1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Memory merging support.
4 *
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
7 *
8 * Copyright (C) 2008-2009 Red Hat, Inc.
9 * Authors:
10 * Izik Eidus
11 * Andrea Arcangeli
12 * Chris Wright
13 * Hugh Dickins
14 */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x) (x)
47 #define DO_NUMA(x) do { (x); } while (0)
48 #else
49 #define NUMA(x) (0)
50 #define DO_NUMA(x) do { } while (0)
51 #endif
52
53 /**
54 * DOC: Overview
55 *
56 * A few notes about the KSM scanning process,
57 * to make it easier to understand the data structures below:
58 *
59 * In order to reduce excessive scanning, KSM sorts the memory pages by their
60 * contents into a data structure that holds pointers to the pages' locations.
61 *
62 * Since the contents of the pages may change at any moment, KSM cannot just
63 * insert the pages into a normal sorted tree and expect it to find anything.
64 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 *
66 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67 * by their contents. Because each such page is write-protected, searching on
68 * this tree is fully assured to be working (except when pages are unmapped),
69 * and therefore this tree is called the stable tree.
70 *
71 * The stable tree node includes information required for reverse
72 * mapping from a KSM page to virtual addresses that map this page.
73 *
74 * In order to avoid large latencies of the rmap walks on KSM pages,
75 * KSM maintains two types of nodes in the stable tree:
76 *
77 * * the regular nodes that keep the reverse mapping structures in a
78 * linked list
79 * * the "chains" that link nodes ("dups") that represent the same
80 * write protected memory content, but each "dup" corresponds to a
81 * different KSM page copy of that content
82 *
83 * Internally, the regular nodes, "dups" and "chains" are represented
84 * using the same struct stable_node structure.
85 *
86 * In addition to the stable tree, KSM uses a second data structure called the
87 * unstable tree: this tree holds pointers to pages which have been found to
88 * be "unchanged for a period of time". The unstable tree sorts these pages
89 * by their contents, but since they are not write-protected, KSM cannot rely
90 * upon the unstable tree to work correctly - the unstable tree is liable to
91 * be corrupted as its contents are modified, and so it is called unstable.
92 *
93 * KSM solves this problem by several techniques:
94 *
95 * 1) The unstable tree is flushed every time KSM completes scanning all
96 * memory areas, and then the tree is rebuilt again from the beginning.
97 * 2) KSM will only insert into the unstable tree, pages whose hash value
98 * has not changed since the previous scan of all memory areas.
99 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100 * colors of the nodes and not on their contents, assuring that even when
101 * the tree gets "corrupted" it won't get out of balance, so scanning time
102 * remains the same (also, searching and inserting nodes in an rbtree uses
103 * the same algorithm, so we have no overhead when we flush and rebuild).
104 * 4) KSM never flushes the stable tree, which means that even if it were to
105 * take 10 attempts to find a page in the unstable tree, once it is found,
106 * it is secured in the stable tree. (When we scan a new page, we first
107 * compare it against the stable tree, and then against the unstable tree.)
108 *
109 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110 * stable trees and multiple unstable trees: one of each for each NUMA node.
111 */
112
113 /**
114 * struct mm_slot - ksm information per mm that is being scanned
115 * @link: link to the mm_slots hash list
116 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118 * @mm: the mm that this information is valid for
119 */
120 struct mm_slot {
121 struct hlist_node link;
122 struct list_head mm_list;
123 struct rmap_item *rmap_list;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct ksm_scan - cursor for scanning
129 * @mm_slot: the current mm_slot we are scanning
130 * @address: the next address inside that to be scanned
131 * @rmap_list: link to the next rmap to be scanned in the rmap_list
132 * @seqnr: count of completed full scans (needed when removing unstable node)
133 *
134 * There is only the one ksm_scan instance of this cursor structure.
135 */
136 struct ksm_scan {
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 struct rmap_item **rmap_list;
140 unsigned long seqnr;
141 };
142
143 /**
144 * struct stable_node - node of the stable rbtree
145 * @node: rb node of this ksm page in the stable tree
146 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148 * @list: linked into migrate_nodes, pending placement in the proper node tree
149 * @hlist: hlist head of rmap_items using this ksm page
150 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151 * @chain_prune_time: time of the last full garbage collection
152 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154 */
155 struct stable_node {
156 union {
157 struct rb_node node; /* when node of stable tree */
158 struct { /* when listed for migration */
159 struct list_head *head;
160 struct {
161 struct hlist_node hlist_dup;
162 struct list_head list;
163 };
164 };
165 };
166 struct hlist_head hlist;
167 union {
168 unsigned long kpfn;
169 unsigned long chain_prune_time;
170 };
171 /*
172 * STABLE_NODE_CHAIN can be any negative number in
173 * rmap_hlist_len negative range, but better not -1 to be able
174 * to reliably detect underflows.
175 */
176 #define STABLE_NODE_CHAIN -1024
177 int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179 int nid;
180 #endif
181 };
182
183 /**
184 * struct rmap_item - reverse mapping item for virtual addresses
185 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187 * @nid: NUMA node id of unstable tree in which linked (may not match page)
188 * @mm: the memory structure this rmap_item is pointing into
189 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190 * @oldchecksum: previous checksum of the page at that virtual address
191 * @node: rb node of this rmap_item in the unstable tree
192 * @head: pointer to stable_node heading this list in the stable tree
193 * @hlist: link into hlist of rmap_items hanging off that stable_node
194 */
195 struct rmap_item {
196 struct rmap_item *rmap_list;
197 union {
198 struct anon_vma *anon_vma; /* when stable */
199 #ifdef CONFIG_NUMA
200 int nid; /* when node of unstable tree */
201 #endif
202 };
203 struct mm_struct *mm;
204 unsigned long address; /* + low bits used for flags below */
205 unsigned int oldchecksum; /* when unstable */
206 union {
207 struct rb_node node; /* when node of unstable tree */
208 struct { /* when listed from stable tree */
209 struct stable_node *head;
210 struct hlist_node hlist;
211 };
212 };
213 };
214
215 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
217 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236 .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes 1U
285 #define ksm_nr_node_ids 1
286 #endif
287
288 #define KSM_RUN_STOP 0
289 #define KSM_RUN_MERGE 1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301 sizeof(struct __struct), __alignof__(struct __struct),\
302 (__flags), NULL)
303
ksm_slab_init(void)304 static int __init ksm_slab_init(void)
305 {
306 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307 if (!rmap_item_cache)
308 goto out;
309
310 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311 if (!stable_node_cache)
312 goto out_free1;
313
314 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315 if (!mm_slot_cache)
316 goto out_free2;
317
318 return 0;
319
320 out_free2:
321 kmem_cache_destroy(stable_node_cache);
322 out_free1:
323 kmem_cache_destroy(rmap_item_cache);
324 out:
325 return -ENOMEM;
326 }
327
ksm_slab_free(void)328 static void __init ksm_slab_free(void)
329 {
330 kmem_cache_destroy(mm_slot_cache);
331 kmem_cache_destroy(stable_node_cache);
332 kmem_cache_destroy(rmap_item_cache);
333 mm_slot_cache = NULL;
334 }
335
is_stable_node_chain(struct stable_node * chain)336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
is_stable_node_dup(struct stable_node * dup)341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343 return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
stable_node_chain_add_dup(struct stable_node * dup,struct stable_node * chain)346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347 struct stable_node *chain)
348 {
349 VM_BUG_ON(is_stable_node_dup(dup));
350 dup->head = STABLE_NODE_DUP_HEAD;
351 VM_BUG_ON(!is_stable_node_chain(chain));
352 hlist_add_head(&dup->hlist_dup, &chain->hlist);
353 ksm_stable_node_dups++;
354 }
355
__stable_node_dup_del(struct stable_node * dup)356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358 VM_BUG_ON(!is_stable_node_dup(dup));
359 hlist_del(&dup->hlist_dup);
360 ksm_stable_node_dups--;
361 }
362
stable_node_dup_del(struct stable_node * dup)363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365 VM_BUG_ON(is_stable_node_chain(dup));
366 if (is_stable_node_dup(dup))
367 __stable_node_dup_del(dup);
368 else
369 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371 dup->head = NULL;
372 #endif
373 }
374
alloc_rmap_item(void)375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377 struct rmap_item *rmap_item;
378
379 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380 __GFP_NORETRY | __GFP_NOWARN);
381 if (rmap_item)
382 ksm_rmap_items++;
383 return rmap_item;
384 }
385
free_rmap_item(struct rmap_item * rmap_item)386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388 ksm_rmap_items--;
389 rmap_item->mm = NULL; /* debug safety */
390 kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
alloc_stable_node(void)393 static inline struct stable_node *alloc_stable_node(void)
394 {
395 /*
396 * The allocation can take too long with GFP_KERNEL when memory is under
397 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
398 * grants access to memory reserves, helping to avoid this problem.
399 */
400 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
free_stable_node(struct stable_node * stable_node)403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405 VM_BUG_ON(stable_node->rmap_hlist_len &&
406 !is_stable_node_chain(stable_node));
407 kmem_cache_free(stable_node_cache, stable_node);
408 }
409
alloc_mm_slot(void)410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412 if (!mm_slot_cache) /* initialization failed */
413 return NULL;
414 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
free_mm_slot(struct mm_slot * mm_slot)417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419 kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
get_mm_slot(struct mm_struct * mm)422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424 struct mm_slot *slot;
425
426 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427 if (slot->mm == mm)
428 return slot;
429
430 return NULL;
431 }
432
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434 struct mm_slot *mm_slot)
435 {
436 mm_slot->mm = mm;
437 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442 * page tables after it has passed through ksm_exit() - which, if necessary,
443 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
444 * a special flag: they can just back out as soon as mm_users goes to zero.
445 * ksm_test_exit() is used throughout to make this test for exit: in some
446 * places for correctness, in some places just to avoid unnecessary work.
447 */
ksm_test_exit(struct mm_struct * mm)448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450 return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454 * We use break_ksm to break COW on a ksm page: it's a stripped down
455 *
456 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457 * put_page(page);
458 *
459 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460 * in case the application has unmapped and remapped mm,addr meanwhile.
461 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
462 * mmap of /dev/mem, where we would not want to touch it.
463 *
464 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465 * of the process that owns 'vma'. We also do not want to enforce
466 * protection keys here anyway.
467 */
break_ksm(struct vm_area_struct * vma,unsigned long addr)468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470 struct page *page;
471 vm_fault_t ret = 0;
472
473 do {
474 cond_resched();
475 page = follow_page(vma, addr,
476 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477 if (IS_ERR_OR_NULL(page))
478 break;
479 if (PageKsm(page))
480 ret = handle_mm_fault(vma, addr,
481 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482 NULL);
483 else
484 ret = VM_FAULT_WRITE;
485 put_page(page);
486 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487 /*
488 * We must loop because handle_mm_fault() may back out if there's
489 * any difficulty e.g. if pte accessed bit gets updated concurrently.
490 *
491 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492 * COW has been broken, even if the vma does not permit VM_WRITE;
493 * but note that a concurrent fault might break PageKsm for us.
494 *
495 * VM_FAULT_SIGBUS could occur if we race with truncation of the
496 * backing file, which also invalidates anonymous pages: that's
497 * okay, that truncation will have unmapped the PageKsm for us.
498 *
499 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501 * current task has TIF_MEMDIE set, and will be OOM killed on return
502 * to user; and ksmd, having no mm, would never be chosen for that.
503 *
504 * But if the mm is in a limited mem_cgroup, then the fault may fail
505 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506 * even ksmd can fail in this way - though it's usually breaking ksm
507 * just to undo a merge it made a moment before, so unlikely to oom.
508 *
509 * That's a pity: we might therefore have more kernel pages allocated
510 * than we're counting as nodes in the stable tree; but ksm_do_scan
511 * will retry to break_cow on each pass, so should recover the page
512 * in due course. The important thing is to not let VM_MERGEABLE
513 * be cleared while any such pages might remain in the area.
514 */
515 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519 unsigned long addr)
520 {
521 struct vm_area_struct *vma;
522 if (ksm_test_exit(mm))
523 return NULL;
524 vma = vma_lookup(mm, addr);
525 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
526 return NULL;
527 return vma;
528 }
529
break_cow(struct rmap_item * rmap_item)530 static void break_cow(struct rmap_item *rmap_item)
531 {
532 struct mm_struct *mm = rmap_item->mm;
533 unsigned long addr = rmap_item->address;
534 struct vm_area_struct *vma;
535
536 /*
537 * It is not an accident that whenever we want to break COW
538 * to undo, we also need to drop a reference to the anon_vma.
