1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/seccomp.c
4 *
5 * Copyright 2004-2005 Andrea Arcangeli <andrea@cpushare.com>
6 *
7 * Copyright (C) 2012 Google, Inc.
8 * Will Drewry <wad@chromium.org>
9 *
10 * This defines a simple but solid secure-computing facility.
11 *
12 * Mode 1 uses a fixed list of allowed system calls.
13 * Mode 2 allows user-defined system call filters in the form
14 * of Berkeley Packet Filters/Linux Socket Filters.
15 */
16 #define pr_fmt(fmt) "seccomp: " fmt
17
18 #include <linux/refcount.h>
19 #include <linux/audit.h>
20 #include <linux/compat.h>
21 #include <linux/coredump.h>
22 #include <linux/kmemleak.h>
23 #include <linux/nospec.h>
24 #include <linux/prctl.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task_stack.h>
27 #include <linux/seccomp.h>
28 #include <linux/slab.h>
29 #include <linux/syscalls.h>
30 #include <linux/sysctl.h>
31
32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER
33 #include <asm/syscall.h>
34 #endif
35
36 #ifdef CONFIG_SECCOMP_FILTER
37 #include <linux/file.h>
38 #include <linux/filter.h>
39 #include <linux/pid.h>
40 #include <linux/ptrace.h>
41 #include <linux/capability.h>
42 #include <linux/tracehook.h>
43 #include <linux/uaccess.h>
44 #include <linux/anon_inodes.h>
45 #include <linux/lockdep.h>
46
47 /*
48 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the
49 * wrong direction flag in the ioctl number. This is the broken one,
50 * which the kernel needs to keep supporting until all userspaces stop
51 * using the wrong command number.
52 */
53 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64)
54
55 enum notify_state {
56 SECCOMP_NOTIFY_INIT,
57 SECCOMP_NOTIFY_SENT,
58 SECCOMP_NOTIFY_REPLIED,
59 };
60
61 struct seccomp_knotif {
62 /* The struct pid of the task whose filter triggered the notification */
63 struct task_struct *task;
64
65 /* The "cookie" for this request; this is unique for this filter. */
66 u64 id;
67
68 /*
69 * The seccomp data. This pointer is valid the entire time this
70 * notification is active, since it comes from __seccomp_filter which
71 * eclipses the entire lifecycle here.
72 */
73 const struct seccomp_data *data;
74
75 /*
76 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a
77 * struct seccomp_knotif is created and starts out in INIT. Once the
78 * handler reads the notification off of an FD, it transitions to SENT.
79 * If a signal is received the state transitions back to INIT and
80 * another message is sent. When the userspace handler replies, state
81 * transitions to REPLIED.
82 */
83 enum notify_state state;
84
85 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */
86 int error;
87 long val;
88 u32 flags;
89
90 /*
91 * Signals when this has changed states, such as the listener
92 * dying, a new seccomp addfd message, or changing to REPLIED
93 */
94 struct completion ready;
95
96 struct list_head list;
97
98 /* outstanding addfd requests */
99 struct list_head addfd;
100 };
101
102 /**
103 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages
104 *
105 * @file: A reference to the file to install in the other task
106 * @fd: The fd number to install it at. If the fd number is -1, it means the
107 * installing process should allocate the fd as normal.
108 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC
109 * is allowed.
110 * @ioctl_flags: The flags used for the seccomp_addfd ioctl.
111 * @ret: The return value of the installing process. It is set to the fd num
112 * upon success (>= 0).
113 * @completion: Indicates that the installing process has completed fd
114 * installation, or gone away (either due to successful
115 * reply, or signal)
116 *
117 */
118 struct seccomp_kaddfd {
119 struct file *file;
120 int fd;
121 unsigned int flags;
122 __u32 ioctl_flags;
123
124 union {
125 bool setfd;
126 /* To only be set on reply */
127 int ret;
128 };
129 struct completion completion;
130 struct list_head list;
131 };
132
133 /**
134 * struct notification - container for seccomp userspace notifications. Since
135 * most seccomp filters will not have notification listeners attached and this
136 * structure is fairly large, we store the notification-specific stuff in a
137 * separate structure.
138 *
139 * @request: A semaphore that users of this notification can wait on for
140 * changes. Actual reads and writes are still controlled with
141 * filter->notify_lock.
142 * @next_id: The id of the next request.
143 * @notifications: A list of struct seccomp_knotif elements.
144 */
145 struct notification {
146 struct semaphore request;
147 u64 next_id;
148 struct list_head notifications;
149 };
150
151 #ifdef SECCOMP_ARCH_NATIVE
152 /**
153 * struct action_cache - per-filter cache of seccomp actions per
154 * arch/syscall pair
155 *
156 * @allow_native: A bitmap where each bit represents whether the
157 * filter will always allow the syscall, for the
158 * native architecture.
159 * @allow_compat: A bitmap where each bit represents whether the
160 * filter will always allow the syscall, for the
161 * compat architecture.
162 */
163 struct action_cache {
164 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR);
165 #ifdef SECCOMP_ARCH_COMPAT
166 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR);
167 #endif
168 };
169 #else
170 struct action_cache { };
171
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)172 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
173 const struct seccomp_data *sd)
174 {
175 return false;
176 }
177
seccomp_cache_prepare(struct seccomp_filter * sfilter)178 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter)
179 {
180 }
181 #endif /* SECCOMP_ARCH_NATIVE */
182
183 /**
184 * struct seccomp_filter - container for seccomp BPF programs
185 *
186 * @refs: Reference count to manage the object lifetime.
187 * A filter's reference count is incremented for each directly
188 * attached task, once for the dependent filter, and if
189 * requested for the user notifier. When @refs reaches zero,
190 * the filter can be freed.
191 * @users: A filter's @users count is incremented for each directly
192 * attached task (filter installation, fork(), thread_sync),
193 * and once for the dependent filter (tracked in filter->prev).
194 * When it reaches zero it indicates that no direct or indirect
195 * users of that filter exist. No new tasks can get associated with
196 * this filter after reaching 0. The @users count is always smaller
197 * or equal to @refs. Hence, reaching 0 for @users does not mean
198 * the filter can be freed.
199 * @cache: cache of arch/syscall mappings to actions
200 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged
201 * @prev: points to a previously installed, or inherited, filter
202 * @prog: the BPF program to evaluate
203 * @notif: the struct that holds all notification related information
204 * @notify_lock: A lock for all notification-related accesses.
205 * @wqh: A wait queue for poll if a notifier is in use.
206 *
207 * seccomp_filter objects are organized in a tree linked via the @prev
208 * pointer. For any task, it appears to be a singly-linked list starting
209 * with current->seccomp.filter, the most recently attached or inherited filter.
210 * However, multiple filters may share a @prev node, by way of fork(), which
211 * results in a unidirectional tree existing in memory. This is similar to
212 * how namespaces work.
213 *
214 * seccomp_filter objects should never be modified after being attached
215 * to a task_struct (other than @refs).
216 */
217 struct seccomp_filter {
218 refcount_t refs;
219 refcount_t users;
220 bool log;
221 struct action_cache cache;
222 struct seccomp_filter *prev;
223 struct bpf_prog *prog;
224 struct notification *notif;
225 struct mutex notify_lock;
226 wait_queue_head_t wqh;
227 };
228
229 /* Limit any path through the tree to 256KB worth of instructions. */
230 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter))
231
232 /*
233 * Endianness is explicitly ignored and left for BPF program authors to manage
234 * as per the specific architecture.
235 */
populate_seccomp_data(struct seccomp_data * sd)236 static void populate_seccomp_data(struct seccomp_data *sd)
237 {
238 /*
239 * Instead of using current_pt_reg(), we're already doing the work
240 * to safely fetch "current", so just use "task" everywhere below.
241 */
242 struct task_struct *task = current;
243 struct pt_regs *regs = task_pt_regs(task);
244 unsigned long args[6];
245
246 sd->nr = syscall_get_nr(task, regs);
247 sd->arch = syscall_get_arch(task);
248 syscall_get_arguments(task, regs, args);
249 sd->args[0] = args[0];
250 sd->args[1] = args[1];
251 sd->args[2] = args[2];
252 sd->args[3] = args[3];
253 sd->args[4] = args[4];
254 sd->args[5] = args[5];
255 sd->instruction_pointer = KSTK_EIP(task);
256 }
257
258 /**
259 * seccomp_check_filter - verify seccomp filter code
260 * @filter: filter to verify
261 * @flen: length of filter
262 *
263 * Takes a previously checked filter (by bpf_check_classic) and
264 * redirects all filter code that loads struct sk_buff data
265 * and related data through seccomp_bpf_load. It also
266 * enforces length and alignment checking of those loads.
267 *
268 * Returns 0 if the rule set is legal or -EINVAL if not.
