1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Procedures for maintaining information about logical memory blocks.
4 *
5 * Peter Bergner, IBM Corp. June 2001.
6 * Copyright (C) 2001 Peter Bergner.
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/init.h>
12 #include <linux/bitops.h>
13 #include <linux/poison.h>
14 #include <linux/pfn.h>
15 #include <linux/debugfs.h>
16 #include <linux/kmemleak.h>
17 #include <linux/seq_file.h>
18 #include <linux/memblock.h>
19
20 #include <asm/sections.h>
21 #include <linux/io.h>
22
23 #include "internal.h"
24
25 #define INIT_MEMBLOCK_REGIONS 128
26 #define INIT_PHYSMEM_REGIONS 4
27
28 #ifndef INIT_MEMBLOCK_RESERVED_REGIONS
29 # define INIT_MEMBLOCK_RESERVED_REGIONS INIT_MEMBLOCK_REGIONS
30 #endif
31
32 /**
33 * DOC: memblock overview
34 *
35 * Memblock is a method of managing memory regions during the early
36 * boot period when the usual kernel memory allocators are not up and
37 * running.
38 *
39 * Memblock views the system memory as collections of contiguous
40 * regions. There are several types of these collections:
41 *
42 * * ``memory`` - describes the physical memory available to the
43 * kernel; this may differ from the actual physical memory installed
44 * in the system, for instance when the memory is restricted with
45 * ``mem=`` command line parameter
46 * * ``reserved`` - describes the regions that were allocated
47 * * ``physmem`` - describes the actual physical memory available during
48 * boot regardless of the possible restrictions and memory hot(un)plug;
49 * the ``physmem`` type is only available on some architectures.
50 *
51 * Each region is represented by struct memblock_region that
52 * defines the region extents, its attributes and NUMA node id on NUMA
53 * systems. Every memory type is described by the struct memblock_type
54 * which contains an array of memory regions along with
55 * the allocator metadata. The "memory" and "reserved" types are nicely
56 * wrapped with struct memblock. This structure is statically
57 * initialized at build time. The region arrays are initially sized to
58 * %INIT_MEMBLOCK_REGIONS for "memory" and %INIT_MEMBLOCK_RESERVED_REGIONS
59 * for "reserved". The region array for "physmem" is initially sized to
60 * %INIT_PHYSMEM_REGIONS.
61 * The memblock_allow_resize() enables automatic resizing of the region
62 * arrays during addition of new regions. This feature should be used
63 * with care so that memory allocated for the region array will not
64 * overlap with areas that should be reserved, for example initrd.
65 *
66 * The early architecture setup should tell memblock what the physical
67 * memory layout is by using memblock_add() or memblock_add_node()
68 * functions. The first function does not assign the region to a NUMA
69 * node and it is appropriate for UMA systems. Yet, it is possible to
70 * use it on NUMA systems as well and assign the region to a NUMA node
71 * later in the setup process using memblock_set_node(). The
72 * memblock_add_node() performs such an assignment directly.
73 *
74 * Once memblock is setup the memory can be allocated using one of the
75 * API variants:
76 *
77 * * memblock_phys_alloc*() - these functions return the **physical**
78 * address of the allocated memory
79 * * memblock_alloc*() - these functions return the **virtual** address
80 * of the allocated memory.
81 *
82 * Note, that both API variants use implicit assumptions about allowed
83 * memory ranges and the fallback methods. Consult the documentation
84 * of memblock_alloc_internal() and memblock_alloc_range_nid()
85 * functions for more elaborate description.
86 *
87 * As the system boot progresses, the architecture specific mem_init()
88 * function frees all the memory to the buddy page allocator.
89 *
90 * Unless an architecture enables %CONFIG_ARCH_KEEP_MEMBLOCK, the
91 * memblock data structures (except "physmem") will be discarded after the
92 * system initialization completes.
93 */
94
95 #ifndef CONFIG_NUMA
96 struct pglist_data __refdata contig_page_data;
97 EXPORT_SYMBOL(contig_page_data);
98 #endif
99
100 unsigned long max_low_pfn;
101 unsigned long min_low_pfn;
102 unsigned long max_pfn;
103 unsigned long long max_possible_pfn;
104
105 static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
106 static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_RESERVED_REGIONS] __initdata_memblock;
107 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
108 static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS];
109 #endif
110
111 struct memblock memblock __initdata_memblock = {
112 .memory.regions = memblock_memory_init_regions,
113 .memory.cnt = 1, /* empty dummy entry */
114 .memory.max = INIT_MEMBLOCK_REGIONS,
115 .memory.name = "memory",
116
117 .reserved.regions = memblock_reserved_init_regions,
118 .reserved.cnt = 1, /* empty dummy entry */
119 .reserved.max = INIT_MEMBLOCK_RESERVED_REGIONS,
120 .reserved.name = "reserved",
121
122 .bottom_up = false,
123 .current_limit = MEMBLOCK_ALLOC_ANYWHERE,
124 };
125
126 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
127 struct memblock_type physmem = {
128 .regions = memblock_physmem_init_regions,
129 .cnt = 1, /* empty dummy entry */
130 .max = INIT_PHYSMEM_REGIONS,
131 .name = "physmem",
132 };
133 #endif
134
135 /*
136 * keep a pointer to &memblock.memory in the text section to use it in
137 * __next_mem_range() and its helpers.
138 * For architectures that do not keep memblock data after init, this
139 * pointer will be reset to NULL at memblock_discard()
140 */
141 static __refdata struct memblock_type *memblock_memory = &memblock.memory;
142
143 #define for_each_memblock_type(i, memblock_type, rgn) \
144 for (i = 0, rgn = &memblock_type->regions[0]; \
145 i < memblock_type->cnt; \
146 i++, rgn = &memblock_type->regions[i])
147
148 #define memblock_dbg(fmt, ...) \
149 do { \
150 if (memblock_debug) \
151 pr_info(fmt, ##__VA_ARGS__); \
152 } while (0)
153
154 static int memblock_debug __initdata_memblock;
155 static bool system_has_some_mirror __initdata_memblock = false;
156 static int memblock_can_resize __initdata_memblock;
157 static int memblock_memory_in_slab __initdata_memblock = 0;
158 static int memblock_reserved_in_slab __initdata_memblock = 0;
159
choose_memblock_flags(void)160 static enum memblock_flags __init_memblock choose_memblock_flags(void)
161 {
162 return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
163 }
164
165 /* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
memblock_cap_size(phys_addr_t base,phys_addr_t * size)166 static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
167 {
168 return *size = min(*size, PHYS_ADDR_MAX - base);
169 }
170
171 /*
172 * Address comparison utilities
173 */
memblock_addrs_overlap(phys_addr_t base1,phys_addr_t size1,phys_addr_t base2,phys_addr_t size2)174 static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
175 phys_addr_t base2, phys_addr_t size2)
176 {
177 return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
178 }
179
memblock_overlaps_region(struct memblock_type * type,phys_addr_t base,phys_addr_t size)180 bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
181 phys_addr_t base, phys_addr_t size)
182 {
183 unsigned long i;
184
185 memblock_cap_size(base, &size);
186
187 for (i = 0; i < type->cnt; i++)
188 if (memblock_addrs_overlap(base, size, type->regions[i].base,
189 type->regions[i].size))
190 break;
191 return i < type->cnt;
192 }
193
194 /**
195 * __memblock_find_range_bottom_up - find free area utility in bottom-up
196 * @start: start of candidate range
197 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
198 * %MEMBLOCK_ALLOC_ACCESSIBLE
199 * @size: size of free area to find
200 * @align: alignment of free area to find
201 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
202 * @flags: pick from blocks based on memory attributes
203 *
204 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
205 *
206 * Return:
207 * Found address on success, 0 on failure.
208 */
209 static phys_addr_t __init_memblock
__memblock_find_range_bottom_up(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)210 __memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
211 phys_addr_t size, phys_addr_t align, int nid,
212 enum memblock_flags flags)
213 {
214 phys_addr_t this_start, this_end, cand;
215 u64 i;
216
217 for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
218 this_start = clamp(this_start, start, end);
219 this_end = clamp(this_end, start, end);
220
221 cand = round_up(this_start, align);
222 if (cand < this_end && this_end - cand >= size)
223 return cand;
224 }
225
226 return 0;
227 }
228
229 /**
230 * __memblock_find_range_top_down - find free area utility, in top-down
231 * @start: start of candidate range
232 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
233 * %MEMBLOCK_ALLOC_ACCESSIBLE
234 * @size: size of free area to find
235 * @align: alignment of free area to find
236 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
237 * @flags: pick from blocks based on memory attributes
238 *
239 * Utility called from memblock_find_in_range_node(), find free area top-down.
240 *
241 * Return:
242 * Found address on success, 0 on failure.
