if (order >= MAX_ORDER - 2)
1024 return false;
1025
1026 combined_pfn = buddy_pfn & pfn;
1027 higher_page = page + (combined_pfn - pfn);
1028 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1029 higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1030
1031 return page_is_buddy(higher_page, higher_buddy, order + 1);
1032 }
1033
1034 /*
1035 * Freeing function for a buddy system allocator.
1036 *
1037 * The concept of a buddy system is to maintain direct-mapped table
1038 * (containing bit values) for memory blocks of various "orders".
1039 * The bottom level table contains the map for the smallest allocatable
1040 * units of memory (here, pages), and each level above it describes
1041 * pairs of units from the levels below, hence, "buddies".
1042 * At a high level, all that happens here is marking the table entry
1043 * at the bottom level available, and propagating the changes upward
1044 * as necessary, plus some accounting needed to play nicely with other
1045 * parts of the VM system.
1046 * At each level, we keep a list of pages, which are heads of continuous
1047 * free pages of length of (1 << order) and marked with PageBuddy.
1048 * Page's order is recorded in page_private(page) field.
1049 * So when we are allocating or freeing one, we can derive the state of the
1050 * other. That is, if we allocate a small block, and both were
1051 * free, the remainder of the region must be split into blocks.
1052 * If a block is freed, and its buddy is also free, then this
1053 * triggers coalescing into a block of larger size.
1054 *
1055 * -- nyc
1056 */
1057
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)1058 static inline void __free_one_page(struct page *page,
1059 unsigned long pfn,
1060 struct zone *zone, unsigned int order,
1061 int migratetype, fpi_t fpi_flags)
1062 {
1063 struct capture_control *capc = task_capc(zone);
1064 unsigned long buddy_pfn;
1065 unsigned long combined_pfn;
1066 unsigned int max_order;
1067 struct page *buddy;
1068 bool to_tail;
1069
1070 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1071
1072 VM_BUG_ON(!zone_is_initialized(zone));
1073 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1074
1075 VM_BUG_ON(migratetype == -1);
1076 if (likely(!is_migrate_isolate(migratetype)))
1077 __mod_zone_freepage_state(zone, 1 << order, migratetype);
1078
1079 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1080 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1081
1082 continue_merging:
1083 while (order < max_order) {
1084 if (compaction_capture(capc, page, order, migratetype)) {
1085 __mod_zone_freepage_state(zone, -(1 << order),
1086 migratetype);
1087 return;
1088 }
1089 buddy_pfn = __find_buddy_pfn(pfn, order);
1090 buddy = page + (buddy_pfn - pfn);
1091
1092 if (!page_is_buddy(page, buddy, order))
1093 goto done_merging;
1094 /*
1095 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1096 * merge with it and move up one order.
1097 */
1098 if (page_is_guard(buddy))
1099 clear_page_guard(zone, buddy, order, migratetype);
1100 else
1101 del_page_from_free_list(buddy, zone, order);
1102 combined_pfn = buddy_pfn & pfn;
1103 page = page + (combined_pfn - pfn);
1104 pfn = combined_pfn;
1105 order++;
1106 }
1107 if (order < MAX_ORDER - 1) {
1108 /* If we are here, it means order is >= pageblock_order.
1109 * We want to prevent merge between freepages on isolate
1110 * pageblock and normal pageblock. Without this, pageblock
1111 * isolation could cause incorrect freepage or CMA accounting.
1112 *
1113 * We don't want to hit this code for the more frequent
1114 * low-order merging.
1115 */
1116 if (unlikely(has_isolate_pageblock(zone))) {
1117 int buddy_mt;
1118
1119 buddy_pfn = __find_buddy_pfn(pfn, order);
1120 buddy = page + (buddy_pfn - pfn);
1121 buddy_mt = get_pageblock_migratetype(buddy);
1122
1123 if (migratetype != buddy_mt
1124 && (is_migrate_isolate(migratetype) ||
1125 is_migrate_isolate(buddy_mt)))
1126 goto done_merging;
1127 }
1128 max_order = order + 1;
1129 goto continue_merging;
1130 }
1131
1132 done_merging:
1133 set_buddy_order(page, order);
1134
1135 if (fpi_flags & FPI_TO_TAIL)
1136 to_tail = true;
1137 else if (is_shuffle_order(order))
1138 to_tail = shuffle_pick_tail();
1139 else
1140 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1141
1142 if (to_tail)
1143 add_to_free_list_tail(page, zone, order, migratetype);
1144 else
1145 add_to_free_list(page, zone, order, migratetype);
1146
1147 /* Notify page reporting subsystem of freed page */
1148 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1149 page_reporting_notify_free(order);
1150 }
1151
1152 /*
1153 * A bad page could be due to a number of fields. Instead of multiple branches,
1154 * try and check multiple fields with one check. The caller must do a detailed
1155 * check if necessary.
1156 */
page_expected_state(struct page * page,unsigned long check_flags)1157 static inline bool page_expected_state(struct page *page,
1158 unsigned long check_flags)
1159 {
1160 if (unlikely(atomic_read(&page->_mapcount) != -1))
1161 return false;
1162
1163 if (unlikely((unsigned long)page->mapping |
1164 page_ref_count(page) |
1165 #ifdef CONFIG_MEMCG
1166 page->memcg_data |
1167 #endif
1168 (page->flags & check_flags)))
1169 return false;
1170
1171 return true;
1172 }
1173
page_bad_reason(struct page * page,unsigned long flags)1174 static const char *page_bad_reason(struct page *page, unsigned long flags)
1175 {
1176 const char *bad_reason = NULL;
1177
1178 if (unlikely(atomic_read(&page->_mapcount) != -1))
1179 bad_reason = "nonzero mapcount";
1180 if (unlikely(page->mapping != NULL))
1181 bad_reason = "non-NULL mapping";
1182 if (unlikely(page_ref_count(page) != 0))
1183 bad_reason = "nonzero _refcount";
1184 if (unlikely(page->flags & flags)) {
1185 if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1186 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1187 else
1188 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1189 }
1190 #ifdef CONFIG_MEMCG
1191 if (unlikely(page->memcg_data))
1192 bad_reason = "page still charged to cgroup";
1193 #endif
1194 return bad_reason;
1195 }
1196
check_free_page_bad(struct page * page)1197 static void check_free_page_bad(struct page *page)
1198 {
1199 bad_page(page,
1200 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1201 }
1202
check_free_page(struct page * page)1203 static inline int check_free_page(struct page *page)
1204 {
1205 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1206 return 0;
1207
1208 /* Something has gone sideways, find it */
1209 check_free_page_bad(page);
1210 return 1;
1211 }
1212
free_tail_pages_check(struct page * head_page,struct page * page)1213 static int free_tail_pages_check(struct page *head_page, struct page *page)
1214 {
1215 int ret = 1;
1216
1217 /*
1218 * We rely page->lru.next never has bit 0 set, unless the page
1219 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1220 */
1221 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1222
1223 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1224 ret = 0;
1225 goto out;
1226 }
1227 switch (page - head_page) {
1228 case 1:
1229 /* the first tail page: ->mapping may be compound_mapcount() */
1230 if (unlikely(compound_mapcount(page))) {
1231 bad_page(page, "nonzero compound_mapcount");
1232 goto out;
1233 }
1234 break;
1235 case 2:
1236 /*
1237 * the second tail page: ->mapping is
1238 * deferred_list.next -- ignore value.
1239 */
1240 break;
1241 default:
1242 if (page->mapping != TAIL_MAPPING) {
1243 bad_page(page, "corrupted mapping in tail page");
1244 goto out;
1245 }
1246 break;
1247 }
1248 if (unlikely(!PageTail(page))) {
1249 bad_page(page, "PageTail not set");
1250 goto out;
1251 }
1252 if (unlikely(compound_head(page) != head_page)) {
1253 bad_page(page, "compound_head not consistent");
1254 goto out;
1255 }
1256 ret = 0;
1257 out:
1258 page->mapping = NULL;
1259 clear_compound_head(page);
1260 return ret;
1261 }
1262
kernel_init_free_pages(struct page * page,int numpages,bool zero_tags)1263 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1264 {
1265 int i;
1266
1267 if (zero_tags) {
1268 for (i = 0; i < numpages; i++)
1269 tag_clear_highpage(page + i);
1270 return;
1271 }
1272
1273 /* s390's use of memset() could override KASAN redzones. */
1274 kasan_disable_current();
1275 for (i = 0; i < numpages; i++) {
1276 u8 tag = page_kasan_tag(page + i);
1277 page_kasan_tag_reset(page + i);
1278 clear_highpage(page + i);
1279 page_kasan_tag_set(page + i, tag);
1280 }
1281 kasan_enable_current();
1282 }
1283
free_pages_prepare(struct page * page,unsigned int order,bool check_free,fpi_t fpi_flags)1284 static __always_inline bool free_pages_prepare(struct page *page,
1285 unsigned int order, bool check_free, fpi_t fpi_flags)
1286 {
1287 int bad = 0;
1288 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1289
1290 VM_BUG_ON_PAGE(PageTail(page), page);
1291
1292 trace_mm_page_free(page, order);
1293
1294 if (unlikely(PageHWPoison(page)) && !order) {
1295 /*
1296 * Do not let hwpoison pages hit pcplists/buddy
1297 * Untie memcg state and reset page's owner
1298 */
1299 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1300 __memcg_kmem_uncharge_page(page, order);
1301 reset_page_owner(page, order);
1302 return false;
1303 }
1304
1305 /*
1306 * Check tail pages before head page information is cleared to
1307 * avoid checking PageCompound for order-0 pages.
1308 */
1309 if (unlikely(order)) {
1310 bool compound = PageCompound(page);
1311 int i;
1312
1313 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1314
1315 if (compound) {
1316 ClearPageDoubleMap(page);
1317 ClearPageHasHWPoisoned(page);
1318 }
1319 for (i = 1; i < (1 << order); i++) {
1320 if (compound)
1321 bad += free_tail_pages_check(page, page + i);
1322 if (unlikely(check_free_page(page + i))) {
1323 bad++;
1324 continue;
1325 }
1326 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1327 }
1328 }
1329 if (PageMappingFlags(page))
1330 page->mapping = NULL;
1331 if (memcg_kmem_enabled() && PageMemcgKmem(page))
1332 __memcg_kmem_uncharge_page(page, order);
1333 if (check_free)
1334 bad += check_free_page(page);
1335 if (bad)
1336 return false;
1337
1338 page_cpupid_reset_last(page);
1339 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1340 reset_page_owner(page, order);
1341
1342 if (!PageHighMem(page)) {
1343 debug_check_no_locks_freed(page_address(page),
1344 PAGE_SIZE << order);
1345 debug_check_no_obj_freed(page_address(page),
1346 PAGE_SIZE << order);
1347 }
1348
1349 kernel_poison_pages(page, 1 << order);
1350
1351 /*
1352 * As memory initialization might be integrated into KASAN,
1353 * kasan_free_pages and kernel_init_free_pages must be
1354 * kept together to avoid discrepancies in behavior.
1355 *
1356 * With hardware tag-based KASAN, memory tags must be set before the
1357 * page becomes unavailable via debug_pagealloc or arch_free_page.
1358 */
1359 if (kasan_has_integrated_init()) {
1360 if (!skip_kasan_poison)
1361 kasan_free_pages(page, order);
1362 } else {
1363 bool init = want_init_on_free();
1364
1365 if (init)
1366 kernel_init_free_pages(page, 1 << order, false);
1367 if (!skip_kasan_poison)
1368 kasan_poison_pages(page, order, init);
1369 }
1370
1371 /*
1372 * arch_free_page() can make the page's contents inaccessible. s390
1373 * does this. So nothing which can access the page's contents should
1374 * happen after this.
1375 */
1376 arch_free_page(page, order);
1377
1378 debug_pagealloc_unmap_pages(page, 1 << order);
1379
1380 return true;
1381 }
1382
1383 #ifdef CONFIG_DEBUG_VM
1384 /*
1385 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1386 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1387 * moved from pcp lists to free lists.
1388 */
free_pcp_prepare(struct page * page,unsigned int order)1389 static bool free_pcp_prepare(struct page *page, unsigned int order)
1390 {
1391 return free_pages_prepare(page, order, true, FPI_NONE);
1392 }
1393
bulkfree_pcp_prepare(struct page * page)1394 static bool bulkfree_pcp_prepare(struct page *page)
1395 {
1396 if (debug_pagealloc_enabled_static())
1397 return check_free_page(page);
1398 else
1399 return false;
1400 }
1401 #else
1402 /*
1403 * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1404 * moving from pcp lists to free list in order to reduce overhead. With
1405 * debug_pagealloc enabled, they are checked also immediately when being freed
1406 * to the pcp lists.
1407 */
free_pcp_prepare(struct page * page,unsigned int order)1408 static bool free_pcp_prepare(struct page *page, unsigned int order)
1409 {
1410 if (debug_pagealloc_enabled_static())
1411 return free_pages_prepare(page, order, true, FPI_NONE);
1412 else
1413 return free_pages_prepare(page, order, false, FPI_NONE);
1414 }
1415
bulkfree_pcp_prepare(struct page * page)1416 static bool bulkfree_pcp_prepare(struct page *page)
1417 {
1418 return check_free_page(page);
1419 }
1420 #endif /* CONFIG_DEBUG_VM */
1421
prefetch_buddy(struct page * page)1422 static inline void prefetch_buddy(struct page *page)
1423 {
1424 unsigned long pfn = page_to_pfn(page);
1425 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1426 struct page *buddy = page + (buddy_pfn - pfn);
1427
1428 prefetch(buddy);
1429 }
1430
1431 /*
1432 * Frees a number of pages from the PCP lists
1433 * Assumes all pages on list are in same zone, and of same order.
1434 * count is the number of pages to free.
1435 *
1436 * If the zone was previously in an "all pages pinned" state then look to
1437 * see if this freeing clears that state.
1438 *
1439 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1440 * pinned" detection logic.
1441 */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1442 static void free_pcppages_bulk(struct zone *zone, int count,
1443 struct per_cpu_pages *pcp)
1444 {
1445 int pindex = 0;
1446 int batch_free = 0;
1447 int nr_freed = 0;
1448 unsigned int order;
1449 int prefetch_nr = READ_ONCE(pcp->batch);
1450 bool isolated_pageblocks;
1451 struct page *page, *tmp;
1452 LIST_HEAD(head);
1453
1454 /*
1455 * Ensure proper count is passed which otherwise would stuck in the
1456 * below while (list_empty(list)) loop.
1457 */
1458 count = min(pcp->count, count);
1459 while (count > 0) {
1460 struct list_head *list;
1461
1462 /*
1463 * Remove pages from lists in a round-robin fashion. A
1464 * batch_free count is maintained that is incremented when an
1465 * empty list is encountered. This is so more pages are freed
1466 * off fuller lists instead of spinning excessively around empty
1467 * lists
1468 */
1469 do {
1470 batch_free++;
1471 if (++pindex == NR_PCP_LISTS)
1472 pindex = 0;
1473 list = &pcp->lists[pindex];
1474 } while (list_empty(list));
1475
1476 /* This is the only non-empty list. Free them all. */
1477 if (batch_free == NR_PCP_LISTS)
1478 batch_free = count;
1479
1480 order = pindex_to_order(pindex);
1481 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1482 do {
1483 page = list_last_entry(list, struct page, lru);
1484 /* must delete to avoid corrupting pcp list */
1485 list_del(&page->lru);
1486 nr_freed += 1 << order;
1487 count -= 1 << order;
1488
1489 if (bulkfree_pcp_prepare(page))
1490 continue;
1491
1492 /* Encode order with the migratetype */
1493 page->index <<= NR_PCP_ORDER_WIDTH;
1494 page->index |= order;
1495
1496 list_add_tail(&page->lru, &head);
1497
1498 /*
1499 * We are going to put the page back to the global
1500 * pool, prefetch its buddy to speed up later access
1501 * under zone->lock. It is believed the overhead of
1502 * an additional test and calculating buddy_pfn here
1503 * can be offset by reduced memory latency later. To
1504 * avoid excessive prefetching due to large count, only
1505 * prefetch buddy for the first pcp->batch nr of pages.
1506 */
1507 if (prefetch_nr) {
1508 prefetch_buddy(page);
1509 prefetch_nr--;
1510 }
1511 } while (count > 0 && --batch_free && !list_empty(list));
1512 }
1513 pcp->count -= nr_freed;
1514
1515 /*
1516 * local_lock_irq held so equivalent to spin_lock_irqsave for
1517 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1518 */
1519 spin_lock(&zone->lock);
1520 isolated_pageblocks = has_isolate_pageblock(zone);
1521
1522 /*
1523 * Use safe version since after __free_one_page(),
1524 * page->lru.next will not point to original list.
1525 */
1526 list_for_each_entry_safe(page, tmp, &head, lru) {
1527 int mt = get_pcppage_migratetype(page);
1528
1529 /* mt has been encoded with the order (see above) */
1530 order = mt & NR_PCP_ORDER_MASK;
1531 mt >>= NR_PCP_ORDER_WIDTH;
1532
1533 /* MIGRATE_ISOLATE page should not go to pcplists */
1534 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1535 /* Pageblock could have been isolated meanwhile */
1536 if (unlikely(isolated_pageblocks))
1537 mt = get_pageblock_migratetype(page);
1538
1539 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1540 trace_mm_page_pcpu_drain(page, order, mt);
1541 }
1542 spin_unlock(&zone->lock);
1543 }
1544
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1545 static void free_one_page(struct zone *zone,
1546 struct page *page, unsigned long pfn,
1547 unsigned int order,
1548 int migratetype, fpi_t fpi_flags)
1549 {
1550 unsigned long flags;
1551
1552 spin_lock_irqsave(&zone->lock, flags);
1553 if (unlikely(has_isolate_pageblock(zone) ||
1554 is_migrate_isolate(migratetype))) {
1555 migratetype = get_pfnblock_migratetype(page, pfn);
1556 }
1557 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1558 spin_unlock_irqrestore(&zone->lock, flags);
1559 }
1560
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1561 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1562 unsigned long zone, int nid)
1563 {
1564 mm_zero_struct_page(page);
1565 set_page_links(page, zone, nid, pfn);
1566 init_page_count(page);
1567 page_mapcount_reset(page);
1568 page_cpupid_reset_last(page);
1569 page_kasan_tag_reset(page);
1570
1571 INIT_LIST_HEAD(&page->lru);
1572 #ifdef WANT_PAGE_VIRTUAL
1573 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1574 if (!is_highmem_idx(zone))
1575 set_page_address(page, __va(pfn << PAGE_SHIFT));
1576 #endif
1577 }
1578
1579 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1580 static void __meminit init_reserved_page(unsigned long pfn)
1581 {
1582 pg_data_t *pgdat;
1583 int nid, zid;
1584
1585 if (!early_page_uninitialised(pfn))
1586 return;
1587
1588 nid = early_pfn_to_nid(pfn);
1589 pgdat = NODE_DATA(nid);
1590
1591 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1592 struct zone *zone = &pgdat->node_zones[zid];
1593
1594 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1595 break;
1596 }
1597 __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1598 }
1599 #else
init_reserved_page(unsigned long pfn)1600 static inline void init_reserved_page(unsigned long pfn)
1601 {
1602 }
1603 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1604
1605 /*
1606 * Initialised pages do not have PageReserved set. This function is
1607 * called for each range allocated by the bootmem allocator and
1608 * marks the pages PageReserved. The remaining valid pages are later
1609 * sent to the buddy page allocator.
1610 */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1611 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1612 {
1613 unsigned long start_pfn = PFN_DOWN(start);
1614 unsigned long end_pfn = PFN_UP(end);
1615
1616 for (; start_pfn < end_pfn; start_pfn++) {
1617 if (pfn_valid(start_pfn)) {
1618 struct page *page = pfn_to_page(start_pfn);
1619
1620 init_reserved_page(start_pfn);
1621
1622 /* Avoid false-positive PageTail() */
1623 INIT_LIST_HEAD(&page->lru);
1624
1625 /*
1626 * no need for atomic set_bit because the struct
1627 * page is not visible yet so nobody should
1628 * access it yet.
1629 */
1630 __SetPageReserved(page);
1631 }
1632 }
1633 }
1634
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1635 static void __free_pages_ok(struct page *page, unsigned int order,
1636 fpi_t fpi_flags)
1637 {
1638 unsigned long flags;
1639 int migratetype;
1640 unsigned long pfn = page_to_pfn(page);
1641 struct zone *zone = page_zone(page);
1642
1643 if (!free_pages_prepare(page, order, true, fpi_flags))
1644 return;
1645
1646 migratetype = get_pfnblock_migratetype(page, pfn);
1647
1648 spin_lock_irqsave(&zone->lock, flags);
1649 if (unlikely(has_isolate_pageblock(zone) ||
1650 is_migrate_isolate(migratetype))) {
1651 migratetype = get_pfnblock_migratetype(page, pfn);
1652 }
1653 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1654 spin_unlock_irqrestore(&zone->lock, flags);
1655
1656 __count_vm_events(PGFREE, 1 << order);
1657 }
1658
__free_pages_core(struct page * page,unsigned int order)1659 void __free_pages_core(struct page *page, unsigned int order)
1660 {
1661 unsigned int nr_pages = 1 << order;
1662 struct page *p = page;
1663 unsigned int loop;
1664
1665 /*
1666 * When initializing the memmap, __init_single_page() sets the refcount
1667 * of all pages to 1 ("allocated"/"not free"). We have to set the
1668 * refcount of all involved pages to 0.
1669 */
1670 prefetchw(p);
1671 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1672 prefetchw(p + 1);
1673 __ClearPageReserved(p);
1674 set_page_count(p, 0);
1675 }
1676 __ClearPageReserved(p);
1677 set_page_count(p, 0);
1678
1679 atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1680
1681 /*
1682 * Bypass PCP and place fresh pages right to the tail, primarily
1683 * relevant for memory onlining.
1684 */
1685 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1686 }
1687
1688 #ifdef CONFIG_NUMA
1689
1690 /*
1691 * During memory init memblocks map pfns to nids. The search is expensive and
1692 * this caches recent lookups. The implementation of __early_pfn_to_nid
1693 * treats start/end as pfns.
1694 */
1695 struct mminit_pfnnid_cache {
1696 unsigned long last_start;
1697 unsigned long last_end;
1698 int last_nid;
1699 };
1700
1701 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1702
1703 /*
1704 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1705 */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1706 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1707 struct mminit_pfnnid_cache *state)
1708 {
1709 unsigned long start_pfn, end_pfn;
1710 int nid;
1711
1712 if (state->last_start <= pfn && pfn < state->last_end)
1713 return state->last_nid;
1714
1715 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1716 if (nid != NUMA_NO_NODE) {
1717 state->last_start = start_pfn;
1718 state->last_end = end_pfn;
1719 state->last_nid = nid;
1720 }
1721
1722 return nid;
1723 }
1724
early_pfn_to_nid(unsigned long pfn)1725 int __meminit early_pfn_to_nid(unsigned long pfn)
1726 {
1727 static DEFINE_SPINLOCK(early_pfn_lock);
1728 int nid;
1729
1730 spin_lock(&early_pfn_lock);
1731 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1732 if (nid < 0)
1733 nid = first_online_node;
1734 spin_unlock(&early_pfn_lock);
1735
1736 return nid;
1737 }
1738 #endif /* CONFIG_NUMA */
1739
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1740 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1741 unsigned int order)
1742 {
1743 if (early_page_uninitialised(pfn))
1744 return;
1745 __free_pages_core(page, order);
1746 }
1747
1748 /*
1749 * Check that the whole (or subset of) a pageblock given by the interval of
1750 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1751 * with the migration of free compaction scanner.
1752 *
1753 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1754 *
1755 * It's possible on some configurations to have a setup like node0 node1 node0
1756 * i.e. it's possible that all pages within a zones range of pages do not
1757 * belong to a single zone. We assume that a border between node0 and node1
1758 * can occur within a single pageblock, but not a node0 node1 node0
1759 * interleaving within a single pageblock. It is therefore sufficient to check
1760 * the first and last page of a pageblock and avoid checking each individual
1761 * page in a pageblock.
1762 */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1763 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1764 unsigned long end_pfn, struct zone *zone)
1765 {
1766 struct page *start_page;
1767 struct page *end_page;
1768
1769 /* end_pfn is one past the range we are checking */
1770 end_pfn--;
1771
1772 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1773 return NULL;
1774
1775 start_page = pfn_to_online_page(start_pfn);
1776 if (!start_page)
1777 return NULL;
1778
1779 if (page_zone(start_page) != zone)
1780 return NULL;
1781
1782 end_page = pfn_to_page(end_pfn);
1783
1784 /* This gives a shorter code than deriving page_zone(end_page) */
1785 if (page_zone_id(start_page) != page_zone_id(end_page))
1786 return NULL;
1787
1788 return start_page;
1789 }
1790
set_zone_contiguous(struct zone * zone)1791 void set_zone_contiguous(struct zone *zone)
1792 {
1793 unsigned long block_start_pfn = zone->zone_start_pfn;
1794 unsigned long block_end_pfn;
1795
1796 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1797 for (; block_start_pfn < zone_end_pfn(zone);
1798 block_start_pfn = block_end_pfn,
1799 block_end_pfn += pageblock_nr_pages) {
1800
1801 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1802
1803 if (!__pageblock_pfn_to_page(block_start_pfn,
1804 block_end_pfn, zone))
1805 return;
1806 cond_resched();
1807 }
1808
1809 /* We confirm that there is no hole */
1810 zone->contiguous = true;
1811 }
1812
clear_zone_contiguous(struct zone * zone)1813 void clear_zone_contiguous(struct zone *zone)
1814 {
1815 zone->contiguous = false;
1816 }
1817
1818 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1819 static void __init deferred_free_range(unsigned long pfn,
1820 unsigned long nr_pages)
1821 {
1822 struct page *page;
1823 unsigned long i;
1824
1825 if (!nr_pages)
1826 return;
1827
1828 page = pfn_to_page(pfn);
1829
1830 /* Free a large naturally-aligned chunk if possible */
1831 if (nr_pages == pageblock_nr_pages &&
1832 (pfn & (pageblock_nr_pages - 1)) == 0) {
1833 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1834 __free_pages_core(page, pageblock_order);
1835 return;
1836 }
1837
1838 for (i = 0; i < nr_pages; i++, page++, pfn++) {
1839 if ((pfn & (pageblock_nr_pages - 1)) == 0)
1840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1841 __free_pages_core(page, 0);
1842 }
1843 }
1844
1845 /* Completion tracking for deferred_init_memmap() threads */
1846 static atomic_t pgdat_init_n_undone __initdata;
1847 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1848
pgdat_init_report_one_done(void)1849 static inline void __init pgdat_init_report_one_done(void)
1850 {
1851 if (atomic_dec_and_test(&pgdat_init_n_undone))
1852 complete(&pgdat_init_all_done_comp);
1853 }
1854
1855 /*
1856 * Returns true if page needs to be initialized or freed to buddy allocator.
1857 *
1858 * First we check if pfn is valid on architectures where it is possible to have
1859 * holes within pageblock_nr_pages. On systems where it is not possible, this
1860 * function is optimized out.
1861 *
1862 * Then, we check if a current large page is valid by only checking the validity
1863 * of the head pfn.
1864 */
deferred_pfn_valid(unsigned long pfn)1865 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1866 {
1867 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1868 return false;
1869 return true;
1870 }
1871
1872 /*
1873 * Free pages to buddy allocator. Try to free aligned pages in
1874 * pageblock_nr_pages sizes.
1875 */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1876 static void __init deferred_free_pages(unsigned long pfn,
1877 unsigned long end_pfn)
1878 {
1879 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1880 unsigned long nr_free = 0;
1881
1882 for (; pfn < end_pfn; pfn++) {
1883 if (!deferred_pfn_valid(pfn)) {
1884 deferred_free_range(pfn - nr_free, nr_free);
1885 nr_free = 0;
1886 } else if (!(pfn & nr_pgmask)) {
1887 deferred_free_range(pfn - nr_free, nr_free);
1888 nr_free = 1;
1889 } else {
1890 nr_free++;
1891 }
1892 }
1893 /* Free the last block of pages to allocator */
1894 deferred_free_range(pfn - nr_free, nr_free);
1895 }
1896
1897 /*
1898 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1899 * by performing it only once every pageblock_nr_pages.
1900 * Return number of pages initialized.
1901 */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1902 static unsigned long __init deferred_init_pages(struct zone *zone,
1903 unsigned long pfn,
1904 unsigned long end_pfn)
1905 {
1906 unsigned long nr_pgmask = pageblock_nr_pages - 1;
1907 int nid = zone_to_nid(zone);
1908 unsigned long nr_pages = 0;
1909 int zid = zone_idx(zone);
1910 struct page *page = NULL;
1911
1912 for (; pfn < end_pfn; pfn++) {
1913 if (!deferred_pfn_valid(pfn)) {
1914 page = NULL;
1915 continue;
1916 } else if (!page || !(pfn & nr_pgmask)) {
1917 page = pfn_to_page(pfn);
1918 } else {
1919 page++;
1920 }
1921 __init_single_page(page, pfn, zid, nid);
1922 nr_pages++;
1923 }
1924 return (nr_pages);
1925 }
1926
1927 /*
1928 * This function is meant to pre-load the iterator for the zone init.
1929 * Specifically it walks through the ranges until we are caught up to the
1930 * first_init_pfn value and exits there. If we never encounter the value we
1931 * return false indicating there are no valid ranges left.
1932 */
1933 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1934 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1935 unsigned long *spfn, unsigned long *epfn,
1936 unsigned long first_init_pfn)
1937 {
1938 u64 j;
1939
1940 /*
1941 * Start out by walking through the ranges in this zone that have
1942 * already been initialized. We don't need to do anything with them
1943 * so we just need to flush them out of the system.
1944 */
1945 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1946 if (*epfn <= first_init_pfn)
1947 continue;
1948 if (*spfn < first_init_pfn)
1949 *spfn = first_init_pfn;
1950 *i = j;
1951 return true;
1952 }
1953
1954 return false;
1955 }
1956
1957 /*
1958 * Initialize and free pages. We do it in two loops: first we initialize
1959 * struct page, then free to buddy allocator, because while we are
1960 * freeing pages we can access pages that are ahead (computing buddy
1961 * page in __free_one_page()).
1962 *
1963 * In order to try and keep some memory in the cache we have the loop
1964 * broken along max page order boundaries. This way we will not cause
1965 * any issues with the buddy page computation.
1966 */
1967 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1968 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1969 unsigned long *end_pfn)
1970 {
1971 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1972 unsigned long spfn = *start_pfn, epfn = *end_pfn;
1973 unsigned long nr_pages = 0;
1974 u64 j = *i;
1975
1976 /* First we loop through and initialize the page values */
1977 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1978 unsigned long t;
1979
1980 if (mo_pfn <= *start_pfn)
1981 break;
1982
1983 t = min(mo_pfn, *end_pfn);
1984 nr_pages += deferred_init_pages(zone, *start_pfn, t);
1985
1986 if (mo_pfn < *end_pfn) {
1987 *start_pfn = mo_pfn;
1988 break;
1989 }
1990 }
1991
1992 /* Reset values and now loop through freeing pages as needed */
1993 swap(j, *i);
1994
1995 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1996 unsigned long t;
1997
1998 if (mo_pfn <= spfn)
1999 break;
2000
2001 t = min(mo_pfn, epfn);
2002 deferred_free_pages(spfn, t);
2003
2004 if (mo_pfn <= epfn)
2005 break;
2006 }
2007
2008 return nr_pages;
2009 }
2010
2011 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)2012 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2013 void *arg)
2014 {
2015 unsigned long spfn, epfn;
2016 struct zone *zone = arg;
2017 u64 i;
2018
2019 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2020
2021 /*
2022 * Initialize and free pages in MAX_ORDER sized increments so that we
2023 * can avoid introducing any issues with the buddy allocator.
2024 */
2025 while (spfn < end_pfn) {
2026 deferred_init_maxorder(&i, zone, &spfn, &epfn);
2027 cond_resched();
2028 }
2029 }
2030
2031 /* An arch may override for more concurrency. */
2032 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)2033 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2034 {
2035 return 1;
2036 }
2037
2038 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)2039 static int __init deferred_init_memmap(void *data)
2040 {
2041 pg_data_t *pgdat = data;
2042 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2043 unsigned long spfn = 0, epfn = 0;
2044 unsigned long first_init_pfn, flags;
2045 unsigned long start = jiffies;
2046 struct zone *zone;
2047 int zid, max_threads;
2048 u64 i;
2049
2050 /* Bind memory initialisation thread to a local node if possible */
2051 if (!cpumask_empty(cpumask))
2052 set_cpus_allowed_ptr(current, cpumask);
2053
2054 pgdat_resize_lock(pgdat, &flags);
2055 first_init_pfn = pgdat->first_deferred_pfn;
2056 if (first_init_pfn == ULONG_MAX) {
2057 pgdat_resize_unlock(pgdat, &flags);
2058 pgdat_init_report_one_done();
2059 return 0;
2060 }
2061
2062 /* Sanity check boundaries */
2063 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2064 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2065 pgdat->first_deferred_pfn = ULONG_MAX;
2066
2067 /*
2068 * Once we unlock here, the zone cannot be grown anymore, thus if an
2069 * interrupt thread must allocate this early in boot, zone must be
2070 * pre-grown prior to start of deferred page initialization.