539 */
540 put_anon_vma(rmap_item->anon_vma);
541
542 mmap_read_lock(mm);
543 vma = find_mergeable_vma(mm, addr);
544 if (vma)
545 break_ksm(vma, addr);
546 mmap_read_unlock(mm);
547 }
548
get_mergeable_page(struct rmap_item * rmap_item)549 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
550 {
551 struct mm_struct *mm = rmap_item->mm;
552 unsigned long addr = rmap_item->address;
553 struct vm_area_struct *vma;
554 struct page *page;
555
556 mmap_read_lock(mm);
557 vma = find_mergeable_vma(mm, addr);
558 if (!vma)
559 goto out;
560
561 page = follow_page(vma, addr, FOLL_GET);
562 if (IS_ERR_OR_NULL(page))
563 goto out;
564 if (PageAnon(page)) {
565 flush_anon_page(vma, page, addr);
566 flush_dcache_page(page);
567 } else {
568 put_page(page);
569 out:
570 page = NULL;
571 }
572 mmap_read_unlock(mm);
573 return page;
574 }
575
576 /*
577 * This helper is used for getting right index into array of tree roots.
578 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580 * every node has its own stable and unstable tree.
581 */
get_kpfn_nid(unsigned long kpfn)582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586
alloc_stable_node_chain(struct stable_node * dup,struct rb_root * root)587 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
588 struct rb_root *root)
589 {
590 struct stable_node *chain = alloc_stable_node();
591 VM_BUG_ON(is_stable_node_chain(dup));
592 if (likely(chain)) {
593 INIT_HLIST_HEAD(&chain->hlist);
594 chain->chain_prune_time = jiffies;
595 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597 chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599 ksm_stable_node_chains++;
600
601 /*
602 * Put the stable node chain in the first dimension of
603 * the stable tree and at the same time remove the old
604 * stable node.
605 */
606 rb_replace_node(&dup->node, &chain->node, root);
607
608 /*
609 * Move the old stable node to the second dimension
610 * queued in the hlist_dup. The invariant is that all
611 * dup stable_nodes in the chain->hlist point to pages
612 * that are write protected and have the exact same
613 * content.
614 */
615 stable_node_chain_add_dup(dup, chain);
616 }
617 return chain;
618 }
619
free_stable_node_chain(struct stable_node * chain,struct rb_root * root)620 static inline void free_stable_node_chain(struct stable_node *chain,
621 struct rb_root *root)
622 {
623 rb_erase(&chain->node, root);
624 free_stable_node(chain);
625 ksm_stable_node_chains--;
626 }
627
remove_node_from_stable_tree(struct stable_node * stable_node)628 static void remove_node_from_stable_tree(struct stable_node *stable_node)
629 {
630 struct rmap_item *rmap_item;
631
632 /* check it's not STABLE_NODE_CHAIN or negative */
633 BUG_ON(stable_node->rmap_hlist_len < 0);
634
635 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636 if (rmap_item->hlist.next)
637 ksm_pages_sharing--;
638 else
639 ksm_pages_shared--;
640 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
641 stable_node->rmap_hlist_len--;
642 put_anon_vma(rmap_item->anon_vma);
643 rmap_item->address &= PAGE_MASK;
644 cond_resched();
645 }
646
647 /*
648 * We need the second aligned pointer of the migrate_nodes
649 * list_head to stay clear from the rb_parent_color union
650 * (aligned and different than any node) and also different
651 * from &migrate_nodes. This will verify that future list.h changes
652 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
653 */
654 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
656
657 if (stable_node->head == &migrate_nodes)
658 list_del(&stable_node->list);
659 else
660 stable_node_dup_del(stable_node);
661 free_stable_node(stable_node);
662 }
663
664 enum get_ksm_page_flags {
665 GET_KSM_PAGE_NOLOCK,
666 GET_KSM_PAGE_LOCK,
667 GET_KSM_PAGE_TRYLOCK
668 };
669
670 /*
671 * get_ksm_page: checks if the page indicated by the stable node
672 * is still its ksm page, despite having held no reference to it.
673 * In which case we can trust the content of the page, and it
674 * returns the gotten page; but if the page has now been zapped,
675 * remove the stale node from the stable tree and return NULL.
676 * But beware, the stable node's page might be being migrated.
677 *
678 * You would expect the stable_node to hold a reference to the ksm page.
679 * But if it increments the page's count, swapping out has to wait for
680 * ksmd to come around again before it can free the page, which may take
681 * seconds or even minutes: much too unresponsive. So instead we use a
682 * "keyhole reference": access to the ksm page from the stable node peeps
683 * out through its keyhole to see if that page still holds the right key,
684 * pointing back to this stable node. This relies on freeing a PageAnon
685 * page to reset its page->mapping to NULL, and relies on no other use of
686 * a page to put something that might look like our key in page->mapping.
687 * is on its way to being freed; but it is an anomaly to bear in mind.
688 */
get_ksm_page(struct stable_node * stable_node,enum get_ksm_page_flags flags)689 static struct page *get_ksm_page(struct stable_node *stable_node,
690 enum get_ksm_page_flags flags)
691 {
692 struct page *page;
693 void *expected_mapping;
694 unsigned long kpfn;
695
696 expected_mapping = (void *)((unsigned long)stable_node |
697 PAGE_MAPPING_KSM);
698 again:
699 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
700 page = pfn_to_page(kpfn);
701 if (READ_ONCE(page->mapping) != expected_mapping)
702 goto stale;
703
704 /*
705 * We cannot do anything with the page while its refcount is 0.
706 * Usually 0 means free, or tail of a higher-order page: in which
707 * case this node is no longer referenced, and should be freed;
708 * however, it might mean that the page is under page_ref_freeze().
709 * The __remove_mapping() case is easy, again the node is now stale;
710 * the same is in reuse_ksm_page() case; but if page is swapcache
711 * in migrate_page_move_mapping(), it might still be our page,
712 * in which case it's essential to keep the node.
713 */
714 while (!get_page_unless_zero(page)) {
715 /*
716 * Another check for page->mapping != expected_mapping would
717 * work here too. We have chosen the !PageSwapCache test to
718 * optimize the common case, when the page is or is about to
719 * be freed: PageSwapCache is cleared (under spin_lock_irq)
720 * in the ref_freeze section of __remove_mapping(); but Anon
721 * page->mapping reset to NULL later, in free_pages_prepare().
722 */
723 if (!PageSwapCache(page))
724 goto stale;
725 cpu_relax();
726 }
727
728 if (READ_ONCE(page->mapping) != expected_mapping) {
729 put_page(page);
730 goto stale;
731 }
732
733 if (flags == GET_KSM_PAGE_TRYLOCK) {
734 if (!trylock_page(page)) {
735 put_page(page);
736 return ERR_PTR(-EBUSY);
737 }
738 } else if (flags == GET_KSM_PAGE_LOCK)
739 lock_page(page);
740
741 if (flags != GET_KSM_PAGE_NOLOCK) {
742 if (READ_ONCE(page->mapping) != expected_mapping) {
743 unlock_page(page);
744 put_page(page);
745 goto stale;
746 }
747 }
748 return page;
749
750 stale:
751 /*
752 * We come here from above when page->mapping or !PageSwapCache
753 * suggests that the node is stale; but it might be under migration.
754 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
755 * before checking whether node->kpfn has been changed.
756 */
757 smp_rmb();
758 if (READ_ONCE(stable_node->kpfn) != kpfn)
759 goto again;
760 remove_node_from_stable_tree(stable_node);
761 return NULL;
762 }
763
764 /*
765 * Removing rmap_item from stable or unstable tree.
766 * This function will clean the information from the stable/unstable tree.
767 */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)768 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
769 {
770 if (rmap_item->address & STABLE_FLAG) {
771 struct stable_node *stable_node;
772 struct page *page;
773
774 stable_node = rmap_item->head;
775 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
776 if (!page)
777 goto out;
778
779 hlist_del(&rmap_item->hlist);
780 unlock_page(page);
781 put_page(page);
782
783 if (!hlist_empty(&stable_node->hlist))
784 ksm_pages_sharing--;
785 else
786 ksm_pages_shared--;
787 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
788 stable_node->rmap_hlist_len--;
789
790 put_anon_vma(rmap_item->anon_vma);
791 rmap_item->head = NULL;
792 rmap_item->address &= PAGE_MASK;
793
794 } else if (rmap_item->address & UNSTABLE_FLAG) {
795 unsigned char age;
796 /*
797 * Usually ksmd can and must skip the rb_erase, because
798 * root_unstable_tree was already reset to RB_ROOT.
799 * But be careful when an mm is exiting: do the rb_erase
800 * if this rmap_item was inserted by this scan, rather
801 * than left over from before.
802 */
803 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
804 BUG_ON(age > 1);
805 if (!age)
806 rb_erase(&rmap_item->node,
807 root_unstable_tree + NUMA(rmap_item->nid));
808 ksm_pages_unshared--;
809 rmap_item->address &= PAGE_MASK;
810 }
811 out:
812 cond_resched(); /* we're called from many long loops */
813 }
814
remove_trailing_rmap_items(struct rmap_item ** rmap_list)815 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
816 {
817 while (*rmap_list) {
818 struct rmap_item *rmap_item = *rmap_list;
819 *rmap_list = rmap_item->rmap_list;
820 remove_rmap_item_from_tree(rmap_item);
821 free_rmap_item(rmap_item);
822 }
823 }
824
825 /*
826 * Though it's very tempting to unmerge rmap_items from stable tree rather
827 * than check every pte of a given vma, the locking doesn't quite work for
828 * that - an rmap_item is assigned to the stable tree after inserting ksm
829 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
830 * rmap_items from parent to child at fork time (so as not to waste time
831 * if exit comes before the next scan reaches it).
832 *
833 * Similarly, although we'd like to remove rmap_items (so updating counts
834 * and freeing memory) when unmerging an area, it's easier to leave that
835 * to the next pass of ksmd - consider, for example, how ksmd might be
836 * in cmp_and_merge_page on one of the rmap_items we would be removing.
837 */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)838 static int unmerge_ksm_pages(struct vm_area_struct *vma,
839 unsigned long start, unsigned long end)
840 {
841 unsigned long addr;
842 int err = 0;
843
844 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
845 if (ksm_test_exit(vma->vm_mm))
846 break;
847 if (signal_pending(current))
848 err = -ERESTARTSYS;
849 else
850 err = break_ksm(vma, addr);
851 }
852 return err;
853 }
854
page_stable_node(struct page * page)855 static inline struct stable_node *page_stable_node(struct page *page)
856 {
857 return PageKsm(page) ? page_rmapping(page) : NULL;
858 }
859
set_page_stable_node(struct page * page,struct stable_node * stable_node)860 static inline void set_page_stable_node(struct page *page,
861 struct stable_node *stable_node)
862 {
863 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
864 }
865
866 #ifdef CONFIG_SYSFS
867 /*
868 * Only called through the sysfs control interface:
869 */
remove_stable_node(struct stable_node * stable_node)870 static int remove_stable_node(struct stable_node *stable_node)
871 {
872 struct page *page;
873 int err;
874
875 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
876 if (!page) {
877 /*
878 * get_ksm_page did remove_node_from_stable_tree itself.
879 */
880 return 0;
881 }
882
883 /*
884 * Page could be still mapped if this races with __mmput() running in
885 * between ksm_exit() and exit_mmap(). Just refuse to let
886 * merge_across_nodes/max_page_sharing be switched.
887 */
888 err = -EBUSY;
889 if (!page_mapped(page)) {
890 /*
891 * The stable node did not yet appear stale to get_ksm_page(),
892 * since that allows for an unmapped ksm page to be recognized
893 * right up until it is freed; but the node is safe to remove.
894 * This page might be in a pagevec waiting to be freed,
895 * or it might be PageSwapCache (perhaps under writeback),
896 * or it might have been removed from swapcache a moment ago.
