1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
10 *
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
14 *
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
19 */
20
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/sched/debug.h>
30 #include <linux/swap.h>
31 #include <linux/syscalls.h>
32 #include <linux/timex.h>
33 #include <linux/jiffies.h>
34 #include <linux/cpuset.h>
35 #include <linux/export.h>
36 #include <linux/notifier.h>
37 #include <linux/memcontrol.h>
38 #include <linux/mempolicy.h>
39 #include <linux/security.h>
40 #include <linux/ptrace.h>
41 #include <linux/freezer.h>
42 #include <linux/ftrace.h>
43 #include <linux/ratelimit.h>
44 #include <linux/kthread.h>
45 #include <linux/init.h>
46 #include <linux/mmu_notifier.h>
47
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
51
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
54
55 int sysctl_panic_on_oom;
56 int sysctl_oom_kill_allocating_task;
57 int sysctl_oom_dump_tasks = 1;
58
59 /*
60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
62 * from different domains).
63 *
64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 * and mark_oom_victim
66 */
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
70
is_memcg_oom(struct oom_control * oc)71 static inline bool is_memcg_oom(struct oom_control *oc)
72 {
73 return oc->memcg != NULL;
74 }
75
76 #ifdef CONFIG_NUMA
77 /**
78 * oom_cpuset_eligible() - check task eligibility for kill
79 * @start: task struct of which task to consider
80 * @oc: pointer to struct oom_control
81 *
82 * Task eligibility is determined by whether or not a candidate task, @tsk,
83 * shares the same mempolicy nodes as current if it is bound by such a policy
84 * and whether or not it has the same set of allowed cpuset nodes.
85 *
86 * This function is assuming oom-killer context and 'current' has triggered
87 * the oom-killer.
88 */
oom_cpuset_eligible(struct task_struct * start,struct oom_control * oc)89 static bool oom_cpuset_eligible(struct task_struct *start,
90 struct oom_control *oc)
91 {
92 struct task_struct *tsk;
93 bool ret = false;
94 const nodemask_t *mask = oc->nodemask;
95
96 if (is_memcg_oom(oc))
97 return true;
98
99 rcu_read_lock();
100 for_each_thread(start, tsk) {
101 if (mask) {
102 /*
103 * If this is a mempolicy constrained oom, tsk's
104 * cpuset is irrelevant. Only return true if its
105 * mempolicy intersects current, otherwise it may be
106 * needlessly killed.
107 */
108 ret = mempolicy_in_oom_domain(tsk, mask);
109 } else {
110 /*
111 * This is not a mempolicy constrained oom, so only
112 * check the mems of tsk's cpuset.
113 */
114 ret = cpuset_mems_allowed_intersects(current, tsk);
115 }
116 if (ret)
117 break;
118 }
119 rcu_read_unlock();
120
121 return ret;
122 }
123 #else
oom_cpuset_eligible(struct task_struct * tsk,struct oom_control * oc)124 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
125 {
126 return true;
127 }
128 #endif /* CONFIG_NUMA */
129
130 /*
131 * The process p may have detached its own ->mm while exiting or through
132 * kthread_use_mm(), but one or more of its subthreads may still have a valid
133 * pointer. Return p, or any of its subthreads with a valid ->mm, with
134 * task_lock() held.
135 */
find_lock_task_mm(struct task_struct * p)136 struct task_struct *find_lock_task_mm(struct task_struct *p)
137 {
138 struct task_struct *t;
139
140 rcu_read_lock();
141
142 for_each_thread(p, t) {
143 task_lock(t);
144 if (likely(t->mm))
145 goto found;
146 task_unlock(t);
147 }
148 t = NULL;
149 found:
150 rcu_read_unlock();
151
152 return t;
153 }
154
155 /*
156 * order == -1 means the oom kill is required by sysrq, otherwise only
157 * for display purposes.
158 */
is_sysrq_oom(struct oom_control * oc)159 static inline bool is_sysrq_oom(struct oom_control *oc)
160 {
161 return oc->order == -1;
162 }
163
164 /* return true if the task is not adequate as candidate victim task. */
oom_unkillable_task(struct task_struct * p)165 static bool oom_unkillable_task(struct task_struct *p)
166 {
167 if (is_global_init(p))
168 return true;
169 if (p->flags & PF_KTHREAD)
170 return true;
171 return false;
172 }
173
174 /*
175 * Check whether unreclaimable slab amount is greater than
176 * all user memory(LRU pages).
177 * dump_unreclaimable_slab() could help in the case that
178 * oom due to too much unreclaimable slab used by kernel.