269 */
seccomp_check_filter(struct sock_filter * filter,unsigned int flen)270 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen)
271 {
272 int pc;
273 for (pc = 0; pc < flen; pc++) {
274 struct sock_filter *ftest = &filter[pc];
275 u16 code = ftest->code;
276 u32 k = ftest->k;
277
278 switch (code) {
279 case BPF_LD | BPF_W | BPF_ABS:
280 ftest->code = BPF_LDX | BPF_W | BPF_ABS;
281 /* 32-bit aligned and not out of bounds. */
282 if (k >= sizeof(struct seccomp_data) || k & 3)
283 return -EINVAL;
284 continue;
285 case BPF_LD | BPF_W | BPF_LEN:
286 ftest->code = BPF_LD | BPF_IMM;
287 ftest->k = sizeof(struct seccomp_data);
288 continue;
289 case BPF_LDX | BPF_W | BPF_LEN:
290 ftest->code = BPF_LDX | BPF_IMM;
291 ftest->k = sizeof(struct seccomp_data);
292 continue;
293 /* Explicitly include allowed calls. */
294 case BPF_RET | BPF_K:
295 case BPF_RET | BPF_A:
296 case BPF_ALU | BPF_ADD | BPF_K:
297 case BPF_ALU | BPF_ADD | BPF_X:
298 case BPF_ALU | BPF_SUB | BPF_K:
299 case BPF_ALU | BPF_SUB | BPF_X:
300 case BPF_ALU | BPF_MUL | BPF_K:
301 case BPF_ALU | BPF_MUL | BPF_X:
302 case BPF_ALU | BPF_DIV | BPF_K:
303 case BPF_ALU | BPF_DIV | BPF_X:
304 case BPF_ALU | BPF_AND | BPF_K:
305 case BPF_ALU | BPF_AND | BPF_X:
306 case BPF_ALU | BPF_OR | BPF_K:
307 case BPF_ALU | BPF_OR | BPF_X:
308 case BPF_ALU | BPF_XOR | BPF_K:
309 case BPF_ALU | BPF_XOR | BPF_X:
310 case BPF_ALU | BPF_LSH | BPF_K:
311 case BPF_ALU | BPF_LSH | BPF_X:
312 case BPF_ALU | BPF_RSH | BPF_K:
313 case BPF_ALU | BPF_RSH | BPF_X:
314 case BPF_ALU | BPF_NEG:
315 case BPF_LD | BPF_IMM:
316 case BPF_LDX | BPF_IMM:
317 case BPF_MISC | BPF_TAX:
318 case BPF_MISC | BPF_TXA:
319 case BPF_LD | BPF_MEM:
320 case BPF_LDX | BPF_MEM:
321 case BPF_ST:
322 case BPF_STX:
323 case BPF_JMP | BPF_JA:
324 case BPF_JMP | BPF_JEQ | BPF_K:
325 case BPF_JMP | BPF_JEQ | BPF_X:
326 case BPF_JMP | BPF_JGE | BPF_K:
327 case BPF_JMP | BPF_JGE | BPF_X:
328 case BPF_JMP | BPF_JGT | BPF_K:
329 case BPF_JMP | BPF_JGT | BPF_X:
330 case BPF_JMP | BPF_JSET | BPF_K:
331 case BPF_JMP | BPF_JSET | BPF_X:
332 continue;
333 default:
334 return -EINVAL;
335 }
336 }
337 return 0;
338 }
339
340 #ifdef SECCOMP_ARCH_NATIVE
seccomp_cache_check_allow_bitmap(const void * bitmap,size_t bitmap_size,int syscall_nr)341 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap,
342 size_t bitmap_size,
343 int syscall_nr)
344 {
345 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size))
346 return false;
347 syscall_nr = array_index_nospec(syscall_nr, bitmap_size);
348
349 return test_bit(syscall_nr, bitmap);
350 }
351
352 /**
353 * seccomp_cache_check_allow - lookup seccomp cache
354 * @sfilter: The seccomp filter
355 * @sd: The seccomp data to lookup the cache with
356 *
357 * Returns true if the seccomp_data is cached and allowed.
358 */
seccomp_cache_check_allow(const struct seccomp_filter * sfilter,const struct seccomp_data * sd)359 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter,
360 const struct seccomp_data *sd)
361 {
362 int syscall_nr = sd->nr;
363 const struct action_cache *cache = &sfilter->cache;
364
365 #ifndef SECCOMP_ARCH_COMPAT
366 /* A native-only architecture doesn't need to check sd->arch. */
367 return seccomp_cache_check_allow_bitmap(cache->allow_native,
368 SECCOMP_ARCH_NATIVE_NR,
369 syscall_nr);
370 #else
371 if (likely(sd->arch == SECCOMP_ARCH_NATIVE))
372 return seccomp_cache_check_allow_bitmap(cache->allow_native,
373 SECCOMP_ARCH_NATIVE_NR,
374 syscall_nr);
375 if (likely(sd->arch == SECCOMP_ARCH_COMPAT))
376 return seccomp_cache_check_allow_bitmap(cache->allow_compat,
377 SECCOMP_ARCH_COMPAT_NR,
378 syscall_nr);
379 #endif /* SECCOMP_ARCH_COMPAT */
380
381 WARN_ON_ONCE(true);
382 return false;
383 }
384 #endif /* SECCOMP_ARCH_NATIVE */
385
386 /**
387 * seccomp_run_filters - evaluates all seccomp filters against @sd
388 * @sd: optional seccomp data to be passed to filters
389 * @match: stores struct seccomp_filter that resulted in the return value,
390 * unless filter returned SECCOMP_RET_ALLOW, in which case it will
391 * be unchanged.
392 *
393 * Returns valid seccomp BPF response codes.
394 */
395 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL)))
seccomp_run_filters(const struct seccomp_data * sd,struct seccomp_filter ** match)396 static u32 seccomp_run_filters(const struct seccomp_data *sd,
397 struct seccomp_filter **match)
398 {
399 u32 ret = SECCOMP_RET_ALLOW;
400 /* Make sure cross-thread synced filter points somewhere sane. */
401 struct seccomp_filter *f =
402 READ_ONCE(current->seccomp.filter);
403
404 /* Ensure unexpected behavior doesn't result in failing open. */
405 if (WARN_ON(f == NULL))
406 return SECCOMP_RET_KILL_PROCESS;
407
408 if (seccomp_cache_check_allow(f, sd))
409 return SECCOMP_RET_ALLOW;
410
411 /*
412 * All filters in the list are evaluated and the lowest BPF return
413 * value always takes priority (ignoring the DATA).
414 */
415 for (; f; f = f->prev) {
416 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd);
417
418 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) {
419 ret = cur_ret;
420 *match = f;
421 }
422 }
423 return ret;
424 }
425 #endif /* CONFIG_SECCOMP_FILTER */
426
seccomp_may_assign_mode(unsigned long seccomp_mode)427 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode)
428 {
429 assert_spin_locked(¤t->sighand->siglock);
430
431 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode)
432 return false;
433
434 return true;
435 }
436
arch_seccomp_spec_mitigate(struct task_struct * task)437 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { }
438
seccomp_assign_mode(struct task_struct * task,unsigned long seccomp_mode,unsigned long flags)439 static inline void seccomp_assign_mode(struct task_struct *task,
440 unsigned long seccomp_mode,
441 unsigned long flags)
442 {
443 assert_spin_locked(&task->sighand->siglock);
444
445 task->seccomp.mode = seccomp_mode;
446 /*
447 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and
448 * filter) is set.
449 */
450 smp_mb__before_atomic();
451 /* Assume default seccomp processes want spec flaw mitigation. */
452 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0)
453 arch_seccomp_spec_mitigate(task);
454 set_task_syscall_work(task, SECCOMP);
455 }
456
457 #ifdef CONFIG_SECCOMP_FILTER
458 /* Returns 1 if the parent is an ancestor of the child. */
is_ancestor(struct seccomp_filter * parent,struct seccomp_filter * child)459 static int is_ancestor(struct seccomp_filter *parent,
460 struct seccomp_filter *child)
461 {
462 /* NULL is the root ancestor. */
463 if (parent == NULL)
464 return 1;
465 for (; child; child = child->prev)
466 if (child == parent)
467 return 1;
468 return 0;
469 }
470
471 /**
472 * seccomp_can_sync_threads: checks if all threads can be synchronized
473 *
474 * Expects sighand and cred_guard_mutex locks to be held.
475 *
476 * Returns 0 on success, -ve on error, or the pid of a thread which was
477 * either not in the correct seccomp mode or did not have an ancestral
478 * seccomp filter.
479 */
seccomp_can_sync_threads(void)480 static inline pid_t seccomp_can_sync_threads(void)
481 {
482 struct task_struct *thread, *caller;
483
484 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
485 assert_spin_locked(¤t->sighand->siglock);
486
487 /* Validate all threads being eligible for synchronization. */
488 caller = current;
489 for_each_thread(caller, thread) {
490 pid_t failed;
491
492 /* Skip current, since it is initiating the sync. */
493 if (thread == caller)
494 continue;
495
496 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED ||
497 (thread->seccomp.mode == SECCOMP_MODE_FILTER &&
498 is_ancestor(thread->seccomp.filter,
499 caller->seccomp.filter)))
500 continue;
501
502 /* Return the first thread that cannot be synchronized. */
503 failed = task_pid_vnr(thread);
504 /* If the pid cannot be resolved, then return -ESRCH */
505 if (WARN_ON(failed == 0))
506 failed = -ESRCH;
507 return failed;
508 }
509
510 return 0;
511 }
512
seccomp_filter_free(struct seccomp_filter * filter)513 static inline void seccomp_filter_free(struct seccomp_filter *filter)
514 {
515 if (filter) {
516 bpf_prog_destroy(filter->prog);
517 kfree(filter);
518 }
519 }
520
__seccomp_filter_orphan(struct seccomp_filter * orig)521 static void __seccomp_filter_orphan(struct seccomp_filter *orig)
522 {
523 while (orig && refcount_dec_and_test(&orig->users)) {
524 if (waitqueue_active(&orig->wqh))
525 wake_up_poll(&orig->wqh, EPOLLHUP);
526 orig = orig->prev;
527 }
528 }
529
__put_seccomp_filter(struct seccomp_filter * orig)530 static void __put_seccomp_filter(struct seccomp_filter *orig)
531 {
532 /* Clean up single-reference branches iteratively. */
533 while (orig && refcount_dec_and_test(&orig->refs)) {
534 struct seccomp_filter *freeme = orig;
535 orig = orig->prev;
536 seccomp_filter_free(freeme);
537 }
538 }
539
__seccomp_filter_release(struct seccomp_filter * orig)540 static void __seccomp_filter_release(struct seccomp_filter *orig)
541 {
542 /* Notify about any unused filters in the task's former filter tree. */
543 __seccomp_filter_orphan(orig);
544 /* Finally drop all references to the task's former tree. */
545 __put_seccomp_filter(orig);
546 }
547
548 /**
549 * seccomp_filter_release - Detach the task from its filter tree,
550 * drop its reference count, and notify
551 * about unused filters
552 *
553 * This function should only be called when the task is exiting as
554 * it detaches it from its filter tree. As such, READ_ONCE() and
555 * barriers are not needed here, as would normally be needed.
556 */
seccomp_filter_release(struct task_struct * tsk)557 void seccomp_filter_release(struct task_struct *tsk)
558 {
559 struct seccomp_filter *orig = tsk->seccomp.filter;
560
561 /* We are effectively holding the siglock by not having any sighand. */
562 WARN_ON(tsk->sighand != NULL);
563
564 /* Detach task from its filter tree. */
565 tsk->seccomp.filter = NULL;
566 __seccomp_filter_release(orig);
567 }
568
569 /**
570 * seccomp_sync_threads: sets all threads to use current's filter
571 *
572 * Expects sighand and cred_guard_mutex locks to be held, and for
573 * seccomp_can_sync_threads() to have returned success already
574 * without dropping the locks.