243 */
244 static phys_addr_t __init_memblock
__memblock_find_range_top_down(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align,int nid,enum memblock_flags flags)245 __memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
246 phys_addr_t size, phys_addr_t align, int nid,
247 enum memblock_flags flags)
248 {
249 phys_addr_t this_start, this_end, cand;
250 u64 i;
251
252 for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
253 NULL) {
254 this_start = clamp(this_start, start, end);
255 this_end = clamp(this_end, start, end);
256
257 if (this_end < size)
258 continue;
259
260 cand = round_down(this_end - size, align);
261 if (cand >= this_start)
262 return cand;
263 }
264
265 return 0;
266 }
267
268 /**
269 * memblock_find_in_range_node - find free area in given range and node
270 * @size: size of free area to find
271 * @align: alignment of free area to find
272 * @start: start of candidate range
273 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
274 * %MEMBLOCK_ALLOC_ACCESSIBLE
275 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
276 * @flags: pick from blocks based on memory attributes
277 *
278 * Find @size free area aligned to @align in the specified range and node.
279 *
280 * Return:
281 * Found address on success, 0 on failure.
282 */
memblock_find_in_range_node(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,enum memblock_flags flags)283 static phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
284 phys_addr_t align, phys_addr_t start,
285 phys_addr_t end, int nid,
286 enum memblock_flags flags)
287 {
288 /* pump up @end */
289 if (end == MEMBLOCK_ALLOC_ACCESSIBLE ||
290 end == MEMBLOCK_ALLOC_KASAN)
291 end = memblock.current_limit;
292
293 /* avoid allocating the first page */
294 start = max_t(phys_addr_t, start, PAGE_SIZE);
295 end = max(start, end);
296
297 if (memblock_bottom_up())
298 return __memblock_find_range_bottom_up(start, end, size, align,
299 nid, flags);
300 else
301 return __memblock_find_range_top_down(start, end, size, align,
302 nid, flags);
303 }
304
305 /**
306 * memblock_find_in_range - find free area in given range
307 * @start: start of candidate range
308 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
309 * %MEMBLOCK_ALLOC_ACCESSIBLE
310 * @size: size of free area to find
311 * @align: alignment of free area to find
312 *
313 * Find @size free area aligned to @align in the specified range.
314 *
315 * Return:
316 * Found address on success, 0 on failure.
317 */
memblock_find_in_range(phys_addr_t start,phys_addr_t end,phys_addr_t size,phys_addr_t align)318 static phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
319 phys_addr_t end, phys_addr_t size,
320 phys_addr_t align)
321 {
322 phys_addr_t ret;
323 enum memblock_flags flags = choose_memblock_flags();
324
325 again:
326 ret = memblock_find_in_range_node(size, align, start, end,
327 NUMA_NO_NODE, flags);
328
329 if (!ret && (flags & MEMBLOCK_MIRROR)) {
330 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
331 &size);
332 flags &= ~MEMBLOCK_MIRROR;
333 goto again;
334 }
335
336 return ret;
337 }
338
memblock_remove_region(struct memblock_type * type,unsigned long r)339 static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
340 {
341 type->total_size -= type->regions[r].size;
342 memmove(&type->regions[r], &type->regions[r + 1],
343 (type->cnt - (r + 1)) * sizeof(type->regions[r]));
344 type->cnt--;
345
346 /* Special case for empty arrays */
347 if (type->cnt == 0) {
348 WARN_ON(type->total_size != 0);
349 type->cnt = 1;
350 type->regions[0].base = 0;
351 type->regions[0].size = 0;
352 type->regions[0].flags = 0;
353 memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
354 }
355 }
356
357 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
358 /**
359 * memblock_discard - discard memory and reserved arrays if they were allocated
360 */
memblock_discard(void)361 void __init memblock_discard(void)
362 {
363 phys_addr_t addr, size;
364
365 if (memblock.reserved.regions != memblock_reserved_init_regions) {
366 addr = __pa(memblock.reserved.regions);
367 size = PAGE_ALIGN(sizeof(struct memblock_region) *
368 memblock.reserved.max);
369 __memblock_free_late(addr, size);
370 }
371
372 if (memblock.memory.regions != memblock_memory_init_regions) {
373 addr = __pa(memblock.memory.regions);
374 size = PAGE_ALIGN(sizeof(struct memblock_region) *
375 memblock.memory.max);
376 __memblock_free_late(addr, size);
377 }
378
379 memblock_memory = NULL;
380 }
381 #endif
382
383 /**
384 * memblock_double_array - double the size of the memblock regions array
385 * @type: memblock type of the regions array being doubled
386 * @new_area_start: starting address of memory range to avoid overlap with
387 * @new_area_size: size of memory range to avoid overlap with
388 *
389 * Double the size of the @type regions array. If memblock is being used to
390 * allocate memory for a new reserved regions array and there is a previously
391 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
392 * waiting to be reserved, ensure the memory used by the new array does
393 * not overlap.
394 *
395 * Return:
396 * 0 on success, -1 on failure.
397 */
memblock_double_array(struct memblock_type * type,phys_addr_t new_area_start,phys_addr_t new_area_size)398 static int __init_memblock memblock_double_array(struct memblock_type *type,
399 phys_addr_t new_area_start,
400 phys_addr_t new_area_size)
401 {
402 struct memblock_region *new_array, *old_array;
403 phys_addr_t old_alloc_size, new_alloc_size;
404 phys_addr_t old_size, new_size, addr, new_end;
405 int use_slab = slab_is_available();
406 int *in_slab;
407
408 /* We don't allow resizing until we know about the reserved regions
409 * of memory that aren't suitable for allocation
410 */
411 if (!memblock_can_resize)
412 return -1;
413
414 /* Calculate new doubled size */
415 old_size = type->max * sizeof(struct memblock_region);
416 new_size = old_size << 1;
417 /*
418 * We need to allocated new one align to PAGE_SIZE,
419 * so we can free them completely later.
420 */
421 old_alloc_size = PAGE_ALIGN(old_size);
422 new_alloc_size = PAGE_ALIGN(new_size);
423
424 /* Retrieve the slab flag */
425 if (type == &memblock.memory)
426 in_slab = &memblock_memory_in_slab;
427 else
428 in_slab = &memblock_reserved_in_slab;
429
430 /* Try to find some space for it */
431 if (use_slab) {
432 new_array = kmalloc(new_size, GFP_KERNEL);
433 addr = new_array ? __pa(new_array) : 0;
434 } else {
435 /* only exclude range when trying to double reserved.regions */
436 if (type != &memblock.reserved)
437 new_area_start = new_area_size = 0;
438
439 addr = memblock_find_in_range(new_area_start + new_area_size,
440 memblock.current_limit,
441 new_alloc_size, PAGE_SIZE);
442 if (!addr && new_area_size)
443 addr = memblock_find_in_range(0,
444 min(new_area_start, memblock.current_limit),
445 new_alloc_size, PAGE_SIZE);
446
447 new_array = addr ? __va(addr) : NULL;
448 }
449 if (!addr) {
450 pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
451 type->name, type->max, type->max * 2);
452 return -1;
453 }
454
455 new_end = addr + new_size - 1;
456 memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
457 type->name, type->max * 2, &addr, &new_end);
458
459 /*
460 * Found space, we now need to move the array over before we add the
461 * reserved region since it may be our reserved array itself that is
462 * full.
463 */
464 memcpy(new_array, type->regions, old_size);
465 memset(new_array + type->max, 0, old_size);
466 old_array = type->regions;
467 type->regions = new_array;
468 type->max <<= 1;
469
470 /* Free old array. We needn't free it if the array is the static one */
471 if (*in_slab)
472 kfree(old_array);
473 else if (old_array != memblock_memory_init_regions &&
474 old_array != memblock_reserved_init_regions)
475 memblock_free_ptr(old_array, old_alloc_size);
476
477 /*
478 * Reserve the new array if that comes from the memblock. Otherwise, we
479 * needn't do it
480 */
481 if (!use_slab)
482 BUG_ON(memblock_reserve(addr, new_alloc_size));
483
484 /* Update slab flag */
485 *in_slab = use_slab;
486
487 return 0;
488 }
489
490 /**
491 * memblock_merge_regions - merge neighboring compatible regions
492 * @type: memblock type to scan
493 *
494 * Scan @type and merge neighboring compatible regions.
495 */
memblock_merge_regions(struct memblock_type * type)496 static void __init_memblock memblock_merge_regions(struct memblock_type *type)
497 {
498 int i = 0;
499
500 /* cnt never goes below 1 */
501 while (i < type->cnt - 1) {
502 struct memblock_region *this = &type->regions[i];
503 struct memblock_region *next = &type->regions[i + 1];
504
505 if (this->base + this->size != next->base ||
506 memblock_get_region_node(this) !=
507 memblock_get_region_node(next) ||
508 this->flags != next->flags) {
509 BUG_ON(this->base + this->size > next->base);
510 i++;
511 continue;
512 }
513
514 this->size += next->size;
515 /* move forward from next + 1, index of which is i + 2 */
516 memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
517 type->cnt--;
518 }
519 }
520
521 /**
522 * memblock_insert_region - insert new memblock region
523 * @type: memblock type to insert into
524 * @idx: index for the insertion point
525 * @base: base address of the new region
526 * @size: size of the new region
527 * @nid: node id of the new region
528 * @flags: flags of the new region
529 *
530 * Insert new memblock region [@base, @base + @size) into @type at @idx.
531 * @type must already have extra room to accommodate the new region.