179 */
should_dump_unreclaim_slab(void)180 static bool should_dump_unreclaim_slab(void)
181 {
182 unsigned long nr_lru;
183
184 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
185 global_node_page_state(NR_INACTIVE_ANON) +
186 global_node_page_state(NR_ACTIVE_FILE) +
187 global_node_page_state(NR_INACTIVE_FILE) +
188 global_node_page_state(NR_ISOLATED_ANON) +
189 global_node_page_state(NR_ISOLATED_FILE) +
190 global_node_page_state(NR_UNEVICTABLE);
191
192 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
193 }
194
195 /**
196 * oom_badness - heuristic function to determine which candidate task to kill
197 * @p: task struct of which task we should calculate
198 * @totalpages: total present RAM allowed for page allocation
199 *
200 * The heuristic for determining which task to kill is made to be as simple and
201 * predictable as possible. The goal is to return the highest value for the
202 * task consuming the most memory to avoid subsequent oom failures.
203 */
oom_badness(struct task_struct * p,unsigned long totalpages)204 long oom_badness(struct task_struct *p, unsigned long totalpages)
205 {
206 long points;
207 long adj;
208
209 if (oom_unkillable_task(p))
210 return LONG_MIN;
211
212 p = find_lock_task_mm(p);
213 if (!p)
214 return LONG_MIN;
215
216 /*
217 * Do not even consider tasks which are explicitly marked oom
218 * unkillable or have been already oom reaped or the are in
219 * the middle of vfork
220 */
221 adj = (long)p->signal->oom_score_adj;
222 if (adj == OOM_SCORE_ADJ_MIN ||
223 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
224 in_vfork(p)) {
225 task_unlock(p);
226 return LONG_MIN;
227 }
228
229 /*
230 * The baseline for the badness score is the proportion of RAM that each
231 * task's rss, pagetable and swap space use.
232 */
233 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
234 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
235 task_unlock(p);
236
237 /* Normalize to oom_score_adj units */
238 adj *= totalpages / 1000;
239 points += adj;
240
241 return points;
242 }
243
244 static const char * const oom_constraint_text[] = {
245 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
246 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
247 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
248 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
249 };
250
251 /*
252 * Determine the type of allocation constraint.
253 */
constrained_alloc(struct oom_control * oc)254 static enum oom_constraint constrained_alloc(struct oom_control *oc)
255 {
256 struct zone *zone;
257 struct zoneref *z;
258 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
259 bool cpuset_limited = false;
260 int nid;
261
262 if (is_memcg_oom(oc)) {
263 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
264 return CONSTRAINT_MEMCG;
265 }
266
267 /* Default to all available memory */
268 oc->totalpages = totalram_pages() + total_swap_pages;
269
270 if (!IS_ENABLED(CONFIG_NUMA))
271 return CONSTRAINT_NONE;
272
273 if (!oc->zonelist)
274 return CONSTRAINT_NONE;
275 /*
276 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
277 * to kill current.We have to random task kill in this case.
278 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
279 */
280 if (oc->gfp_mask & __GFP_THISNODE)
281 return CONSTRAINT_NONE;
282
283 /*
284 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
285 * the page allocator means a mempolicy is in effect. Cpuset policy
286 * is enforced in get_page_from_freelist().
287 */
288 if (oc->nodemask &&
289 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
290 oc->totalpages = total_swap_pages;
291 for_each_node_mask(nid, *oc->nodemask)
292 oc->totalpages += node_present_pages(nid);
293 return CONSTRAINT_MEMORY_POLICY;
294 }
295
296 /* Check this allocation failure is caused by cpuset's wall function */
297 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
298 highest_zoneidx, oc->nodemask)
299 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
300 cpuset_limited = true;
301
302 if (cpuset_limited) {
303 oc->totalpages = total_swap_pages;
304 for_each_node_mask(nid, cpuset_current_mems_allowed)
305 oc->totalpages += node_present_pages(nid);
306 return CONSTRAINT_CPUSET;
307 }
308 return CONSTRAINT_NONE;
309 }
310
oom_evaluate_task(struct task_struct * task,void * arg)311 static int oom_evaluate_task(struct task_struct *task, void *arg)
312 {
313 struct oom_control *oc = arg;
314 long points;
315
316 if (oom_unkillable_task(task))
317 goto next;
318
319 /* p may not have freeable memory in nodemask */
320 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
321 goto next;
322
323 /*
324 * This task already has access to memory reserves and is being killed.
325 * Don't allow any other task to have access to the reserves unless
326 * the task has MMF_OOM_SKIP because chances that it would release
327 * any memory is quite low.