575 *
576 */
seccomp_sync_threads(unsigned long flags)577 static inline void seccomp_sync_threads(unsigned long flags)
578 {
579 struct task_struct *thread, *caller;
580
581 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex));
582 assert_spin_locked(¤t->sighand->siglock);
583
584 /* Synchronize all threads. */
585 caller = current;
586 for_each_thread(caller, thread) {
587 /* Skip current, since it needs no changes. */
588 if (thread == caller)
589 continue;
590
591 /* Get a task reference for the new leaf node. */
592 get_seccomp_filter(caller);
593
594 /*
595 * Drop the task reference to the shared ancestor since
596 * current's path will hold a reference. (This also
597 * allows a put before the assignment.)
598 */
599 __seccomp_filter_release(thread->seccomp.filter);
600
601 /* Make our new filter tree visible. */
602 smp_store_release(&thread->seccomp.filter,
603 caller->seccomp.filter);
604 atomic_set(&thread->seccomp.filter_count,
605 atomic_read(&caller->seccomp.filter_count));
606
607 /*
608 * Don't let an unprivileged task work around
609 * the no_new_privs restriction by creating
610 * a thread that sets it up, enters seccomp,
611 * then dies.
612 */
613 if (task_no_new_privs(caller))
614 task_set_no_new_privs(thread);
615
616 /*
617 * Opt the other thread into seccomp if needed.
618 * As threads are considered to be trust-realm
619 * equivalent (see ptrace_may_access), it is safe to
620 * allow one thread to transition the other.
621 */
622 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED)
623 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER,
624 flags);
625 }
626 }
627
628 /**
629 * seccomp_prepare_filter: Prepares a seccomp filter for use.
630 * @fprog: BPF program to install
631 *
632 * Returns filter on success or an ERR_PTR on failure.
633 */
seccomp_prepare_filter(struct sock_fprog * fprog)634 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog)
635 {
636 struct seccomp_filter *sfilter;
637 int ret;
638 const bool save_orig =
639 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE)
640 true;
641 #else
642 false;
643 #endif
644
645 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS)
646 return ERR_PTR(-EINVAL);
647
648 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter));
649
650 /*
651 * Installing a seccomp filter requires that the task has
652 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs.
653 * This avoids scenarios where unprivileged tasks can affect the
654 * behavior of privileged children.
655 */
656 if (!task_no_new_privs(current) &&
657 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN))
658 return ERR_PTR(-EACCES);
659
660 /* Allocate a new seccomp_filter */
661 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN);
662 if (!sfilter)
663 return ERR_PTR(-ENOMEM);
664
665 mutex_init(&sfilter->notify_lock);
666 ret = bpf_prog_create_from_user(&sfilter->prog, fprog,
667 seccomp_check_filter, save_orig);
668 if (ret < 0) {
669 kfree(sfilter);
670 return ERR_PTR(ret);
671 }
672
673 refcount_set(&sfilter->refs, 1);
674 refcount_set(&sfilter->users, 1);
675 init_waitqueue_head(&sfilter->wqh);
676
677 return sfilter;
678 }
679
680 /**
681 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog
682 * @user_filter: pointer to the user data containing a sock_fprog.
683 *
684 * Returns 0 on success and non-zero otherwise.
685 */
686 static struct seccomp_filter *
seccomp_prepare_user_filter(const char __user * user_filter)687 seccomp_prepare_user_filter(const char __user *user_filter)
688 {
689 struct sock_fprog fprog;
690 struct seccomp_filter *filter = ERR_PTR(-EFAULT);
691
692 #ifdef CONFIG_COMPAT
693 if (in_compat_syscall()) {
694 struct compat_sock_fprog fprog32;
695 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32)))
696 goto out;
697 fprog.len = fprog32.len;
698 fprog.filter = compat_ptr(fprog32.filter);
699 } else /* falls through to the if below. */
700 #endif
701 if (copy_from_user(&fprog, user_filter, sizeof(fprog)))
702 goto out;
703 filter = seccomp_prepare_filter(&fprog);
704 out:
705 return filter;
706 }
707
708 #ifdef SECCOMP_ARCH_NATIVE
709 /**
710 * seccomp_is_const_allow - check if filter is constant allow with given data
711 * @fprog: The BPF programs
712 * @sd: The seccomp data to check against, only syscall number and arch
713 * number are considered constant.
714 */
seccomp_is_const_allow(struct sock_fprog_kern * fprog,struct seccomp_data * sd)715 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog,
716 struct seccomp_data *sd)
717 {
718 unsigned int reg_value = 0;
719 unsigned int pc;
720 bool op_res;
721
722 if (WARN_ON_ONCE(!fprog))
723 return false;
724
725 for (pc = 0; pc < fprog->len; pc++) {
726 struct sock_filter *insn = &fprog->filter[pc];
727 u16 code = insn->code;
728 u32 k = insn->k;
729
730 switch (code) {
731 case BPF_LD | BPF_W | BPF_ABS:
732 switch (k) {
733 case offsetof(struct seccomp_data, nr):
734 reg_value = sd->nr;
735 break;
736 case offsetof(struct seccomp_data, arch):
737 reg_value = sd->arch;
738 break;
739 default:
740 /* can't optimize (non-constant value load) */
741 return false;
742 }
743 break;
744 case BPF_RET | BPF_K:
745 /* reached return with constant values only, check allow */
746 return k == SECCOMP_RET_ALLOW;
747 case BPF_JMP | BPF_JA:
748 pc += insn->k;
749 break;
750 case BPF_JMP | BPF_JEQ | BPF_K:
751 case BPF_JMP | BPF_JGE | BPF_K:
752 case BPF_JMP | BPF_JGT | BPF_K:
753 case BPF_JMP | BPF_JSET | BPF_K:
754 switch (BPF_OP(code)) {
755 case BPF_JEQ:
756 op_res = reg_value == k;
757 break;
758 case BPF_JGE:
759 op_res = reg_value >= k;
760 break;
761 case BPF_JGT:
762 op_res = reg_value > k;
763 break;
764 case BPF_JSET:
765 op_res = !!(reg_value & k);
766 break;
767 default:
768 /* can't optimize (unknown jump) */
769 return false;
770 }
771
772 pc += op_res ? insn->jt : insn->jf;
773 break;
774 case BPF_ALU | BPF_AND | BPF_K:
775 reg_value &= k;
776 break;
777 default:
778 /* can't optimize (unknown insn) */
779 return false;
780 }
781 }
782
783 /* ran off the end of the filter?! */
784 WARN_ON(1);
785 return false;
786 }
787
seccomp_cache_prepare_bitmap(struct seccomp_filter * sfilter,void * bitmap,const void * bitmap_prev,size_t bitmap_size,int arch)788 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter,
789 void *bitmap, const void *bitmap_prev,
790 size_t bitmap_size, int arch)
791 {
792 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog;
793 struct seccomp_data sd;
794 int nr;
795
796 if (bitmap_prev) {
797 /* The new filter must be as restrictive as the last. */
798 bitmap_copy(bitmap, bitmap_prev, bitmap_size);
799 } else {
800 /* Before any filters, all syscalls are always allowed. */
801 bitmap_fill(bitmap, bitmap_size);
802 }
803
804 for (nr = 0; nr < bitmap_size; nr++) {
805 /* No bitmap change: not a cacheable action. */
806 if (!test_bit(nr, bitmap))
807 continue;
808
809 sd.nr = nr;
810 sd.arch = arch;
811
812 /* No bitmap change: continue to always allow. */
813 if (seccomp_is_const_allow(fprog, &sd))
814 continue;
815
816 /*
817 * Not a cacheable action: always run filters.
818 * atomic clear_bit() not needed, filter not visible yet.
819 */
820 __clear_bit(nr, bitmap);
821 }
822 }
823
824 /**
825 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls
826 * @sfilter: The seccomp filter
827 *
828 * Returns 0 if successful or -errno if error occurred.
829 */
seccomp_cache_prepare(struct seccomp_filter * sfilter)830 static void seccomp_cache_prepare(struct seccomp_filter *sfilter)
831 {
832 struct action_cache *cache = &sfilter->cache;
833 const struct action_cache *cache_prev =
834 sfilter->prev ? &sfilter->prev->cache : NULL;
835
836 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native,
837 cache_prev ? cache_prev->allow_native : NULL,
838 SECCOMP_ARCH_NATIVE_NR,
839 SECCOMP_ARCH_NATIVE);
840
841 #ifdef SECCOMP_ARCH_COMPAT
842 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat,
843 cache_prev ? cache_prev->allow_compat : NULL,
844 SECCOMP_ARCH_COMPAT_NR,
845 SECCOMP_ARCH_COMPAT);
846 #endif /* SECCOMP_ARCH_COMPAT */
847 }
848 #endif /* SECCOMP_ARCH_NATIVE */
849
850 /**
851 * seccomp_attach_filter: validate and attach filter
852 * @flags: flags to change filter behavior
853 * @filter: seccomp filter to add to the current process
854 *
855 * Caller must be holding current->sighand->siglock lock.
856 *
857 * Returns 0 on success, -ve on error, or
858 * - in TSYNC mode: the pid of a thread which was either not in the correct
859 * seccomp mode or did not have an ancestral seccomp filter
860 * - in NEW_LISTENER mode: the fd of the new listener
861 */
seccomp_attach_filter(unsigned int flags,struct seccomp_filter * filter)862 static long seccomp_attach_filter(unsigned int flags,
863 struct seccomp_filter *filter)
864 {
865 unsigned long total_insns;
866 struct seccomp_filter *walker;
867
868 assert_spin_locked(¤t->sighand->siglock);
869
870 /* Validate resulting filter length. */
871 total_insns = filter->prog->len;
872 for (walker = current->seccomp.filter; walker; walker = walker->prev)
873 total_insns += walker->prog->len + 4; /* 4 instr penalty */
874 if (total_insns > MAX_INSNS_PER_PATH)
875 return -ENOMEM;
876
877 /* If thread sync has been requested, check that it is possible. */
878 if (flags & SECCOMP_FILTER_FLAG_TSYNC) {
879 int ret;
880
881 ret = seccomp_can_sync_threads();
882 if (ret) {
883 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH)
884 return -ESRCH;
885 else
886 return ret;
887 }
888 }
889
890 /* Set log flag, if present. */
891 if (flags & SECCOMP_FILTER_FLAG_LOG)
892 filter->log = true;
893
894 /*
895 * If there is an existing filter, make it the prev and don't drop its
896 * task reference.