897 */
898 set_page_stable_node(page, NULL);
899 remove_node_from_stable_tree(stable_node);
900 err = 0;
901 }
902
903 unlock_page(page);
904 put_page(page);
905 return err;
906 }
907
remove_stable_node_chain(struct stable_node * stable_node,struct rb_root * root)908 static int remove_stable_node_chain(struct stable_node *stable_node,
909 struct rb_root *root)
910 {
911 struct stable_node *dup;
912 struct hlist_node *hlist_safe;
913
914 if (!is_stable_node_chain(stable_node)) {
915 VM_BUG_ON(is_stable_node_dup(stable_node));
916 if (remove_stable_node(stable_node))
917 return true;
918 else
919 return false;
920 }
921
922 hlist_for_each_entry_safe(dup, hlist_safe,
923 &stable_node->hlist, hlist_dup) {
924 VM_BUG_ON(!is_stable_node_dup(dup));
925 if (remove_stable_node(dup))
926 return true;
927 }
928 BUG_ON(!hlist_empty(&stable_node->hlist));
929 free_stable_node_chain(stable_node, root);
930 return false;
931 }
932
remove_all_stable_nodes(void)933 static int remove_all_stable_nodes(void)
934 {
935 struct stable_node *stable_node, *next;
936 int nid;
937 int err = 0;
938
939 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
940 while (root_stable_tree[nid].rb_node) {
941 stable_node = rb_entry(root_stable_tree[nid].rb_node,
942 struct stable_node, node);
943 if (remove_stable_node_chain(stable_node,
944 root_stable_tree + nid)) {
945 err = -EBUSY;
946 break; /* proceed to next nid */
947 }
948 cond_resched();
949 }
950 }
951 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
952 if (remove_stable_node(stable_node))
953 err = -EBUSY;
954 cond_resched();
955 }
956 return err;
957 }
958
unmerge_and_remove_all_rmap_items(void)959 static int unmerge_and_remove_all_rmap_items(void)
960 {
961 struct mm_slot *mm_slot;
962 struct mm_struct *mm;
963 struct vm_area_struct *vma;
964 int err = 0;
965
966 spin_lock(&ksm_mmlist_lock);
967 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
968 struct mm_slot, mm_list);
969 spin_unlock(&ksm_mmlist_lock);
970
971 for (mm_slot = ksm_scan.mm_slot;
972 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
973 mm = mm_slot->mm;
974 mmap_read_lock(mm);
975 for (vma = mm->mmap; vma; vma = vma->vm_next) {
976 if (ksm_test_exit(mm))
977 break;
978 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
979 continue;
980 err = unmerge_ksm_pages(vma,
981 vma->vm_start, vma->vm_end);
982 if (err)
983 goto error;
984 }
985
986 remove_trailing_rmap_items(&mm_slot->rmap_list);
987 mmap_read_unlock(mm);
988
989 spin_lock(&ksm_mmlist_lock);
990 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
991 struct mm_slot, mm_list);
992 if (ksm_test_exit(mm)) {
993 hash_del(&mm_slot->link);
994 list_del(&mm_slot->mm_list);
995 spin_unlock(&ksm_mmlist_lock);
996
997 free_mm_slot(mm_slot);
998 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
999 mmdrop(mm);
1000 } else
1001 spin_unlock(&ksm_mmlist_lock);
1002 }
1003
1004 /* Clean up stable nodes, but don't worry if some are still busy */
1005 remove_all_stable_nodes();
1006 ksm_scan.seqnr = 0;
1007 return 0;
1008
1009 error:
1010 mmap_read_unlock(mm);
1011 spin_lock(&ksm_mmlist_lock);
1012 ksm_scan.mm_slot = &ksm_mm_head;
1013 spin_unlock(&ksm_mmlist_lock);
1014 return err;
1015 }
1016 #endif /* CONFIG_SYSFS */
1017
calc_checksum(struct page * page)1018 static u32 calc_checksum(struct page *page)
1019 {
1020 u32 checksum;
1021 void *addr = kmap_atomic(page);
1022 checksum = xxhash(addr, PAGE_SIZE, 0);
1023 kunmap_atomic(addr);
1024 return checksum;
1025 }
1026
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)1027 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1028 pte_t *orig_pte)
1029 {
1030 struct mm_struct *mm = vma->vm_mm;
1031 struct page_vma_mapped_walk pvmw = {
1032 .page = page,
1033 .vma = vma,
1034 };
1035 int swapped;
1036 int err = -EFAULT;
1037 struct mmu_notifier_range range;
1038
1039 pvmw.address = page_address_in_vma(page, vma);
1040 if (pvmw.address == -EFAULT)
1041 goto out;
1042
1043 BUG_ON(PageTransCompound(page));
1044
1045 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1046 pvmw.address,
1047 pvmw.address + PAGE_SIZE);
1048 mmu_notifier_invalidate_range_start(&range);
1049
1050 if (!page_vma_mapped_walk(&pvmw))
1051 goto out_mn;
1052 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1053 goto out_unlock;
1054
1055 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1056 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1057 mm_tlb_flush_pending(mm)) {
1058 pte_t entry;
1059
1060 swapped = PageSwapCache(page);
1061 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1062 /*
1063 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1064 * take any lock, therefore the check that we are going to make
1065 * with the pagecount against the mapcount is racy and
1066 * O_DIRECT can happen right after the check.
1067 * So we clear the pte and flush the tlb before the check
1068 * this assure us that no O_DIRECT can happen after the check
1069 * or in the middle of the check.
1070 *
1071 * No need to notify as we are downgrading page table to read
1072 * only not changing it to point to a new page.
1073 *
1074 * See Documentation/vm/mmu_notifier.rst
1075 */
1076 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1077 /*
1078 * Check that no O_DIRECT or similar I/O is in progress on the
1079 * page
1080 */
1081 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1082 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1083 goto out_unlock;
1084 }
1085 if (pte_dirty(entry))
1086 set_page_dirty(page);
1087
1088 if (pte_protnone(entry))
1089 entry = pte_mkclean(pte_clear_savedwrite(entry));
1090 else
1091 entry = pte_mkclean(pte_wrprotect(entry));
1092 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1093 }
1094 *orig_pte = *pvmw.pte;
1095 err = 0;
1096
1097 out_unlock:
1098 page_vma_mapped_walk_done(&pvmw);
1099 out_mn:
1100 mmu_notifier_invalidate_range_end(&range);
1101 out:
1102 return err;
1103 }
1104
1105 /**
1106 * replace_page - replace page in vma by new ksm page
1107 * @vma: vma that holds the pte pointing to page
1108 * @page: the page we are replacing by kpage
1109 * @kpage: the ksm page we replace page by
1110 * @orig_pte: the original value of the pte
1111 *
1112 * Returns 0 on success, -EFAULT on failure.
1113 */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)1114 static int replace_page(struct vm_area_struct *vma, struct page *page,
1115 struct page *kpage, pte_t orig_pte)
1116 {
1117 struct mm_struct *mm = vma->vm_mm;
1118 pmd_t *pmd;
1119 pte_t *ptep;
1120 pte_t newpte;
1121 spinlock_t *ptl;
1122 unsigned long addr;
1123 int err = -EFAULT;
1124 struct mmu_notifier_range range;
1125
1126 addr = page_address_in_vma(page, vma);
1127 if (addr == -EFAULT)
1128 goto out;
1129
1130 pmd = mm_find_pmd(mm, addr);
1131 if (!pmd)
1132 goto out;
1133
1134 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1135 addr + PAGE_SIZE);
1136 mmu_notifier_invalidate_range_start(&range);
1137
1138 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1139 if (!pte_same(*ptep, orig_pte)) {
1140 pte_unmap_unlock(ptep, ptl);
1141 goto out_mn;
1142 }
1143
1144 /*
1145 * No need to check ksm_use_zero_pages here: we can only have a
1146 * zero_page here if ksm_use_zero_pages was enabled already.
1147 */
1148 if (!is_zero_pfn(page_to_pfn(kpage))) {
1149 get_page(kpage);
1150 page_add_anon_rmap(kpage, vma, addr, false);
1151 newpte = mk_pte(kpage, vma->vm_page_prot);
1152 } else {
1153 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1154 vma->vm_page_prot));
1155 /*
1156 * We're replacing an anonymous page with a zero page, which is
1157 * not anonymous. We need to do proper accounting otherwise we
1158 * will get wrong values in /proc, and a BUG message in dmesg
1159 * when tearing down the mm.
1160 */
1161 dec_mm_counter(mm, MM_ANONPAGES);
1162 }
1163
1164 flush_cache_page(vma, addr, pte_pfn(*ptep));
1165 /*
1166 * No need to notify as we are replacing a read only page with another
1167 * read only page with the same content.
1168 *
1169 * See Documentation/vm/mmu_notifier.rst
1170 */
1171 ptep_clear_flush(vma, addr, ptep);
1172 set_pte_at_notify(mm, addr, ptep, newpte);
1173
1174 page_remove_rmap(page, false);
1175 if (!page_mapped(page))
1176 try_to_free_swap(page);
1177 put_page(page);
1178
1179 pte_unmap_unlock(ptep, ptl);
1180 err = 0;
1181 out_mn:
1182 mmu_notifier_invalidate_range_end(&range);
1183 out:
1184 return err;
1185 }
1186
1187 /*
1188 * try_to_merge_one_page - take two pages and merge them into one
1189 * @vma: the vma that holds the pte pointing to page
1190 * @page: the PageAnon page that we want to replace with kpage
1191 * @kpage: the PageKsm page that we want to map instead of page,
1192 * or NULL the first time when we want to use page as kpage.
1193 *
1194 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1195 */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)1196 static int try_to_merge_one_page(struct vm_area_struct *vma,
1197 struct page *page, struct page *kpage)
1198 {
1199 pte_t orig_pte = __pte(0);
1200 int err = -EFAULT;
1201
1202 if (page == kpage) /* ksm page forked */
1203 return 0;
1204
1205 if (!PageAnon(page))
1206 goto out;
1207
1208 /*
1209 * We need the page lock to read a stable PageSwapCache in
1210 * write_protect_page(). We use trylock_page() instead of
1211 * lock_page() because we don't want to wait here - we
1212 * prefer to continue scanning and merging different pages,
1213 * then come back to this page when it is unlocked.
1214 */
1215 if (!trylock_page(page))
1216 goto out;
1217
1218 if (PageTransCompound(page)) {
1219 if (split_huge_page(page))
1220 goto out_unlock;
1221 }
1222
1223 /*
1224 * If this anonymous page is mapped only here, its pte may need
1225 * to be write-protected. If it's mapped elsewhere, all of its
1226 * ptes are necessarily already write-protected. But in either
1227 * case, we need to lock and check page_count is not raised.
1228 */
1229 if (write_protect_page(vma, page, &orig_pte) == 0) {
1230 if (!kpage) {
1231 /*
1232 * While we hold page lock, upgrade page from
1233 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1234 * stable_tree_insert() will update stable_node.
1235 */
1236 set_page_stable_node(page, NULL);
1237 mark_page_accessed(page);
1238 /*
1239 * Page reclaim just frees a clean page with no dirty
1240 * ptes: make sure that the ksm page would be swapped.
1241 */
1242 if (!PageDirty(page))
1243 SetPageDirty(page);
1244 err = 0;
1245 } else if (pages_identical(page, kpage))
1246 err = replace_page(vma, page, kpage, orig_pte);
1247 }
1248
1249 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1250 munlock_vma_page(page);
1251 if (!PageMlocked(kpage)) {
1252 unlock_page(page);
1253 lock_page(kpage);
1254 mlock_vma_page(kpage);
1255 page = kpage; /* for final unlock */
1256 }
1257 }
1258
1259 out_unlock:
1260 unlock_page(page);
1261 out:
1262 return err;
1263 }
1264
1265 /*
1266 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1267 * but no new kernel page is allocated: kpage must already be a ksm page.
1268 *
1269 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1270 */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)1271 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1272 struct page *page, struct page *kpage)
1273 {
1274 struct mm_struct *mm = rmap_item->mm;
1275 struct vm_area_struct *vma;
1276 int err = -EFAULT;
1277
1278 mmap_read_lock(mm);
1279 vma = find_mergeable_vma(mm, rmap_item->address);
1280 if (!vma)
1281 goto out;
1282
1283 err = try_to_merge_one_page(vma, page, kpage);
1284 if (err)
1285 goto out;
1286
1287 /* Unstable nid is in union with stable anon_vma: remove first */
1288 remove_rmap_item_from_tree(rmap_item);
1289
1290 /* Must get reference to anon_vma while still holding mmap_lock */
1291 rmap_item->anon_vma = vma->anon_vma;
1292 get_anon_vma(vma->anon_vma);
1293 out:
1294 mmap_read_unlock(mm);
1295 return err;
1296 }
1297
1298 /*
1299 * try_to_merge_two_pages - take two identical pages and prepare them
1300 * to be merged into one page.
1301 *
1302 * This function returns the kpage if we successfully merged two identical
1303 * pages into one ksm page, NULL otherwise.