532 */
memblock_insert_region(struct memblock_type * type,int idx,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)533 static void __init_memblock memblock_insert_region(struct memblock_type *type,
534 int idx, phys_addr_t base,
535 phys_addr_t size,
536 int nid,
537 enum memblock_flags flags)
538 {
539 struct memblock_region *rgn = &type->regions[idx];
540
541 BUG_ON(type->cnt >= type->max);
542 memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
543 rgn->base = base;
544 rgn->size = size;
545 rgn->flags = flags;
546 memblock_set_region_node(rgn, nid);
547 type->cnt++;
548 type->total_size += size;
549 }
550
551 /**
552 * memblock_add_range - add new memblock region
553 * @type: memblock type to add new region into
554 * @base: base address of the new region
555 * @size: size of the new region
556 * @nid: nid of the new region
557 * @flags: flags of the new region
558 *
559 * Add new memblock region [@base, @base + @size) into @type. The new region
560 * is allowed to overlap with existing ones - overlaps don't affect already
561 * existing regions. @type is guaranteed to be minimal (all neighbouring
562 * compatible regions are merged) after the addition.
563 *
564 * Return:
565 * 0 on success, -errno on failure.
566 */
memblock_add_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int nid,enum memblock_flags flags)567 static int __init_memblock memblock_add_range(struct memblock_type *type,
568 phys_addr_t base, phys_addr_t size,
569 int nid, enum memblock_flags flags)
570 {
571 bool insert = false;
572 phys_addr_t obase = base;
573 phys_addr_t end = base + memblock_cap_size(base, &size);
574 int idx, nr_new;
575 struct memblock_region *rgn;
576
577 if (!size)
578 return 0;
579
580 /* special case for empty array */
581 if (type->regions[0].size == 0) {
582 WARN_ON(type->cnt != 1 || type->total_size);
583 type->regions[0].base = base;
584 type->regions[0].size = size;
585 type->regions[0].flags = flags;
586 memblock_set_region_node(&type->regions[0], nid);
587 type->total_size = size;
588 return 0;
589 }
590 repeat:
591 /*
592 * The following is executed twice. Once with %false @insert and
593 * then with %true. The first counts the number of regions needed
594 * to accommodate the new area. The second actually inserts them.
595 */
596 base = obase;
597 nr_new = 0;
598
599 for_each_memblock_type(idx, type, rgn) {
600 phys_addr_t rbase = rgn->base;
601 phys_addr_t rend = rbase + rgn->size;
602
603 if (rbase >= end)
604 break;
605 if (rend <= base)
606 continue;
607 /*
608 * @rgn overlaps. If it separates the lower part of new
609 * area, insert that portion.
610 */
611 if (rbase > base) {
612 #ifdef CONFIG_NUMA
613 WARN_ON(nid != memblock_get_region_node(rgn));
614 #endif
615 WARN_ON(flags != rgn->flags);
616 nr_new++;
617 if (insert)
618 memblock_insert_region(type, idx++, base,
619 rbase - base, nid,
620 flags);
621 }
622 /* area below @rend is dealt with, forget about it */
623 base = min(rend, end);
624 }
625
626 /* insert the remaining portion */
627 if (base < end) {
628 nr_new++;
629 if (insert)
630 memblock_insert_region(type, idx, base, end - base,
631 nid, flags);
632 }
633
634 if (!nr_new)
635 return 0;
636
637 /*
638 * If this was the first round, resize array and repeat for actual
639 * insertions; otherwise, merge and return.
640 */
641 if (!insert) {
642 while (type->cnt + nr_new > type->max)
643 if (memblock_double_array(type, obase, size) < 0)
644 return -ENOMEM;
645 insert = true;
646 goto repeat;
647 } else {
648 memblock_merge_regions(type);
649 return 0;
650 }
651 }
652
653 /**
654 * memblock_add_node - add new memblock region within a NUMA node
655 * @base: base address of the new region
656 * @size: size of the new region
657 * @nid: nid of the new region
658 *
659 * Add new memblock region [@base, @base + @size) to the "memory"
660 * type. See memblock_add_range() description for mode details
661 *
662 * Return:
663 * 0 on success, -errno on failure.
664 */
memblock_add_node(phys_addr_t base,phys_addr_t size,int nid)665 int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
666 int nid)
667 {
668 phys_addr_t end = base + size - 1;
669
670 memblock_dbg("%s: [%pa-%pa] nid=%d %pS\n", __func__,
671 &base, &end, nid, (void *)_RET_IP_);
672
673 return memblock_add_range(&memblock.memory, base, size, nid, 0);
674 }
675
676 /**
677 * memblock_add - add new memblock region
678 * @base: base address of the new region
679 * @size: size of the new region
680 *
681 * Add new memblock region [@base, @base + @size) to the "memory"
682 * type. See memblock_add_range() description for mode details
683 *
684 * Return:
685 * 0 on success, -errno on failure.
686 */
memblock_add(phys_addr_t base,phys_addr_t size)687 int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
688 {
689 phys_addr_t end = base + size - 1;
690
691 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
692 &base, &end, (void *)_RET_IP_);
693
694 return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
695 }
696
697 /**
698 * memblock_isolate_range - isolate given range into disjoint memblocks
699 * @type: memblock type to isolate range for
700 * @base: base of range to isolate
701 * @size: size of range to isolate
702 * @start_rgn: out parameter for the start of isolated region
703 * @end_rgn: out parameter for the end of isolated region
704 *
705 * Walk @type and ensure that regions don't cross the boundaries defined by
706 * [@base, @base + @size). Crossing regions are split at the boundaries,
707 * which may create at most two more regions. The index of the first
708 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
709 *
710 * Return:
711 * 0 on success, -errno on failure.
712 */
memblock_isolate_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size,int * start_rgn,int * end_rgn)713 static int __init_memblock memblock_isolate_range(struct memblock_type *type,
714 phys_addr_t base, phys_addr_t size,
715 int *start_rgn, int *end_rgn)
716 {
717 phys_addr_t end = base + memblock_cap_size(base, &size);
718 int idx;
719 struct memblock_region *rgn;
720
721 *start_rgn = *end_rgn = 0;
722
723 if (!size)
724 return 0;
725
726 /* we'll create at most two more regions */
727 while (type->cnt + 2 > type->max)
728 if (memblock_double_array(type, base, size) < 0)
729 return -ENOMEM;
730
731 for_each_memblock_type(idx, type, rgn) {
732 phys_addr_t rbase = rgn->base;
733 phys_addr_t rend = rbase + rgn->size;
734
735 if (rbase >= end)
736 break;
737 if (rend <= base)
738 continue;
739
740 if (rbase < base) {
741 /*
742 * @rgn intersects from below. Split and continue
743 * to process the next region - the new top half.
744 */
745 rgn->base = base;
746 rgn->size -= base - rbase;
747 type->total_size -= base - rbase;
748 memblock_insert_region(type, idx, rbase, base - rbase,
749 memblock_get_region_node(rgn),
750 rgn->flags);
751 } else if (rend > end) {
752 /*
753 * @rgn intersects from above. Split and redo the
754 * current region - the new bottom half.
755 */
756 rgn->base = end;
757 rgn->size -= end - rbase;
758 type->total_size -= end - rbase;
759 memblock_insert_region(type, idx--, rbase, end - rbase,
760 memblock_get_region_node(rgn),
761 rgn->flags);
762 } else {
763 /* @rgn is fully contained, record it */
764 if (!*end_rgn)
765 *start_rgn = idx;
766 *end_rgn = idx + 1;
767 }
768 }
769
770 return 0;
771 }
772
memblock_remove_range(struct memblock_type * type,phys_addr_t base,phys_addr_t size)773 static int __init_memblock memblock_remove_range(struct memblock_type *type,
774 phys_addr_t base, phys_addr_t size)
775 {
776 int start_rgn, end_rgn;
777 int i, ret;
778
779 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
780 if (ret)
781 return ret;
782
783 for (i = end_rgn - 1; i >= start_rgn; i--)
784 memblock_remove_region(type, i);
785 return 0;
786 }
787
memblock_remove(phys_addr_t base,phys_addr_t size)788 int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
789 {
790 phys_addr_t end = base + size - 1;
791
792 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
793 &base, &end, (void *)_RET_IP_);
794
795 return memblock_remove_range(&memblock.memory, base, size);
796 }
797
798 /**
799 * memblock_free_ptr - free boot memory allocation
800 * @ptr: starting address of the boot memory allocation
801 * @size: size of the boot memory block in bytes
802 *
803 * Free boot memory block previously allocated by memblock_alloc_xx() API.
804 * The freeing memory will not be released to the buddy allocator.
805 */
memblock_free_ptr(void * ptr,size_t size)806 void __init_memblock memblock_free_ptr(void *ptr, size_t size)
807 {
808 if (ptr)
809 memblock_free(__pa(ptr), size);
810 }
811
812 /**
813 * memblock_free - free boot memory block
814 * @base: phys starting address of the boot memory block
815 * @size: size of the boot memory block in bytes
816 *
817 * Free boot memory block previously allocated by memblock_alloc_xx() API.