897 */
898 filter->prev = current->seccomp.filter;
899 seccomp_cache_prepare(filter);
900 current->seccomp.filter = filter;
901 atomic_inc(¤t->seccomp.filter_count);
902
903 /* Now that the new filter is in place, synchronize to all threads. */
904 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
905 seccomp_sync_threads(flags);
906
907 return 0;
908 }
909
__get_seccomp_filter(struct seccomp_filter * filter)910 static void __get_seccomp_filter(struct seccomp_filter *filter)
911 {
912 refcount_inc(&filter->refs);
913 }
914
915 /* get_seccomp_filter - increments the reference count of the filter on @tsk */
get_seccomp_filter(struct task_struct * tsk)916 void get_seccomp_filter(struct task_struct *tsk)
917 {
918 struct seccomp_filter *orig = tsk->seccomp.filter;
919 if (!orig)
920 return;
921 __get_seccomp_filter(orig);
922 refcount_inc(&orig->users);
923 }
924
925 #endif /* CONFIG_SECCOMP_FILTER */
926
927 /* For use with seccomp_actions_logged */
928 #define SECCOMP_LOG_KILL_PROCESS (1 << 0)
929 #define SECCOMP_LOG_KILL_THREAD (1 << 1)
930 #define SECCOMP_LOG_TRAP (1 << 2)
931 #define SECCOMP_LOG_ERRNO (1 << 3)
932 #define SECCOMP_LOG_TRACE (1 << 4)
933 #define SECCOMP_LOG_LOG (1 << 5)
934 #define SECCOMP_LOG_ALLOW (1 << 6)
935 #define SECCOMP_LOG_USER_NOTIF (1 << 7)
936
937 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS |
938 SECCOMP_LOG_KILL_THREAD |
939 SECCOMP_LOG_TRAP |
940 SECCOMP_LOG_ERRNO |
941 SECCOMP_LOG_USER_NOTIF |
942 SECCOMP_LOG_TRACE |
943 SECCOMP_LOG_LOG;
944
seccomp_log(unsigned long syscall,long signr,u32 action,bool requested)945 static inline void seccomp_log(unsigned long syscall, long signr, u32 action,
946 bool requested)
947 {
948 bool log = false;
949
950 switch (action) {
951 case SECCOMP_RET_ALLOW:
952 break;
953 case SECCOMP_RET_TRAP:
954 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP;
955 break;
956 case SECCOMP_RET_ERRNO:
957 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO;
958 break;
959 case SECCOMP_RET_TRACE:
960 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE;
961 break;
962 case SECCOMP_RET_USER_NOTIF:
963 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF;
964 break;
965 case SECCOMP_RET_LOG:
966 log = seccomp_actions_logged & SECCOMP_LOG_LOG;
967 break;
968 case SECCOMP_RET_KILL_THREAD:
969 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD;
970 break;
971 case SECCOMP_RET_KILL_PROCESS:
972 default:
973 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS;
974 }
975
976 /*
977 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the
978 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence
979 * any action from being logged by removing the action name from the
980 * seccomp_actions_logged sysctl.
981 */
982 if (!log)
983 return;
984
985 audit_seccomp(syscall, signr, action);
986 }
987
988 /*
989 * Secure computing mode 1 allows only read/write/exit/sigreturn.
990 * To be fully secure this must be combined with rlimit
991 * to limit the stack allocations too.
992 */
993 static const int mode1_syscalls[] = {
994 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn,
995 -1, /* negative terminated */
996 };
997
__secure_computing_strict(int this_syscall)998 static void __secure_computing_strict(int this_syscall)
999 {
1000 const int *allowed_syscalls = mode1_syscalls;
1001 #ifdef CONFIG_COMPAT
1002 if (in_compat_syscall())
1003 allowed_syscalls = get_compat_mode1_syscalls();
1004 #endif
1005 do {
1006 if (*allowed_syscalls == this_syscall)
1007 return;
1008 } while (*++allowed_syscalls != -1);
1009
1010 #ifdef SECCOMP_DEBUG
1011 dump_stack();
1012 #endif
1013 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true);
1014 do_exit(SIGKILL);
1015 }
1016
1017 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER
secure_computing_strict(int this_syscall)1018 void secure_computing_strict(int this_syscall)
1019 {
1020 int mode = current->seccomp.mode;
1021
1022 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1023 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1024 return;
1025
1026 if (mode == SECCOMP_MODE_DISABLED)
1027 return;
1028 else if (mode == SECCOMP_MODE_STRICT)
1029 __secure_computing_strict(this_syscall);
1030 else
1031 BUG();
1032 }
1033 #else
1034
1035 #ifdef CONFIG_SECCOMP_FILTER
seccomp_next_notify_id(struct seccomp_filter * filter)1036 static u64 seccomp_next_notify_id(struct seccomp_filter *filter)
1037 {
1038 /*
1039 * Note: overflow is ok here, the id just needs to be unique per
1040 * filter.
1041 */
1042 lockdep_assert_held(&filter->notify_lock);
1043 return filter->notif->next_id++;
1044 }
1045
seccomp_handle_addfd(struct seccomp_kaddfd * addfd,struct seccomp_knotif * n)1046 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n)
1047 {
1048 int fd;
1049
1050 /*
1051 * Remove the notification, and reset the list pointers, indicating
1052 * that it has been handled.
1053 */
1054 list_del_init(&addfd->list);
1055 if (!addfd->setfd)
1056 fd = receive_fd(addfd->file, addfd->flags);
1057 else
1058 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags);
1059 addfd->ret = fd;
1060
1061 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) {
1062 /* If we fail reset and return an error to the notifier */
1063 if (fd < 0) {
1064 n->state = SECCOMP_NOTIFY_SENT;
1065 } else {
1066 /* Return the FD we just added */
1067 n->flags = 0;
1068 n->error = 0;
1069 n->val = fd;
1070 }
1071 }
1072
1073 /*
1074 * Mark the notification as completed. From this point, addfd mem
1075 * might be invalidated and we can't safely read it anymore.
1076 */
1077 complete(&addfd->completion);
1078 }
1079
seccomp_do_user_notification(int this_syscall,struct seccomp_filter * match,const struct seccomp_data * sd)1080 static int seccomp_do_user_notification(int this_syscall,
1081 struct seccomp_filter *match,
1082 const struct seccomp_data *sd)
1083 {
1084 int err;
1085 u32 flags = 0;
1086 long ret = 0;
1087 struct seccomp_knotif n = {};
1088 struct seccomp_kaddfd *addfd, *tmp;
1089
1090 mutex_lock(&match->notify_lock);
1091 err = -ENOSYS;
1092 if (!match->notif)
1093 goto out;
1094
1095 n.task = current;
1096 n.state = SECCOMP_NOTIFY_INIT;
1097 n.data = sd;
1098 n.id = seccomp_next_notify_id(match);
1099 init_completion(&n.ready);
1100 list_add(&n.list, &match->notif->notifications);
1101 INIT_LIST_HEAD(&n.addfd);
1102
1103 up(&match->notif->request);
1104 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM);
1105
1106 /*
1107 * This is where we wait for a reply from userspace.
1108 */
1109 do {
1110 mutex_unlock(&match->notify_lock);
1111 err = wait_for_completion_interruptible(&n.ready);
1112 mutex_lock(&match->notify_lock);
1113 if (err != 0)
1114 goto interrupted;
1115
1116 addfd = list_first_entry_or_null(&n.addfd,
1117 struct seccomp_kaddfd, list);
1118 /* Check if we were woken up by a addfd message */
1119 if (addfd)
1120 seccomp_handle_addfd(addfd, &n);
1121
1122 } while (n.state != SECCOMP_NOTIFY_REPLIED);
1123
1124 ret = n.val;
1125 err = n.error;
1126 flags = n.flags;
1127
1128 interrupted:
1129 /* If there were any pending addfd calls, clear them out */
1130 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) {
1131 /* The process went away before we got a chance to handle it */
1132 addfd->ret = -ESRCH;
1133 list_del_init(&addfd->list);
1134 complete(&addfd->completion);
1135 }
1136
1137 /*
1138 * Note that it's possible the listener died in between the time when
1139 * we were notified of a response (or a signal) and when we were able to
1140 * re-acquire the lock, so only delete from the list if the
1141 * notification actually exists.
1142 *
1143 * Also note that this test is only valid because there's no way to
1144 * *reattach* to a notifier right now. If one is added, we'll need to
1145 * keep track of the notif itself and make sure they match here.
1146 */
1147 if (match->notif)
1148 list_del(&n.list);
1149 out:
1150 mutex_unlock(&match->notify_lock);
1151
1152 /* Userspace requests to continue the syscall. */
1153 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1154 return 0;
1155
1156 syscall_set_return_value(current, current_pt_regs(),
1157 err, ret);
1158 return -1;
1159 }
1160
__seccomp_filter(int this_syscall,const struct seccomp_data * sd,const bool recheck_after_trace)1161 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1162 const bool recheck_after_trace)
1163 {
1164 u32 filter_ret, action;
1165 struct seccomp_filter *match = NULL;
1166 int data;
1167 struct seccomp_data sd_local;
1168
1169 /*
1170 * Make sure that any changes to mode from another thread have
1171 * been seen after SYSCALL_WORK_SECCOMP was seen.