2071 */
2072 pgdat_resize_unlock(pgdat, &flags);
2073
2074 /* Only the highest zone is deferred so find it */
2075 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2076 zone = pgdat->node_zones + zid;
2077 if (first_init_pfn < zone_end_pfn(zone))
2078 break;
2079 }
2080
2081 /* If the zone is empty somebody else may have cleared out the zone */
2082 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2083 first_init_pfn))
2084 goto zone_empty;
2085
2086 max_threads = deferred_page_init_max_threads(cpumask);
2087
2088 while (spfn < epfn) {
2089 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2090 struct padata_mt_job job = {
2091 .thread_fn = deferred_init_memmap_chunk,
2092 .fn_arg = zone,
2093 .start = spfn,
2094 .size = epfn_align - spfn,
2095 .align = PAGES_PER_SECTION,
2096 .min_chunk = PAGES_PER_SECTION,
2097 .max_threads = max_threads,
2098 };
2099
2100 padata_do_multithreaded(&job);
2101 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2102 epfn_align);
2103 }
2104 zone_empty:
2105 /* Sanity check that the next zone really is unpopulated */
2106 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2107
2108 pr_info("node %d deferred pages initialised in %ums\n",
2109 pgdat->node_id, jiffies_to_msecs(jiffies - start));
2110
2111 pgdat_init_report_one_done();
2112 return 0;
2113 }
2114
2115 /*
2116 * If this zone has deferred pages, try to grow it by initializing enough
2117 * deferred pages to satisfy the allocation specified by order, rounded up to
2118 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
2119 * of SECTION_SIZE bytes by initializing struct pages in increments of
2120 * PAGES_PER_SECTION * sizeof(struct page) bytes.
2121 *
2122 * Return true when zone was grown, otherwise return false. We return true even
2123 * when we grow less than requested, to let the caller decide if there are
2124 * enough pages to satisfy the allocation.
2125 *
2126 * Note: We use noinline because this function is needed only during boot, and
2127 * it is called from a __ref function _deferred_grow_zone. This way we are
2128 * making sure that it is not inlined into permanent text section.
2129 */
2130 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2131 deferred_grow_zone(struct zone *zone, unsigned int order)
2132 {
2133 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2134 pg_data_t *pgdat = zone->zone_pgdat;
2135 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2136 unsigned long spfn, epfn, flags;
2137 unsigned long nr_pages = 0;
2138 u64 i;
2139
2140 /* Only the last zone may have deferred pages */
2141 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2142 return false;
2143
2144 pgdat_resize_lock(pgdat, &flags);
2145
2146 /*
2147 * If someone grew this zone while we were waiting for spinlock, return
2148 * true, as there might be enough pages already.
2149 */
2150 if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2151 pgdat_resize_unlock(pgdat, &flags);
2152 return true;
2153 }
2154
2155 /* If the zone is empty somebody else may have cleared out the zone */
2156 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2157 first_deferred_pfn)) {
2158 pgdat->first_deferred_pfn = ULONG_MAX;
2159 pgdat_resize_unlock(pgdat, &flags);
2160 /* Retry only once. */
2161 return first_deferred_pfn != ULONG_MAX;
2162 }
2163
2164 /*
2165 * Initialize and free pages in MAX_ORDER sized increments so
2166 * that we can avoid introducing any issues with the buddy
2167 * allocator.
2168 */
2169 while (spfn < epfn) {
2170 /* update our first deferred PFN for this section */
2171 first_deferred_pfn = spfn;
2172
2173 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2174 touch_nmi_watchdog();
2175
2176 /* We should only stop along section boundaries */
2177 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2178 continue;
2179
2180 /* If our quota has been met we can stop here */
2181 if (nr_pages >= nr_pages_needed)
2182 break;
2183 }
2184
2185 pgdat->first_deferred_pfn = spfn;
2186 pgdat_resize_unlock(pgdat, &flags);
2187
2188 return nr_pages > 0;
2189 }
2190
2191 /*
2192 * deferred_grow_zone() is __init, but it is called from
2193 * get_page_from_freelist() during early boot until deferred_pages permanently
2194 * disables this call. This is why we have refdata wrapper to avoid warning,
2195 * and to ensure that the function body gets unloaded.
2196 */
2197 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2198 _deferred_grow_zone(struct zone *zone, unsigned int order)
2199 {
2200 return deferred_grow_zone(zone, order);
2201 }
2202
2203 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2204
page_alloc_init_late(void)2205 void __init page_alloc_init_late(void)
2206 {
2207 struct zone *zone;
2208 int nid;
2209
2210 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2211
2212 /* There will be num_node_state(N_MEMORY) threads */
2213 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2214 for_each_node_state(nid, N_MEMORY) {
2215 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2216 }
2217
2218 /* Block until all are initialised */
2219 wait_for_completion(&pgdat_init_all_done_comp);
2220
2221 /*
2222 * We initialized the rest of the deferred pages. Permanently disable
2223 * on-demand struct page initialization.
2224 */
2225 static_branch_disable(&deferred_pages);
2226
2227 /* Reinit limits that are based on free pages after the kernel is up */
2228 files_maxfiles_init();
2229 #endif
2230
2231 buffer_init();
2232
2233 /* Discard memblock private memory */
2234 memblock_discard();
2235
2236 for_each_node_state(nid, N_MEMORY)
2237 shuffle_free_memory(NODE_DATA(nid));
2238
2239 for_each_populated_zone(zone)
2240 set_zone_contiguous(zone);
2241 }
2242
2243 #ifdef CONFIG_CMA
2244 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2245 void __init init_cma_reserved_pageblock(struct page *page)
2246 {
2247 unsigned i = pageblock_nr_pages;
2248 struct page *p = page;
2249
2250 do {
2251 __ClearPageReserved(p);
2252 set_page_count(p, 0);
2253 } while (++p, --i);
2254
2255 set_pageblock_migratetype(page, MIGRATE_CMA);
2256
2257 if (pageblock_order >= MAX_ORDER) {
2258 i = pageblock_nr_pages;
2259 p = page;
2260 do {
2261 set_page_refcounted(p);
2262 __free_pages(p, MAX_ORDER - 1);
2263 p += MAX_ORDER_NR_PAGES;
2264 } while (i -= MAX_ORDER_NR_PAGES);
2265 } else {
2266 set_page_refcounted(page);
2267 __free_pages(page, pageblock_order);
2268 }
2269
2270 adjust_managed_page_count(page, pageblock_nr_pages);
2271 page_zone(page)->cma_pages += pageblock_nr_pages;
2272 }
2273 #endif
2274
2275 /*
2276 * The order of subdivision here is critical for the IO subsystem.
2277 * Please do not alter this order without good reasons and regression
2278 * testing. Specifically, as large blocks of memory are subdivided,
2279 * the order in which smaller blocks are delivered depends on the order
2280 * they're subdivided in this function. This is the primary factor
2281 * influencing the order in which pages are delivered to the IO
2282 * subsystem according to empirical testing, and this is also justified
2283 * by considering the behavior of a buddy system containing a single
2284 * large block of memory acted on by a series of small allocations.
2285 * This behavior is a critical factor in sglist merging's success.
2286 *
2287 * -- nyc
2288 */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2289 static inline void expand(struct zone *zone, struct page *page,
2290 int low, int high, int migratetype)
2291 {
2292 unsigned long size = 1 << high;
2293
2294 while (high > low) {
2295 high--;
2296 size >>= 1;
2297 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2298
2299 /*
2300 * Mark as guard pages (or page), that will allow to
2301 * merge back to allocator when buddy will be freed.
2302 * Corresponding page table entries will not be touched,
2303 * pages will stay not present in virtual address space
2304 */
2305 if (set_page_guard(zone, &page[size], high, migratetype))
2306 continue;
2307
2308 add_to_free_list(&page[size], zone, high, migratetype);
2309 set_buddy_order(&page[size], high);
2310 }
2311 }
2312
check_new_page_bad(struct page * page)2313 static void check_new_page_bad(struct page *page)
2314 {
2315 if (unlikely(page->flags & __PG_HWPOISON)) {
2316 /* Don't complain about hwpoisoned pages */
2317 page_mapcount_reset(page); /* remove PageBuddy */
2318 return;
2319 }
2320
2321 bad_page(page,
2322 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2323 }
2324
2325 /*
2326 * This page is about to be returned from the page allocator
2327 */
check_new_page(struct page * page)2328 static inline int check_new_page(struct page *page)
2329 {
2330 if (likely(page_expected_state(page,
2331 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2332 return 0;
2333
2334 check_new_page_bad(page);
2335 return 1;
2336 }
2337
2338 #ifdef CONFIG_DEBUG_VM
2339 /*
2340 * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2341 * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2342 * also checked when pcp lists are refilled from the free lists.
2343 */
check_pcp_refill(struct page * page)2344 static inline bool check_pcp_refill(struct page *page)
2345 {
2346 if (debug_pagealloc_enabled_static())
2347 return check_new_page(page);
2348 else
2349 return false;
2350 }
2351
check_new_pcp(struct page * page)2352 static inline bool check_new_pcp(struct page *page)
2353 {
2354 return check_new_page(page);
2355 }
2356 #else
2357 /*
2358 * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2359 * when pcp lists are being refilled from the free lists. With debug_pagealloc
2360 * enabled, they are also checked when being allocated from the pcp lists.
2361 */
check_pcp_refill(struct page * page)2362 static inline bool check_pcp_refill(struct page *page)
2363 {
2364 return check_new_page(page);
2365 }
check_new_pcp(struct page * page)2366 static inline bool check_new_pcp(struct page *page)
2367 {
2368 if (debug_pagealloc_enabled_static())
2369 return check_new_page(page);
2370 else
2371 return false;
2372 }
2373 #endif /* CONFIG_DEBUG_VM */
2374
check_new_pages(struct page * page,unsigned int order)2375 static bool check_new_pages(struct page *page, unsigned int order)
2376 {
2377 int i;
2378 for (i = 0; i < (1 << order); i++) {
2379 struct page *p = page + i;
2380
2381 if (unlikely(check_new_page(p)))
2382 return true;
2383 }
2384
2385 return false;
2386 }
2387
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2388 inline void post_alloc_hook(struct page *page, unsigned int order,
2389 gfp_t gfp_flags)
2390 {
2391 set_page_private(page, 0);
2392 set_page_refcounted(page);
2393
2394 arch_alloc_page(page, order);
2395 debug_pagealloc_map_pages(page, 1 << order);
2396
2397 /*
2398 * Page unpoisoning must happen before memory initialization.
2399 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2400 * allocations and the page unpoisoning code will complain.
2401 */
2402 kernel_unpoison_pages(page, 1 << order);
2403
2404 /*
2405 * As memory initialization might be integrated into KASAN,
2406 * kasan_alloc_pages and kernel_init_free_pages must be
2407 * kept together to avoid discrepancies in behavior.
2408 */
2409 if (kasan_has_integrated_init()) {
2410 kasan_alloc_pages(page, order, gfp_flags);
2411 } else {
2412 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2413
2414 kasan_unpoison_pages(page, order, init);
2415 if (init)
2416 kernel_init_free_pages(page, 1 << order,
2417 gfp_flags & __GFP_ZEROTAGS);
2418 }
2419
2420 set_page_owner(page, order, gfp_flags);
2421 }
2422
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2423 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2424 unsigned int alloc_flags)
2425 {
2426 post_alloc_hook(page, order, gfp_flags);
2427
2428 if (order && (gfp_flags & __GFP_COMP))
2429 prep_compound_page(page, order);
2430
2431 /*
2432 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2433 * allocate the page. The expectation is that the caller is taking
2434 * steps that will free more memory. The caller should avoid the page
2435 * being used for !PFMEMALLOC purposes.
2436 */
2437 if (alloc_flags & ALLOC_NO_WATERMARKS)
2438 set_page_pfmemalloc(page);
2439 else
2440 clear_page_pfmemalloc(page);
2441 }
2442
2443 /*
2444 * Go through the free lists for the given migratetype and remove
2445 * the smallest available page from the freelists
2446 */
2447 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2448 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2449 int migratetype)
2450 {
2451 unsigned int current_order;
2452 struct free_area *area;
2453 struct page *page;
2454
2455 /* Find a page of the appropriate size in the preferred list */
2456 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2457 area = &(zone->free_area[current_order]);
2458 page = get_page_from_free_area(area, migratetype);
2459 if (!page)
2460 continue;
2461 del_page_from_free_list(page, zone, current_order);
2462 expand(zone, page, order, current_order, migratetype);
2463 set_pcppage_migratetype(page, migratetype);
2464 return page;
2465 }
2466
2467 return NULL;
2468 }
2469
2470
2471 /*
2472 * This array describes the order lists are fallen back to when
2473 * the free lists for the desirable migrate type are depleted
2474 */
2475 static int fallbacks[MIGRATE_TYPES][3] = {
2476 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2477 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2478 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
2479 #ifdef CONFIG_CMA
2480 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
2481 #endif
2482 #ifdef CONFIG_MEMORY_ISOLATION
2483 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
2484 #endif
2485 };
2486
2487 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2488 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2489 unsigned int order)
2490 {
2491 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2492 }
2493 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2494 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2495 unsigned int order) { return NULL; }
2496 #endif
2497
2498 /*
2499 * Move the free pages in a range to the freelist tail of the requested type.
2500 * Note that start_page and end_pages are not aligned on a pageblock
2501 * boundary. If alignment is required, use move_freepages_block()
2502 */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2503 static int move_freepages(struct zone *zone,
2504 unsigned long start_pfn, unsigned long end_pfn,
2505 int migratetype, int *num_movable)
2506 {
2507 struct page *page;
2508 unsigned long pfn;
2509 unsigned int order;
2510 int pages_moved = 0;
2511
2512 for (pfn = start_pfn; pfn <= end_pfn;) {
2513 page = pfn_to_page(pfn);
2514 if (!PageBuddy(page)) {
2515 /*
2516 * We assume that pages that could be isolated for
2517 * migration are movable. But we don't actually try
2518 * isolating, as that would be expensive.
2519 */
2520 if (num_movable &&
2521 (PageLRU(page) || __PageMovable(page)))
2522 (*num_movable)++;
2523 pfn++;
2524 continue;
2525 }
2526
2527 /* Make sure we are not inadvertently changing nodes */
2528 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2529 VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2530
2531 order = buddy_order(page);
2532 move_to_free_list(page, zone, order, migratetype);
2533 pfn += 1 << order;
2534 pages_moved += 1 << order;
2535 }
2536
2537 return pages_moved;
2538 }
2539
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2540 int move_freepages_block(struct zone *zone, struct page *page,
2541 int migratetype, int *num_movable)
2542 {
2543 unsigned long start_pfn, end_pfn, pfn;
2544
2545 if (num_movable)
2546 *num_movable = 0;
2547
2548 pfn = page_to_pfn(page);
2549 start_pfn = pfn & ~(pageblock_nr_pages - 1);
2550 end_pfn = start_pfn + pageblock_nr_pages - 1;
2551
2552 /* Do not cross zone boundaries */
2553 if (!zone_spans_pfn(zone, start_pfn))
2554 start_pfn = pfn;
2555 if (!zone_spans_pfn(zone, end_pfn))
2556 return 0;
2557
2558 return move_freepages(zone, start_pfn, end_pfn, migratetype,
2559 num_movable);
2560 }
2561
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2562 static void change_pageblock_range(struct page *pageblock_page,
2563 int start_order, int migratetype)
2564 {
2565 int nr_pageblocks = 1 << (start_order - pageblock_order);
2566
2567 while (nr_pageblocks--) {
2568 set_pageblock_migratetype(pageblock_page, migratetype);
2569 pageblock_page += pageblock_nr_pages;
2570 }
2571 }
2572
2573 /*
2574 * When we are falling back to another migratetype during allocation, try to
2575 * steal extra free pages from the same pageblocks to satisfy further
2576 * allocations, instead of polluting multiple pageblocks.
2577 *
2578 * If we are stealing a relatively large buddy page, it is likely there will
2579 * be more free pages in the pageblock, so try to steal them all. For
2580 * reclaimable and unmovable allocations, we steal regardless of page size,
2581 * as fragmentation caused by those allocations polluting movable pageblocks
2582 * is worse than movable allocations stealing from unmovable and reclaimable
2583 * pageblocks.
2584 */
can_steal_fallback(unsigned int order,int start_mt)2585 static bool can_steal_fallback(unsigned int order, int start_mt)
2586 {
2587 /*
2588 * Leaving this order check is intended, although there is
2589 * relaxed order check in next check. The reason is that
2590 * we can actually steal whole pageblock if this condition met,
2591 * but, below check doesn't guarantee it and that is just heuristic
2592 * so could be changed anytime.
2593 */
2594 if (order >= pageblock_order)
2595 return true;
2596
2597 if (order >= pageblock_order / 2 ||
2598 start_mt == MIGRATE_RECLAIMABLE ||
2599 start_mt == MIGRATE_UNMOVABLE ||
2600 page_group_by_mobility_disabled)
2601 return true;
2602
2603 return false;
2604 }
2605
boost_watermark(struct zone * zone)2606 static inline bool boost_watermark(struct zone *zone)
2607 {
2608 unsigned long max_boost;
2609
2610 if (!watermark_boost_factor)
2611 return false;
2612 /*
2613 * Don't bother in zones that are unlikely to produce results.
2614 * On small machines, including kdump capture kernels running
2615 * in a small area, boosting the watermark can cause an out of
2616 * memory situation immediately.
2617 */
2618 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2619 return false;
2620
2621 max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2622 watermark_boost_factor, 10000);
2623
2624 /*
2625 * high watermark may be uninitialised if fragmentation occurs
2626 * very early in boot so do not boost. We do not fall
2627 * through and boost by pageblock_nr_pages as failing
2628 * allocations that early means that reclaim is not going
2629 * to help and it may even be impossible to reclaim the
2630 * boosted watermark resulting in a hang.
2631 */
2632 if (!max_boost)
2633 return false;
2634
2635 max_boost = max(pageblock_nr_pages, max_boost);
2636
2637 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2638 max_boost);
2639
2640 return true;
2641 }
2642
2643 /*
2644 * This function implements actual steal behaviour. If order is large enough,
2645 * we can steal whole pageblock. If not, we first move freepages in this
2646 * pageblock to our migratetype and determine how many already-allocated pages
2647 * are there in the pageblock with a compatible migratetype. If at least half
2648 * of pages are free or compatible, we can change migratetype of the pageblock
2649 * itself, so pages freed in the future will be put on the correct free list.
2650 */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2651 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2652 unsigned int alloc_flags, int start_type, bool whole_block)
2653 {
2654 unsigned int current_order = buddy_order(page);
2655 int free_pages, movable_pages, alike_pages;
2656 int old_block_type;
2657
2658 old_block_type = get_pageblock_migratetype(page);
2659
2660 /*
2661 * This can happen due to races and we want to prevent broken
2662 * highatomic accounting.
2663 */
2664 if (is_migrate_highatomic(old_block_type))
2665 goto single_page;
2666
2667 /* Take ownership for orders >= pageblock_order */
2668 if (current_order >= pageblock_order) {
2669 change_pageblock_range(page, current_order, start_type);
2670 goto single_page;
2671 }
2672
2673 /*
2674 * Boost watermarks to increase reclaim pressure to reduce the
2675 * likelihood of future fallbacks. Wake kswapd now as the node
2676 * may be balanced overall and kswapd will not wake naturally.
2677 */
2678 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2679 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2680
2681 /* We are not allowed to try stealing from the whole block */
2682 if (!whole_block)
2683 goto single_page;
2684
2685 free_pages = move_freepages_block(zone, page, start_type,
2686 &movable_pages);
2687 /*
2688 * Determine how many pages are compatible with our allocation.
2689 * For movable allocation, it's the number of movable pages which
2690 * we just obtained. For other types it's a bit more tricky.
2691 */
2692 if (start_type == MIGRATE_MOVABLE) {
2693 alike_pages = movable_pages;
2694 } else {
2695 /*
2696 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2697 * to MOVABLE pageblock, consider all non-movable pages as
2698 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2699 * vice versa, be conservative since we can't distinguish the
2700 * exact migratetype of non-movable pages.
2701 */
2702 if (old_block_type == MIGRATE_MOVABLE)
2703 alike_pages = pageblock_nr_pages
2704 - (free_pages + movable_pages);
2705 else
2706 alike_pages = 0;
2707 }
2708
2709 /* moving whole block can fail due to zone boundary conditions */
2710 if (!free_pages)
2711 goto single_page;
2712
2713 /*
2714 * If a sufficient number of pages in the block are either free or of
2715 * comparable migratability as our allocation, claim the whole block.
2716 */
2717 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2718 page_group_by_mobility_disabled)
2719 set_pageblock_migratetype(page, start_type);
2720
2721 return;
2722
2723 single_page:
2724 move_to_free_list(page, zone, current_order, start_type);
2725 }
2726
2727 /*
2728 * Check whether there is a suitable fallback freepage with requested order.
2729 * If only_stealable is true, this function returns fallback_mt only if
2730 * we can steal other freepages all together. This would help to reduce
2731 * fragmentation due to mixed migratetype pages in one pageblock.
2732 */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2733 int find_suitable_fallback(struct free_area *area, unsigned int order,
2734 int migratetype, bool only_stealable, bool *can_steal)
2735 {
2736 int i;
2737 int fallback_mt;
2738
2739 if (area->nr_free == 0)
2740 return -1;
2741
2742 *can_steal = false;
2743 for (i = 0;; i++) {
2744 fallback_mt = fallbacks[migratetype][i];
2745 if (fallback_mt == MIGRATE_TYPES)
2746 break;
2747
2748 if (free_area_empty(area, fallback_mt))
2749 continue;
2750
2751 if (can_steal_fallback(order, migratetype))
2752 *can_steal = true;
2753
2754 if (!only_stealable)
2755 return fallback_mt;
2756
2757 if (*can_steal)
2758 return fallback_mt;
2759 }
2760
2761 return -1;
2762 }
2763
2764 /*
2765 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2766 * there are no empty page blocks that contain a page with a suitable order
2767 */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2768 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2769 unsigned int alloc_order)
2770 {
2771 int mt;
2772 unsigned long max_managed, flags;
2773
2774 /*
2775 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2776 * Check is race-prone but harmless.
2777 */
2778 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2779 if (zone->nr_reserved_highatomic >= max_managed)
2780 return;
2781
2782 spin_lock_irqsave(&zone->lock, flags);
2783
2784 /* Recheck the nr_reserved_highatomic limit under the lock */
2785 if (zone->nr_reserved_highatomic >= max_managed)
2786 goto out_unlock;
2787
2788 /* Yoink! */
2789 mt = get_pageblock_migratetype(page);
2790 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2791 && !is_migrate_cma(mt)) {
2792 zone->nr_reserved_highatomic += pageblock_nr_pages;
2793 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2794 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2795 }
2796
2797 out_unlock:
2798 spin_unlock_irqrestore(&zone->lock, flags);
2799 }
2800
2801 /*
2802 * Used when an allocation is about to fail under memory pressure. This
2803 * potentially hurts the reliability of high-order allocations when under
2804 * intense memory pressure but failed atomic allocations should be easier
2805 * to recover from than an OOM.
2806 *
2807 * If @force is true, try to unreserve a pageblock even though highatomic
2808 * pageblock is exhausted.
2809 */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2810 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2811 bool force)
2812 {
2813 struct zonelist *zonelist = ac->zonelist;
2814 unsigned long flags;
2815 struct zoneref *z;
2816 struct zone *zone;
2817 struct page *page;
2818 int order;
2819 bool ret;
2820
2821 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2822 ac->nodemask) {
2823 /*
2824 * Preserve at least one pageblock unless memory pressure
2825 * is really high.
2826 */
2827 if (!force && zone->nr_reserved_highatomic <=
2828 pageblock_nr_pages)
2829 continue;
2830
2831 spin_lock_irqsave(&zone->lock, flags);
2832 for (order = 0; order < MAX_ORDER; order++) {
2833 struct free_area *area = &(zone->free_area[order]);
2834
2835 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2836 if (!page)
2837 continue;
2838
2839 /*
2840 * In page freeing path, migratetype change is racy so
2841 * we can counter several free pages in a pageblock
2842 * in this loop although we changed the pageblock type
2843 * from highatomic to ac->migratetype. So we should
2844 * adjust the count once.
2845 */
2846 if (is_migrate_highatomic_page(page)) {
2847 /*
2848 * It should never happen but changes to
2849 * locking could inadvertently allow a per-cpu
2850 * drain to add pages to MIGRATE_HIGHATOMIC
2851 * while unreserving so be safe and watch for
2852 * underflows.
2853 */
2854 zone->nr_reserved_highatomic -= min(
2855 pageblock_nr_pages,
2856 zone->nr_reserved_highatomic);
2857 }
2858
2859 /*
2860 * Convert to ac->migratetype and avoid the normal
2861 * pageblock stealing heuristics. Minimally, the caller
2862 * is doing the work and needs the pages. More
2863 * importantly, if the block was always converted to
2864 * MIGRATE_UNMOVABLE or another type then the number
2865 * of pageblocks that cannot be completely freed
2866 * may increase.
2867 */
2868 set_pageblock_migratetype(page, ac->migratetype);
2869 ret = move_freepages_block(zone, page, ac->migratetype,
2870 NULL);
2871 if (ret) {
2872 spin_unlock_irqrestore(&zone->lock, flags);
2873 return ret;
2874 }
2875 }
2876 spin_unlock_irqrestore(&zone->lock, flags);
2877 }
2878
2879 return false;
2880 }
2881
2882 /*
2883 * Try finding a free buddy page on the fallback list and put it on the free
2884 * list of requested migratetype, possibly along with other pages from the same
2885 * block, depending on fragmentation avoidance heuristics. Returns true if
2886 * fallback was found so that __rmqueue_smallest() can grab it.
2887 *
2888 * The use of signed ints for order and current_order is a deliberate
2889 * deviation from the rest of this file, to make the for loop
2890 * condition simpler.
2891 */
2892 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2893 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2894 unsigned int alloc_flags)
2895 {
2896 struct free_area *area;
2897 int current_order;
2898 int min_order = order;
2899 struct page *page;
2900 int fallback_mt;
2901 bool can_steal;
2902
2903 /*
2904 * Do not steal pages from freelists belonging to other pageblocks
2905 * i.e. orders < pageblock_order. If there are no local zones free,
2906 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2907 */
2908 if (alloc_flags & ALLOC_NOFRAGMENT)
2909 min_order = pageblock_order;
2910
2911 /*
2912 * Find the largest available free page in the other list. This roughly
2913 * approximates finding the pageblock with the most free pages, which
2914 * would be too costly to do exactly.
2915 */
2916 for (current_order = MAX_ORDER - 1; current_order >= min_order;
2917 --current_order) {
2918 area = &(zone->free_area[current_order]);
2919 fallback_mt = find_suitable_fallback(area, current_order,
2920 start_migratetype, false, &can_steal);
2921 if (fallback_mt == -1)
2922 continue;
2923
2924 /*
2925 * We cannot steal all free pages from the pageblock and the
2926 * requested migratetype is movable. In that case it's better to
2927 * steal and split the smallest available page instead of the
2928 * largest available page, because even if the next movable
2929 * allocation falls back into a different pageblock than this
2930 * one, it won't cause permanent fragmentation.
2931 */
2932 if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2933 && current_order > order)
2934 goto find_smallest;
2935
2936 goto do_steal;
2937 }
2938
2939 return false;
2940
2941 find_smallest:
2942 for (current_order = order; current_order < MAX_ORDER;
2943 current_order++) {
2944 area = &(zone->free_area[current_order]);
2945 fallback_mt = find_suitable_fallback(area, current_order,
2946 start_migratetype, false, &can_steal);
2947 if (fallback_mt != -1)
2948 break;
2949 }
2950
2951 /*
2952 * This should not happen - we already found a suitable fallback
2953 * when looking for the largest page.
2954 */
2955 VM_BUG_ON(current_order == MAX_ORDER);
2956
2957 do_steal:
2958 page = get_page_from_free_area(area, fallback_mt);
2959
2960 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2961 can_steal);
2962
2963 trace_mm_page_alloc_extfrag(page, order, current_order,
2964 start_migratetype, fallback_mt);
2965
2966 return true;
2967
2968 }
2969
2970 /*
2971 * Do the hard work of removing an element from the buddy allocator.
2972 * Call me with the zone->lock already held.
2973 */
2974 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2975 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2976 unsigned int alloc_flags)
2977 {
2978 struct page *page;
2979
2980 if (IS_ENABLED(CONFIG_CMA)) {
2981 /*
2982 * Balance movable allocations between regular and CMA areas by
2983 * allocating from CMA when over half of the zone's free memory
2984 * is in the CMA area.
2985 */
2986 if (alloc_flags & ALLOC_CMA &&
2987 zone_page_state(zone, NR_FREE_CMA_PAGES) >
2988 zone_page_state(zone, NR_FREE_PAGES) / 2) {
2989 page = __rmqueue_cma_fallback(zone, order);
2990 if (page)
2991 goto out;
2992 }
2993 }
2994 retry:
2995 page = __rmqueue_smallest(zone, order, migratetype);
2996 if (unlikely(!page)) {
2997 if (alloc_flags & ALLOC_CMA)
2998 page = __rmqueue_cma_fallback(zone, order);
2999
3000 if (!page && __rmqueue_fallback(zone, order, migratetype,
3001 alloc_flags))
3002 goto retry;
3003 }
3004 out:
3005 if (page)
3006 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3007 return page;
3008 }
3009
3010 /*
3011 * Obtain a specified number of elements from the buddy allocator, all under
3012 * a single hold of the lock, for efficiency. Add them to the supplied list.
3013 * Returns the number of new pages which were placed at *list.
3014 */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)3015 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3016 unsigned long count, struct list_head *list,
3017 int migratetype, unsigned int alloc_flags)
3018 {
3019 int i, allocated = 0;
3020
3021 /*
3022 * local_lock_irq held so equivalent to spin_lock_irqsave for
3023 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3024 */
3025 spin_lock(&zone->lock);
3026 for (i = 0; i < count; ++i) {
3027 struct page *page = __rmqueue(zone, order, migratetype,
3028 alloc_flags);
3029 if (unlikely(page == NULL))
3030 break;
3031
3032 if (unlikely(check_pcp_refill(page)))
3033 continue;
3034
3035 /*
3036 * Split buddy pages returned by expand() are received here in
3037 * physical page order. The page is added to the tail of
3038 * caller's list. From the callers perspective, the linked list
3039 * is ordered by page number under some conditions. This is
3040 * useful for IO devices that can forward direction from the
3041 * head, thus also in the physical page order. This is useful
3042 * for IO devices that can merge IO requests if the physical
3043 * pages are ordered properly.
3044 */
3045 list_add_tail(&page->lru, list);
3046 allocated++;
3047 if (is_migrate_cma(get_pcppage_migratetype(page)))
3048 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3049 -(1 << order));
3050 }
3051
3052 /*
3053 * i pages were removed from the buddy list even if some leak due
3054 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3055 * on i. Do not confuse with 'allocated' which is the number of
3056 * pages added to the pcp list.
3057 */
3058 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3059 spin_unlock(&zone->lock);
3060 return allocated;
3061 }
3062
3063 #ifdef CONFIG_NUMA
3064 /*
3065 * Called from the vmstat counter updater to drain pagesets of this
3066 * currently executing processor on remote nodes after they have
3067 * expired.
3068 *
3069 * Note that this function must be called with the thread pinned to
3070 * a single processor.
3071 */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)3072 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3073 {
3074 unsigned long flags;
3075 int to_drain, batch;
3076
3077 local_lock_irqsave(&pagesets.lock, flags);
3078 batch = READ_ONCE(pcp->batch);
3079 to_drain = min(pcp->count, batch);
3080 if (to_drain > 0)
3081 free_pcppages_bulk(zone, to_drain, pcp);
3082 local_unlock_irqrestore(&pagesets.lock, flags);
3083 }
3084 #endif
3085
3086 /*
3087 * Drain pcplists of the indicated processor and zone.
3088 *
3089 * The processor must either be the current processor and the
3090 * thread pinned to the current processor or a processor that
3091 * is not online.
3092 */
drain_pages_zone(unsigned int cpu,struct zone * zone)3093 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3094 {
3095 unsigned long flags;
3096 struct per_cpu_pages *pcp;
3097
3098 local_lock_irqsave(&pagesets.lock, flags);
3099
3100 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3101 if (pcp->count)
3102 free_pcppages_bulk(zone, pcp->count, pcp);
3103
3104 local_unlock_irqrestore(&pagesets.lock, flags);
3105 }
3106
3107 /*
3108 * Drain pcplists of all zones on the indicated processor.
3109 *
3110 * The processor must either be the current processor and the
3111 * thread pinned to the current processor or a processor that
3112 * is not online.
3113 */
drain_pages(unsigned int cpu)3114 static void drain_pages(unsigned int cpu)
3115 {
3116 struct zone *zone;
3117
3118 for_each_populated_zone(zone) {
3119 drain_pages_zone(cpu, zone);
3120 }
3121 }
3122
3123 /*
3124 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3125 *
3126 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3127 * the single zone's pages.