328 */
329 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
330 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
331 goto next;
332 goto abort;
333 }
334
335 /*
336 * If task is allocating a lot of memory and has been marked to be
337 * killed first if it triggers an oom, then select it.
338 */
339 if (oom_task_origin(task)) {
340 points = LONG_MAX;
341 goto select;
342 }
343
344 points = oom_badness(task, oc->totalpages);
345 if (points == LONG_MIN || points < oc->chosen_points)
346 goto next;
347
348 select:
349 if (oc->chosen)
350 put_task_struct(oc->chosen);
351 get_task_struct(task);
352 oc->chosen = task;
353 oc->chosen_points = points;
354 next:
355 return 0;
356 abort:
357 if (oc->chosen)
358 put_task_struct(oc->chosen);
359 oc->chosen = (void *)-1UL;
360 return 1;
361 }
362
363 /*
364 * Simple selection loop. We choose the process with the highest number of
365 * 'points'. In case scan was aborted, oc->chosen is set to -1.
366 */
select_bad_process(struct oom_control * oc)367 static void select_bad_process(struct oom_control *oc)
368 {
369 oc->chosen_points = LONG_MIN;
370
371 if (is_memcg_oom(oc))
372 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
373 else {
374 struct task_struct *p;
375
376 rcu_read_lock();
377 for_each_process(p)
378 if (oom_evaluate_task(p, oc))
379 break;
380 rcu_read_unlock();
381 }
382 }
383
dump_task(struct task_struct * p,void * arg)384 static int dump_task(struct task_struct *p, void *arg)
385 {
386 struct oom_control *oc = arg;
387 struct task_struct *task;
388
389 if (oom_unkillable_task(p))
390 return 0;
391
392 /* p may not have freeable memory in nodemask */
393 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
394 return 0;
395
396 task = find_lock_task_mm(p);
397 if (!task) {
398 /*
399 * All of p's threads have already detached their mm's. There's
400 * no need to report them; they can't be oom killed anyway.
401 */
402 return 0;
403 }
404
405 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n",
406 task->pid, from_kuid(&init_user_ns, task_uid(task)),
407 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
408 mm_pgtables_bytes(task->mm),
409 get_mm_counter(task->mm, MM_SWAPENTS),
410 task->signal->oom_score_adj, task->comm);
411 task_unlock(task);
412
413 return 0;
414 }
415
416 /**
417 * dump_tasks - dump current memory state of all system tasks
418 * @oc: pointer to struct oom_control
419 *
420 * Dumps the current memory state of all eligible tasks. Tasks not in the same
421 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
422 * are not shown.
423 * State information includes task's pid, uid, tgid, vm size, rss,
424 * pgtables_bytes, swapents, oom_score_adj value, and name.
425 */
dump_tasks(struct oom_control * oc)426 static void dump_tasks(struct oom_control *oc)
427 {
428 pr_info("Tasks state (memory values in pages):\n");
429 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n");
430
431 if (is_memcg_oom(oc))
432 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
433 else {
434 struct task_struct *p;
435
436 rcu_read_lock();
437 for_each_process(p)
438 dump_task(p, oc);
439 rcu_read_unlock();
440 }
441 }
442
dump_oom_summary(struct oom_control * oc,struct task_struct * victim)443 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
444 {
445 /* one line summary of the oom killer context. */
446 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
447 oom_constraint_text[oc->constraint],
448 nodemask_pr_args(oc->nodemask));
449 cpuset_print_current_mems_allowed();
450 mem_cgroup_print_oom_context(oc->memcg, victim);
451 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
452 from_kuid(&init_user_ns, task_uid(victim)));
453 }
454
dump_header(struct oom_control * oc,struct task_struct * p)455 static void dump_header(struct oom_control *oc, struct task_struct *p)
456 {
457 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
458 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
459 current->signal->oom_score_adj);
460 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
461 pr_warn("COMPACTION is disabled!!!\n");
462
463 dump_stack();
464 if (is_memcg_oom(oc))
465 mem_cgroup_print_oom_meminfo(oc->memcg);
466 else {
467 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
468 if (should_dump_unreclaim_slab())
469 dump_unreclaimable_slab();
470 }
471 if (sysctl_oom_dump_tasks)
472 dump_tasks(oc);
473 if (p)
474 dump_oom_summary(oc, p);
475 }
476
477 /*
478 * Number of OOM victims in flight
479 */
480 static atomic_t oom_victims = ATOMIC_INIT(0);
481 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
482
483 static bool oom_killer_disabled __read_mostly;
484
485 #define K(x) ((x) << (PAGE_SHIFT-10))
486
487 /*
488 * task->mm can be NULL if the task is the exited group leader. So to
489 * determine whether the task is using a particular mm, we examine all the
490 * task's threads: if one of those is using this mm then this task was also
491 * using it.