818 * The freeing memory will not be released to the buddy allocator.
819 */
memblock_free(phys_addr_t base,phys_addr_t size)820 int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
821 {
822 phys_addr_t end = base + size - 1;
823
824 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
825 &base, &end, (void *)_RET_IP_);
826
827 kmemleak_free_part_phys(base, size);
828 return memblock_remove_range(&memblock.reserved, base, size);
829 }
830
memblock_reserve(phys_addr_t base,phys_addr_t size)831 int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
832 {
833 phys_addr_t end = base + size - 1;
834
835 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
836 &base, &end, (void *)_RET_IP_);
837
838 return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
839 }
840
841 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
memblock_physmem_add(phys_addr_t base,phys_addr_t size)842 int __init_memblock memblock_physmem_add(phys_addr_t base, phys_addr_t size)
843 {
844 phys_addr_t end = base + size - 1;
845
846 memblock_dbg("%s: [%pa-%pa] %pS\n", __func__,
847 &base, &end, (void *)_RET_IP_);
848
849 return memblock_add_range(&physmem, base, size, MAX_NUMNODES, 0);
850 }
851 #endif
852
853 /**
854 * memblock_setclr_flag - set or clear flag for a memory region
855 * @base: base address of the region
856 * @size: size of the region
857 * @set: set or clear the flag
858 * @flag: the flag to update
859 *
860 * This function isolates region [@base, @base + @size), and sets/clears flag
861 *
862 * Return: 0 on success, -errno on failure.
863 */
memblock_setclr_flag(phys_addr_t base,phys_addr_t size,int set,int flag)864 static int __init_memblock memblock_setclr_flag(phys_addr_t base,
865 phys_addr_t size, int set, int flag)
866 {
867 struct memblock_type *type = &memblock.memory;
868 int i, ret, start_rgn, end_rgn;
869
870 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
871 if (ret)
872 return ret;
873
874 for (i = start_rgn; i < end_rgn; i++) {
875 struct memblock_region *r = &type->regions[i];
876
877 if (set)
878 r->flags |= flag;
879 else
880 r->flags &= ~flag;
881 }
882
883 memblock_merge_regions(type);
884 return 0;
885 }
886
887 /**
888 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
889 * @base: the base phys addr of the region
890 * @size: the size of the region
891 *
892 * Return: 0 on success, -errno on failure.
893 */
memblock_mark_hotplug(phys_addr_t base,phys_addr_t size)894 int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
895 {
896 return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
897 }
898
899 /**
900 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
901 * @base: the base phys addr of the region
902 * @size: the size of the region
903 *
904 * Return: 0 on success, -errno on failure.
905 */
memblock_clear_hotplug(phys_addr_t base,phys_addr_t size)906 int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
907 {
908 return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
909 }
910
911 /**
912 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
913 * @base: the base phys addr of the region
914 * @size: the size of the region
915 *
916 * Return: 0 on success, -errno on failure.
917 */
memblock_mark_mirror(phys_addr_t base,phys_addr_t size)918 int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
919 {
920 system_has_some_mirror = true;
921
922 return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
923 }
924
925 /**
926 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
927 * @base: the base phys addr of the region
928 * @size: the size of the region
929 *
930 * The memory regions marked with %MEMBLOCK_NOMAP will not be added to the
931 * direct mapping of the physical memory. These regions will still be
932 * covered by the memory map. The struct page representing NOMAP memory
933 * frames in the memory map will be PageReserved()
934 *
935 * Note: if the memory being marked %MEMBLOCK_NOMAP was allocated from
936 * memblock, the caller must inform kmemleak to ignore that memory
937 *
938 * Return: 0 on success, -errno on failure.
939 */
memblock_mark_nomap(phys_addr_t base,phys_addr_t size)940 int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
941 {
942 return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
943 }
944
945 /**
946 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
947 * @base: the base phys addr of the region
948 * @size: the size of the region
949 *
950 * Return: 0 on success, -errno on failure.
951 */
memblock_clear_nomap(phys_addr_t base,phys_addr_t size)952 int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
953 {
954 return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
955 }
956
should_skip_region(struct memblock_type * type,struct memblock_region * m,int nid,int flags)957 static bool should_skip_region(struct memblock_type *type,
958 struct memblock_region *m,
959 int nid, int flags)
960 {
961 int m_nid = memblock_get_region_node(m);
962
963 /* we never skip regions when iterating memblock.reserved or physmem */
964 if (type != memblock_memory)
965 return false;
966
967 /* only memory regions are associated with nodes, check it */
968 if (nid != NUMA_NO_NODE && nid != m_nid)
969 return true;
970
971 /* skip hotpluggable memory regions if needed */
972 if (movable_node_is_enabled() && memblock_is_hotpluggable(m) &&
973 !(flags & MEMBLOCK_HOTPLUG))
974 return true;
975
976 /* if we want mirror memory skip non-mirror memory regions */
977 if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
978 return true;
979
980 /* skip nomap memory unless we were asked for it explicitly */
981 if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
982 return true;
983
984 return false;
985 }
986
987 /**
988 * __next_mem_range - next function for for_each_free_mem_range() etc.
989 * @idx: pointer to u64 loop variable
990 * @nid: node selector, %NUMA_NO_NODE for all nodes
991 * @flags: pick from blocks based on memory attributes
992 * @type_a: pointer to memblock_type from where the range is taken
993 * @type_b: pointer to memblock_type which excludes memory from being taken
994 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
995 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
996 * @out_nid: ptr to int for nid of the range, can be %NULL
997 *
998 * Find the first area from *@idx which matches @nid, fill the out
999 * parameters, and update *@idx for the next iteration. The lower 32bit of
1000 * *@idx contains index into type_a and the upper 32bit indexes the
1001 * areas before each region in type_b. For example, if type_b regions
1002 * look like the following,
1003 *
1004 * 0:[0-16), 1:[32-48), 2:[128-130)
1005 *
1006 * The upper 32bit indexes the following regions.
1007 *
1008 * 0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
1009 *
1010 * As both region arrays are sorted, the function advances the two indices
1011 * in lockstep and returns each intersection.
1012 */
__next_mem_range(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1013 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
1014 struct memblock_type *type_a,
1015 struct memblock_type *type_b, phys_addr_t *out_start,
1016 phys_addr_t *out_end, int *out_nid)
1017 {
1018 int idx_a = *idx & 0xffffffff;
1019 int idx_b = *idx >> 32;
1020
1021 if (WARN_ONCE(nid == MAX_NUMNODES,
1022 "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1023 nid = NUMA_NO_NODE;
1024
1025 for (; idx_a < type_a->cnt; idx_a++) {
1026 struct memblock_region *m = &type_a->regions[idx_a];
1027
1028 phys_addr_t m_start = m->base;
1029 phys_addr_t m_end = m->base + m->size;
1030 int m_nid = memblock_get_region_node(m);
1031
1032 if (should_skip_region(type_a, m, nid, flags))
1033 continue;
1034
1035 if (!type_b) {
1036 if (out_start)
1037 *out_start = m_start;
1038 if (out_end)
1039 *out_end = m_end;
1040 if (out_nid)
1041 *out_nid = m_nid;
1042 idx_a++;
1043 *idx = (u32)idx_a | (u64)idx_b << 32;
1044 return;
1045 }
1046
1047 /* scan areas before each reservation */
1048 for (; idx_b < type_b->cnt + 1; idx_b++) {
1049 struct memblock_region *r;
1050 phys_addr_t r_start;
1051 phys_addr_t r_end;
1052
1053 r = &type_b->regions[idx_b];
1054 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1055 r_end = idx_b < type_b->cnt ?
1056 r->base : PHYS_ADDR_MAX;
1057
1058 /*
1059 * if idx_b advanced past idx_a,
1060 * break out to advance idx_a
1061 */
1062 if (r_start >= m_end)
1063 break;
1064 /* if the two regions intersect, we're done */
1065 if (m_start < r_end) {
1066 if (out_start)
1067 *out_start =
1068 max(m_start, r_start);
1069 if (out_end)
1070 *out_end = min(m_end, r_end);
1071 if (out_nid)
1072 *out_nid = m_nid;
1073 /*
1074 * The region which ends first is
1075 * advanced for the next iteration.
1076 */
1077 if (m_end <= r_end)
1078 idx_a++;
1079 else
1080 idx_b++;
1081 *idx = (u32)idx_a | (u64)idx_b << 32;
1082 return;
1083 }
1084 }
1085 }
1086
1087 /* signal end of iteration */
1088 *idx = ULLONG_MAX;
1089 }
1090
1091 /**
1092 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1093 *
1094 * @idx: pointer to u64 loop variable
1095 * @nid: node selector, %NUMA_NO_NODE for all nodes
1096 * @flags: pick from blocks based on memory attributes
1097 * @type_a: pointer to memblock_type from where the range is taken
1098 * @type_b: pointer to memblock_type which excludes memory from being taken
1099 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1100 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1101 * @out_nid: ptr to int for nid of the range, can be %NULL
1102 *
1103 * Finds the next range from type_a which is not marked as unsuitable
1104 * in type_b.
1105 *
1106 * Reverse of __next_mem_range().
