1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  */
6 
7 #define INCLUDE_VERMAGIC
8 
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62 
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65 
66 #ifndef ARCH_SHF_SMALL
67 #define ARCH_SHF_SMALL 0
68 #endif
69 
70 /*
71  * Modules' sections will be aligned on page boundaries
72  * to ensure complete separation of code and data, but
73  * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
74  */
75 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
76 # define debug_align(X) ALIGN(X, PAGE_SIZE)
77 #else
78 # define debug_align(X) (X)
79 #endif
80 
81 /* If this is set, the section belongs in the init part of the module */
82 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
83 
84 /*
85  * Mutex protects:
86  * 1) List of modules (also safely readable with preempt_disable),
87  * 2) module_use links,
88  * 3) module_addr_min/module_addr_max.
89  * (delete and add uses RCU list operations).
90  */
91 static DEFINE_MUTEX(module_mutex);
92 static LIST_HEAD(modules);
93 
94 /* Work queue for freeing init sections in success case */
95 static void do_free_init(struct work_struct *w);
96 static DECLARE_WORK(init_free_wq, do_free_init);
97 static LLIST_HEAD(init_free_list);
98 
99 #ifdef CONFIG_MODULES_TREE_LOOKUP
100 
101 /*
102  * Use a latched RB-tree for __module_address(); this allows us to use
103  * RCU-sched lookups of the address from any context.
104  *
105  * This is conditional on PERF_EVENTS || TRACING because those can really hit
106  * __module_address() hard by doing a lot of stack unwinding; potentially from
107  * NMI context.
108  */
109 
__mod_tree_val(struct latch_tree_node * n)110 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111 {
112 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113 
114 	return (unsigned long)layout->base;
115 }
116 
__mod_tree_size(struct latch_tree_node * n)117 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118 {
119 	struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120 
121 	return (unsigned long)layout->size;
122 }
123 
124 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)125 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126 {
127 	return __mod_tree_val(a) < __mod_tree_val(b);
128 }
129 
130 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)131 mod_tree_comp(void *key, struct latch_tree_node *n)
132 {
133 	unsigned long val = (unsigned long)key;
134 	unsigned long start, end;
135 
136 	start = __mod_tree_val(n);
137 	if (val < start)
138 		return -1;
139 
140 	end = start + __mod_tree_size(n);
141 	if (val >= end)
142 		return 1;
143 
144 	return 0;
145 }
146 
147 static const struct latch_tree_ops mod_tree_ops = {
148 	.less = mod_tree_less,
149 	.comp = mod_tree_comp,
150 };
151 
152 static struct mod_tree_root {
153 	struct latch_tree_root root;
154 	unsigned long addr_min;
155 	unsigned long addr_max;
156 } mod_tree __cacheline_aligned = {
157 	.addr_min = -1UL,
158 };
159 
160 #define module_addr_min mod_tree.addr_min
161 #define module_addr_max mod_tree.addr_max
162 
__mod_tree_insert(struct mod_tree_node * node)163 static noinline void __mod_tree_insert(struct mod_tree_node *node)
164 {
165 	latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167 
__mod_tree_remove(struct mod_tree_node * node)168 static void __mod_tree_remove(struct mod_tree_node *node)
169 {
170 	latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 }
172 
173 /*
174  * These modifications: insert, remove_init and remove; are serialized by the
175  * module_mutex.
176  */
mod_tree_insert(struct module * mod)177 static void mod_tree_insert(struct module *mod)
178 {
179 	mod->core_layout.mtn.mod = mod;
180 	mod->init_layout.mtn.mod = mod;
181 
182 	__mod_tree_insert(&mod->core_layout.mtn);
183 	if (mod->init_layout.size)
184 		__mod_tree_insert(&mod->init_layout.mtn);
185 }
186 
mod_tree_remove_init(struct module * mod)187 static void mod_tree_remove_init(struct module *mod)
188 {
189 	if (mod->init_layout.size)
190 		__mod_tree_remove(&mod->init_layout.mtn);
191 }
192 
mod_tree_remove(struct module * mod)193 static void mod_tree_remove(struct module *mod)
194 {
195 	__mod_tree_remove(&mod->core_layout.mtn);
196 	mod_tree_remove_init(mod);
197 }
198 
mod_find(unsigned long addr)199 static struct module *mod_find(unsigned long addr)
200 {
201 	struct latch_tree_node *ltn;
202 
203 	ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 	if (!ltn)
205 		return NULL;
206 
207 	return container_of(ltn, struct mod_tree_node, node)->mod;
208 }
209 
210 #else /* MODULES_TREE_LOOKUP */
211 
212 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213 
mod_tree_insert(struct module * mod)214 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)215 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)216 static void mod_tree_remove(struct module *mod) { }
217 
mod_find(unsigned long addr)218 static struct module *mod_find(unsigned long addr)
219 {
220 	struct module *mod;
221 
222 	list_for_each_entry_rcu(mod, &modules, list,
223 				lockdep_is_held(&module_mutex)) {
224 		if (within_module(addr, mod))
225 			return mod;
226 	}
227 
228 	return NULL;
229 }
230 
231 #endif /* MODULES_TREE_LOOKUP */
232 
233 /*
234  * Bounds of module text, for speeding up __module_address.
235  * Protected by module_mutex.
236  */
__mod_update_bounds(void * base,unsigned int size)237 static void __mod_update_bounds(void *base, unsigned int size)
238 {
239 	unsigned long min = (unsigned long)base;
240 	unsigned long max = min + size;
241 
242 	if (min < module_addr_min)
243 		module_addr_min = min;
244 	if (max > module_addr_max)
245 		module_addr_max = max;
246 }
247 
mod_update_bounds(struct module * mod)248 static void mod_update_bounds(struct module *mod)
249 {
250 	__mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 	if (mod->init_layout.size)
252 		__mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253 }
254 
255 #ifdef CONFIG_KGDB_KDB
256 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257 #endif /* CONFIG_KGDB_KDB */
258 
module_assert_mutex_or_preempt(void)259 static void module_assert_mutex_or_preempt(void)
260 {
261 #ifdef CONFIG_LOCKDEP
262 	if (unlikely(!debug_locks))
263 		return;
264 
265 	WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
266 		!lockdep_is_held(&module_mutex));
267 #endif
268 }
269 
270 #ifdef CONFIG_MODULE_SIG
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 module_param(sig_enforce, bool_enable_only, 0644);
273 
set_module_sig_enforced(void)274 void set_module_sig_enforced(void)
275 {
276 	sig_enforce = true;
277 }
278 #else
279 #define sig_enforce false
280 #endif
281 
282 /*
283  * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
284  * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
285  */
is_module_sig_enforced(void)286 bool is_module_sig_enforced(void)
287 {
288 	return sig_enforce;
289 }
290 EXPORT_SYMBOL(is_module_sig_enforced);
291 
292 /* Block module loading/unloading? */
293 int modules_disabled = 0;
294 core_param(nomodule, modules_disabled, bint, 0);
295 
296 /* Waiting for a module to finish initializing? */
297 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
298 
299 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
300 
register_module_notifier(struct notifier_block * nb)301 int register_module_notifier(struct notifier_block *nb)
302 {
303 	return blocking_notifier_chain_register(&module_notify_list, nb);
304 }
305 EXPORT_SYMBOL(register_module_notifier);
306 
unregister_module_notifier(struct notifier_block * nb)307 int unregister_module_notifier(struct notifier_block *nb)
308 {
309 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
310 }
311 EXPORT_SYMBOL(unregister_module_notifier);
312 
313 /*
314  * We require a truly strong try_module_get(): 0 means success.
315  * Otherwise an error is returned due to ongoing or failed
316  * initialization etc.
317  */
strong_try_module_get(struct module * mod)318 static inline int strong_try_module_get(struct module *mod)
319 {
320 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 	if (mod && mod->state == MODULE_STATE_COMING)
322 		return -EBUSY;
323 	if (try_module_get(mod))
324 		return 0;
325 	else
326 		return -ENOENT;
327 }
328 
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 				    enum lockdep_ok lockdep_ok)
331 {
332 	add_taint(flag, lockdep_ok);
333 	set_bit(flag, &mod->taints);
334 }
335 
336 /*
337  * A thread that wants to hold a reference to a module only while it
338  * is running can call this to safely exit.  nfsd and lockd use this.
339  */
__module_put_and_exit(struct module * mod,long code)340 void __noreturn __module_put_and_exit(struct module *mod, long code)
341 {
342 	module_put(mod);
343 	do_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_exit);
346 
347 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 	unsigned int i;
351 
352 	for (i = 1; i < info->hdr->e_shnum; i++) {
353 		Elf_Shdr *shdr = &info->sechdrs[i];
354 		/* Alloc bit cleared means "ignore it." */
355 		if ((shdr->sh_flags & SHF_ALLOC)
356 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 			return i;
358 	}
359 	return 0;
360 }
361 
362 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 	/* Section 0 has sh_addr 0. */
366 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368 
369 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)370 static void *section_objs(const struct load_info *info,
371 			  const char *name,
372 			  size_t object_size,
373 			  unsigned int *num)
374 {
375 	unsigned int sec = find_sec(info, name);
376 
377 	/* Section 0 has sh_addr 0 and sh_size 0. */
378 	*num = info->sechdrs[sec].sh_size / object_size;
379 	return (void *)info->sechdrs[sec].sh_addr;
380 }
381 
382 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)383 static unsigned int find_any_sec(const struct load_info *info, const char *name)
384 {
385 	unsigned int i;
386 
387 	for (i = 1; i < info->hdr->e_shnum; i++) {
388 		Elf_Shdr *shdr = &info->sechdrs[i];
389 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
390 			return i;
391 	}
392 	return 0;
393 }
394 
395 /*
396  * Find a module section, or NULL. Fill in number of "objects" in section.
397  * Ignores SHF_ALLOC flag.
398  */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)399 static __maybe_unused void *any_section_objs(const struct load_info *info,
400 					     const char *name,
401 					     size_t object_size,
402 					     unsigned int *num)
403 {
404 	unsigned int sec = find_any_sec(info, name);
405 
406 	/* Section 0 has sh_addr 0 and sh_size 0. */
407 	*num = info->sechdrs[sec].sh_size / object_size;
408 	return (void *)info->sechdrs[sec].sh_addr;
409 }
410 
411 /* Provided by the linker */
412 extern const struct kernel_symbol __start___ksymtab[];
413 extern const struct kernel_symbol __stop___ksymtab[];
414 extern const struct kernel_symbol __start___ksymtab_gpl[];
415 extern const struct kernel_symbol __stop___ksymtab_gpl[];
416 extern const s32 __start___kcrctab[];
417 extern const s32 __start___kcrctab_gpl[];
418 
419 #ifndef CONFIG_MODVERSIONS
420 #define symversion(base, idx) NULL
421 #else
422 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
423 #endif
424 
425 struct symsearch {
426 	const struct kernel_symbol *start, *stop;
427 	const s32 *crcs;
428 	enum mod_license {
429 		NOT_GPL_ONLY,
430 		GPL_ONLY,
431 	} license;
432 };
433 
434 struct find_symbol_arg {
435 	/* Input */
436 	const char *name;
437 	bool gplok;
438 	bool warn;
439 
440 	/* Output */
441 	struct module *owner;
442 	const s32 *crc;
443 	const struct kernel_symbol *sym;
444 	enum mod_license license;
445 };
446 
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)447 static bool check_exported_symbol(const struct symsearch *syms,
448 				  struct module *owner,
449 				  unsigned int symnum, void *data)
450 {
451 	struct find_symbol_arg *fsa = data;
452 
453 	if (!fsa->gplok && syms->license == GPL_ONLY)
454 		return false;
455 	fsa->owner = owner;
456 	fsa->crc = symversion(syms->crcs, symnum);
457 	fsa->sym = &syms->start[symnum];
458 	fsa->license = syms->license;
459 	return true;
460 }
461 
kernel_symbol_value(const struct kernel_symbol * sym)462 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
463 {
464 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
465 	return (unsigned long)offset_to_ptr(&sym->value_offset);
466 #else
467 	return sym->value;
468 #endif
469 }
470 
kernel_symbol_name(const struct kernel_symbol * sym)471 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
472 {
473 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
474 	return offset_to_ptr(&sym->name_offset);
475 #else
476 	return sym->name;
477 #endif
478 }
479 
kernel_symbol_namespace(const struct kernel_symbol * sym)480 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
481 {
482 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
483 	if (!sym->namespace_offset)
484 		return NULL;
485 	return offset_to_ptr(&sym->namespace_offset);
486 #else
487 	return sym->namespace;
488 #endif
489 }
490 
cmp_name(const void * name,const void * sym)491 static int cmp_name(const void *name, const void *sym)
492 {
493 	return strcmp(name, kernel_symbol_name(sym));
494 }
495 
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)496 static bool find_exported_symbol_in_section(const struct symsearch *syms,
497 					    struct module *owner,
498 					    void *data)
499 {
500 	struct find_symbol_arg *fsa = data;
501 	struct kernel_symbol *sym;
502 
503 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
504 			sizeof(struct kernel_symbol), cmp_name);
505 
506 	if (sym != NULL && check_exported_symbol(syms, owner,
507 						 sym - syms->start, data))
508 		return true;
509 
510 	return false;
511 }
512 
513 /*
514  * Find an exported symbol and return it, along with, (optional) crc and
515  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
516  */
find_symbol(struct find_symbol_arg * fsa)517 static bool find_symbol(struct find_symbol_arg *fsa)
518 {
519 	static const struct symsearch arr[] = {
520 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
521 		  NOT_GPL_ONLY },
522 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
523 		  __start___kcrctab_gpl,
524 		  GPL_ONLY },
525 	};
526 	struct module *mod;
527 	unsigned int i;
528 
529 	module_assert_mutex_or_preempt();
530 
531 	for (i = 0; i < ARRAY_SIZE(arr); i++)
532 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
533 			return true;
534 
535 	list_for_each_entry_rcu(mod, &modules, list,
536 				lockdep_is_held(&module_mutex)) {
537 		struct symsearch arr[] = {
538 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
539 			  NOT_GPL_ONLY },
540 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
541 			  mod->gpl_crcs,
542 			  GPL_ONLY },
543 		};
544 
545 		if (mod->state == MODULE_STATE_UNFORMED)
546 			continue;
547 
548 		for (i = 0; i < ARRAY_SIZE(arr); i++)
549 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
550 				return true;
551 	}
552 
553 	pr_debug("Failed to find symbol %s\n", fsa->name);
554 	return false;
555 }
556 
557 /*
558  * Search for module by name: must hold module_mutex (or preempt disabled
559  * for read-only access).