3128 */
drain_local_pages(struct zone * zone)3129 void drain_local_pages(struct zone *zone)
3130 {
3131 int cpu = smp_processor_id();
3132
3133 if (zone)
3134 drain_pages_zone(cpu, zone);
3135 else
3136 drain_pages(cpu);
3137 }
3138
drain_local_pages_wq(struct work_struct * work)3139 static void drain_local_pages_wq(struct work_struct *work)
3140 {
3141 struct pcpu_drain *drain;
3142
3143 drain = container_of(work, struct pcpu_drain, work);
3144
3145 /*
3146 * drain_all_pages doesn't use proper cpu hotplug protection so
3147 * we can race with cpu offline when the WQ can move this from
3148 * a cpu pinned worker to an unbound one. We can operate on a different
3149 * cpu which is alright but we also have to make sure to not move to
3150 * a different one.
3151 */
3152 preempt_disable();
3153 drain_local_pages(drain->zone);
3154 preempt_enable();
3155 }
3156
3157 /*
3158 * The implementation of drain_all_pages(), exposing an extra parameter to
3159 * drain on all cpus.
3160 *
3161 * drain_all_pages() is optimized to only execute on cpus where pcplists are
3162 * not empty. The check for non-emptiness can however race with a free to
3163 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3164 * that need the guarantee that every CPU has drained can disable the
3165 * optimizing racy check.
3166 */
__drain_all_pages(struct zone * zone,bool force_all_cpus)3167 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3168 {
3169 int cpu;
3170
3171 /*
3172 * Allocate in the BSS so we won't require allocation in
3173 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3174 */
3175 static cpumask_t cpus_with_pcps;
3176
3177 /*
3178 * Make sure nobody triggers this path before mm_percpu_wq is fully
3179 * initialized.
3180 */
3181 if (WARN_ON_ONCE(!mm_percpu_wq))
3182 return;
3183
3184 /*
3185 * Do not drain if one is already in progress unless it's specific to
3186 * a zone. Such callers are primarily CMA and memory hotplug and need
3187 * the drain to be complete when the call returns.
3188 */
3189 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3190 if (!zone)
3191 return;
3192 mutex_lock(&pcpu_drain_mutex);
3193 }
3194
3195 /*
3196 * We don't care about racing with CPU hotplug event
3197 * as offline notification will cause the notified
3198 * cpu to drain that CPU pcps and on_each_cpu_mask
3199 * disables preemption as part of its processing
3200 */
3201 for_each_online_cpu(cpu) {
3202 struct per_cpu_pages *pcp;
3203 struct zone *z;
3204 bool has_pcps = false;
3205
3206 if (force_all_cpus) {
3207 /*
3208 * The pcp.count check is racy, some callers need a
3209 * guarantee that no cpu is missed.
3210 */
3211 has_pcps = true;
3212 } else if (zone) {
3213 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3214 if (pcp->count)
3215 has_pcps = true;
3216 } else {
3217 for_each_populated_zone(z) {
3218 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3219 if (pcp->count) {
3220 has_pcps = true;
3221 break;
3222 }
3223 }
3224 }
3225
3226 if (has_pcps)
3227 cpumask_set_cpu(cpu, &cpus_with_pcps);
3228 else
3229 cpumask_clear_cpu(cpu, &cpus_with_pcps);
3230 }
3231
3232 for_each_cpu(cpu, &cpus_with_pcps) {
3233 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3234
3235 drain->zone = zone;
3236 INIT_WORK(&drain->work, drain_local_pages_wq);
3237 queue_work_on(cpu, mm_percpu_wq, &drain->work);
3238 }
3239 for_each_cpu(cpu, &cpus_with_pcps)
3240 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3241
3242 mutex_unlock(&pcpu_drain_mutex);
3243 }
3244
3245 /*
3246 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3247 *
3248 * When zone parameter is non-NULL, spill just the single zone's pages.
3249 *
3250 * Note that this can be extremely slow as the draining happens in a workqueue.
3251 */
drain_all_pages(struct zone * zone)3252 void drain_all_pages(struct zone *zone)
3253 {
3254 __drain_all_pages(zone, false);
3255 }
3256
3257 #ifdef CONFIG_HIBERNATION
3258
3259 /*
3260 * Touch the watchdog for every WD_PAGE_COUNT pages.
3261 */
3262 #define WD_PAGE_COUNT (128*1024)
3263
mark_free_pages(struct zone * zone)3264 void mark_free_pages(struct zone *zone)
3265 {
3266 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3267 unsigned long flags;
3268 unsigned int order, t;
3269 struct page *page;
3270
3271 if (zone_is_empty(zone))
3272 return;
3273
3274 spin_lock_irqsave(&zone->lock, flags);
3275
3276 max_zone_pfn = zone_end_pfn(zone);
3277 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3278 if (pfn_valid(pfn)) {
3279 page = pfn_to_page(pfn);
3280
3281 if (!--page_count) {
3282 touch_nmi_watchdog();
3283 page_count = WD_PAGE_COUNT;
3284 }
3285
3286 if (page_zone(page) != zone)
3287 continue;
3288
3289 if (!swsusp_page_is_forbidden(page))
3290 swsusp_unset_page_free(page);
3291 }
3292
3293 for_each_migratetype_order(order, t) {
3294 list_for_each_entry(page,
3295 &zone->free_area[order].free_list[t], lru) {
3296 unsigned long i;
3297
3298 pfn = page_to_pfn(page);
3299 for (i = 0; i < (1UL << order); i++) {
3300 if (!--page_count) {
3301 touch_nmi_watchdog();
3302 page_count = WD_PAGE_COUNT;
3303 }
3304 swsusp_set_page_free(pfn_to_page(pfn + i));
3305 }
3306 }
3307 }
3308 spin_unlock_irqrestore(&zone->lock, flags);
3309 }
3310 #endif /* CONFIG_PM */
3311
free_unref_page_prepare(struct page * page,unsigned long pfn,unsigned int order)3312 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3313 unsigned int order)
3314 {
3315 int migratetype;
3316
3317 if (!free_pcp_prepare(page, order))
3318 return false;
3319
3320 migratetype = get_pfnblock_migratetype(page, pfn);
3321 set_pcppage_migratetype(page, migratetype);
3322 return true;
3323 }
3324
nr_pcp_free(struct per_cpu_pages * pcp,int high,int batch)3325 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3326 {
3327 int min_nr_free, max_nr_free;
3328
3329 /* Check for PCP disabled or boot pageset */
3330 if (unlikely(high < batch))
3331 return 1;
3332
3333 /* Leave at least pcp->batch pages on the list */
3334 min_nr_free = batch;
3335 max_nr_free = high - batch;
3336
3337 /*
3338 * Double the number of pages freed each time there is subsequent
3339 * freeing of pages without any allocation.
3340 */
3341 batch <<= pcp->free_factor;
3342 if (batch < max_nr_free)
3343 pcp->free_factor++;
3344 batch = clamp(batch, min_nr_free, max_nr_free);
3345
3346 return batch;
3347 }
3348
nr_pcp_high(struct per_cpu_pages * pcp,struct zone * zone)3349 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3350 {
3351 int high = READ_ONCE(pcp->high);
3352
3353 if (unlikely(!high))
3354 return 0;
3355
3356 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3357 return high;
3358
3359 /*
3360 * If reclaim is active, limit the number of pages that can be
3361 * stored on pcp lists
3362 */
3363 return min(READ_ONCE(pcp->batch) << 2, high);
3364 }
3365
free_unref_page_commit(struct page * page,unsigned long pfn,int migratetype,unsigned int order)3366 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3367 int migratetype, unsigned int order)
3368 {
3369 struct zone *zone = page_zone(page);
3370 struct per_cpu_pages *pcp;
3371 int high;
3372 int pindex;
3373
3374 __count_vm_event(PGFREE);
3375 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3376 pindex = order_to_pindex(migratetype, order);
3377 list_add(&page->lru, &pcp->lists[pindex]);
3378 pcp->count += 1 << order;
3379 high = nr_pcp_high(pcp, zone);
3380 if (pcp->count >= high) {
3381 int batch = READ_ONCE(pcp->batch);
3382
3383 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3384 }
3385 }
3386
3387 /*
3388 * Free a pcp page
3389 */
free_unref_page(struct page * page,unsigned int order)3390 void free_unref_page(struct page *page, unsigned int order)
3391 {
3392 unsigned long flags;
3393 unsigned long pfn = page_to_pfn(page);
3394 int migratetype;
3395
3396 if (!free_unref_page_prepare(page, pfn, order))
3397 return;
3398
3399 /*
3400 * We only track unmovable, reclaimable and movable on pcp lists.
3401 * Place ISOLATE pages on the isolated list because they are being
3402 * offlined but treat HIGHATOMIC as movable pages so we can get those
3403 * areas back if necessary. Otherwise, we may have to free
3404 * excessively into the page allocator
3405 */
3406 migratetype = get_pcppage_migratetype(page);
3407 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3408 if (unlikely(is_migrate_isolate(migratetype))) {
3409 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3410 return;
3411 }
3412 migratetype = MIGRATE_MOVABLE;
3413 }
3414
3415 local_lock_irqsave(&pagesets.lock, flags);
3416 free_unref_page_commit(page, pfn, migratetype, order);
3417 local_unlock_irqrestore(&pagesets.lock, flags);
3418 }
3419
3420 /*
3421 * Free a list of 0-order pages
3422 */
free_unref_page_list(struct list_head * list)3423 void free_unref_page_list(struct list_head *list)
3424 {
3425 struct page *page, *next;
3426 unsigned long flags, pfn;
3427 int batch_count = 0;
3428 int migratetype;
3429
3430 /* Prepare pages for freeing */
3431 list_for_each_entry_safe(page, next, list, lru) {
3432 pfn = page_to_pfn(page);
3433 if (!free_unref_page_prepare(page, pfn, 0)) {
3434 list_del(&page->lru);
3435 continue;
3436 }
3437
3438 /*
3439 * Free isolated pages directly to the allocator, see
3440 * comment in free_unref_page.
3441 */
3442 migratetype = get_pcppage_migratetype(page);
3443 if (unlikely(is_migrate_isolate(migratetype))) {
3444 list_del(&page->lru);
3445 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE);
3446 continue;
3447 }
3448
3449 set_page_private(page, pfn);
3450 }
3451
3452 local_lock_irqsave(&pagesets.lock, flags);
3453 list_for_each_entry_safe(page, next, list, lru) {
3454 pfn = page_private(page);
3455 set_page_private(page, 0);
3456
3457 /*
3458 * Non-isolated types over MIGRATE_PCPTYPES get added
3459 * to the MIGRATE_MOVABLE pcp list.
3460 */
3461 migratetype = get_pcppage_migratetype(page);
3462 if (unlikely(migratetype >= MIGRATE_PCPTYPES))
3463 migratetype = MIGRATE_MOVABLE;
3464
3465 trace_mm_page_free_batched(page);
3466 free_unref_page_commit(page, pfn, migratetype, 0);
3467
3468 /*
3469 * Guard against excessive IRQ disabled times when we get
3470 * a large list of pages to free.
3471 */
3472 if (++batch_count == SWAP_CLUSTER_MAX) {
3473 local_unlock_irqrestore(&pagesets.lock, flags);
3474 batch_count = 0;
3475 local_lock_irqsave(&pagesets.lock, flags);
3476 }
3477 }
3478 local_unlock_irqrestore(&pagesets.lock, flags);
3479 }
3480
3481 /*
3482 * split_page takes a non-compound higher-order page, and splits it into
3483 * n (1<<order) sub-pages: page[0..n]
3484 * Each sub-page must be freed individually.
3485 *
3486 * Note: this is probably too low level an operation for use in drivers.
3487 * Please consult with lkml before using this in your driver.
3488 */
split_page(struct page * page,unsigned int order)3489 void split_page(struct page *page, unsigned int order)
3490 {
3491 int i;
3492
3493 VM_BUG_ON_PAGE(PageCompound(page), page);
3494 VM_BUG_ON_PAGE(!page_count(page), page);
3495
3496 for (i = 1; i < (1 << order); i++)
3497 set_page_refcounted(page + i);
3498 split_page_owner(page, 1 << order);
3499 split_page_memcg(page, 1 << order);
3500 }
3501 EXPORT_SYMBOL_GPL(split_page);
3502
__isolate_free_page(struct page * page,unsigned int order)3503 int __isolate_free_page(struct page *page, unsigned int order)
3504 {
3505 unsigned long watermark;
3506 struct zone *zone;
3507 int mt;
3508
3509 BUG_ON(!PageBuddy(page));
3510
3511 zone = page_zone(page);
3512 mt = get_pageblock_migratetype(page);
3513
3514 if (!is_migrate_isolate(mt)) {
3515 /*
3516 * Obey watermarks as if the page was being allocated. We can
3517 * emulate a high-order watermark check with a raised order-0
3518 * watermark, because we already know our high-order page
3519 * exists.
3520 */
3521 watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3522 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3523 return 0;
3524
3525 __mod_zone_freepage_state(zone, -(1UL << order), mt);
3526 }
3527
3528 /* Remove page from free list */
3529
3530 del_page_from_free_list(page, zone, order);
3531
3532 /*
3533 * Set the pageblock if the isolated page is at least half of a
3534 * pageblock
3535 */
3536 if (order >= pageblock_order - 1) {
3537 struct page *endpage = page + (1 << order) - 1;
3538 for (; page < endpage; page += pageblock_nr_pages) {
3539 int mt = get_pageblock_migratetype(page);
3540 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3541 && !is_migrate_highatomic(mt))
3542 set_pageblock_migratetype(page,
3543 MIGRATE_MOVABLE);
3544 }
3545 }
3546
3547
3548 return 1UL << order;
3549 }
3550
3551 /**
3552 * __putback_isolated_page - Return a now-isolated page back where we got it
3553 * @page: Page that was isolated
3554 * @order: Order of the isolated page
3555 * @mt: The page's pageblock's migratetype
3556 *
3557 * This function is meant to return a page pulled from the free lists via
3558 * __isolate_free_page back to the free lists they were pulled from.
3559 */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3560 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3561 {
3562 struct zone *zone = page_zone(page);
3563
3564 /* zone lock should be held when this function is called */
3565 lockdep_assert_held(&zone->lock);
3566
3567 /* Return isolated page to tail of freelist. */
3568 __free_one_page(page, page_to_pfn(page), zone, order, mt,
3569 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3570 }
3571
3572 /*
3573 * Update NUMA hit/miss statistics
3574 *
3575 * Must be called with interrupts disabled.
3576 */
zone_statistics(struct zone * preferred_zone,struct zone * z,long nr_account)3577 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3578 long nr_account)
3579 {
3580 #ifdef CONFIG_NUMA
3581 enum numa_stat_item local_stat = NUMA_LOCAL;
3582
3583 /* skip numa counters update if numa stats is disabled */
3584 if (!static_branch_likely(&vm_numa_stat_key))
3585 return;
3586
3587 if (zone_to_nid(z) != numa_node_id())
3588 local_stat = NUMA_OTHER;
3589
3590 if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3591 __count_numa_events(z, NUMA_HIT, nr_account);
3592 else {
3593 __count_numa_events(z, NUMA_MISS, nr_account);
3594 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3595 }
3596 __count_numa_events(z, local_stat, nr_account);
3597 #endif
3598 }
3599
3600 /* Remove page from the per-cpu list, caller must protect the list */
3601 static inline
__rmqueue_pcplist(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3602 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3603 int migratetype,
3604 unsigned int alloc_flags,
3605 struct per_cpu_pages *pcp,
3606 struct list_head *list)
3607 {
3608 struct page *page;
3609
3610 do {
3611 if (list_empty(list)) {
3612 int batch = READ_ONCE(pcp->batch);
3613 int alloced;
3614
3615 /*
3616 * Scale batch relative to order if batch implies
3617 * free pages can be stored on the PCP. Batch can
3618 * be 1 for small zones or for boot pagesets which
3619 * should never store free pages as the pages may
3620 * belong to arbitrary zones.
3621 */
3622 if (batch > 1)
3623 batch = max(batch >> order, 2);
3624 alloced = rmqueue_bulk(zone, order,
3625 batch, list,
3626 migratetype, alloc_flags);
3627
3628 pcp->count += alloced << order;
3629 if (unlikely(list_empty(list)))
3630 return NULL;
3631 }
3632
3633 page = list_first_entry(list, struct page, lru);
3634 list_del(&page->lru);
3635 pcp->count -= 1 << order;
3636 } while (check_new_pcp(page));
3637
3638 return page;
3639 }
3640
3641 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3642 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3643 struct zone *zone, unsigned int order,
3644 gfp_t gfp_flags, int migratetype,
3645 unsigned int alloc_flags)
3646 {
3647 struct per_cpu_pages *pcp;
3648 struct list_head *list;
3649 struct page *page;
3650 unsigned long flags;
3651
3652 local_lock_irqsave(&pagesets.lock, flags);
3653
3654 /*
3655 * On allocation, reduce the number of pages that are batch freed.
3656 * See nr_pcp_free() where free_factor is increased for subsequent
3657 * frees.
3658 */
3659 pcp = this_cpu_ptr(zone->per_cpu_pageset);
3660 pcp->free_factor >>= 1;
3661 list = &pcp->lists[order_to_pindex(migratetype, order)];
3662 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3663 local_unlock_irqrestore(&pagesets.lock, flags);
3664 if (page) {
3665 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3666 zone_statistics(preferred_zone, zone, 1);
3667 }
3668 return page;
3669 }
3670
3671 /*
3672 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3673 */
3674 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3675 struct page *rmqueue(struct zone *preferred_zone,
3676 struct zone *zone, unsigned int order,
3677 gfp_t gfp_flags, unsigned int alloc_flags,
3678 int migratetype)
3679 {
3680 unsigned long flags;
3681 struct page *page;
3682
3683 if (likely(pcp_allowed_order(order))) {
3684 /*
3685 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3686 * we need to skip it when CMA area isn't allowed.
3687 */
3688 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3689 migratetype != MIGRATE_MOVABLE) {
3690 page = rmqueue_pcplist(preferred_zone, zone, order,
3691 gfp_flags, migratetype, alloc_flags);
3692 goto out;
3693 }
3694 }
3695
3696 /*
3697 * We most definitely don't want callers attempting to
3698 * allocate greater than order-1 page units with __GFP_NOFAIL.
3699 */
3700 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3701 spin_lock_irqsave(&zone->lock, flags);
3702
3703 do {
3704 page = NULL;
3705 /*
3706 * order-0 request can reach here when the pcplist is skipped
3707 * due to non-CMA allocation context. HIGHATOMIC area is
3708 * reserved for high-order atomic allocation, so order-0
3709 * request should skip it.
3710 */
3711 if (order > 0 && alloc_flags & ALLOC_HARDER) {
3712 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3713 if (page)
3714 trace_mm_page_alloc_zone_locked(page, order, migratetype);
3715 }
3716 if (!page)
3717 page = __rmqueue(zone, order, migratetype, alloc_flags);
3718 } while (page && check_new_pages(page, order));
3719 if (!page)
3720 goto failed;
3721
3722 __mod_zone_freepage_state(zone, -(1 << order),
3723 get_pcppage_migratetype(page));
3724 spin_unlock_irqrestore(&zone->lock, flags);
3725
3726 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3727 zone_statistics(preferred_zone, zone, 1);
3728
3729 out:
3730 /* Separate test+clear to avoid unnecessary atomics */
3731 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3732 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3733 wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3734 }
3735
3736 VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3737 return page;
3738
3739 failed:
3740 spin_unlock_irqrestore(&zone->lock, flags);
3741 return NULL;
3742 }
3743
3744 #ifdef CONFIG_FAIL_PAGE_ALLOC
3745
3746 static struct {
3747 struct fault_attr attr;
3748
3749 bool ignore_gfp_highmem;
3750 bool ignore_gfp_reclaim;
3751 u32 min_order;
3752 } fail_page_alloc = {
3753 .attr = FAULT_ATTR_INITIALIZER,
3754 .ignore_gfp_reclaim = true,
3755 .ignore_gfp_highmem = true,
3756 .min_order = 1,
3757 };
3758
setup_fail_page_alloc(char * str)3759 static int __init setup_fail_page_alloc(char *str)
3760 {
3761 return setup_fault_attr(&fail_page_alloc.attr, str);
3762 }
3763 __setup("fail_page_alloc=", setup_fail_page_alloc);
3764
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3765 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3766 {
3767 if (order < fail_page_alloc.min_order)
3768 return false;
3769 if (gfp_mask & __GFP_NOFAIL)
3770 return false;
3771 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3772 return false;
3773 if (fail_page_alloc.ignore_gfp_reclaim &&
3774 (gfp_mask & __GFP_DIRECT_RECLAIM))
3775 return false;
3776
3777 return should_fail(&fail_page_alloc.attr, 1 << order);
3778 }
3779
3780 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3781
fail_page_alloc_debugfs(void)3782 static int __init fail_page_alloc_debugfs(void)
3783 {
3784 umode_t mode = S_IFREG | 0600;
3785 struct dentry *dir;
3786
3787 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3788 &fail_page_alloc.attr);
3789
3790 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3791 &fail_page_alloc.ignore_gfp_reclaim);
3792 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3793 &fail_page_alloc.ignore_gfp_highmem);
3794 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3795
3796 return 0;
3797 }
3798
3799 late_initcall(fail_page_alloc_debugfs);
3800
3801 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3802
3803 #else /* CONFIG_FAIL_PAGE_ALLOC */
3804
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3805 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3806 {
3807 return false;
3808 }
3809
3810 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3811
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3812 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3813 {
3814 return __should_fail_alloc_page(gfp_mask, order);
3815 }
3816 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3817
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3818 static inline long __zone_watermark_unusable_free(struct zone *z,
3819 unsigned int order, unsigned int alloc_flags)
3820 {
3821 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3822 long unusable_free = (1 << order) - 1;
3823
3824 /*
3825 * If the caller does not have rights to ALLOC_HARDER then subtract
3826 * the high-atomic reserves. This will over-estimate the size of the
3827 * atomic reserve but it avoids a search.
3828 */
3829 if (likely(!alloc_harder))
3830 unusable_free += z->nr_reserved_highatomic;
3831
3832 #ifdef CONFIG_CMA
3833 /* If allocation can't use CMA areas don't use free CMA pages */
3834 if (!(alloc_flags & ALLOC_CMA))
3835 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3836 #endif
3837
3838 return unusable_free;
3839 }
3840
3841 /*
3842 * Return true if free base pages are above 'mark'. For high-order checks it
3843 * will return true of the order-0 watermark is reached and there is at least
3844 * one free page of a suitable size. Checking now avoids taking the zone lock
3845 * to check in the allocation paths if no pages are free.
3846 */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3847 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3848 int highest_zoneidx, unsigned int alloc_flags,
3849 long free_pages)
3850 {
3851 long min = mark;
3852 int o;
3853 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3854
3855 /* free_pages may go negative - that's OK */
3856 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3857
3858 if (alloc_flags & ALLOC_HIGH)
3859 min -= min / 2;
3860
3861 if (unlikely(alloc_harder)) {
3862 /*
3863 * OOM victims can try even harder than normal ALLOC_HARDER
3864 * users on the grounds that it's definitely going to be in
3865 * the exit path shortly and free memory. Any allocation it
3866 * makes during the free path will be small and short-lived.
3867 */
3868 if (alloc_flags & ALLOC_OOM)
3869 min -= min / 2;
3870 else
3871 min -= min / 4;
3872 }
3873
3874 /*
3875 * Check watermarks for an order-0 allocation request. If these
3876 * are not met, then a high-order request also cannot go ahead
3877 * even if a suitable page happened to be free.
3878 */
3879 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3880 return false;
3881
3882 /* If this is an order-0 request then the watermark is fine */
3883 if (!order)
3884 return true;
3885
3886 /* For a high-order request, check at least one suitable page is free */
3887 for (o = order; o < MAX_ORDER; o++) {
3888 struct free_area *area = &z->free_area[o];
3889 int mt;
3890
3891 if (!area->nr_free)
3892 continue;
3893
3894 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3895 if (!free_area_empty(area, mt))
3896 return true;
3897 }
3898
3899 #ifdef CONFIG_CMA
3900 if ((alloc_flags & ALLOC_CMA) &&
3901 !free_area_empty(area, MIGRATE_CMA)) {
3902 return true;
3903 }
3904 #endif
3905 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3906 return true;
3907 }
3908 return false;
3909 }
3910
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3911 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3912 int highest_zoneidx, unsigned int alloc_flags)
3913 {
3914 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3915 zone_page_state(z, NR_FREE_PAGES));
3916 }
3917
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3918 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3919 unsigned long mark, int highest_zoneidx,
3920 unsigned int alloc_flags, gfp_t gfp_mask)
3921 {
3922 long free_pages;
3923
3924 free_pages = zone_page_state(z, NR_FREE_PAGES);
3925
3926 /*
3927 * Fast check for order-0 only. If this fails then the reserves
3928 * need to be calculated.
3929 */
3930 if (!order) {
3931 long fast_free;
3932
3933 fast_free = free_pages;
3934 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3935 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3936 return true;
3937 }
3938
3939 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3940 free_pages))
3941 return true;
3942 /*
3943 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3944 * when checking the min watermark. The min watermark is the
3945 * point where boosting is ignored so that kswapd is woken up
3946 * when below the low watermark.
3947 */
3948 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3949 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3950 mark = z->_watermark[WMARK_MIN];
3951 return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3952 alloc_flags, free_pages);
3953 }
3954
3955 return false;
3956 }
3957
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3958 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3959 unsigned long mark, int highest_zoneidx)
3960 {
3961 long free_pages = zone_page_state(z, NR_FREE_PAGES);
3962
3963 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3964 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3965
3966 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3967 free_pages);
3968 }
3969
3970 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3971 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3972 {
3973 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3974 node_reclaim_distance;
3975 }
3976 #else /* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3977 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3978 {
3979 return true;
3980 }
3981 #endif /* CONFIG_NUMA */
3982
3983 /*
3984 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3985 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3986 * premature use of a lower zone may cause lowmem pressure problems that
3987 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3988 * probably too small. It only makes sense to spread allocations to avoid
3989 * fragmentation between the Normal and DMA32 zones.
3990 */
3991 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3992 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3993 {
3994 unsigned int alloc_flags;
3995
3996 /*
3997 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3998 * to save a branch.
3999 */
4000 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4001
4002 #ifdef CONFIG_ZONE_DMA32
4003 if (!zone)
4004 return alloc_flags;
4005
4006 if (zone_idx(zone) != ZONE_NORMAL)
4007 return alloc_flags;
4008
4009 /*
4010 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4011 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4012 * on UMA that if Normal is populated then so is DMA32.
4013 */
4014 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4015 if (nr_online_nodes > 1 && !populated_zone(--zone))
4016 return alloc_flags;
4017
4018 alloc_flags |= ALLOC_NOFRAGMENT;
4019 #endif /* CONFIG_ZONE_DMA32 */
4020 return alloc_flags;
4021 }
4022
4023 /* Must be called after current_gfp_context() which can change gfp_mask */
gfp_to_alloc_flags_cma(gfp_t gfp_mask,unsigned int alloc_flags)4024 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4025 unsigned int alloc_flags)
4026 {
4027 #ifdef CONFIG_CMA
4028 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4029 alloc_flags |= ALLOC_CMA;
4030 #endif
4031 return alloc_flags;
4032 }
4033
4034 /*
4035 * get_page_from_freelist goes through the zonelist trying to allocate
4036 * a page.
4037 */
4038 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)4039 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4040 const struct alloc_context *ac)
4041 {
4042 struct zoneref *z;
4043 struct zone *zone;
4044 struct pglist_data *last_pgdat_dirty_limit = NULL;
4045 bool no_fallback;
4046
4047 retry:
4048 /*
4049 * Scan zonelist, looking for a zone with enough free.
4050 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4051 */
4052 no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4053 z = ac->preferred_zoneref;
4054 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4055 ac->nodemask) {
4056 struct page *page;
4057 unsigned long mark;
4058
4059 if (cpusets_enabled() &&
4060 (alloc_flags & ALLOC_CPUSET) &&
4061 !__cpuset_zone_allowed(zone, gfp_mask))
4062 continue;
4063 /*
4064 * When allocating a page cache page for writing, we
4065 * want to get it from a node that is within its dirty
4066 * limit, such that no single node holds more than its
4067 * proportional share of globally allowed dirty pages.
4068 * The dirty limits take into account the node's
4069 * lowmem reserves and high watermark so that kswapd
4070 * should be able to balance it without having to
4071 * write pages from its LRU list.
4072 *
4073 * XXX: For now, allow allocations to potentially
4074 * exceed the per-node dirty limit in the slowpath
4075 * (spread_dirty_pages unset) before going into reclaim,
4076 * which is important when on a NUMA setup the allowed
4077 * nodes are together not big enough to reach the
4078 * global limit. The proper fix for these situations
4079 * will require awareness of nodes in the
4080 * dirty-throttling and the flusher threads.
4081 */
4082 if (ac->spread_dirty_pages) {
4083 if (last_pgdat_dirty_limit == zone->zone_pgdat)
4084 continue;
4085
4086 if (!node_dirty_ok(zone->zone_pgdat)) {
4087 last_pgdat_dirty_limit = zone->zone_pgdat;
4088 continue;
4089 }
4090 }
4091
4092 if (no_fallback && nr_online_nodes > 1 &&
4093 zone != ac->preferred_zoneref->zone) {
4094 int local_nid;
4095
4096 /*
4097 * If moving to a remote node, retry but allow
4098 * fragmenting fallbacks. Locality is more important
4099 * than fragmentation avoidance.
4100 */
4101 local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4102 if (zone_to_nid(zone) != local_nid) {
4103 alloc_flags &= ~ALLOC_NOFRAGMENT;
4104 goto retry;
4105 }
4106 }
4107
4108 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4109 if (!zone_watermark_fast(zone, order, mark,
4110 ac->highest_zoneidx, alloc_flags,
4111 gfp_mask)) {
4112 int ret;
4113
4114 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4115 /*
4116 * Watermark failed for this zone, but see if we can
4117 * grow this zone if it contains deferred pages.
4118 */
4119 if (static_branch_unlikely(&deferred_pages)) {
4120 if (_deferred_grow_zone(zone, order))
4121 goto try_this_zone;
4122 }
4123 #endif
4124 /* Checked here to keep the fast path fast */
4125 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4126 if (alloc_flags & ALLOC_NO_WATERMARKS)
4127 goto try_this_zone;
4128
4129 if (!node_reclaim_enabled() ||
4130 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4131 continue;
4132
4133 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4134 switch (ret) {
4135 case NODE_RECLAIM_NOSCAN:
4136 /* did not scan */
4137 continue;
4138 case NODE_RECLAIM_FULL:
4139 /* scanned but unreclaimable */
4140 continue;
4141 default:
4142 /* did we reclaim enough */
4143 if (zone_watermark_ok(zone, order, mark,
4144 ac->highest_zoneidx, alloc_flags))
4145 goto try_this_zone;
4146
4147 continue;
4148 }
4149 }
4150
4151 try_this_zone:
4152 page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4153 gfp_mask, alloc_flags, ac->migratetype);
4154 if (page) {
4155 prep_new_page(page, order, gfp_mask, alloc_flags);
4156
4157 /*
4158 * If this is a high-order atomic allocation then check
4159 * if the pageblock should be reserved for the future
4160 */
4161 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4162 reserve_highatomic_pageblock(page, zone, order);
4163
4164 return page;
4165 } else {
4166 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4167 /* Try again if zone has deferred pages */
4168 if (static_branch_unlikely(&deferred_pages)) {
4169 if (_deferred_grow_zone(zone, order))
4170 goto try_this_zone;
4171 }
4172 #endif
4173 }
4174 }
4175
4176 /*
4177 * It's possible on a UMA machine to get through all zones that are
4178 * fragmented. If avoiding fragmentation, reset and try again.
4179 */
4180 if (no_fallback) {
4181 alloc_flags &= ~ALLOC_NOFRAGMENT;
4182 goto retry;
4183 }
4184
4185 return NULL;
4186 }
4187
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)4188 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4189 {
4190 unsigned int filter = SHOW_MEM_FILTER_NODES;
4191
4192 /*
4193 * This documents exceptions given to allocations in certain
4194 * contexts that are allowed to allocate outside current's set
4195 * of allowed nodes.
4196 */
4197 if (!(gfp_mask & __GFP_NOMEMALLOC))
4198 if (tsk_is_oom_victim(current) ||
4199 (current->flags & (PF_MEMALLOC | PF_EXITING)))
4200 filter &= ~SHOW_MEM_FILTER_NODES;
4201 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4202 filter &= ~SHOW_MEM_FILTER_NODES;
4203
4204 show_mem(filter, nodemask);
4205 }
4206
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)4207 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4208 {
4209 struct va_format vaf;
4210 va_list args;
4211 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4212
4213 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4214 return;
4215
4216 va_start(args, fmt);
4217 vaf.fmt = fmt;
4218 vaf.va = &args;
4219 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4220 current->comm, &vaf, gfp_mask, &gfp_mask,
4221 nodemask_pr_args(nodemask));
4222 va_end(args);
4223
4224 cpuset_print_current_mems_allowed();
4225 pr_cont("\n");
4226 dump_stack();
4227 warn_alloc_show_mem(gfp_mask, nodemask);
4228 }
4229
4230 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4231 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4232 unsigned int alloc_flags,
4233 const struct alloc_context *ac)
4234 {
4235 struct page *page;
4236
4237 page = get_page_from_freelist(gfp_mask, order,
4238 alloc_flags|ALLOC_CPUSET, ac);
4239 /*
4240 * fallback to ignore cpuset restriction if our nodes
4241 * are depleted
4242 */
4243 if (!page)
4244 page = get_page_from_freelist(gfp_mask, order,
4245 alloc_flags, ac);
4246
4247 return page;
4248 }
4249
4250 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4251 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4252 const struct alloc_context *ac, unsigned long *did_some_progress)
4253 {
4254 struct oom_control oc = {
4255 .zonelist = ac->zonelist,
4256 .nodemask = ac->nodemask,
4257 .memcg = NULL,
4258 .gfp_mask = gfp_mask,
4259 .order = order,
4260 };
4261 struct page *page;
4262
4263 *did_some_progress = 0;
4264
4265 /*
4266 * Acquire the oom lock. If that fails, somebody else is
4267 * making progress for us.
