1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Frontswap frontend
4  *
5  * This code provides the generic "frontend" layer to call a matching
6  * "backend" driver implementation of frontswap.  See
7  * Documentation/vm/frontswap.rst for more information.
8  *
9  * Copyright (C) 2009-2012 Oracle Corp.  All rights reserved.
10  * Author: Dan Magenheimer
11  */
12 
13 #include <linux/mman.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/security.h>
17 #include <linux/module.h>
18 #include <linux/debugfs.h>
19 #include <linux/frontswap.h>
20 #include <linux/swapfile.h>
21 
22 DEFINE_STATIC_KEY_FALSE(frontswap_enabled_key);
23 
24 /*
25  * frontswap_ops are added by frontswap_register_ops, and provide the
26  * frontswap "backend" implementation functions.  Multiple implementations
27  * may be registered, but implementations can never deregister.  This
28  * is a simple singly-linked list of all registered implementations.
29  */
30 static struct frontswap_ops *frontswap_ops __read_mostly;
31 
32 #define for_each_frontswap_ops(ops)		\
33 	for ((ops) = frontswap_ops; (ops); (ops) = (ops)->next)
34 
35 /*
36  * If enabled, frontswap_store will return failure even on success.  As
37  * a result, the swap subsystem will always write the page to swap, in
38  * effect converting frontswap into a writethrough cache.  In this mode,
39  * there is no direct reduction in swap writes, but a frontswap backend
40  * can unilaterally "reclaim" any pages in use with no data loss, thus
41  * providing increases control over maximum memory usage due to frontswap.
42  */
43 static bool frontswap_writethrough_enabled __read_mostly;
44 
45 /*
46  * If enabled, the underlying tmem implementation is capable of doing
47  * exclusive gets, so frontswap_load, on a successful tmem_get must
48  * mark the page as no longer in frontswap AND mark it dirty.
49  */
50 static bool frontswap_tmem_exclusive_gets_enabled __read_mostly;
51 
52 #ifdef CONFIG_DEBUG_FS
53 /*
54  * Counters available via /sys/kernel/debug/frontswap (if debugfs is
55  * properly configured).  These are for information only so are not protected
56  * against increment races.
57  */
58 static u64 frontswap_loads;
59 static u64 frontswap_succ_stores;
60 static u64 frontswap_failed_stores;
61 static u64 frontswap_invalidates;
62 
inc_frontswap_loads(void)63 static inline void inc_frontswap_loads(void)
64 {
65 	data_race(frontswap_loads++);
66 }
inc_frontswap_succ_stores(void)67 static inline void inc_frontswap_succ_stores(void)
68 {
69 	data_race(frontswap_succ_stores++);
70 }
inc_frontswap_failed_stores(void)71 static inline void inc_frontswap_failed_stores(void)
72 {
73 	data_race(frontswap_failed_stores++);
74 }
inc_frontswap_invalidates(void)75 static inline void inc_frontswap_invalidates(void)
76 {
77 	data_race(frontswap_invalidates++);
78 }
79 #else
inc_frontswap_loads(void)80 static inline void inc_frontswap_loads(void) { }
inc_frontswap_succ_stores(void)81 static inline void inc_frontswap_succ_stores(void) { }
inc_frontswap_failed_stores(void)82 static inline void inc_frontswap_failed_stores(void) { }
inc_frontswap_invalidates(void)83 static inline void inc_frontswap_invalidates(void) { }
84 #endif
85 
86 /*
87  * Due to the asynchronous nature of the backends loading potentially
88  * _after_ the swap system has been activated, we have chokepoints
89  * on all frontswap functions to not call the backend until the backend
90  * has registered.
91  *
92  * This would not guards us against the user deciding to call swapoff right as
93  * we are calling the backend to initialize (so swapon is in action).
94  * Fortunately for us, the swapon_mutex has been taken by the callee so we are
95  * OK. The other scenario where calls to frontswap_store (called via
96  * swap_writepage) is racing with frontswap_invalidate_area (called via
97  * swapoff) is again guarded by the swap subsystem.
