1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2013 Red Hat Inc.
4 *
5 * Authors: Jérôme Glisse <jglisse@redhat.com>
6 */
7 /*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11 #include <linux/pagewalk.h>
12 #include <linux/hmm.h>
13 #include <linux/init.h>
14 #include <linux/rmap.h>
15 #include <linux/swap.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/mmzone.h>
19 #include <linux/pagemap.h>
20 #include <linux/swapops.h>
21 #include <linux/hugetlb.h>
22 #include <linux/memremap.h>
23 #include <linux/sched/mm.h>
24 #include <linux/jump_label.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/mmu_notifier.h>
27 #include <linux/memory_hotplug.h>
28
29 #include "internal.h"
30
31 struct hmm_vma_walk {
32 struct hmm_range *range;
33 unsigned long last;
34 };
35
36 enum {
37 HMM_NEED_FAULT = 1 << 0,
38 HMM_NEED_WRITE_FAULT = 1 << 1,
39 HMM_NEED_ALL_BITS = HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT,
40 };
41
hmm_pfns_fill(unsigned long addr,unsigned long end,struct hmm_range * range,unsigned long cpu_flags)42 static int hmm_pfns_fill(unsigned long addr, unsigned long end,
43 struct hmm_range *range, unsigned long cpu_flags)
44 {
45 unsigned long i = (addr - range->start) >> PAGE_SHIFT;
46
47 for (; addr < end; addr += PAGE_SIZE, i++)
48 range->hmm_pfns[i] = cpu_flags;
49 return 0;
50 }
51
52 /*
53 * hmm_vma_fault() - fault in a range lacking valid pmd or pte(s)
54 * @addr: range virtual start address (inclusive)
55 * @end: range virtual end address (exclusive)
56 * @required_fault: HMM_NEED_* flags
57 * @walk: mm_walk structure
58 * Return: -EBUSY after page fault, or page fault error
59 *
60 * This function will be called whenever pmd_none() or pte_none() returns true,
61 * or whenever there is no page directory covering the virtual address range.
62 */
hmm_vma_fault(unsigned long addr,unsigned long end,unsigned int required_fault,struct mm_walk * walk)63 static int hmm_vma_fault(unsigned long addr, unsigned long end,
64 unsigned int required_fault, struct mm_walk *walk)
65 {
66 struct hmm_vma_walk *hmm_vma_walk = walk->private;
67 struct vm_area_struct *vma = walk->vma;
68 unsigned int fault_flags = FAULT_FLAG_REMOTE;
69
70 WARN_ON_ONCE(!required_fault);
71 hmm_vma_walk->last = addr;
72
73 if (required_fault & HMM_NEED_WRITE_FAULT) {
74 if (!(vma->vm_flags & VM_WRITE))
75 return -EPERM;
76 fault_flags |= FAULT_FLAG_WRITE;
77 }
78
79 for (; addr < end; addr += PAGE_SIZE)
80 if (handle_mm_fault(vma, addr, fault_flags, NULL) &
81 VM_FAULT_ERROR)
82 return -EFAULT;
83 return -EBUSY;
84 }
85
hmm_pte_need_fault(const struct hmm_vma_walk * hmm_vma_walk,unsigned long pfn_req_flags,unsigned long cpu_flags)86 static unsigned int hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
87 unsigned long pfn_req_flags,
88 unsigned long cpu_flags)
89 {
90 struct hmm_range *range = hmm_vma_walk->range;
91
92 /*
93 * So we not only consider the individual per page request we also
94 * consider the default flags requested for the range. The API can
95 * be used 2 ways. The first one where the HMM user coalesces
96 * multiple page faults into one request and sets flags per pfn for
97 * those faults. The second one where the HMM user wants to pre-
98 * fault a range with specific flags. For the latter one it is a
99 * waste to have the user pre-fill the pfn arrays with a default
100 * flags value.