4268 */
4269 if (!mutex_trylock(&oom_lock)) {
4270 *did_some_progress = 1;
4271 schedule_timeout_uninterruptible(1);
4272 return NULL;
4273 }
4274
4275 /*
4276 * Go through the zonelist yet one more time, keep very high watermark
4277 * here, this is only to catch a parallel oom killing, we must fail if
4278 * we're still under heavy pressure. But make sure that this reclaim
4279 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4280 * allocation which will never fail due to oom_lock already held.
4281 */
4282 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4283 ~__GFP_DIRECT_RECLAIM, order,
4284 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4285 if (page)
4286 goto out;
4287
4288 /* Coredumps can quickly deplete all memory reserves */
4289 if (current->flags & PF_DUMPCORE)
4290 goto out;
4291 /* The OOM killer will not help higher order allocs */
4292 if (order > PAGE_ALLOC_COSTLY_ORDER)
4293 goto out;
4294 /*
4295 * We have already exhausted all our reclaim opportunities without any
4296 * success so it is time to admit defeat. We will skip the OOM killer
4297 * because it is very likely that the caller has a more reasonable
4298 * fallback than shooting a random task.
4299 *
4300 * The OOM killer may not free memory on a specific node.
4301 */
4302 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4303 goto out;
4304 /* The OOM killer does not needlessly kill tasks for lowmem */
4305 if (ac->highest_zoneidx < ZONE_NORMAL)
4306 goto out;
4307 if (pm_suspended_storage())
4308 goto out;
4309 /*
4310 * XXX: GFP_NOFS allocations should rather fail than rely on
4311 * other request to make a forward progress.
4312 * We are in an unfortunate situation where out_of_memory cannot
4313 * do much for this context but let's try it to at least get
4314 * access to memory reserved if the current task is killed (see
4315 * out_of_memory). Once filesystems are ready to handle allocation
4316 * failures more gracefully we should just bail out here.
4317 */
4318
4319 /* Exhausted what can be done so it's blame time */
4320 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4321 *did_some_progress = 1;
4322
4323 /*
4324 * Help non-failing allocations by giving them access to memory
4325 * reserves
4326 */
4327 if (gfp_mask & __GFP_NOFAIL)
4328 page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4329 ALLOC_NO_WATERMARKS, ac);
4330 }
4331 out:
4332 mutex_unlock(&oom_lock);
4333 return page;
4334 }
4335
4336 /*
4337 * Maximum number of compaction retries with a progress before OOM
4338 * killer is consider as the only way to move forward.
4339 */
4340 #define MAX_COMPACT_RETRIES 16
4341
4342 #ifdef CONFIG_COMPACTION
4343 /* Try memory compaction for high-order allocations before reclaim */
4344 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4345 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4346 unsigned int alloc_flags, const struct alloc_context *ac,
4347 enum compact_priority prio, enum compact_result *compact_result)
4348 {
4349 struct page *page = NULL;
4350 unsigned long pflags;
4351 unsigned int noreclaim_flag;
4352
4353 if (!order)
4354 return NULL;
4355
4356 psi_memstall_enter(&pflags);
4357 noreclaim_flag = memalloc_noreclaim_save();
4358
4359 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4360 prio, &page);
4361
4362 memalloc_noreclaim_restore(noreclaim_flag);
4363 psi_memstall_leave(&pflags);
4364
4365 if (*compact_result == COMPACT_SKIPPED)
4366 return NULL;
4367 /*
4368 * At least in one zone compaction wasn't deferred or skipped, so let's
4369 * count a compaction stall
4370 */
4371 count_vm_event(COMPACTSTALL);
4372
4373 /* Prep a captured page if available */
4374 if (page)
4375 prep_new_page(page, order, gfp_mask, alloc_flags);
4376
4377 /* Try get a page from the freelist if available */
4378 if (!page)
4379 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4380
4381 if (page) {
4382 struct zone *zone = page_zone(page);
4383
4384 zone->compact_blockskip_flush = false;
4385 compaction_defer_reset(zone, order, true);
4386 count_vm_event(COMPACTSUCCESS);
4387 return page;
4388 }
4389
4390 /*
4391 * It's bad if compaction run occurs and fails. The most likely reason
4392 * is that pages exist, but not enough to satisfy watermarks.
4393 */
4394 count_vm_event(COMPACTFAIL);
4395
4396 cond_resched();
4397
4398 return NULL;
4399 }
4400
4401 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4402 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4403 enum compact_result compact_result,
4404 enum compact_priority *compact_priority,
4405 int *compaction_retries)
4406 {
4407 int max_retries = MAX_COMPACT_RETRIES;
4408 int min_priority;
4409 bool ret = false;
4410 int retries = *compaction_retries;
4411 enum compact_priority priority = *compact_priority;
4412
4413 if (!order)
4414 return false;
4415
4416 if (fatal_signal_pending(current))
4417 return false;
4418
4419 if (compaction_made_progress(compact_result))
4420 (*compaction_retries)++;
4421
4422 /*
4423 * compaction considers all the zone as desperately out of memory
4424 * so it doesn't really make much sense to retry except when the
4425 * failure could be caused by insufficient priority
4426 */
4427 if (compaction_failed(compact_result))
4428 goto check_priority;
4429
4430 /*
4431 * compaction was skipped because there are not enough order-0 pages
4432 * to work with, so we retry only if it looks like reclaim can help.
4433 */
4434 if (compaction_needs_reclaim(compact_result)) {
4435 ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4436 goto out;
4437 }
4438
4439 /*
4440 * make sure the compaction wasn't deferred or didn't bail out early
4441 * due to locks contention before we declare that we should give up.
4442 * But the next retry should use a higher priority if allowed, so
4443 * we don't just keep bailing out endlessly.
4444 */
4445 if (compaction_withdrawn(compact_result)) {
4446 goto check_priority;
4447 }
4448
4449 /*
4450 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4451 * costly ones because they are de facto nofail and invoke OOM
4452 * killer to move on while costly can fail and users are ready
4453 * to cope with that. 1/4 retries is rather arbitrary but we
4454 * would need much more detailed feedback from compaction to
4455 * make a better decision.
4456 */
4457 if (order > PAGE_ALLOC_COSTLY_ORDER)
4458 max_retries /= 4;
4459 if (*compaction_retries <= max_retries) {
4460 ret = true;
4461 goto out;
4462 }
4463
4464 /*
4465 * Make sure there are attempts at the highest priority if we exhausted
4466 * all retries or failed at the lower priorities.
4467 */
4468 check_priority:
4469 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4470 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4471
4472 if (*compact_priority > min_priority) {
4473 (*compact_priority)--;
4474 *compaction_retries = 0;
4475 ret = true;
4476 }
4477 out:
4478 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4479 return ret;
4480 }
4481 #else
4482 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4483 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4484 unsigned int alloc_flags, const struct alloc_context *ac,
4485 enum compact_priority prio, enum compact_result *compact_result)
4486 {
4487 *compact_result = COMPACT_SKIPPED;
4488 return NULL;
4489 }
4490
4491 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4492 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4493 enum compact_result compact_result,
4494 enum compact_priority *compact_priority,
4495 int *compaction_retries)
4496 {
4497 struct zone *zone;
4498 struct zoneref *z;
4499
4500 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4501 return false;
4502
4503 /*
4504 * There are setups with compaction disabled which would prefer to loop
4505 * inside the allocator rather than hit the oom killer prematurely.
4506 * Let's give them a good hope and keep retrying while the order-0
4507 * watermarks are OK.
4508 */
4509 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4510 ac->highest_zoneidx, ac->nodemask) {
4511 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4512 ac->highest_zoneidx, alloc_flags))
4513 return true;
4514 }
4515 return false;
4516 }
4517 #endif /* CONFIG_COMPACTION */
4518
4519 #ifdef CONFIG_LOCKDEP
4520 static struct lockdep_map __fs_reclaim_map =
4521 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4522
__need_reclaim(gfp_t gfp_mask)4523 static bool __need_reclaim(gfp_t gfp_mask)
4524 {
4525 /* no reclaim without waiting on it */
4526 if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4527 return false;
4528
4529 /* this guy won't enter reclaim */
4530 if (current->flags & PF_MEMALLOC)
4531 return false;
4532
4533 if (gfp_mask & __GFP_NOLOCKDEP)
4534 return false;
4535
4536 return true;
4537 }
4538
__fs_reclaim_acquire(unsigned long ip)4539 void __fs_reclaim_acquire(unsigned long ip)
4540 {
4541 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip);
4542 }
4543
__fs_reclaim_release(unsigned long ip)4544 void __fs_reclaim_release(unsigned long ip)
4545 {
4546 lock_release(&__fs_reclaim_map, ip);
4547 }
4548
fs_reclaim_acquire(gfp_t gfp_mask)4549 void fs_reclaim_acquire(gfp_t gfp_mask)
4550 {
4551 gfp_mask = current_gfp_context(gfp_mask);
4552
4553 if (__need_reclaim(gfp_mask)) {
4554 if (gfp_mask & __GFP_FS)
4555 __fs_reclaim_acquire(_RET_IP_);
4556
4557 #ifdef CONFIG_MMU_NOTIFIER
4558 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4559 lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4560 #endif
4561
4562 }
4563 }
4564 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4565
fs_reclaim_release(gfp_t gfp_mask)4566 void fs_reclaim_release(gfp_t gfp_mask)
4567 {
4568 gfp_mask = current_gfp_context(gfp_mask);
4569
4570 if (__need_reclaim(gfp_mask)) {
4571 if (gfp_mask & __GFP_FS)
4572 __fs_reclaim_release(_RET_IP_);
4573 }
4574 }
4575 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4576 #endif
4577
4578 /* Perform direct synchronous page reclaim */
4579 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4580 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4581 const struct alloc_context *ac)
4582 {
4583 unsigned int noreclaim_flag;
4584 unsigned long pflags, progress;
4585
4586 cond_resched();
4587
4588 /* We now go into synchronous reclaim */
4589 cpuset_memory_pressure_bump();
4590 psi_memstall_enter(&pflags);
4591 fs_reclaim_acquire(gfp_mask);
4592 noreclaim_flag = memalloc_noreclaim_save();
4593
4594 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4595 ac->nodemask);
4596
4597 memalloc_noreclaim_restore(noreclaim_flag);
4598 fs_reclaim_release(gfp_mask);
4599 psi_memstall_leave(&pflags);
4600
4601 cond_resched();
4602
4603 return progress;
4604 }
4605
4606 /* The really slow allocator path where we enter direct reclaim */
4607 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4608 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4609 unsigned int alloc_flags, const struct alloc_context *ac,
4610 unsigned long *did_some_progress)
4611 {
4612 struct page *page = NULL;
4613 bool drained = false;
4614
4615 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4616 if (unlikely(!(*did_some_progress)))
4617 return NULL;
4618
4619 retry:
4620 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4621
4622 /*
4623 * If an allocation failed after direct reclaim, it could be because
4624 * pages are pinned on the per-cpu lists or in high alloc reserves.
4625 * Shrink them and try again
4626 */
4627 if (!page && !drained) {
4628 unreserve_highatomic_pageblock(ac, false);
4629 drain_all_pages(NULL);
4630 drained = true;
4631 goto retry;
4632 }
4633
4634 return page;
4635 }
4636
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4637 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4638 const struct alloc_context *ac)
4639 {
4640 struct zoneref *z;
4641 struct zone *zone;
4642 pg_data_t *last_pgdat = NULL;
4643 enum zone_type highest_zoneidx = ac->highest_zoneidx;
4644
4645 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4646 ac->nodemask) {
4647 if (last_pgdat != zone->zone_pgdat)
4648 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4649 last_pgdat = zone->zone_pgdat;
4650 }
4651 }
4652
4653 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4654 gfp_to_alloc_flags(gfp_t gfp_mask)
4655 {
4656 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4657
4658 /*
4659 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4660 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4661 * to save two branches.
4662 */
4663 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4664 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4665
4666 /*
4667 * The caller may dip into page reserves a bit more if the caller
4668 * cannot run direct reclaim, or if the caller has realtime scheduling
4669 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4670 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4671 */
4672 alloc_flags |= (__force int)
4673 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4674
4675 if (gfp_mask & __GFP_ATOMIC) {
4676 /*
4677 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4678 * if it can't schedule.
4679 */
4680 if (!(gfp_mask & __GFP_NOMEMALLOC))
4681 alloc_flags |= ALLOC_HARDER;
4682 /*
4683 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4684 * comment for __cpuset_node_allowed().
4685 */
4686 alloc_flags &= ~ALLOC_CPUSET;
4687 } else if (unlikely(rt_task(current)) && in_task())
4688 alloc_flags |= ALLOC_HARDER;
4689
4690 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4691
4692 return alloc_flags;
4693 }
4694
oom_reserves_allowed(struct task_struct * tsk)4695 static bool oom_reserves_allowed(struct task_struct *tsk)
4696 {
4697 if (!tsk_is_oom_victim(tsk))
4698 return false;
4699
4700 /*
4701 * !MMU doesn't have oom reaper so give access to memory reserves
4702 * only to the thread with TIF_MEMDIE set
4703 */
4704 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4705 return false;
4706
4707 return true;
4708 }
4709
4710 /*
4711 * Distinguish requests which really need access to full memory
4712 * reserves from oom victims which can live with a portion of it
4713 */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4714 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4715 {
4716 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4717 return 0;
4718 if (gfp_mask & __GFP_MEMALLOC)
4719 return ALLOC_NO_WATERMARKS;
4720 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4721 return ALLOC_NO_WATERMARKS;
4722 if (!in_interrupt()) {
4723 if (current->flags & PF_MEMALLOC)
4724 return ALLOC_NO_WATERMARKS;
4725 else if (oom_reserves_allowed(current))
4726 return ALLOC_OOM;
4727 }
4728
4729 return 0;
4730 }
4731
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4732 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4733 {
4734 return !!__gfp_pfmemalloc_flags(gfp_mask);
4735 }
4736
4737 /*
4738 * Checks whether it makes sense to retry the reclaim to make a forward progress
4739 * for the given allocation request.
4740 *
4741 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4742 * without success, or when we couldn't even meet the watermark if we
4743 * reclaimed all remaining pages on the LRU lists.
4744 *
4745 * Returns true if a retry is viable or false to enter the oom path.
4746 */
4747 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4748 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4749 struct alloc_context *ac, int alloc_flags,
4750 bool did_some_progress, int *no_progress_loops)
4751 {
4752 struct zone *zone;
4753 struct zoneref *z;
4754 bool ret = false;
4755
4756 /*
4757 * Costly allocations might have made a progress but this doesn't mean
4758 * their order will become available due to high fragmentation so
4759 * always increment the no progress counter for them
4760 */
4761 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4762 *no_progress_loops = 0;
4763 else
4764 (*no_progress_loops)++;
4765
4766 /*
4767 * Make sure we converge to OOM if we cannot make any progress
4768 * several times in the row.
4769 */
4770 if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4771 /* Before OOM, exhaust highatomic_reserve */
4772 return unreserve_highatomic_pageblock(ac, true);
4773 }
4774
4775 /*
4776 * Keep reclaiming pages while there is a chance this will lead
4777 * somewhere. If none of the target zones can satisfy our allocation
4778 * request even if all reclaimable pages are considered then we are
4779 * screwed and have to go OOM.
4780 */
4781 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4782 ac->highest_zoneidx, ac->nodemask) {
4783 unsigned long available;
4784 unsigned long reclaimable;
4785 unsigned long min_wmark = min_wmark_pages(zone);
4786 bool wmark;
4787
4788 available = reclaimable = zone_reclaimable_pages(zone);
4789 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4790
4791 /*
4792 * Would the allocation succeed if we reclaimed all
4793 * reclaimable pages?
4794 */
4795 wmark = __zone_watermark_ok(zone, order, min_wmark,
4796 ac->highest_zoneidx, alloc_flags, available);
4797 trace_reclaim_retry_zone(z, order, reclaimable,
4798 available, min_wmark, *no_progress_loops, wmark);
4799 if (wmark) {
4800 /*
4801 * If we didn't make any progress and have a lot of
4802 * dirty + writeback pages then we should wait for
4803 * an IO to complete to slow down the reclaim and
4804 * prevent from pre mature OOM
4805 */
4806 if (!did_some_progress) {
4807 unsigned long write_pending;
4808
4809 write_pending = zone_page_state_snapshot(zone,
4810 NR_ZONE_WRITE_PENDING);
4811
4812 if (2 * write_pending > reclaimable) {
4813 congestion_wait(BLK_RW_ASYNC, HZ/10);
4814 return true;
4815 }
4816 }
4817
4818 ret = true;
4819 goto out;
4820 }
4821 }
4822
4823 out:
4824 /*
4825 * Memory allocation/reclaim might be called from a WQ context and the
4826 * current implementation of the WQ concurrency control doesn't
4827 * recognize that a particular WQ is congested if the worker thread is
4828 * looping without ever sleeping. Therefore we have to do a short sleep
4829 * here rather than calling cond_resched().
4830 */
4831 if (current->flags & PF_WQ_WORKER)
4832 schedule_timeout_uninterruptible(1);
4833 else
4834 cond_resched();
4835 return ret;
4836 }
4837
4838 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4839 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4840 {
4841 /*
4842 * It's possible that cpuset's mems_allowed and the nodemask from
4843 * mempolicy don't intersect. This should be normally dealt with by
4844 * policy_nodemask(), but it's possible to race with cpuset update in
4845 * such a way the check therein was true, and then it became false
4846 * before we got our cpuset_mems_cookie here.
4847 * This assumes that for all allocations, ac->nodemask can come only
4848 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4849 * when it does not intersect with the cpuset restrictions) or the
4850 * caller can deal with a violated nodemask.
4851 */
4852 if (cpusets_enabled() && ac->nodemask &&
4853 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4854 ac->nodemask = NULL;
4855 return true;
4856 }
4857
4858 /*
4859 * When updating a task's mems_allowed or mempolicy nodemask, it is
4860 * possible to race with parallel threads in such a way that our
4861 * allocation can fail while the mask is being updated. If we are about
4862 * to fail, check if the cpuset changed during allocation and if so,
4863 * retry.
4864 */
4865 if (read_mems_allowed_retry(cpuset_mems_cookie))
4866 return true;
4867
4868 return false;
4869 }
4870
4871 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4872 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4873 struct alloc_context *ac)
4874 {
4875 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4876 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4877 struct page *page = NULL;
4878 unsigned int alloc_flags;
4879 unsigned long did_some_progress;
4880 enum compact_priority compact_priority;
4881 enum compact_result compact_result;
4882 int compaction_retries;
4883 int no_progress_loops;
4884 unsigned int cpuset_mems_cookie;
4885 int reserve_flags;
4886
4887 /*
4888 * We also sanity check to catch abuse of atomic reserves being used by
4889 * callers that are not in atomic context.
4890 */
4891 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4892 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4893 gfp_mask &= ~__GFP_ATOMIC;
4894
4895 retry_cpuset:
4896 compaction_retries = 0;
4897 no_progress_loops = 0;
4898 compact_priority = DEF_COMPACT_PRIORITY;
4899 cpuset_mems_cookie = read_mems_allowed_begin();
4900
4901 /*
4902 * The fast path uses conservative alloc_flags to succeed only until
4903 * kswapd needs to be woken up, and to avoid the cost of setting up
4904 * alloc_flags precisely. So we do that now.
4905 */
4906 alloc_flags = gfp_to_alloc_flags(gfp_mask);
4907
4908 /*
4909 * We need to recalculate the starting point for the zonelist iterator
4910 * because we might have used different nodemask in the fast path, or
4911 * there was a cpuset modification and we are retrying - otherwise we
4912 * could end up iterating over non-eligible zones endlessly.
4913 */
4914 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4915 ac->highest_zoneidx, ac->nodemask);
4916 if (!ac->preferred_zoneref->zone)
4917 goto nopage;
4918
4919 if (alloc_flags & ALLOC_KSWAPD)
4920 wake_all_kswapds(order, gfp_mask, ac);
4921
4922 /*
4923 * The adjusted alloc_flags might result in immediate success, so try
4924 * that first
4925 */
4926 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4927 if (page)
4928 goto got_pg;
4929
4930 /*
4931 * For costly allocations, try direct compaction first, as it's likely
4932 * that we have enough base pages and don't need to reclaim. For non-
4933 * movable high-order allocations, do that as well, as compaction will
4934 * try prevent permanent fragmentation by migrating from blocks of the
4935 * same migratetype.
4936 * Don't try this for allocations that are allowed to ignore
4937 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4938 */
4939 if (can_direct_reclaim &&
4940 (costly_order ||
4941 (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4942 && !gfp_pfmemalloc_allowed(gfp_mask)) {
4943 page = __alloc_pages_direct_compact(gfp_mask, order,
4944 alloc_flags, ac,
4945 INIT_COMPACT_PRIORITY,
4946 &compact_result);
4947 if (page)
4948 goto got_pg;
4949
4950 /*
4951 * Checks for costly allocations with __GFP_NORETRY, which
4952 * includes some THP page fault allocations
4953 */
4954 if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4955 /*
4956 * If allocating entire pageblock(s) and compaction
4957 * failed because all zones are below low watermarks
4958 * or is prohibited because it recently failed at this
4959 * order, fail immediately unless the allocator has
4960 * requested compaction and reclaim retry.
4961 *
4962 * Reclaim is
4963 * - potentially very expensive because zones are far
4964 * below their low watermarks or this is part of very
4965 * bursty high order allocations,
4966 * - not guaranteed to help because isolate_freepages()
4967 * may not iterate over freed pages as part of its
4968 * linear scan, and
4969 * - unlikely to make entire pageblocks free on its
4970 * own.
4971 */
4972 if (compact_result == COMPACT_SKIPPED ||
4973 compact_result == COMPACT_DEFERRED)
4974 goto nopage;
4975
4976 /*
4977 * Looks like reclaim/compaction is worth trying, but
4978 * sync compaction could be very expensive, so keep
4979 * using async compaction.
4980 */
4981 compact_priority = INIT_COMPACT_PRIORITY;
4982 }
4983 }
4984
4985 retry:
4986 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4987 if (alloc_flags & ALLOC_KSWAPD)
4988 wake_all_kswapds(order, gfp_mask, ac);
4989
4990 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4991 if (reserve_flags)
4992 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
4993
4994 /*
4995 * Reset the nodemask and zonelist iterators if memory policies can be
4996 * ignored. These allocations are high priority and system rather than
4997 * user oriented.
4998 */
4999 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5000 ac->nodemask = NULL;
5001 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5002 ac->highest_zoneidx, ac->nodemask);
5003 }
5004
5005 /* Attempt with potentially adjusted zonelist and alloc_flags */
5006 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5007 if (page)
5008 goto got_pg;
5009
5010 /* Caller is not willing to reclaim, we can't balance anything */
5011 if (!can_direct_reclaim)
5012 goto nopage;
5013
5014 /* Avoid recursion of direct reclaim */
5015 if (current->flags & PF_MEMALLOC)
5016 goto nopage;
5017
5018 /* Try direct reclaim and then allocating */
5019 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5020 &did_some_progress);
5021 if (page)
5022 goto got_pg;
5023
5024 /* Try direct compaction and then allocating */
5025 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5026 compact_priority, &compact_result);
5027 if (page)
5028 goto got_pg;
5029
5030 /* Do not loop if specifically requested */
5031 if (gfp_mask & __GFP_NORETRY)
5032 goto nopage;
5033
5034 /*
5035 * Do not retry costly high order allocations unless they are
5036 * __GFP_RETRY_MAYFAIL
5037 */
5038 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5039 goto nopage;
5040
5041 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5042 did_some_progress > 0, &no_progress_loops))
5043 goto retry;
5044
5045 /*
5046 * It doesn't make any sense to retry for the compaction if the order-0
5047 * reclaim is not able to make any progress because the current
5048 * implementation of the compaction depends on the sufficient amount
5049 * of free memory (see __compaction_suitable)
5050 */
5051 if (did_some_progress > 0 &&
5052 should_compact_retry(ac, order, alloc_flags,
5053 compact_result, &compact_priority,
5054 &compaction_retries))
5055 goto retry;
5056
5057
5058 /* Deal with possible cpuset update races before we start OOM killing */
5059 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5060 goto retry_cpuset;
5061
5062 /* Reclaim has failed us, start killing things */
5063 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5064 if (page)
5065 goto got_pg;
5066
5067 /* Avoid allocations with no watermarks from looping endlessly */
5068 if (tsk_is_oom_victim(current) &&
5069 (alloc_flags & ALLOC_OOM ||
5070 (gfp_mask & __GFP_NOMEMALLOC)))
5071 goto nopage;
5072
5073 /* Retry as long as the OOM killer is making progress */
5074 if (did_some_progress) {
5075 no_progress_loops = 0;
5076 goto retry;
5077 }
5078
5079 nopage:
5080 /* Deal with possible cpuset update races before we fail */
5081 if (check_retry_cpuset(cpuset_mems_cookie, ac))
5082 goto retry_cpuset;
5083
5084 /*
5085 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5086 * we always retry
5087 */
5088 if (gfp_mask & __GFP_NOFAIL) {
5089 /*
5090 * All existing users of the __GFP_NOFAIL are blockable, so warn
5091 * of any new users that actually require GFP_NOWAIT
5092 */
5093 if (WARN_ON_ONCE(!can_direct_reclaim))
5094 goto fail;
5095
5096 /*
5097 * PF_MEMALLOC request from this context is rather bizarre
5098 * because we cannot reclaim anything and only can loop waiting
5099 * for somebody to do a work for us
5100 */
5101 WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5102
5103 /*
5104 * non failing costly orders are a hard requirement which we
5105 * are not prepared for much so let's warn about these users
5106 * so that we can identify them and convert them to something
5107 * else.
5108 */
5109 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5110
5111 /*
5112 * Help non-failing allocations by giving them access to memory
5113 * reserves but do not use ALLOC_NO_WATERMARKS because this
5114 * could deplete whole memory reserves which would just make
5115 * the situation worse
5116 */
5117 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5118 if (page)
5119 goto got_pg;
5120
5121 cond_resched();
5122 goto retry;
5123 }
5124 fail:
5125 warn_alloc(gfp_mask, ac->nodemask,
5126 "page allocation failure: order:%u", order);
5127 got_pg:
5128 return page;
5129 }
5130
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_gfp,unsigned int * alloc_flags)5131 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5132 int preferred_nid, nodemask_t *nodemask,
5133 struct alloc_context *ac, gfp_t *alloc_gfp,
5134 unsigned int *alloc_flags)
5135 {
5136 ac->highest_zoneidx = gfp_zone(gfp_mask);
5137 ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5138 ac->nodemask = nodemask;
5139 ac->migratetype = gfp_migratetype(gfp_mask);
5140
5141 if (cpusets_enabled()) {
5142 *alloc_gfp |= __GFP_HARDWALL;
5143 /*
5144 * When we are in the interrupt context, it is irrelevant
5145 * to the current task context. It means that any node ok.
5146 */
5147 if (in_task() && !ac->nodemask)
5148 ac->nodemask = &cpuset_current_mems_allowed;
5149 else
5150 *alloc_flags |= ALLOC_CPUSET;
5151 }
5152
5153 fs_reclaim_acquire(gfp_mask);
5154 fs_reclaim_release(gfp_mask);
5155
5156 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5157
5158 if (should_fail_alloc_page(gfp_mask, order))
5159 return false;
5160
5161 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5162
5163 /* Dirty zone balancing only done in the fast path */
5164 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5165
5166 /*
5167 * The preferred zone is used for statistics but crucially it is
5168 * also used as the starting point for the zonelist iterator. It
5169 * may get reset for allocations that ignore memory policies.
5170 */
5171 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5172 ac->highest_zoneidx, ac->nodemask);
5173
5174 return true;
5175 }
5176
5177 /*
5178 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5179 * @gfp: GFP flags for the allocation
5180 * @preferred_nid: The preferred NUMA node ID to allocate from
5181 * @nodemask: Set of nodes to allocate from, may be NULL
5182 * @nr_pages: The number of pages desired on the list or array
5183 * @page_list: Optional list to store the allocated pages
5184 * @page_array: Optional array to store the pages
5185 *
5186 * This is a batched version of the page allocator that attempts to
5187 * allocate nr_pages quickly. Pages are added to page_list if page_list
5188 * is not NULL, otherwise it is assumed that the page_array is valid.
5189 *
5190 * For lists, nr_pages is the number of pages that should be allocated.
5191 *
5192 * For arrays, only NULL elements are populated with pages and nr_pages
5193 * is the maximum number of pages that will be stored in the array.
5194 *
5195 * Returns the number of pages on the list or array.
5196 */
__alloc_pages_bulk(gfp_t gfp,int preferred_nid,nodemask_t * nodemask,int nr_pages,struct list_head * page_list,struct page ** page_array)5197 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5198 nodemask_t *nodemask, int nr_pages,
5199 struct list_head *page_list,
5200 struct page **page_array)
5201 {
5202 struct page *page;
5203 unsigned long flags;
5204 struct zone *zone;
5205 struct zoneref *z;
5206 struct per_cpu_pages *pcp;
5207 struct list_head *pcp_list;
5208 struct alloc_context ac;
5209 gfp_t alloc_gfp;
5210 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5211 int nr_populated = 0, nr_account = 0;
5212
5213 /*
5214 * Skip populated array elements to determine if any pages need
5215 * to be allocated before disabling IRQs.
5216 */
5217 while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5218 nr_populated++;
5219
5220 /* No pages requested? */
5221 if (unlikely(nr_pages <= 0))
5222 goto out;
5223
5224 /* Already populated array? */
5225 if (unlikely(page_array && nr_pages - nr_populated == 0))
5226 goto out;
5227
5228 /* Bulk allocator does not support memcg accounting. */
5229 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT))
5230 goto failed;
5231
5232 /* Use the single page allocator for one page. */
5233 if (nr_pages - nr_populated == 1)
5234 goto failed;
5235
5236 #ifdef CONFIG_PAGE_OWNER
5237 /*
5238 * PAGE_OWNER may recurse into the allocator to allocate space to
5239 * save the stack with pagesets.lock held. Releasing/reacquiring
5240 * removes much of the performance benefit of bulk allocation so
5241 * force the caller to allocate one page at a time as it'll have
5242 * similar performance to added complexity to the bulk allocator.
5243 */
5244 if (static_branch_unlikely(&page_owner_inited))
5245 goto failed;
5246 #endif
5247
5248 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5249 gfp &= gfp_allowed_mask;
5250 alloc_gfp = gfp;
5251 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5252 goto out;
5253 gfp = alloc_gfp;
5254
5255 /* Find an allowed local zone that meets the low watermark. */
5256 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5257 unsigned long mark;
5258
5259 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5260 !__cpuset_zone_allowed(zone, gfp)) {
5261 continue;
5262 }
5263
5264 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5265 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5266 goto failed;
5267 }
5268
5269 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5270 if (zone_watermark_fast(zone, 0, mark,
5271 zonelist_zone_idx(ac.preferred_zoneref),
5272 alloc_flags, gfp)) {
5273 break;
5274 }
5275 }
5276
5277 /*
5278 * If there are no allowed local zones that meets the watermarks then
5279 * try to allocate a single page and reclaim if necessary.
5280 */
5281 if (unlikely(!zone))
5282 goto failed;
5283
5284 /* Attempt the batch allocation */
5285 local_lock_irqsave(&pagesets.lock, flags);
5286 pcp = this_cpu_ptr(zone->per_cpu_pageset);
5287 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5288
5289 while (nr_populated < nr_pages) {
5290
5291 /* Skip existing pages */
5292 if (page_array && page_array[nr_populated]) {
5293 nr_populated++;
5294 continue;
5295 }
5296
5297 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5298 pcp, pcp_list);
5299 if (unlikely(!page)) {
5300 /* Try and get at least one page */
5301 if (!nr_populated)
5302 goto failed_irq;
5303 break;
5304 }
5305 nr_account++;
5306
5307 prep_new_page(page, 0, gfp, 0);
5308 if (page_list)
5309 list_add(&page->lru, page_list);
5310 else
5311 page_array[nr_populated] = page;
5312 nr_populated++;
5313 }
5314
5315 local_unlock_irqrestore(&pagesets.lock, flags);
5316
5317 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5318 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5319
5320 out:
5321 return nr_populated;
5322
5323 failed_irq:
5324 local_unlock_irqrestore(&pagesets.lock, flags);
5325
5326 failed:
5327 page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5328 if (page) {
5329 if (page_list)
5330 list_add(&page->lru, page_list);
5331 else
5332 page_array[nr_populated] = page;
5333 nr_populated++;
5334 }
5335
5336 goto out;
5337 }
5338 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5339
5340 /*
5341 * This is the 'heart' of the zoned buddy allocator.