1107 */
__next_mem_range_rev(u64 * idx,int nid,enum memblock_flags flags,struct memblock_type * type_a,struct memblock_type * type_b,phys_addr_t * out_start,phys_addr_t * out_end,int * out_nid)1108 void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1109 enum memblock_flags flags,
1110 struct memblock_type *type_a,
1111 struct memblock_type *type_b,
1112 phys_addr_t *out_start,
1113 phys_addr_t *out_end, int *out_nid)
1114 {
1115 int idx_a = *idx & 0xffffffff;
1116 int idx_b = *idx >> 32;
1117
1118 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1119 nid = NUMA_NO_NODE;
1120
1121 if (*idx == (u64)ULLONG_MAX) {
1122 idx_a = type_a->cnt - 1;
1123 if (type_b != NULL)
1124 idx_b = type_b->cnt;
1125 else
1126 idx_b = 0;
1127 }
1128
1129 for (; idx_a >= 0; idx_a--) {
1130 struct memblock_region *m = &type_a->regions[idx_a];
1131
1132 phys_addr_t m_start = m->base;
1133 phys_addr_t m_end = m->base + m->size;
1134 int m_nid = memblock_get_region_node(m);
1135
1136 if (should_skip_region(type_a, m, nid, flags))
1137 continue;
1138
1139 if (!type_b) {
1140 if (out_start)
1141 *out_start = m_start;
1142 if (out_end)
1143 *out_end = m_end;
1144 if (out_nid)
1145 *out_nid = m_nid;
1146 idx_a--;
1147 *idx = (u32)idx_a | (u64)idx_b << 32;
1148 return;
1149 }
1150
1151 /* scan areas before each reservation */
1152 for (; idx_b >= 0; idx_b--) {
1153 struct memblock_region *r;
1154 phys_addr_t r_start;
1155 phys_addr_t r_end;
1156
1157 r = &type_b->regions[idx_b];
1158 r_start = idx_b ? r[-1].base + r[-1].size : 0;
1159 r_end = idx_b < type_b->cnt ?
1160 r->base : PHYS_ADDR_MAX;
1161 /*
1162 * if idx_b advanced past idx_a,
1163 * break out to advance idx_a
1164 */
1165
1166 if (r_end <= m_start)
1167 break;
1168 /* if the two regions intersect, we're done */
1169 if (m_end > r_start) {
1170 if (out_start)
1171 *out_start = max(m_start, r_start);
1172 if (out_end)
1173 *out_end = min(m_end, r_end);
1174 if (out_nid)
1175 *out_nid = m_nid;
1176 if (m_start >= r_start)
1177 idx_a--;
1178 else
1179 idx_b--;
1180 *idx = (u32)idx_a | (u64)idx_b << 32;
1181 return;
1182 }
1183 }
1184 }
1185 /* signal end of iteration */
1186 *idx = ULLONG_MAX;
1187 }
1188
1189 /*
1190 * Common iterator interface used to define for_each_mem_pfn_range().
1191 */
__next_mem_pfn_range(int * idx,int nid,unsigned long * out_start_pfn,unsigned long * out_end_pfn,int * out_nid)1192 void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1193 unsigned long *out_start_pfn,
1194 unsigned long *out_end_pfn, int *out_nid)
1195 {
1196 struct memblock_type *type = &memblock.memory;
1197 struct memblock_region *r;
1198 int r_nid;
1199
1200 while (++*idx < type->cnt) {
1201 r = &type->regions[*idx];
1202 r_nid = memblock_get_region_node(r);
1203
1204 if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1205 continue;
1206 if (nid == MAX_NUMNODES || nid == r_nid)
1207 break;
1208 }
1209 if (*idx >= type->cnt) {
1210 *idx = -1;
1211 return;
1212 }
1213
1214 if (out_start_pfn)
1215 *out_start_pfn = PFN_UP(r->base);
1216 if (out_end_pfn)
1217 *out_end_pfn = PFN_DOWN(r->base + r->size);
1218 if (out_nid)
1219 *out_nid = r_nid;
1220 }
1221
1222 /**
1223 * memblock_set_node - set node ID on memblock regions
1224 * @base: base of area to set node ID for
1225 * @size: size of area to set node ID for
1226 * @type: memblock type to set node ID for
1227 * @nid: node ID to set
1228 *
1229 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1230 * Regions which cross the area boundaries are split as necessary.
1231 *
1232 * Return:
1233 * 0 on success, -errno on failure.
1234 */
memblock_set_node(phys_addr_t base,phys_addr_t size,struct memblock_type * type,int nid)1235 int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1236 struct memblock_type *type, int nid)
1237 {
1238 #ifdef CONFIG_NUMA
1239 int start_rgn, end_rgn;
1240 int i, ret;
1241
1242 ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1243 if (ret)
1244 return ret;
1245
1246 for (i = start_rgn; i < end_rgn; i++)
1247 memblock_set_region_node(&type->regions[i], nid);
1248
1249 memblock_merge_regions(type);
1250 #endif
1251 return 0;
1252 }
1253
1254 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1255 /**
1256 * __next_mem_pfn_range_in_zone - iterator for for_each_*_range_in_zone()
1257 *
1258 * @idx: pointer to u64 loop variable
1259 * @zone: zone in which all of the memory blocks reside
1260 * @out_spfn: ptr to ulong for start pfn of the range, can be %NULL
1261 * @out_epfn: ptr to ulong for end pfn of the range, can be %NULL
1262 *
1263 * This function is meant to be a zone/pfn specific wrapper for the
1264 * for_each_mem_range type iterators. Specifically they are used in the
1265 * deferred memory init routines and as such we were duplicating much of
1266 * this logic throughout the code. So instead of having it in multiple
1267 * locations it seemed like it would make more sense to centralize this to
1268 * one new iterator that does everything they need.
1269 */
1270 void __init_memblock
__next_mem_pfn_range_in_zone(u64 * idx,struct zone * zone,unsigned long * out_spfn,unsigned long * out_epfn)1271 __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
1272 unsigned long *out_spfn, unsigned long *out_epfn)
1273 {
1274 int zone_nid = zone_to_nid(zone);
1275 phys_addr_t spa, epa;
1276 int nid;
1277
1278 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1279 &memblock.memory, &memblock.reserved,
1280 &spa, &epa, &nid);
1281
1282 while (*idx != U64_MAX) {
1283 unsigned long epfn = PFN_DOWN(epa);
1284 unsigned long spfn = PFN_UP(spa);
1285
1286 /*
1287 * Verify the end is at least past the start of the zone and
1288 * that we have at least one PFN to initialize.
1289 */
1290 if (zone->zone_start_pfn < epfn && spfn < epfn) {
1291 /* if we went too far just stop searching */
1292 if (zone_end_pfn(zone) <= spfn) {
1293 *idx = U64_MAX;
1294 break;
1295 }
1296
1297 if (out_spfn)
1298 *out_spfn = max(zone->zone_start_pfn, spfn);
1299 if (out_epfn)
1300 *out_epfn = min(zone_end_pfn(zone), epfn);
1301
1302 return;
1303 }
1304
1305 __next_mem_range(idx, zone_nid, MEMBLOCK_NONE,
1306 &memblock.memory, &memblock.reserved,
1307 &spa, &epa, &nid);
1308 }
1309
1310 /* signal end of iteration */
1311 if (out_spfn)
1312 *out_spfn = ULONG_MAX;
1313 if (out_epfn)
1314 *out_epfn = 0;
1315 }
1316
1317 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1318
1319 /**
1320 * memblock_alloc_range_nid - allocate boot memory block
1321 * @size: size of memory block to be allocated in bytes
1322 * @align: alignment of the region and block's size
1323 * @start: the lower bound of the memory region to allocate (phys address)
1324 * @end: the upper bound of the memory region to allocate (phys address)
1325 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1326 * @exact_nid: control the allocation fall back to other nodes
1327 *
1328 * The allocation is performed from memory region limited by
1329 * memblock.current_limit if @end == %MEMBLOCK_ALLOC_ACCESSIBLE.
1330 *
1331 * If the specified node can not hold the requested memory and @exact_nid
1332 * is false, the allocation falls back to any node in the system.
1333 *
1334 * For systems with memory mirroring, the allocation is attempted first
1335 * from the regions with mirroring enabled and then retried from any
1336 * memory region.
1337 *
1338 * In addition, function sets the min_count to 0 using kmemleak_alloc_phys for
1339 * allocated boot memory block, so that it is never reported as leaks.
1340 *
1341 * Return:
1342 * Physical address of allocated memory block on success, %0 on failure.