98  *
99  * While no backend is registered all calls to frontswap_[store|load|
100  * invalidate_area|invalidate_page] are ignored or fail.
101  *
102  * The time between the backend being registered and the swap file system
103  * calling the backend (via the frontswap_* functions) is indeterminate as
104  * frontswap_ops is not atomic_t (or a value guarded by a spinlock).
105  * That is OK as we are comfortable missing some of these calls to the newly
106  * registered backend.
107  *
108  * Obviously the opposite (unloading the backend) must be done after all
109  * the frontswap_[store|load|invalidate_area|invalidate_page] start
110  * ignoring or failing the requests.  However, there is currently no way
111  * to unload a backend once it is registered.
112  */
113 
114 /*
115  * Register operations for frontswap
116  */
frontswap_register_ops(struct frontswap_ops * ops)117 void frontswap_register_ops(struct frontswap_ops *ops)
118 {
119 	DECLARE_BITMAP(a, MAX_SWAPFILES);
120 	DECLARE_BITMAP(b, MAX_SWAPFILES);
121 	struct swap_info_struct *si;
122 	unsigned int i;
123 
124 	bitmap_zero(a, MAX_SWAPFILES);
125 	bitmap_zero(b, MAX_SWAPFILES);
126 
127 	spin_lock(&swap_lock);
128 	plist_for_each_entry(si, &swap_active_head, list) {
129 		if (!WARN_ON(!si->frontswap_map))
130 			set_bit(si->type, a);
131 	}
132 	spin_unlock(&swap_lock);
133 
134 	/* the new ops needs to know the currently active swap devices */
135 	for_each_set_bit(i, a, MAX_SWAPFILES)
136 		ops->init(i);
137 
138 	/*
139 	 * Setting frontswap_ops must happen after the ops->init() calls
140 	 * above; cmpxchg implies smp_mb() which will ensure the init is
141 	 * complete at this point.
142 	 */
143 	do {
144 		ops->next = frontswap_ops;
145 	} while (cmpxchg(&frontswap_ops, ops->next, ops) != ops->next);
146 
147 	static_branch_inc(&frontswap_enabled_key);
148 
149 	spin_lock(&swap_lock);
150 	plist_for_each_entry(si, &swap_active_head, list) {
151 		if (si->frontswap_map)
152 			set_bit(si->type, b);
153 	}
154 	spin_unlock(&swap_lock);
155 
156 	/*
157 	 * On the very unlikely chance that a swap device was added or
158 	 * removed between setting the "a" list bits and the ops init
159 	 * calls, we re-check and do init or invalidate for any changed
160 	 * bits.
161 	 */
162 	if (unlikely(!bitmap_equal(a, b, MAX_SWAPFILES))) {
163 		for (i = 0; i < MAX_SWAPFILES; i++) {
164 			if (!test_bit(i, a) && test_bit(i, b))
165 				ops->init(i);
166 			else if (test_bit(i, a) && !test_bit(i, b))
167 				ops->invalidate_area(i);
168 		}
169 	}
170 }
171 EXPORT_SYMBOL(frontswap_register_ops);
172 
173 /*
174  * Enable/disable frontswap writethrough (see above).
175  */
frontswap_writethrough(bool enable)176 void frontswap_writethrough(bool enable)
177 {
178 	frontswap_writethrough_enabled = enable;
179 }
180 EXPORT_SYMBOL(frontswap_writethrough);
181 
182 /*
183  * Enable/disable frontswap exclusive gets (see above).
184  */
frontswap_tmem_exclusive_gets(bool enable)185 void frontswap_tmem_exclusive_gets(bool enable)
186 {
187 	frontswap_tmem_exclusive_gets_enabled = enable;
188 }
189 EXPORT_SYMBOL(frontswap_tmem_exclusive_gets);
190 
191 /*
192  * Called when a swap device is swapon'd.