1304 *
1305 * Note that this function upgrades page to ksm page: if one of the pages
1306 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1307 */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)1308 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1309 struct page *page,
1310 struct rmap_item *tree_rmap_item,
1311 struct page *tree_page)
1312 {
1313 int err;
1314
1315 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1316 if (!err) {
1317 err = try_to_merge_with_ksm_page(tree_rmap_item,
1318 tree_page, page);
1319 /*
1320 * If that fails, we have a ksm page with only one pte
1321 * pointing to it: so break it.
1322 */
1323 if (err)
1324 break_cow(rmap_item);
1325 }
1326 return err ? NULL : page;
1327 }
1328
1329 static __always_inline
__is_page_sharing_candidate(struct stable_node * stable_node,int offset)1330 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1331 {
1332 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1333 /*
1334 * Check that at least one mapping still exists, otherwise
1335 * there's no much point to merge and share with this
1336 * stable_node, as the underlying tree_page of the other
1337 * sharer is going to be freed soon.
1338 */
1339 return stable_node->rmap_hlist_len &&
1340 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1341 }
1342
1343 static __always_inline
is_page_sharing_candidate(struct stable_node * stable_node)1344 bool is_page_sharing_candidate(struct stable_node *stable_node)
1345 {
1346 return __is_page_sharing_candidate(stable_node, 0);
1347 }
1348
stable_node_dup(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1349 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1350 struct stable_node **_stable_node,
1351 struct rb_root *root,
1352 bool prune_stale_stable_nodes)
1353 {
1354 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1355 struct hlist_node *hlist_safe;
1356 struct page *_tree_page, *tree_page = NULL;
1357 int nr = 0;
1358 int found_rmap_hlist_len;
1359
1360 if (!prune_stale_stable_nodes ||
1361 time_before(jiffies, stable_node->chain_prune_time +
1362 msecs_to_jiffies(
1363 ksm_stable_node_chains_prune_millisecs)))
1364 prune_stale_stable_nodes = false;
1365 else
1366 stable_node->chain_prune_time = jiffies;
1367
1368 hlist_for_each_entry_safe(dup, hlist_safe,
1369 &stable_node->hlist, hlist_dup) {
1370 cond_resched();
1371 /*
1372 * We must walk all stable_node_dup to prune the stale
1373 * stable nodes during lookup.
1374 *
1375 * get_ksm_page can drop the nodes from the
1376 * stable_node->hlist if they point to freed pages
1377 * (that's why we do a _safe walk). The "dup"
1378 * stable_node parameter itself will be freed from
1379 * under us if it returns NULL.
1380 */
1381 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1382 if (!_tree_page)
1383 continue;
1384 nr += 1;
1385 if (is_page_sharing_candidate(dup)) {
1386 if (!found ||
1387 dup->rmap_hlist_len > found_rmap_hlist_len) {
1388 if (found)
1389 put_page(tree_page);
1390 found = dup;
1391 found_rmap_hlist_len = found->rmap_hlist_len;
1392 tree_page = _tree_page;
1393
1394 /* skip put_page for found dup */
1395 if (!prune_stale_stable_nodes)
1396 break;
1397 continue;
1398 }
1399 }
1400 put_page(_tree_page);
1401 }
1402
1403 if (found) {
1404 /*
1405 * nr is counting all dups in the chain only if
1406 * prune_stale_stable_nodes is true, otherwise we may
1407 * break the loop at nr == 1 even if there are
1408 * multiple entries.
1409 */
1410 if (prune_stale_stable_nodes && nr == 1) {
1411 /*
1412 * If there's not just one entry it would
1413 * corrupt memory, better BUG_ON. In KSM
1414 * context with no lock held it's not even
1415 * fatal.
1416 */
1417 BUG_ON(stable_node->hlist.first->next);
1418
1419 /*
1420 * There's just one entry and it is below the
1421 * deduplication limit so drop the chain.
1422 */
1423 rb_replace_node(&stable_node->node, &found->node,
1424 root);
1425 free_stable_node(stable_node);
1426 ksm_stable_node_chains--;
1427 ksm_stable_node_dups--;
1428 /*
1429 * NOTE: the caller depends on the stable_node
1430 * to be equal to stable_node_dup if the chain
1431 * was collapsed.
1432 */
1433 *_stable_node = found;
1434 /*
1435 * Just for robustness, as stable_node is
1436 * otherwise left as a stable pointer, the
1437 * compiler shall optimize it away at build
1438 * time.
1439 */
1440 stable_node = NULL;
1441 } else if (stable_node->hlist.first != &found->hlist_dup &&
1442 __is_page_sharing_candidate(found, 1)) {
1443 /*
1444 * If the found stable_node dup can accept one
1445 * more future merge (in addition to the one
1446 * that is underway) and is not at the head of
1447 * the chain, put it there so next search will
1448 * be quicker in the !prune_stale_stable_nodes
1449 * case.
1450 *
1451 * NOTE: it would be inaccurate to use nr > 1
1452 * instead of checking the hlist.first pointer
1453 * directly, because in the
1454 * prune_stale_stable_nodes case "nr" isn't
1455 * the position of the found dup in the chain,
1456 * but the total number of dups in the chain.
1457 */
1458 hlist_del(&found->hlist_dup);
1459 hlist_add_head(&found->hlist_dup,
1460 &stable_node->hlist);
1461 }
1462 }
1463
1464 *_stable_node_dup = found;
1465 return tree_page;
1466 }
1467
stable_node_dup_any(struct stable_node * stable_node,struct rb_root * root)1468 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1469 struct rb_root *root)
1470 {
1471 if (!is_stable_node_chain(stable_node))
1472 return stable_node;
1473 if (hlist_empty(&stable_node->hlist)) {
1474 free_stable_node_chain(stable_node, root);
1475 return NULL;
1476 }
1477 return hlist_entry(stable_node->hlist.first,
1478 typeof(*stable_node), hlist_dup);
1479 }
1480
1481 /*
1482 * Like for get_ksm_page, this function can free the *_stable_node and
1483 * *_stable_node_dup if the returned tree_page is NULL.
1484 *
1485 * It can also free and overwrite *_stable_node with the found
1486 * stable_node_dup if the chain is collapsed (in which case
1487 * *_stable_node will be equal to *_stable_node_dup like if the chain
1488 * never existed). It's up to the caller to verify tree_page is not
1489 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1490 *
1491 * *_stable_node_dup is really a second output parameter of this
1492 * function and will be overwritten in all cases, the caller doesn't
1493 * need to initialize it.
1494 */
__stable_node_chain(struct stable_node ** _stable_node_dup,struct stable_node ** _stable_node,struct rb_root * root,bool prune_stale_stable_nodes)1495 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1496 struct stable_node **_stable_node,
1497 struct rb_root *root,
1498 bool prune_stale_stable_nodes)
1499 {
1500 struct stable_node *stable_node = *_stable_node;
1501 if (!is_stable_node_chain(stable_node)) {
1502 if (is_page_sharing_candidate(stable_node)) {
1503 *_stable_node_dup = stable_node;
1504 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1505 }
1506 /*
1507 * _stable_node_dup set to NULL means the stable_node
1508 * reached the ksm_max_page_sharing limit.
1509 */
1510 *_stable_node_dup = NULL;
1511 return NULL;
1512 }
1513 return stable_node_dup(_stable_node_dup, _stable_node, root,
1514 prune_stale_stable_nodes);
1515 }
1516
chain_prune(struct stable_node ** s_n_d,struct stable_node ** s_n,struct rb_root * root)1517 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1518 struct stable_node **s_n,
1519 struct rb_root *root)
1520 {
1521 return __stable_node_chain(s_n_d, s_n, root, true);
1522 }
1523
chain(struct stable_node ** s_n_d,struct stable_node * s_n,struct rb_root * root)1524 static __always_inline struct page *chain(struct stable_node **s_n_d,
1525 struct stable_node *s_n,
1526 struct rb_root *root)
1527 {
1528 struct stable_node *old_stable_node = s_n;
1529 struct page *tree_page;
1530
1531 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1532 /* not pruning dups so s_n cannot have changed */
1533 VM_BUG_ON(s_n != old_stable_node);
1534 return tree_page;
1535 }
1536
1537 /*
1538 * stable_tree_search - search for page inside the stable tree
1539 *
1540 * This function checks if there is a page inside the stable tree
1541 * with identical content to the page that we are scanning right now.
1542 *
1543 * This function returns the stable tree node of identical content if found,
1544 * NULL otherwise.
1545 */
stable_tree_search(struct page * page)1546 static struct page *stable_tree_search(struct page *page)
1547 {
1548 int nid;
1549 struct rb_root *root;
1550 struct rb_node **new;
1551 struct rb_node *parent;
1552 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1553 struct stable_node *page_node;
1554
1555 page_node = page_stable_node(page);
1556 if (page_node && page_node->head != &migrate_nodes) {
1557 /* ksm page forked */
1558 get_page(page);
1559 return page;
1560 }
1561
1562 nid = get_kpfn_nid(page_to_pfn(page));
1563 root = root_stable_tree + nid;
1564 again:
1565 new = &root->rb_node;
1566 parent = NULL;
1567
1568 while (*new) {
1569 struct page *tree_page;
1570 int ret;
1571
1572 cond_resched();
1573 stable_node = rb_entry(*new, struct stable_node, node);
1574 stable_node_any = NULL;
1575 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1576 /*
1577 * NOTE: stable_node may have been freed by
1578 * chain_prune() if the returned stable_node_dup is
1579 * not NULL. stable_node_dup may have been inserted in
1580 * the rbtree instead as a regular stable_node (in
1581 * order to collapse the stable_node chain if a single
1582 * stable_node dup was found in it). In such case the
1583 * stable_node is overwritten by the calleee to point
1584 * to the stable_node_dup that was collapsed in the
1585 * stable rbtree and stable_node will be equal to
1586 * stable_node_dup like if the chain never existed.
1587 */
1588 if (!stable_node_dup) {
1589 /*
1590 * Either all stable_node dups were full in
1591 * this stable_node chain, or this chain was
1592 * empty and should be rb_erased.
1593 */
1594 stable_node_any = stable_node_dup_any(stable_node,
1595 root);
1596 if (!stable_node_any) {
1597 /* rb_erase just run */
1598 goto again;
1599 }
1600 /*
1601 * Take any of the stable_node dups page of
1602 * this stable_node chain to let the tree walk
1603 * continue. All KSM pages belonging to the
1604 * stable_node dups in a stable_node chain
1605 * have the same content and they're
1606 * write protected at all times. Any will work
1607 * fine to continue the walk.
1608 */
1609 tree_page = get_ksm_page(stable_node_any,
1610 GET_KSM_PAGE_NOLOCK);
1611 }
1612 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1613 if (!tree_page) {
1614 /*
1615 * If we walked over a stale stable_node,
1616 * get_ksm_page() will call rb_erase() and it
1617 * may rebalance the tree from under us. So
1618 * restart the search from scratch. Returning
1619 * NULL would be safe too, but we'd generate
1620 * false negative insertions just because some
1621 * stable_node was stale.
1622 */
1623 goto again;
1624 }
1625
1626 ret = memcmp_pages(page, tree_page);
1627 put_page(tree_page);
1628
1629 parent = *new;
1630 if (ret < 0)
1631 new = &parent->rb_left;
1632 else if (ret > 0)
1633 new = &parent->rb_right;
1634 else {
1635 if (page_node) {
1636 VM_BUG_ON(page_node->head != &migrate_nodes);
1637 /*
1638 * Test if the migrated page should be merged
1639 * into a stable node dup. If the mapcount is
1640 * 1 we can migrate it with another KSM page
1641 * without adding it to the chain.
1642 */
1643 if (page_mapcount(page) > 1)
1644 goto chain_append;
1645 }
1646
1647 if (!stable_node_dup) {
1648 /*
1649 * If the stable_node is a chain and
1650 * we got a payload match in memcmp
1651 * but we cannot merge the scanned
1652 * page in any of the existing
1653 * stable_node dups because they're
1654 * all full, we need to wait the
1655 * scanned page to find itself a match
1656 * in the unstable tree to create a
1657 * brand new KSM page to add later to
1658 * the dups of this stable_node.
1659 */
1660 return NULL;
1661 }
1662
1663 /*
1664 * Lock and unlock the stable_node's page (which
1665 * might already have been migrated) so that page
1666 * migration is sure to notice its raised count.
1667 * It would be more elegant to return stable_node
1668 * than kpage, but that involves more changes.