1343 */
memblock_alloc_range_nid(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,int nid,bool exact_nid)1344 phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1345 phys_addr_t align, phys_addr_t start,
1346 phys_addr_t end, int nid,
1347 bool exact_nid)
1348 {
1349 enum memblock_flags flags = choose_memblock_flags();
1350 phys_addr_t found;
1351
1352 if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1353 nid = NUMA_NO_NODE;
1354
1355 if (!align) {
1356 /* Can't use WARNs this early in boot on powerpc */
1357 dump_stack();
1358 align = SMP_CACHE_BYTES;
1359 }
1360
1361 again:
1362 found = memblock_find_in_range_node(size, align, start, end, nid,
1363 flags);
1364 if (found && !memblock_reserve(found, size))
1365 goto done;
1366
1367 if (nid != NUMA_NO_NODE && !exact_nid) {
1368 found = memblock_find_in_range_node(size, align, start,
1369 end, NUMA_NO_NODE,
1370 flags);
1371 if (found && !memblock_reserve(found, size))
1372 goto done;
1373 }
1374
1375 if (flags & MEMBLOCK_MIRROR) {
1376 flags &= ~MEMBLOCK_MIRROR;
1377 pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1378 &size);
1379 goto again;
1380 }
1381
1382 return 0;
1383
1384 done:
1385 /* Skip kmemleak for kasan_init() due to high volume. */
1386 if (end != MEMBLOCK_ALLOC_KASAN)
1387 /*
1388 * The min_count is set to 0 so that memblock allocated
1389 * blocks are never reported as leaks. This is because many
1390 * of these blocks are only referred via the physical
1391 * address which is not looked up by kmemleak.
1392 */
1393 kmemleak_alloc_phys(found, size, 0, 0);
1394
1395 return found;
1396 }
1397
1398 /**
1399 * memblock_phys_alloc_range - allocate a memory block inside specified range
1400 * @size: size of memory block to be allocated in bytes
1401 * @align: alignment of the region and block's size
1402 * @start: the lower bound of the memory region to allocate (physical address)
1403 * @end: the upper bound of the memory region to allocate (physical address)
1404 *
1405 * Allocate @size bytes in the between @start and @end.
1406 *
1407 * Return: physical address of the allocated memory block on success,
1408 * %0 on failure.
1409 */
memblock_phys_alloc_range(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end)1410 phys_addr_t __init memblock_phys_alloc_range(phys_addr_t size,
1411 phys_addr_t align,
1412 phys_addr_t start,
1413 phys_addr_t end)
1414 {
1415 memblock_dbg("%s: %llu bytes align=0x%llx from=%pa max_addr=%pa %pS\n",
1416 __func__, (u64)size, (u64)align, &start, &end,
1417 (void *)_RET_IP_);
1418 return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1419 false);
1420 }
1421
1422 /**
1423 * memblock_phys_alloc_try_nid - allocate a memory block from specified NUMA node
1424 * @size: size of memory block to be allocated in bytes
1425 * @align: alignment of the region and block's size
1426 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1427 *
1428 * Allocates memory block from the specified NUMA node. If the node
1429 * has no available memory, attempts to allocated from any node in the
1430 * system.
1431 *
1432 * Return: physical address of the allocated memory block on success,
1433 * %0 on failure.
1434 */
memblock_phys_alloc_try_nid(phys_addr_t size,phys_addr_t align,int nid)1435 phys_addr_t __init memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1436 {
1437 return memblock_alloc_range_nid(size, align, 0,
1438 MEMBLOCK_ALLOC_ACCESSIBLE, nid, false);
1439 }
1440
1441 /**
1442 * memblock_alloc_internal - allocate boot memory block
1443 * @size: size of memory block to be allocated in bytes
1444 * @align: alignment of the region and block's size
1445 * @min_addr: the lower bound of the memory region to allocate (phys address)
1446 * @max_addr: the upper bound of the memory region to allocate (phys address)
1447 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1448 * @exact_nid: control the allocation fall back to other nodes
1449 *
1450 * Allocates memory block using memblock_alloc_range_nid() and
1451 * converts the returned physical address to virtual.
1452 *
1453 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1454 * will fall back to memory below @min_addr. Other constraints, such
1455 * as node and mirrored memory will be handled again in
1456 * memblock_alloc_range_nid().
1457 *
1458 * Return:
1459 * Virtual address of allocated memory block on success, NULL on failure.
1460 */
memblock_alloc_internal(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid,bool exact_nid)1461 static void * __init memblock_alloc_internal(
1462 phys_addr_t size, phys_addr_t align,
1463 phys_addr_t min_addr, phys_addr_t max_addr,
1464 int nid, bool exact_nid)
1465 {
1466 phys_addr_t alloc;
1467
1468 /*
1469 * Detect any accidental use of these APIs after slab is ready, as at
1470 * this moment memblock may be deinitialized already and its
1471 * internal data may be destroyed (after execution of memblock_free_all)
1472 */
1473 if (WARN_ON_ONCE(slab_is_available()))
1474 return kzalloc_node(size, GFP_NOWAIT, nid);
1475
1476 if (max_addr > memblock.current_limit)
1477 max_addr = memblock.current_limit;
1478
1479 alloc = memblock_alloc_range_nid(size, align, min_addr, max_addr, nid,
1480 exact_nid);
1481
1482 /* retry allocation without lower limit */
1483 if (!alloc && min_addr)
1484 alloc = memblock_alloc_range_nid(size, align, 0, max_addr, nid,
1485 exact_nid);
1486
1487 if (!alloc)
1488 return NULL;
1489
1490 return phys_to_virt(alloc);
1491 }
1492
1493 /**
1494 * memblock_alloc_exact_nid_raw - allocate boot memory block on the exact node
1495 * without zeroing memory
1496 * @size: size of memory block to be allocated in bytes
1497 * @align: alignment of the region and block's size
1498 * @min_addr: the lower bound of the memory region from where the allocation
1499 * is preferred (phys address)
1500 * @max_addr: the upper bound of the memory region from where the allocation
1501 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1502 * allocate only from memory limited by memblock.current_limit value
1503 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1504 *
1505 * Public function, provides additional debug information (including caller
1506 * info), if enabled. Does not zero allocated memory.
1507 *
1508 * Return:
1509 * Virtual address of allocated memory block on success, NULL on failure.
1510 */
memblock_alloc_exact_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1511 void * __init memblock_alloc_exact_nid_raw(
1512 phys_addr_t size, phys_addr_t align,
1513 phys_addr_t min_addr, phys_addr_t max_addr,
1514 int nid)
1515 {
1516 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1517 __func__, (u64)size, (u64)align, nid, &min_addr,
1518 &max_addr, (void *)_RET_IP_);
1519
1520 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1521 true);
1522 }
1523
1524 /**
1525 * memblock_alloc_try_nid_raw - allocate boot memory block without zeroing
1526 * memory and without panicking
1527 * @size: size of memory block to be allocated in bytes
1528 * @align: alignment of the region and block's size
1529 * @min_addr: the lower bound of the memory region from where the allocation
1530 * is preferred (phys address)
1531 * @max_addr: the upper bound of the memory region from where the allocation
1532 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1533 * allocate only from memory limited by memblock.current_limit value
1534 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1535 *
1536 * Public function, provides additional debug information (including caller
1537 * info), if enabled. Does not zero allocated memory, does not panic if request
1538 * cannot be satisfied.
1539 *
1540 * Return:
1541 * Virtual address of allocated memory block on success, NULL on failure.
1542 */
memblock_alloc_try_nid_raw(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1543 void * __init memblock_alloc_try_nid_raw(
1544 phys_addr_t size, phys_addr_t align,
1545 phys_addr_t min_addr, phys_addr_t max_addr,
1546 int nid)
1547 {
1548 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1549 __func__, (u64)size, (u64)align, nid, &min_addr,
1550 &max_addr, (void *)_RET_IP_);
1551
1552 return memblock_alloc_internal(size, align, min_addr, max_addr, nid,
1553 false);
1554 }
1555
1556 /**
1557 * memblock_alloc_try_nid - allocate boot memory block
1558 * @size: size of memory block to be allocated in bytes
1559 * @align: alignment of the region and block's size
1560 * @min_addr: the lower bound of the memory region from where the allocation
1561 * is preferred (phys address)
1562 * @max_addr: the upper bound of the memory region from where the allocation
1563 * is preferred (phys address), or %MEMBLOCK_ALLOC_ACCESSIBLE to
1564 * allocate only from memory limited by memblock.current_limit value
1565 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1566 *
1567 * Public function, provides additional debug information (including caller
1568 * info), if enabled. This function zeroes the allocated memory.
1569 *
1570 * Return:
1571 * Virtual address of allocated memory block on success, NULL on failure.
1572 */
memblock_alloc_try_nid(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr,phys_addr_t max_addr,int nid)1573 void * __init memblock_alloc_try_nid(
1574 phys_addr_t size, phys_addr_t align,
1575 phys_addr_t min_addr, phys_addr_t max_addr,
1576 int nid)
1577 {
1578 void *ptr;
1579
1580 memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pS\n",
1581 __func__, (u64)size, (u64)align, nid, &min_addr,
1582 &max_addr, (void *)_RET_IP_);
1583 ptr = memblock_alloc_internal(size, align,
1584 min_addr, max_addr, nid, false);
1585 if (ptr)
1586 memset(ptr, 0, size);
1587
1588 return ptr;
1589 }
1590
1591 /**
1592 * __memblock_free_late - free pages directly to buddy allocator
1593 * @base: phys starting address of the boot memory block
1594 * @size: size of the boot memory block in bytes
1595 *
1596 * This is only useful when the memblock allocator has already been torn
1597 * down, but we are still initializing the system. Pages are released directly
1598 * to the buddy allocator.