560  */
find_module_all(const char * name,size_t len,bool even_unformed)561 static struct module *find_module_all(const char *name, size_t len,
562 				      bool even_unformed)
563 {
564 	struct module *mod;
565 
566 	module_assert_mutex_or_preempt();
567 
568 	list_for_each_entry_rcu(mod, &modules, list,
569 				lockdep_is_held(&module_mutex)) {
570 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
571 			continue;
572 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
573 			return mod;
574 	}
575 	return NULL;
576 }
577 
find_module(const char * name)578 struct module *find_module(const char *name)
579 {
580 	return find_module_all(name, strlen(name), false);
581 }
582 
583 #ifdef CONFIG_SMP
584 
mod_percpu(struct module * mod)585 static inline void __percpu *mod_percpu(struct module *mod)
586 {
587 	return mod->percpu;
588 }
589 
percpu_modalloc(struct module * mod,struct load_info * info)590 static int percpu_modalloc(struct module *mod, struct load_info *info)
591 {
592 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
593 	unsigned long align = pcpusec->sh_addralign;
594 
595 	if (!pcpusec->sh_size)
596 		return 0;
597 
598 	if (align > PAGE_SIZE) {
599 		pr_warn("%s: per-cpu alignment %li > %li\n",
600 			mod->name, align, PAGE_SIZE);
601 		align = PAGE_SIZE;
602 	}
603 
604 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
605 	if (!mod->percpu) {
606 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
607 			mod->name, (unsigned long)pcpusec->sh_size);
608 		return -ENOMEM;
609 	}
610 	mod->percpu_size = pcpusec->sh_size;
611 	return 0;
612 }
613 
percpu_modfree(struct module * mod)614 static void percpu_modfree(struct module *mod)
615 {
616 	free_percpu(mod->percpu);
617 }
618 
find_pcpusec(struct load_info * info)619 static unsigned int find_pcpusec(struct load_info *info)
620 {
621 	return find_sec(info, ".data..percpu");
622 }
623 
percpu_modcopy(struct module * mod,const void * from,unsigned long size)624 static void percpu_modcopy(struct module *mod,
625 			   const void *from, unsigned long size)
626 {
627 	int cpu;
628 
629 	for_each_possible_cpu(cpu)
630 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
631 }
632 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)633 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
634 {
635 	struct module *mod;
636 	unsigned int cpu;
637 
638 	preempt_disable();
639 
640 	list_for_each_entry_rcu(mod, &modules, list) {
641 		if (mod->state == MODULE_STATE_UNFORMED)
642 			continue;
643 		if (!mod->percpu_size)
644 			continue;
645 		for_each_possible_cpu(cpu) {
646 			void *start = per_cpu_ptr(mod->percpu, cpu);
647 			void *va = (void *)addr;
648 
649 			if (va >= start && va < start + mod->percpu_size) {
650 				if (can_addr) {
651 					*can_addr = (unsigned long) (va - start);
652 					*can_addr += (unsigned long)
653 						per_cpu_ptr(mod->percpu,
654 							    get_boot_cpu_id());
655 				}
656 				preempt_enable();
657 				return true;
658 			}
659 		}
660 	}
661 
662 	preempt_enable();
663 	return false;
664 }
665 
666 /**
667  * is_module_percpu_address() - test whether address is from module static percpu
668  * @addr: address to test
669  *
670  * Test whether @addr belongs to module static percpu area.
671  *
672  * Return: %true if @addr is from module static percpu area
673  */
is_module_percpu_address(unsigned long addr)674 bool is_module_percpu_address(unsigned long addr)
675 {
676 	return __is_module_percpu_address(addr, NULL);
677 }
678 
679 #else /* ... !CONFIG_SMP */
680 
mod_percpu(struct module * mod)681 static inline void __percpu *mod_percpu(struct module *mod)
682 {
683 	return NULL;
684 }
percpu_modalloc(struct module * mod,struct load_info * info)685 static int percpu_modalloc(struct module *mod, struct load_info *info)
686 {
687 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
688 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
689 		return -ENOMEM;
690 	return 0;
691 }
percpu_modfree(struct module * mod)692 static inline void percpu_modfree(struct module *mod)
693 {
694 }
find_pcpusec(struct load_info * info)695 static unsigned int find_pcpusec(struct load_info *info)
696 {
697 	return 0;
698 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)699 static inline void percpu_modcopy(struct module *mod,
700 				  const void *from, unsigned long size)
701 {
702 	/* pcpusec should be 0, and size of that section should be 0. */
703 	BUG_ON(size != 0);
704 }
is_module_percpu_address(unsigned long addr)705 bool is_module_percpu_address(unsigned long addr)
706 {
707 	return false;
708 }
709 
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)710 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
711 {
712 	return false;
713 }
714 
715 #endif /* CONFIG_SMP */
716 
717 #define MODINFO_ATTR(field)	\
718 static void setup_modinfo_##field(struct module *mod, const char *s)  \
719 {                                                                     \
720 	mod->field = kstrdup(s, GFP_KERNEL);                          \
721 }                                                                     \
722 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
723 			struct module_kobject *mk, char *buffer)      \
724 {                                                                     \
725 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
726 }                                                                     \
727 static int modinfo_##field##_exists(struct module *mod)               \
728 {                                                                     \
729 	return mod->field != NULL;                                    \
730 }                                                                     \
731 static void free_modinfo_##field(struct module *mod)                  \
732 {                                                                     \
733 	kfree(mod->field);                                            \
734 	mod->field = NULL;                                            \
735 }                                                                     \
736 static struct module_attribute modinfo_##field = {                    \
737 	.attr = { .name = __stringify(field), .mode = 0444 },         \
738 	.show = show_modinfo_##field,                                 \
739 	.setup = setup_modinfo_##field,                               \
740 	.test = modinfo_##field##_exists,                             \
741 	.free = free_modinfo_##field,                                 \
742 };
743 
744 MODINFO_ATTR(version);
745 MODINFO_ATTR(srcversion);
746 
747 static char last_unloaded_module[MODULE_NAME_LEN+1];
748 
749 #ifdef CONFIG_MODULE_UNLOAD
750 
751 EXPORT_TRACEPOINT_SYMBOL(module_get);
752 
753 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
754 #define MODULE_REF_BASE	1
755 
756 /* Init the unload section of the module. */
module_unload_init(struct module * mod)757 static int module_unload_init(struct module *mod)
758 {
759 	/*
760 	 * Initialize reference counter to MODULE_REF_BASE.
761 	 * refcnt == 0 means module is going.
762 	 */
763 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
764 
765 	INIT_LIST_HEAD(&mod->source_list);
766 	INIT_LIST_HEAD(&mod->target_list);
767 
768 	/* Hold reference count during initialization. */
769 	atomic_inc(&mod->refcnt);
770 
771 	return 0;
772 }
773 
774 /* Does a already use b? */
already_uses(struct module * a,struct module * b)775 static int already_uses(struct module *a, struct module *b)
776 {
777 	struct module_use *use;
778 
779 	list_for_each_entry(use, &b->source_list, source_list) {
780 		if (use->source == a) {
781 			pr_debug("%s uses %s!\n", a->name, b->name);
782 			return 1;
783 		}
784 	}
785 	pr_debug("%s does not use %s!\n", a->name, b->name);
786 	return 0;
787 }
788 
789 /*
790  * Module a uses b
791  *  - we add 'a' as a "source", 'b' as a "target" of module use
792  *  - the module_use is added to the list of 'b' sources (so
793  *    'b' can walk the list to see who sourced them), and of 'a'
794  *    targets (so 'a' can see what modules it targets).
795  */
add_module_usage(struct module * a,struct module * b)796 static int add_module_usage(struct module *a, struct module *b)
797 {
798 	struct module_use *use;
799 
800 	pr_debug("Allocating new usage for %s.\n", a->name);
801 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
802 	if (!use)
803 		return -ENOMEM;
804 
805 	use->source = a;
806 	use->target = b;
807 	list_add(&use->source_list, &b->source_list);
808 	list_add(&use->target_list, &a->target_list);
809 	return 0;
810 }
811 
812 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)813 static int ref_module(struct module *a, struct module *b)
814 {
815 	int err;
816 
817 	if (b == NULL || already_uses(a, b))
818 		return 0;
819 
820 	/* If module isn't available, we fail. */
821 	err = strong_try_module_get(b);
822 	if (err)
823 		return err;
824 
825 	err = add_module_usage(a, b);
826 	if (err) {
827 		module_put(b);
828 		return err;
829 	}
830 	return 0;
831 }
832 
833 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)834 static void module_unload_free(struct module *mod)
835 {
836 	struct module_use *use, *tmp;
837 
838 	mutex_lock(&module_mutex);
839 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
840 		struct module *i = use->target;
841 		pr_debug("%s unusing %s\n", mod->name, i->name);
842 		module_put(i);
843 		list_del(&use->source_list);
844 		list_del(&use->target_list);
845 		kfree(use);
846 	}
847 	mutex_unlock(&module_mutex);
848 }
849 
850 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)851 static inline int try_force_unload(unsigned int flags)
852 {
853 	int ret = (flags & O_TRUNC);
854 	if (ret)
855 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
856 	return ret;
857 }
858 #else
try_force_unload(unsigned int flags)859 static inline int try_force_unload(unsigned int flags)
860 {
861 	return 0;
862 }
863 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
864 
865 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)866 static int try_release_module_ref(struct module *mod)
867 {
868 	int ret;
869 
870 	/* Try to decrement refcnt which we set at loading */
871 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
872 	BUG_ON(ret < 0);
873 	if (ret)
874 		/* Someone can put this right now, recover with checking */
875 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
876 
877 	return ret;
878 }
879 
try_stop_module(struct module * mod,int flags,int * forced)880 static int try_stop_module(struct module *mod, int flags, int *forced)
881 {
882 	/* If it's not unused, quit unless we're forcing. */
883 	if (try_release_module_ref(mod) != 0) {
884 		*forced = try_force_unload(flags);
885 		if (!(*forced))
886 			return -EWOULDBLOCK;
887 	}
888 
889 	/* Mark it as dying. */
890 	mod->state = MODULE_STATE_GOING;
891 
892 	return 0;
893 }
894 
895 /**
896  * module_refcount() - return the refcount or -1 if unloading
897  * @mod:	the module we're checking
898  *
899  * Return:
900  *	-1 if the module is in the process of unloading
901  *	otherwise the number of references in the kernel to the module
902  */
module_refcount(struct module * mod)903 int module_refcount(struct module *mod)
904 {
905 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
906 }
907 EXPORT_SYMBOL(module_refcount);
908 
909 /* This exists whether we can unload or not */
910 static void free_module(struct module *mod);
911 
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)912 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
913 		unsigned int, flags)
914 {
915 	struct module *mod;
916 	char name[MODULE_NAME_LEN];
917 	int ret, forced = 0;
918 
919 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
920 		return -EPERM;
921 
922 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
923 		return -EFAULT;
924 	name[MODULE_NAME_LEN-1] = '\0';
925 
926 	audit_log_kern_module(name);
927 
928 	if (mutex_lock_interruptible(&module_mutex) != 0)
929 		return -EINTR;
930 
931 	mod = find_module(name);
932 	if (!mod) {
933 		ret = -ENOENT;
934 		goto out;
935 	}
936 
937 	if (!list_empty(&mod->source_list)) {
938 		/* Other modules depend on us: get rid of them first. */
939 		ret = -EWOULDBLOCK;
940 		goto out;
941 	}
942 
943 	/* Doing init or already dying? */
944 	if (mod->state != MODULE_STATE_LIVE) {
945 		/* FIXME: if (force), slam module count damn the torpedoes */
946 		pr_debug("%s already dying\n", mod->name);
947 		ret = -EBUSY;
948 		goto out;
949 	}
950 
951 	/* If it has an init func, it must have an exit func to unload */
952 	if (mod->init && !mod->exit) {
953 		forced = try_force_unload(flags);
954 		if (!forced) {
955 			/* This module can't be removed */
956 			ret = -EBUSY;
957 			goto out;
958 		}
959 	}
960 
961 	/* Stop the machine so refcounts can't move and disable module. */
962 	ret = try_stop_module(mod, flags, &forced);
963 	if (ret != 0)
964 		goto out;
965 
966 	mutex_unlock(&module_mutex);
967 	/* Final destruction now no one is using it. */
968 	if (mod->exit != NULL)
969 		mod->exit();
970 	blocking_notifier_call_chain(&module_notify_list,
971 				     MODULE_STATE_GOING, mod);
972 	klp_module_going(mod);
973 	ftrace_release_mod(mod);
974 
975 	async_synchronize_full();
976 
977 	/* Store the name of the last unloaded module for diagnostic purposes */
978 	strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
979 
980 	free_module(mod);
981 	/* someone could wait for the module in add_unformed_module() */
982 	wake_up_all(&module_wq);
983 	return 0;
984 out:
985 	mutex_unlock(&module_mutex);
986 	return ret;
987 }
988 
print_unload_info(struct seq_file * m,struct module * mod)989 static inline void print_unload_info(struct seq_file *m, struct module *mod)
990 {
991 	struct module_use *use;
992 	int printed_something = 0;
993 
994 	seq_printf(m, " %i ", module_refcount(mod));
995 
996 	/*
997 	 * Always include a trailing , so userspace can differentiate
998 	 * between this and the old multi-field proc format.