5342 */
__alloc_pages(gfp_t gfp,unsigned int order,int preferred_nid,nodemask_t * nodemask)5343 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5344 nodemask_t *nodemask)
5345 {
5346 struct page *page;
5347 unsigned int alloc_flags = ALLOC_WMARK_LOW;
5348 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5349 struct alloc_context ac = { };
5350
5351 /*
5352 * There are several places where we assume that the order value is sane
5353 * so bail out early if the request is out of bound.
5354 */
5355 if (unlikely(order >= MAX_ORDER)) {
5356 WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5357 return NULL;
5358 }
5359
5360 gfp &= gfp_allowed_mask;
5361 /*
5362 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5363 * resp. GFP_NOIO which has to be inherited for all allocation requests
5364 * from a particular context which has been marked by
5365 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5366 * movable zones are not used during allocation.
5367 */
5368 gfp = current_gfp_context(gfp);
5369 alloc_gfp = gfp;
5370 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5371 &alloc_gfp, &alloc_flags))
5372 return NULL;
5373
5374 /*
5375 * Forbid the first pass from falling back to types that fragment
5376 * memory until all local zones are considered.
5377 */
5378 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5379
5380 /* First allocation attempt */
5381 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5382 if (likely(page))
5383 goto out;
5384
5385 alloc_gfp = gfp;
5386 ac.spread_dirty_pages = false;
5387
5388 /*
5389 * Restore the original nodemask if it was potentially replaced with
5390 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5391 */
5392 ac.nodemask = nodemask;
5393
5394 page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5395
5396 out:
5397 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5398 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5399 __free_pages(page, order);
5400 page = NULL;
5401 }
5402
5403 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5404
5405 return page;
5406 }
5407 EXPORT_SYMBOL(__alloc_pages);
5408
5409 /*
5410 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5411 * address cannot represent highmem pages. Use alloc_pages and then kmap if
5412 * you need to access high mem.
5413 */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5414 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5415 {
5416 struct page *page;
5417
5418 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5419 if (!page)
5420 return 0;
5421 return (unsigned long) page_address(page);
5422 }
5423 EXPORT_SYMBOL(__get_free_pages);
5424
get_zeroed_page(gfp_t gfp_mask)5425 unsigned long get_zeroed_page(gfp_t gfp_mask)
5426 {
5427 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5428 }
5429 EXPORT_SYMBOL(get_zeroed_page);
5430
5431 /**
5432 * __free_pages - Free pages allocated with alloc_pages().
5433 * @page: The page pointer returned from alloc_pages().
5434 * @order: The order of the allocation.
5435 *
5436 * This function can free multi-page allocations that are not compound
5437 * pages. It does not check that the @order passed in matches that of
5438 * the allocation, so it is easy to leak memory. Freeing more memory
5439 * than was allocated will probably emit a warning.
5440 *
5441 * If the last reference to this page is speculative, it will be released
5442 * by put_page() which only frees the first page of a non-compound
5443 * allocation. To prevent the remaining pages from being leaked, we free
5444 * the subsequent pages here. If you want to use the page's reference
5445 * count to decide when to free the allocation, you should allocate a
5446 * compound page, and use put_page() instead of __free_pages().
5447 *
5448 * Context: May be called in interrupt context or while holding a normal
5449 * spinlock, but not in NMI context or while holding a raw spinlock.
5450 */
__free_pages(struct page * page,unsigned int order)5451 void __free_pages(struct page *page, unsigned int order)
5452 {
5453 if (put_page_testzero(page))
5454 free_the_page(page, order);
5455 else if (!PageHead(page))
5456 while (order-- > 0)
5457 free_the_page(page + (1 << order), order);
5458 }
5459 EXPORT_SYMBOL(__free_pages);
5460
free_pages(unsigned long addr,unsigned int order)5461 void free_pages(unsigned long addr, unsigned int order)
5462 {
5463 if (addr != 0) {
5464 VM_BUG_ON(!virt_addr_valid((void *)addr));
5465 __free_pages(virt_to_page((void *)addr), order);
5466 }
5467 }
5468
5469 EXPORT_SYMBOL(free_pages);
5470
5471 /*
5472 * Page Fragment:
5473 * An arbitrary-length arbitrary-offset area of memory which resides
5474 * within a 0 or higher order page. Multiple fragments within that page
5475 * are individually refcounted, in the page's reference counter.
5476 *
5477 * The page_frag functions below provide a simple allocation framework for
5478 * page fragments. This is used by the network stack and network device
5479 * drivers to provide a backing region of memory for use as either an
5480 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5481 */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5482 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5483 gfp_t gfp_mask)
5484 {
5485 struct page *page = NULL;
5486 gfp_t gfp = gfp_mask;
5487
5488 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5489 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5490 __GFP_NOMEMALLOC;
5491 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5492 PAGE_FRAG_CACHE_MAX_ORDER);
5493 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5494 #endif
5495 if (unlikely(!page))
5496 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5497
5498 nc->va = page ? page_address(page) : NULL;
5499
5500 return page;
5501 }
5502
__page_frag_cache_drain(struct page * page,unsigned int count)5503 void __page_frag_cache_drain(struct page *page, unsigned int count)
5504 {
5505 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5506
5507 if (page_ref_sub_and_test(page, count))
5508 free_the_page(page, compound_order(page));
5509 }
5510 EXPORT_SYMBOL(__page_frag_cache_drain);
5511
page_frag_alloc_align(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask,unsigned int align_mask)5512 void *page_frag_alloc_align(struct page_frag_cache *nc,
5513 unsigned int fragsz, gfp_t gfp_mask,
5514 unsigned int align_mask)
5515 {
5516 unsigned int size = PAGE_SIZE;
5517 struct page *page;
5518 int offset;
5519
5520 if (unlikely(!nc->va)) {
5521 refill:
5522 page = __page_frag_cache_refill(nc, gfp_mask);
5523 if (!page)
5524 return NULL;
5525
5526 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5527 /* if size can vary use size else just use PAGE_SIZE */
5528 size = nc->size;
5529 #endif
5530 /* Even if we own the page, we do not use atomic_set().
5531 * This would break get_page_unless_zero() users.
5532 */
5533 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5534
5535 /* reset page count bias and offset to start of new frag */
5536 nc->pfmemalloc = page_is_pfmemalloc(page);
5537 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5538 nc->offset = size;
5539 }
5540
5541 offset = nc->offset - fragsz;
5542 if (unlikely(offset < 0)) {
5543 page = virt_to_page(nc->va);
5544
5545 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5546 goto refill;
5547
5548 if (unlikely(nc->pfmemalloc)) {
5549 free_the_page(page, compound_order(page));
5550 goto refill;
5551 }
5552
5553 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5554 /* if size can vary use size else just use PAGE_SIZE */
5555 size = nc->size;
5556 #endif
5557 /* OK, page count is 0, we can safely set it */
5558 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5559
5560 /* reset page count bias and offset to start of new frag */
5561 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5562 offset = size - fragsz;
5563 }
5564
5565 nc->pagecnt_bias--;
5566 offset &= align_mask;
5567 nc->offset = offset;
5568
5569 return nc->va + offset;
5570 }
5571 EXPORT_SYMBOL(page_frag_alloc_align);
5572
5573 /*
5574 * Frees a page fragment allocated out of either a compound or order 0 page.
5575 */
page_frag_free(void * addr)5576 void page_frag_free(void *addr)
5577 {
5578 struct page *page = virt_to_head_page(addr);
5579
5580 if (unlikely(put_page_testzero(page)))
5581 free_the_page(page, compound_order(page));
5582 }
5583 EXPORT_SYMBOL(page_frag_free);
5584
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5585 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5586 size_t size)
5587 {
5588 if (addr) {
5589 unsigned long alloc_end = addr + (PAGE_SIZE << order);
5590 unsigned long used = addr + PAGE_ALIGN(size);
5591
5592 split_page(virt_to_page((void *)addr), order);
5593 while (used < alloc_end) {
5594 free_page(used);
5595 used += PAGE_SIZE;
5596 }
5597 }
5598 return (void *)addr;
5599 }
5600
5601 /**
5602 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5603 * @size: the number of bytes to allocate
5604 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5605 *
5606 * This function is similar to alloc_pages(), except that it allocates the
5607 * minimum number of pages to satisfy the request. alloc_pages() can only
5608 * allocate memory in power-of-two pages.
5609 *
5610 * This function is also limited by MAX_ORDER.
5611 *
5612 * Memory allocated by this function must be released by free_pages_exact().
5613 *
5614 * Return: pointer to the allocated area or %NULL in case of error.
5615 */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5616 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5617 {
5618 unsigned int order = get_order(size);
5619 unsigned long addr;
5620
5621 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5622 gfp_mask &= ~__GFP_COMP;
5623
5624 addr = __get_free_pages(gfp_mask, order);
5625 return make_alloc_exact(addr, order, size);
5626 }
5627 EXPORT_SYMBOL(alloc_pages_exact);
5628
5629 /**
5630 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5631 * pages on a node.
5632 * @nid: the preferred node ID where memory should be allocated
5633 * @size: the number of bytes to allocate
5634 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5635 *
5636 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5637 * back.
5638 *
5639 * Return: pointer to the allocated area or %NULL in case of error.
5640 */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5641 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5642 {
5643 unsigned int order = get_order(size);
5644 struct page *p;
5645
5646 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5647 gfp_mask &= ~__GFP_COMP;
5648
5649 p = alloc_pages_node(nid, gfp_mask, order);
5650 if (!p)
5651 return NULL;
5652 return make_alloc_exact((unsigned long)page_address(p), order, size);
5653 }
5654
5655 /**
5656 * free_pages_exact - release memory allocated via alloc_pages_exact()
5657 * @virt: the value returned by alloc_pages_exact.
5658 * @size: size of allocation, same value as passed to alloc_pages_exact().
5659 *
5660 * Release the memory allocated by a previous call to alloc_pages_exact.
5661 */
free_pages_exact(void * virt,size_t size)5662 void free_pages_exact(void *virt, size_t size)
5663 {
5664 unsigned long addr = (unsigned long)virt;
5665 unsigned long end = addr + PAGE_ALIGN(size);
5666
5667 while (addr < end) {
5668 free_page(addr);
5669 addr += PAGE_SIZE;
5670 }
5671 }
5672 EXPORT_SYMBOL(free_pages_exact);
5673
5674 /**
5675 * nr_free_zone_pages - count number of pages beyond high watermark
5676 * @offset: The zone index of the highest zone
5677 *
5678 * nr_free_zone_pages() counts the number of pages which are beyond the
5679 * high watermark within all zones at or below a given zone index. For each
5680 * zone, the number of pages is calculated as:
5681 *
5682 * nr_free_zone_pages = managed_pages - high_pages
5683 *
5684 * Return: number of pages beyond high watermark.
5685 */
nr_free_zone_pages(int offset)5686 static unsigned long nr_free_zone_pages(int offset)
5687 {
5688 struct zoneref *z;
5689 struct zone *zone;
5690
5691 /* Just pick one node, since fallback list is circular */
5692 unsigned long sum = 0;
5693
5694 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5695
5696 for_each_zone_zonelist(zone, z, zonelist, offset) {
5697 unsigned long size = zone_managed_pages(zone);
5698 unsigned long high = high_wmark_pages(zone);
5699 if (size > high)
5700 sum += size - high;
5701 }
5702
5703 return sum;
5704 }
5705
5706 /**
5707 * nr_free_buffer_pages - count number of pages beyond high watermark
5708 *
5709 * nr_free_buffer_pages() counts the number of pages which are beyond the high
5710 * watermark within ZONE_DMA and ZONE_NORMAL.
5711 *
5712 * Return: number of pages beyond high watermark within ZONE_DMA and
5713 * ZONE_NORMAL.
5714 */
nr_free_buffer_pages(void)5715 unsigned long nr_free_buffer_pages(void)
5716 {
5717 return nr_free_zone_pages(gfp_zone(GFP_USER));
5718 }
5719 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5720
show_node(struct zone * zone)5721 static inline void show_node(struct zone *zone)
5722 {
5723 if (IS_ENABLED(CONFIG_NUMA))
5724 printk("Node %d ", zone_to_nid(zone));
5725 }
5726
si_mem_available(void)5727 long si_mem_available(void)
5728 {
5729 long available;
5730 unsigned long pagecache;
5731 unsigned long wmark_low = 0;
5732 unsigned long pages[NR_LRU_LISTS];
5733 unsigned long reclaimable;
5734 struct zone *zone;
5735 int lru;
5736
5737 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5738 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5739
5740 for_each_zone(zone)
5741 wmark_low += low_wmark_pages(zone);
5742
5743 /*
5744 * Estimate the amount of memory available for userspace allocations,
5745 * without causing swapping.
5746 */
5747 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5748
5749 /*
5750 * Not all the page cache can be freed, otherwise the system will
5751 * start swapping. Assume at least half of the page cache, or the
5752 * low watermark worth of cache, needs to stay.
5753 */
5754 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5755 pagecache -= min(pagecache / 2, wmark_low);
5756 available += pagecache;
5757
5758 /*
5759 * Part of the reclaimable slab and other kernel memory consists of
5760 * items that are in use, and cannot be freed. Cap this estimate at the
5761 * low watermark.
5762 */
5763 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5764 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5765 available += reclaimable - min(reclaimable / 2, wmark_low);
5766
5767 if (available < 0)
5768 available = 0;
5769 return available;
5770 }
5771 EXPORT_SYMBOL_GPL(si_mem_available);
5772
si_meminfo(struct sysinfo * val)5773 void si_meminfo(struct sysinfo *val)
5774 {
5775 val->totalram = totalram_pages();
5776 val->sharedram = global_node_page_state(NR_SHMEM);
5777 val->freeram = global_zone_page_state(NR_FREE_PAGES);
5778 val->bufferram = nr_blockdev_pages();
5779 val->totalhigh = totalhigh_pages();
5780 val->freehigh = nr_free_highpages();
5781 val->mem_unit = PAGE_SIZE;
5782 }
5783
5784 EXPORT_SYMBOL(si_meminfo);
5785
5786 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5787 void si_meminfo_node(struct sysinfo *val, int nid)
5788 {
5789 int zone_type; /* needs to be signed */
5790 unsigned long managed_pages = 0;
5791 unsigned long managed_highpages = 0;
5792 unsigned long free_highpages = 0;
5793 pg_data_t *pgdat = NODE_DATA(nid);
5794
5795 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5796 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5797 val->totalram = managed_pages;
5798 val->sharedram = node_page_state(pgdat, NR_SHMEM);
5799 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5800 #ifdef CONFIG_HIGHMEM
5801 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5802 struct zone *zone = &pgdat->node_zones[zone_type];
5803
5804 if (is_highmem(zone)) {
5805 managed_highpages += zone_managed_pages(zone);
5806 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5807 }
5808 }
5809 val->totalhigh = managed_highpages;
5810 val->freehigh = free_highpages;
5811 #else
5812 val->totalhigh = managed_highpages;
5813 val->freehigh = free_highpages;
5814 #endif
5815 val->mem_unit = PAGE_SIZE;
5816 }
5817 #endif
5818
5819 /*
5820 * Determine whether the node should be displayed or not, depending on whether
5821 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5822 */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5823 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5824 {
5825 if (!(flags & SHOW_MEM_FILTER_NODES))
5826 return false;
5827
5828 /*
5829 * no node mask - aka implicit memory numa policy. Do not bother with
5830 * the synchronization - read_mems_allowed_begin - because we do not
5831 * have to be precise here.
5832 */
5833 if (!nodemask)
5834 nodemask = &cpuset_current_mems_allowed;
5835
5836 return !node_isset(nid, *nodemask);
5837 }
5838
5839 #define K(x) ((x) << (PAGE_SHIFT-10))
5840
show_migration_types(unsigned char type)5841 static void show_migration_types(unsigned char type)
5842 {
5843 static const char types[MIGRATE_TYPES] = {
5844 [MIGRATE_UNMOVABLE] = 'U',
5845 [MIGRATE_MOVABLE] = 'M',
5846 [MIGRATE_RECLAIMABLE] = 'E',
5847 [MIGRATE_HIGHATOMIC] = 'H',
5848 #ifdef CONFIG_CMA
5849 [MIGRATE_CMA] = 'C',
5850 #endif
5851 #ifdef CONFIG_MEMORY_ISOLATION
5852 [MIGRATE_ISOLATE] = 'I',
5853 #endif
5854 };
5855 char tmp[MIGRATE_TYPES + 1];
5856 char *p = tmp;
5857 int i;
5858
5859 for (i = 0; i < MIGRATE_TYPES; i++) {
5860 if (type & (1 << i))
5861 *p++ = types[i];
5862 }
5863
5864 *p = '\0';
5865 printk(KERN_CONT "(%s) ", tmp);
5866 }
5867
5868 /*
5869 * Show free area list (used inside shift_scroll-lock stuff)
5870 * We also calculate the percentage fragmentation. We do this by counting the
5871 * memory on each free list with the exception of the first item on the list.
5872 *
5873 * Bits in @filter:
5874 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5875 * cpuset.
5876 */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5877 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5878 {
5879 unsigned long free_pcp = 0;
5880 int cpu;
5881 struct zone *zone;
5882 pg_data_t *pgdat;
5883
5884 for_each_populated_zone(zone) {
5885 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5886 continue;
5887
5888 for_each_online_cpu(cpu)
5889 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5890 }
5891
5892 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5893 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5894 " unevictable:%lu dirty:%lu writeback:%lu\n"
5895 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5896 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5897 " kernel_misc_reclaimable:%lu\n"
5898 " free:%lu free_pcp:%lu free_cma:%lu\n",
5899 global_node_page_state(NR_ACTIVE_ANON),
5900 global_node_page_state(NR_INACTIVE_ANON),
5901 global_node_page_state(NR_ISOLATED_ANON),
5902 global_node_page_state(NR_ACTIVE_FILE),
5903 global_node_page_state(NR_INACTIVE_FILE),
5904 global_node_page_state(NR_ISOLATED_FILE),
5905 global_node_page_state(NR_UNEVICTABLE),
5906 global_node_page_state(NR_FILE_DIRTY),
5907 global_node_page_state(NR_WRITEBACK),
5908 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5909 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5910 global_node_page_state(NR_FILE_MAPPED),
5911 global_node_page_state(NR_SHMEM),
5912 global_node_page_state(NR_PAGETABLE),
5913 global_zone_page_state(NR_BOUNCE),
5914 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE),
5915 global_zone_page_state(NR_FREE_PAGES),
5916 free_pcp,
5917 global_zone_page_state(NR_FREE_CMA_PAGES));
5918
5919 for_each_online_pgdat(pgdat) {
5920 if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5921 continue;
5922
5923 printk("Node %d"
5924 " active_anon:%lukB"
5925 " inactive_anon:%lukB"
5926 " active_file:%lukB"
5927 " inactive_file:%lukB"
5928 " unevictable:%lukB"
5929 " isolated(anon):%lukB"
5930 " isolated(file):%lukB"
5931 " mapped:%lukB"
5932 " dirty:%lukB"
5933 " writeback:%lukB"
5934 " shmem:%lukB"
5935 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5936 " shmem_thp: %lukB"
5937 " shmem_pmdmapped: %lukB"
5938 " anon_thp: %lukB"
5939 #endif
5940 " writeback_tmp:%lukB"
5941 " kernel_stack:%lukB"
5942 #ifdef CONFIG_SHADOW_CALL_STACK
5943 " shadow_call_stack:%lukB"
5944 #endif
5945 " pagetables:%lukB"
5946 " all_unreclaimable? %s"
5947 "\n",
5948 pgdat->node_id,
5949 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5950 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5951 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5952 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5953 K(node_page_state(pgdat, NR_UNEVICTABLE)),
5954 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5955 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5956 K(node_page_state(pgdat, NR_FILE_MAPPED)),
5957 K(node_page_state(pgdat, NR_FILE_DIRTY)),
5958 K(node_page_state(pgdat, NR_WRITEBACK)),
5959 K(node_page_state(pgdat, NR_SHMEM)),
5960 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5961 K(node_page_state(pgdat, NR_SHMEM_THPS)),
5962 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5963 K(node_page_state(pgdat, NR_ANON_THPS)),
5964 #endif
5965 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5966 node_page_state(pgdat, NR_KERNEL_STACK_KB),
5967 #ifdef CONFIG_SHADOW_CALL_STACK
5968 node_page_state(pgdat, NR_KERNEL_SCS_KB),
5969 #endif
5970 K(node_page_state(pgdat, NR_PAGETABLE)),
5971 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5972 "yes" : "no");
5973 }
5974
5975 for_each_populated_zone(zone) {
5976 int i;
5977
5978 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5979 continue;
5980
5981 free_pcp = 0;
5982 for_each_online_cpu(cpu)
5983 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5984
5985 show_node(zone);
5986 printk(KERN_CONT
5987 "%s"
5988 " free:%lukB"
5989 " min:%lukB"
5990 " low:%lukB"
5991 " high:%lukB"
5992 " reserved_highatomic:%luKB"
5993 " active_anon:%lukB"
5994 " inactive_anon:%lukB"
5995 " active_file:%lukB"
5996 " inactive_file:%lukB"
5997 " unevictable:%lukB"
5998 " writepending:%lukB"
5999 " present:%lukB"
6000 " managed:%lukB"
6001 " mlocked:%lukB"
6002 " bounce:%lukB"
6003 " free_pcp:%lukB"
6004 " local_pcp:%ukB"
6005 " free_cma:%lukB"
6006 "\n",
6007 zone->name,
6008 K(zone_page_state(zone, NR_FREE_PAGES)),
6009 K(min_wmark_pages(zone)),
6010 K(low_wmark_pages(zone)),
6011 K(high_wmark_pages(zone)),
6012 K(zone->nr_reserved_highatomic),
6013 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6014 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6015 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6016 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6017 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6018 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6019 K(zone->present_pages),
6020 K(zone_managed_pages(zone)),
6021 K(zone_page_state(zone, NR_MLOCK)),
6022 K(zone_page_state(zone, NR_BOUNCE)),
6023 K(free_pcp),
6024 K(this_cpu_read(zone->per_cpu_pageset->count)),
6025 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6026 printk("lowmem_reserve[]:");
6027 for (i = 0; i < MAX_NR_ZONES; i++)
6028 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6029 printk(KERN_CONT "\n");
6030 }
6031
6032 for_each_populated_zone(zone) {
6033 unsigned int order;
6034 unsigned long nr[MAX_ORDER], flags, total = 0;
6035 unsigned char types[MAX_ORDER];
6036
6037 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6038 continue;
6039 show_node(zone);
6040 printk(KERN_CONT "%s: ", zone->name);
6041
6042 spin_lock_irqsave(&zone->lock, flags);
6043 for (order = 0; order < MAX_ORDER; order++) {
6044 struct free_area *area = &zone->free_area[order];
6045 int type;
6046
6047 nr[order] = area->nr_free;
6048 total += nr[order] << order;
6049
6050 types[order] = 0;
6051 for (type = 0; type < MIGRATE_TYPES; type++) {
6052 if (!free_area_empty(area, type))
6053 types[order] |= 1 << type;
6054 }
6055 }
6056 spin_unlock_irqrestore(&zone->lock, flags);
6057 for (order = 0; order < MAX_ORDER; order++) {
6058 printk(KERN_CONT "%lu*%lukB ",
6059 nr[order], K(1UL) << order);
6060 if (nr[order])
6061 show_migration_types(types[order]);
6062 }
6063 printk(KERN_CONT "= %lukB\n", K(total));
6064 }
6065
6066 hugetlb_show_meminfo();
6067
6068 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6069
6070 show_swap_cache_info();
6071 }
6072
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)6073 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6074 {
6075 zoneref->zone = zone;
6076 zoneref->zone_idx = zone_idx(zone);
6077 }
6078
6079 /*
6080 * Builds allocation fallback zone lists.
6081 *
6082 * Add all populated zones of a node to the zonelist.
6083 */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)6084 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6085 {
6086 struct zone *zone;
6087 enum zone_type zone_type = MAX_NR_ZONES;
6088 int nr_zones = 0;
6089
6090 do {
6091 zone_type--;
6092 zone = pgdat->node_zones + zone_type;
6093 if (managed_zone(zone)) {
6094 zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6095 check_highest_zone(zone_type);
6096 }
6097 } while (zone_type);
6098
6099 return nr_zones;
6100 }
6101
6102 #ifdef CONFIG_NUMA
6103
__parse_numa_zonelist_order(char * s)6104 static int __parse_numa_zonelist_order(char *s)
6105 {
6106 /*
6107 * We used to support different zonelists modes but they turned
6108 * out to be just not useful. Let's keep the warning in place
6109 * if somebody still use the cmd line parameter so that we do
6110 * not fail it silently
6111 */
6112 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6113 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s);
6114 return -EINVAL;
6115 }
6116 return 0;
6117 }
6118
6119 char numa_zonelist_order[] = "Node";
6120
6121 /*
6122 * sysctl handler for numa_zonelist_order
6123 */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)6124 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6125 void *buffer, size_t *length, loff_t *ppos)
6126 {
6127 if (write)
6128 return __parse_numa_zonelist_order(buffer);
6129 return proc_dostring(table, write, buffer, length, ppos);
6130 }
6131
6132
6133 #define MAX_NODE_LOAD (nr_online_nodes)
6134 static int node_load[MAX_NUMNODES];
6135
6136 /**
6137 * find_next_best_node - find the next node that should appear in a given node's fallback list
6138 * @node: node whose fallback list we're appending
6139 * @used_node_mask: nodemask_t of already used nodes
6140 *
6141 * We use a number of factors to determine which is the next node that should
6142 * appear on a given node's fallback list. The node should not have appeared
6143 * already in @node's fallback list, and it should be the next closest node
6144 * according to the distance array (which contains arbitrary distance values
6145 * from each node to each node in the system), and should also prefer nodes
6146 * with no CPUs, since presumably they'll have very little allocation pressure
6147 * on them otherwise.
6148 *
6149 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6150 */
find_next_best_node(int node,nodemask_t * used_node_mask)6151 int find_next_best_node(int node, nodemask_t *used_node_mask)
6152 {
6153 int n, val;
6154 int min_val = INT_MAX;
6155 int best_node = NUMA_NO_NODE;
6156
6157 /* Use the local node if we haven't already */
6158 if (!node_isset(node, *used_node_mask)) {
6159 node_set(node, *used_node_mask);
6160 return node;
6161 }
6162
6163 for_each_node_state(n, N_MEMORY) {
6164
6165 /* Don't want a node to appear more than once */
6166 if (node_isset(n, *used_node_mask))
6167 continue;
6168
6169 /* Use the distance array to find the distance */
6170 val = node_distance(node, n);
6171
6172 /* Penalize nodes under us ("prefer the next node") */
6173 val += (n < node);
6174
6175 /* Give preference to headless and unused nodes */
6176 if (!cpumask_empty(cpumask_of_node(n)))
6177 val += PENALTY_FOR_NODE_WITH_CPUS;
6178
6179 /* Slight preference for less loaded node */
6180 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6181 val += node_load[n];
6182
6183 if (val < min_val) {
6184 min_val = val;
6185 best_node = n;
6186 }
6187 }
6188
6189 if (best_node >= 0)
6190 node_set(best_node, *used_node_mask);
6191
6192 return best_node;
6193 }
6194
6195
6196 /*
6197 * Build zonelists ordered by node and zones within node.
6198 * This results in maximum locality--normal zone overflows into local
6199 * DMA zone, if any--but risks exhausting DMA zone.
6200 */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)6201 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6202 unsigned nr_nodes)
6203 {
6204 struct zoneref *zonerefs;
6205 int i;
6206
6207 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6208
6209 for (i = 0; i < nr_nodes; i++) {
6210 int nr_zones;
6211
6212 pg_data_t *node = NODE_DATA(node_order[i]);
6213
6214 nr_zones = build_zonerefs_node(node, zonerefs);
6215 zonerefs += nr_zones;
6216 }
6217 zonerefs->zone = NULL;
6218 zonerefs->zone_idx = 0;
6219 }
6220
6221 /*
6222 * Build gfp_thisnode zonelists
6223 */
build_thisnode_zonelists(pg_data_t * pgdat)6224 static void build_thisnode_zonelists(pg_data_t *pgdat)
6225 {
6226 struct zoneref *zonerefs;
6227 int nr_zones;
6228
6229 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6230 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6231 zonerefs += nr_zones;
6232 zonerefs->zone = NULL;
6233 zonerefs->zone_idx = 0;
6234 }
6235
6236 /*
6237 * Build zonelists ordered by zone and nodes within zones.
6238 * This results in conserving DMA zone[s] until all Normal memory is
6239 * exhausted, but results in overflowing to remote node while memory
6240 * may still exist in local DMA zone.
6241 */
6242
build_zonelists(pg_data_t * pgdat)6243 static void build_zonelists(pg_data_t *pgdat)
6244 {
6245 static int node_order[MAX_NUMNODES];
6246 int node, load, nr_nodes = 0;
6247 nodemask_t used_mask = NODE_MASK_NONE;
6248 int local_node, prev_node;
6249
6250 /* NUMA-aware ordering of nodes */
6251 local_node = pgdat->node_id;
6252 load = nr_online_nodes;
6253 prev_node = local_node;
6254
6255 memset(node_order, 0, sizeof(node_order));
6256 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6257 /*
6258 * We don't want to pressure a particular node.
6259 * So adding penalty to the first node in same
6260 * distance group to make it round-robin.
6261 */
6262 if (node_distance(local_node, node) !=
6263 node_distance(local_node, prev_node))
6264 node_load[node] = load;
6265
6266 node_order[nr_nodes++] = node;
6267 prev_node = node;
6268 load--;
6269 }
6270
6271 build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6272 build_thisnode_zonelists(pgdat);
6273 }
6274
6275 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6276 /*
6277 * Return node id of node used for "local" allocations.
6278 * I.e., first node id of first zone in arg node's generic zonelist.
6279 * Used for initializing percpu 'numa_mem', which is used primarily
6280 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6281 */
local_memory_node(int node)6282 int local_memory_node(int node)
6283 {
6284 struct zoneref *z;
6285
6286 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6287 gfp_zone(GFP_KERNEL),
6288 NULL);
6289 return zone_to_nid(z->zone);
6290 }
6291 #endif
6292
6293 static void setup_min_unmapped_ratio(void);
6294 static void setup_min_slab_ratio(void);
6295 #else /* CONFIG_NUMA */
6296
build_zonelists(pg_data_t * pgdat)6297 static void build_zonelists(pg_data_t *pgdat)
6298 {
6299 int node, local_node;
6300 struct zoneref *zonerefs;
6301 int nr_zones;
6302
6303 local_node = pgdat->node_id;
6304
6305 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6306 nr_zones = build_zonerefs_node(pgdat, zonerefs);
6307 zonerefs += nr_zones;
6308
6309 /*
6310 * Now we build the zonelist so that it contains the zones
6311 * of all the other nodes.
6312 * We don't want to pressure a particular node, so when
6313 * building the zones for node N, we make sure that the
6314 * zones coming right after the local ones are those from
6315 * node N+1 (modulo N)
6316 */
6317 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6318 if (!node_online(node))
6319 continue;
6320 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6321 zonerefs += nr_zones;
6322 }
6323 for (node = 0; node < local_node; node++) {
6324 if (!node_online(node))
6325 continue;
6326 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6327 zonerefs += nr_zones;
6328 }
6329
6330 zonerefs->zone = NULL;
6331 zonerefs->zone_idx = 0;
6332 }
6333
6334 #endif /* CONFIG_NUMA */
6335
6336 /*
6337 * Boot pageset table. One per cpu which is going to be used for all
6338 * zones and all nodes. The parameters will be set in such a way
6339 * that an item put on a list will immediately be handed over to
6340 * the buddy list. This is safe since pageset manipulation is done
6341 * with interrupts disabled.
6342 *
6343 * The boot_pagesets must be kept even after bootup is complete for
6344 * unused processors and/or zones. They do play a role for bootstrapping
6345 * hotplugged processors.
6346 *
6347 * zoneinfo_show() and maybe other functions do
6348 * not check if the processor is online before following the pageset pointer.
6349 * Other parts of the kernel may not check if the zone is available.
6350 */
6351 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6352 /* These effectively disable the pcplists in the boot pageset completely */
6353 #define BOOT_PAGESET_HIGH 0
6354 #define BOOT_PAGESET_BATCH 1
6355 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6356 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6357 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6358
__build_all_zonelists(void * data)6359 static void __build_all_zonelists(void *data)
6360 {
6361 int nid;
6362 int __maybe_unused cpu;
6363 pg_data_t *self = data;
6364 static DEFINE_SPINLOCK(lock);
6365
6366 spin_lock(&lock);
6367
6368 #ifdef CONFIG_NUMA
6369 memset(node_load, 0, sizeof(node_load));
6370 #endif
6371
6372 /*
6373 * This node is hotadded and no memory is yet present. So just
6374 * building zonelists is fine - no need to touch other nodes.
6375 */
6376 if (self && !node_online(self->node_id)) {
6377 build_zonelists(self);
6378 } else {
6379 for_each_online_node(nid) {
6380 pg_data_t *pgdat = NODE_DATA(nid);
6381
6382 build_zonelists(pgdat);
6383 }
6384
6385 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6386 /*
6387 * We now know the "local memory node" for each node--
6388 * i.e., the node of the first zone in the generic zonelist.