1599 */
__memblock_free_late(phys_addr_t base,phys_addr_t size)1600 void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1601 {
1602 phys_addr_t cursor, end;
1603
1604 end = base + size - 1;
1605 memblock_dbg("%s: [%pa-%pa] %pS\n",
1606 __func__, &base, &end, (void *)_RET_IP_);
1607 kmemleak_free_part_phys(base, size);
1608 cursor = PFN_UP(base);
1609 end = PFN_DOWN(base + size);
1610
1611 for (; cursor < end; cursor++) {
1612 memblock_free_pages(pfn_to_page(cursor), cursor, 0);
1613 totalram_pages_inc();
1614 }
1615 }
1616
1617 /*
1618 * Remaining API functions
1619 */
1620
memblock_phys_mem_size(void)1621 phys_addr_t __init_memblock memblock_phys_mem_size(void)
1622 {
1623 return memblock.memory.total_size;
1624 }
1625
memblock_reserved_size(void)1626 phys_addr_t __init_memblock memblock_reserved_size(void)
1627 {
1628 return memblock.reserved.total_size;
1629 }
1630
1631 /* lowest address */
memblock_start_of_DRAM(void)1632 phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1633 {
1634 return memblock.memory.regions[0].base;
1635 }
1636
memblock_end_of_DRAM(void)1637 phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1638 {
1639 int idx = memblock.memory.cnt - 1;
1640
1641 return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1642 }
1643
__find_max_addr(phys_addr_t limit)1644 static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1645 {
1646 phys_addr_t max_addr = PHYS_ADDR_MAX;
1647 struct memblock_region *r;
1648
1649 /*
1650 * translate the memory @limit size into the max address within one of
1651 * the memory memblock regions, if the @limit exceeds the total size
1652 * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1653 */
1654 for_each_mem_region(r) {
1655 if (limit <= r->size) {
1656 max_addr = r->base + limit;
1657 break;
1658 }
1659 limit -= r->size;
1660 }
1661
1662 return max_addr;
1663 }
1664
memblock_enforce_memory_limit(phys_addr_t limit)1665 void __init memblock_enforce_memory_limit(phys_addr_t limit)
1666 {
1667 phys_addr_t max_addr;
1668
1669 if (!limit)
1670 return;
1671
1672 max_addr = __find_max_addr(limit);
1673
1674 /* @limit exceeds the total size of the memory, do nothing */
1675 if (max_addr == PHYS_ADDR_MAX)
1676 return;
1677
1678 /* truncate both memory and reserved regions */
1679 memblock_remove_range(&memblock.memory, max_addr,
1680 PHYS_ADDR_MAX);
1681 memblock_remove_range(&memblock.reserved, max_addr,
1682 PHYS_ADDR_MAX);
1683 }
1684
memblock_cap_memory_range(phys_addr_t base,phys_addr_t size)1685 void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1686 {
1687 int start_rgn, end_rgn;
1688 int i, ret;
1689
1690 if (!size)
1691 return;
1692
1693 if (!memblock_memory->total_size) {
1694 pr_warn("%s: No memory registered yet\n", __func__);
1695 return;
1696 }
1697
1698 ret = memblock_isolate_range(&memblock.memory, base, size,
1699 &start_rgn, &end_rgn);
1700 if (ret)
1701 return;
1702
1703 /* remove all the MAP regions */
1704 for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1705 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1706 memblock_remove_region(&memblock.memory, i);
1707
1708 for (i = start_rgn - 1; i >= 0; i--)
1709 if (!memblock_is_nomap(&memblock.memory.regions[i]))
1710 memblock_remove_region(&memblock.memory, i);
1711
1712 /* truncate the reserved regions */
1713 memblock_remove_range(&memblock.reserved, 0, base);
1714 memblock_remove_range(&memblock.reserved,
1715 base + size, PHYS_ADDR_MAX);
1716 }
1717
memblock_mem_limit_remove_map(phys_addr_t limit)1718 void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1719 {
1720 phys_addr_t max_addr;
1721
1722 if (!limit)
1723 return;
1724
1725 max_addr = __find_max_addr(limit);
1726
1727 /* @limit exceeds the total size of the memory, do nothing */
1728 if (max_addr == PHYS_ADDR_MAX)
1729 return;
1730
1731 memblock_cap_memory_range(0, max_addr);
1732 }
1733
memblock_search(struct memblock_type * type,phys_addr_t addr)1734 static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1735 {
1736 unsigned int left = 0, right = type->cnt;
1737
1738 do {
1739 unsigned int mid = (right + left) / 2;
1740
1741 if (addr < type->regions[mid].base)
1742 right = mid;
1743 else if (addr >= (type->regions[mid].base +
1744 type->regions[mid].size))
1745 left = mid + 1;
1746 else
1747 return mid;
1748 } while (left < right);
1749 return -1;
1750 }
1751
memblock_is_reserved(phys_addr_t addr)1752 bool __init_memblock memblock_is_reserved(phys_addr_t addr)
1753 {
1754 return memblock_search(&memblock.reserved, addr) != -1;
1755 }
1756
memblock_is_memory(phys_addr_t addr)1757 bool __init_memblock memblock_is_memory(phys_addr_t addr)
1758 {
1759 return memblock_search(&memblock.memory, addr) != -1;
1760 }
1761
memblock_is_map_memory(phys_addr_t addr)1762 bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1763 {
1764 int i = memblock_search(&memblock.memory, addr);
1765
1766 if (i == -1)
1767 return false;
1768 return !memblock_is_nomap(&memblock.memory.regions[i]);
1769 }
1770
memblock_search_pfn_nid(unsigned long pfn,unsigned long * start_pfn,unsigned long * end_pfn)1771 int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1772 unsigned long *start_pfn, unsigned long *end_pfn)
1773 {
1774 struct memblock_type *type = &memblock.memory;
1775 int mid = memblock_search(type, PFN_PHYS(pfn));
1776
1777 if (mid == -1)
1778 return -1;
1779
1780 *start_pfn = PFN_DOWN(type->regions[mid].base);
1781 *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1782
1783 return memblock_get_region_node(&type->regions[mid]);
1784 }
1785
1786 /**
1787 * memblock_is_region_memory - check if a region is a subset of memory
1788 * @base: base of region to check
1789 * @size: size of region to check
1790 *
1791 * Check if the region [@base, @base + @size) is a subset of a memory block.
1792 *
1793 * Return:
1794 * 0 if false, non-zero if true
1795 */
memblock_is_region_memory(phys_addr_t base,phys_addr_t size)1796 bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1797 {
1798 int idx = memblock_search(&memblock.memory, base);
1799 phys_addr_t end = base + memblock_cap_size(base, &size);
1800
1801 if (idx == -1)
1802 return false;
1803 return (memblock.memory.regions[idx].base +
1804 memblock.memory.regions[idx].size) >= end;
1805 }
1806
1807 /**
1808 * memblock_is_region_reserved - check if a region intersects reserved memory
1809 * @base: base of region to check
1810 * @size: size of region to check
1811 *
1812 * Check if the region [@base, @base + @size) intersects a reserved
1813 * memory block.
1814 *
1815 * Return:
1816 * True if they intersect, false if not.
1817 */
memblock_is_region_reserved(phys_addr_t base,phys_addr_t size)1818 bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1819 {
1820 return memblock_overlaps_region(&memblock.reserved, base, size);
1821 }
1822
memblock_trim_memory(phys_addr_t align)1823 void __init_memblock memblock_trim_memory(phys_addr_t align)
1824 {
1825 phys_addr_t start, end, orig_start, orig_end;
1826 struct memblock_region *r;
1827
1828 for_each_mem_region(r) {
1829 orig_start = r->base;
1830 orig_end = r->base + r->size;
1831 start = round_up(orig_start, align);
1832 end = round_down(orig_end, align);
1833
1834 if (start == orig_start && end == orig_end)
1835 continue;
1836
1837 if (start < end) {
1838 r->base = start;
1839 r->size = end - start;
1840 } else {
1841 memblock_remove_region(&memblock.memory,
1842 r - memblock.memory.regions);
1843 r--;
1844 }
1845 }
1846 }
1847
memblock_set_current_limit(phys_addr_t limit)1848 void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1849 {
1850 memblock.current_limit = limit;
1851 }
1852
memblock_get_current_limit(void)1853 phys_addr_t __init_memblock memblock_get_current_limit(void)
1854 {
1855 return memblock.current_limit;
1856 }
1857
memblock_dump(struct memblock_type * type)1858 static void __init_memblock memblock_dump(struct memblock_type *type)
1859 {
1860 phys_addr_t base, end, size;
1861 enum memblock_flags flags;
1862 int idx;
1863 struct memblock_region *rgn;
1864
1865 pr_info(" %s.cnt = 0x%lx\n", type->name, type->cnt);
1866
1867 for_each_memblock_type(idx, type, rgn) {
1868 char nid_buf[32] = "";
1869
1870 base = rgn->base;
1871 size = rgn->size;
1872 end = base + size - 1;
1873 flags = rgn->flags;
1874 #ifdef CONFIG_NUMA
1875 if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1876 snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1877 memblock_get_region_node(rgn));
1878 #endif
1879 pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1880 type->name, idx, &base, &end, &size, nid_buf, flags);
1881 }
1882 }
1883
__memblock_dump_all(void)1884 static void __init_memblock __memblock_dump_all(void)
1885 {
1886 pr_info("MEMBLOCK configuration:\n");
1887 pr_info(" memory size = %pa reserved size = %pa\n",
1888 &memblock.memory.total_size,
1889 &memblock.reserved.total_size);
1890
1891 memblock_dump(&memblock.memory);
1892 memblock_dump(&memblock.reserved);
1893 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1894 memblock_dump(&physmem);
1895 #endif
1896 }
1897
memblock_dump_all(void)1898 void __init_memblock memblock_dump_all(void)
1899 {
1900 if (memblock_debug)
1901 __memblock_dump_all();
1902 }
1903
memblock_allow_resize(void)1904 void __init memblock_allow_resize(void)
1905 {
1906 memblock_can_resize = 1;
1907 }
1908
early_memblock(char * p)1909 static int __init early_memblock(char *p)
1910 {
1911 if (p && strstr(p, "debug"))
1912 memblock_debug = 1;
1913 return 0;
1914 }
1915 early_param("memblock", early_memblock);
1916
free_memmap(unsigned long start_pfn,unsigned long end_pfn)1917 static void __init free_memmap(unsigned long start_pfn, unsigned long end_pfn)
1918 {
1919 struct page *start_pg, *end_pg;
1920 phys_addr_t pg, pgend;
1921
1922 /*
1923 * Convert start_pfn/end_pfn to a struct page pointer.