492 */
process_shares_mm(struct task_struct * p,struct mm_struct * mm)493 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
494 {
495 struct task_struct *t;
496
497 for_each_thread(p, t) {
498 struct mm_struct *t_mm = READ_ONCE(t->mm);
499 if (t_mm)
500 return t_mm == mm;
501 }
502 return false;
503 }
504
505 #ifdef CONFIG_MMU
506 /*
507 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
508 * victim (if that is possible) to help the OOM killer to move on.
509 */
510 static struct task_struct *oom_reaper_th;
511 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
512 static struct task_struct *oom_reaper_list;
513 static DEFINE_SPINLOCK(oom_reaper_lock);
514
__oom_reap_task_mm(struct mm_struct * mm)515 bool __oom_reap_task_mm(struct mm_struct *mm)
516 {
517 struct vm_area_struct *vma;
518 bool ret = true;
519
520 /*
521 * Tell all users of get_user/copy_from_user etc... that the content
522 * is no longer stable. No barriers really needed because unmapping
523 * should imply barriers already and the reader would hit a page fault
524 * if it stumbled over a reaped memory.
525 */
526 set_bit(MMF_UNSTABLE, &mm->flags);
527
528 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
529 if (!can_madv_lru_vma(vma))
530 continue;
531
532 /*
533 * Only anonymous pages have a good chance to be dropped
534 * without additional steps which we cannot afford as we
535 * are OOM already.
536 *
537 * We do not even care about fs backed pages because all
538 * which are reclaimable have already been reclaimed and
539 * we do not want to block exit_mmap by keeping mm ref
540 * count elevated without a good reason.
541 */
542 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
543 struct mmu_notifier_range range;
544 struct mmu_gather tlb;
545
546 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
547 vma, mm, vma->vm_start,
548 vma->vm_end);
549 tlb_gather_mmu(&tlb, mm);
550 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
551 tlb_finish_mmu(&tlb);
552 ret = false;
553 continue;
554 }
555 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
556 mmu_notifier_invalidate_range_end(&range);
557 tlb_finish_mmu(&tlb);
558 }
559 }
560
561 return ret;
562 }
563
564 /*
565 * Reaps the address space of the give task.
566 *
567 * Returns true on success and false if none or part of the address space
568 * has been reclaimed and the caller should retry later.
569 */
oom_reap_task_mm(struct task_struct * tsk,struct mm_struct * mm)570 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
571 {
572 bool ret = true;
573
574 if (!mmap_read_trylock(mm)) {
575 trace_skip_task_reaping(tsk->pid);
576 return false;
577 }
578
579 /*
580 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
581 * work on the mm anymore. The check for MMF_OOM_SKIP must run
582 * under mmap_lock for reading because it serializes against the
583 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
584 */
585 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
586 trace_skip_task_reaping(tsk->pid);
587 goto out_unlock;
588 }
589
590 trace_start_task_reaping(tsk->pid);
591
592 /* failed to reap part of the address space. Try again later */
593 ret = __oom_reap_task_mm(mm);
594 if (!ret)
595 goto out_finish;
596
597 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
598 task_pid_nr(tsk), tsk->comm,
599 K(get_mm_counter(mm, MM_ANONPAGES)),
600 K(get_mm_counter(mm, MM_FILEPAGES)),
601 K(get_mm_counter(mm, MM_SHMEMPAGES)));
602 out_finish:
603 trace_finish_task_reaping(tsk->pid);
604 out_unlock:
605 mmap_read_unlock(mm);
606
607 return ret;
608 }
609
610 #define MAX_OOM_REAP_RETRIES 10
oom_reap_task(struct task_struct * tsk)611 static void oom_reap_task(struct task_struct *tsk)
612 {
613 int attempts = 0;
614 struct mm_struct *mm = tsk->signal->oom_mm;
615
616 /* Retry the mmap_read_trylock(mm) a few times */
617 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
618 schedule_timeout_idle(HZ/10);
619
620 if (attempts <= MAX_OOM_REAP_RETRIES ||
621 test_bit(MMF_OOM_SKIP, &mm->flags))
622 goto done;
623
624 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
625 task_pid_nr(tsk), tsk->comm);
626 sched_show_task(tsk);
627 debug_show_all_locks();
628
629 done:
630 tsk->oom_reaper_list = NULL;
631
632 /*
633 * Hide this mm from OOM killer because it has been either reaped or
634 * somebody can't call mmap_write_unlock(mm).