6389 * Set up numa_mem percpu variable for on-line cpus. During
6390 * boot, only the boot cpu should be on-line; we'll init the
6391 * secondary cpus' numa_mem as they come on-line. During
6392 * node/memory hotplug, we'll fixup all on-line cpus.
6393 */
6394 for_each_online_cpu(cpu)
6395 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6396 #endif
6397 }
6398
6399 spin_unlock(&lock);
6400 }
6401
6402 static noinline void __init
build_all_zonelists_init(void)6403 build_all_zonelists_init(void)
6404 {
6405 int cpu;
6406
6407 __build_all_zonelists(NULL);
6408
6409 /*
6410 * Initialize the boot_pagesets that are going to be used
6411 * for bootstrapping processors. The real pagesets for
6412 * each zone will be allocated later when the per cpu
6413 * allocator is available.
6414 *
6415 * boot_pagesets are used also for bootstrapping offline
6416 * cpus if the system is already booted because the pagesets
6417 * are needed to initialize allocators on a specific cpu too.
6418 * F.e. the percpu allocator needs the page allocator which
6419 * needs the percpu allocator in order to allocate its pagesets
6420 * (a chicken-egg dilemma).
6421 */
6422 for_each_possible_cpu(cpu)
6423 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6424
6425 mminit_verify_zonelist();
6426 cpuset_init_current_mems_allowed();
6427 }
6428
6429 /*
6430 * unless system_state == SYSTEM_BOOTING.
6431 *
6432 * __ref due to call of __init annotated helper build_all_zonelists_init
6433 * [protected by SYSTEM_BOOTING].
6434 */
build_all_zonelists(pg_data_t * pgdat)6435 void __ref build_all_zonelists(pg_data_t *pgdat)
6436 {
6437 unsigned long vm_total_pages;
6438
6439 if (system_state == SYSTEM_BOOTING) {
6440 build_all_zonelists_init();
6441 } else {
6442 __build_all_zonelists(pgdat);
6443 /* cpuset refresh routine should be here */
6444 }
6445 /* Get the number of free pages beyond high watermark in all zones. */
6446 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6447 /*
6448 * Disable grouping by mobility if the number of pages in the
6449 * system is too low to allow the mechanism to work. It would be
6450 * more accurate, but expensive to check per-zone. This check is
6451 * made on memory-hotadd so a system can start with mobility
6452 * disabled and enable it later
6453 */
6454 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6455 page_group_by_mobility_disabled = 1;
6456 else
6457 page_group_by_mobility_disabled = 0;
6458
6459 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
6460 nr_online_nodes,
6461 page_group_by_mobility_disabled ? "off" : "on",
6462 vm_total_pages);
6463 #ifdef CONFIG_NUMA
6464 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6465 #endif
6466 }
6467
6468 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6469 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6470 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6471 {
6472 static struct memblock_region *r;
6473
6474 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6475 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6476 for_each_mem_region(r) {
6477 if (*pfn < memblock_region_memory_end_pfn(r))
6478 break;
6479 }
6480 }
6481 if (*pfn >= memblock_region_memory_base_pfn(r) &&
6482 memblock_is_mirror(r)) {
6483 *pfn = memblock_region_memory_end_pfn(r);
6484 return true;
6485 }
6486 }
6487 return false;
6488 }
6489
6490 /*
6491 * Initially all pages are reserved - free ones are freed
6492 * up by memblock_free_all() once the early boot process is
6493 * done. Non-atomic initialization, single-pass.
6494 *
6495 * All aligned pageblocks are initialized to the specified migratetype
6496 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6497 * zone stats (e.g., nr_isolate_pageblock) are touched.
6498 */
memmap_init_range(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6499 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6500 unsigned long start_pfn, unsigned long zone_end_pfn,
6501 enum meminit_context context,
6502 struct vmem_altmap *altmap, int migratetype)
6503 {
6504 unsigned long pfn, end_pfn = start_pfn + size;
6505 struct page *page;
6506
6507 if (highest_memmap_pfn < end_pfn - 1)
6508 highest_memmap_pfn = end_pfn - 1;
6509
6510 #ifdef CONFIG_ZONE_DEVICE
6511 /*
6512 * Honor reservation requested by the driver for this ZONE_DEVICE
6513 * memory. We limit the total number of pages to initialize to just
6514 * those that might contain the memory mapping. We will defer the
6515 * ZONE_DEVICE page initialization until after we have released
6516 * the hotplug lock.
6517 */
6518 if (zone == ZONE_DEVICE) {
6519 if (!altmap)
6520 return;
6521
6522 if (start_pfn == altmap->base_pfn)
6523 start_pfn += altmap->reserve;
6524 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6525 }
6526 #endif
6527
6528 for (pfn = start_pfn; pfn < end_pfn; ) {
6529 /*
6530 * There can be holes in boot-time mem_map[]s handed to this
6531 * function. They do not exist on hotplugged memory.
6532 */
6533 if (context == MEMINIT_EARLY) {
6534 if (overlap_memmap_init(zone, &pfn))
6535 continue;
6536 if (defer_init(nid, pfn, zone_end_pfn))
6537 break;
6538 }
6539
6540 page = pfn_to_page(pfn);
6541 __init_single_page(page, pfn, zone, nid);
6542 if (context == MEMINIT_HOTPLUG)
6543 __SetPageReserved(page);
6544
6545 /*
6546 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6547 * such that unmovable allocations won't be scattered all
6548 * over the place during system boot.
6549 */
6550 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6551 set_pageblock_migratetype(page, migratetype);
6552 cond_resched();
6553 }
6554 pfn++;
6555 }
6556 }
6557
6558 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6559 void __ref memmap_init_zone_device(struct zone *zone,
6560 unsigned long start_pfn,
6561 unsigned long nr_pages,
6562 struct dev_pagemap *pgmap)
6563 {
6564 unsigned long pfn, end_pfn = start_pfn + nr_pages;
6565 struct pglist_data *pgdat = zone->zone_pgdat;
6566 struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6567 unsigned long zone_idx = zone_idx(zone);
6568 unsigned long start = jiffies;
6569 int nid = pgdat->node_id;
6570
6571 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6572 return;
6573
6574 /*
6575 * The call to memmap_init should have already taken care
6576 * of the pages reserved for the memmap, so we can just jump to
6577 * the end of that region and start processing the device pages.
6578 */
6579 if (altmap) {
6580 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6581 nr_pages = end_pfn - start_pfn;
6582 }
6583
6584 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6585 struct page *page = pfn_to_page(pfn);
6586
6587 __init_single_page(page, pfn, zone_idx, nid);
6588
6589 /*
6590 * Mark page reserved as it will need to wait for onlining
6591 * phase for it to be fully associated with a zone.
6592 *
6593 * We can use the non-atomic __set_bit operation for setting
6594 * the flag as we are still initializing the pages.
6595 */
6596 __SetPageReserved(page);
6597
6598 /*
6599 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6600 * and zone_device_data. It is a bug if a ZONE_DEVICE page is
6601 * ever freed or placed on a driver-private list.
6602 */
6603 page->pgmap = pgmap;
6604 page->zone_device_data = NULL;
6605
6606 /*
6607 * Mark the block movable so that blocks are reserved for
6608 * movable at startup. This will force kernel allocations
6609 * to reserve their blocks rather than leaking throughout
6610 * the address space during boot when many long-lived
6611 * kernel allocations are made.
6612 *
6613 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6614 * because this is done early in section_activate()
6615 */
6616 if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6617 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6618 cond_resched();
6619 }
6620 }
6621
6622 pr_info("%s initialised %lu pages in %ums\n", __func__,
6623 nr_pages, jiffies_to_msecs(jiffies - start));
6624 }
6625
6626 #endif
zone_init_free_lists(struct zone * zone)6627 static void __meminit zone_init_free_lists(struct zone *zone)
6628 {
6629 unsigned int order, t;
6630 for_each_migratetype_order(order, t) {
6631 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6632 zone->free_area[order].nr_free = 0;
6633 }
6634 }
6635
6636 /*
6637 * Only struct pages that correspond to ranges defined by memblock.memory
6638 * are zeroed and initialized by going through __init_single_page() during
6639 * memmap_init_zone_range().
6640 *
6641 * But, there could be struct pages that correspond to holes in
6642 * memblock.memory. This can happen because of the following reasons:
6643 * - physical memory bank size is not necessarily the exact multiple of the
6644 * arbitrary section size
6645 * - early reserved memory may not be listed in memblock.memory
6646 * - memory layouts defined with memmap= kernel parameter may not align
6647 * nicely with memmap sections
6648 *
6649 * Explicitly initialize those struct pages so that:
6650 * - PG_Reserved is set
6651 * - zone and node links point to zone and node that span the page if the
6652 * hole is in the middle of a zone
6653 * - zone and node links point to adjacent zone/node if the hole falls on
6654 * the zone boundary; the pages in such holes will be prepended to the
6655 * zone/node above the hole except for the trailing pages in the last
6656 * section that will be appended to the zone/node below.
6657 */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6658 static void __init init_unavailable_range(unsigned long spfn,
6659 unsigned long epfn,
6660 int zone, int node)
6661 {
6662 unsigned long pfn;
6663 u64 pgcnt = 0;
6664
6665 for (pfn = spfn; pfn < epfn; pfn++) {
6666 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6667 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6668 + pageblock_nr_pages - 1;
6669 continue;
6670 }
6671 __init_single_page(pfn_to_page(pfn), pfn, zone, node);
6672 __SetPageReserved(pfn_to_page(pfn));
6673 pgcnt++;
6674 }
6675
6676 if (pgcnt)
6677 pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6678 node, zone_names[zone], pgcnt);
6679 }
6680
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6681 static void __init memmap_init_zone_range(struct zone *zone,
6682 unsigned long start_pfn,
6683 unsigned long end_pfn,
6684 unsigned long *hole_pfn)
6685 {
6686 unsigned long zone_start_pfn = zone->zone_start_pfn;
6687 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6688 int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6689
6690 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6691 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6692
6693 if (start_pfn >= end_pfn)
6694 return;
6695
6696 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6697 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6698
6699 if (*hole_pfn < start_pfn)
6700 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6701
6702 *hole_pfn = end_pfn;
6703 }
6704
memmap_init(void)6705 static void __init memmap_init(void)
6706 {
6707 unsigned long start_pfn, end_pfn;
6708 unsigned long hole_pfn = 0;
6709 int i, j, zone_id = 0, nid;
6710
6711 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6712 struct pglist_data *node = NODE_DATA(nid);
6713
6714 for (j = 0; j < MAX_NR_ZONES; j++) {
6715 struct zone *zone = node->node_zones + j;
6716
6717 if (!populated_zone(zone))
6718 continue;
6719
6720 memmap_init_zone_range(zone, start_pfn, end_pfn,
6721 &hole_pfn);
6722 zone_id = j;
6723 }
6724 }
6725
6726 #ifdef CONFIG_SPARSEMEM
6727 /*
6728 * Initialize the memory map for hole in the range [memory_end,
6729 * section_end].
6730 * Append the pages in this hole to the highest zone in the last
6731 * node.
6732 * The call to init_unavailable_range() is outside the ifdef to
6733 * silence the compiler warining about zone_id set but not used;
6734 * for FLATMEM it is a nop anyway
6735 */
6736 end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6737 if (hole_pfn < end_pfn)
6738 #endif
6739 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6740 }
6741
memmap_alloc(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,int nid,bool exact_nid)6742 void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
6743 phys_addr_t min_addr, int nid, bool exact_nid)
6744 {
6745 void *ptr;
6746
6747 if (exact_nid)
6748 ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
6749 MEMBLOCK_ALLOC_ACCESSIBLE,
6750 nid);
6751 else
6752 ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
6753 MEMBLOCK_ALLOC_ACCESSIBLE,
6754 nid);
6755
6756 if (ptr && size > 0)
6757 page_init_poison(ptr, size);
6758
6759 return ptr;
6760 }
6761
zone_batchsize(struct zone * zone)6762 static int zone_batchsize(struct zone *zone)
6763 {
6764 #ifdef CONFIG_MMU
6765 int batch;
6766
6767 /*
6768 * The number of pages to batch allocate is either ~0.1%
6769 * of the zone or 1MB, whichever is smaller. The batch
6770 * size is striking a balance between allocation latency
6771 * and zone lock contention.
6772 */
6773 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6774 batch /= 4; /* We effectively *= 4 below */
6775 if (batch < 1)
6776 batch = 1;
6777
6778 /*
6779 * Clamp the batch to a 2^n - 1 value. Having a power
6780 * of 2 value was found to be more likely to have
6781 * suboptimal cache aliasing properties in some cases.
6782 *
6783 * For example if 2 tasks are alternately allocating
6784 * batches of pages, one task can end up with a lot
6785 * of pages of one half of the possible page colors
6786 * and the other with pages of the other colors.
6787 */
6788 batch = rounddown_pow_of_two(batch + batch/2) - 1;
6789
6790 return batch;
6791
6792 #else
6793 /* The deferral and batching of frees should be suppressed under NOMMU
6794 * conditions.
6795 *
6796 * The problem is that NOMMU needs to be able to allocate large chunks
6797 * of contiguous memory as there's no hardware page translation to
6798 * assemble apparent contiguous memory from discontiguous pages.
6799 *
6800 * Queueing large contiguous runs of pages for batching, however,
6801 * causes the pages to actually be freed in smaller chunks. As there
6802 * can be a significant delay between the individual batches being
6803 * recycled, this leads to the once large chunks of space being
6804 * fragmented and becoming unavailable for high-order allocations.
6805 */
6806 return 0;
6807 #endif
6808 }
6809
zone_highsize(struct zone * zone,int batch,int cpu_online)6810 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6811 {
6812 #ifdef CONFIG_MMU
6813 int high;
6814 int nr_split_cpus;
6815 unsigned long total_pages;
6816
6817 if (!percpu_pagelist_high_fraction) {
6818 /*
6819 * By default, the high value of the pcp is based on the zone
6820 * low watermark so that if they are full then background
6821 * reclaim will not be started prematurely.
6822 */
6823 total_pages = low_wmark_pages(zone);
6824 } else {
6825 /*
6826 * If percpu_pagelist_high_fraction is configured, the high
6827 * value is based on a fraction of the managed pages in the
6828 * zone.
6829 */
6830 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6831 }
6832
6833 /*
6834 * Split the high value across all online CPUs local to the zone. Note
6835 * that early in boot that CPUs may not be online yet and that during
6836 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6837 * onlined. For memory nodes that have no CPUs, split pcp->high across
6838 * all online CPUs to mitigate the risk that reclaim is triggered
6839 * prematurely due to pages stored on pcp lists.
6840 */
6841 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6842 if (!nr_split_cpus)
6843 nr_split_cpus = num_online_cpus();
6844 high = total_pages / nr_split_cpus;
6845
6846 /*
6847 * Ensure high is at least batch*4. The multiple is based on the
6848 * historical relationship between high and batch.
6849 */
6850 high = max(high, batch << 2);
6851
6852 return high;
6853 #else
6854 return 0;
6855 #endif
6856 }
6857
6858 /*
6859 * pcp->high and pcp->batch values are related and generally batch is lower
6860 * than high. They are also related to pcp->count such that count is lower
6861 * than high, and as soon as it reaches high, the pcplist is flushed.
6862 *
6863 * However, guaranteeing these relations at all times would require e.g. write
6864 * barriers here but also careful usage of read barriers at the read side, and
6865 * thus be prone to error and bad for performance. Thus the update only prevents
6866 * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6867 * can cope with those fields changing asynchronously, and fully trust only the
6868 * pcp->count field on the local CPU with interrupts disabled.
6869 *
6870 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6871 * outside of boot time (or some other assurance that no concurrent updaters
6872 * exist).
6873 */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6874 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6875 unsigned long batch)
6876 {
6877 WRITE_ONCE(pcp->batch, batch);
6878 WRITE_ONCE(pcp->high, high);
6879 }
6880
per_cpu_pages_init(struct per_cpu_pages * pcp,struct per_cpu_zonestat * pzstats)6881 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6882 {
6883 int pindex;
6884
6885 memset(pcp, 0, sizeof(*pcp));
6886 memset(pzstats, 0, sizeof(*pzstats));
6887
6888 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6889 INIT_LIST_HEAD(&pcp->lists[pindex]);
6890
6891 /*
6892 * Set batch and high values safe for a boot pageset. A true percpu
6893 * pageset's initialization will update them subsequently. Here we don't
6894 * need to be as careful as pageset_update() as nobody can access the
6895 * pageset yet.
6896 */
6897 pcp->high = BOOT_PAGESET_HIGH;
6898 pcp->batch = BOOT_PAGESET_BATCH;
6899 pcp->free_factor = 0;
6900 }
6901
__zone_set_pageset_high_and_batch(struct zone * zone,unsigned long high,unsigned long batch)6902 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6903 unsigned long batch)
6904 {
6905 struct per_cpu_pages *pcp;
6906 int cpu;
6907
6908 for_each_possible_cpu(cpu) {
6909 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6910 pageset_update(pcp, high, batch);
6911 }
6912 }
6913
6914 /*
6915 * Calculate and set new high and batch values for all per-cpu pagesets of a
6916 * zone based on the zone's size.
6917 */
zone_set_pageset_high_and_batch(struct zone * zone,int cpu_online)6918 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6919 {
6920 int new_high, new_batch;
6921
6922 new_batch = max(1, zone_batchsize(zone));
6923 new_high = zone_highsize(zone, new_batch, cpu_online);
6924
6925 if (zone->pageset_high == new_high &&
6926 zone->pageset_batch == new_batch)
6927 return;
6928
6929 zone->pageset_high = new_high;
6930 zone->pageset_batch = new_batch;
6931
6932 __zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6933 }
6934
setup_zone_pageset(struct zone * zone)6935 void __meminit setup_zone_pageset(struct zone *zone)
6936 {
6937 int cpu;
6938
6939 /* Size may be 0 on !SMP && !NUMA */
6940 if (sizeof(struct per_cpu_zonestat) > 0)
6941 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6942
6943 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6944 for_each_possible_cpu(cpu) {
6945 struct per_cpu_pages *pcp;
6946 struct per_cpu_zonestat *pzstats;
6947
6948 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6949 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6950 per_cpu_pages_init(pcp, pzstats);
6951 }
6952
6953 zone_set_pageset_high_and_batch(zone, 0);
6954 }
6955
6956 /*
6957 * Allocate per cpu pagesets and initialize them.
6958 * Before this call only boot pagesets were available.
6959 */
setup_per_cpu_pageset(void)6960 void __init setup_per_cpu_pageset(void)
6961 {
6962 struct pglist_data *pgdat;
6963 struct zone *zone;
6964 int __maybe_unused cpu;
6965
6966 for_each_populated_zone(zone)
6967 setup_zone_pageset(zone);
6968
6969 #ifdef CONFIG_NUMA
6970 /*
6971 * Unpopulated zones continue using the boot pagesets.
6972 * The numa stats for these pagesets need to be reset.
6973 * Otherwise, they will end up skewing the stats of
6974 * the nodes these zones are associated with.
6975 */
6976 for_each_possible_cpu(cpu) {
6977 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6978 memset(pzstats->vm_numa_event, 0,
6979 sizeof(pzstats->vm_numa_event));
6980 }
6981 #endif
6982
6983 for_each_online_pgdat(pgdat)
6984 pgdat->per_cpu_nodestats =
6985 alloc_percpu(struct per_cpu_nodestat);
6986 }
6987
zone_pcp_init(struct zone * zone)6988 static __meminit void zone_pcp_init(struct zone *zone)
6989 {
6990 /*
6991 * per cpu subsystem is not up at this point. The following code
6992 * relies on the ability of the linker to provide the
6993 * offset of a (static) per cpu variable into the per cpu area.
6994 */
6995 zone->per_cpu_pageset = &boot_pageset;
6996 zone->per_cpu_zonestats = &boot_zonestats;
6997 zone->pageset_high = BOOT_PAGESET_HIGH;
6998 zone->pageset_batch = BOOT_PAGESET_BATCH;
6999
7000 if (populated_zone(zone))
7001 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name,
7002 zone->present_pages, zone_batchsize(zone));
7003 }
7004
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)7005 void __meminit init_currently_empty_zone(struct zone *zone,
7006 unsigned long zone_start_pfn,
7007 unsigned long size)
7008 {
7009 struct pglist_data *pgdat = zone->zone_pgdat;
7010 int zone_idx = zone_idx(zone) + 1;
7011
7012 if (zone_idx > pgdat->nr_zones)
7013 pgdat->nr_zones = zone_idx;
7014
7015 zone->zone_start_pfn = zone_start_pfn;
7016
7017 mminit_dprintk(MMINIT_TRACE, "memmap_init",
7018 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
7019 pgdat->node_id,
7020 (unsigned long)zone_idx(zone),
7021 zone_start_pfn, (zone_start_pfn + size));
7022
7023 zone_init_free_lists(zone);
7024 zone->initialized = 1;
7025 }
7026
7027 /**
7028 * get_pfn_range_for_nid - Return the start and end page frames for a node
7029 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7030 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7031 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7032 *
7033 * It returns the start and end page frame of a node based on information
7034 * provided by memblock_set_node(). If called for a node
7035 * with no available memory, a warning is printed and the start and end
7036 * PFNs will be 0.
7037 */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)7038 void __init get_pfn_range_for_nid(unsigned int nid,
7039 unsigned long *start_pfn, unsigned long *end_pfn)
7040 {
7041 unsigned long this_start_pfn, this_end_pfn;
7042 int i;
7043
7044 *start_pfn = -1UL;
7045 *end_pfn = 0;
7046
7047 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7048 *start_pfn = min(*start_pfn, this_start_pfn);
7049 *end_pfn = max(*end_pfn, this_end_pfn);
7050 }
7051
7052 if (*start_pfn == -1UL)
7053 *start_pfn = 0;
7054 }
7055
7056 /*
7057 * This finds a zone that can be used for ZONE_MOVABLE pages. The
7058 * assumption is made that zones within a node are ordered in monotonic
7059 * increasing memory addresses so that the "highest" populated zone is used
7060 */
find_usable_zone_for_movable(void)7061 static void __init find_usable_zone_for_movable(void)
7062 {
7063 int zone_index;
7064 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7065 if (zone_index == ZONE_MOVABLE)
7066 continue;
7067
7068 if (arch_zone_highest_possible_pfn[zone_index] >
7069 arch_zone_lowest_possible_pfn[zone_index])
7070 break;
7071 }
7072
7073 VM_BUG_ON(zone_index == -1);
7074 movable_zone = zone_index;
7075 }
7076
7077 /*
7078 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7079 * because it is sized independent of architecture. Unlike the other zones,
7080 * the starting point for ZONE_MOVABLE is not fixed. It may be different
7081 * in each node depending on the size of each node and how evenly kernelcore
7082 * is distributed. This helper function adjusts the zone ranges
7083 * provided by the architecture for a given node by using the end of the
7084 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7085 * zones within a node are in order of monotonic increases memory addresses
7086 */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7087 static void __init adjust_zone_range_for_zone_movable(int nid,
7088 unsigned long zone_type,
7089 unsigned long node_start_pfn,
7090 unsigned long node_end_pfn,
7091 unsigned long *zone_start_pfn,
7092 unsigned long *zone_end_pfn)
7093 {
7094 /* Only adjust if ZONE_MOVABLE is on this node */
7095 if (zone_movable_pfn[nid]) {
7096 /* Size ZONE_MOVABLE */
7097 if (zone_type == ZONE_MOVABLE) {
7098 *zone_start_pfn = zone_movable_pfn[nid];
7099 *zone_end_pfn = min(node_end_pfn,
7100 arch_zone_highest_possible_pfn[movable_zone]);
7101
7102 /* Adjust for ZONE_MOVABLE starting within this range */
7103 } else if (!mirrored_kernelcore &&
7104 *zone_start_pfn < zone_movable_pfn[nid] &&
7105 *zone_end_pfn > zone_movable_pfn[nid]) {
7106 *zone_end_pfn = zone_movable_pfn[nid];
7107
7108 /* Check if this whole range is within ZONE_MOVABLE */
7109 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
7110 *zone_start_pfn = *zone_end_pfn;
7111 }
7112 }
7113
7114 /*
7115 * Return the number of pages a zone spans in a node, including holes
7116 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7117 */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)7118 static unsigned long __init zone_spanned_pages_in_node(int nid,
7119 unsigned long zone_type,
7120 unsigned long node_start_pfn,
7121 unsigned long node_end_pfn,
7122 unsigned long *zone_start_pfn,
7123 unsigned long *zone_end_pfn)
7124 {
7125 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7126 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7127 /* When hotadd a new node from cpu_up(), the node should be empty */
7128 if (!node_start_pfn && !node_end_pfn)
7129 return 0;
7130
7131 /* Get the start and end of the zone */
7132 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7133 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7134 adjust_zone_range_for_zone_movable(nid, zone_type,
7135 node_start_pfn, node_end_pfn,
7136 zone_start_pfn, zone_end_pfn);
7137
7138 /* Check that this node has pages within the zone's required range */
7139 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7140 return 0;
7141
7142 /* Move the zone boundaries inside the node if necessary */
7143 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7144 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7145
7146 /* Return the spanned pages */
7147 return *zone_end_pfn - *zone_start_pfn;
7148 }
7149
7150 /*
7151 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7152 * then all holes in the requested range will be accounted for.
7153 */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)7154 unsigned long __init __absent_pages_in_range(int nid,
7155 unsigned long range_start_pfn,
7156 unsigned long range_end_pfn)
7157 {
7158 unsigned long nr_absent = range_end_pfn - range_start_pfn;
7159 unsigned long start_pfn, end_pfn;
7160 int i;
7161
7162 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7163 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7164 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7165 nr_absent -= end_pfn - start_pfn;
7166 }
7167 return nr_absent;
7168 }
7169
7170 /**
7171 * absent_pages_in_range - Return number of page frames in holes within a range
7172 * @start_pfn: The start PFN to start searching for holes
7173 * @end_pfn: The end PFN to stop searching for holes
7174 *
7175 * Return: the number of pages frames in memory holes within a range.
7176 */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)7177 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7178 unsigned long end_pfn)
7179 {
7180 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7181 }
7182
7183 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)7184 static unsigned long __init zone_absent_pages_in_node(int nid,
7185 unsigned long zone_type,
7186 unsigned long node_start_pfn,
7187 unsigned long node_end_pfn)
7188 {
7189 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7190 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7191 unsigned long zone_start_pfn, zone_end_pfn;
7192 unsigned long nr_absent;
7193
7194 /* When hotadd a new node from cpu_up(), the node should be empty */
7195 if (!node_start_pfn && !node_end_pfn)
7196 return 0;
7197
7198 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7199 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7200
7201 adjust_zone_range_for_zone_movable(nid, zone_type,
7202 node_start_pfn, node_end_pfn,
7203 &zone_start_pfn, &zone_end_pfn);
7204 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7205
7206 /*
7207 * ZONE_MOVABLE handling.
7208 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7209 * and vice versa.
7210 */
7211 if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7212 unsigned long start_pfn, end_pfn;
7213 struct memblock_region *r;
7214
7215 for_each_mem_region(r) {
7216 start_pfn = clamp(memblock_region_memory_base_pfn(r),
7217 zone_start_pfn, zone_end_pfn);
7218 end_pfn = clamp(memblock_region_memory_end_pfn(r),
7219 zone_start_pfn, zone_end_pfn);
7220
7221 if (zone_type == ZONE_MOVABLE &&
7222 memblock_is_mirror(r))
7223 nr_absent += end_pfn - start_pfn;
7224
7225 if (zone_type == ZONE_NORMAL &&
7226 !memblock_is_mirror(r))
7227 nr_absent += end_pfn - start_pfn;
7228 }
7229 }
7230
7231 return nr_absent;
7232 }
7233
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)7234 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7235 unsigned long node_start_pfn,
7236 unsigned long node_end_pfn)
7237 {
7238 unsigned long realtotalpages = 0, totalpages = 0;
7239 enum zone_type i;
7240
7241 for (i = 0; i < MAX_NR_ZONES; i++) {
7242 struct zone *zone = pgdat->node_zones + i;
7243 unsigned long zone_start_pfn, zone_end_pfn;
7244 unsigned long spanned, absent;
7245 unsigned long size, real_size;
7246
7247 spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7248 node_start_pfn,
7249 node_end_pfn,
7250 &zone_start_pfn,
7251 &zone_end_pfn);
7252 absent = zone_absent_pages_in_node(pgdat->node_id, i,
7253 node_start_pfn,
7254 node_end_pfn);
7255
7256 size = spanned;
7257 real_size = size - absent;
7258
7259 if (size)
7260 zone->zone_start_pfn = zone_start_pfn;
7261 else
7262 zone->zone_start_pfn = 0;
7263 zone->spanned_pages = size;
7264 zone->present_pages = real_size;
7265 #if defined(CONFIG_MEMORY_HOTPLUG)
7266 zone->present_early_pages = real_size;
7267 #endif
7268
7269 totalpages += size;
7270 realtotalpages += real_size;
7271 }
7272
7273 pgdat->node_spanned_pages = totalpages;
7274 pgdat->node_present_pages = realtotalpages;
7275 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7276 }
7277
7278 #ifndef CONFIG_SPARSEMEM
7279 /*
7280 * Calculate the size of the zone->blockflags rounded to an unsigned long
7281 * Start by making sure zonesize is a multiple of pageblock_order by rounding
7282 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7283 * round what is now in bits to nearest long in bits, then return it in
7284 * bytes.
7285 */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)7286 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7287 {
7288 unsigned long usemapsize;
7289
7290 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7291 usemapsize = roundup(zonesize, pageblock_nr_pages);
7292 usemapsize = usemapsize >> pageblock_order;
7293 usemapsize *= NR_PAGEBLOCK_BITS;
7294 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7295
7296 return usemapsize / 8;
7297 }
7298
setup_usemap(struct zone * zone)7299 static void __ref setup_usemap(struct zone *zone)
7300 {
7301 unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7302 zone->spanned_pages);
7303 zone->pageblock_flags = NULL;
7304 if (usemapsize) {
7305 zone->pageblock_flags =
7306 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7307 zone_to_nid(zone));
7308 if (!zone->pageblock_flags)
7309 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7310 usemapsize, zone->name, zone_to_nid(zone));
7311 }
7312 }
7313 #else
setup_usemap(struct zone * zone)7314 static inline void setup_usemap(struct zone *zone) {}
7315 #endif /* CONFIG_SPARSEMEM */
7316
7317 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7318
7319 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)7320 void __init set_pageblock_order(void)
7321 {
7322 unsigned int order;
7323
7324 /* Check that pageblock_nr_pages has not already been setup */
7325 if (pageblock_order)
7326 return;
7327
7328 if (HPAGE_SHIFT > PAGE_SHIFT)
7329 order = HUGETLB_PAGE_ORDER;
7330 else
7331 order = MAX_ORDER - 1;
7332
7333 /*
7334 * Assume the largest contiguous order of interest is a huge page.
7335 * This value may be variable depending on boot parameters on IA64 and
7336 * powerpc.
7337 */
7338 pageblock_order = order;
7339 }
7340 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7341
7342 /*
7343 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7344 * is unused as pageblock_order is set at compile-time. See
7345 * include/linux/pageblock-flags.h for the values of pageblock_order based on
7346 * the kernel config
7347 */
set_pageblock_order(void)7348 void __init set_pageblock_order(void)
7349 {
7350 }
7351
7352 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7353
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7354 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7355 unsigned long present_pages)
7356 {
7357 unsigned long pages = spanned_pages;
7358
7359 /*
7360 * Provide a more accurate estimation if there are holes within
7361 * the zone and SPARSEMEM is in use. If there are holes within the
7362 * zone, each populated memory region may cost us one or two extra
7363 * memmap pages due to alignment because memmap pages for each
7364 * populated regions may not be naturally aligned on page boundary.
7365 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7366 */
7367 if (spanned_pages > present_pages + (present_pages >> 4) &&
7368 IS_ENABLED(CONFIG_SPARSEMEM))
7369 pages = present_pages;
7370
7371 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7372 }
7373
7374 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7375 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7376 {
7377 struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7378
7379 spin_lock_init(&ds_queue->split_queue_lock);
7380 INIT_LIST_HEAD(&ds_queue->split_queue);
7381 ds_queue->split_queue_len = 0;
7382 }
7383 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7384 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7385 #endif
7386
7387 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7388 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7389 {
7390 init_waitqueue_head(&pgdat->kcompactd_wait);
7391 }
7392 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7393 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7394 #endif
7395
pgdat_init_internals(struct pglist_data * pgdat)7396 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7397 {
7398 pgdat_resize_init(pgdat);
7399
7400 pgdat_init_split_queue(pgdat);
7401 pgdat_init_kcompactd(pgdat);
7402
7403 init_waitqueue_head(&pgdat->kswapd_wait);
7404 init_waitqueue_head(&pgdat->pfmemalloc_wait);
7405
7406 pgdat_page_ext_init(pgdat);
7407 lruvec_init(&pgdat->__lruvec);
7408 }
7409
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7410 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7411 unsigned long remaining_pages)
7412 {
7413 atomic_long_set(&zone->managed_pages, remaining_pages);
7414 zone_set_nid(zone, nid);
7415 zone->name = zone_names[idx];
7416 zone->zone_pgdat = NODE_DATA(nid);
7417 spin_lock_init(&zone->lock);
7418 zone_seqlock_init(zone);
7419 zone_pcp_init(zone);
7420 }
7421
7422 /*
7423 * Set up the zone data structures
7424 * - init pgdat internals
7425 * - init all zones belonging to this node
7426 *
7427 * NOTE: this function is only called during memory hotplug
7428 */
7429 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7430 void __ref free_area_init_core_hotplug(int nid)
7431 {
7432 enum zone_type z;
7433 pg_data_t *pgdat = NODE_DATA(nid);
7434
7435 pgdat_init_internals(pgdat);
7436 for (z = 0; z < MAX_NR_ZONES; z++)
7437 zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7438 }
7439 #endif
7440
7441 /*
7442 * Set up the zone data structures:
7443 * - mark all pages reserved
7444 * - mark all memory queues empty
7445 * - clear the memory bitmaps
7446 *
7447 * NOTE: pgdat should get zeroed by caller.