1172 */
1173 smp_rmb();
1174
1175 if (!sd) {
1176 populate_seccomp_data(&sd_local);
1177 sd = &sd_local;
1178 }
1179
1180 filter_ret = seccomp_run_filters(sd, &match);
1181 data = filter_ret & SECCOMP_RET_DATA;
1182 action = filter_ret & SECCOMP_RET_ACTION_FULL;
1183
1184 switch (action) {
1185 case SECCOMP_RET_ERRNO:
1186 /* Set low-order bits as an errno, capped at MAX_ERRNO. */
1187 if (data > MAX_ERRNO)
1188 data = MAX_ERRNO;
1189 syscall_set_return_value(current, current_pt_regs(),
1190 -data, 0);
1191 goto skip;
1192
1193 case SECCOMP_RET_TRAP:
1194 /* Show the handler the original registers. */
1195 syscall_rollback(current, current_pt_regs());
1196 /* Let the filter pass back 16 bits of data. */
1197 force_sig_seccomp(this_syscall, data, false);
1198 goto skip;
1199
1200 case SECCOMP_RET_TRACE:
1201 /* We've been put in this state by the ptracer already. */
1202 if (recheck_after_trace)
1203 return 0;
1204
1205 /* ENOSYS these calls if there is no tracer attached. */
1206 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) {
1207 syscall_set_return_value(current,
1208 current_pt_regs(),
1209 -ENOSYS, 0);
1210 goto skip;
1211 }
1212
1213 /* Allow the BPF to provide the event message */
1214 ptrace_event(PTRACE_EVENT_SECCOMP, data);
1215 /*
1216 * The delivery of a fatal signal during event
1217 * notification may silently skip tracer notification,
1218 * which could leave us with a potentially unmodified
1219 * syscall that the tracer would have liked to have
1220 * changed. Since the process is about to die, we just
1221 * force the syscall to be skipped and let the signal
1222 * kill the process and correctly handle any tracer exit
1223 * notifications.
1224 */
1225 if (fatal_signal_pending(current))
1226 goto skip;
1227 /* Check if the tracer forced the syscall to be skipped. */
1228 this_syscall = syscall_get_nr(current, current_pt_regs());
1229 if (this_syscall < 0)
1230 goto skip;
1231
1232 /*
1233 * Recheck the syscall, since it may have changed. This
1234 * intentionally uses a NULL struct seccomp_data to force
1235 * a reload of all registers. This does not goto skip since
1236 * a skip would have already been reported.
1237 */
1238 if (__seccomp_filter(this_syscall, NULL, true))
1239 return -1;
1240
1241 return 0;
1242
1243 case SECCOMP_RET_USER_NOTIF:
1244 if (seccomp_do_user_notification(this_syscall, match, sd))
1245 goto skip;
1246
1247 return 0;
1248
1249 case SECCOMP_RET_LOG:
1250 seccomp_log(this_syscall, 0, action, true);
1251 return 0;
1252
1253 case SECCOMP_RET_ALLOW:
1254 /*
1255 * Note that the "match" filter will always be NULL for
1256 * this action since SECCOMP_RET_ALLOW is the starting
1257 * state in seccomp_run_filters().
1258 */
1259 return 0;
1260
1261 case SECCOMP_RET_KILL_THREAD:
1262 case SECCOMP_RET_KILL_PROCESS:
1263 default:
1264 seccomp_log(this_syscall, SIGSYS, action, true);
1265 /* Dump core only if this is the last remaining thread. */
1266 if (action != SECCOMP_RET_KILL_THREAD ||
1267 (atomic_read(¤t->signal->live) == 1)) {
1268 /* Show the original registers in the dump. */
1269 syscall_rollback(current, current_pt_regs());
1270 /* Trigger a coredump with SIGSYS */
1271 force_sig_seccomp(this_syscall, data, true);
1272 } else {
1273 do_exit(SIGSYS);
1274 }
1275 return -1; /* skip the syscall go directly to signal handling */
1276 }
1277
1278 unreachable();
1279
1280 skip:
1281 seccomp_log(this_syscall, 0, action, match ? match->log : false);
1282 return -1;
1283 }
1284 #else
__seccomp_filter(int this_syscall,const struct seccomp_data * sd,const bool recheck_after_trace)1285 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd,
1286 const bool recheck_after_trace)
1287 {
1288 BUG();
1289
1290 return -1;
1291 }
1292 #endif
1293
__secure_computing(const struct seccomp_data * sd)1294 int __secure_computing(const struct seccomp_data *sd)
1295 {
1296 int mode = current->seccomp.mode;
1297 int this_syscall;
1298
1299 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) &&
1300 unlikely(current->ptrace & PT_SUSPEND_SECCOMP))
1301 return 0;
1302
1303 this_syscall = sd ? sd->nr :
1304 syscall_get_nr(current, current_pt_regs());
1305
1306 switch (mode) {
1307 case SECCOMP_MODE_STRICT:
1308 __secure_computing_strict(this_syscall); /* may call do_exit */
1309 return 0;
1310 case SECCOMP_MODE_FILTER:
1311 return __seccomp_filter(this_syscall, sd, false);
1312 default:
1313 BUG();
1314 }
1315 }
1316 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */
1317
prctl_get_seccomp(void)1318 long prctl_get_seccomp(void)
1319 {
1320 return current->seccomp.mode;
1321 }
1322
1323 /**
1324 * seccomp_set_mode_strict: internal function for setting strict seccomp
1325 *
1326 * Once current->seccomp.mode is non-zero, it may not be changed.
1327 *
1328 * Returns 0 on success or -EINVAL on failure.
1329 */
seccomp_set_mode_strict(void)1330 static long seccomp_set_mode_strict(void)
1331 {
1332 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT;
1333 long ret = -EINVAL;
1334
1335 spin_lock_irq(¤t->sighand->siglock);
1336
1337 if (!seccomp_may_assign_mode(seccomp_mode))
1338 goto out;
1339
1340 #ifdef TIF_NOTSC
1341 disable_TSC();
1342 #endif
1343 seccomp_assign_mode(current, seccomp_mode, 0);
1344 ret = 0;
1345
1346 out:
1347 spin_unlock_irq(¤t->sighand->siglock);
1348
1349 return ret;
1350 }
1351
1352 #ifdef CONFIG_SECCOMP_FILTER
seccomp_notify_free(struct seccomp_filter * filter)1353 static void seccomp_notify_free(struct seccomp_filter *filter)
1354 {
1355 kfree(filter->notif);
1356 filter->notif = NULL;
1357 }
1358
seccomp_notify_detach(struct seccomp_filter * filter)1359 static void seccomp_notify_detach(struct seccomp_filter *filter)
1360 {
1361 struct seccomp_knotif *knotif;
1362
1363 if (!filter)
1364 return;
1365
1366 mutex_lock(&filter->notify_lock);
1367
1368 /*
1369 * If this file is being closed because e.g. the task who owned it
1370 * died, let's wake everyone up who was waiting on us.
1371 */
1372 list_for_each_entry(knotif, &filter->notif->notifications, list) {
1373 if (knotif->state == SECCOMP_NOTIFY_REPLIED)
1374 continue;
1375
1376 knotif->state = SECCOMP_NOTIFY_REPLIED;
1377 knotif->error = -ENOSYS;
1378 knotif->val = 0;
1379
1380 /*
1381 * We do not need to wake up any pending addfd messages, as
1382 * the notifier will do that for us, as this just looks
1383 * like a standard reply.
1384 */
1385 complete(&knotif->ready);
1386 }
1387
1388 seccomp_notify_free(filter);
1389 mutex_unlock(&filter->notify_lock);
1390 }
1391
seccomp_notify_release(struct inode * inode,struct file * file)1392 static int seccomp_notify_release(struct inode *inode, struct file *file)
1393 {
1394 struct seccomp_filter *filter = file->private_data;
1395
1396 seccomp_notify_detach(filter);
1397 __put_seccomp_filter(filter);
1398 return 0;
1399 }
1400
1401 /* must be called with notif_lock held */
1402 static inline struct seccomp_knotif *
find_notification(struct seccomp_filter * filter,u64 id)1403 find_notification(struct seccomp_filter *filter, u64 id)
1404 {
1405 struct seccomp_knotif *cur;
1406
1407 lockdep_assert_held(&filter->notify_lock);
1408
1409 list_for_each_entry(cur, &filter->notif->notifications, list) {
1410 if (cur->id == id)
1411 return cur;
1412 }
1413
1414 return NULL;
1415 }
1416
1417
seccomp_notify_recv(struct seccomp_filter * filter,void __user * buf)1418 static long seccomp_notify_recv(struct seccomp_filter *filter,
1419 void __user *buf)
1420 {
1421 struct seccomp_knotif *knotif = NULL, *cur;
1422 struct seccomp_notif unotif;
1423 ssize_t ret;
1424
1425 /* Verify that we're not given garbage to keep struct extensible. */
1426 ret = check_zeroed_user(buf, sizeof(unotif));
1427 if (ret < 0)
1428 return ret;
1429 if (!ret)
1430 return -EINVAL;
1431
1432 memset(&unotif, 0, sizeof(unotif));
1433
1434 ret = down_interruptible(&filter->notif->request);
1435 if (ret < 0)
1436 return ret;
1437
1438 mutex_lock(&filter->notify_lock);
1439 list_for_each_entry(cur, &filter->notif->notifications, list) {
1440 if (cur->state == SECCOMP_NOTIFY_INIT) {
1441 knotif = cur;
1442 break;
1443 }
1444 }
1445
1446 /*
1447 * If we didn't find a notification, it could be that the task was
1448 * interrupted by a fatal signal between the time we were woken and
1449 * when we were able to acquire the rw lock.
1450 */
1451 if (!knotif) {
1452 ret = -ENOENT;
1453 goto out;
1454 }
1455
1456 unotif.id = knotif->id;
1457 unotif.pid = task_pid_vnr(knotif->task);
1458 unotif.data = *(knotif->data);
1459
1460 knotif->state = SECCOMP_NOTIFY_SENT;
1461 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM);
1462 ret = 0;
1463 out:
1464 mutex_unlock(&filter->notify_lock);
1465
1466 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) {
1467 ret = -EFAULT;
1468
1469 /*
1470 * Userspace screwed up. To make sure that we keep this
1471 * notification alive, let's reset it back to INIT. It
1472 * may have died when we released the lock, so we need to make
1473 * sure it's still around.