999 	 */
1000 	list_for_each_entry(use, &mod->source_list, source_list) {
1001 		printed_something = 1;
1002 		seq_printf(m, "%s,", use->source->name);
1003 	}
1004 
1005 	if (mod->init != NULL && mod->exit == NULL) {
1006 		printed_something = 1;
1007 		seq_puts(m, "[permanent],");
1008 	}
1009 
1010 	if (!printed_something)
1011 		seq_puts(m, "-");
1012 }
1013 
__symbol_put(const char * symbol)1014 void __symbol_put(const char *symbol)
1015 {
1016 	struct find_symbol_arg fsa = {
1017 		.name	= symbol,
1018 		.gplok	= true,
1019 	};
1020 
1021 	preempt_disable();
1022 	BUG_ON(!find_symbol(&fsa));
1023 	module_put(fsa.owner);
1024 	preempt_enable();
1025 }
1026 EXPORT_SYMBOL(__symbol_put);
1027 
1028 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1029 void symbol_put_addr(void *addr)
1030 {
1031 	struct module *modaddr;
1032 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1033 
1034 	if (core_kernel_text(a))
1035 		return;
1036 
1037 	/*
1038 	 * Even though we hold a reference on the module; we still need to
1039 	 * disable preemption in order to safely traverse the data structure.
1040 	 */
1041 	preempt_disable();
1042 	modaddr = __module_text_address(a);
1043 	BUG_ON(!modaddr);
1044 	module_put(modaddr);
1045 	preempt_enable();
1046 }
1047 EXPORT_SYMBOL_GPL(symbol_put_addr);
1048 
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1049 static ssize_t show_refcnt(struct module_attribute *mattr,
1050 			   struct module_kobject *mk, char *buffer)
1051 {
1052 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1053 }
1054 
1055 static struct module_attribute modinfo_refcnt =
1056 	__ATTR(refcnt, 0444, show_refcnt, NULL);
1057 
__module_get(struct module * module)1058 void __module_get(struct module *module)
1059 {
1060 	if (module) {
1061 		preempt_disable();
1062 		atomic_inc(&module->refcnt);
1063 		trace_module_get(module, _RET_IP_);
1064 		preempt_enable();
1065 	}
1066 }
1067 EXPORT_SYMBOL(__module_get);
1068 
try_module_get(struct module * module)1069 bool try_module_get(struct module *module)
1070 {
1071 	bool ret = true;
1072 
1073 	if (module) {
1074 		preempt_disable();
1075 		/* Note: here, we can fail to get a reference */
1076 		if (likely(module_is_live(module) &&
1077 			   atomic_inc_not_zero(&module->refcnt) != 0))
1078 			trace_module_get(module, _RET_IP_);
1079 		else
1080 			ret = false;
1081 
1082 		preempt_enable();
1083 	}
1084 	return ret;
1085 }
1086 EXPORT_SYMBOL(try_module_get);
1087 
module_put(struct module * module)1088 void module_put(struct module *module)
1089 {
1090 	int ret;
1091 
1092 	if (module) {
1093 		preempt_disable();
1094 		ret = atomic_dec_if_positive(&module->refcnt);
1095 		WARN_ON(ret < 0);	/* Failed to put refcount */
1096 		trace_module_put(module, _RET_IP_);
1097 		preempt_enable();
1098 	}
1099 }
1100 EXPORT_SYMBOL(module_put);
1101 
1102 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1103 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1104 {
1105 	/* We don't know the usage count, or what modules are using. */
1106 	seq_puts(m, " - -");
1107 }
1108 
module_unload_free(struct module * mod)1109 static inline void module_unload_free(struct module *mod)
1110 {
1111 }
1112 
ref_module(struct module * a,struct module * b)1113 static int ref_module(struct module *a, struct module *b)
1114 {
1115 	return strong_try_module_get(b);
1116 }
1117 
module_unload_init(struct module * mod)1118 static inline int module_unload_init(struct module *mod)
1119 {
1120 	return 0;
1121 }
1122 #endif /* CONFIG_MODULE_UNLOAD */
1123 
module_flags_taint(struct module * mod,char * buf)1124 static size_t module_flags_taint(struct module *mod, char *buf)
1125 {
1126 	size_t l = 0;
1127 	int i;
1128 
1129 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1130 		if (taint_flags[i].module && test_bit(i, &mod->taints))
1131 			buf[l++] = taint_flags[i].c_true;
1132 	}
1133 
1134 	return l;
1135 }
1136 
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1137 static ssize_t show_initstate(struct module_attribute *mattr,
1138 			      struct module_kobject *mk, char *buffer)
1139 {
1140 	const char *state = "unknown";
1141 
1142 	switch (mk->mod->state) {
1143 	case MODULE_STATE_LIVE:
1144 		state = "live";
1145 		break;
1146 	case MODULE_STATE_COMING:
1147 		state = "coming";
1148 		break;
1149 	case MODULE_STATE_GOING:
1150 		state = "going";
1151 		break;
1152 	default:
1153 		BUG();
1154 	}
1155 	return sprintf(buffer, "%s\n", state);
1156 }
1157 
1158 static struct module_attribute modinfo_initstate =
1159 	__ATTR(initstate, 0444, show_initstate, NULL);
1160 
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1161 static ssize_t store_uevent(struct module_attribute *mattr,
1162 			    struct module_kobject *mk,
1163 			    const char *buffer, size_t count)
1164 {
1165 	int rc;
1166 
1167 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1168 	return rc ? rc : count;
1169 }
1170 
1171 struct module_attribute module_uevent =
1172 	__ATTR(uevent, 0200, NULL, store_uevent);
1173 
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1174 static ssize_t show_coresize(struct module_attribute *mattr,
1175 			     struct module_kobject *mk, char *buffer)
1176 {
1177 	return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1178 }
1179 
1180 static struct module_attribute modinfo_coresize =
1181 	__ATTR(coresize, 0444, show_coresize, NULL);
1182 
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1183 static ssize_t show_initsize(struct module_attribute *mattr,
1184 			     struct module_kobject *mk, char *buffer)
1185 {
1186 	return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1187 }
1188 
1189 static struct module_attribute modinfo_initsize =
1190 	__ATTR(initsize, 0444, show_initsize, NULL);
1191 
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1192 static ssize_t show_taint(struct module_attribute *mattr,
1193 			  struct module_kobject *mk, char *buffer)
1194 {
1195 	size_t l;
1196 
1197 	l = module_flags_taint(mk->mod, buffer);
1198 	buffer[l++] = '\n';
1199 	return l;
1200 }
1201 
1202 static struct module_attribute modinfo_taint =
1203 	__ATTR(taint, 0444, show_taint, NULL);
1204 
1205 static struct module_attribute *modinfo_attrs[] = {
1206 	&module_uevent,
1207 	&modinfo_version,
1208 	&modinfo_srcversion,
1209 	&modinfo_initstate,
1210 	&modinfo_coresize,
1211 	&modinfo_initsize,
1212 	&modinfo_taint,
1213 #ifdef CONFIG_MODULE_UNLOAD
1214 	&modinfo_refcnt,
1215 #endif
1216 	NULL,
1217 };
1218 
1219 static const char vermagic[] = VERMAGIC_STRING;
1220 
try_to_force_load(struct module * mod,const char * reason)1221 static int try_to_force_load(struct module *mod, const char *reason)
1222 {
1223 #ifdef CONFIG_MODULE_FORCE_LOAD
1224 	if (!test_taint(TAINT_FORCED_MODULE))
1225 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1226 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1227 	return 0;
1228 #else
1229 	return -ENOEXEC;
1230 #endif
1231 }
1232 
1233 #ifdef CONFIG_MODVERSIONS
1234 
resolve_rel_crc(const s32 * crc)1235 static u32 resolve_rel_crc(const s32 *crc)
1236 {
1237 	return *(u32 *)((void *)crc + *crc);
1238 }
1239 
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1240 static int check_version(const struct load_info *info,
1241 			 const char *symname,
1242 			 struct module *mod,
1243 			 const s32 *crc)
1244 {
1245 	Elf_Shdr *sechdrs = info->sechdrs;
1246 	unsigned int versindex = info->index.vers;
1247 	unsigned int i, num_versions;
1248 	struct modversion_info *versions;
1249 
1250 	/* Exporting module didn't supply crcs?  OK, we're already tainted. */
1251 	if (!crc)
1252 		return 1;
1253 
1254 	/* No versions at all?  modprobe --force does this. */
1255 	if (versindex == 0)
1256 		return try_to_force_load(mod, symname) == 0;
1257 
1258 	versions = (void *) sechdrs[versindex].sh_addr;
1259 	num_versions = sechdrs[versindex].sh_size
1260 		/ sizeof(struct modversion_info);
1261 
1262 	for (i = 0; i < num_versions; i++) {
1263 		u32 crcval;
1264 
1265 		if (strcmp(versions[i].name, symname) != 0)
1266 			continue;
1267 
1268 		if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1269 			crcval = resolve_rel_crc(crc);
1270 		else
1271 			crcval = *crc;
1272 		if (versions[i].crc == crcval)
1273 			return 1;
1274 		pr_debug("Found checksum %X vs module %lX\n",
1275 			 crcval, versions[i].crc);
1276 		goto bad_version;
1277 	}
1278 
1279 	/* Broken toolchain. Warn once, then let it go.. */
1280 	pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1281 	return 1;
1282 
1283 bad_version:
1284 	pr_warn("%s: disagrees about version of symbol %s\n",
1285 	       info->name, symname);
1286 	return 0;
1287 }
1288 
check_modstruct_version(const struct load_info * info,struct module * mod)1289 static inline int check_modstruct_version(const struct load_info *info,
1290 					  struct module *mod)
1291 {
1292 	struct find_symbol_arg fsa = {
1293 		.name	= "module_layout",
1294 		.gplok	= true,
1295 	};
1296 
1297 	/*
1298 	 * Since this should be found in kernel (which can't be removed), no
1299 	 * locking is necessary -- use preempt_disable() to placate lockdep.
1300 	 */
1301 	preempt_disable();
1302 	if (!find_symbol(&fsa)) {
1303 		preempt_enable();
1304 		BUG();
1305 	}
1306 	preempt_enable();
1307 	return check_version(info, "module_layout", mod, fsa.crc);
1308 }
1309 
1310 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1311 static inline int same_magic(const char *amagic, const char *bmagic,
1312 			     bool has_crcs)
1313 {
1314 	if (has_crcs) {
1315 		amagic += strcspn(amagic, " ");
1316 		bmagic += strcspn(bmagic, " ");
1317 	}
1318 	return strcmp(amagic, bmagic) == 0;
1319 }
1320 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1321 static inline int check_version(const struct load_info *info,
1322 				const char *symname,
1323 				struct module *mod,
1324 				const s32 *crc)
1325 {
1326 	return 1;
1327 }
1328 
check_modstruct_version(const struct load_info * info,struct module * mod)1329 static inline int check_modstruct_version(const struct load_info *info,
1330 					  struct module *mod)
1331 {
1332 	return 1;
1333 }
1334 
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1335 static inline int same_magic(const char *amagic, const char *bmagic,
1336 			     bool has_crcs)
1337 {
1338 	return strcmp(amagic, bmagic) == 0;
1339 }
1340 #endif /* CONFIG_MODVERSIONS */
1341 
1342 static char *get_modinfo(const struct load_info *info, const char *tag);
1343 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1344 			      char *prev);
1345 
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1346 static int verify_namespace_is_imported(const struct load_info *info,
1347 					const struct kernel_symbol *sym,
1348 					struct module *mod)
1349 {
1350 	const char *namespace;
1351 	char *imported_namespace;
1352 
1353 	namespace = kernel_symbol_namespace(sym);
1354 	if (namespace && namespace[0]) {
1355 		imported_namespace = get_modinfo(info, "import_ns");
1356 		while (imported_namespace) {
1357 			if (strcmp(namespace, imported_namespace) == 0)
1358 				return 0;
1359 			imported_namespace = get_next_modinfo(
1360 				info, "import_ns", imported_namespace);
1361 		}
1362 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1363 		pr_warn(
1364 #else
1365 		pr_err(
1366 #endif
1367 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1368 			mod->name, kernel_symbol_name(sym), namespace);
1369 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1370 		return -EINVAL;
1371 #endif
1372 	}
1373 	return 0;
1374 }
1375 
inherit_taint(struct module * mod,struct module * owner)1376 static bool inherit_taint(struct module *mod, struct module *owner)
1377 {
1378 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1379 		return true;
1380 
1381 	if (mod->using_gplonly_symbols) {
1382 		pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1383 			mod->name, owner->name);
1384 		return false;
1385 	}
1386 
1387 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1388 		pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1389 			mod->name, owner->name);
1390 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1391 	}
1392 	return true;
1393 }
1394 
1395 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1396 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1397 						  const struct load_info *info,
1398 						  const char *name,
1399 						  char ownername[])
1400 {
1401 	struct find_symbol_arg fsa = {
1402 		.name	= name,
1403 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1404 		.warn	= true,
1405 	};
1406 	int err;
1407 
1408 	/*
1409 	 * The module_mutex should not be a heavily contended lock;
1410 	 * if we get the occasional sleep here, we'll go an extra iteration
1411 	 * in the wait_event_interruptible(), which is harmless.