7448 * NOTE: this function is only called during early init.
7449 */
free_area_init_core(struct pglist_data * pgdat)7450 static void __init free_area_init_core(struct pglist_data *pgdat)
7451 {
7452 enum zone_type j;
7453 int nid = pgdat->node_id;
7454
7455 pgdat_init_internals(pgdat);
7456 pgdat->per_cpu_nodestats = &boot_nodestats;
7457
7458 for (j = 0; j < MAX_NR_ZONES; j++) {
7459 struct zone *zone = pgdat->node_zones + j;
7460 unsigned long size, freesize, memmap_pages;
7461
7462 size = zone->spanned_pages;
7463 freesize = zone->present_pages;
7464
7465 /*
7466 * Adjust freesize so that it accounts for how much memory
7467 * is used by this zone for memmap. This affects the watermark
7468 * and per-cpu initialisations
7469 */
7470 memmap_pages = calc_memmap_size(size, freesize);
7471 if (!is_highmem_idx(j)) {
7472 if (freesize >= memmap_pages) {
7473 freesize -= memmap_pages;
7474 if (memmap_pages)
7475 pr_debug(" %s zone: %lu pages used for memmap\n",
7476 zone_names[j], memmap_pages);
7477 } else
7478 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
7479 zone_names[j], memmap_pages, freesize);
7480 }
7481
7482 /* Account for reserved pages */
7483 if (j == 0 && freesize > dma_reserve) {
7484 freesize -= dma_reserve;
7485 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7486 }
7487
7488 if (!is_highmem_idx(j))
7489 nr_kernel_pages += freesize;
7490 /* Charge for highmem memmap if there are enough kernel pages */
7491 else if (nr_kernel_pages > memmap_pages * 2)
7492 nr_kernel_pages -= memmap_pages;
7493 nr_all_pages += freesize;
7494
7495 /*
7496 * Set an approximate value for lowmem here, it will be adjusted
7497 * when the bootmem allocator frees pages into the buddy system.
7498 * And all highmem pages will be managed by the buddy system.
7499 */
7500 zone_init_internals(zone, j, nid, freesize);
7501
7502 if (!size)
7503 continue;
7504
7505 set_pageblock_order();
7506 setup_usemap(zone);
7507 init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7508 }
7509 }
7510
7511 #ifdef CONFIG_FLATMEM
alloc_node_mem_map(struct pglist_data * pgdat)7512 static void __init alloc_node_mem_map(struct pglist_data *pgdat)
7513 {
7514 unsigned long __maybe_unused start = 0;
7515 unsigned long __maybe_unused offset = 0;
7516
7517 /* Skip empty nodes */
7518 if (!pgdat->node_spanned_pages)
7519 return;
7520
7521 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7522 offset = pgdat->node_start_pfn - start;
7523 /* ia64 gets its own node_mem_map, before this, without bootmem */
7524 if (!pgdat->node_mem_map) {
7525 unsigned long size, end;
7526 struct page *map;
7527
7528 /*
7529 * The zone's endpoints aren't required to be MAX_ORDER
7530 * aligned but the node_mem_map endpoints must be in order
7531 * for the buddy allocator to function correctly.
7532 */
7533 end = pgdat_end_pfn(pgdat);
7534 end = ALIGN(end, MAX_ORDER_NR_PAGES);
7535 size = (end - start) * sizeof(struct page);
7536 map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
7537 pgdat->node_id, false);
7538 if (!map)
7539 panic("Failed to allocate %ld bytes for node %d memory map\n",
7540 size, pgdat->node_id);
7541 pgdat->node_mem_map = map + offset;
7542 }
7543 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7544 __func__, pgdat->node_id, (unsigned long)pgdat,
7545 (unsigned long)pgdat->node_mem_map);
7546 #ifndef CONFIG_NUMA
7547 /*
7548 * With no DISCONTIG, the global mem_map is just set as node 0's
7549 */
7550 if (pgdat == NODE_DATA(0)) {
7551 mem_map = NODE_DATA(0)->node_mem_map;
7552 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7553 mem_map -= offset;
7554 }
7555 #endif
7556 }
7557 #else
alloc_node_mem_map(struct pglist_data * pgdat)7558 static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
7559 #endif /* CONFIG_FLATMEM */
7560
7561 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7562 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7563 {
7564 pgdat->first_deferred_pfn = ULONG_MAX;
7565 }
7566 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7567 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7568 #endif
7569
free_area_init_node(int nid)7570 static void __init free_area_init_node(int nid)
7571 {
7572 pg_data_t *pgdat = NODE_DATA(nid);
7573 unsigned long start_pfn = 0;
7574 unsigned long end_pfn = 0;
7575
7576 /* pg_data_t should be reset to zero when it's allocated */
7577 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7578
7579 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7580
7581 pgdat->node_id = nid;
7582 pgdat->node_start_pfn = start_pfn;
7583 pgdat->per_cpu_nodestats = NULL;
7584
7585 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7586 (u64)start_pfn << PAGE_SHIFT,
7587 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7588 calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7589
7590 alloc_node_mem_map(pgdat);
7591 pgdat_set_deferred_range(pgdat);
7592
7593 free_area_init_core(pgdat);
7594 }
7595
free_area_init_memoryless_node(int nid)7596 void __init free_area_init_memoryless_node(int nid)
7597 {
7598 free_area_init_node(nid);
7599 }
7600
7601 #if MAX_NUMNODES > 1
7602 /*
7603 * Figure out the number of possible node ids.
7604 */
setup_nr_node_ids(void)7605 void __init setup_nr_node_ids(void)
7606 {
7607 unsigned int highest;
7608
7609 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7610 nr_node_ids = highest + 1;
7611 }
7612 #endif
7613
7614 /**
7615 * node_map_pfn_alignment - determine the maximum internode alignment
7616 *
7617 * This function should be called after node map is populated and sorted.
7618 * It calculates the maximum power of two alignment which can distinguish
7619 * all the nodes.
7620 *
7621 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7622 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
7623 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
7624 * shifted, 1GiB is enough and this function will indicate so.
7625 *
7626 * This is used to test whether pfn -> nid mapping of the chosen memory
7627 * model has fine enough granularity to avoid incorrect mapping for the
7628 * populated node map.
7629 *
7630 * Return: the determined alignment in pfn's. 0 if there is no alignment
7631 * requirement (single node).
7632 */
node_map_pfn_alignment(void)7633 unsigned long __init node_map_pfn_alignment(void)
7634 {
7635 unsigned long accl_mask = 0, last_end = 0;
7636 unsigned long start, end, mask;
7637 int last_nid = NUMA_NO_NODE;
7638 int i, nid;
7639
7640 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7641 if (!start || last_nid < 0 || last_nid == nid) {
7642 last_nid = nid;
7643 last_end = end;
7644 continue;
7645 }
7646
7647 /*
7648 * Start with a mask granular enough to pin-point to the
7649 * start pfn and tick off bits one-by-one until it becomes
7650 * too coarse to separate the current node from the last.
7651 */
7652 mask = ~((1 << __ffs(start)) - 1);
7653 while (mask && last_end <= (start & (mask << 1)))
7654 mask <<= 1;
7655
7656 /* accumulate all internode masks */
7657 accl_mask |= mask;
7658 }
7659
7660 /* convert mask to number of pages */
7661 return ~accl_mask + 1;
7662 }
7663
7664 /**
7665 * find_min_pfn_with_active_regions - Find the minimum PFN registered
7666 *
7667 * Return: the minimum PFN based on information provided via
7668 * memblock_set_node().
7669 */
find_min_pfn_with_active_regions(void)7670 unsigned long __init find_min_pfn_with_active_regions(void)
7671 {
7672 return PHYS_PFN(memblock_start_of_DRAM());
7673 }
7674
7675 /*
7676 * early_calculate_totalpages()
7677 * Sum pages in active regions for movable zone.
7678 * Populate N_MEMORY for calculating usable_nodes.
7679 */
early_calculate_totalpages(void)7680 static unsigned long __init early_calculate_totalpages(void)
7681 {
7682 unsigned long totalpages = 0;
7683 unsigned long start_pfn, end_pfn;
7684 int i, nid;
7685
7686 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7687 unsigned long pages = end_pfn - start_pfn;
7688
7689 totalpages += pages;
7690 if (pages)
7691 node_set_state(nid, N_MEMORY);
7692 }
7693 return totalpages;
7694 }
7695
7696 /*
7697 * Find the PFN the Movable zone begins in each node. Kernel memory
7698 * is spread evenly between nodes as long as the nodes have enough
7699 * memory. When they don't, some nodes will have more kernelcore than
7700 * others
7701 */
find_zone_movable_pfns_for_nodes(void)7702 static void __init find_zone_movable_pfns_for_nodes(void)
7703 {
7704 int i, nid;
7705 unsigned long usable_startpfn;
7706 unsigned long kernelcore_node, kernelcore_remaining;
7707 /* save the state before borrow the nodemask */
7708 nodemask_t saved_node_state = node_states[N_MEMORY];
7709 unsigned long totalpages = early_calculate_totalpages();
7710 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7711 struct memblock_region *r;
7712
7713 /* Need to find movable_zone earlier when movable_node is specified. */
7714 find_usable_zone_for_movable();
7715
7716 /*
7717 * If movable_node is specified, ignore kernelcore and movablecore
7718 * options.
7719 */
7720 if (movable_node_is_enabled()) {
7721 for_each_mem_region(r) {
7722 if (!memblock_is_hotpluggable(r))
7723 continue;
7724
7725 nid = memblock_get_region_node(r);
7726
7727 usable_startpfn = PFN_DOWN(r->base);
7728 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7729 min(usable_startpfn, zone_movable_pfn[nid]) :
7730 usable_startpfn;
7731 }
7732
7733 goto out2;
7734 }
7735
7736 /*
7737 * If kernelcore=mirror is specified, ignore movablecore option
7738 */
7739 if (mirrored_kernelcore) {
7740 bool mem_below_4gb_not_mirrored = false;
7741
7742 for_each_mem_region(r) {
7743 if (memblock_is_mirror(r))
7744 continue;
7745
7746 nid = memblock_get_region_node(r);
7747
7748 usable_startpfn = memblock_region_memory_base_pfn(r);
7749
7750 if (usable_startpfn < 0x100000) {
7751 mem_below_4gb_not_mirrored = true;
7752 continue;
7753 }
7754
7755 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7756 min(usable_startpfn, zone_movable_pfn[nid]) :
7757 usable_startpfn;
7758 }
7759
7760 if (mem_below_4gb_not_mirrored)
7761 pr_warn("This configuration results in unmirrored kernel memory.\n");
7762
7763 goto out2;
7764 }
7765
7766 /*
7767 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7768 * amount of necessary memory.
7769 */
7770 if (required_kernelcore_percent)
7771 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7772 10000UL;
7773 if (required_movablecore_percent)
7774 required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7775 10000UL;
7776
7777 /*
7778 * If movablecore= was specified, calculate what size of
7779 * kernelcore that corresponds so that memory usable for
7780 * any allocation type is evenly spread. If both kernelcore
7781 * and movablecore are specified, then the value of kernelcore
7782 * will be used for required_kernelcore if it's greater than
7783 * what movablecore would have allowed.
7784 */
7785 if (required_movablecore) {
7786 unsigned long corepages;
7787
7788 /*
7789 * Round-up so that ZONE_MOVABLE is at least as large as what
7790 * was requested by the user
7791 */
7792 required_movablecore =
7793 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7794 required_movablecore = min(totalpages, required_movablecore);
7795 corepages = totalpages - required_movablecore;
7796
7797 required_kernelcore = max(required_kernelcore, corepages);
7798 }
7799
7800 /*
7801 * If kernelcore was not specified or kernelcore size is larger
7802 * than totalpages, there is no ZONE_MOVABLE.
7803 */
7804 if (!required_kernelcore || required_kernelcore >= totalpages)
7805 goto out;
7806
7807 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7808 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7809
7810 restart:
7811 /* Spread kernelcore memory as evenly as possible throughout nodes */
7812 kernelcore_node = required_kernelcore / usable_nodes;
7813 for_each_node_state(nid, N_MEMORY) {
7814 unsigned long start_pfn, end_pfn;
7815
7816 /*
7817 * Recalculate kernelcore_node if the division per node
7818 * now exceeds what is necessary to satisfy the requested
7819 * amount of memory for the kernel
7820 */
7821 if (required_kernelcore < kernelcore_node)
7822 kernelcore_node = required_kernelcore / usable_nodes;
7823
7824 /*
7825 * As the map is walked, we track how much memory is usable
7826 * by the kernel using kernelcore_remaining. When it is
7827 * 0, the rest of the node is usable by ZONE_MOVABLE
7828 */
7829 kernelcore_remaining = kernelcore_node;
7830
7831 /* Go through each range of PFNs within this node */
7832 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7833 unsigned long size_pages;
7834
7835 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7836 if (start_pfn >= end_pfn)
7837 continue;
7838
7839 /* Account for what is only usable for kernelcore */
7840 if (start_pfn < usable_startpfn) {
7841 unsigned long kernel_pages;
7842 kernel_pages = min(end_pfn, usable_startpfn)
7843 - start_pfn;
7844
7845 kernelcore_remaining -= min(kernel_pages,
7846 kernelcore_remaining);
7847 required_kernelcore -= min(kernel_pages,
7848 required_kernelcore);
7849
7850 /* Continue if range is now fully accounted */
7851 if (end_pfn <= usable_startpfn) {
7852
7853 /*
7854 * Push zone_movable_pfn to the end so
7855 * that if we have to rebalance
7856 * kernelcore across nodes, we will
7857 * not double account here
7858 */
7859 zone_movable_pfn[nid] = end_pfn;
7860 continue;
7861 }
7862 start_pfn = usable_startpfn;
7863 }
7864
7865 /*
7866 * The usable PFN range for ZONE_MOVABLE is from
7867 * start_pfn->end_pfn. Calculate size_pages as the
7868 * number of pages used as kernelcore
7869 */
7870 size_pages = end_pfn - start_pfn;
7871 if (size_pages > kernelcore_remaining)
7872 size_pages = kernelcore_remaining;
7873 zone_movable_pfn[nid] = start_pfn + size_pages;
7874
7875 /*
7876 * Some kernelcore has been met, update counts and
7877 * break if the kernelcore for this node has been
7878 * satisfied
7879 */
7880 required_kernelcore -= min(required_kernelcore,
7881 size_pages);
7882 kernelcore_remaining -= size_pages;
7883 if (!kernelcore_remaining)
7884 break;
7885 }
7886 }
7887
7888 /*
7889 * If there is still required_kernelcore, we do another pass with one
7890 * less node in the count. This will push zone_movable_pfn[nid] further
7891 * along on the nodes that still have memory until kernelcore is
7892 * satisfied
7893 */
7894 usable_nodes--;
7895 if (usable_nodes && required_kernelcore > usable_nodes)
7896 goto restart;
7897
7898 out2:
7899 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7900 for (nid = 0; nid < MAX_NUMNODES; nid++)
7901 zone_movable_pfn[nid] =
7902 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7903
7904 out:
7905 /* restore the node_state */
7906 node_states[N_MEMORY] = saved_node_state;
7907 }
7908
7909 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7910 static void check_for_memory(pg_data_t *pgdat, int nid)
7911 {
7912 enum zone_type zone_type;
7913
7914 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7915 struct zone *zone = &pgdat->node_zones[zone_type];
7916 if (populated_zone(zone)) {
7917 if (IS_ENABLED(CONFIG_HIGHMEM))
7918 node_set_state(nid, N_HIGH_MEMORY);
7919 if (zone_type <= ZONE_NORMAL)
7920 node_set_state(nid, N_NORMAL_MEMORY);
7921 break;
7922 }
7923 }
7924 }
7925
7926 /*
7927 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7928 * such cases we allow max_zone_pfn sorted in the descending order
7929 */
arch_has_descending_max_zone_pfns(void)7930 bool __weak arch_has_descending_max_zone_pfns(void)
7931 {
7932 return false;
7933 }
7934
7935 /**
7936 * free_area_init - Initialise all pg_data_t and zone data
7937 * @max_zone_pfn: an array of max PFNs for each zone
7938 *
7939 * This will call free_area_init_node() for each active node in the system.
7940 * Using the page ranges provided by memblock_set_node(), the size of each
7941 * zone in each node and their holes is calculated. If the maximum PFN
7942 * between two adjacent zones match, it is assumed that the zone is empty.
7943 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7944 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7945 * starts where the previous one ended. For example, ZONE_DMA32 starts
7946 * at arch_max_dma_pfn.
7947 */
free_area_init(unsigned long * max_zone_pfn)7948 void __init free_area_init(unsigned long *max_zone_pfn)
7949 {
7950 unsigned long start_pfn, end_pfn;
7951 int i, nid, zone;
7952 bool descending;
7953
7954 /* Record where the zone boundaries are */
7955 memset(arch_zone_lowest_possible_pfn, 0,
7956 sizeof(arch_zone_lowest_possible_pfn));
7957 memset(arch_zone_highest_possible_pfn, 0,
7958 sizeof(arch_zone_highest_possible_pfn));
7959
7960 start_pfn = find_min_pfn_with_active_regions();
7961 descending = arch_has_descending_max_zone_pfns();
7962
7963 for (i = 0; i < MAX_NR_ZONES; i++) {
7964 if (descending)
7965 zone = MAX_NR_ZONES - i - 1;
7966 else
7967 zone = i;
7968
7969 if (zone == ZONE_MOVABLE)
7970 continue;
7971
7972 end_pfn = max(max_zone_pfn[zone], start_pfn);
7973 arch_zone_lowest_possible_pfn[zone] = start_pfn;
7974 arch_zone_highest_possible_pfn[zone] = end_pfn;
7975
7976 start_pfn = end_pfn;
7977 }
7978
7979 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
7980 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7981 find_zone_movable_pfns_for_nodes();
7982
7983 /* Print out the zone ranges */
7984 pr_info("Zone ranges:\n");
7985 for (i = 0; i < MAX_NR_ZONES; i++) {
7986 if (i == ZONE_MOVABLE)
7987 continue;
7988 pr_info(" %-8s ", zone_names[i]);
7989 if (arch_zone_lowest_possible_pfn[i] ==
7990 arch_zone_highest_possible_pfn[i])
7991 pr_cont("empty\n");
7992 else
7993 pr_cont("[mem %#018Lx-%#018Lx]\n",
7994 (u64)arch_zone_lowest_possible_pfn[i]
7995 << PAGE_SHIFT,
7996 ((u64)arch_zone_highest_possible_pfn[i]
7997 << PAGE_SHIFT) - 1);
7998 }
7999
8000 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
8001 pr_info("Movable zone start for each node\n");
8002 for (i = 0; i < MAX_NUMNODES; i++) {
8003 if (zone_movable_pfn[i])
8004 pr_info(" Node %d: %#018Lx\n", i,
8005 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
8006 }
8007
8008 /*
8009 * Print out the early node map, and initialize the
8010 * subsection-map relative to active online memory ranges to
8011 * enable future "sub-section" extensions of the memory map.
8012 */
8013 pr_info("Early memory node ranges\n");
8014 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8015 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8016 (u64)start_pfn << PAGE_SHIFT,
8017 ((u64)end_pfn << PAGE_SHIFT) - 1);
8018 subsection_map_init(start_pfn, end_pfn - start_pfn);
8019 }
8020
8021 /* Initialise every node */
8022 mminit_verify_pageflags_layout();
8023 setup_nr_node_ids();
8024 for_each_online_node(nid) {
8025 pg_data_t *pgdat = NODE_DATA(nid);
8026 free_area_init_node(nid);
8027
8028 /* Any memory on that node */
8029 if (pgdat->node_present_pages)
8030 node_set_state(nid, N_MEMORY);
8031 check_for_memory(pgdat, nid);
8032 }
8033
8034 memmap_init();
8035 }
8036
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)8037 static int __init cmdline_parse_core(char *p, unsigned long *core,
8038 unsigned long *percent)
8039 {
8040 unsigned long long coremem;
8041 char *endptr;
8042
8043 if (!p)
8044 return -EINVAL;
8045
8046 /* Value may be a percentage of total memory, otherwise bytes */
8047 coremem = simple_strtoull(p, &endptr, 0);
8048 if (*endptr == '%') {
8049 /* Paranoid check for percent values greater than 100 */
8050 WARN_ON(coremem > 100);
8051
8052 *percent = coremem;
8053 } else {
8054 coremem = memparse(p, &p);
8055 /* Paranoid check that UL is enough for the coremem value */
8056 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8057
8058 *core = coremem >> PAGE_SHIFT;
8059 *percent = 0UL;
8060 }
8061 return 0;
8062 }
8063
8064 /*
8065 * kernelcore=size sets the amount of memory for use for allocations that
8066 * cannot be reclaimed or migrated.
8067 */
cmdline_parse_kernelcore(char * p)8068 static int __init cmdline_parse_kernelcore(char *p)
8069 {
8070 /* parse kernelcore=mirror */
8071 if (parse_option_str(p, "mirror")) {
8072 mirrored_kernelcore = true;
8073 return 0;
8074 }
8075
8076 return cmdline_parse_core(p, &required_kernelcore,
8077 &required_kernelcore_percent);
8078 }
8079
8080 /*
8081 * movablecore=size sets the amount of memory for use for allocations that
8082 * can be reclaimed or migrated.
8083 */
cmdline_parse_movablecore(char * p)8084 static int __init cmdline_parse_movablecore(char *p)
8085 {
8086 return cmdline_parse_core(p, &required_movablecore,
8087 &required_movablecore_percent);
8088 }
8089
8090 early_param("kernelcore", cmdline_parse_kernelcore);
8091 early_param("movablecore", cmdline_parse_movablecore);
8092
adjust_managed_page_count(struct page * page,long count)8093 void adjust_managed_page_count(struct page *page, long count)
8094 {
8095 atomic_long_add(count, &page_zone(page)->managed_pages);
8096 totalram_pages_add(count);
8097 #ifdef CONFIG_HIGHMEM
8098 if (PageHighMem(page))
8099 totalhigh_pages_add(count);
8100 #endif
8101 }
8102 EXPORT_SYMBOL(adjust_managed_page_count);
8103
free_reserved_area(void * start,void * end,int poison,const char * s)8104 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8105 {
8106 void *pos;
8107 unsigned long pages = 0;
8108
8109 start = (void *)PAGE_ALIGN((unsigned long)start);
8110 end = (void *)((unsigned long)end & PAGE_MASK);
8111 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8112 struct page *page = virt_to_page(pos);
8113 void *direct_map_addr;
8114
8115 /*
8116 * 'direct_map_addr' might be different from 'pos'
8117 * because some architectures' virt_to_page()
8118 * work with aliases. Getting the direct map
8119 * address ensures that we get a _writeable_
8120 * alias for the memset().
8121 */
8122 direct_map_addr = page_address(page);
8123 /*
8124 * Perform a kasan-unchecked memset() since this memory
8125 * has not been initialized.
8126 */
8127 direct_map_addr = kasan_reset_tag(direct_map_addr);
8128 if ((unsigned int)poison <= 0xFF)
8129 memset(direct_map_addr, poison, PAGE_SIZE);
8130
8131 free_reserved_page(page);
8132 }
8133
8134 if (pages && s)
8135 pr_info("Freeing %s memory: %ldK\n",
8136 s, pages << (PAGE_SHIFT - 10));
8137
8138 return pages;
8139 }
8140
mem_init_print_info(void)8141 void __init mem_init_print_info(void)
8142 {
8143 unsigned long physpages, codesize, datasize, rosize, bss_size;
8144 unsigned long init_code_size, init_data_size;
8145
8146 physpages = get_num_physpages();
8147 codesize = _etext - _stext;
8148 datasize = _edata - _sdata;
8149 rosize = __end_rodata - __start_rodata;
8150 bss_size = __bss_stop - __bss_start;
8151 init_data_size = __init_end - __init_begin;
8152 init_code_size = _einittext - _sinittext;
8153
8154 /*
8155 * Detect special cases and adjust section sizes accordingly:
8156 * 1) .init.* may be embedded into .data sections
8157 * 2) .init.text.* may be out of [__init_begin, __init_end],
8158 * please refer to arch/tile/kernel/vmlinux.lds.S.
8159 * 3) .rodata.* may be embedded into .text or .data sections.
8160 */
8161 #define adj_init_size(start, end, size, pos, adj) \
8162 do { \
8163 if (start <= pos && pos < end && size > adj) \
8164 size -= adj; \
8165 } while (0)
8166
8167 adj_init_size(__init_begin, __init_end, init_data_size,
8168 _sinittext, init_code_size);
8169 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8170 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8171 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8172 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8173
8174 #undef adj_init_size
8175
8176 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8177 #ifdef CONFIG_HIGHMEM
8178 ", %luK highmem"
8179 #endif
8180 ")\n",
8181 nr_free_pages() << (PAGE_SHIFT - 10),
8182 physpages << (PAGE_SHIFT - 10),
8183 codesize >> 10, datasize >> 10, rosize >> 10,
8184 (init_data_size + init_code_size) >> 10, bss_size >> 10,
8185 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8186 totalcma_pages << (PAGE_SHIFT - 10)
8187 #ifdef CONFIG_HIGHMEM
8188 , totalhigh_pages() << (PAGE_SHIFT - 10)
8189 #endif
8190 );
8191 }
8192
8193 /**
8194 * set_dma_reserve - set the specified number of pages reserved in the first zone
8195 * @new_dma_reserve: The number of pages to mark reserved
8196 *
8197 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8198 * In the DMA zone, a significant percentage may be consumed by kernel image
8199 * and other unfreeable allocations which can skew the watermarks badly. This
8200 * function may optionally be used to account for unfreeable pages in the
8201 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8202 * smaller per-cpu batchsize.
8203 */
set_dma_reserve(unsigned long new_dma_reserve)8204 void __init set_dma_reserve(unsigned long new_dma_reserve)
8205 {
8206 dma_reserve = new_dma_reserve;
8207 }
8208
page_alloc_cpu_dead(unsigned int cpu)8209 static int page_alloc_cpu_dead(unsigned int cpu)
8210 {
8211 struct zone *zone;
8212
8213 lru_add_drain_cpu(cpu);
8214 drain_pages(cpu);
8215
8216 /*
8217 * Spill the event counters of the dead processor
8218 * into the current processors event counters.
8219 * This artificially elevates the count of the current
8220 * processor.
8221 */
8222 vm_events_fold_cpu(cpu);
8223
8224 /*
8225 * Zero the differential counters of the dead processor
8226 * so that the vm statistics are consistent.
8227 *
8228 * This is only okay since the processor is dead and cannot
8229 * race with what we are doing.
8230 */
8231 cpu_vm_stats_fold(cpu);
8232
8233 for_each_populated_zone(zone)
8234 zone_pcp_update(zone, 0);
8235
8236 return 0;
8237 }
8238
page_alloc_cpu_online(unsigned int cpu)8239 static int page_alloc_cpu_online(unsigned int cpu)
8240 {
8241 struct zone *zone;
8242
8243 for_each_populated_zone(zone)
8244 zone_pcp_update(zone, 1);
8245 return 0;
8246 }
8247
8248 #ifdef CONFIG_NUMA
8249 int hashdist = HASHDIST_DEFAULT;
8250
set_hashdist(char * str)8251 static int __init set_hashdist(char *str)
8252 {
8253 if (!str)
8254 return 0;
8255 hashdist = simple_strtoul(str, &str, 0);
8256 return 1;
8257 }
8258 __setup("hashdist=", set_hashdist);
8259 #endif
8260
page_alloc_init(void)8261 void __init page_alloc_init(void)
8262 {
8263 int ret;
8264
8265 #ifdef CONFIG_NUMA
8266 if (num_node_state(N_MEMORY) == 1)
8267 hashdist = 0;
8268 #endif
8269
8270 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8271 "mm/page_alloc:pcp",
8272 page_alloc_cpu_online,
8273 page_alloc_cpu_dead);
8274 WARN_ON(ret < 0);
8275 }
8276
8277 /*
8278 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8279 * or min_free_kbytes changes.
8280 */
calculate_totalreserve_pages(void)8281 static void calculate_totalreserve_pages(void)
8282 {
8283 struct pglist_data *pgdat;
8284 unsigned long reserve_pages = 0;
8285 enum zone_type i, j;
8286
8287 for_each_online_pgdat(pgdat) {
8288
8289 pgdat->totalreserve_pages = 0;
8290
8291 for (i = 0; i < MAX_NR_ZONES; i++) {
8292 struct zone *zone = pgdat->node_zones + i;
8293 long max = 0;
8294 unsigned long managed_pages = zone_managed_pages(zone);
8295
8296 /* Find valid and maximum lowmem_reserve in the zone */
8297 for (j = i; j < MAX_NR_ZONES; j++) {
8298 if (zone->lowmem_reserve[j] > max)
8299 max = zone->lowmem_reserve[j];
8300 }
8301
8302 /* we treat the high watermark as reserved pages. */
8303 max += high_wmark_pages(zone);
8304
8305 if (max > managed_pages)
8306 max = managed_pages;
8307
8308 pgdat->totalreserve_pages += max;
8309
8310 reserve_pages += max;
8311 }
8312 }
8313 totalreserve_pages = reserve_pages;
8314 }
8315
8316 /*
8317 * setup_per_zone_lowmem_reserve - called whenever
8318 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
8319 * has a correct pages reserved value, so an adequate number of
8320 * pages are left in the zone after a successful __alloc_pages().
8321 */
setup_per_zone_lowmem_reserve(void)8322 static void setup_per_zone_lowmem_reserve(void)
8323 {
8324 struct pglist_data *pgdat;
8325 enum zone_type i, j;
8326
8327 for_each_online_pgdat(pgdat) {
8328 for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8329 struct zone *zone = &pgdat->node_zones[i];
8330 int ratio = sysctl_lowmem_reserve_ratio[i];
8331 bool clear = !ratio || !zone_managed_pages(zone);
8332 unsigned long managed_pages = 0;
8333
8334 for (j = i + 1; j < MAX_NR_ZONES; j++) {
8335 struct zone *upper_zone = &pgdat->node_zones[j];
8336
8337 managed_pages += zone_managed_pages(upper_zone);
8338
8339 if (clear)
8340 zone->lowmem_reserve[j] = 0;
8341 else
8342 zone->lowmem_reserve[j] = managed_pages / ratio;
8343 }
8344 }
8345 }
8346
8347 /* update totalreserve_pages */
8348 calculate_totalreserve_pages();
8349 }
8350
__setup_per_zone_wmarks(void)8351 static void __setup_per_zone_wmarks(void)
8352 {
8353 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8354 unsigned long lowmem_pages = 0;
8355 struct zone *zone;
8356 unsigned long flags;
8357
8358 /* Calculate total number of !ZONE_HIGHMEM pages */
8359 for_each_zone(zone) {
8360 if (!is_highmem(zone))
8361 lowmem_pages += zone_managed_pages(zone);
8362 }
8363
8364 for_each_zone(zone) {
8365 u64 tmp;
8366
8367 spin_lock_irqsave(&zone->lock, flags);
8368 tmp = (u64)pages_min * zone_managed_pages(zone);
8369 do_div(tmp, lowmem_pages);
8370 if (is_highmem(zone)) {
8371 /*
8372 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8373 * need highmem pages, so cap pages_min to a small
8374 * value here.
8375 *
8376 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8377 * deltas control async page reclaim, and so should
8378 * not be capped for highmem.
8379 */
8380 unsigned long min_pages;
8381
8382 min_pages = zone_managed_pages(zone) / 1024;
8383 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8384 zone->_watermark[WMARK_MIN] = min_pages;
8385 } else {
8386 /*
8387 * If it's a lowmem zone, reserve a number of pages
8388 * proportionate to the zone's size.
8389 */
8390 zone->_watermark[WMARK_MIN] = tmp;
8391 }
8392
8393 /*
8394 * Set the kswapd watermarks distance according to the
8395 * scale factor in proportion to available memory, but
8396 * ensure a minimum size on small systems.
8397 */
8398 tmp = max_t(u64, tmp >> 2,
8399 mult_frac(zone_managed_pages(zone),
8400 watermark_scale_factor, 10000));
8401
8402 zone->watermark_boost = 0;
8403 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
8404 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8405
8406 spin_unlock_irqrestore(&zone->lock, flags);
8407 }
8408
8409 /* update totalreserve_pages */
8410 calculate_totalreserve_pages();
8411 }
8412
8413 /**
8414 * setup_per_zone_wmarks - called when min_free_kbytes changes
8415 * or when memory is hot-{added|removed}
8416 *
8417 * Ensures that the watermark[min,low,high] values for each zone are set
8418 * correctly with respect to min_free_kbytes.