101 */
102 pfn_req_flags &= range->pfn_flags_mask;
103 pfn_req_flags |= range->default_flags;
104
105 /* We aren't ask to do anything ... */
106 if (!(pfn_req_flags & HMM_PFN_REQ_FAULT))
107 return 0;
108
109 /* Need to write fault ? */
110 if ((pfn_req_flags & HMM_PFN_REQ_WRITE) &&
111 !(cpu_flags & HMM_PFN_WRITE))
112 return HMM_NEED_FAULT | HMM_NEED_WRITE_FAULT;
113
114 /* If CPU page table is not valid then we need to fault */
115 if (!(cpu_flags & HMM_PFN_VALID))
116 return HMM_NEED_FAULT;
117 return 0;
118 }
119
120 static unsigned int
hmm_range_need_fault(const struct hmm_vma_walk * hmm_vma_walk,const unsigned long hmm_pfns[],unsigned long npages,unsigned long cpu_flags)121 hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
122 const unsigned long hmm_pfns[], unsigned long npages,
123 unsigned long cpu_flags)
124 {
125 struct hmm_range *range = hmm_vma_walk->range;
126 unsigned int required_fault = 0;
127 unsigned long i;
128
129 /*
130 * If the default flags do not request to fault pages, and the mask does
131 * not allow for individual pages to be faulted, then
132 * hmm_pte_need_fault() will always return 0.
133 */
134 if (!((range->default_flags | range->pfn_flags_mask) &
135 HMM_PFN_REQ_FAULT))
136 return 0;
137
138 for (i = 0; i < npages; ++i) {
139 required_fault |= hmm_pte_need_fault(hmm_vma_walk, hmm_pfns[i],
140 cpu_flags);
141 if (required_fault == HMM_NEED_ALL_BITS)
142 return required_fault;
143 }
144 return required_fault;
145 }
146
hmm_vma_walk_hole(unsigned long addr,unsigned long end,__always_unused int depth,struct mm_walk * walk)147 static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
148 __always_unused int depth, struct mm_walk *walk)
149 {
150 struct hmm_vma_walk *hmm_vma_walk = walk->private;
151 struct hmm_range *range = hmm_vma_walk->range;
152 unsigned int required_fault;
153 unsigned long i, npages;
154 unsigned long *hmm_pfns;
155
156 i = (addr - range->start) >> PAGE_SHIFT;
157 npages = (end - addr) >> PAGE_SHIFT;
158 hmm_pfns = &range->hmm_pfns[i];
159 required_fault =
160 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0);
161 if (!walk->vma) {
162 if (required_fault)
163 return -EFAULT;
164 return hmm_pfns_fill(addr, end, range, HMM_PFN_ERROR);
165 }
166 if (required_fault)
167 return hmm_vma_fault(addr, end, required_fault, walk);
168 return hmm_pfns_fill(addr, end, range, 0);
169 }
170
hmm_pfn_flags_order(unsigned long order)171 static inline unsigned long hmm_pfn_flags_order(unsigned long order)
172 {
173 return order << HMM_PFN_ORDER_SHIFT;
174 }
175
pmd_to_hmm_pfn_flags(struct hmm_range * range,pmd_t pmd)176 static inline unsigned long pmd_to_hmm_pfn_flags(struct hmm_range *range,
177 pmd_t pmd)
178 {
179 if (pmd_protnone(pmd))
180 return 0;
181 return (pmd_write(pmd) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
182 HMM_PFN_VALID) |
183 hmm_pfn_flags_order(PMD_SHIFT - PAGE_SHIFT);
184 }
185
186 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
hmm_vma_handle_pmd(struct mm_walk * walk,unsigned long addr,unsigned long end,unsigned long hmm_pfns[],pmd_t pmd)187 static int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
188 unsigned long end, unsigned long hmm_pfns[],
189 pmd_t pmd)
190 {
191 struct hmm_vma_walk *hmm_vma_walk = walk->private;
192 struct hmm_range *range = hmm_vma_walk->range;
193 unsigned long pfn, npages, i;