1669 */
1670 tree_page = get_ksm_page(stable_node_dup,
1671 GET_KSM_PAGE_TRYLOCK);
1672
1673 if (PTR_ERR(tree_page) == -EBUSY)
1674 return ERR_PTR(-EBUSY);
1675
1676 if (unlikely(!tree_page))
1677 /*
1678 * The tree may have been rebalanced,
1679 * so re-evaluate parent and new.
1680 */
1681 goto again;
1682 unlock_page(tree_page);
1683
1684 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1685 NUMA(stable_node_dup->nid)) {
1686 put_page(tree_page);
1687 goto replace;
1688 }
1689 return tree_page;
1690 }
1691 }
1692
1693 if (!page_node)
1694 return NULL;
1695
1696 list_del(&page_node->list);
1697 DO_NUMA(page_node->nid = nid);
1698 rb_link_node(&page_node->node, parent, new);
1699 rb_insert_color(&page_node->node, root);
1700 out:
1701 if (is_page_sharing_candidate(page_node)) {
1702 get_page(page);
1703 return page;
1704 } else
1705 return NULL;
1706
1707 replace:
1708 /*
1709 * If stable_node was a chain and chain_prune collapsed it,
1710 * stable_node has been updated to be the new regular
1711 * stable_node. A collapse of the chain is indistinguishable
1712 * from the case there was no chain in the stable
1713 * rbtree. Otherwise stable_node is the chain and
1714 * stable_node_dup is the dup to replace.
1715 */
1716 if (stable_node_dup == stable_node) {
1717 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1718 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1719 /* there is no chain */
1720 if (page_node) {
1721 VM_BUG_ON(page_node->head != &migrate_nodes);
1722 list_del(&page_node->list);
1723 DO_NUMA(page_node->nid = nid);
1724 rb_replace_node(&stable_node_dup->node,
1725 &page_node->node,
1726 root);
1727 if (is_page_sharing_candidate(page_node))
1728 get_page(page);
1729 else
1730 page = NULL;
1731 } else {
1732 rb_erase(&stable_node_dup->node, root);
1733 page = NULL;
1734 }
1735 } else {
1736 VM_BUG_ON(!is_stable_node_chain(stable_node));
1737 __stable_node_dup_del(stable_node_dup);
1738 if (page_node) {
1739 VM_BUG_ON(page_node->head != &migrate_nodes);
1740 list_del(&page_node->list);
1741 DO_NUMA(page_node->nid = nid);
1742 stable_node_chain_add_dup(page_node, stable_node);
1743 if (is_page_sharing_candidate(page_node))
1744 get_page(page);
1745 else
1746 page = NULL;
1747 } else {
1748 page = NULL;
1749 }
1750 }
1751 stable_node_dup->head = &migrate_nodes;
1752 list_add(&stable_node_dup->list, stable_node_dup->head);
1753 return page;
1754
1755 chain_append:
1756 /* stable_node_dup could be null if it reached the limit */
1757 if (!stable_node_dup)
1758 stable_node_dup = stable_node_any;
1759 /*
1760 * If stable_node was a chain and chain_prune collapsed it,
1761 * stable_node has been updated to be the new regular
1762 * stable_node. A collapse of the chain is indistinguishable
1763 * from the case there was no chain in the stable
1764 * rbtree. Otherwise stable_node is the chain and
1765 * stable_node_dup is the dup to replace.
1766 */
1767 if (stable_node_dup == stable_node) {
1768 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1769 /* chain is missing so create it */
1770 stable_node = alloc_stable_node_chain(stable_node_dup,
1771 root);
1772 if (!stable_node)
1773 return NULL;
1774 }
1775 /*
1776 * Add this stable_node dup that was
1777 * migrated to the stable_node chain
1778 * of the current nid for this page
1779 * content.
1780 */
1781 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1782 VM_BUG_ON(page_node->head != &migrate_nodes);
1783 list_del(&page_node->list);
1784 DO_NUMA(page_node->nid = nid);
1785 stable_node_chain_add_dup(page_node, stable_node);
1786 goto out;
1787 }
1788
1789 /*
1790 * stable_tree_insert - insert stable tree node pointing to new ksm page
1791 * into the stable tree.
1792 *
1793 * This function returns the stable tree node just allocated on success,
1794 * NULL otherwise.
1795 */
stable_tree_insert(struct page * kpage)1796 static struct stable_node *stable_tree_insert(struct page *kpage)
1797 {
1798 int nid;
1799 unsigned long kpfn;
1800 struct rb_root *root;
1801 struct rb_node **new;
1802 struct rb_node *parent;
1803 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1804 bool need_chain = false;
1805
1806 kpfn = page_to_pfn(kpage);
1807 nid = get_kpfn_nid(kpfn);
1808 root = root_stable_tree + nid;
1809 again:
1810 parent = NULL;
1811 new = &root->rb_node;
1812
1813 while (*new) {
1814 struct page *tree_page;
1815 int ret;
1816
1817 cond_resched();
1818 stable_node = rb_entry(*new, struct stable_node, node);
1819 stable_node_any = NULL;
1820 tree_page = chain(&stable_node_dup, stable_node, root);
1821 if (!stable_node_dup) {
1822 /*
1823 * Either all stable_node dups were full in
1824 * this stable_node chain, or this chain was
1825 * empty and should be rb_erased.
1826 */
1827 stable_node_any = stable_node_dup_any(stable_node,
1828 root);
1829 if (!stable_node_any) {
1830 /* rb_erase just run */
1831 goto again;
1832 }
1833 /*
1834 * Take any of the stable_node dups page of
1835 * this stable_node chain to let the tree walk
1836 * continue. All KSM pages belonging to the
1837 * stable_node dups in a stable_node chain
1838 * have the same content and they're
1839 * write protected at all times. Any will work
1840 * fine to continue the walk.
1841 */
1842 tree_page = get_ksm_page(stable_node_any,
1843 GET_KSM_PAGE_NOLOCK);
1844 }
1845 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1846 if (!tree_page) {
1847 /*
1848 * If we walked over a stale stable_node,
1849 * get_ksm_page() will call rb_erase() and it
1850 * may rebalance the tree from under us. So
1851 * restart the search from scratch. Returning
1852 * NULL would be safe too, but we'd generate
1853 * false negative insertions just because some
1854 * stable_node was stale.
1855 */
1856 goto again;
1857 }
1858
1859 ret = memcmp_pages(kpage, tree_page);
1860 put_page(tree_page);
1861
1862 parent = *new;
1863 if (ret < 0)
1864 new = &parent->rb_left;
1865 else if (ret > 0)
1866 new = &parent->rb_right;
1867 else {
1868 need_chain = true;
1869 break;
1870 }
1871 }
1872
1873 stable_node_dup = alloc_stable_node();
1874 if (!stable_node_dup)
1875 return NULL;
1876
1877 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1878 stable_node_dup->kpfn = kpfn;
1879 set_page_stable_node(kpage, stable_node_dup);
1880 stable_node_dup->rmap_hlist_len = 0;
1881 DO_NUMA(stable_node_dup->nid = nid);
1882 if (!need_chain) {
1883 rb_link_node(&stable_node_dup->node, parent, new);
1884 rb_insert_color(&stable_node_dup->node, root);
1885 } else {
1886 if (!is_stable_node_chain(stable_node)) {
1887 struct stable_node *orig = stable_node;
1888 /* chain is missing so create it */
1889 stable_node = alloc_stable_node_chain(orig, root);
1890 if (!stable_node) {
1891 free_stable_node(stable_node_dup);
1892 return NULL;
1893 }
1894 }
1895 stable_node_chain_add_dup(stable_node_dup, stable_node);
1896 }
1897
1898 return stable_node_dup;
1899 }
1900
1901 /*
1902 * unstable_tree_search_insert - search for identical page,
1903 * else insert rmap_item into the unstable tree.
1904 *
1905 * This function searches for a page in the unstable tree identical to the
1906 * page currently being scanned; and if no identical page is found in the
1907 * tree, we insert rmap_item as a new object into the unstable tree.
1908 *
1909 * This function returns pointer to rmap_item found to be identical
1910 * to the currently scanned page, NULL otherwise.
1911 *
1912 * This function does both searching and inserting, because they share
1913 * the same walking algorithm in an rbtree.
1914 */
1915 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1916 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1917 struct page *page,
1918 struct page **tree_pagep)
1919 {
1920 struct rb_node **new;
1921 struct rb_root *root;
1922 struct rb_node *parent = NULL;
1923 int nid;
1924
1925 nid = get_kpfn_nid(page_to_pfn(page));
1926 root = root_unstable_tree + nid;
1927 new = &root->rb_node;
1928
1929 while (*new) {
1930 struct rmap_item *tree_rmap_item;
1931 struct page *tree_page;
1932 int ret;
1933
1934 cond_resched();
1935 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1936 tree_page = get_mergeable_page(tree_rmap_item);
1937 if (!tree_page)
1938 return NULL;
1939
1940 /*
1941 * Don't substitute a ksm page for a forked page.
1942 */
1943 if (page == tree_page) {
1944 put_page(tree_page);
1945 return NULL;
1946 }
1947
1948 ret = memcmp_pages(page, tree_page);
1949
1950 parent = *new;
1951 if (ret < 0) {
1952 put_page(tree_page);
1953 new = &parent->rb_left;
1954 } else if (ret > 0) {
1955 put_page(tree_page);
1956 new = &parent->rb_right;
1957 } else if (!ksm_merge_across_nodes &&
1958 page_to_nid(tree_page) != nid) {
1959 /*
1960 * If tree_page has been migrated to another NUMA node,
1961 * it will be flushed out and put in the right unstable
1962 * tree next time: only merge with it when across_nodes.
1963 */
1964 put_page(tree_page);
1965 return NULL;
1966 } else {
1967 *tree_pagep = tree_page;
1968 return tree_rmap_item;
1969 }
1970 }
1971
1972 rmap_item->address |= UNSTABLE_FLAG;
1973 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1974 DO_NUMA(rmap_item->nid = nid);
1975 rb_link_node(&rmap_item->node, parent, new);
1976 rb_insert_color(&rmap_item->node, root);
1977
1978 ksm_pages_unshared++;
1979 return NULL;
1980 }
1981
1982 /*
1983 * stable_tree_append - add another rmap_item to the linked list of
1984 * rmap_items hanging off a given node of the stable tree, all sharing
1985 * the same ksm page.
1986 */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node,bool max_page_sharing_bypass)1987 static void stable_tree_append(struct rmap_item *rmap_item,
1988 struct stable_node *stable_node,
1989 bool max_page_sharing_bypass)
1990 {
1991 /*
1992 * rmap won't find this mapping if we don't insert the
1993 * rmap_item in the right stable_node
1994 * duplicate. page_migration could break later if rmap breaks,
1995 * so we can as well crash here. We really need to check for
1996 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1997 * for other negative values as an underflow if detected here
1998 * for the first time (and not when decreasing rmap_hlist_len)
1999 * would be sign of memory corruption in the stable_node.
2000 */
2001 BUG_ON(stable_node->rmap_hlist_len < 0);
2002
2003 stable_node->rmap_hlist_len++;
2004 if (!max_page_sharing_bypass)
2005 /* possibly non fatal but unexpected overflow, only warn */
2006 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2007 ksm_max_page_sharing);
2008
2009 rmap_item->head = stable_node;
2010 rmap_item->address |= STABLE_FLAG;
2011 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2012
2013 if (rmap_item->hlist.next)
2014 ksm_pages_sharing++;
2015 else
2016 ksm_pages_shared++;
2017 }
2018
2019 /*
2020 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2021 * if not, compare checksum to previous and if it's the same, see if page can
2022 * be inserted into the unstable tree, or merged with a page already there and
2023 * both transferred to the stable tree.
2024 *
2025 * @page: the page that we are searching identical page to.
2026 * @rmap_item: the reverse mapping into the virtual address of this page
2027 */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)2028 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2029 {
2030 struct mm_struct *mm = rmap_item->mm;
2031 struct rmap_item *tree_rmap_item;
2032 struct page *tree_page = NULL;
2033 struct stable_node *stable_node;
2034 struct page *kpage;
2035 unsigned int checksum;
2036 int err;
2037 bool max_page_sharing_bypass = false;
2038
2039 stable_node = page_stable_node(page);
2040 if (stable_node) {
2041 if (stable_node->head != &migrate_nodes &&
2042 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2043 NUMA(stable_node->nid)) {
2044 stable_node_dup_del(stable_node);
2045 stable_node->head = &migrate_nodes;
2046 list_add(&stable_node->list, stable_node->head);
2047 }
2048 if (stable_node->head != &migrate_nodes &&
2049 rmap_item->head == stable_node)
2050 return;
2051 /*
2052 * If it's a KSM fork, allow it to go over the sharing limit
2053 * without warnings.