1474 */
1475 mutex_lock(&filter->notify_lock);
1476 knotif = find_notification(filter, unotif.id);
1477 if (knotif) {
1478 knotif->state = SECCOMP_NOTIFY_INIT;
1479 up(&filter->notif->request);
1480 }
1481 mutex_unlock(&filter->notify_lock);
1482 }
1483
1484 return ret;
1485 }
1486
seccomp_notify_send(struct seccomp_filter * filter,void __user * buf)1487 static long seccomp_notify_send(struct seccomp_filter *filter,
1488 void __user *buf)
1489 {
1490 struct seccomp_notif_resp resp = {};
1491 struct seccomp_knotif *knotif;
1492 long ret;
1493
1494 if (copy_from_user(&resp, buf, sizeof(resp)))
1495 return -EFAULT;
1496
1497 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE)
1498 return -EINVAL;
1499
1500 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) &&
1501 (resp.error || resp.val))
1502 return -EINVAL;
1503
1504 ret = mutex_lock_interruptible(&filter->notify_lock);
1505 if (ret < 0)
1506 return ret;
1507
1508 knotif = find_notification(filter, resp.id);
1509 if (!knotif) {
1510 ret = -ENOENT;
1511 goto out;
1512 }
1513
1514 /* Allow exactly one reply. */
1515 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1516 ret = -EINPROGRESS;
1517 goto out;
1518 }
1519
1520 ret = 0;
1521 knotif->state = SECCOMP_NOTIFY_REPLIED;
1522 knotif->error = resp.error;
1523 knotif->val = resp.val;
1524 knotif->flags = resp.flags;
1525 complete(&knotif->ready);
1526 out:
1527 mutex_unlock(&filter->notify_lock);
1528 return ret;
1529 }
1530
seccomp_notify_id_valid(struct seccomp_filter * filter,void __user * buf)1531 static long seccomp_notify_id_valid(struct seccomp_filter *filter,
1532 void __user *buf)
1533 {
1534 struct seccomp_knotif *knotif;
1535 u64 id;
1536 long ret;
1537
1538 if (copy_from_user(&id, buf, sizeof(id)))
1539 return -EFAULT;
1540
1541 ret = mutex_lock_interruptible(&filter->notify_lock);
1542 if (ret < 0)
1543 return ret;
1544
1545 knotif = find_notification(filter, id);
1546 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT)
1547 ret = 0;
1548 else
1549 ret = -ENOENT;
1550
1551 mutex_unlock(&filter->notify_lock);
1552 return ret;
1553 }
1554
seccomp_notify_addfd(struct seccomp_filter * filter,struct seccomp_notif_addfd __user * uaddfd,unsigned int size)1555 static long seccomp_notify_addfd(struct seccomp_filter *filter,
1556 struct seccomp_notif_addfd __user *uaddfd,
1557 unsigned int size)
1558 {
1559 struct seccomp_notif_addfd addfd;
1560 struct seccomp_knotif *knotif;
1561 struct seccomp_kaddfd kaddfd;
1562 int ret;
1563
1564 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0);
1565 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST);
1566
1567 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE)
1568 return -EINVAL;
1569
1570 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size);
1571 if (ret)
1572 return ret;
1573
1574 if (addfd.newfd_flags & ~O_CLOEXEC)
1575 return -EINVAL;
1576
1577 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND))
1578 return -EINVAL;
1579
1580 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD))
1581 return -EINVAL;
1582
1583 kaddfd.file = fget(addfd.srcfd);
1584 if (!kaddfd.file)
1585 return -EBADF;
1586
1587 kaddfd.ioctl_flags = addfd.flags;
1588 kaddfd.flags = addfd.newfd_flags;
1589 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD;
1590 kaddfd.fd = addfd.newfd;
1591 init_completion(&kaddfd.completion);
1592
1593 ret = mutex_lock_interruptible(&filter->notify_lock);
1594 if (ret < 0)
1595 goto out;
1596
1597 knotif = find_notification(filter, addfd.id);
1598 if (!knotif) {
1599 ret = -ENOENT;
1600 goto out_unlock;
1601 }
1602
1603 /*
1604 * We do not want to allow for FD injection to occur before the
1605 * notification has been picked up by a userspace handler, or after
1606 * the notification has been replied to.
1607 */
1608 if (knotif->state != SECCOMP_NOTIFY_SENT) {
1609 ret = -EINPROGRESS;
1610 goto out_unlock;
1611 }
1612
1613 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) {
1614 /*
1615 * Disallow queuing an atomic addfd + send reply while there are
1616 * some addfd requests still to process.
1617 *
1618 * There is no clear reason to support it and allows us to keep
1619 * the loop on the other side straight-forward.
1620 */
1621 if (!list_empty(&knotif->addfd)) {
1622 ret = -EBUSY;
1623 goto out_unlock;
1624 }
1625
1626 /* Allow exactly only one reply */
1627 knotif->state = SECCOMP_NOTIFY_REPLIED;
1628 }
1629
1630 list_add(&kaddfd.list, &knotif->addfd);
1631 complete(&knotif->ready);
1632 mutex_unlock(&filter->notify_lock);
1633
1634 /* Now we wait for it to be processed or be interrupted */
1635 ret = wait_for_completion_interruptible(&kaddfd.completion);
1636 if (ret == 0) {
1637 /*
1638 * We had a successful completion. The other side has already
1639 * removed us from the addfd queue, and
1640 * wait_for_completion_interruptible has a memory barrier upon
1641 * success that lets us read this value directly without
1642 * locking.
1643 */
1644 ret = kaddfd.ret;
1645 goto out;
1646 }
1647
1648 mutex_lock(&filter->notify_lock);
1649 /*
1650 * Even though we were woken up by a signal and not a successful
1651 * completion, a completion may have happened in the mean time.
1652 *
1653 * We need to check again if the addfd request has been handled,
1654 * and if not, we will remove it from the queue.
1655 */
1656 if (list_empty(&kaddfd.list))
1657 ret = kaddfd.ret;
1658 else
1659 list_del(&kaddfd.list);
1660
1661 out_unlock:
1662 mutex_unlock(&filter->notify_lock);
1663 out:
1664 fput(kaddfd.file);
1665
1666 return ret;
1667 }
1668
seccomp_notify_ioctl(struct file * file,unsigned int cmd,unsigned long arg)1669 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd,
1670 unsigned long arg)
1671 {
1672 struct seccomp_filter *filter = file->private_data;
1673 void __user *buf = (void __user *)arg;
1674
1675 /* Fixed-size ioctls */
1676 switch (cmd) {
1677 case SECCOMP_IOCTL_NOTIF_RECV:
1678 return seccomp_notify_recv(filter, buf);
1679 case SECCOMP_IOCTL_NOTIF_SEND:
1680 return seccomp_notify_send(filter, buf);
1681 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR:
1682 case SECCOMP_IOCTL_NOTIF_ID_VALID:
1683 return seccomp_notify_id_valid(filter, buf);
1684 }
1685
1686 /* Extensible Argument ioctls */
1687 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK))
1688 switch (EA_IOCTL(cmd)) {
1689 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD):
1690 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd));
1691 default:
1692 return -EINVAL;
1693 }
1694 }
1695
seccomp_notify_poll(struct file * file,struct poll_table_struct * poll_tab)1696 static __poll_t seccomp_notify_poll(struct file *file,
1697 struct poll_table_struct *poll_tab)
1698 {
1699 struct seccomp_filter *filter = file->private_data;
1700 __poll_t ret = 0;
1701 struct seccomp_knotif *cur;
1702
1703 poll_wait(file, &filter->wqh, poll_tab);
1704
1705 if (mutex_lock_interruptible(&filter->notify_lock) < 0)
1706 return EPOLLERR;
1707
1708 list_for_each_entry(cur, &filter->notif->notifications, list) {
1709 if (cur->state == SECCOMP_NOTIFY_INIT)
1710 ret |= EPOLLIN | EPOLLRDNORM;
1711 if (cur->state == SECCOMP_NOTIFY_SENT)
1712 ret |= EPOLLOUT | EPOLLWRNORM;
1713 if ((ret & EPOLLIN) && (ret & EPOLLOUT))
1714 break;
1715 }
1716
1717 mutex_unlock(&filter->notify_lock);
1718
1719 if (refcount_read(&filter->users) == 0)
1720 ret |= EPOLLHUP;
1721
1722 return ret;
1723 }
1724
1725 static const struct file_operations seccomp_notify_ops = {
1726 .poll = seccomp_notify_poll,
1727 .release = seccomp_notify_release,
1728 .unlocked_ioctl = seccomp_notify_ioctl,
1729 .compat_ioctl = seccomp_notify_ioctl,
1730 };
1731
init_listener(struct seccomp_filter * filter)1732 static struct file *init_listener(struct seccomp_filter *filter)
1733 {
1734 struct file *ret;
1735
1736 ret = ERR_PTR(-ENOMEM);
1737 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL);
1738 if (!filter->notif)
1739 goto out;
1740
1741 sema_init(&filter->notif->request, 0);
1742 filter->notif->next_id = get_random_u64();
1743 INIT_LIST_HEAD(&filter->notif->notifications);
1744
1745 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops,
1746 filter, O_RDWR);
1747 if (IS_ERR(ret))
1748 goto out_notif;
1749
1750 /* The file has a reference to it now */
1751 __get_seccomp_filter(filter);
1752
1753 out_notif:
1754 if (IS_ERR(ret))
1755 seccomp_notify_free(filter);
1756 out:
1757 return ret;
1758 }
1759
1760 /*
1761 * Does @new_child have a listener while an ancestor also has a listener?
1762 * If so, we'll want to reject this filter.
1763 * This only has to be tested for the current process, even in the TSYNC case,
1764 * because TSYNC installs @child with the same parent on all threads.
1765 * Note that @new_child is not hooked up to its parent at this point yet, so
1766 * we use current->seccomp.filter.
1767 */
has_duplicate_listener(struct seccomp_filter * new_child)1768 static bool has_duplicate_listener(struct seccomp_filter *new_child)
1769 {
1770 struct seccomp_filter *cur;
1771
1772 /* must be protected against concurrent TSYNC */
1773 lockdep_assert_held(¤t->sighand->siglock);
1774
1775 if (!new_child->notif)
1776 return false;
1777 for (cur = current->seccomp.filter; cur; cur = cur->prev) {
1778 if (cur->notif)
1779 return true;
1780 }
1781
1782 return false;
1783 }
1784
1785 /**
1786 * seccomp_set_mode_filter: internal function for setting seccomp filter
1787 * @flags: flags to change filter behavior
1788 * @filter: struct sock_fprog containing filter
1789 *
1790 * This function may be called repeatedly to install additional filters.
1791 * Every filter successfully installed will be evaluated (in reverse order)
1792 * for each system call the task makes.
1793 *
1794 * Once current->seccomp.mode is non-zero, it may not be changed.
1795 *
1796 * Returns 0 on success or -EINVAL on failure.