1412 	 */
1413 	sched_annotate_sleep();
1414 	mutex_lock(&module_mutex);
1415 	if (!find_symbol(&fsa))
1416 		goto unlock;
1417 
1418 	if (fsa.license == GPL_ONLY)
1419 		mod->using_gplonly_symbols = true;
1420 
1421 	if (!inherit_taint(mod, fsa.owner)) {
1422 		fsa.sym = NULL;
1423 		goto getname;
1424 	}
1425 
1426 	if (!check_version(info, name, mod, fsa.crc)) {
1427 		fsa.sym = ERR_PTR(-EINVAL);
1428 		goto getname;
1429 	}
1430 
1431 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1432 	if (err) {
1433 		fsa.sym = ERR_PTR(err);
1434 		goto getname;
1435 	}
1436 
1437 	err = ref_module(mod, fsa.owner);
1438 	if (err) {
1439 		fsa.sym = ERR_PTR(err);
1440 		goto getname;
1441 	}
1442 
1443 getname:
1444 	/* We must make copy under the lock if we failed to get ref. */
1445 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1446 unlock:
1447 	mutex_unlock(&module_mutex);
1448 	return fsa.sym;
1449 }
1450 
1451 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1452 resolve_symbol_wait(struct module *mod,
1453 		    const struct load_info *info,
1454 		    const char *name)
1455 {
1456 	const struct kernel_symbol *ksym;
1457 	char owner[MODULE_NAME_LEN];
1458 
1459 	if (wait_event_interruptible_timeout(module_wq,
1460 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1461 			|| PTR_ERR(ksym) != -EBUSY,
1462 					     30 * HZ) <= 0) {
1463 		pr_warn("%s: gave up waiting for init of module %s.\n",
1464 			mod->name, owner);
1465 	}
1466 	return ksym;
1467 }
1468 
1469 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1470 static inline bool sect_empty(const Elf_Shdr *sect)
1471 {
1472 	return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1473 }
1474 #endif
1475 
1476 /*
1477  * /sys/module/foo/sections stuff
1478  * J. Corbet <corbet@lwn.net>
1479  */
1480 #ifdef CONFIG_SYSFS
1481 
1482 #ifdef CONFIG_KALLSYMS
1483 struct module_sect_attr {
1484 	struct bin_attribute battr;
1485 	unsigned long address;
1486 };
1487 
1488 struct module_sect_attrs {
1489 	struct attribute_group grp;
1490 	unsigned int nsections;
1491 	struct module_sect_attr attrs[];
1492 };
1493 
1494 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1495 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1496 				struct bin_attribute *battr,
1497 				char *buf, loff_t pos, size_t count)
1498 {
1499 	struct module_sect_attr *sattr =
1500 		container_of(battr, struct module_sect_attr, battr);
1501 	char bounce[MODULE_SECT_READ_SIZE + 1];
1502 	size_t wrote;
1503 
1504 	if (pos != 0)
1505 		return -EINVAL;
1506 
1507 	/*
1508 	 * Since we're a binary read handler, we must account for the
1509 	 * trailing NUL byte that sprintf will write: if "buf" is
1510 	 * too small to hold the NUL, or the NUL is exactly the last
1511 	 * byte, the read will look like it got truncated by one byte.
1512 	 * Since there is no way to ask sprintf nicely to not write
1513 	 * the NUL, we have to use a bounce buffer.
1514 	 */
1515 	wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1516 			 kallsyms_show_value(file->f_cred)
1517 				? (void *)sattr->address : NULL);
1518 	count = min(count, wrote);
1519 	memcpy(buf, bounce, count);
1520 
1521 	return count;
1522 }
1523 
free_sect_attrs(struct module_sect_attrs * sect_attrs)1524 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1525 {
1526 	unsigned int section;
1527 
1528 	for (section = 0; section < sect_attrs->nsections; section++)
1529 		kfree(sect_attrs->attrs[section].battr.attr.name);
1530 	kfree(sect_attrs);
1531 }
1532 
add_sect_attrs(struct module * mod,const struct load_info * info)1533 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1534 {
1535 	unsigned int nloaded = 0, i, size[2];
1536 	struct module_sect_attrs *sect_attrs;
1537 	struct module_sect_attr *sattr;
1538 	struct bin_attribute **gattr;
1539 
1540 	/* Count loaded sections and allocate structures */
1541 	for (i = 0; i < info->hdr->e_shnum; i++)
1542 		if (!sect_empty(&info->sechdrs[i]))
1543 			nloaded++;
1544 	size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1545 			sizeof(sect_attrs->grp.bin_attrs[0]));
1546 	size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1547 	sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1548 	if (sect_attrs == NULL)
1549 		return;
1550 
1551 	/* Setup section attributes. */
1552 	sect_attrs->grp.name = "sections";
1553 	sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1554 
1555 	sect_attrs->nsections = 0;
1556 	sattr = &sect_attrs->attrs[0];
1557 	gattr = &sect_attrs->grp.bin_attrs[0];
1558 	for (i = 0; i < info->hdr->e_shnum; i++) {
1559 		Elf_Shdr *sec = &info->sechdrs[i];
1560 		if (sect_empty(sec))
1561 			continue;
1562 		sysfs_bin_attr_init(&sattr->battr);
1563 		sattr->address = sec->sh_addr;
1564 		sattr->battr.attr.name =
1565 			kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1566 		if (sattr->battr.attr.name == NULL)
1567 			goto out;
1568 		sect_attrs->nsections++;
1569 		sattr->battr.read = module_sect_read;
1570 		sattr->battr.size = MODULE_SECT_READ_SIZE;
1571 		sattr->battr.attr.mode = 0400;
1572 		*(gattr++) = &(sattr++)->battr;
1573 	}
1574 	*gattr = NULL;
1575 
1576 	if (sysfs_create_group(&mod->mkobj.kobj, &sect_attrs->grp))
1577 		goto out;
1578 
1579 	mod->sect_attrs = sect_attrs;
1580 	return;
1581   out:
1582 	free_sect_attrs(sect_attrs);
1583 }
1584 
remove_sect_attrs(struct module * mod)1585 static void remove_sect_attrs(struct module *mod)
1586 {
1587 	if (mod->sect_attrs) {
1588 		sysfs_remove_group(&mod->mkobj.kobj,
1589 				   &mod->sect_attrs->grp);
1590 		/*
1591 		 * We are positive that no one is using any sect attrs
1592 		 * at this point.  Deallocate immediately.
1593 		 */
1594 		free_sect_attrs(mod->sect_attrs);
1595 		mod->sect_attrs = NULL;
1596 	}
1597 }
1598 
1599 /*
1600  * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601  */
1602 
1603 struct module_notes_attrs {
1604 	struct kobject *dir;
1605 	unsigned int notes;
1606 	struct bin_attribute attrs[];
1607 };
1608 
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1609 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610 				 struct bin_attribute *bin_attr,
1611 				 char *buf, loff_t pos, size_t count)
1612 {
1613 	/*
1614 	 * The caller checked the pos and count against our size.
1615 	 */
1616 	memcpy(buf, bin_attr->private + pos, count);
1617 	return count;
1618 }
1619 
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1620 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621 			     unsigned int i)
1622 {
1623 	if (notes_attrs->dir) {
1624 		while (i-- > 0)
1625 			sysfs_remove_bin_file(notes_attrs->dir,
1626 					      &notes_attrs->attrs[i]);
1627 		kobject_put(notes_attrs->dir);
1628 	}
1629 	kfree(notes_attrs);
1630 }
1631 
add_notes_attrs(struct module * mod,const struct load_info * info)1632 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633 {
1634 	unsigned int notes, loaded, i;
1635 	struct module_notes_attrs *notes_attrs;
1636 	struct bin_attribute *nattr;
1637 
1638 	/* failed to create section attributes, so can't create notes */
1639 	if (!mod->sect_attrs)
1640 		return;
1641 
1642 	/* Count notes sections and allocate structures.  */
1643 	notes = 0;
1644 	for (i = 0; i < info->hdr->e_shnum; i++)
1645 		if (!sect_empty(&info->sechdrs[i]) &&
1646 		    (info->sechdrs[i].sh_type == SHT_NOTE))
1647 			++notes;
1648 
1649 	if (notes == 0)
1650 		return;
1651 
1652 	notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653 			      GFP_KERNEL);
1654 	if (notes_attrs == NULL)
1655 		return;
1656 
1657 	notes_attrs->notes = notes;
1658 	nattr = &notes_attrs->attrs[0];
1659 	for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660 		if (sect_empty(&info->sechdrs[i]))
1661 			continue;
1662 		if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663 			sysfs_bin_attr_init(nattr);
1664 			nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1665 			nattr->attr.mode = S_IRUGO;
1666 			nattr->size = info->sechdrs[i].sh_size;
1667 			nattr->private = (void *) info->sechdrs[i].sh_addr;
1668 			nattr->read = module_notes_read;
1669 			++nattr;
1670 		}
1671 		++loaded;
1672 	}
1673 
1674 	notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675 	if (!notes_attrs->dir)
1676 		goto out;
1677 
1678 	for (i = 0; i < notes; ++i)
1679 		if (sysfs_create_bin_file(notes_attrs->dir,
1680 					  &notes_attrs->attrs[i]))
1681 			goto out;
1682 
1683 	mod->notes_attrs = notes_attrs;
1684 	return;
1685 
1686   out:
1687 	free_notes_attrs(notes_attrs, i);
1688 }
1689 
remove_notes_attrs(struct module * mod)1690 static void remove_notes_attrs(struct module *mod)
1691 {
1692 	if (mod->notes_attrs)
1693 		free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694 }
1695 
1696 #else
1697 
add_sect_attrs(struct module * mod,const struct load_info * info)1698 static inline void add_sect_attrs(struct module *mod,
1699 				  const struct load_info *info)
1700 {
1701 }
1702 
remove_sect_attrs(struct module * mod)1703 static inline void remove_sect_attrs(struct module *mod)
1704 {
1705 }
1706 
add_notes_attrs(struct module * mod,const struct load_info * info)1707 static inline void add_notes_attrs(struct module *mod,
1708 				   const struct load_info *info)
1709 {
1710 }
1711 
remove_notes_attrs(struct module * mod)1712 static inline void remove_notes_attrs(struct module *mod)
1713 {
1714 }
1715 #endif /* CONFIG_KALLSYMS */
1716 
del_usage_links(struct module * mod)1717 static void del_usage_links(struct module *mod)
1718 {
1719 #ifdef CONFIG_MODULE_UNLOAD
1720 	struct module_use *use;
1721 
1722 	mutex_lock(&module_mutex);
1723 	list_for_each_entry(use, &mod->target_list, target_list)
1724 		sysfs_remove_link(use->target->holders_dir, mod->name);
1725 	mutex_unlock(&module_mutex);
1726 #endif
1727 }
1728 
add_usage_links(struct module * mod)1729 static int add_usage_links(struct module *mod)
1730 {
1731 	int ret = 0;
1732 #ifdef CONFIG_MODULE_UNLOAD
1733 	struct module_use *use;
1734 
1735 	mutex_lock(&module_mutex);
1736 	list_for_each_entry(use, &mod->target_list, target_list) {
1737 		ret = sysfs_create_link(use->target->holders_dir,
1738 					&mod->mkobj.kobj, mod->name);
1739 		if (ret)
1740 			break;
1741 	}
1742 	mutex_unlock(&module_mutex);
1743 	if (ret)
1744 		del_usage_links(mod);
1745 #endif
1746 	return ret;
1747 }
1748 
1749 static void module_remove_modinfo_attrs(struct module *mod, int end);
1750 
module_add_modinfo_attrs(struct module * mod)1751 static int module_add_modinfo_attrs(struct module *mod)
1752 {
1753 	struct module_attribute *attr;
1754 	struct module_attribute *temp_attr;
1755 	int error = 0;
1756 	int i;
1757 
1758 	mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759 					(ARRAY_SIZE(modinfo_attrs) + 1)),
1760 					GFP_KERNEL);
1761 	if (!mod->modinfo_attrs)
1762 		return -ENOMEM;
1763 
1764 	temp_attr = mod->modinfo_attrs;
1765 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766 		if (!attr->test || attr->test(mod)) {
1767 			memcpy(temp_attr, attr, sizeof(*temp_attr));
1768 			sysfs_attr_init(&temp_attr->attr);
1769 			error = sysfs_create_file(&mod->mkobj.kobj,
1770 					&temp_attr->attr);
1771 			if (error)
1772 				goto error_out;
1773 			++temp_attr;
1774 		}
1775 	}
1776 
1777 	return 0;
1778 
1779 error_out:
1780 	if (i > 0)
1781 		module_remove_modinfo_attrs(mod, --i);
1782 	else
1783 		kfree(mod->modinfo_attrs);
1784 	return error;
1785 }
1786 
module_remove_modinfo_attrs(struct module * mod,int end)1787 static void module_remove_modinfo_attrs(struct module *mod, int end)
1788 {
1789 	struct module_attribute *attr;
1790 	int i;
1791 
1792 	for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793 		if (end >= 0 && i > end)
1794 			break;
1795 		/* pick a field to test for end of list */
1796 		if (!attr->attr.name)
1797 			break;
1798 		sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799 		if (attr->free)
1800 			attr->free(mod);
1801 	}
1802 	kfree(mod->modinfo_attrs);
1803 }
1804 
mod_kobject_put(struct module * mod)1805 static void mod_kobject_put(struct module *mod)
1806 {
1807 	DECLARE_COMPLETION_ONSTACK(c);
1808 	mod->mkobj.kobj_completion = &c;
1809 	kobject_put(&mod->mkobj.kobj);
1810 	wait_for_completion(&c);
1811 }
1812 
mod_sysfs_init(struct module * mod)1813 static int mod_sysfs_init(struct module *mod)
1814 {
1815 	int err;
1816 	struct kobject *kobj;
1817 
1818 	if (!module_sysfs_initialized) {
1819 		pr_err("%s: module sysfs not initialized\n", mod->name);
1820 		err = -EINVAL;
1821 		goto out;
1822 	}
1823 
1824 	kobj = kset_find_obj(module_kset, mod->name);
1825 	if (kobj) {
1826 		pr_err("%s: module is already loaded\n", mod->name);
1827 		kobject_put(kobj);
1828 		err = -EINVAL;
1829 		goto out;
1830 	}
1831 
1832 	mod->mkobj.mod = mod;
1833 
1834 	memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835 	mod->mkobj.kobj.kset = module_kset;
1836 	err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837 				   "%s", mod->name);
1838 	if (err)
1839 		mod_kobject_put(mod);
1840 
1841 out:
1842 	return err;
1843 }
1844 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1845 static int mod_sysfs_setup(struct module *mod,