2054 */
2055 if (!is_page_sharing_candidate(stable_node))
2056 max_page_sharing_bypass = true;
2057 }
2058
2059 /* We first start with searching the page inside the stable tree */
2060 kpage = stable_tree_search(page);
2061 if (kpage == page && rmap_item->head == stable_node) {
2062 put_page(kpage);
2063 return;
2064 }
2065
2066 remove_rmap_item_from_tree(rmap_item);
2067
2068 if (kpage) {
2069 if (PTR_ERR(kpage) == -EBUSY)
2070 return;
2071
2072 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2073 if (!err) {
2074 /*
2075 * The page was successfully merged:
2076 * add its rmap_item to the stable tree.
2077 */
2078 lock_page(kpage);
2079 stable_tree_append(rmap_item, page_stable_node(kpage),
2080 max_page_sharing_bypass);
2081 unlock_page(kpage);
2082 }
2083 put_page(kpage);
2084 return;
2085 }
2086
2087 /*
2088 * If the hash value of the page has changed from the last time
2089 * we calculated it, this page is changing frequently: therefore we
2090 * don't want to insert it in the unstable tree, and we don't want
2091 * to waste our time searching for something identical to it there.
2092 */
2093 checksum = calc_checksum(page);
2094 if (rmap_item->oldchecksum != checksum) {
2095 rmap_item->oldchecksum = checksum;
2096 return;
2097 }
2098
2099 /*
2100 * Same checksum as an empty page. We attempt to merge it with the
2101 * appropriate zero page if the user enabled this via sysfs.
2102 */
2103 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2104 struct vm_area_struct *vma;
2105
2106 mmap_read_lock(mm);
2107 vma = find_mergeable_vma(mm, rmap_item->address);
2108 if (vma) {
2109 err = try_to_merge_one_page(vma, page,
2110 ZERO_PAGE(rmap_item->address));
2111 } else {
2112 /*
2113 * If the vma is out of date, we do not need to
2114 * continue.
2115 */
2116 err = 0;
2117 }
2118 mmap_read_unlock(mm);
2119 /*
2120 * In case of failure, the page was not really empty, so we
2121 * need to continue. Otherwise we're done.
2122 */
2123 if (!err)
2124 return;
2125 }
2126 tree_rmap_item =
2127 unstable_tree_search_insert(rmap_item, page, &tree_page);
2128 if (tree_rmap_item) {
2129 bool split;
2130
2131 kpage = try_to_merge_two_pages(rmap_item, page,
2132 tree_rmap_item, tree_page);
2133 /*
2134 * If both pages we tried to merge belong to the same compound
2135 * page, then we actually ended up increasing the reference
2136 * count of the same compound page twice, and split_huge_page
2137 * failed.
2138 * Here we set a flag if that happened, and we use it later to
2139 * try split_huge_page again. Since we call put_page right
2140 * afterwards, the reference count will be correct and
2141 * split_huge_page should succeed.
2142 */
2143 split = PageTransCompound(page)
2144 && compound_head(page) == compound_head(tree_page);
2145 put_page(tree_page);
2146 if (kpage) {
2147 /*
2148 * The pages were successfully merged: insert new
2149 * node in the stable tree and add both rmap_items.
2150 */
2151 lock_page(kpage);
2152 stable_node = stable_tree_insert(kpage);
2153 if (stable_node) {
2154 stable_tree_append(tree_rmap_item, stable_node,
2155 false);
2156 stable_tree_append(rmap_item, stable_node,
2157 false);
2158 }
2159 unlock_page(kpage);
2160
2161 /*
2162 * If we fail to insert the page into the stable tree,
2163 * we will have 2 virtual addresses that are pointing
2164 * to a ksm page left outside the stable tree,
2165 * in which case we need to break_cow on both.
2166 */
2167 if (!stable_node) {
2168 break_cow(tree_rmap_item);
2169 break_cow(rmap_item);
2170 }
2171 } else if (split) {
2172 /*
2173 * We are here if we tried to merge two pages and
2174 * failed because they both belonged to the same
2175 * compound page. We will split the page now, but no
2176 * merging will take place.
2177 * We do not want to add the cost of a full lock; if
2178 * the page is locked, it is better to skip it and
2179 * perhaps try again later.
2180 */
2181 if (!trylock_page(page))
2182 return;
2183 split_huge_page(page);
2184 unlock_page(page);
2185 }
2186 }
2187 }
2188
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)2189 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2190 struct rmap_item **rmap_list,
2191 unsigned long addr)
2192 {
2193 struct rmap_item *rmap_item;
2194
2195 while (*rmap_list) {
2196 rmap_item = *rmap_list;
2197 if ((rmap_item->address & PAGE_MASK) == addr)
2198 return rmap_item;
2199 if (rmap_item->address > addr)
2200 break;
2201 *rmap_list = rmap_item->rmap_list;
2202 remove_rmap_item_from_tree(rmap_item);
2203 free_rmap_item(rmap_item);
2204 }
2205
2206 rmap_item = alloc_rmap_item();
2207 if (rmap_item) {
2208 /* It has already been zeroed */
2209 rmap_item->mm = mm_slot->mm;
2210 rmap_item->address = addr;
2211 rmap_item->rmap_list = *rmap_list;
2212 *rmap_list = rmap_item;
2213 }
2214 return rmap_item;
2215 }
2216
scan_get_next_rmap_item(struct page ** page)2217 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2218 {
2219 struct mm_struct *mm;
2220 struct mm_slot *slot;
2221 struct vm_area_struct *vma;
2222 struct rmap_item *rmap_item;
2223 int nid;
2224
2225 if (list_empty(&ksm_mm_head.mm_list))
2226 return NULL;
2227
2228 slot = ksm_scan.mm_slot;
2229 if (slot == &ksm_mm_head) {
2230 /*
2231 * A number of pages can hang around indefinitely on per-cpu
2232 * pagevecs, raised page count preventing write_protect_page
2233 * from merging them. Though it doesn't really matter much,
2234 * it is puzzling to see some stuck in pages_volatile until
2235 * other activity jostles them out, and they also prevented
2236 * LTP's KSM test from succeeding deterministically; so drain
2237 * them here (here rather than on entry to ksm_do_scan(),
2238 * so we don't IPI too often when pages_to_scan is set low).
2239 */
2240 lru_add_drain_all();
2241
2242 /*
2243 * Whereas stale stable_nodes on the stable_tree itself
2244 * get pruned in the regular course of stable_tree_search(),
2245 * those moved out to the migrate_nodes list can accumulate:
2246 * so prune them once before each full scan.
2247 */
2248 if (!ksm_merge_across_nodes) {
2249 struct stable_node *stable_node, *next;
2250 struct page *page;
2251
2252 list_for_each_entry_safe(stable_node, next,
2253 &migrate_nodes, list) {
2254 page = get_ksm_page(stable_node,
2255 GET_KSM_PAGE_NOLOCK);
2256 if (page)
2257 put_page(page);
2258 cond_resched();
2259 }
2260 }
2261
2262 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2263 root_unstable_tree[nid] = RB_ROOT;
2264
2265 spin_lock(&ksm_mmlist_lock);
2266 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2267 ksm_scan.mm_slot = slot;
2268 spin_unlock(&ksm_mmlist_lock);
2269 /*
2270 * Although we tested list_empty() above, a racing __ksm_exit
2271 * of the last mm on the list may have removed it since then.
2272 */
2273 if (slot == &ksm_mm_head)
2274 return NULL;
2275 next_mm:
2276 ksm_scan.address = 0;
2277 ksm_scan.rmap_list = &slot->rmap_list;
2278 }
2279
2280 mm = slot->mm;
2281 mmap_read_lock(mm);
2282 if (ksm_test_exit(mm))
2283 vma = NULL;
2284 else
2285 vma = find_vma(mm, ksm_scan.address);
2286
2287 for (; vma; vma = vma->vm_next) {
2288 if (!(vma->vm_flags & VM_MERGEABLE))
2289 continue;
2290 if (ksm_scan.address < vma->vm_start)
2291 ksm_scan.address = vma->vm_start;
2292 if (!vma->anon_vma)
2293 ksm_scan.address = vma->vm_end;
2294
2295 while (ksm_scan.address < vma->vm_end) {
2296 if (ksm_test_exit(mm))
2297 break;
2298 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2299 if (IS_ERR_OR_NULL(*page)) {
2300 ksm_scan.address += PAGE_SIZE;
2301 cond_resched();
2302 continue;
2303 }
2304 if (PageAnon(*page)) {
2305 flush_anon_page(vma, *page, ksm_scan.address);
2306 flush_dcache_page(*page);
2307 rmap_item = get_next_rmap_item(slot,
2308 ksm_scan.rmap_list, ksm_scan.address);
2309 if (rmap_item) {
2310 ksm_scan.rmap_list =
2311 &rmap_item->rmap_list;
2312 ksm_scan.address += PAGE_SIZE;
2313 } else
2314 put_page(*page);
2315 mmap_read_unlock(mm);
2316 return rmap_item;
2317 }
2318 put_page(*page);
2319 ksm_scan.address += PAGE_SIZE;
2320 cond_resched();
2321 }
2322 }
2323
2324 if (ksm_test_exit(mm)) {
2325 ksm_scan.address = 0;
2326 ksm_scan.rmap_list = &slot->rmap_list;
2327 }
2328 /*
2329 * Nuke all the rmap_items that are above this current rmap:
2330 * because there were no VM_MERGEABLE vmas with such addresses.
2331 */
2332 remove_trailing_rmap_items(ksm_scan.rmap_list);
2333
2334 spin_lock(&ksm_mmlist_lock);
2335 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2336 struct mm_slot, mm_list);
2337 if (ksm_scan.address == 0) {
2338 /*
2339 * We've completed a full scan of all vmas, holding mmap_lock
2340 * throughout, and found no VM_MERGEABLE: so do the same as
2341 * __ksm_exit does to remove this mm from all our lists now.
2342 * This applies either when cleaning up after __ksm_exit
2343 * (but beware: we can reach here even before __ksm_exit),
2344 * or when all VM_MERGEABLE areas have been unmapped (and
2345 * mmap_lock then protects against race with MADV_MERGEABLE).
2346 */
2347 hash_del(&slot->link);
2348 list_del(&slot->mm_list);
2349 spin_unlock(&ksm_mmlist_lock);
2350
2351 free_mm_slot(slot);
2352 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2353 mmap_read_unlock(mm);
2354 mmdrop(mm);
2355 } else {
2356 mmap_read_unlock(mm);
2357 /*
2358 * mmap_read_unlock(mm) first because after
2359 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2360 * already have been freed under us by __ksm_exit()
2361 * because the "mm_slot" is still hashed and
2362 * ksm_scan.mm_slot doesn't point to it anymore.
2363 */
2364 spin_unlock(&ksm_mmlist_lock);
2365 }
2366
2367 /* Repeat until we've completed scanning the whole list */
2368 slot = ksm_scan.mm_slot;
2369 if (slot != &ksm_mm_head)
2370 goto next_mm;
2371
2372 ksm_scan.seqnr++;
2373 return NULL;
2374 }
2375
2376 /**
2377 * ksm_do_scan - the ksm scanner main worker function.
2378 * @scan_npages: number of pages we want to scan before we return.
2379 */
ksm_do_scan(unsigned int scan_npages)2380 static void ksm_do_scan(unsigned int scan_npages)
2381 {
2382 struct rmap_item *rmap_item;
2383 struct page *page;
2384
2385 while (scan_npages-- && likely(!freezing(current))) {
2386 cond_resched();
2387 rmap_item = scan_get_next_rmap_item(&page);
2388 if (!rmap_item)
2389 return;
2390 cmp_and_merge_page(page, rmap_item);
2391 put_page(page);
2392 }
2393 }
2394
ksmd_should_run(void)2395 static int ksmd_should_run(void)
2396 {
2397 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2398 }
2399
ksm_scan_thread(void * nothing)2400 static int ksm_scan_thread(void *nothing)
2401 {
2402 unsigned int sleep_ms;
2403
2404 set_freezable();
2405 set_user_nice(current, 5);
2406
2407 while (!kthread_should_stop()) {
2408 mutex_lock(&ksm_thread_mutex);
2409 wait_while_offlining();
2410 if (ksmd_should_run())
2411 ksm_do_scan(ksm_thread_pages_to_scan);
2412 mutex_unlock(&ksm_thread_mutex);
2413
2414 try_to_freeze();
2415
2416 if (ksmd_should_run()) {
2417 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2418 wait_event_interruptible_timeout(ksm_iter_wait,
2419 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2420 msecs_to_jiffies(sleep_ms));
2421 } else {
2422 wait_event_freezable(ksm_thread_wait,
2423 ksmd_should_run() || kthread_should_stop());
2424 }
2425 }
2426 return 0;
2427 }
2428
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)2429 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2430 unsigned long end, int advice, unsigned long *vm_flags)
2431 {
2432 struct mm_struct *mm = vma->vm_mm;
2433 int err;
2434
2435 switch (advice) {
2436 case MADV_MERGEABLE:
2437 /*
2438 * Be somewhat over-protective for now!