635 */
636 set_bit(MMF_OOM_SKIP, &mm->flags);
637
638 /* Drop a reference taken by wake_oom_reaper */
639 put_task_struct(tsk);
640 }
641
oom_reaper(void * unused)642 static int oom_reaper(void *unused)
643 {
644 while (true) {
645 struct task_struct *tsk = NULL;
646
647 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
648 spin_lock(&oom_reaper_lock);
649 if (oom_reaper_list != NULL) {
650 tsk = oom_reaper_list;
651 oom_reaper_list = tsk->oom_reaper_list;
652 }
653 spin_unlock(&oom_reaper_lock);
654
655 if (tsk)
656 oom_reap_task(tsk);
657 }
658
659 return 0;
660 }
661
wake_oom_reaper(struct task_struct * tsk)662 static void wake_oom_reaper(struct task_struct *tsk)
663 {
664 /* mm is already queued? */
665 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
666 return;
667
668 get_task_struct(tsk);
669
670 spin_lock(&oom_reaper_lock);
671 tsk->oom_reaper_list = oom_reaper_list;
672 oom_reaper_list = tsk;
673 spin_unlock(&oom_reaper_lock);
674 trace_wake_reaper(tsk->pid);
675 wake_up(&oom_reaper_wait);
676 }
677
oom_init(void)678 static int __init oom_init(void)
679 {
680 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
681 return 0;
682 }
subsys_initcall(oom_init)683 subsys_initcall(oom_init)
684 #else
685 static inline void wake_oom_reaper(struct task_struct *tsk)
686 {
687 }
688 #endif /* CONFIG_MMU */
689
690 /**
691 * mark_oom_victim - mark the given task as OOM victim
692 * @tsk: task to mark
693 *
694 * Has to be called with oom_lock held and never after
695 * oom has been disabled already.
696 *
697 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
698 * under task_lock or operate on the current).
699 */
700 static void mark_oom_victim(struct task_struct *tsk)
701 {
702 struct mm_struct *mm = tsk->mm;
703
704 WARN_ON(oom_killer_disabled);
705 /* OOM killer might race with memcg OOM */
706 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
707 return;
708
709 /* oom_mm is bound to the signal struct life time. */
710 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
711 mmgrab(tsk->signal->oom_mm);
712 set_bit(MMF_OOM_VICTIM, &mm->flags);
713 }
714
715 /*
716 * Make sure that the task is woken up from uninterruptible sleep
717 * if it is frozen because OOM killer wouldn't be able to free
718 * any memory and livelock. freezing_slow_path will tell the freezer
719 * that TIF_MEMDIE tasks should be ignored.
720 */
721 __thaw_task(tsk);
722 atomic_inc(&oom_victims);
723 trace_mark_victim(tsk->pid);
724 }
725
726 /**
727 * exit_oom_victim - note the exit of an OOM victim
728 */
exit_oom_victim(void)729 void exit_oom_victim(void)
730 {
731 clear_thread_flag(TIF_MEMDIE);
732
733 if (!atomic_dec_return(&oom_victims))
734 wake_up_all(&oom_victims_wait);
735 }
736
737 /**
738 * oom_killer_enable - enable OOM killer
739 */
oom_killer_enable(void)740 void oom_killer_enable(void)
741 {
742 oom_killer_disabled = false;
743 pr_info("OOM killer enabled.\n");
744 }
745
746 /**
747 * oom_killer_disable - disable OOM killer
748 * @timeout: maximum timeout to wait for oom victims in jiffies
749 *
750 * Forces all page allocations to fail rather than trigger OOM killer.
751 * Will block and wait until all OOM victims are killed or the given
752 * timeout expires.
753 *
754 * The function cannot be called when there are runnable user tasks because
755 * the userspace would see unexpected allocation failures as a result. Any
756 * new usage of this function should be consulted with MM people.
757 *
758 * Returns true if successful and false if the OOM killer cannot be
759 * disabled.
760 */
oom_killer_disable(signed long timeout)761 bool oom_killer_disable(signed long timeout)
762 {
763 signed long ret;
764
765 /*
766 * Make sure to not race with an ongoing OOM killer. Check that the
767 * current is not killed (possibly due to sharing the victim's memory).