8419 */
setup_per_zone_wmarks(void)8420 void setup_per_zone_wmarks(void)
8421 {
8422 struct zone *zone;
8423 static DEFINE_SPINLOCK(lock);
8424
8425 spin_lock(&lock);
8426 __setup_per_zone_wmarks();
8427 spin_unlock(&lock);
8428
8429 /*
8430 * The watermark size have changed so update the pcpu batch
8431 * and high limits or the limits may be inappropriate.
8432 */
8433 for_each_zone(zone)
8434 zone_pcp_update(zone, 0);
8435 }
8436
8437 /*
8438 * Initialise min_free_kbytes.
8439 *
8440 * For small machines we want it small (128k min). For large machines
8441 * we want it large (256MB max). But it is not linear, because network
8442 * bandwidth does not increase linearly with machine size. We use
8443 *
8444 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8445 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
8446 *
8447 * which yields
8448 *
8449 * 16MB: 512k
8450 * 32MB: 724k
8451 * 64MB: 1024k
8452 * 128MB: 1448k
8453 * 256MB: 2048k
8454 * 512MB: 2896k
8455 * 1024MB: 4096k
8456 * 2048MB: 5792k
8457 * 4096MB: 8192k
8458 * 8192MB: 11584k
8459 * 16384MB: 16384k
8460 */
init_per_zone_wmark_min(void)8461 int __meminit init_per_zone_wmark_min(void)
8462 {
8463 unsigned long lowmem_kbytes;
8464 int new_min_free_kbytes;
8465
8466 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8467 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8468
8469 if (new_min_free_kbytes > user_min_free_kbytes) {
8470 min_free_kbytes = new_min_free_kbytes;
8471 if (min_free_kbytes < 128)
8472 min_free_kbytes = 128;
8473 if (min_free_kbytes > 262144)
8474 min_free_kbytes = 262144;
8475 } else {
8476 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8477 new_min_free_kbytes, user_min_free_kbytes);
8478 }
8479 setup_per_zone_wmarks();
8480 refresh_zone_stat_thresholds();
8481 setup_per_zone_lowmem_reserve();
8482
8483 #ifdef CONFIG_NUMA
8484 setup_min_unmapped_ratio();
8485 setup_min_slab_ratio();
8486 #endif
8487
8488 khugepaged_min_free_kbytes_update();
8489
8490 return 0;
8491 }
postcore_initcall(init_per_zone_wmark_min)8492 postcore_initcall(init_per_zone_wmark_min)
8493
8494 /*
8495 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8496 * that we can call two helper functions whenever min_free_kbytes
8497 * changes.
8498 */
8499 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8500 void *buffer, size_t *length, loff_t *ppos)
8501 {
8502 int rc;
8503
8504 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8505 if (rc)
8506 return rc;
8507
8508 if (write) {
8509 user_min_free_kbytes = min_free_kbytes;
8510 setup_per_zone_wmarks();
8511 }
8512 return 0;
8513 }
8514
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8515 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8516 void *buffer, size_t *length, loff_t *ppos)
8517 {
8518 int rc;
8519
8520 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8521 if (rc)
8522 return rc;
8523
8524 if (write)
8525 setup_per_zone_wmarks();
8526
8527 return 0;
8528 }
8529
8530 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8531 static void setup_min_unmapped_ratio(void)
8532 {
8533 pg_data_t *pgdat;
8534 struct zone *zone;
8535
8536 for_each_online_pgdat(pgdat)
8537 pgdat->min_unmapped_pages = 0;
8538
8539 for_each_zone(zone)
8540 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8541 sysctl_min_unmapped_ratio) / 100;
8542 }
8543
8544
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8545 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8546 void *buffer, size_t *length, loff_t *ppos)
8547 {
8548 int rc;
8549
8550 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8551 if (rc)
8552 return rc;
8553
8554 setup_min_unmapped_ratio();
8555
8556 return 0;
8557 }
8558
setup_min_slab_ratio(void)8559 static void setup_min_slab_ratio(void)
8560 {
8561 pg_data_t *pgdat;
8562 struct zone *zone;
8563
8564 for_each_online_pgdat(pgdat)
8565 pgdat->min_slab_pages = 0;
8566
8567 for_each_zone(zone)
8568 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8569 sysctl_min_slab_ratio) / 100;
8570 }
8571
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8572 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8573 void *buffer, size_t *length, loff_t *ppos)
8574 {
8575 int rc;
8576
8577 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8578 if (rc)
8579 return rc;
8580
8581 setup_min_slab_ratio();
8582
8583 return 0;
8584 }
8585 #endif
8586
8587 /*
8588 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8589 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8590 * whenever sysctl_lowmem_reserve_ratio changes.
8591 *
8592 * The reserve ratio obviously has absolutely no relation with the
8593 * minimum watermarks. The lowmem reserve ratio can only make sense
8594 * if in function of the boot time zone sizes.
8595 */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8596 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8597 void *buffer, size_t *length, loff_t *ppos)
8598 {
8599 int i;
8600
8601 proc_dointvec_minmax(table, write, buffer, length, ppos);
8602
8603 for (i = 0; i < MAX_NR_ZONES; i++) {
8604 if (sysctl_lowmem_reserve_ratio[i] < 1)
8605 sysctl_lowmem_reserve_ratio[i] = 0;
8606 }
8607
8608 setup_per_zone_lowmem_reserve();
8609 return 0;
8610 }
8611
8612 /*
8613 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8614 * cpu. It is the fraction of total pages in each zone that a hot per cpu
8615 * pagelist can have before it gets flushed back to buddy allocator.
8616 */
percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8617 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8618 int write, void *buffer, size_t *length, loff_t *ppos)
8619 {
8620 struct zone *zone;
8621 int old_percpu_pagelist_high_fraction;
8622 int ret;
8623
8624 mutex_lock(&pcp_batch_high_lock);
8625 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8626
8627 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8628 if (!write || ret < 0)
8629 goto out;
8630
8631 /* Sanity checking to avoid pcp imbalance */
8632 if (percpu_pagelist_high_fraction &&
8633 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8634 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8635 ret = -EINVAL;
8636 goto out;
8637 }
8638
8639 /* No change? */
8640 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8641 goto out;
8642
8643 for_each_populated_zone(zone)
8644 zone_set_pageset_high_and_batch(zone, 0);
8645 out:
8646 mutex_unlock(&pcp_batch_high_lock);
8647 return ret;
8648 }
8649
8650 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8651 /*
8652 * Returns the number of pages that arch has reserved but
8653 * is not known to alloc_large_system_hash().
8654 */
arch_reserved_kernel_pages(void)8655 static unsigned long __init arch_reserved_kernel_pages(void)
8656 {
8657 return 0;
8658 }
8659 #endif
8660
8661 /*
8662 * Adaptive scale is meant to reduce sizes of hash tables on large memory
8663 * machines. As memory size is increased the scale is also increased but at
8664 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
8665 * quadruples the scale is increased by one, which means the size of hash table
8666 * only doubles, instead of quadrupling as well.
8667 * Because 32-bit systems cannot have large physical memory, where this scaling
8668 * makes sense, it is disabled on such platforms.
8669 */
8670 #if __BITS_PER_LONG > 32
8671 #define ADAPT_SCALE_BASE (64ul << 30)
8672 #define ADAPT_SCALE_SHIFT 2
8673 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
8674 #endif
8675
8676 /*
8677 * allocate a large system hash table from bootmem
8678 * - it is assumed that the hash table must contain an exact power-of-2
8679 * quantity of entries
8680 * - limit is the number of hash buckets, not the total allocation size
8681 */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8682 void *__init alloc_large_system_hash(const char *tablename,
8683 unsigned long bucketsize,
8684 unsigned long numentries,
8685 int scale,
8686 int flags,
8687 unsigned int *_hash_shift,
8688 unsigned int *_hash_mask,
8689 unsigned long low_limit,
8690 unsigned long high_limit)
8691 {
8692 unsigned long long max = high_limit;
8693 unsigned long log2qty, size;
8694 void *table = NULL;
8695 gfp_t gfp_flags;
8696 bool virt;
8697 bool huge;
8698
8699 /* allow the kernel cmdline to have a say */
8700 if (!numentries) {
8701 /* round applicable memory size up to nearest megabyte */
8702 numentries = nr_kernel_pages;
8703 numentries -= arch_reserved_kernel_pages();
8704
8705 /* It isn't necessary when PAGE_SIZE >= 1MB */
8706 if (PAGE_SHIFT < 20)
8707 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8708
8709 #if __BITS_PER_LONG > 32
8710 if (!high_limit) {
8711 unsigned long adapt;
8712
8713 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8714 adapt <<= ADAPT_SCALE_SHIFT)
8715 scale++;
8716 }
8717 #endif
8718
8719 /* limit to 1 bucket per 2^scale bytes of low memory */
8720 if (scale > PAGE_SHIFT)
8721 numentries >>= (scale - PAGE_SHIFT);
8722 else
8723 numentries <<= (PAGE_SHIFT - scale);
8724
8725 /* Make sure we've got at least a 0-order allocation.. */
8726 if (unlikely(flags & HASH_SMALL)) {
8727 /* Makes no sense without HASH_EARLY */
8728 WARN_ON(!(flags & HASH_EARLY));
8729 if (!(numentries >> *_hash_shift)) {
8730 numentries = 1UL << *_hash_shift;
8731 BUG_ON(!numentries);
8732 }
8733 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8734 numentries = PAGE_SIZE / bucketsize;
8735 }
8736 numentries = roundup_pow_of_two(numentries);
8737
8738 /* limit allocation size to 1/16 total memory by default */
8739 if (max == 0) {
8740 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8741 do_div(max, bucketsize);
8742 }
8743 max = min(max, 0x80000000ULL);
8744
8745 if (numentries < low_limit)
8746 numentries = low_limit;
8747 if (numentries > max)
8748 numentries = max;
8749
8750 log2qty = ilog2(numentries);
8751
8752 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8753 do {
8754 virt = false;
8755 size = bucketsize << log2qty;
8756 if (flags & HASH_EARLY) {
8757 if (flags & HASH_ZERO)
8758 table = memblock_alloc(size, SMP_CACHE_BYTES);
8759 else
8760 table = memblock_alloc_raw(size,
8761 SMP_CACHE_BYTES);
8762 } else if (get_order(size) >= MAX_ORDER || hashdist) {
8763 table = __vmalloc(size, gfp_flags);
8764 virt = true;
8765 huge = is_vm_area_hugepages(table);
8766 } else {
8767 /*
8768 * If bucketsize is not a power-of-two, we may free
8769 * some pages at the end of hash table which
8770 * alloc_pages_exact() automatically does
8771 */
8772 table = alloc_pages_exact(size, gfp_flags);
8773 kmemleak_alloc(table, size, 1, gfp_flags);
8774 }
8775 } while (!table && size > PAGE_SIZE && --log2qty);
8776
8777 if (!table)
8778 panic("Failed to allocate %s hash table\n", tablename);
8779
8780 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8781 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8782 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8783
8784 if (_hash_shift)
8785 *_hash_shift = log2qty;
8786 if (_hash_mask)
8787 *_hash_mask = (1 << log2qty) - 1;
8788
8789 return table;
8790 }
8791
8792 /*
8793 * This function checks whether pageblock includes unmovable pages or not.
8794 *
8795 * PageLRU check without isolation or lru_lock could race so that
8796 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8797 * check without lock_page also may miss some movable non-lru pages at
8798 * race condition. So you can't expect this function should be exact.
8799 *
8800 * Returns a page without holding a reference. If the caller wants to
8801 * dereference that page (e.g., dumping), it has to make sure that it
8802 * cannot get removed (e.g., via memory unplug) concurrently.
8803 *
8804 */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8805 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8806 int migratetype, int flags)
8807 {
8808 unsigned long iter = 0;
8809 unsigned long pfn = page_to_pfn(page);
8810 unsigned long offset = pfn % pageblock_nr_pages;
8811
8812 if (is_migrate_cma_page(page)) {
8813 /*
8814 * CMA allocations (alloc_contig_range) really need to mark
8815 * isolate CMA pageblocks even when they are not movable in fact
8816 * so consider them movable here.
8817 */
8818 if (is_migrate_cma(migratetype))
8819 return NULL;
8820
8821 return page;
8822 }
8823
8824 for (; iter < pageblock_nr_pages - offset; iter++) {
8825 page = pfn_to_page(pfn + iter);
8826
8827 /*
8828 * Both, bootmem allocations and memory holes are marked
8829 * PG_reserved and are unmovable. We can even have unmovable
8830 * allocations inside ZONE_MOVABLE, for example when
8831 * specifying "movablecore".
8832 */
8833 if (PageReserved(page))
8834 return page;
8835
8836 /*
8837 * If the zone is movable and we have ruled out all reserved
8838 * pages then it should be reasonably safe to assume the rest
8839 * is movable.
8840 */
8841 if (zone_idx(zone) == ZONE_MOVABLE)
8842 continue;
8843
8844 /*
8845 * Hugepages are not in LRU lists, but they're movable.
8846 * THPs are on the LRU, but need to be counted as #small pages.
8847 * We need not scan over tail pages because we don't
8848 * handle each tail page individually in migration.
8849 */
8850 if (PageHuge(page) || PageTransCompound(page)) {
8851 struct page *head = compound_head(page);
8852 unsigned int skip_pages;
8853
8854 if (PageHuge(page)) {
8855 if (!hugepage_migration_supported(page_hstate(head)))
8856 return page;
8857 } else if (!PageLRU(head) && !__PageMovable(head)) {
8858 return page;
8859 }
8860
8861 skip_pages = compound_nr(head) - (page - head);
8862 iter += skip_pages - 1;
8863 continue;
8864 }
8865
8866 /*
8867 * We can't use page_count without pin a page
8868 * because another CPU can free compound page.
8869 * This check already skips compound tails of THP
8870 * because their page->_refcount is zero at all time.
8871 */
8872 if (!page_ref_count(page)) {
8873 if (PageBuddy(page))
8874 iter += (1 << buddy_order(page)) - 1;
8875 continue;
8876 }
8877
8878 /*
8879 * The HWPoisoned page may be not in buddy system, and
8880 * page_count() is not 0.
8881 */
8882 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8883 continue;
8884
8885 /*
8886 * We treat all PageOffline() pages as movable when offlining
8887 * to give drivers a chance to decrement their reference count
8888 * in MEM_GOING_OFFLINE in order to indicate that these pages
8889 * can be offlined as there are no direct references anymore.
8890 * For actually unmovable PageOffline() where the driver does
8891 * not support this, we will fail later when trying to actually
8892 * move these pages that still have a reference count > 0.
8893 * (false negatives in this function only)
8894 */
8895 if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8896 continue;
8897
8898 if (__PageMovable(page) || PageLRU(page))
8899 continue;
8900
8901 /*
8902 * If there are RECLAIMABLE pages, we need to check
8903 * it. But now, memory offline itself doesn't call
8904 * shrink_node_slabs() and it still to be fixed.
8905 */
8906 return page;
8907 }
8908 return NULL;
8909 }
8910
8911 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8912 static unsigned long pfn_max_align_down(unsigned long pfn)
8913 {
8914 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8915 pageblock_nr_pages) - 1);
8916 }
8917
pfn_max_align_up(unsigned long pfn)8918 static unsigned long pfn_max_align_up(unsigned long pfn)
8919 {
8920 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8921 pageblock_nr_pages));
8922 }
8923
8924 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8925 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8926 /* Usage: See admin-guide/dynamic-debug-howto.rst */
alloc_contig_dump_pages(struct list_head * page_list)8927 static void alloc_contig_dump_pages(struct list_head *page_list)
8928 {
8929 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8930
8931 if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8932 struct page *page;
8933
8934 dump_stack();
8935 list_for_each_entry(page, page_list, lru)
8936 dump_page(page, "migration failure");
8937 }
8938 }
8939 #else
alloc_contig_dump_pages(struct list_head * page_list)8940 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8941 {
8942 }
8943 #endif
8944
8945 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8946 static int __alloc_contig_migrate_range(struct compact_control *cc,
8947 unsigned long start, unsigned long end)
8948 {
8949 /* This function is based on compact_zone() from compaction.c. */
8950 unsigned int nr_reclaimed;
8951 unsigned long pfn = start;
8952 unsigned int tries = 0;
8953 int ret = 0;
8954 struct migration_target_control mtc = {
8955 .nid = zone_to_nid(cc->zone),
8956 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8957 };
8958
8959 lru_cache_disable();
8960
8961 while (pfn < end || !list_empty(&cc->migratepages)) {
8962 if (fatal_signal_pending(current)) {
8963 ret = -EINTR;
8964 break;
8965 }
8966
8967 if (list_empty(&cc->migratepages)) {
8968 cc->nr_migratepages = 0;
8969 ret = isolate_migratepages_range(cc, pfn, end);
8970 if (ret && ret != -EAGAIN)
8971 break;
8972 pfn = cc->migrate_pfn;
8973 tries = 0;
8974 } else if (++tries == 5) {
8975 ret = -EBUSY;
8976 break;
8977 }
8978
8979 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8980 &cc->migratepages);
8981 cc->nr_migratepages -= nr_reclaimed;
8982
8983 ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8984 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL);
8985
8986 /*
8987 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8988 * to retry again over this error, so do the same here.
8989 */
8990 if (ret == -ENOMEM)
8991 break;
8992 }
8993
8994 lru_cache_enable();
8995 if (ret < 0) {
8996 if (ret == -EBUSY)
8997 alloc_contig_dump_pages(&cc->migratepages);
8998 putback_movable_pages(&cc->migratepages);
8999 return ret;
9000 }
9001 return 0;
9002 }
9003
9004 /**
9005 * alloc_contig_range() -- tries to allocate given range of pages
9006 * @start: start PFN to allocate
9007 * @end: one-past-the-last PFN to allocate
9008 * @migratetype: migratetype of the underlying pageblocks (either
9009 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
9010 * in range must have the same migratetype and it must
9011 * be either of the two.
9012 * @gfp_mask: GFP mask to use during compaction
9013 *
9014 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9015 * aligned. The PFN range must belong to a single zone.
9016 *
9017 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9018 * pageblocks in the range. Once isolated, the pageblocks should not
9019 * be modified by others.
9020 *
9021 * Return: zero on success or negative error code. On success all
9022 * pages which PFN is in [start, end) are allocated for the caller and
9023 * need to be freed with free_contig_range().
9024 */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)9025 int alloc_contig_range(unsigned long start, unsigned long end,
9026 unsigned migratetype, gfp_t gfp_mask)
9027 {
9028 unsigned long outer_start, outer_end;
9029 unsigned int order;
9030 int ret = 0;
9031
9032 struct compact_control cc = {
9033 .nr_migratepages = 0,
9034 .order = -1,
9035 .zone = page_zone(pfn_to_page(start)),
9036 .mode = MIGRATE_SYNC,
9037 .ignore_skip_hint = true,
9038 .no_set_skip_hint = true,
9039 .gfp_mask = current_gfp_context(gfp_mask),
9040 .alloc_contig = true,
9041 };
9042 INIT_LIST_HEAD(&cc.migratepages);
9043
9044 /*
9045 * What we do here is we mark all pageblocks in range as
9046 * MIGRATE_ISOLATE. Because pageblock and max order pages may
9047 * have different sizes, and due to the way page allocator
9048 * work, we align the range to biggest of the two pages so
9049 * that page allocator won't try to merge buddies from
9050 * different pageblocks and change MIGRATE_ISOLATE to some
9051 * other migration type.
9052 *
9053 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9054 * migrate the pages from an unaligned range (ie. pages that
9055 * we are interested in). This will put all the pages in
9056 * range back to page allocator as MIGRATE_ISOLATE.
9057 *
9058 * When this is done, we take the pages in range from page
9059 * allocator removing them from the buddy system. This way
9060 * page allocator will never consider using them.
9061 *
9062 * This lets us mark the pageblocks back as
9063 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9064 * aligned range but not in the unaligned, original range are
9065 * put back to page allocator so that buddy can use them.
9066 */
9067
9068 ret = start_isolate_page_range(pfn_max_align_down(start),
9069 pfn_max_align_up(end), migratetype, 0);
9070 if (ret)
9071 return ret;
9072
9073 drain_all_pages(cc.zone);
9074
9075 /*
9076 * In case of -EBUSY, we'd like to know which page causes problem.
9077 * So, just fall through. test_pages_isolated() has a tracepoint
9078 * which will report the busy page.
9079 *
9080 * It is possible that busy pages could become available before
9081 * the call to test_pages_isolated, and the range will actually be
9082 * allocated. So, if we fall through be sure to clear ret so that
9083 * -EBUSY is not accidentally used or returned to caller.
9084 */
9085 ret = __alloc_contig_migrate_range(&cc, start, end);
9086 if (ret && ret != -EBUSY)
9087 goto done;
9088 ret = 0;
9089
9090 /*
9091 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9092 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
9093 * more, all pages in [start, end) are free in page allocator.
9094 * What we are going to do is to allocate all pages from
9095 * [start, end) (that is remove them from page allocator).
9096 *
9097 * The only problem is that pages at the beginning and at the
9098 * end of interesting range may be not aligned with pages that
9099 * page allocator holds, ie. they can be part of higher order
9100 * pages. Because of this, we reserve the bigger range and
9101 * once this is done free the pages we are not interested in.
9102 *
9103 * We don't have to hold zone->lock here because the pages are
9104 * isolated thus they won't get removed from buddy.
9105 */
9106
9107 order = 0;
9108 outer_start = start;
9109 while (!PageBuddy(pfn_to_page(outer_start))) {
9110 if (++order >= MAX_ORDER) {
9111 outer_start = start;
9112 break;
9113 }
9114 outer_start &= ~0UL << order;
9115 }
9116
9117 if (outer_start != start) {
9118 order = buddy_order(pfn_to_page(outer_start));
9119
9120 /*
9121 * outer_start page could be small order buddy page and
9122 * it doesn't include start page. Adjust outer_start
9123 * in this case to report failed page properly
9124 * on tracepoint in test_pages_isolated()
9125 */
9126 if (outer_start + (1UL << order) <= start)
9127 outer_start = start;
9128 }
9129
9130 /* Make sure the range is really isolated. */
9131 if (test_pages_isolated(outer_start, end, 0)) {
9132 ret = -EBUSY;
9133 goto done;
9134 }
9135
9136 /* Grab isolated pages from freelists. */
9137 outer_end = isolate_freepages_range(&cc, outer_start, end);
9138 if (!outer_end) {
9139 ret = -EBUSY;
9140 goto done;
9141 }
9142
9143 /* Free head and tail (if any) */
9144 if (start != outer_start)
9145 free_contig_range(outer_start, start - outer_start);
9146 if (end != outer_end)
9147 free_contig_range(end, outer_end - end);
9148
9149 done:
9150 undo_isolate_page_range(pfn_max_align_down(start),
9151 pfn_max_align_up(end), migratetype);
9152 return ret;
9153 }
9154 EXPORT_SYMBOL(alloc_contig_range);
9155
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)9156 static int __alloc_contig_pages(unsigned long start_pfn,
9157 unsigned long nr_pages, gfp_t gfp_mask)
9158 {
9159 unsigned long end_pfn = start_pfn + nr_pages;
9160
9161 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9162 gfp_mask);
9163 }
9164
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)9165 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9166 unsigned long nr_pages)
9167 {
9168 unsigned long i, end_pfn = start_pfn + nr_pages;
9169 struct page *page;
9170
9171 for (i = start_pfn; i < end_pfn; i++) {
9172 page = pfn_to_online_page(i);
9173 if (!page)
9174 return false;
9175
9176 if (page_zone(page) != z)
9177 return false;
9178
9179 if (PageReserved(page))
9180 return false;
9181 }
9182 return true;
9183 }
9184
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)9185 static bool zone_spans_last_pfn(const struct zone *zone,
9186 unsigned long start_pfn, unsigned long nr_pages)
9187 {
9188 unsigned long last_pfn = start_pfn + nr_pages - 1;
9189
9190 return zone_spans_pfn(zone, last_pfn);
9191 }
9192
9193 /**
9194 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9195 * @nr_pages: Number of contiguous pages to allocate
9196 * @gfp_mask: GFP mask to limit search and used during compaction
9197 * @nid: Target node
9198 * @nodemask: Mask for other possible nodes
9199 *
9200 * This routine is a wrapper around alloc_contig_range(). It scans over zones
9201 * on an applicable zonelist to find a contiguous pfn range which can then be
9202 * tried for allocation with alloc_contig_range(). This routine is intended
9203 * for allocation requests which can not be fulfilled with the buddy allocator.
9204 *
9205 * The allocated memory is always aligned to a page boundary. If nr_pages is a
9206 * power of two then the alignment is guaranteed to be to the given nr_pages
9207 * (e.g. 1GB request would be aligned to 1GB).
9208 *
9209 * Allocated pages can be freed with free_contig_range() or by manually calling
9210 * __free_page() on each allocated page.
9211 *
9212 * Return: pointer to contiguous pages on success, or NULL if not successful.
9213 */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)9214 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9215 int nid, nodemask_t *nodemask)
9216 {
9217 unsigned long ret, pfn, flags;
9218 struct zonelist *zonelist;
9219 struct zone *zone;
9220 struct zoneref *z;
9221
9222 zonelist = node_zonelist(nid, gfp_mask);
9223 for_each_zone_zonelist_nodemask(zone, z, zonelist,
9224 gfp_zone(gfp_mask), nodemask) {
9225 spin_lock_irqsave(&zone->lock, flags);
9226
9227 pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9228 while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9229 if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9230 /*
9231 * We release the zone lock here because
9232 * alloc_contig_range() will also lock the zone
9233 * at some point. If there's an allocation
9234 * spinning on this lock, it may win the race
9235 * and cause alloc_contig_range() to fail...
9236 */
9237 spin_unlock_irqrestore(&zone->lock, flags);
9238 ret = __alloc_contig_pages(pfn, nr_pages,
9239 gfp_mask);
9240 if (!ret)
9241 return pfn_to_page(pfn);
9242 spin_lock_irqsave(&zone->lock, flags);
9243 }
9244 pfn += nr_pages;
9245 }
9246 spin_unlock_irqrestore(&zone->lock, flags);
9247 }
9248 return NULL;
9249 }
9250 #endif /* CONFIG_CONTIG_ALLOC */
9251
free_contig_range(unsigned long pfn,unsigned long nr_pages)9252 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9253 {
9254 unsigned long count = 0;
9255
9256 for (; nr_pages--; pfn++) {
9257 struct page *page = pfn_to_page(pfn);
9258
9259 count += page_count(page) != 1;
9260 __free_page(page);
9261 }
9262 WARN(count != 0, "%lu pages are still in use!\n", count);
9263 }
9264 EXPORT_SYMBOL(free_contig_range);
9265
9266 /*
9267 * The zone indicated has a new number of managed_pages; batch sizes and percpu
9268 * page high values need to be recalculated.
9269 */
zone_pcp_update(struct zone * zone,int cpu_online)9270 void zone_pcp_update(struct zone *zone, int cpu_online)
9271 {
9272 mutex_lock(&pcp_batch_high_lock);
9273 zone_set_pageset_high_and_batch(zone, cpu_online);
9274 mutex_unlock(&pcp_batch_high_lock);
9275 }
9276
9277 /*
9278 * Effectively disable pcplists for the zone by setting the high limit to 0
9279 * and draining all cpus. A concurrent page freeing on another CPU that's about
9280 * to put the page on pcplist will either finish before the drain and the page
9281 * will be drained, or observe the new high limit and skip the pcplist.
9282 *
9283 * Must be paired with a call to zone_pcp_enable().
9284 */
zone_pcp_disable(struct zone * zone)9285 void zone_pcp_disable(struct zone *zone)
9286 {
9287 mutex_lock(&pcp_batch_high_lock);
9288 __zone_set_pageset_high_and_batch(zone, 0, 1);
9289 __drain_all_pages(zone, true);
9290 }
9291
zone_pcp_enable(struct zone * zone)9292 void zone_pcp_enable(struct zone *zone)
9293 {
9294 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9295 mutex_unlock(&pcp_batch_high_lock);
9296 }
9297
zone_pcp_reset(struct zone * zone)9298 void zone_pcp_reset(struct zone *zone)
9299 {
9300 int cpu;
9301 struct per_cpu_zonestat *pzstats;
9302
9303 if (zone->per_cpu_pageset != &boot_pageset) {
9304 for_each_online_cpu(cpu) {
9305 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9306 drain_zonestat(zone, pzstats);
9307 }
9308 free_percpu(zone->per_cpu_pageset);
9309 free_percpu(zone->per_cpu_zonestats);
9310 zone->per_cpu_pageset = &boot_pageset;
9311 zone->per_cpu_zonestats = &boot_zonestats;
9312 }
9313 }
9314
9315 #ifdef CONFIG_MEMORY_HOTREMOVE
9316 /*
9317 * All pages in the range must be in a single zone, must not contain holes,
9318 * must span full sections, and must be isolated before calling this function.
9319 */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)9320 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9321 {
9322 unsigned long pfn = start_pfn;
9323 struct page *page;
9324 struct zone *zone;
9325 unsigned int order;
9326 unsigned long flags;
9327
9328 offline_mem_sections(pfn, end_pfn);
9329 zone = page_zone(pfn_to_page(pfn));
9330 spin_lock_irqsave(&zone->lock, flags);
9331 while (pfn < end_pfn) {
9332 page = pfn_to_page(pfn);
9333 /*
9334 * The HWPoisoned page may be not in buddy system, and
9335 * page_count() is not 0.
9336 */
9337 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9338 pfn++;
9339 continue;
9340 }
9341 /*
9342 * At this point all remaining PageOffline() pages have a
9343 * reference count of 0 and can simply be skipped.
9344 */
9345 if (PageOffline(page)) {
9346 BUG_ON(page_count(page));
9347 BUG_ON(PageBuddy(page));
9348 pfn++;
9349 continue;
9350 }
9351
9352 BUG_ON(page_count(page));
9353 BUG_ON(!PageBuddy(page));
9354 order = buddy_order(page);
9355 del_page_from_free_list(page, zone, order);
9356 pfn += (1 << order);
9357 }
9358 spin_unlock_irqrestore(&zone->lock, flags);
9359 }
9360 #endif
9361
is_free_buddy_page(struct page * page)9362 bool is_free_buddy_page(struct page *page)
9363 {
9364 struct zone *zone = page_zone(page);
9365 unsigned long pfn = page_to_pfn(page);
9366 unsigned long flags;
9367 unsigned int order;
9368
9369 spin_lock_irqsave(&zone->lock, flags);
9370 for (order = 0; order < MAX_ORDER; order++) {
9371 struct page *page_head = page - (pfn & ((1 << order) - 1));
9372
9373 if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9374 break;
9375 }
9376 spin_unlock_irqrestore(&zone->lock, flags);
9377
9378 return order < MAX_ORDER;
9379 }
9380
9381 #ifdef CONFIG_MEMORY_FAILURE
9382 /*
9383 * Break down a higher-order page in sub-pages, and keep our target out of
9384 * buddy allocator.
9385 */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9386 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9387 struct page *target, int low, int high,
9388 int migratetype)
9389 {
9390 unsigned long size = 1 << high;
9391 struct page *current_buddy, *next_page;
9392
9393 while (high > low) {
9394 high--;
9395 size >>= 1;
9396
9397 if (target >= &page[size]) {
9398 next_page = page + size;
9399 current_buddy = page;
9400 } else {
9401 next_page = page;
9402 current_buddy = page + size;
9403 }
9404
9405 if (set_page_guard(zone, current_buddy, high, migratetype))
9406 continue;
9407
9408 if (current_buddy != target) {
9409 add_to_free_list(current_buddy, zone, high, migratetype);
9410 set_buddy_order(current_buddy, high);
9411 page = next_page;
9412 }
9413 }
9414 }
9415
9416 /*
9417 * Take a page that will be marked as poisoned off the buddy allocator.
9418 */
take_page_off_buddy(struct page * page)9419 bool take_page_off_buddy(struct page *page)
9420 {
9421 struct zone *zone = page_zone(page);
9422 unsigned long pfn = page_to_pfn(page);
9423 unsigned long flags;
9424 unsigned int order;
9425 bool ret = false;
9426
9427 spin_lock_irqsave(&zone->lock, flags);
9428 for (order = 0; order < MAX_ORDER; order++) {
9429 struct page *page_head = page - (pfn & ((1 << order) - 1));
9430 int page_order = buddy_order(page_head);
9431
9432 if (PageBuddy(page_head) && page_order >= order) {
9433 unsigned long pfn_head = page_to_pfn(page_head);
9434 int migratetype = get_pfnblock_migratetype(page_head,
9435 pfn_head);
9436
9437 del_page_from_free_list(page_head, zone, page_order);
9438 break_down_buddy_pages(zone, page_head, page, 0,
9439 page_order, migratetype);
9440 if (!is_migrate_isolate(migratetype))
9441 __mod_zone_freepage_state(zone, -1, migratetype);
9442 ret = true;
9443 break;
9444 }
9445 if (page_count(page_head) > 0)
9446 break;
9447 }
9448 spin_unlock_irqrestore(&zone->lock, flags);
9449 return ret;
9450 }
9451 #endif
9452