1924 */
1925 start_pg = pfn_to_page(start_pfn - 1) + 1;
1926 end_pg = pfn_to_page(end_pfn - 1) + 1;
1927
1928 /*
1929 * Convert to physical addresses, and round start upwards and end
1930 * downwards.
1931 */
1932 pg = PAGE_ALIGN(__pa(start_pg));
1933 pgend = __pa(end_pg) & PAGE_MASK;
1934
1935 /*
1936 * If there are free pages between these, free the section of the
1937 * memmap array.
1938 */
1939 if (pg < pgend)
1940 memblock_free(pg, pgend - pg);
1941 }
1942
1943 /*
1944 * The mem_map array can get very big. Free the unused area of the memory map.
1945 */
free_unused_memmap(void)1946 static void __init free_unused_memmap(void)
1947 {
1948 unsigned long start, end, prev_end = 0;
1949 int i;
1950
1951 if (!IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) ||
1952 IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
1953 return;
1954
1955 /*
1956 * This relies on each bank being in address order.
1957 * The banks are sorted previously in bootmem_init().
1958 */
1959 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, NULL) {
1960 #ifdef CONFIG_SPARSEMEM
1961 /*
1962 * Take care not to free memmap entries that don't exist
1963 * due to SPARSEMEM sections which aren't present.
1964 */
1965 start = min(start, ALIGN(prev_end, PAGES_PER_SECTION));
1966 #endif
1967 /*
1968 * Align down here since many operations in VM subsystem
1969 * presume that there are no holes in the memory map inside
1970 * a pageblock
1971 */
1972 start = round_down(start, pageblock_nr_pages);
1973
1974 /*
1975 * If we had a previous bank, and there is a space
1976 * between the current bank and the previous, free it.
1977 */
1978 if (prev_end && prev_end < start)
1979 free_memmap(prev_end, start);
1980
1981 /*
1982 * Align up here since many operations in VM subsystem
1983 * presume that there are no holes in the memory map inside
1984 * a pageblock
1985 */
1986 prev_end = ALIGN(end, pageblock_nr_pages);
1987 }
1988
1989 #ifdef CONFIG_SPARSEMEM
1990 if (!IS_ALIGNED(prev_end, PAGES_PER_SECTION)) {
1991 prev_end = ALIGN(end, pageblock_nr_pages);
1992 free_memmap(prev_end, ALIGN(prev_end, PAGES_PER_SECTION));
1993 }
1994 #endif
1995 }
1996
__free_pages_memory(unsigned long start,unsigned long end)1997 static void __init __free_pages_memory(unsigned long start, unsigned long end)
1998 {
1999 int order;
2000
2001 while (start < end) {
2002 order = min(MAX_ORDER - 1UL, __ffs(start));
2003
2004 while (start + (1UL << order) > end)
2005 order--;
2006
2007 memblock_free_pages(pfn_to_page(start), start, order);
2008
2009 start += (1UL << order);
2010 }
2011 }
2012
__free_memory_core(phys_addr_t start,phys_addr_t end)2013 static unsigned long __init __free_memory_core(phys_addr_t start,
2014 phys_addr_t end)
2015 {
2016 unsigned long start_pfn = PFN_UP(start);
2017 unsigned long end_pfn = min_t(unsigned long,
2018 PFN_DOWN(end), max_low_pfn);
2019
2020 if (start_pfn >= end_pfn)
2021 return 0;
2022
2023 __free_pages_memory(start_pfn, end_pfn);
2024
2025 return end_pfn - start_pfn;
2026 }
2027
memmap_init_reserved_pages(void)2028 static void __init memmap_init_reserved_pages(void)
2029 {
2030 struct memblock_region *region;
2031 phys_addr_t start, end;
2032 u64 i;
2033
2034 /* initialize struct pages for the reserved regions */
2035 for_each_reserved_mem_range(i, &start, &end)
2036 reserve_bootmem_region(start, end);
2037
2038 /* and also treat struct pages for the NOMAP regions as PageReserved */
2039 for_each_mem_region(region) {
2040 if (memblock_is_nomap(region)) {
2041 start = region->base;
2042 end = start + region->size;
2043 reserve_bootmem_region(start, end);
2044 }
2045 }
2046 }
2047
free_low_memory_core_early(void)2048 static unsigned long __init free_low_memory_core_early(void)
2049 {
2050 unsigned long count = 0;
2051 phys_addr_t start, end;
2052 u64 i;
2053
2054 memblock_clear_hotplug(0, -1);
2055
2056 memmap_init_reserved_pages();
2057
2058 /*
2059 * We need to use NUMA_NO_NODE instead of NODE_DATA(0)->node_id
2060 * because in some case like Node0 doesn't have RAM installed
2061 * low ram will be on Node1
2062 */
2063 for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end,
2064 NULL)
2065 count += __free_memory_core(start, end);
2066
2067 return count;
2068 }
2069
2070 static int reset_managed_pages_done __initdata;
2071
reset_node_managed_pages(pg_data_t * pgdat)2072 void reset_node_managed_pages(pg_data_t *pgdat)
2073 {
2074 struct zone *z;
2075
2076 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
2077 atomic_long_set(&z->managed_pages, 0);
2078 }
2079
reset_all_zones_managed_pages(void)2080 void __init reset_all_zones_managed_pages(void)
2081 {
2082 struct pglist_data *pgdat;
2083
2084 if (reset_managed_pages_done)
2085 return;
2086
2087 for_each_online_pgdat(pgdat)
2088 reset_node_managed_pages(pgdat);
2089
2090 reset_managed_pages_done = 1;
2091 }
2092
2093 /**
2094 * memblock_free_all - release free pages to the buddy allocator
2095 */
memblock_free_all(void)2096 void __init memblock_free_all(void)
2097 {
2098 unsigned long pages;
2099
2100 free_unused_memmap();
2101 reset_all_zones_managed_pages();
2102
2103 pages = free_low_memory_core_early();
2104 totalram_pages_add(pages);
2105 }
2106
2107 #if defined(CONFIG_DEBUG_FS) && defined(CONFIG_ARCH_KEEP_MEMBLOCK)
2108
memblock_debug_show(struct seq_file * m,void * private)2109 static int memblock_debug_show(struct seq_file *m, void *private)
2110 {
2111 struct memblock_type *type = m->private;
2112 struct memblock_region *reg;
2113 int i;
2114 phys_addr_t end;
2115
2116 for (i = 0; i < type->cnt; i++) {
2117 reg = &type->regions[i];
2118 end = reg->base + reg->size - 1;
2119
2120 seq_printf(m, "%4d: ", i);
2121 seq_printf(m, "%pa..%pa\n", ®->base, &end);
2122 }
2123 return 0;
2124 }
2125 DEFINE_SHOW_ATTRIBUTE(memblock_debug);
2126
memblock_init_debugfs(void)2127 static int __init memblock_init_debugfs(void)
2128 {
2129 struct dentry *root = debugfs_create_dir("memblock", NULL);
2130
2131 debugfs_create_file("memory", 0444, root,
2132 &memblock.memory, &memblock_debug_fops);
2133 debugfs_create_file("reserved", 0444, root,
2134 &memblock.reserved, &memblock_debug_fops);
2135 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
2136 debugfs_create_file("physmem", 0444, root, &physmem,
2137 &memblock_debug_fops);
2138 #endif
2139
2140 return 0;
2141 }
2142 __initcall(memblock_init_debugfs);
2143
2144 #endif /* CONFIG_DEBUG_FS */
2145