193  */
__frontswap_init(unsigned type,unsigned long * map)194 void __frontswap_init(unsigned type, unsigned long *map)
195 {
196 	struct swap_info_struct *sis = swap_info[type];
197 	struct frontswap_ops *ops;
198 
199 	VM_BUG_ON(sis == NULL);
200 
201 	/*
202 	 * p->frontswap is a bitmap that we MUST have to figure out which page
203 	 * has gone in frontswap. Without it there is no point of continuing.
204 	 */
205 	if (WARN_ON(!map))
206 		return;
207 	/*
208 	 * Irregardless of whether the frontswap backend has been loaded
209 	 * before this function or it will be later, we _MUST_ have the
210 	 * p->frontswap set to something valid to work properly.
211 	 */
212 	frontswap_map_set(sis, map);
213 
214 	for_each_frontswap_ops(ops)
215 		ops->init(type);
216 }
217 EXPORT_SYMBOL(__frontswap_init);
218 
__frontswap_test(struct swap_info_struct * sis,pgoff_t offset)219 bool __frontswap_test(struct swap_info_struct *sis,
220 				pgoff_t offset)
221 {
222 	if (sis->frontswap_map)
223 		return test_bit(offset, sis->frontswap_map);
224 	return false;
225 }
226 EXPORT_SYMBOL(__frontswap_test);
227 
__frontswap_set(struct swap_info_struct * sis,pgoff_t offset)228 static inline void __frontswap_set(struct swap_info_struct *sis,
229 				   pgoff_t offset)
230 {
231 	set_bit(offset, sis->frontswap_map);
232 	atomic_inc(&sis->frontswap_pages);
233 }
234 
__frontswap_clear(struct swap_info_struct * sis,pgoff_t offset)235 static inline void __frontswap_clear(struct swap_info_struct *sis,
236 				     pgoff_t offset)
237 {
238 	clear_bit(offset, sis->frontswap_map);
239 	atomic_dec(&sis->frontswap_pages);
240 }
241 
242 /*
243  * "Store" data from a page to frontswap and associate it with the page's
244  * swaptype and offset.  Page must be locked and in the swap cache.
245  * If frontswap already contains a page with matching swaptype and
246  * offset, the frontswap implementation may either overwrite the data and
247  * return success or invalidate the page from frontswap and return failure.
248  */
__frontswap_store(struct page * page)249 int __frontswap_store(struct page *page)
250 {
251 	int ret = -1;
252 	swp_entry_t entry = { .val = page_private(page), };
253 	int type = swp_type(entry);
254 	struct swap_info_struct *sis = swap_info[type];
255 	pgoff_t offset = swp_offset(entry);
256 	struct frontswap_ops *ops;
257 
258 	VM_BUG_ON(!frontswap_ops);
259 	VM_BUG_ON(!PageLocked(page));
260 	VM_BUG_ON(sis == NULL);
261 
262 	/*
263 	 * If a dup, we must remove the old page first; we can't leave the
264 	 * old page no matter if the store of the new page succeeds or fails,
265 	 * and we can't rely on the new page replacing the old page as we may
266 	 * not store to the same implementation that contains the old page.
267 	 */
268 	if (__frontswap_test(sis, offset)) {
269 		__frontswap_clear(sis, offset);
270 		for_each_frontswap_ops(ops)
271 			ops->invalidate_page(type, offset);
272 	}
273 
274 	/* Try to store in each implementation, until one succeeds. */
275 	for_each_frontswap_ops(ops) {
276 		ret = ops->store(type, offset, page);
277 		if (!ret) /* successful store */
278 			break;
279 	}
280 	if (ret == 0) {
281 		__frontswap_set(sis, offset);
282 		inc_frontswap_succ_stores();
283 	} else {
284 		inc_frontswap_failed_stores();
285 	}
286 	if (frontswap_writethrough_enabled)
287 		/* report failure so swap also writes to swap device */
288 		ret = -1;
289 	return ret;
290 }
291 EXPORT_SYMBOL(__frontswap_store);
292 
293 /*
294  * "Get" data from frontswap associated with swaptype and offset that were
295  * specified when the data was put to frontswap and use it to fill the
296  * specified page with data. Page must be locked and in the swap cache.