1797 */
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)1798 static long seccomp_set_mode_filter(unsigned int flags,
1799 const char __user *filter)
1800 {
1801 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER;
1802 struct seccomp_filter *prepared = NULL;
1803 long ret = -EINVAL;
1804 int listener = -1;
1805 struct file *listener_f = NULL;
1806
1807 /* Validate flags. */
1808 if (flags & ~SECCOMP_FILTER_FLAG_MASK)
1809 return -EINVAL;
1810
1811 /*
1812 * In the successful case, NEW_LISTENER returns the new listener fd.
1813 * But in the failure case, TSYNC returns the thread that died. If you
1814 * combine these two flags, there's no way to tell whether something
1815 * succeeded or failed. So, let's disallow this combination if the user
1816 * has not explicitly requested no errors from TSYNC.
1817 */
1818 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) &&
1819 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) &&
1820 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0))
1821 return -EINVAL;
1822
1823 /* Prepare the new filter before holding any locks. */
1824 prepared = seccomp_prepare_user_filter(filter);
1825 if (IS_ERR(prepared))
1826 return PTR_ERR(prepared);
1827
1828 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1829 listener = get_unused_fd_flags(O_CLOEXEC);
1830 if (listener < 0) {
1831 ret = listener;
1832 goto out_free;
1833 }
1834
1835 listener_f = init_listener(prepared);
1836 if (IS_ERR(listener_f)) {
1837 put_unused_fd(listener);
1838 ret = PTR_ERR(listener_f);
1839 goto out_free;
1840 }
1841 }
1842
1843 /*
1844 * Make sure we cannot change seccomp or nnp state via TSYNC
1845 * while another thread is in the middle of calling exec.
1846 */
1847 if (flags & SECCOMP_FILTER_FLAG_TSYNC &&
1848 mutex_lock_killable(¤t->signal->cred_guard_mutex))
1849 goto out_put_fd;
1850
1851 spin_lock_irq(¤t->sighand->siglock);
1852
1853 if (!seccomp_may_assign_mode(seccomp_mode))
1854 goto out;
1855
1856 if (has_duplicate_listener(prepared)) {
1857 ret = -EBUSY;
1858 goto out;
1859 }
1860
1861 ret = seccomp_attach_filter(flags, prepared);
1862 if (ret)
1863 goto out;
1864 /* Do not free the successfully attached filter. */
1865 prepared = NULL;
1866
1867 seccomp_assign_mode(current, seccomp_mode, flags);
1868 out:
1869 spin_unlock_irq(¤t->sighand->siglock);
1870 if (flags & SECCOMP_FILTER_FLAG_TSYNC)
1871 mutex_unlock(¤t->signal->cred_guard_mutex);
1872 out_put_fd:
1873 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) {
1874 if (ret) {
1875 listener_f->private_data = NULL;
1876 fput(listener_f);
1877 put_unused_fd(listener);
1878 seccomp_notify_detach(prepared);
1879 } else {
1880 fd_install(listener, listener_f);
1881 ret = listener;
1882 }
1883 }
1884 out_free:
1885 seccomp_filter_free(prepared);
1886 return ret;
1887 }
1888 #else
seccomp_set_mode_filter(unsigned int flags,const char __user * filter)1889 static inline long seccomp_set_mode_filter(unsigned int flags,
1890 const char __user *filter)
1891 {
1892 return -EINVAL;
1893 }
1894 #endif
1895
seccomp_get_action_avail(const char __user * uaction)1896 static long seccomp_get_action_avail(const char __user *uaction)
1897 {
1898 u32 action;
1899
1900 if (copy_from_user(&action, uaction, sizeof(action)))
1901 return -EFAULT;
1902
1903 switch (action) {
1904 case SECCOMP_RET_KILL_PROCESS:
1905 case SECCOMP_RET_KILL_THREAD:
1906 case SECCOMP_RET_TRAP:
1907 case SECCOMP_RET_ERRNO:
1908 case SECCOMP_RET_USER_NOTIF:
1909 case SECCOMP_RET_TRACE:
1910 case SECCOMP_RET_LOG:
1911 case SECCOMP_RET_ALLOW:
1912 break;
1913 default:
1914 return -EOPNOTSUPP;
1915 }
1916
1917 return 0;
1918 }
1919
seccomp_get_notif_sizes(void __user * usizes)1920 static long seccomp_get_notif_sizes(void __user *usizes)
1921 {
1922 struct seccomp_notif_sizes sizes = {
1923 .seccomp_notif = sizeof(struct seccomp_notif),
1924 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp),
1925 .seccomp_data = sizeof(struct seccomp_data),
1926 };
1927
1928 if (copy_to_user(usizes, &sizes, sizeof(sizes)))
1929 return -EFAULT;
1930
1931 return 0;
1932 }
1933
1934 /* Common entry point for both prctl and syscall. */
do_seccomp(unsigned int op,unsigned int flags,void __user * uargs)1935 static long do_seccomp(unsigned int op, unsigned int flags,
1936 void __user *uargs)
1937 {
1938 switch (op) {
1939 case SECCOMP_SET_MODE_STRICT:
1940 if (flags != 0 || uargs != NULL)
1941 return -EINVAL;
1942 return seccomp_set_mode_strict();
1943 case SECCOMP_SET_MODE_FILTER:
1944 return seccomp_set_mode_filter(flags, uargs);
1945 case SECCOMP_GET_ACTION_AVAIL:
1946 if (flags != 0)
1947 return -EINVAL;
1948
1949 return seccomp_get_action_avail(uargs);
1950 case SECCOMP_GET_NOTIF_SIZES:
1951 if (flags != 0)
1952 return -EINVAL;
1953
1954 return seccomp_get_notif_sizes(uargs);
1955 default:
1956 return -EINVAL;
1957 }
1958 }
1959
SYSCALL_DEFINE3(seccomp,unsigned int,op,unsigned int,flags,void __user *,uargs)1960 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags,
1961 void __user *, uargs)
1962 {
1963 return do_seccomp(op, flags, uargs);
1964 }
1965
1966 /**
1967 * prctl_set_seccomp: configures current->seccomp.mode
1968 * @seccomp_mode: requested mode to use
1969 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER
1970 *
1971 * Returns 0 on success or -EINVAL on failure.
1972 */
prctl_set_seccomp(unsigned long seccomp_mode,void __user * filter)1973 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter)
1974 {
1975 unsigned int op;
1976 void __user *uargs;
1977
1978 switch (seccomp_mode) {
1979 case SECCOMP_MODE_STRICT:
1980 op = SECCOMP_SET_MODE_STRICT;
1981 /*
1982 * Setting strict mode through prctl always ignored filter,
1983 * so make sure it is always NULL here to pass the internal
1984 * check in do_seccomp().
1985 */
1986 uargs = NULL;
1987 break;
1988 case SECCOMP_MODE_FILTER:
1989 op = SECCOMP_SET_MODE_FILTER;
1990 uargs = filter;
1991 break;
1992 default:
1993 return -EINVAL;
1994 }
1995
1996 /* prctl interface doesn't have flags, so they are always zero. */
1997 return do_seccomp(op, 0, uargs);
1998 }
1999
2000 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE)
get_nth_filter(struct task_struct * task,unsigned long filter_off)2001 static struct seccomp_filter *get_nth_filter(struct task_struct *task,
2002 unsigned long filter_off)
2003 {
2004 struct seccomp_filter *orig, *filter;
2005 unsigned long count;
2006
2007 /*
2008 * Note: this is only correct because the caller should be the (ptrace)
2009 * tracer of the task, otherwise lock_task_sighand is needed.
2010 */
2011 spin_lock_irq(&task->sighand->siglock);
2012
2013 if (task->seccomp.mode != SECCOMP_MODE_FILTER) {
2014 spin_unlock_irq(&task->sighand->siglock);
2015 return ERR_PTR(-EINVAL);
2016 }
2017
2018 orig = task->seccomp.filter;
2019 __get_seccomp_filter(orig);
2020 spin_unlock_irq(&task->sighand->siglock);
2021
2022 count = 0;
2023 for (filter = orig; filter; filter = filter->prev)
2024 count++;
2025
2026 if (filter_off >= count) {
2027 filter = ERR_PTR(-ENOENT);
2028 goto out;
2029 }
2030
2031 count -= filter_off;
2032 for (filter = orig; filter && count > 1; filter = filter->prev)
2033 count--;
2034
2035 if (WARN_ON(count != 1 || !filter)) {
2036 filter = ERR_PTR(-ENOENT);
2037 goto out;
2038 }
2039
2040 __get_seccomp_filter(filter);
2041
2042 out:
2043 __put_seccomp_filter(orig);
2044 return filter;
2045 }
2046
seccomp_get_filter(struct task_struct * task,unsigned long filter_off,void __user * data)2047 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off,
2048 void __user *data)
2049 {
2050 struct seccomp_filter *filter;
2051 struct sock_fprog_kern *fprog;
2052 long ret;
2053
2054 if (!capable(CAP_SYS_ADMIN) ||
2055 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2056 return -EACCES;
2057 }
2058
2059 filter = get_nth_filter(task, filter_off);
2060 if (IS_ERR(filter))
2061 return PTR_ERR(filter);
2062
2063 fprog = filter->prog->orig_prog;
2064 if (!fprog) {
2065 /* This must be a new non-cBPF filter, since we save
2066 * every cBPF filter's orig_prog above when
2067 * CONFIG_CHECKPOINT_RESTORE is enabled.