1846 			   const struct load_info *info,
1847 			   struct kernel_param *kparam,
1848 			   unsigned int num_params)
1849 {
1850 	int err;
1851 
1852 	err = mod_sysfs_init(mod);
1853 	if (err)
1854 		goto out;
1855 
1856 	mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1857 	if (!mod->holders_dir) {
1858 		err = -ENOMEM;
1859 		goto out_unreg;
1860 	}
1861 
1862 	err = module_param_sysfs_setup(mod, kparam, num_params);
1863 	if (err)
1864 		goto out_unreg_holders;
1865 
1866 	err = module_add_modinfo_attrs(mod);
1867 	if (err)
1868 		goto out_unreg_param;
1869 
1870 	err = add_usage_links(mod);
1871 	if (err)
1872 		goto out_unreg_modinfo_attrs;
1873 
1874 	add_sect_attrs(mod, info);
1875 	add_notes_attrs(mod, info);
1876 
1877 	return 0;
1878 
1879 out_unreg_modinfo_attrs:
1880 	module_remove_modinfo_attrs(mod, -1);
1881 out_unreg_param:
1882 	module_param_sysfs_remove(mod);
1883 out_unreg_holders:
1884 	kobject_put(mod->holders_dir);
1885 out_unreg:
1886 	mod_kobject_put(mod);
1887 out:
1888 	return err;
1889 }
1890 
mod_sysfs_fini(struct module * mod)1891 static void mod_sysfs_fini(struct module *mod)
1892 {
1893 	remove_notes_attrs(mod);
1894 	remove_sect_attrs(mod);
1895 	mod_kobject_put(mod);
1896 }
1897 
init_param_lock(struct module * mod)1898 static void init_param_lock(struct module *mod)
1899 {
1900 	mutex_init(&mod->param_lock);
1901 }
1902 #else /* !CONFIG_SYSFS */
1903 
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1904 static int mod_sysfs_setup(struct module *mod,
1905 			   const struct load_info *info,
1906 			   struct kernel_param *kparam,
1907 			   unsigned int num_params)
1908 {
1909 	return 0;
1910 }
1911 
mod_sysfs_fini(struct module * mod)1912 static void mod_sysfs_fini(struct module *mod)
1913 {
1914 }
1915 
module_remove_modinfo_attrs(struct module * mod,int end)1916 static void module_remove_modinfo_attrs(struct module *mod, int end)
1917 {
1918 }
1919 
del_usage_links(struct module * mod)1920 static void del_usage_links(struct module *mod)
1921 {
1922 }
1923 
init_param_lock(struct module * mod)1924 static void init_param_lock(struct module *mod)
1925 {
1926 }
1927 #endif /* CONFIG_SYSFS */
1928 
mod_sysfs_teardown(struct module * mod)1929 static void mod_sysfs_teardown(struct module *mod)
1930 {
1931 	del_usage_links(mod);
1932 	module_remove_modinfo_attrs(mod, -1);
1933 	module_param_sysfs_remove(mod);
1934 	kobject_put(mod->mkobj.drivers_dir);
1935 	kobject_put(mod->holders_dir);
1936 	mod_sysfs_fini(mod);
1937 }
1938 
1939 /*
1940  * LKM RO/NX protection: protect module's text/ro-data
1941  * from modification and any data from execution.
1942  *
1943  * General layout of module is:
1944  *          [text] [read-only-data] [ro-after-init] [writable data]
1945  * text_size -----^                ^               ^               ^
1946  * ro_size ------------------------|               |               |
1947  * ro_after_init_size -----------------------------|               |
1948  * size -----------------------------------------------------------|
1949  *
1950  * These values are always page-aligned (as is base)
1951  */
1952 
1953 /*
1954  * Since some arches are moving towards PAGE_KERNEL module allocations instead
1955  * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1956  * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1957  * whether we are strict.
1958  */
1959 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1960 static void frob_text(const struct module_layout *layout,
1961 		      int (*set_memory)(unsigned long start, int num_pages))
1962 {
1963 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1964 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1965 	set_memory((unsigned long)layout->base,
1966 		   layout->text_size >> PAGE_SHIFT);
1967 }
1968 
module_enable_x(const struct module * mod)1969 static void module_enable_x(const struct module *mod)
1970 {
1971 	frob_text(&mod->core_layout, set_memory_x);
1972 	frob_text(&mod->init_layout, set_memory_x);
1973 }
1974 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)1975 static void module_enable_x(const struct module *mod) { }
1976 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1977 
1978 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1979 static void frob_rodata(const struct module_layout *layout,
1980 			int (*set_memory)(unsigned long start, int num_pages))
1981 {
1982 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1983 	BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1984 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1985 	set_memory((unsigned long)layout->base + layout->text_size,
1986 		   (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1987 }
1988 
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1989 static void frob_ro_after_init(const struct module_layout *layout,
1990 				int (*set_memory)(unsigned long start, int num_pages))
1991 {
1992 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1993 	BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1994 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1995 	set_memory((unsigned long)layout->base + layout->ro_size,
1996 		   (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1997 }
1998 
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1999 static void frob_writable_data(const struct module_layout *layout,
2000 			       int (*set_memory)(unsigned long start, int num_pages))
2001 {
2002 	BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2003 	BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2004 	BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2005 	set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2006 		   (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2007 }
2008 
module_enable_ro(const struct module * mod,bool after_init)2009 static void module_enable_ro(const struct module *mod, bool after_init)
2010 {
2011 	if (!rodata_enabled)
2012 		return;
2013 
2014 	set_vm_flush_reset_perms(mod->core_layout.base);
2015 	set_vm_flush_reset_perms(mod->init_layout.base);
2016 	frob_text(&mod->core_layout, set_memory_ro);
2017 
2018 	frob_rodata(&mod->core_layout, set_memory_ro);
2019 	frob_text(&mod->init_layout, set_memory_ro);
2020 	frob_rodata(&mod->init_layout, set_memory_ro);
2021 
2022 	if (after_init)
2023 		frob_ro_after_init(&mod->core_layout, set_memory_ro);
2024 }
2025 
module_enable_nx(const struct module * mod)2026 static void module_enable_nx(const struct module *mod)
2027 {
2028 	frob_rodata(&mod->core_layout, set_memory_nx);
2029 	frob_ro_after_init(&mod->core_layout, set_memory_nx);
2030 	frob_writable_data(&mod->core_layout, set_memory_nx);
2031 	frob_rodata(&mod->init_layout, set_memory_nx);
2032 	frob_writable_data(&mod->init_layout, set_memory_nx);
2033 }
2034 
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2035 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2036 				       char *secstrings, struct module *mod)
2037 {
2038 	const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2039 	int i;
2040 
2041 	for (i = 0; i < hdr->e_shnum; i++) {
2042 		if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2043 			pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2044 				mod->name, secstrings + sechdrs[i].sh_name, i);
2045 			return -ENOEXEC;
2046 		}
2047 	}
2048 
2049 	return 0;
2050 }
2051 
2052 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2053 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2054 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2055 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2056 				       char *secstrings, struct module *mod)
2057 {
2058 	return 0;
2059 }
2060 #endif /*  CONFIG_STRICT_MODULE_RWX */
2061 
2062 #ifdef CONFIG_LIVEPATCH
2063 /*
2064  * Persist Elf information about a module. Copy the Elf header,
2065  * section header table, section string table, and symtab section
2066  * index from info to mod->klp_info.
2067  */
copy_module_elf(struct module * mod,struct load_info * info)2068 static int copy_module_elf(struct module *mod, struct load_info *info)
2069 {
2070 	unsigned int size, symndx;
2071 	int ret;
2072 
2073 	size = sizeof(*mod->klp_info);
2074 	mod->klp_info = kmalloc(size, GFP_KERNEL);
2075 	if (mod->klp_info == NULL)
2076 		return -ENOMEM;
2077 
2078 	/* Elf header */
2079 	size = sizeof(mod->klp_info->hdr);
2080 	memcpy(&mod->klp_info->hdr, info->hdr, size);
2081 
2082 	/* Elf section header table */
2083 	size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084 	mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2085 	if (mod->klp_info->sechdrs == NULL) {
2086 		ret = -ENOMEM;
2087 		goto free_info;
2088 	}
2089 
2090 	/* Elf section name string table */
2091 	size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2092 	mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2093 	if (mod->klp_info->secstrings == NULL) {
2094 		ret = -ENOMEM;
2095 		goto free_sechdrs;
2096 	}
2097 
2098 	/* Elf symbol section index */
2099 	symndx = info->index.sym;
2100 	mod->klp_info->symndx = symndx;
2101 
2102 	/*
2103 	 * For livepatch modules, core_kallsyms.symtab is a complete
2104 	 * copy of the original symbol table. Adjust sh_addr to point
2105 	 * to core_kallsyms.symtab since the copy of the symtab in module
2106 	 * init memory is freed at the end of do_init_module().
2107 	 */
2108 	mod->klp_info->sechdrs[symndx].sh_addr = \
2109 		(unsigned long) mod->core_kallsyms.symtab;
2110 
2111 	return 0;
2112 
2113 free_sechdrs:
2114 	kfree(mod->klp_info->sechdrs);
2115 free_info:
2116 	kfree(mod->klp_info);
2117 	return ret;
2118 }
2119 
free_module_elf(struct module * mod)2120 static void free_module_elf(struct module *mod)
2121 {
2122 	kfree(mod->klp_info->sechdrs);
2123 	kfree(mod->klp_info->secstrings);
2124 	kfree(mod->klp_info);
2125 }
2126 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2127 static int copy_module_elf(struct module *mod, struct load_info *info)
2128 {
2129 	return 0;
2130 }
2131 
free_module_elf(struct module * mod)2132 static void free_module_elf(struct module *mod)
2133 {
2134 }
2135 #endif /* CONFIG_LIVEPATCH */
2136 
module_memfree(void * module_region)2137 void __weak module_memfree(void *module_region)
2138 {
2139 	/*
2140 	 * This memory may be RO, and freeing RO memory in an interrupt is not
2141 	 * supported by vmalloc.
2142 	 */
2143 	WARN_ON(in_interrupt());
2144 	vfree(module_region);
2145 }
2146 
module_arch_cleanup(struct module * mod)2147 void __weak module_arch_cleanup(struct module *mod)
2148 {
2149 }
2150 
module_arch_freeing_init(struct module * mod)2151 void __weak module_arch_freeing_init(struct module *mod)
2152 {
2153 }
2154 
2155 static void cfi_cleanup(struct module *mod);
2156 
2157 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2158 static void free_module(struct module *mod)
2159 {
2160 	trace_module_free(mod);
2161 
2162 	mod_sysfs_teardown(mod);
2163 
2164 	/*
2165 	 * We leave it in list to prevent duplicate loads, but make sure
2166 	 * that noone uses it while it's being deconstructed.
2167 	 */
2168 	mutex_lock(&module_mutex);
2169 	mod->state = MODULE_STATE_UNFORMED;
2170 	mutex_unlock(&module_mutex);
2171 
2172 	/* Remove dynamic debug info */
2173 	ddebug_remove_module(mod->name);
2174 
2175 	/* Arch-specific cleanup. */
2176 	module_arch_cleanup(mod);
2177 
2178 	/* Module unload stuff */
2179 	module_unload_free(mod);
2180 
2181 	/* Free any allocated parameters. */
2182 	destroy_params(mod->kp, mod->num_kp);
2183 
2184 	if (is_livepatch_module(mod))
2185 		free_module_elf(mod);
2186 
2187 	/* Now we can delete it from the lists */
2188 	mutex_lock(&module_mutex);
2189 	/* Unlink carefully: kallsyms could be walking list. */
2190 	list_del_rcu(&mod->list);
2191 	mod_tree_remove(mod);
2192 	/* Remove this module from bug list, this uses list_del_rcu */
2193 	module_bug_cleanup(mod);
2194 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2195 	synchronize_rcu();
2196 	mutex_unlock(&module_mutex);
2197 
2198 	/* Clean up CFI for the module. */
2199 	cfi_cleanup(mod);
2200 
2201 	/* This may be empty, but that's OK */
2202 	module_arch_freeing_init(mod);
2203 	module_memfree(mod->init_layout.base);
2204 	kfree(mod->args);
2205 	percpu_modfree(mod);
2206 
2207 	/* Free lock-classes; relies on the preceding sync_rcu(). */
2208 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2209 
2210 	/* Finally, free the core (containing the module structure) */
2211 	module_memfree(mod->core_layout.base);
2212 }
2213 
__symbol_get(const char * symbol)2214 void *__symbol_get(const char *symbol)
2215 {
2216 	struct find_symbol_arg fsa = {
2217 		.name	= symbol,
2218 		.gplok	= true,
2219 		.warn	= true,
2220 	};
2221 
2222 	preempt_disable();
2223 	if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2224 		preempt_enable();
2225 		return NULL;
2226 	}
2227 	preempt_enable();
2228 	return (void *)kernel_symbol_value(fsa.sym);
2229 }
2230 EXPORT_SYMBOL_GPL(__symbol_get);
2231 
2232 /*
2233  * Ensure that an exported symbol [global namespace] does not already exist
2234  * in the kernel or in some other module's exported symbol table.