2439 */
2440 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2441 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2442 VM_HUGETLB | VM_MIXEDMAP))
2443 return 0; /* just ignore the advice */
2444
2445 if (vma_is_dax(vma))
2446 return 0;
2447
2448 #ifdef VM_SAO
2449 if (*vm_flags & VM_SAO)
2450 return 0;
2451 #endif
2452 #ifdef VM_SPARC_ADI
2453 if (*vm_flags & VM_SPARC_ADI)
2454 return 0;
2455 #endif
2456
2457 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2458 err = __ksm_enter(mm);
2459 if (err)
2460 return err;
2461 }
2462
2463 *vm_flags |= VM_MERGEABLE;
2464 break;
2465
2466 case MADV_UNMERGEABLE:
2467 if (!(*vm_flags & VM_MERGEABLE))
2468 return 0; /* just ignore the advice */
2469
2470 if (vma->anon_vma) {
2471 err = unmerge_ksm_pages(vma, start, end);
2472 if (err)
2473 return err;
2474 }
2475
2476 *vm_flags &= ~VM_MERGEABLE;
2477 break;
2478 }
2479
2480 return 0;
2481 }
2482 EXPORT_SYMBOL_GPL(ksm_madvise);
2483
__ksm_enter(struct mm_struct * mm)2484 int __ksm_enter(struct mm_struct *mm)
2485 {
2486 struct mm_slot *mm_slot;
2487 int needs_wakeup;
2488
2489 mm_slot = alloc_mm_slot();
2490 if (!mm_slot)
2491 return -ENOMEM;
2492
2493 /* Check ksm_run too? Would need tighter locking */
2494 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2495
2496 spin_lock(&ksm_mmlist_lock);
2497 insert_to_mm_slots_hash(mm, mm_slot);
2498 /*
2499 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2500 * insert just behind the scanning cursor, to let the area settle
2501 * down a little; when fork is followed by immediate exec, we don't
2502 * want ksmd to waste time setting up and tearing down an rmap_list.
2503 *
2504 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2505 * scanning cursor, otherwise KSM pages in newly forked mms will be
2506 * missed: then we might as well insert at the end of the list.
2507 */
2508 if (ksm_run & KSM_RUN_UNMERGE)
2509 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2510 else
2511 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2512 spin_unlock(&ksm_mmlist_lock);
2513
2514 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2515 mmgrab(mm);
2516
2517 if (needs_wakeup)
2518 wake_up_interruptible(&ksm_thread_wait);
2519
2520 return 0;
2521 }
2522
__ksm_exit(struct mm_struct * mm)2523 void __ksm_exit(struct mm_struct *mm)
2524 {
2525 struct mm_slot *mm_slot;
2526 int easy_to_free = 0;
2527
2528 /*
2529 * This process is exiting: if it's straightforward (as is the
2530 * case when ksmd was never running), free mm_slot immediately.
2531 * But if it's at the cursor or has rmap_items linked to it, use
2532 * mmap_lock to synchronize with any break_cows before pagetables
2533 * are freed, and leave the mm_slot on the list for ksmd to free.
2534 * Beware: ksm may already have noticed it exiting and freed the slot.
2535 */
2536
2537 spin_lock(&ksm_mmlist_lock);
2538 mm_slot = get_mm_slot(mm);
2539 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2540 if (!mm_slot->rmap_list) {
2541 hash_del(&mm_slot->link);
2542 list_del(&mm_slot->mm_list);
2543 easy_to_free = 1;
2544 } else {
2545 list_move(&mm_slot->mm_list,
2546 &ksm_scan.mm_slot->mm_list);
2547 }
2548 }
2549 spin_unlock(&ksm_mmlist_lock);
2550
2551 if (easy_to_free) {
2552 free_mm_slot(mm_slot);
2553 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2554 mmdrop(mm);
2555 } else if (mm_slot) {
2556 mmap_write_lock(mm);
2557 mmap_write_unlock(mm);
2558 }
2559 }
2560
ksm_might_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)2561 struct page *ksm_might_need_to_copy(struct page *page,
2562 struct vm_area_struct *vma, unsigned long address)
2563 {
2564 struct anon_vma *anon_vma = page_anon_vma(page);
2565 struct page *new_page;
2566
2567 if (PageKsm(page)) {
2568 if (page_stable_node(page) &&
2569 !(ksm_run & KSM_RUN_UNMERGE))
2570 return page; /* no need to copy it */
2571 } else if (!anon_vma) {
2572 return page; /* no need to copy it */
2573 } else if (anon_vma->root == vma->anon_vma->root &&
2574 page->index == linear_page_index(vma, address)) {
2575 return page; /* still no need to copy it */
2576 }
2577 if (!PageUptodate(page))
2578 return page; /* let do_swap_page report the error */
2579
2580 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2581 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2582 put_page(new_page);
2583 new_page = NULL;
2584 }
2585 if (new_page) {
2586 copy_user_highpage(new_page, page, address, vma);
2587
2588 SetPageDirty(new_page);
2589 __SetPageUptodate(new_page);
2590 __SetPageLocked(new_page);
2591 }
2592
2593 return new_page;
2594 }
2595
rmap_walk_ksm(struct page * page,struct rmap_walk_control * rwc)2596 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2597 {
2598 struct stable_node *stable_node;
2599 struct rmap_item *rmap_item;
2600 int search_new_forks = 0;
2601
2602 VM_BUG_ON_PAGE(!PageKsm(page), page);
2603
2604 /*
2605 * Rely on the page lock to protect against concurrent modifications
2606 * to that page's node of the stable tree.
2607 */
2608 VM_BUG_ON_PAGE(!PageLocked(page), page);
2609
2610 stable_node = page_stable_node(page);
2611 if (!stable_node)
2612 return;
2613 again:
2614 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2615 struct anon_vma *anon_vma = rmap_item->anon_vma;
2616 struct anon_vma_chain *vmac;
2617 struct vm_area_struct *vma;
2618
2619 cond_resched();
2620 anon_vma_lock_read(anon_vma);
2621 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2622 0, ULONG_MAX) {
2623 unsigned long addr;
2624
2625 cond_resched();
2626 vma = vmac->vma;
2627
2628 /* Ignore the stable/unstable/sqnr flags */
2629 addr = rmap_item->address & PAGE_MASK;
2630
2631 if (addr < vma->vm_start || addr >= vma->vm_end)
2632 continue;
2633 /*
2634 * Initially we examine only the vma which covers this
2635 * rmap_item; but later, if there is still work to do,
2636 * we examine covering vmas in other mms: in case they
2637 * were forked from the original since ksmd passed.
2638 */
2639 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2640 continue;
2641
2642 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2643 continue;
2644
2645 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2646 anon_vma_unlock_read(anon_vma);
2647 return;
2648 }
2649 if (rwc->done && rwc->done(page)) {
2650 anon_vma_unlock_read(anon_vma);
2651 return;
2652 }
2653 }
2654 anon_vma_unlock_read(anon_vma);
2655 }
2656 if (!search_new_forks++)
2657 goto again;
2658 }
2659
2660 #ifdef CONFIG_MIGRATION
ksm_migrate_page(struct page * newpage,struct page * oldpage)2661 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2662 {
2663 struct stable_node *stable_node;
2664
2665 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2666 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2667 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2668
2669 stable_node = page_stable_node(newpage);
2670 if (stable_node) {
2671 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2672 stable_node->kpfn = page_to_pfn(newpage);
2673 /*
2674 * newpage->mapping was set in advance; now we need smp_wmb()
2675 * to make sure that the new stable_node->kpfn is visible
2676 * to get_ksm_page() before it can see that oldpage->mapping
2677 * has gone stale (or that PageSwapCache has been cleared).
2678 */
2679 smp_wmb();
2680 set_page_stable_node(oldpage, NULL);
2681 }
2682 }
2683 #endif /* CONFIG_MIGRATION */
2684
2685 #ifdef CONFIG_MEMORY_HOTREMOVE
wait_while_offlining(void)2686 static void wait_while_offlining(void)
2687 {
2688 while (ksm_run & KSM_RUN_OFFLINE) {
2689 mutex_unlock(&ksm_thread_mutex);
2690 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2691 TASK_UNINTERRUPTIBLE);
2692 mutex_lock(&ksm_thread_mutex);
2693 }
2694 }
2695
stable_node_dup_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn)2696 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2697 unsigned long start_pfn,
2698 unsigned long end_pfn)
2699 {
2700 if (stable_node->kpfn >= start_pfn &&
2701 stable_node->kpfn < end_pfn) {
2702 /*
2703 * Don't get_ksm_page, page has already gone:
2704 * which is why we keep kpfn instead of page*
2705 */
2706 remove_node_from_stable_tree(stable_node);
2707 return true;
2708 }
2709 return false;
2710 }
2711
stable_node_chain_remove_range(struct stable_node * stable_node,unsigned long start_pfn,unsigned long end_pfn,struct rb_root * root)2712 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2713 unsigned long start_pfn,
2714 unsigned long end_pfn,
2715 struct rb_root *root)
2716 {
2717 struct stable_node *dup;
2718 struct hlist_node *hlist_safe;
2719
2720 if (!is_stable_node_chain(stable_node)) {
2721 VM_BUG_ON(is_stable_node_dup(stable_node));
2722 return stable_node_dup_remove_range(stable_node, start_pfn,
2723 end_pfn);
2724 }
2725
2726 hlist_for_each_entry_safe(dup, hlist_safe,
2727 &stable_node->hlist, hlist_dup) {
2728 VM_BUG_ON(!is_stable_node_dup(dup));
2729 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2730 }
2731 if (hlist_empty(&stable_node->hlist)) {
2732 free_stable_node_chain(stable_node, root);
2733 return true; /* notify caller that tree was rebalanced */
2734 } else
2735 return false;
2736 }
2737
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)2738 static void ksm_check_stable_tree(unsigned long start_pfn,
2739 unsigned long end_pfn)
2740 {
2741 struct stable_node *stable_node, *next;
2742 struct rb_node *node;
2743 int nid;
2744
2745 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2746 node = rb_first(root_stable_tree + nid);
2747 while (node) {
2748 stable_node = rb_entry(node, struct stable_node, node);
2749 if (stable_node_chain_remove_range(stable_node,
2750 start_pfn, end_pfn,
2751 root_stable_tree +
2752 nid))
2753 node = rb_first(root_stable_tree + nid);
2754 else
2755 node = rb_next(node);
2756 cond_resched();
2757 }
2758 }
2759 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2760 if (stable_node->kpfn >= start_pfn &&
2761 stable_node->kpfn < end_pfn)
2762 remove_node_from_stable_tree(stable_node);
2763 cond_resched();
2764 }
2765 }
2766
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)2767 static int ksm_memory_callback(struct notifier_block *self,
2768 unsigned long action, void *arg)
2769 {
2770 struct memory_notify *mn = arg;
2771
2772 switch (action) {
2773 case MEM_GOING_OFFLINE:
2774 /*
2775 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2776 * and remove_all_stable_nodes() while memory is going offline:
2777 * it is unsafe for them to touch the stable tree at this time.
2778 * But unmerge_ksm_pages(), rmap lookups and other entry points
2779 * which do not need the ksm_thread_mutex are all safe.
2780 */
2781 mutex_lock(&ksm_thread_mutex);
2782 ksm_run |= KSM_RUN_OFFLINE;
2783 mutex_unlock(&ksm_thread_mutex);
2784 break;
2785
2786 case MEM_OFFLINE:
2787 /*
2788 * Most of the work is done by page migration; but there might
2789 * be a few stable_nodes left over, still pointing to struct
2790 * pages which have been offlined: prune those from the tree,
2791 * otherwise get_ksm_page() might later try to access a
2792 * non-existent struct page.