768 */
769 if (mutex_lock_killable(&oom_lock))
770 return false;
771 oom_killer_disabled = true;
772 mutex_unlock(&oom_lock);
773
774 ret = wait_event_interruptible_timeout(oom_victims_wait,
775 !atomic_read(&oom_victims), timeout);
776 if (ret <= 0) {
777 oom_killer_enable();
778 return false;
779 }
780 pr_info("OOM killer disabled.\n");
781
782 return true;
783 }
784
__task_will_free_mem(struct task_struct * task)785 static inline bool __task_will_free_mem(struct task_struct *task)
786 {
787 struct signal_struct *sig = task->signal;
788
789 /*
790 * A coredumping process may sleep for an extended period in exit_mm(),
791 * so the oom killer cannot assume that the process will promptly exit
792 * and release memory.
793 */
794 if (sig->flags & SIGNAL_GROUP_COREDUMP)
795 return false;
796
797 if (sig->flags & SIGNAL_GROUP_EXIT)
798 return true;
799
800 if (thread_group_empty(task) && (task->flags & PF_EXITING))
801 return true;
802
803 return false;
804 }
805
806 /*
807 * Checks whether the given task is dying or exiting and likely to
808 * release its address space. This means that all threads and processes
809 * sharing the same mm have to be killed or exiting.
810 * Caller has to make sure that task->mm is stable (hold task_lock or
811 * it operates on the current).
812 */
task_will_free_mem(struct task_struct * task)813 static bool task_will_free_mem(struct task_struct *task)
814 {
815 struct mm_struct *mm = task->mm;
816 struct task_struct *p;
817 bool ret = true;
818
819 /*
820 * Skip tasks without mm because it might have passed its exit_mm and
821 * exit_oom_victim. oom_reaper could have rescued that but do not rely
822 * on that for now. We can consider find_lock_task_mm in future.
823 */
824 if (!mm)
825 return false;
826
827 if (!__task_will_free_mem(task))
828 return false;
829
830 /*
831 * This task has already been drained by the oom reaper so there are
832 * only small chances it will free some more
833 */
834 if (test_bit(MMF_OOM_SKIP, &mm->flags))
835 return false;
836
837 if (atomic_read(&mm->mm_users) <= 1)
838 return true;
839
840 /*
841 * Make sure that all tasks which share the mm with the given tasks
842 * are dying as well to make sure that a) nobody pins its mm and
843 * b) the task is also reapable by the oom reaper.
844 */
845 rcu_read_lock();
846 for_each_process(p) {
847 if (!process_shares_mm(p, mm))
848 continue;
849 if (same_thread_group(task, p))
850 continue;
851 ret = __task_will_free_mem(p);
852 if (!ret)
853 break;
854 }
855 rcu_read_unlock();
856
857 return ret;
858 }
859
__oom_kill_process(struct task_struct * victim,const char * message)860 static void __oom_kill_process(struct task_struct *victim, const char *message)
861 {
862 struct task_struct *p;
863 struct mm_struct *mm;
864 bool can_oom_reap = true;
865
866 p = find_lock_task_mm(victim);
867 if (!p) {
868 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
869 message, task_pid_nr(victim), victim->comm);
870 put_task_struct(victim);
871 return;
872 } else if (victim != p) {
873 get_task_struct(p);
874 put_task_struct(victim);
875 victim = p;
876 }
877
878 /* Get a reference to safely compare mm after task_unlock(victim) */
879 mm = victim->mm;
880 mmgrab(mm);
881
882 /* Raise event before sending signal: task reaper must see this */
883 count_vm_event(OOM_KILL);
884 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
885
886 /*
887 * We should send SIGKILL before granting access to memory reserves
888 * in order to prevent the OOM victim from depleting the memory
889 * reserves from the user space under its control.
890 */
891 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
892 mark_oom_victim(victim);
893 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
894 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
895 K(get_mm_counter(mm, MM_ANONPAGES)),
896 K(get_mm_counter(mm, MM_FILEPAGES)),
897 K(get_mm_counter(mm, MM_SHMEMPAGES)),
898 from_kuid(&init_user_ns, task_uid(victim)),
899 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
900 task_unlock(victim);
901
902 /*
903 * Kill all user processes sharing victim->mm in other thread groups, if
904 * any. They don't get access to memory reserves, though, to avoid
905 * depletion of all memory. This prevents mm->mmap_lock livelock when an
906 * oom killed thread cannot exit because it requires the semaphore and
907 * its contended by another thread trying to allocate memory itself.
908 * That thread will now get access to memory reserves since it has a
909 * pending fatal signal.