194 unsigned int required_fault;
195 unsigned long cpu_flags;
196
197 npages = (end - addr) >> PAGE_SHIFT;
198 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
199 required_fault =
200 hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, cpu_flags);
201 if (required_fault)
202 return hmm_vma_fault(addr, end, required_fault, walk);
203
204 pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
205 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
206 hmm_pfns[i] = pfn | cpu_flags;
207 return 0;
208 }
209 #else /* CONFIG_TRANSPARENT_HUGEPAGE */
210 /* stub to allow the code below to compile */
211 int hmm_vma_handle_pmd(struct mm_walk *walk, unsigned long addr,
212 unsigned long end, unsigned long hmm_pfns[], pmd_t pmd);
213 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
214
hmm_is_device_private_entry(struct hmm_range * range,swp_entry_t entry)215 static inline bool hmm_is_device_private_entry(struct hmm_range *range,
216 swp_entry_t entry)
217 {
218 return is_device_private_entry(entry) &&
219 pfn_swap_entry_to_page(entry)->pgmap->owner ==
220 range->dev_private_owner;
221 }
222
pte_to_hmm_pfn_flags(struct hmm_range * range,pte_t pte)223 static inline unsigned long pte_to_hmm_pfn_flags(struct hmm_range *range,
224 pte_t pte)
225 {
226 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
227 return 0;
228 return pte_write(pte) ? (HMM_PFN_VALID | HMM_PFN_WRITE) : HMM_PFN_VALID;
229 }
230
hmm_vma_handle_pte(struct mm_walk * walk,unsigned long addr,unsigned long end,pmd_t * pmdp,pte_t * ptep,unsigned long * hmm_pfn)231 static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
232 unsigned long end, pmd_t *pmdp, pte_t *ptep,
233 unsigned long *hmm_pfn)
234 {
235 struct hmm_vma_walk *hmm_vma_walk = walk->private;
236 struct hmm_range *range = hmm_vma_walk->range;
237 unsigned int required_fault;
238 unsigned long cpu_flags;
239 pte_t pte = *ptep;
240 uint64_t pfn_req_flags = *hmm_pfn;
241
242 if (pte_none(pte)) {
243 required_fault =
244 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
245 if (required_fault)
246 goto fault;
247 *hmm_pfn = 0;
248 return 0;
249 }
250
251 if (!pte_present(pte)) {
252 swp_entry_t entry = pte_to_swp_entry(pte);
253
254 /*
255 * Never fault in device private pages, but just report
256 * the PFN even if not present.
257 */
258 if (hmm_is_device_private_entry(range, entry)) {
259 cpu_flags = HMM_PFN_VALID;
260 if (is_writable_device_private_entry(entry))
261 cpu_flags |= HMM_PFN_WRITE;
262 *hmm_pfn = swp_offset(entry) | cpu_flags;
263 return 0;
264 }
265
266 required_fault =
267 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0);
268 if (!required_fault) {
269 *hmm_pfn = 0;
270 return 0;
271 }
272
273 if (!non_swap_entry(entry))
274 goto fault;
275
276 if (is_device_exclusive_entry(entry))
277 goto fault;
278
279 if (is_migration_entry(entry)) {
280 pte_unmap(ptep);
281 hmm_vma_walk->last = addr;
282 migration_entry_wait(walk->mm, pmdp, addr);
283 return -EBUSY;
284 }
285
286 /* Report error for everything else */
287 pte_unmap(ptep);
288 return -EFAULT;
289 }
290
291 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
292 required_fault =
293 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
294 if (required_fault)
295 goto fault;
296
297 /*
298 * Bypass devmap pte such as DAX page when all pfn requested
299 * flags(pfn_req_flags) are fulfilled.