297  */
__frontswap_load(struct page * page)298 int __frontswap_load(struct page *page)
299 {
300 	int ret = -1;
301 	swp_entry_t entry = { .val = page_private(page), };
302 	int type = swp_type(entry);
303 	struct swap_info_struct *sis = swap_info[type];
304 	pgoff_t offset = swp_offset(entry);
305 	struct frontswap_ops *ops;
306 
307 	VM_BUG_ON(!frontswap_ops);
308 	VM_BUG_ON(!PageLocked(page));
309 	VM_BUG_ON(sis == NULL);
310 
311 	if (!__frontswap_test(sis, offset))
312 		return -1;
313 
314 	/* Try loading from each implementation, until one succeeds. */
315 	for_each_frontswap_ops(ops) {
316 		ret = ops->load(type, offset, page);
317 		if (!ret) /* successful load */
318 			break;
319 	}
320 	if (ret == 0) {
321 		inc_frontswap_loads();
322 		if (frontswap_tmem_exclusive_gets_enabled) {
323 			SetPageDirty(page);
324 			__frontswap_clear(sis, offset);
325 		}
326 	}
327 	return ret;
328 }
329 EXPORT_SYMBOL(__frontswap_load);
330 
331 /*
332  * Invalidate any data from frontswap associated with the specified swaptype
333  * and offset so that a subsequent "get" will fail.
334  */
__frontswap_invalidate_page(unsigned type,pgoff_t offset)335 void __frontswap_invalidate_page(unsigned type, pgoff_t offset)
336 {
337 	struct swap_info_struct *sis = swap_info[type];
338 	struct frontswap_ops *ops;
339 
340 	VM_BUG_ON(!frontswap_ops);
341 	VM_BUG_ON(sis == NULL);
342 
343 	if (!__frontswap_test(sis, offset))
344 		return;
345 
346 	for_each_frontswap_ops(ops)
347 		ops->invalidate_page(type, offset);
348 	__frontswap_clear(sis, offset);
349 	inc_frontswap_invalidates();
350 }
351 EXPORT_SYMBOL(__frontswap_invalidate_page);
352 
353 /*
354  * Invalidate all data from frontswap associated with all offsets for the
355  * specified swaptype.
356  */
__frontswap_invalidate_area(unsigned type)357 void __frontswap_invalidate_area(unsigned type)
358 {
359 	struct swap_info_struct *sis = swap_info[type];
360 	struct frontswap_ops *ops;
361 
362 	VM_BUG_ON(!frontswap_ops);
363 	VM_BUG_ON(sis == NULL);
364 
365 	if (sis->frontswap_map == NULL)
366 		return;
367 
368 	for_each_frontswap_ops(ops)
369 		ops->invalidate_area(type);
370 	atomic_set(&sis->frontswap_pages, 0);
371 	bitmap_zero(sis->frontswap_map, sis->max);
372 }
373 EXPORT_SYMBOL(__frontswap_invalidate_area);
374 
__frontswap_curr_pages(void)375 static unsigned long __frontswap_curr_pages(void)
376 {
377 	unsigned long totalpages = 0;
378 	struct swap_info_struct *si = NULL;
379 
380 	assert_spin_locked(&swap_lock);
381 	plist_for_each_entry(si, &swap_active_head, list)
382 		totalpages += atomic_read(&si->frontswap_pages);
383 	return totalpages;
384 }
385 
__frontswap_unuse_pages(unsigned long total,unsigned long * unused,int * swapid)386 static int __frontswap_unuse_pages(unsigned long total, unsigned long *unused,
387 					int *swapid)
388 {
389 	int ret = -EINVAL;
390 	struct swap_info_struct *si = NULL;
391 	int si_frontswap_pages;
392 	unsigned long total_pages_to_unuse = total;
393 	unsigned long pages = 0, pages_to_unuse = 0;
394 
395 	assert_spin_locked(&swap_lock);
396 	plist_for_each_entry(si, &swap_active_head, list) {
397 		si_frontswap_pages = atomic_read(&si->frontswap_pages);
398 		if (total_pages_to_unuse < si_frontswap_pages) {
399 			pages = pages_to_unuse = total_pages_to_unuse;
400 		} else {
401 			pages = si_frontswap_pages;
402 			pages_to_unuse = 0; /* unuse all */
403 		}
404 		/* ensure there is enough RAM to fetch pages from frontswap */
405 		if (security_vm_enough_memory_mm(current->mm, pages)) {
406 			ret = -ENOMEM;
407 			continue;
408 		}
409 		vm_unacct_memory(pages);
410 		*unused = pages_to_unuse;
411 		*swapid = si->type;
412 		ret = 0;
413 		break;
414 	}
415 
416 	return ret;
417 }
418 
419 /*
420  * Used to check if it's necessary and feasible to unuse pages.