910 */
911 rcu_read_lock();
912 for_each_process(p) {
913 if (!process_shares_mm(p, mm))
914 continue;
915 if (same_thread_group(p, victim))
916 continue;
917 if (is_global_init(p)) {
918 can_oom_reap = false;
919 set_bit(MMF_OOM_SKIP, &mm->flags);
920 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
921 task_pid_nr(victim), victim->comm,
922 task_pid_nr(p), p->comm);
923 continue;
924 }
925 /*
926 * No kthread_use_mm() user needs to read from the userspace so
927 * we are ok to reap it.
928 */
929 if (unlikely(p->flags & PF_KTHREAD))
930 continue;
931 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
932 }
933 rcu_read_unlock();
934
935 if (can_oom_reap)
936 wake_oom_reaper(victim);
937
938 mmdrop(mm);
939 put_task_struct(victim);
940 }
941 #undef K
942
943 /*
944 * Kill provided task unless it's secured by setting
945 * oom_score_adj to OOM_SCORE_ADJ_MIN.
946 */
oom_kill_memcg_member(struct task_struct * task,void * message)947 static int oom_kill_memcg_member(struct task_struct *task, void *message)
948 {
949 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
950 !is_global_init(task)) {
951 get_task_struct(task);
952 __oom_kill_process(task, message);
953 }
954 return 0;
955 }
956
oom_kill_process(struct oom_control * oc,const char * message)957 static void oom_kill_process(struct oom_control *oc, const char *message)
958 {
959 struct task_struct *victim = oc->chosen;
960 struct mem_cgroup *oom_group;
961 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
962 DEFAULT_RATELIMIT_BURST);
963
964 /*
965 * If the task is already exiting, don't alarm the sysadmin or kill
966 * its children or threads, just give it access to memory reserves
967 * so it can die quickly
968 */
969 task_lock(victim);
970 if (task_will_free_mem(victim)) {
971 mark_oom_victim(victim);
972 wake_oom_reaper(victim);
973 task_unlock(victim);
974 put_task_struct(victim);
975 return;
976 }
977 task_unlock(victim);
978
979 if (__ratelimit(&oom_rs))
980 dump_header(oc, victim);
981
982 /*
983 * Do we need to kill the entire memory cgroup?
984 * Or even one of the ancestor memory cgroups?
985 * Check this out before killing the victim task.
986 */
987 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
988
989 __oom_kill_process(victim, message);
990
991 /*
992 * If necessary, kill all tasks in the selected memory cgroup.
993 */
994 if (oom_group) {
995 mem_cgroup_print_oom_group(oom_group);
996 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
997 (void *)message);
998 mem_cgroup_put(oom_group);
999 }
1000 }
1001
1002 /*
1003 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1004 */
check_panic_on_oom(struct oom_control * oc)1005 static void check_panic_on_oom(struct oom_control *oc)
1006 {
1007 if (likely(!sysctl_panic_on_oom))
1008 return;
1009 if (sysctl_panic_on_oom != 2) {
1010 /*
1011 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1012 * does not panic for cpuset, mempolicy, or memcg allocation
1013 * failures.
1014 */
1015 if (oc->constraint != CONSTRAINT_NONE)
1016 return;
1017 }
1018 /* Do not panic for oom kills triggered by sysrq */
1019 if (is_sysrq_oom(oc))
1020 return;
1021 dump_header(oc, NULL);
1022 panic("Out of memory: %s panic_on_oom is enabled\n",
1023 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1024 }
1025
1026 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1027
register_oom_notifier(struct notifier_block * nb)1028 int register_oom_notifier(struct notifier_block *nb)
1029 {
1030 return blocking_notifier_chain_register(&oom_notify_list, nb);
1031 }
1032 EXPORT_SYMBOL_GPL(register_oom_notifier);
1033
unregister_oom_notifier(struct notifier_block * nb)1034 int unregister_oom_notifier(struct notifier_block *nb)
1035 {
1036 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1037 }
1038 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1039
1040 /**
1041 * out_of_memory - kill the "best" process when we run out of memory
1042 * @oc: pointer to struct oom_control
1043 *
1044 * If we run out of memory, we have the choice between either
1045 * killing a random task (bad), letting the system crash (worse)
1046 * OR try to be smart about which process to kill. Note that we
1047 * don't have to be perfect here, we just have to be good.
1048 */
out_of_memory(struct oom_control * oc)1049 bool out_of_memory(struct oom_control *oc)
1050 {
1051 unsigned long freed = 0;
1052
1053 if (oom_killer_disabled)
1054 return false;
1055
1056 if (!is_memcg_oom(oc)) {
1057 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1058 if (freed > 0)
1059 /* Got some memory back in the last second. */
1060 return true;
1061 }
1062
1063 /*
1064 * If current has a pending SIGKILL or is exiting, then automatically
1065 * select it. The goal is to allow it to allocate so that it may
1066 * quickly exit and free its memory.