2793 */
2794 ksm_check_stable_tree(mn->start_pfn,
2795 mn->start_pfn + mn->nr_pages);
2796 fallthrough;
2797 case MEM_CANCEL_OFFLINE:
2798 mutex_lock(&ksm_thread_mutex);
2799 ksm_run &= ~KSM_RUN_OFFLINE;
2800 mutex_unlock(&ksm_thread_mutex);
2801
2802 smp_mb(); /* wake_up_bit advises this */
2803 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2804 break;
2805 }
2806 return NOTIFY_OK;
2807 }
2808 #else
wait_while_offlining(void)2809 static void wait_while_offlining(void)
2810 {
2811 }
2812 #endif /* CONFIG_MEMORY_HOTREMOVE */
2813
2814 #ifdef CONFIG_SYSFS
2815 /*
2816 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2817 */
2818
2819 #define KSM_ATTR_RO(_name) \
2820 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2821 #define KSM_ATTR(_name) \
2822 static struct kobj_attribute _name##_attr = \
2823 __ATTR(_name, 0644, _name##_show, _name##_store)
2824
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2825 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2826 struct kobj_attribute *attr, char *buf)
2827 {
2828 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2829 }
2830
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2831 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2832 struct kobj_attribute *attr,
2833 const char *buf, size_t count)
2834 {
2835 unsigned int msecs;
2836 int err;
2837
2838 err = kstrtouint(buf, 10, &msecs);
2839 if (err)
2840 return -EINVAL;
2841
2842 ksm_thread_sleep_millisecs = msecs;
2843 wake_up_interruptible(&ksm_iter_wait);
2844
2845 return count;
2846 }
2847 KSM_ATTR(sleep_millisecs);
2848
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2849 static ssize_t pages_to_scan_show(struct kobject *kobj,
2850 struct kobj_attribute *attr, char *buf)
2851 {
2852 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2853 }
2854
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2855 static ssize_t pages_to_scan_store(struct kobject *kobj,
2856 struct kobj_attribute *attr,
2857 const char *buf, size_t count)
2858 {
2859 unsigned int nr_pages;
2860 int err;
2861
2862 err = kstrtouint(buf, 10, &nr_pages);
2863 if (err)
2864 return -EINVAL;
2865
2866 ksm_thread_pages_to_scan = nr_pages;
2867
2868 return count;
2869 }
2870 KSM_ATTR(pages_to_scan);
2871
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2872 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2873 char *buf)
2874 {
2875 return sysfs_emit(buf, "%lu\n", ksm_run);
2876 }
2877
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2878 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2879 const char *buf, size_t count)
2880 {
2881 unsigned int flags;
2882 int err;
2883
2884 err = kstrtouint(buf, 10, &flags);
2885 if (err)
2886 return -EINVAL;
2887 if (flags > KSM_RUN_UNMERGE)
2888 return -EINVAL;
2889
2890 /*
2891 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2892 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2893 * breaking COW to free the pages_shared (but leaves mm_slots
2894 * on the list for when ksmd may be set running again).
2895 */
2896
2897 mutex_lock(&ksm_thread_mutex);
2898 wait_while_offlining();
2899 if (ksm_run != flags) {
2900 ksm_run = flags;
2901 if (flags & KSM_RUN_UNMERGE) {
2902 set_current_oom_origin();
2903 err = unmerge_and_remove_all_rmap_items();
2904 clear_current_oom_origin();
2905 if (err) {
2906 ksm_run = KSM_RUN_STOP;
2907 count = err;
2908 }
2909 }
2910 }
2911 mutex_unlock(&ksm_thread_mutex);
2912
2913 if (flags & KSM_RUN_MERGE)
2914 wake_up_interruptible(&ksm_thread_wait);
2915
2916 return count;
2917 }
2918 KSM_ATTR(run);
2919
2920 #ifdef CONFIG_NUMA
merge_across_nodes_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2921 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2922 struct kobj_attribute *attr, char *buf)
2923 {
2924 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2925 }
2926
merge_across_nodes_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2927 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2928 struct kobj_attribute *attr,
2929 const char *buf, size_t count)
2930 {
2931 int err;
2932 unsigned long knob;
2933
2934 err = kstrtoul(buf, 10, &knob);
2935 if (err)
2936 return err;
2937 if (knob > 1)
2938 return -EINVAL;
2939
2940 mutex_lock(&ksm_thread_mutex);
2941 wait_while_offlining();
2942 if (ksm_merge_across_nodes != knob) {
2943 if (ksm_pages_shared || remove_all_stable_nodes())
2944 err = -EBUSY;
2945 else if (root_stable_tree == one_stable_tree) {
2946 struct rb_root *buf;
2947 /*
2948 * This is the first time that we switch away from the
2949 * default of merging across nodes: must now allocate
2950 * a buffer to hold as many roots as may be needed.
2951 * Allocate stable and unstable together:
2952 * MAXSMP NODES_SHIFT 10 will use 16kB.
2953 */
2954 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2955 GFP_KERNEL);
2956 /* Let us assume that RB_ROOT is NULL is zero */
2957 if (!buf)
2958 err = -ENOMEM;
2959 else {
2960 root_stable_tree = buf;
2961 root_unstable_tree = buf + nr_node_ids;
2962 /* Stable tree is empty but not the unstable */
2963 root_unstable_tree[0] = one_unstable_tree[0];
2964 }
2965 }
2966 if (!err) {
2967 ksm_merge_across_nodes = knob;
2968 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2969 }
2970 }
2971 mutex_unlock(&ksm_thread_mutex);
2972
2973 return err ? err : count;
2974 }
2975 KSM_ATTR(merge_across_nodes);
2976 #endif
2977
use_zero_pages_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)2978 static ssize_t use_zero_pages_show(struct kobject *kobj,
2979 struct kobj_attribute *attr, char *buf)
2980 {
2981 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2982 }
use_zero_pages_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)2983 static ssize_t use_zero_pages_store(struct kobject *kobj,
2984 struct kobj_attribute *attr,
2985 const char *buf, size_t count)
2986 {
2987 int err;
2988 bool value;
2989
2990 err = kstrtobool(buf, &value);
2991 if (err)
2992 return -EINVAL;
2993
2994 ksm_use_zero_pages = value;
2995
2996 return count;
2997 }
2998 KSM_ATTR(use_zero_pages);
2999
max_page_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3000 static ssize_t max_page_sharing_show(struct kobject *kobj,
3001 struct kobj_attribute *attr, char *buf)
3002 {
3003 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3004 }
3005
max_page_sharing_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3006 static ssize_t max_page_sharing_store(struct kobject *kobj,
3007 struct kobj_attribute *attr,
3008 const char *buf, size_t count)
3009 {
3010 int err;
3011 int knob;
3012
3013 err = kstrtoint(buf, 10, &knob);
3014 if (err)
3015 return err;
3016 /*
3017 * When a KSM page is created it is shared by 2 mappings. This
3018 * being a signed comparison, it implicitly verifies it's not
3019 * negative.
3020 */
3021 if (knob < 2)
3022 return -EINVAL;
3023
3024 if (READ_ONCE(ksm_max_page_sharing) == knob)
3025 return count;
3026
3027 mutex_lock(&ksm_thread_mutex);
3028 wait_while_offlining();
3029 if (ksm_max_page_sharing != knob) {
3030 if (ksm_pages_shared || remove_all_stable_nodes())
3031 err = -EBUSY;
3032 else
3033 ksm_max_page_sharing = knob;
3034 }
3035 mutex_unlock(&ksm_thread_mutex);
3036
3037 return err ? err : count;
3038 }
3039 KSM_ATTR(max_page_sharing);
3040
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3041 static ssize_t pages_shared_show(struct kobject *kobj,
3042 struct kobj_attribute *attr, char *buf)
3043 {
3044 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3045 }
3046 KSM_ATTR_RO(pages_shared);
3047
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3048 static ssize_t pages_sharing_show(struct kobject *kobj,
3049 struct kobj_attribute *attr, char *buf)
3050 {
3051 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3052 }
3053 KSM_ATTR_RO(pages_sharing);
3054
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3055 static ssize_t pages_unshared_show(struct kobject *kobj,
3056 struct kobj_attribute *attr, char *buf)
3057 {
3058 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3059 }
3060 KSM_ATTR_RO(pages_unshared);
3061
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3062 static ssize_t pages_volatile_show(struct kobject *kobj,
3063 struct kobj_attribute *attr, char *buf)
3064 {
3065 long ksm_pages_volatile;
3066
3067 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3068 - ksm_pages_sharing - ksm_pages_unshared;
3069 /*
3070 * It was not worth any locking to calculate that statistic,
3071 * but it might therefore sometimes be negative: conceal that.
3072 */
3073 if (ksm_pages_volatile < 0)
3074 ksm_pages_volatile = 0;
3075 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3076 }
3077 KSM_ATTR_RO(pages_volatile);
3078
stable_node_dups_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3079 static ssize_t stable_node_dups_show(struct kobject *kobj,
3080 struct kobj_attribute *attr, char *buf)
3081 {
3082 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3083 }
3084 KSM_ATTR_RO(stable_node_dups);
3085
stable_node_chains_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3086 static ssize_t stable_node_chains_show(struct kobject *kobj,
3087 struct kobj_attribute *attr, char *buf)
3088 {
3089 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3090 }
3091 KSM_ATTR_RO(stable_node_chains);
3092
3093 static ssize_t
stable_node_chains_prune_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3094 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3095 struct kobj_attribute *attr,
3096 char *buf)
3097 {
3098 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3099 }
3100
3101 static ssize_t
stable_node_chains_prune_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)3102 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3103 struct kobj_attribute *attr,
3104 const char *buf, size_t count)
3105 {
3106 unsigned int msecs;
3107 int err;
3108
3109 err = kstrtouint(buf, 10, &msecs);
3110 if (err)
3111 return -EINVAL;
3112
3113 ksm_stable_node_chains_prune_millisecs = msecs;
3114
3115 return count;
3116 }
3117 KSM_ATTR(stable_node_chains_prune_millisecs);
3118
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)3119 static ssize_t full_scans_show(struct kobject *kobj,
3120 struct kobj_attribute *attr, char *buf)
3121 {
3122 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3123 }
3124 KSM_ATTR_RO(full_scans);
3125
3126 static struct attribute *ksm_attrs[] = {
3127 &sleep_millisecs_attr.attr,
3128 &pages_to_scan_attr.attr,
3129 &run_attr.attr,
3130 &pages_shared_attr.attr,
3131 &pages_sharing_attr.attr,
3132 &pages_unshared_attr.attr,
3133 &pages_volatile_attr.attr,
3134 &full_scans_attr.attr,
3135 #ifdef CONFIG_NUMA
3136 &merge_across_nodes_attr.attr,
3137 #endif
3138 &max_page_sharing_attr.attr,
3139 &stable_node_chains_attr.attr,
3140 &stable_node_dups_attr.attr,
3141 &stable_node_chains_prune_millisecs_attr.attr,
3142 &use_zero_pages_attr.attr,
3143 NULL,
3144 };
3145
3146 static const struct attribute_group ksm_attr_group = {
3147 .attrs = ksm_attrs,
3148 .name = "ksm",
3149 };
3150 #endif /* CONFIG_SYSFS */
3151
ksm_init(void)3152 static int __init ksm_init(void)
3153 {
3154 struct task_struct *ksm_thread;
3155 int err;
3156
3157 /* The correct value depends on page size and endianness */
3158 zero_checksum = calc_checksum(ZERO_PAGE(0));
3159 /* Default to false for backwards compatibility */
3160 ksm_use_zero_pages = false;
3161
3162 err = ksm_slab_init();
3163 if (err)
3164 goto out;
3165
3166 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3167 if (IS_ERR(ksm_thread)) {
3168 pr_err("ksm: creating kthread failed\n");
3169 err = PTR_ERR(ksm_thread);
3170 goto out_free;
3171 }
3172
3173 #ifdef CONFIG_SYSFS
3174 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3175 if (err) {
3176 pr_err("ksm: register sysfs failed\n");
3177 kthread_stop(ksm_thread);
3178 goto out_free;
3179 }
3180 #else
3181 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3182
3183 #endif /* CONFIG_SYSFS */
3184
3185 #ifdef CONFIG_MEMORY_HOTREMOVE
3186 /* There is no significance to this priority 100 */
3187 hotplug_memory_notifier(ksm_memory_callback, 100);
3188 #endif
3189 return 0;
3190
3191 out_free:
3192 ksm_slab_free();
3193 out:
3194 return err;
3195 }
3196 subsys_initcall(ksm_init);
3197