300 * Since each architecture defines a struct page for the zero page, just
301 * fall through and treat it like a normal page.
302 */
303 if (pte_special(pte) && !pte_devmap(pte) &&
304 !is_zero_pfn(pte_pfn(pte))) {
305 if (hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, 0)) {
306 pte_unmap(ptep);
307 return -EFAULT;
308 }
309 *hmm_pfn = HMM_PFN_ERROR;
310 return 0;
311 }
312
313 *hmm_pfn = pte_pfn(pte) | cpu_flags;
314 return 0;
315
316 fault:
317 pte_unmap(ptep);
318 /* Fault any virtual address we were asked to fault */
319 return hmm_vma_fault(addr, end, required_fault, walk);
320 }
321
hmm_vma_walk_pmd(pmd_t * pmdp,unsigned long start,unsigned long end,struct mm_walk * walk)322 static int hmm_vma_walk_pmd(pmd_t *pmdp,
323 unsigned long start,
324 unsigned long end,
325 struct mm_walk *walk)
326 {
327 struct hmm_vma_walk *hmm_vma_walk = walk->private;
328 struct hmm_range *range = hmm_vma_walk->range;
329 unsigned long *hmm_pfns =
330 &range->hmm_pfns[(start - range->start) >> PAGE_SHIFT];
331 unsigned long npages = (end - start) >> PAGE_SHIFT;
332 unsigned long addr = start;
333 pte_t *ptep;
334 pmd_t pmd;
335
336 again:
337 pmd = READ_ONCE(*pmdp);
338 if (pmd_none(pmd))
339 return hmm_vma_walk_hole(start, end, -1, walk);
340
341 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
342 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0)) {
343 hmm_vma_walk->last = addr;
344 pmd_migration_entry_wait(walk->mm, pmdp);
345 return -EBUSY;
346 }
347 return hmm_pfns_fill(start, end, range, 0);
348 }
349
350 if (!pmd_present(pmd)) {
351 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
352 return -EFAULT;
353 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
354 }
355
356 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
357 /*
358 * No need to take pmd_lock here, even if some other thread
359 * is splitting the huge pmd we will get that event through
360 * mmu_notifier callback.
361 *
362 * So just read pmd value and check again it's a transparent
363 * huge or device mapping one and compute corresponding pfn
364 * values.
365 */
366 pmd = pmd_read_atomic(pmdp);
367 barrier();
368 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
369 goto again;
370
371 return hmm_vma_handle_pmd(walk, addr, end, hmm_pfns, pmd);
372 }
373
374 /*
375 * We have handled all the valid cases above ie either none, migration,
376 * huge or transparent huge. At this point either it is a valid pmd
377 * entry pointing to pte directory or it is a bad pmd that will not
378 * recover.