1067 */
1068 if (task_will_free_mem(current)) {
1069 mark_oom_victim(current);
1070 wake_oom_reaper(current);
1071 return true;
1072 }
1073
1074 /*
1075 * The OOM killer does not compensate for IO-less reclaim.
1076 * pagefault_out_of_memory lost its gfp context so we have to
1077 * make sure exclude 0 mask - all other users should have at least
1078 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1079 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1080 */
1081 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1082 return true;
1083
1084 /*
1085 * Check if there were limitations on the allocation (only relevant for
1086 * NUMA and memcg) that may require different handling.
1087 */
1088 oc->constraint = constrained_alloc(oc);
1089 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1090 oc->nodemask = NULL;
1091 check_panic_on_oom(oc);
1092
1093 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1094 current->mm && !oom_unkillable_task(current) &&
1095 oom_cpuset_eligible(current, oc) &&
1096 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1097 get_task_struct(current);
1098 oc->chosen = current;
1099 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1100 return true;
1101 }
1102
1103 select_bad_process(oc);
1104 /* Found nothing?!?! */
1105 if (!oc->chosen) {
1106 dump_header(oc, NULL);
1107 pr_warn("Out of memory and no killable processes...\n");
1108 /*
1109 * If we got here due to an actual allocation at the
1110 * system level, we cannot survive this and will enter
1111 * an endless loop in the allocator. Bail out now.
1112 */
1113 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1114 panic("System is deadlocked on memory\n");
1115 }
1116 if (oc->chosen && oc->chosen != (void *)-1UL)
1117 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1118 "Memory cgroup out of memory");
1119 return !!oc->chosen;
1120 }
1121
1122 /*
1123 * The pagefault handler calls here because it is out of memory, so kill a
1124 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1125 * killing is already in progress so do nothing.
1126 */
pagefault_out_of_memory(void)1127 void pagefault_out_of_memory(void)
1128 {
1129 struct oom_control oc = {
1130 .zonelist = NULL,
1131 .nodemask = NULL,
1132 .memcg = NULL,
1133 .gfp_mask = 0,
1134 .order = 0,
1135 };
1136
1137 if (mem_cgroup_oom_synchronize(true))
1138 return;
1139
1140 if (!mutex_trylock(&oom_lock))
1141 return;
1142 out_of_memory(&oc);
1143 mutex_unlock(&oom_lock);
1144 }
1145
SYSCALL_DEFINE2(process_mrelease,int,pidfd,unsigned int,flags)1146 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1147 {
1148 #ifdef CONFIG_MMU
1149 struct mm_struct *mm = NULL;
1150 struct task_struct *task;
1151 struct task_struct *p;
1152 unsigned int f_flags;
1153 bool reap = false;
1154 struct pid *pid;
1155 long ret = 0;
1156
1157 if (flags)
1158 return -EINVAL;
1159
1160 pid = pidfd_get_pid(pidfd, &f_flags);
1161 if (IS_ERR(pid))
1162 return PTR_ERR(pid);
1163
1164 task = get_pid_task(pid, PIDTYPE_TGID);
1165 if (!task) {
1166 ret = -ESRCH;
1167 goto put_pid;
1168 }
1169
1170 /*
1171 * Make sure to choose a thread which still has a reference to mm
1172 * during the group exit
1173 */
1174 p = find_lock_task_mm(task);
1175 if (!p) {
1176 ret = -ESRCH;
1177 goto put_task;
1178 }
1179
1180 if (mmget_not_zero(p->mm)) {
1181 mm = p->mm;
1182 if (task_will_free_mem(p))
1183 reap = true;
1184 else {
1185 /* Error only if the work has not been done already */
1186 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1187 ret = -EINVAL;
1188 }
1189 }
1190 task_unlock(p);
1191
1192 if (!reap)
1193 goto drop_mm;
1194
1195 if (mmap_read_lock_killable(mm)) {
1196 ret = -EINTR;
1197 goto drop_mm;
1198 }
1199 if (!__oom_reap_task_mm(mm))
1200 ret = -EAGAIN;
1201 mmap_read_unlock(mm);
1202
1203 drop_mm:
1204 if (mm)
1205 mmput(mm);
1206 put_task:
1207 put_task_struct(task);
1208 put_pid:
1209 put_pid(pid);
1210 return ret;
1211 #else
1212 return -ENOSYS;
1213 #endif /* CONFIG_MMU */
1214 }
1215