2235  *
2236  * You must hold the module_mutex.
2237  */
verify_exported_symbols(struct module * mod)2238 static int verify_exported_symbols(struct module *mod)
2239 {
2240 	unsigned int i;
2241 	const struct kernel_symbol *s;
2242 	struct {
2243 		const struct kernel_symbol *sym;
2244 		unsigned int num;
2245 	} arr[] = {
2246 		{ mod->syms, mod->num_syms },
2247 		{ mod->gpl_syms, mod->num_gpl_syms },
2248 	};
2249 
2250 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
2251 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2252 			struct find_symbol_arg fsa = {
2253 				.name	= kernel_symbol_name(s),
2254 				.gplok	= true,
2255 			};
2256 			if (find_symbol(&fsa)) {
2257 				pr_err("%s: exports duplicate symbol %s"
2258 				       " (owned by %s)\n",
2259 				       mod->name, kernel_symbol_name(s),
2260 				       module_name(fsa.owner));
2261 				return -ENOEXEC;
2262 			}
2263 		}
2264 	}
2265 	return 0;
2266 }
2267 
ignore_undef_symbol(Elf_Half emachine,const char * name)2268 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2269 {
2270 	/*
2271 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2272 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2273 	 * i386 has a similar problem but may not deserve a fix.
2274 	 *
2275 	 * If we ever have to ignore many symbols, consider refactoring the code to
2276 	 * only warn if referenced by a relocation.
2277 	 */
2278 	if (emachine == EM_386 || emachine == EM_X86_64)
2279 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2280 	return false;
2281 }
2282 
2283 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2284 static int simplify_symbols(struct module *mod, const struct load_info *info)
2285 {
2286 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2287 	Elf_Sym *sym = (void *)symsec->sh_addr;
2288 	unsigned long secbase;
2289 	unsigned int i;
2290 	int ret = 0;
2291 	const struct kernel_symbol *ksym;
2292 
2293 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2294 		const char *name = info->strtab + sym[i].st_name;
2295 
2296 		switch (sym[i].st_shndx) {
2297 		case SHN_COMMON:
2298 			/* Ignore common symbols */
2299 			if (!strncmp(name, "__gnu_lto", 9))
2300 				break;
2301 
2302 			/*
2303 			 * We compiled with -fno-common.  These are not
2304 			 * supposed to happen.
2305 			 */
2306 			pr_debug("Common symbol: %s\n", name);
2307 			pr_warn("%s: please compile with -fno-common\n",
2308 			       mod->name);
2309 			ret = -ENOEXEC;
2310 			break;
2311 
2312 		case SHN_ABS:
2313 			/* Don't need to do anything */
2314 			pr_debug("Absolute symbol: 0x%08lx\n",
2315 			       (long)sym[i].st_value);
2316 			break;
2317 
2318 		case SHN_LIVEPATCH:
2319 			/* Livepatch symbols are resolved by livepatch */
2320 			break;
2321 
2322 		case SHN_UNDEF:
2323 			ksym = resolve_symbol_wait(mod, info, name);
2324 			/* Ok if resolved.  */
2325 			if (ksym && !IS_ERR(ksym)) {
2326 				sym[i].st_value = kernel_symbol_value(ksym);
2327 				break;
2328 			}
2329 
2330 			/* Ok if weak or ignored.  */
2331 			if (!ksym &&
2332 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2333 			     ignore_undef_symbol(info->hdr->e_machine, name)))
2334 				break;
2335 
2336 			ret = PTR_ERR(ksym) ?: -ENOENT;
2337 			pr_warn("%s: Unknown symbol %s (err %d)\n",
2338 				mod->name, name, ret);
2339 			break;
2340 
2341 		default:
2342 			/* Divert to percpu allocation if a percpu var. */
2343 			if (sym[i].st_shndx == info->index.pcpu)
2344 				secbase = (unsigned long)mod_percpu(mod);
2345 			else
2346 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2347 			sym[i].st_value += secbase;
2348 			break;
2349 		}
2350 	}
2351 
2352 	return ret;
2353 }
2354 
apply_relocations(struct module * mod,const struct load_info * info)2355 static int apply_relocations(struct module *mod, const struct load_info *info)
2356 {
2357 	unsigned int i;
2358 	int err = 0;
2359 
2360 	/* Now do relocations. */
2361 	for (i = 1; i < info->hdr->e_shnum; i++) {
2362 		unsigned int infosec = info->sechdrs[i].sh_info;
2363 
2364 		/* Not a valid relocation section? */
2365 		if (infosec >= info->hdr->e_shnum)
2366 			continue;
2367 
2368 		/* Don't bother with non-allocated sections */
2369 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2370 			continue;
2371 
2372 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2373 			err = klp_apply_section_relocs(mod, info->sechdrs,
2374 						       info->secstrings,
2375 						       info->strtab,
2376 						       info->index.sym, i,
2377 						       NULL);
2378 		else if (info->sechdrs[i].sh_type == SHT_REL)
2379 			err = apply_relocate(info->sechdrs, info->strtab,
2380 					     info->index.sym, i, mod);
2381 		else if (info->sechdrs[i].sh_type == SHT_RELA)
2382 			err = apply_relocate_add(info->sechdrs, info->strtab,
2383 						 info->index.sym, i, mod);
2384 		if (err < 0)
2385 			break;
2386 	}
2387 	return err;
2388 }
2389 
2390 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2391 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2392 					     unsigned int section)
2393 {
2394 	/* default implementation just returns zero */
2395 	return 0;
2396 }
2397 
2398 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2399 static long get_offset(struct module *mod, unsigned int *size,
2400 		       Elf_Shdr *sechdr, unsigned int section)
2401 {
2402 	long ret;
2403 
2404 	*size += arch_mod_section_prepend(mod, section);
2405 	ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2406 	*size = ret + sechdr->sh_size;
2407 	return ret;
2408 }
2409 
module_init_layout_section(const char * sname)2410 static bool module_init_layout_section(const char *sname)
2411 {
2412 #ifndef CONFIG_MODULE_UNLOAD
2413 	if (module_exit_section(sname))
2414 		return true;
2415 #endif
2416 	return module_init_section(sname);
2417 }
2418 
2419 /*
2420  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2421  * might -- code, read-only data, read-write data, small data.  Tally
2422  * sizes, and place the offsets into sh_entsize fields: high bit means it
2423  * belongs in init.
2424  */
layout_sections(struct module * mod,struct load_info * info)2425 static void layout_sections(struct module *mod, struct load_info *info)
2426 {
2427 	static unsigned long const masks[][2] = {
2428 		/*
2429 		 * NOTE: all executable code must be the first section
2430 		 * in this array; otherwise modify the text_size
2431 		 * finder in the two loops below
2432 		 */
2433 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2434 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2435 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2436 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2437 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2438 	};
2439 	unsigned int m, i;
2440 
2441 	for (i = 0; i < info->hdr->e_shnum; i++)
2442 		info->sechdrs[i].sh_entsize = ~0UL;
2443 
2444 	pr_debug("Core section allocation order:\n");
2445 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2446 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2447 			Elf_Shdr *s = &info->sechdrs[i];
2448 			const char *sname = info->secstrings + s->sh_name;
2449 
2450 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2451 			    || (s->sh_flags & masks[m][1])
2452 			    || s->sh_entsize != ~0UL
2453 			    || module_init_layout_section(sname))
2454 				continue;
2455 			s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2456 			pr_debug("\t%s\n", sname);
2457 		}
2458 		switch (m) {
2459 		case 0: /* executable */
2460 			mod->core_layout.size = debug_align(mod->core_layout.size);
2461 			mod->core_layout.text_size = mod->core_layout.size;
2462 			break;
2463 		case 1: /* RO: text and ro-data */
2464 			mod->core_layout.size = debug_align(mod->core_layout.size);
2465 			mod->core_layout.ro_size = mod->core_layout.size;
2466 			break;
2467 		case 2: /* RO after init */
2468 			mod->core_layout.size = debug_align(mod->core_layout.size);
2469 			mod->core_layout.ro_after_init_size = mod->core_layout.size;
2470 			break;
2471 		case 4: /* whole core */
2472 			mod->core_layout.size = debug_align(mod->core_layout.size);
2473 			break;
2474 		}
2475 	}
2476 
2477 	pr_debug("Init section allocation order:\n");
2478 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2479 		for (i = 0; i < info->hdr->e_shnum; ++i) {
2480 			Elf_Shdr *s = &info->sechdrs[i];
2481 			const char *sname = info->secstrings + s->sh_name;
2482 
2483 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
2484 			    || (s->sh_flags & masks[m][1])
2485 			    || s->sh_entsize != ~0UL
2486 			    || !module_init_layout_section(sname))
2487 				continue;
2488 			s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2489 					 | INIT_OFFSET_MASK);
2490 			pr_debug("\t%s\n", sname);
2491 		}
2492 		switch (m) {
2493 		case 0: /* executable */
2494 			mod->init_layout.size = debug_align(mod->init_layout.size);
2495 			mod->init_layout.text_size = mod->init_layout.size;
2496 			break;
2497 		case 1: /* RO: text and ro-data */
2498 			mod->init_layout.size = debug_align(mod->init_layout.size);
2499 			mod->init_layout.ro_size = mod->init_layout.size;
2500 			break;
2501 		case 2:
2502 			/*
2503 			 * RO after init doesn't apply to init_layout (only
2504 			 * core_layout), so it just takes the value of ro_size.
2505 			 */
2506 			mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2507 			break;
2508 		case 4: /* whole init */
2509 			mod->init_layout.size = debug_align(mod->init_layout.size);
2510 			break;
2511 		}
2512 	}
2513 }
2514 
set_license(struct module * mod,const char * license)2515 static void set_license(struct module *mod, const char *license)
2516 {
2517 	if (!license)
2518 		license = "unspecified";
2519 
2520 	if (!license_is_gpl_compatible(license)) {
2521 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
2522 			pr_warn("%s: module license '%s' taints kernel.\n",
2523 				mod->name, license);
2524 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2525 				 LOCKDEP_NOW_UNRELIABLE);
2526 	}
2527 }
2528 
2529 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2530 static char *next_string(char *string, unsigned long *secsize)
2531 {
2532 	/* Skip non-zero chars */
2533 	while (string[0]) {
2534 		string++;
2535 		if ((*secsize)-- <= 1)
2536 			return NULL;
2537 	}
2538 
2539 	/* Skip any zero padding. */
2540 	while (!string[0]) {
2541 		string++;
2542 		if ((*secsize)-- <= 1)
2543 			return NULL;
2544 	}
2545 	return string;
2546 }
2547 
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2548 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2549 			      char *prev)
2550 {
2551 	char *p;
2552 	unsigned int taglen = strlen(tag);
2553 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2554 	unsigned long size = infosec->sh_size;
2555 
2556 	/*
2557 	 * get_modinfo() calls made before rewrite_section_headers()
2558 	 * must use sh_offset, as sh_addr isn't set!
2559 	 */
2560 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
2561 
2562 	if (prev) {
2563 		size -= prev - modinfo;
2564 		modinfo = next_string(prev, &size);
2565 	}
2566 
2567 	for (p = modinfo; p; p = next_string(p, &size)) {
2568 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2569 			return p + taglen + 1;
2570 	}
2571 	return NULL;
2572 }
2573 
get_modinfo(const struct load_info * info,const char * tag)2574 static char *get_modinfo(const struct load_info *info, const char *tag)
2575 {
2576 	return get_next_modinfo(info, tag, NULL);
2577 }
2578 
setup_modinfo(struct module * mod,struct load_info * info)2579 static void setup_modinfo(struct module *mod, struct load_info *info)
2580 {
2581 	struct module_attribute *attr;
2582 	int i;
2583 
2584 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2585 		if (attr->setup)
2586 			attr->setup(mod, get_modinfo(info, attr->attr.name));
2587 	}
2588 }
2589 
free_modinfo(struct module * mod)2590 static void free_modinfo(struct module *mod)
2591 {
2592 	struct module_attribute *attr;
2593 	int i;
2594 
2595 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
2596 		if (attr->free)
2597 			attr->free(mod);
2598 	}
2599 }
2600 
2601 #ifdef CONFIG_KALLSYMS
2602 
2603 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2604 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2605 							  const struct kernel_symbol *start,
2606 							  const struct kernel_symbol *stop)
2607 {
2608 	return bsearch(name, start, stop - start,
2609 			sizeof(struct kernel_symbol), cmp_name);
2610 }
2611 
is_exported(const char * name,unsigned long value,const struct module * mod)2612 static int is_exported(const char *name, unsigned long value,
2613 		       const struct module *mod)
2614 {
2615 	const struct kernel_symbol *ks;
2616 	if (!mod)
2617 		ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2618 	else
2619 		ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2620 
2621 	return ks != NULL && kernel_symbol_value(ks) == value;
2622 }
2623 
2624 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2625 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2626 {
2627 	const Elf_Shdr *sechdrs = info->sechdrs;
2628 
2629 	if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2630 		if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2631 			return 'v';
2632 		else
2633 			return 'w';
2634 	}
2635 	if (sym->st_shndx == SHN_UNDEF)
2636 		return 'U';
2637 	if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2638 		return 'a';
2639 	if (sym->st_shndx >= SHN_LORESERVE)
2640 		return '?';
2641 	if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2642 		return 't';
2643 	if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2644 	    && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2645 		if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2646 			return 'r';
2647 		else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2648 			return 'g';
2649 		else
2650 			return 'd';
2651 	}
2652 	if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2653 		if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2654 			return 's';
2655 		else
2656 			return 'b';
2657 	}
2658 	if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2659 		      ".debug")) {
2660 		return 'n';
2661 	}
2662 	return '?';
2663 }
2664 
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2665 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2666 			unsigned int shnum, unsigned int pcpundx)
2667 {
2668 	const Elf_Shdr *sec;
2669 
2670 	if (src->st_shndx == SHN_UNDEF
2671 	    || src->st_shndx >= shnum
2672 	    || !src->st_name)
2673 		return false;
2674 
2675 #ifdef CONFIG_KALLSYMS_ALL
2676 	if (src->st_shndx == pcpundx)
2677 		return true;
2678 #endif
2679 
2680 	sec = sechdrs + src->st_shndx;
2681 	if (!(sec->sh_flags & SHF_ALLOC)
2682 #ifndef CONFIG_KALLSYMS_ALL
2683 	    || !(sec->sh_flags & SHF_EXECINSTR)
2684 #endif
2685 	    || (sec->sh_entsize & INIT_OFFSET_MASK))
2686 		return false;
2687 
2688 	return true;
2689 }
2690 
2691 /*
2692  * We only allocate and copy the strings needed by the parts of symtab
2693  * we keep.  This is simple, but has the effect of making multiple
2694  * copies of duplicates.  We could be more sophisticated, see
2695  * linux-kernel thread starting with
2696  * <73defb5e4bca04a6431392cc341112b1@localhost>.