2068 */
2069 ret = -EMEDIUMTYPE;
2070 goto out;
2071 }
2072
2073 ret = fprog->len;
2074 if (!data)
2075 goto out;
2076
2077 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog)))
2078 ret = -EFAULT;
2079
2080 out:
2081 __put_seccomp_filter(filter);
2082 return ret;
2083 }
2084
seccomp_get_metadata(struct task_struct * task,unsigned long size,void __user * data)2085 long seccomp_get_metadata(struct task_struct *task,
2086 unsigned long size, void __user *data)
2087 {
2088 long ret;
2089 struct seccomp_filter *filter;
2090 struct seccomp_metadata kmd = {};
2091
2092 if (!capable(CAP_SYS_ADMIN) ||
2093 current->seccomp.mode != SECCOMP_MODE_DISABLED) {
2094 return -EACCES;
2095 }
2096
2097 size = min_t(unsigned long, size, sizeof(kmd));
2098
2099 if (size < sizeof(kmd.filter_off))
2100 return -EINVAL;
2101
2102 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off)))
2103 return -EFAULT;
2104
2105 filter = get_nth_filter(task, kmd.filter_off);
2106 if (IS_ERR(filter))
2107 return PTR_ERR(filter);
2108
2109 if (filter->log)
2110 kmd.flags |= SECCOMP_FILTER_FLAG_LOG;
2111
2112 ret = size;
2113 if (copy_to_user(data, &kmd, size))
2114 ret = -EFAULT;
2115
2116 __put_seccomp_filter(filter);
2117 return ret;
2118 }
2119 #endif
2120
2121 #ifdef CONFIG_SYSCTL
2122
2123 /* Human readable action names for friendly sysctl interaction */
2124 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process"
2125 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread"
2126 #define SECCOMP_RET_TRAP_NAME "trap"
2127 #define SECCOMP_RET_ERRNO_NAME "errno"
2128 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif"
2129 #define SECCOMP_RET_TRACE_NAME "trace"
2130 #define SECCOMP_RET_LOG_NAME "log"
2131 #define SECCOMP_RET_ALLOW_NAME "allow"
2132
2133 static const char seccomp_actions_avail[] =
2134 SECCOMP_RET_KILL_PROCESS_NAME " "
2135 SECCOMP_RET_KILL_THREAD_NAME " "
2136 SECCOMP_RET_TRAP_NAME " "
2137 SECCOMP_RET_ERRNO_NAME " "
2138 SECCOMP_RET_USER_NOTIF_NAME " "
2139 SECCOMP_RET_TRACE_NAME " "
2140 SECCOMP_RET_LOG_NAME " "
2141 SECCOMP_RET_ALLOW_NAME;
2142
2143 struct seccomp_log_name {
2144 u32 log;
2145 const char *name;
2146 };
2147
2148 static const struct seccomp_log_name seccomp_log_names[] = {
2149 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME },
2150 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME },
2151 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME },
2152 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME },
2153 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME },
2154 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME },
2155 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME },
2156 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME },
2157 { }
2158 };
2159
seccomp_names_from_actions_logged(char * names,size_t size,u32 actions_logged,const char * sep)2160 static bool seccomp_names_from_actions_logged(char *names, size_t size,
2161 u32 actions_logged,
2162 const char *sep)
2163 {
2164 const struct seccomp_log_name *cur;
2165 bool append_sep = false;
2166
2167 for (cur = seccomp_log_names; cur->name && size; cur++) {
2168 ssize_t ret;
2169
2170 if (!(actions_logged & cur->log))
2171 continue;
2172
2173 if (append_sep) {
2174 ret = strscpy(names, sep, size);
2175 if (ret < 0)
2176 return false;
2177
2178 names += ret;
2179 size -= ret;
2180 } else
2181 append_sep = true;
2182
2183 ret = strscpy(names, cur->name, size);
2184 if (ret < 0)
2185 return false;
2186
2187 names += ret;
2188 size -= ret;
2189 }
2190
2191 return true;
2192 }
2193
seccomp_action_logged_from_name(u32 * action_logged,const char * name)2194 static bool seccomp_action_logged_from_name(u32 *action_logged,
2195 const char *name)
2196 {
2197 const struct seccomp_log_name *cur;
2198
2199 for (cur = seccomp_log_names; cur->name; cur++) {
2200 if (!strcmp(cur->name, name)) {
2201 *action_logged = cur->log;
2202 return true;
2203 }
2204 }
2205
2206 return false;
2207 }
2208
seccomp_actions_logged_from_names(u32 * actions_logged,char * names)2209 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names)
2210 {
2211 char *name;
2212
2213 *actions_logged = 0;
2214 while ((name = strsep(&names, " ")) && *name) {
2215 u32 action_logged = 0;
2216
2217 if (!seccomp_action_logged_from_name(&action_logged, name))
2218 return false;
2219
2220 *actions_logged |= action_logged;
2221 }
2222
2223 return true;
2224 }
2225
read_actions_logged(struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos)2226 static int read_actions_logged(struct ctl_table *ro_table, void *buffer,
2227 size_t *lenp, loff_t *ppos)
2228 {
2229 char names[sizeof(seccomp_actions_avail)];
2230 struct ctl_table table;
2231
2232 memset(names, 0, sizeof(names));
2233
2234 if (!seccomp_names_from_actions_logged(names, sizeof(names),
2235 seccomp_actions_logged, " "))
2236 return -EINVAL;
2237
2238 table = *ro_table;
2239 table.data = names;
2240 table.maxlen = sizeof(names);
2241 return proc_dostring(&table, 0, buffer, lenp, ppos);
2242 }
2243
write_actions_logged(struct ctl_table * ro_table,void * buffer,size_t * lenp,loff_t * ppos,u32 * actions_logged)2244 static int write_actions_logged(struct ctl_table *ro_table, void *buffer,
2245 size_t *lenp, loff_t *ppos, u32 *actions_logged)
2246 {
2247 char names[sizeof(seccomp_actions_avail)];
2248 struct ctl_table table;
2249 int ret;
2250
2251 if (!capable(CAP_SYS_ADMIN))
2252 return -EPERM;
2253
2254 memset(names, 0, sizeof(names));
2255
2256 table = *ro_table;
2257 table.data = names;
2258 table.maxlen = sizeof(names);
2259 ret = proc_dostring(&table, 1, buffer, lenp, ppos);
2260 if (ret)
2261 return ret;
2262
2263 if (!seccomp_actions_logged_from_names(actions_logged, table.data))
2264 return -EINVAL;
2265
2266 if (*actions_logged & SECCOMP_LOG_ALLOW)
2267 return -EINVAL;
2268
2269 seccomp_actions_logged = *actions_logged;
2270 return 0;
2271 }
2272
audit_actions_logged(u32 actions_logged,u32 old_actions_logged,int ret)2273 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged,
2274 int ret)
2275 {
2276 char names[sizeof(seccomp_actions_avail)];
2277 char old_names[sizeof(seccomp_actions_avail)];
2278 const char *new = names;
2279 const char *old = old_names;
2280
2281 if (!audit_enabled)
2282 return;
2283
2284 memset(names, 0, sizeof(names));
2285 memset(old_names, 0, sizeof(old_names));
2286
2287 if (ret)
2288 new = "?";
2289 else if (!actions_logged)
2290 new = "(none)";
2291 else if (!seccomp_names_from_actions_logged(names, sizeof(names),
2292 actions_logged, ","))
2293 new = "?";
2294
2295 if (!old_actions_logged)
2296 old = "(none)";
2297 else if (!seccomp_names_from_actions_logged(old_names,
2298 sizeof(old_names),
2299 old_actions_logged, ","))
2300 old = "?";
2301
2302 return audit_seccomp_actions_logged(new, old, !ret);
2303 }
2304
seccomp_actions_logged_handler(struct ctl_table * ro_table,int write,void * buffer,size_t * lenp,loff_t * ppos)2305 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write,
2306 void *buffer, size_t *lenp,
2307 loff_t *ppos)
2308 {
2309 int ret;
2310
2311 if (write) {
2312 u32 actions_logged = 0;
2313 u32 old_actions_logged = seccomp_actions_logged;
2314
2315 ret = write_actions_logged(ro_table, buffer, lenp, ppos,
2316 &actions_logged);
2317 audit_actions_logged(actions_logged, old_actions_logged, ret);
2318 } else
2319 ret = read_actions_logged(ro_table, buffer, lenp, ppos);
2320
2321 return ret;
2322 }
2323
2324 static struct ctl_path seccomp_sysctl_path[] = {
2325 { .procname = "kernel", },
2326 { .procname = "seccomp", },
2327 { }
2328 };
2329
2330 static struct ctl_table seccomp_sysctl_table[] = {
2331 {
2332 .procname = "actions_avail",
2333 .data = (void *) &seccomp_actions_avail,
2334 .maxlen = sizeof(seccomp_actions_avail),
2335 .mode = 0444,
2336 .proc_handler = proc_dostring,
2337 },
2338 {
2339 .procname = "actions_logged",
2340 .mode = 0644,
2341 .proc_handler = seccomp_actions_logged_handler,
2342 },
2343 { }
2344 };
2345
seccomp_sysctl_init(void)2346 static int __init seccomp_sysctl_init(void)
2347 {
2348 struct ctl_table_header *hdr;
2349
2350 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table);
2351 if (!hdr)
2352 pr_warn("sysctl registration failed\n");
2353 else
2354 kmemleak_not_leak(hdr);
2355
2356 return 0;
2357 }
2358
device_initcall(seccomp_sysctl_init)2359 device_initcall(seccomp_sysctl_init)
2360
2361 #endif /* CONFIG_SYSCTL */
2362
2363 #ifdef CONFIG_SECCOMP_CACHE_DEBUG
2364 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */
2365 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name,
2366 const void *bitmap, size_t bitmap_size)
2367 {
2368 int nr;
2369
2370 for (nr = 0; nr < bitmap_size; nr++) {
2371 bool cached = test_bit(nr, bitmap);
2372 char *status = cached ? "ALLOW" : "FILTER";
2373
2374 seq_printf(m, "%s %d %s\n", name, nr, status);
2375 }
2376 }
2377
proc_pid_seccomp_cache(struct seq_file * m,struct pid_namespace * ns,struct pid * pid,struct task_struct * task)2378 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns,
2379 struct pid *pid, struct task_struct *task)
2380 {
2381 struct seccomp_filter *f;
2382 unsigned long flags;
2383
2384 /*
2385 * We don't want some sandboxed process to know what their seccomp
2386 * filters consist of.
2387 */
2388 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN))
2389 return -EACCES;
2390
2391 if (!lock_task_sighand(task, &flags))
2392 return -ESRCH;
2393
2394 f = READ_ONCE(task->seccomp.filter);
2395 if (!f) {
2396 unlock_task_sighand(task, &flags);
2397 return 0;
2398 }
2399
2400 /* prevent filter from being freed while we are printing it */
2401 __get_seccomp_filter(f);
2402 unlock_task_sighand(task, &flags);
2403
2404 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME,
2405 f->cache.allow_native,
2406 SECCOMP_ARCH_NATIVE_NR);
2407
2408 #ifdef SECCOMP_ARCH_COMPAT
2409 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME,
2410 f->cache.allow_compat,
2411 SECCOMP_ARCH_COMPAT_NR);
2412 #endif /* SECCOMP_ARCH_COMPAT */
2413
2414 __put_seccomp_filter(f);
2415 return 0;
2416 }
2417 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */
2418