421  * Return 1 when nothing to do, 0 when need to shrink pages,
422  * error code when there is an error.
423  */
__frontswap_shrink(unsigned long target_pages,unsigned long * pages_to_unuse,int * type)424 static int __frontswap_shrink(unsigned long target_pages,
425 				unsigned long *pages_to_unuse,
426 				int *type)
427 {
428 	unsigned long total_pages = 0, total_pages_to_unuse;
429 
430 	assert_spin_locked(&swap_lock);
431 
432 	total_pages = __frontswap_curr_pages();
433 	if (total_pages <= target_pages) {
434 		/* Nothing to do */
435 		*pages_to_unuse = 0;
436 		return 1;
437 	}
438 	total_pages_to_unuse = total_pages - target_pages;
439 	return __frontswap_unuse_pages(total_pages_to_unuse, pages_to_unuse, type);
440 }
441 
442 /*
443  * Frontswap, like a true swap device, may unnecessarily retain pages
444  * under certain circumstances; "shrink" frontswap is essentially a
445  * "partial swapoff" and works by calling try_to_unuse to attempt to
446  * unuse enough frontswap pages to attempt to -- subject to memory
447  * constraints -- reduce the number of pages in frontswap to the
448  * number given in the parameter target_pages.
449  */
frontswap_shrink(unsigned long target_pages)450 void frontswap_shrink(unsigned long target_pages)
451 {
452 	unsigned long pages_to_unuse = 0;
453 	int type, ret;
454 
455 	/*
456 	 * we don't want to hold swap_lock while doing a very
457 	 * lengthy try_to_unuse, but swap_list may change
458 	 * so restart scan from swap_active_head each time
459 	 */
460 	spin_lock(&swap_lock);
461 	ret = __frontswap_shrink(target_pages, &pages_to_unuse, &type);
462 	spin_unlock(&swap_lock);
463 	if (ret == 0)
464 		try_to_unuse(type, true, pages_to_unuse);
465 	return;
466 }
467 EXPORT_SYMBOL(frontswap_shrink);
468 
469 /*
470  * Count and return the number of frontswap pages across all
471  * swap devices.  This is exported so that backend drivers can
472  * determine current usage without reading debugfs.
473  */
frontswap_curr_pages(void)474 unsigned long frontswap_curr_pages(void)
475 {
476 	unsigned long totalpages = 0;
477 
478 	spin_lock(&swap_lock);
479 	totalpages = __frontswap_curr_pages();
480 	spin_unlock(&swap_lock);
481 
482 	return totalpages;
483 }
484 EXPORT_SYMBOL(frontswap_curr_pages);
485 
init_frontswap(void)486 static int __init init_frontswap(void)
487 {
488 #ifdef CONFIG_DEBUG_FS
489 	struct dentry *root = debugfs_create_dir("frontswap", NULL);
490 	if (root == NULL)
491 		return -ENXIO;
492 	debugfs_create_u64("loads", 0444, root, &frontswap_loads);
493 	debugfs_create_u64("succ_stores", 0444, root, &frontswap_succ_stores);
494 	debugfs_create_u64("failed_stores", 0444, root,
495 			   &frontswap_failed_stores);
496 	debugfs_create_u64("invalidates", 0444, root, &frontswap_invalidates);
497 #endif
498 	return 0;
499 }
500 
501 module_init(init_frontswap);
502