2697  */
layout_symtab(struct module * mod,struct load_info * info)2698 static void layout_symtab(struct module *mod, struct load_info *info)
2699 {
2700 	Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2701 	Elf_Shdr *strsect = info->sechdrs + info->index.str;
2702 	const Elf_Sym *src;
2703 	unsigned int i, nsrc, ndst, strtab_size = 0;
2704 
2705 	/* Put symbol section at end of init part of module. */
2706 	symsect->sh_flags |= SHF_ALLOC;
2707 	symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2708 					 info->index.sym) | INIT_OFFSET_MASK;
2709 	pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2710 
2711 	src = (void *)info->hdr + symsect->sh_offset;
2712 	nsrc = symsect->sh_size / sizeof(*src);
2713 
2714 	/* Compute total space required for the core symbols' strtab. */
2715 	for (ndst = i = 0; i < nsrc; i++) {
2716 		if (i == 0 || is_livepatch_module(mod) ||
2717 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2718 				   info->index.pcpu)) {
2719 			strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2720 			ndst++;
2721 		}
2722 	}
2723 
2724 	/* Append room for core symbols at end of core part. */
2725 	info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2726 	info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2727 	mod->core_layout.size += strtab_size;
2728 	info->core_typeoffs = mod->core_layout.size;
2729 	mod->core_layout.size += ndst * sizeof(char);
2730 	mod->core_layout.size = debug_align(mod->core_layout.size);
2731 
2732 	/* Put string table section at end of init part of module. */
2733 	strsect->sh_flags |= SHF_ALLOC;
2734 	strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2735 					 info->index.str) | INIT_OFFSET_MASK;
2736 	pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2737 
2738 	/* We'll tack temporary mod_kallsyms on the end. */
2739 	mod->init_layout.size = ALIGN(mod->init_layout.size,
2740 				      __alignof__(struct mod_kallsyms));
2741 	info->mod_kallsyms_init_off = mod->init_layout.size;
2742 	mod->init_layout.size += sizeof(struct mod_kallsyms);
2743 	info->init_typeoffs = mod->init_layout.size;
2744 	mod->init_layout.size += nsrc * sizeof(char);
2745 	mod->init_layout.size = debug_align(mod->init_layout.size);
2746 }
2747 
2748 /*
2749  * We use the full symtab and strtab which layout_symtab arranged to
2750  * be appended to the init section.  Later we switch to the cut-down
2751  * core-only ones.
2752  */
add_kallsyms(struct module * mod,const struct load_info * info)2753 static void add_kallsyms(struct module *mod, const struct load_info *info)
2754 {
2755 	unsigned int i, ndst;
2756 	const Elf_Sym *src;
2757 	Elf_Sym *dst;
2758 	char *s;
2759 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2760 
2761 	/* Set up to point into init section. */
2762 	mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2763 
2764 	mod->kallsyms->symtab = (void *)symsec->sh_addr;
2765 	mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2766 	/* Make sure we get permanent strtab: don't use info->strtab. */
2767 	mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2768 	mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2769 
2770 	/*
2771 	 * Now populate the cut down core kallsyms for after init
2772 	 * and set types up while we still have access to sections.
2773 	 */
2774 	mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2775 	mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2776 	mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2777 	src = mod->kallsyms->symtab;
2778 	for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2779 		mod->kallsyms->typetab[i] = elf_type(src + i, info);
2780 		if (i == 0 || is_livepatch_module(mod) ||
2781 		    is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2782 				   info->index.pcpu)) {
2783 			mod->core_kallsyms.typetab[ndst] =
2784 			    mod->kallsyms->typetab[i];
2785 			dst[ndst] = src[i];
2786 			dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2787 			s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2788 				     KSYM_NAME_LEN) + 1;
2789 		}
2790 	}
2791 	mod->core_kallsyms.num_symtab = ndst;
2792 }
2793 #else
layout_symtab(struct module * mod,struct load_info * info)2794 static inline void layout_symtab(struct module *mod, struct load_info *info)
2795 {
2796 }
2797 
add_kallsyms(struct module * mod,const struct load_info * info)2798 static void add_kallsyms(struct module *mod, const struct load_info *info)
2799 {
2800 }
2801 #endif /* CONFIG_KALLSYMS */
2802 
2803 #if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
init_build_id(struct module * mod,const struct load_info * info)2804 static void init_build_id(struct module *mod, const struct load_info *info)
2805 {
2806 	const Elf_Shdr *sechdr;
2807 	unsigned int i;
2808 
2809 	for (i = 0; i < info->hdr->e_shnum; i++) {
2810 		sechdr = &info->sechdrs[i];
2811 		if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2812 		    !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2813 					sechdr->sh_size))
2814 			break;
2815 	}
2816 }
2817 #else
init_build_id(struct module * mod,const struct load_info * info)2818 static void init_build_id(struct module *mod, const struct load_info *info)
2819 {
2820 }
2821 #endif
2822 
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2823 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824 {
2825 	if (!debug)
2826 		return;
2827 	ddebug_add_module(debug, num, mod->name);
2828 }
2829 
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2830 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831 {
2832 	if (debug)
2833 		ddebug_remove_module(mod->name);
2834 }
2835 
module_alloc(unsigned long size)2836 void * __weak module_alloc(unsigned long size)
2837 {
2838 	return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839 			GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840 			NUMA_NO_NODE, __builtin_return_address(0));
2841 }
2842 
module_init_section(const char * name)2843 bool __weak module_init_section(const char *name)
2844 {
2845 	return strstarts(name, ".init");
2846 }
2847 
module_exit_section(const char * name)2848 bool __weak module_exit_section(const char *name)
2849 {
2850 	return strstarts(name, ".exit");
2851 }
2852 
2853 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2854 static void kmemleak_load_module(const struct module *mod,
2855 				 const struct load_info *info)
2856 {
2857 	unsigned int i;
2858 
2859 	/* only scan the sections containing data */
2860 	kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861 
2862 	for (i = 1; i < info->hdr->e_shnum; i++) {
2863 		/* Scan all writable sections that's not executable */
2864 		if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865 		    !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866 		    (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867 			continue;
2868 
2869 		kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870 				   info->sechdrs[i].sh_size, GFP_KERNEL);
2871 	}
2872 }
2873 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2874 static inline void kmemleak_load_module(const struct module *mod,
2875 					const struct load_info *info)
2876 {
2877 }
2878 #endif
2879 
2880 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2881 static int module_sig_check(struct load_info *info, int flags)
2882 {
2883 	int err = -ENODATA;
2884 	const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885 	const char *reason;
2886 	const void *mod = info->hdr;
2887 
2888 	/*
2889 	 * Require flags == 0, as a module with version information
2890 	 * removed is no longer the module that was signed
2891 	 */
2892 	if (flags == 0 &&
2893 	    info->len > markerlen &&
2894 	    memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895 		/* We truncate the module to discard the signature */
2896 		info->len -= markerlen;
2897 		err = mod_verify_sig(mod, info);
2898 		if (!err) {
2899 			info->sig_ok = true;
2900 			return 0;
2901 		}
2902 	}
2903 
2904 	/*
2905 	 * We don't permit modules to be loaded into the trusted kernels
2906 	 * without a valid signature on them, but if we're not enforcing,
2907 	 * certain errors are non-fatal.
2908 	 */
2909 	switch (err) {
2910 	case -ENODATA:
2911 		reason = "unsigned module";
2912 		break;
2913 	case -ENOPKG:
2914 		reason = "module with unsupported crypto";
2915 		break;
2916 	case -ENOKEY:
2917 		reason = "module with unavailable key";
2918 		break;
2919 
2920 	default:
2921 		/*
2922 		 * All other errors are fatal, including lack of memory,
2923 		 * unparseable signatures, and signature check failures --
2924 		 * even if signatures aren't required.
2925 		 */
2926 		return err;
2927 	}
2928 
2929 	if (is_module_sig_enforced()) {
2930 		pr_notice("Loading of %s is rejected\n", reason);
2931 		return -EKEYREJECTED;
2932 	}
2933 
2934 	return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935 }
2936 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2937 static int module_sig_check(struct load_info *info, int flags)
2938 {
2939 	return 0;
2940 }
2941 #endif /* !CONFIG_MODULE_SIG */
2942 
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)2943 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944 {
2945 	unsigned long secend;
2946 
2947 	/*
2948 	 * Check for both overflow and offset/size being
2949 	 * too large.
2950 	 */
2951 	secend = shdr->sh_offset + shdr->sh_size;
2952 	if (secend < shdr->sh_offset || secend > info->len)
2953 		return -ENOEXEC;
2954 
2955 	return 0;
2956 }
2957 
2958 /*
2959  * Sanity checks against invalid binaries, wrong arch, weird elf version.
2960  *
2961  * Also do basic validity checks against section offsets and sizes, the
2962  * section name string table, and the indices used for it (sh_name).
2963  */
elf_validity_check(struct load_info * info)2964 static int elf_validity_check(struct load_info *info)
2965 {
2966 	unsigned int i;
2967 	Elf_Shdr *shdr, *strhdr;
2968 	int err;
2969 
2970 	if (info->len < sizeof(*(info->hdr)))
2971 		return -ENOEXEC;
2972 
2973 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2974 	    || info->hdr->e_type != ET_REL
2975 	    || !elf_check_arch(info->hdr)
2976 	    || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2977 		return -ENOEXEC;
2978 
2979 	/*
2980 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2981 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
2982 	 * will not overflow unsigned long on any platform.
2983 	 */
2984 	if (info->hdr->e_shoff >= info->len
2985 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2986 		info->len - info->hdr->e_shoff))
2987 		return -ENOEXEC;
2988 
2989 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2990 
2991 	/*
2992 	 * Verify if the section name table index is valid.
2993 	 */
2994 	if (info->hdr->e_shstrndx == SHN_UNDEF
2995 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2996 		return -ENOEXEC;
2997 
2998 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2999 	err = validate_section_offset(info, strhdr);
3000 	if (err < 0)
3001 		return err;
3002 
3003 	/*
3004 	 * The section name table must be NUL-terminated, as required
3005 	 * by the spec. This makes strcmp and pr_* calls that access
3006 	 * strings in the section safe.
3007 	 */
3008 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3009 	if (info->secstrings[strhdr->sh_size - 1] != '\0')
3010 		return -ENOEXEC;
3011 
3012 	/*
3013 	 * The code assumes that section 0 has a length of zero and
3014 	 * an addr of zero, so check for it.