379 */
380 if (pmd_bad(pmd)) {
381 if (hmm_range_need_fault(hmm_vma_walk, hmm_pfns, npages, 0))
382 return -EFAULT;
383 return hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
384 }
385
386 ptep = pte_offset_map(pmdp, addr);
387 for (; addr < end; addr += PAGE_SIZE, ptep++, hmm_pfns++) {
388 int r;
389
390 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, hmm_pfns);
391 if (r) {
392 /* hmm_vma_handle_pte() did pte_unmap() */
393 return r;
394 }
395 }
396 pte_unmap(ptep - 1);
397 return 0;
398 }
399
400 #if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && \
401 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_to_hmm_pfn_flags(struct hmm_range * range,pud_t pud)402 static inline unsigned long pud_to_hmm_pfn_flags(struct hmm_range *range,
403 pud_t pud)
404 {
405 if (!pud_present(pud))
406 return 0;
407 return (pud_write(pud) ? (HMM_PFN_VALID | HMM_PFN_WRITE) :
408 HMM_PFN_VALID) |
409 hmm_pfn_flags_order(PUD_SHIFT - PAGE_SHIFT);
410 }
411
hmm_vma_walk_pud(pud_t * pudp,unsigned long start,unsigned long end,struct mm_walk * walk)412 static int hmm_vma_walk_pud(pud_t *pudp, unsigned long start, unsigned long end,
413 struct mm_walk *walk)
414 {
415 struct hmm_vma_walk *hmm_vma_walk = walk->private;
416 struct hmm_range *range = hmm_vma_walk->range;
417 unsigned long addr = start;
418 pud_t pud;
419 int ret = 0;
420 spinlock_t *ptl = pud_trans_huge_lock(pudp, walk->vma);
421
422 if (!ptl)
423 return 0;
424
425 /* Normally we don't want to split the huge page */
426 walk->action = ACTION_CONTINUE;
427
428 pud = READ_ONCE(*pudp);
429 if (pud_none(pud)) {
430 spin_unlock(ptl);
431 return hmm_vma_walk_hole(start, end, -1, walk);
432 }
433
434 if (pud_huge(pud) && pud_devmap(pud)) {
435 unsigned long i, npages, pfn;
436 unsigned int required_fault;
437 unsigned long *hmm_pfns;
438 unsigned long cpu_flags;
439
440 if (!pud_present(pud)) {
441 spin_unlock(ptl);
442 return hmm_vma_walk_hole(start, end, -1, walk);
443 }
444
445 i = (addr - range->start) >> PAGE_SHIFT;
446 npages = (end - addr) >> PAGE_SHIFT;
447 hmm_pfns = &range->hmm_pfns[i];
448
449 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
450 required_fault = hmm_range_need_fault(hmm_vma_walk, hmm_pfns,
451 npages, cpu_flags);
452 if (required_fault) {
453 spin_unlock(ptl);
454 return hmm_vma_fault(addr, end, required_fault, walk);
455 }
456
457 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
458 for (i = 0; i < npages; ++i, ++pfn)
459 hmm_pfns[i] = pfn | cpu_flags;
460 goto out_unlock;
461 }
462
463 /* Ask for the PUD to be split */
464 walk->action = ACTION_SUBTREE;
465
466 out_unlock:
467 spin_unlock(ptl);
468 return ret;
469 }
470 #else
471 #define hmm_vma_walk_pud NULL
472 #endif
473
474 #ifdef CONFIG_HUGETLB_PAGE
hmm_vma_walk_hugetlb_entry(pte_t * pte,unsigned long hmask,unsigned long start,unsigned long end,struct mm_walk * walk)475 static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
476 unsigned long start, unsigned long end,
477 struct mm_walk *walk)
478 {
479 unsigned long addr = start, i, pfn;
480 struct hmm_vma_walk *hmm_vma_walk = walk->private;
481 struct hmm_range *range = hmm_vma_walk->range;
482 struct vm_area_struct *vma = walk->vma;
483 unsigned int required_fault;
484 unsigned long pfn_req_flags;
485 unsigned long cpu_flags;
486 spinlock_t *ptl;
487 pte_t entry;
488
489 ptl = huge_pte_lock(hstate_vma(vma), walk->mm, pte);
490 entry = huge_ptep_get(pte);
491
492 i = (start - range->start) >> PAGE_SHIFT;
493 pfn_req_flags = range->hmm_pfns[i];
494 cpu_flags = pte_to_hmm_pfn_flags(range, entry) |
495 hmm_pfn_flags_order(huge_page_order(hstate_vma(vma)));
496 required_fault =
497 hmm_pte_need_fault(hmm_vma_walk, pfn_req_flags, cpu_flags);
498 if (required_fault) {
499 spin_unlock(ptl);
500 return hmm_vma_fault(addr, end, required_fault, walk);
501 }
502
503 pfn = pte_pfn(entry) + ((start & ~hmask) >> PAGE_SHIFT);
504 for (; addr < end; addr += PAGE_SIZE, i++, pfn++)
505 range->hmm_pfns[i] = pfn | cpu_flags;
506
507 spin_unlock(ptl);
508 return 0;
509 }
510 #else
511 #define hmm_vma_walk_hugetlb_entry NULL
512 #endif /* CONFIG_HUGETLB_PAGE */
513
hmm_vma_walk_test(unsigned long start,unsigned long end,struct mm_walk * walk)514 static int hmm_vma_walk_test(unsigned long start, unsigned long end,
515 struct mm_walk *walk)
516 {
517 struct hmm_vma_walk *hmm_vma_walk = walk->private;
518 struct hmm_range *range = hmm_vma_walk->range;
519 struct vm_area_struct *vma = walk->vma;
520
521 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP | VM_MIXEDMAP)) &&
522 vma->vm_flags & VM_READ)
523 return 0;
524
525 /*
526 * vma ranges that don't have struct page backing them or map I/O
527 * devices directly cannot be handled by hmm_range_fault().
528 *
529 * If the vma does not allow read access, then assume that it does not
530 * allow write access either. HMM does not support architectures that
531 * allow write without read.
532 *
533 * If a fault is requested for an unsupported range then it is a hard
534 * failure.
535 */
536 if (hmm_range_need_fault(hmm_vma_walk,
537 range->hmm_pfns +
538 ((start - range->start) >> PAGE_SHIFT),
539 (end - start) >> PAGE_SHIFT, 0))
540 return -EFAULT;
541
542 hmm_pfns_fill(start, end, range, HMM_PFN_ERROR);
543
544 /* Skip this vma and continue processing the next vma. */
545 return 1;
546 }
547
548 static const struct mm_walk_ops hmm_walk_ops = {
549 .pud_entry = hmm_vma_walk_pud,
550 .pmd_entry = hmm_vma_walk_pmd,
551 .pte_hole = hmm_vma_walk_hole,
552 .hugetlb_entry = hmm_vma_walk_hugetlb_entry,
553 .test_walk = hmm_vma_walk_test,
554 };
555
556 /**
557 * hmm_range_fault - try to fault some address in a virtual address range
558 * @range: argument structure
559 *
560 * Returns 0 on success or one of the following error codes:
561 *
562 * -EINVAL: Invalid arguments or mm or virtual address is in an invalid vma
563 * (e.g., device file vma).
564 * -ENOMEM: Out of memory.
565 * -EPERM: Invalid permission (e.g., asking for write and range is read
566 * only).
567 * -EBUSY: The range has been invalidated and the caller needs to wait for
568 * the invalidation to finish.
569 * -EFAULT: A page was requested to be valid and could not be made valid
570 * ie it has no backing VMA or it is illegal to access
571 *
572 * This is similar to get_user_pages(), except that it can read the page tables
573 * without mutating them (ie causing faults).
574 */
hmm_range_fault(struct hmm_range * range)575 int hmm_range_fault(struct hmm_range *range)
576 {
577 struct hmm_vma_walk hmm_vma_walk = {
578 .range = range,
579 .last = range->start,
580 };
581 struct mm_struct *mm = range->notifier->mm;
582 int ret;
583
584 mmap_assert_locked(mm);
585
586 do {
587 /* If range is no longer valid force retry. */
588 if (mmu_interval_check_retry(range->notifier,
589 range->notifier_seq))
590 return -EBUSY;
591 ret = walk_page_range(mm, hmm_vma_walk.last, range->end,
592 &hmm_walk_ops, &hmm_vma_walk);
593 /*
594 * When -EBUSY is returned the loop restarts with
595 * hmm_vma_walk.last set to an address that has not been stored
596 * in pfns. All entries < last in the pfn array are set to their
597 * output, and all >= are still at their input values.
598 */
599 } while (ret == -EBUSY);
600 return ret;
601 }
602 EXPORT_SYMBOL(hmm_range_fault);
603