3015 	 */
3016 	if (info->sechdrs[0].sh_type != SHT_NULL
3017 	    || info->sechdrs[0].sh_size != 0
3018 	    || info->sechdrs[0].sh_addr != 0)
3019 		return -ENOEXEC;
3020 
3021 	for (i = 1; i < info->hdr->e_shnum; i++) {
3022 		shdr = &info->sechdrs[i];
3023 		switch (shdr->sh_type) {
3024 		case SHT_NULL:
3025 		case SHT_NOBITS:
3026 			continue;
3027 		case SHT_SYMTAB:
3028 			if (shdr->sh_link == SHN_UNDEF
3029 			    || shdr->sh_link >= info->hdr->e_shnum)
3030 				return -ENOEXEC;
3031 			fallthrough;
3032 		default:
3033 			err = validate_section_offset(info, shdr);
3034 			if (err < 0) {
3035 				pr_err("Invalid ELF section in module (section %u type %u)\n",
3036 					i, shdr->sh_type);
3037 				return err;
3038 			}
3039 
3040 			if (shdr->sh_flags & SHF_ALLOC) {
3041 				if (shdr->sh_name >= strhdr->sh_size) {
3042 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
3043 					       i, shdr->sh_type);
3044 					return -ENOEXEC;
3045 				}
3046 			}
3047 			break;
3048 		}
3049 	}
3050 
3051 	return 0;
3052 }
3053 
3054 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3055 
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3056 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3057 {
3058 	do {
3059 		unsigned long n = min(len, COPY_CHUNK_SIZE);
3060 
3061 		if (copy_from_user(dst, usrc, n) != 0)
3062 			return -EFAULT;
3063 		cond_resched();
3064 		dst += n;
3065 		usrc += n;
3066 		len -= n;
3067 	} while (len);
3068 	return 0;
3069 }
3070 
3071 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3072 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3073 {
3074 	if (get_modinfo(info, "livepatch")) {
3075 		mod->klp = true;
3076 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3077 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3078 			       mod->name);
3079 	}
3080 
3081 	return 0;
3082 }
3083 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3084 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3085 {
3086 	if (get_modinfo(info, "livepatch")) {
3087 		pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3088 		       mod->name);
3089 		return -ENOEXEC;
3090 	}
3091 
3092 	return 0;
3093 }
3094 #endif /* CONFIG_LIVEPATCH */
3095 
check_modinfo_retpoline(struct module * mod,struct load_info * info)3096 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3097 {
3098 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3099 		return;
3100 
3101 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3102 		mod->name);
3103 }
3104 
3105 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3106 static int copy_module_from_user(const void __user *umod, unsigned long len,
3107 				  struct load_info *info)
3108 {
3109 	int err;
3110 
3111 	info->len = len;
3112 	if (info->len < sizeof(*(info->hdr)))
3113 		return -ENOEXEC;
3114 
3115 	err = security_kernel_load_data(LOADING_MODULE, true);
3116 	if (err)
3117 		return err;
3118 
3119 	/* Suck in entire file: we'll want most of it. */
3120 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3121 	if (!info->hdr)
3122 		return -ENOMEM;
3123 
3124 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3125 		err = -EFAULT;
3126 		goto out;
3127 	}
3128 
3129 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
3130 					     LOADING_MODULE, "init_module");
3131 out:
3132 	if (err)
3133 		vfree(info->hdr);
3134 
3135 	return err;
3136 }
3137 
free_copy(struct load_info * info)3138 static void free_copy(struct load_info *info)
3139 {
3140 	vfree(info->hdr);
3141 }
3142 
rewrite_section_headers(struct load_info * info,int flags)3143 static int rewrite_section_headers(struct load_info *info, int flags)
3144 {
3145 	unsigned int i;
3146 
3147 	/* This should always be true, but let's be sure. */
3148 	info->sechdrs[0].sh_addr = 0;
3149 
3150 	for (i = 1; i < info->hdr->e_shnum; i++) {
3151 		Elf_Shdr *shdr = &info->sechdrs[i];
3152 
3153 		/*
3154 		 * Mark all sections sh_addr with their address in the
3155 		 * temporary image.
3156 		 */
3157 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3158 
3159 	}
3160 
3161 	/* Track but don't keep modinfo and version sections. */
3162 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3163 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3164 
3165 	return 0;
3166 }
3167 
3168 /*
3169  * Set up our basic convenience variables (pointers to section headers,
3170  * search for module section index etc), and do some basic section
3171  * verification.
3172  *
3173  * Set info->mod to the temporary copy of the module in info->hdr. The final one
3174  * will be allocated in move_module().
3175  */
setup_load_info(struct load_info * info,int flags)3176 static int setup_load_info(struct load_info *info, int flags)
3177 {
3178 	unsigned int i;
3179 
3180 	/* Try to find a name early so we can log errors with a module name */
3181 	info->index.info = find_sec(info, ".modinfo");
3182 	if (info->index.info)
3183 		info->name = get_modinfo(info, "name");
3184 
3185 	/* Find internal symbols and strings. */
3186 	for (i = 1; i < info->hdr->e_shnum; i++) {
3187 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3188 			info->index.sym = i;
3189 			info->index.str = info->sechdrs[i].sh_link;
3190 			info->strtab = (char *)info->hdr
3191 				+ info->sechdrs[info->index.str].sh_offset;
3192 			break;
3193 		}
3194 	}
3195 
3196 	if (info->index.sym == 0) {
3197 		pr_warn("%s: module has no symbols (stripped?)\n",
3198 			info->name ?: "(missing .modinfo section or name field)");
3199 		return -ENOEXEC;
3200 	}
3201 
3202 	info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3203 	if (!info->index.mod) {
3204 		pr_warn("%s: No module found in object\n",
3205 			info->name ?: "(missing .modinfo section or name field)");
3206 		return -ENOEXEC;
3207 	}
3208 	/* This is temporary: point mod into copy of data. */
3209 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3210 
3211 	/*
3212 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
3213 	 * on-disk struct mod 'name' field.
3214 	 */
3215 	if (!info->name)
3216 		info->name = info->mod->name;
3217 
3218 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3219 		info->index.vers = 0; /* Pretend no __versions section! */
3220 	else
3221 		info->index.vers = find_sec(info, "__versions");
3222 
3223 	info->index.pcpu = find_pcpusec(info);
3224 
3225 	return 0;
3226 }
3227 
check_modinfo(struct module * mod,struct load_info * info,int flags)3228 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3229 {
3230 	const char *modmagic = get_modinfo(info, "vermagic");
3231 	int err;
3232 
3233 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3234 		modmagic = NULL;
3235 
3236 	/* This is allowed: modprobe --force will invalidate it. */
3237 	if (!modmagic) {
3238 		err = try_to_force_load(mod, "bad vermagic");
3239 		if (err)
3240 			return err;
3241 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3242 		pr_err("%s: version magic '%s' should be '%s'\n",
3243 		       info->name, modmagic, vermagic);
3244 		return -ENOEXEC;
3245 	}
3246 
3247 	if (!get_modinfo(info, "intree")) {
3248 		if (!test_taint(TAINT_OOT_MODULE))
3249 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
3250 				mod->name);
3251 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3252 	}
3253 
3254 	check_modinfo_retpoline(mod, info);
3255 
3256 	if (get_modinfo(info, "staging")) {
3257 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3258 		pr_warn("%s: module is from the staging directory, the quality "
3259 			"is unknown, you have been warned.\n", mod->name);
3260 	}
3261 
3262 	err = check_modinfo_livepatch(mod, info);
3263 	if (err)
3264 		return err;
3265 
3266 	/* Set up license info based on the info section */
3267 	set_license(mod, get_modinfo(info, "license"));
3268 
3269 	return 0;
3270 }
3271 
find_module_sections(struct module * mod,struct load_info * info)3272 static int find_module_sections(struct module *mod, struct load_info *info)
3273 {
3274 	mod->kp = section_objs(info, "__param",
3275 			       sizeof(*mod->kp), &mod->num_kp);
3276 	mod->syms = section_objs(info, "__ksymtab",
3277 				 sizeof(*mod->syms), &mod->num_syms);
3278 	mod->crcs = section_addr(info, "__kcrctab");
3279 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3280 				     sizeof(*mod->gpl_syms),
3281 				     &mod->num_gpl_syms);
3282 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3283 
3284 #ifdef CONFIG_CONSTRUCTORS
3285 	mod->ctors = section_objs(info, ".ctors",
3286 				  sizeof(*mod->ctors), &mod->num_ctors);
3287 	if (!mod->ctors)
3288 		mod->ctors = section_objs(info, ".init_array",
3289 				sizeof(*mod->ctors), &mod->num_ctors);
3290 	else if (find_sec(info, ".init_array")) {
3291 		/*
3292 		 * This shouldn't happen with same compiler and binutils
3293 		 * building all parts of the module.
3294 		 */
3295 		pr_warn("%s: has both .ctors and .init_array.\n",
3296 		       mod->name);
3297 		return -EINVAL;
3298 	}
3299 #endif
3300 
3301 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3302 						&mod->noinstr_text_size);
3303 
3304 #ifdef CONFIG_TRACEPOINTS
3305 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3306 					     sizeof(*mod->tracepoints_ptrs),
3307 					     &mod->num_tracepoints);
3308 #endif
3309 #ifdef CONFIG_TREE_SRCU
3310 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3311 					     sizeof(*mod->srcu_struct_ptrs),
3312 					     &mod->num_srcu_structs);
3313 #endif
3314 #ifdef CONFIG_BPF_EVENTS
3315 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3316 					   sizeof(*mod->bpf_raw_events),
3317 					   &mod->num_bpf_raw_events);
3318 #endif
3319 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3320 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3321 #endif
3322 #ifdef CONFIG_JUMP_LABEL
3323 	mod->jump_entries = section_objs(info, "__jump_table",
3324 					sizeof(*mod->jump_entries),
3325 					&mod->num_jump_entries);
3326 #endif
3327 #ifdef CONFIG_EVENT_TRACING
3328 	mod->trace_events = section_objs(info, "_ftrace_events",
3329 					 sizeof(*mod->trace_events),
3330 					 &mod->num_trace_events);
3331 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3332 					sizeof(*mod->trace_evals),
3333 					&mod->num_trace_evals);
3334 #endif
3335 #ifdef CONFIG_TRACING
3336 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3337 					 sizeof(*mod->trace_bprintk_fmt_start),
3338 					 &mod->num_trace_bprintk_fmt);
3339 #endif
3340 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3341 	/* sechdrs[0].sh_size is always zero */
3342 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3343 					     sizeof(*mod->ftrace_callsites),
3344 					     &mod->num_ftrace_callsites);
3345 #endif
3346 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3347 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3348 					    sizeof(*mod->ei_funcs),
3349 					    &mod->num_ei_funcs);
3350 #endif
3351 #ifdef CONFIG_KPROBES
3352 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3353 						&mod->kprobes_text_size);
3354 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3355 						sizeof(unsigned long),
3356 						&mod->num_kprobe_blacklist);
3357 #endif
3358 #ifdef CONFIG_PRINTK_INDEX
3359 	mod->printk_index_start = section_objs(info, ".printk_index",
3360 					       sizeof(*mod->printk_index_start),
3361 					       &mod->printk_index_size);
3362 #endif
3363 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3364 	mod->static_call_sites = section_objs(info, ".static_call_sites",
3365 					      sizeof(*mod->static_call_sites),
3366 					      &mod->num_static_call_sites);
3367 #endif
3368 	mod->extable = section_objs(info, "__ex_table",
3369 				    sizeof(*mod->extable), &mod->num_exentries);
3370 
3371 	if (section_addr(info, "__obsparm"))
3372 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3373 
3374 	info->debug = section_objs(info, "__dyndbg",
3375 				   sizeof(*info->debug), &info->num_debug);
3376 
3377 	return 0;
3378 }
3379 
move_module(struct module * mod,struct load_info * info)3380 static int move_module(struct module *mod, struct load_info *info)
3381 {
3382 	int i;
3383 	void *ptr;
3384 
3385 	/* Do the allocs. */
3386 	ptr = module_alloc(mod->core_layout.size);
3387 	/*
3388 	 * The pointer to this block is stored in the module structure
3389 	 * which is inside the block. Just mark it as not being a
3390 	 * leak.
3391 	 */
3392 	kmemleak_not_leak(ptr);
3393 	if (!ptr)
3394 		return -ENOMEM;
3395 
3396 	memset(ptr, 0, mod->core_layout.size);
3397 	mod->core_layout.base = ptr;
3398 
3399 	if (mod->init_layout.size) {
3400 		ptr = module_alloc(mod->init_layout.size);
3401 		/*
3402 		 * The pointer to this block is stored in the module structure
3403 		 * which is inside the block. This block doesn't need to be
3404 		 * scanned as it contains data and code that will be freed
3405 		 * after the module is initialized.
3406 		 */
3407 		kmemleak_ignore(ptr);
3408 		if (!ptr) {
3409 			module_memfree(mod->core_layout.base);
3410 			return -ENOMEM;
3411 		}
3412 		memset(ptr, 0, mod->init_layout.size);
3413 		mod->init_layout.base = ptr;
3414 	} else
3415 		mod->init_layout.base = NULL;
3416 
3417 	/* Transfer each section which specifies SHF_ALLOC */
3418 	pr_debug("final section addresses:\n");
3419 	for (i = 0; i < info->hdr->e_shnum; i++) {
3420 		void *dest;
3421 		Elf_Shdr *shdr = &info->sechdrs[i];
3422 
3423 		if (!(shdr->sh_flags & SHF_ALLOC))
3424 			continue;
3425 
3426 		if (shdr->sh_entsize & INIT_OFFSET_MASK)
3427 			dest = mod->init_layout.base
3428 				+ (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3429 		else
3430 			dest = mod->core_layout.base + shdr->sh_entsize;
3431 
3432 		if (shdr->sh_type != SHT_NOBITS)
3433 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3434 		/* Update sh_addr to point to copy in image. */
3435 		shdr->sh_addr = (unsigned long)dest;
3436 		pr_debug("\t0x%lx %s\n",
3437 			 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3438 	}
3439 
3440 	return 0;
3441 }
3442 
check_module_license_and_versions(struct module * mod)3443 static int check_module_license_and_versions(struct module *mod)
3444 {
3445 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3446 
3447 	/*
3448 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3449 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3450 	 * using GPL-only symbols it needs.
3451 	 */
3452 	if (strcmp(mod->name, "ndiswrapper") == 0)
3453 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3454 
3455 	/* driverloader was caught wrongly pretending to be under GPL */
3456 	if (strcmp(mod->name, "driverloader") == 0)
3457 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3458 				 LOCKDEP_NOW_UNRELIABLE);
3459 
3460 	/* lve claims to be GPL but upstream won't provide source */
3461 	if (strcmp(mod->name, "lve") == 0)
3462 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3463 				 LOCKDEP_NOW_UNRELIABLE);
3464 
3465 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3466 		pr_warn("%s: module license taints kernel.\n", mod->name);
3467 
3468 #ifdef CONFIG_MODVERSIONS
3469 	if ((mod->num_syms && !mod->crcs) ||
3470 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
3471 		return try_to_force_load(mod,
3472 					 "no versions for exported symbols");
3473 	}
3474 #endif
3475 	return 0;
3476 }
3477 
flush_module_icache(const struct module * mod)3478 static void flush_module_icache(const struct module *mod)
3479 {
3480 	/*
3481 	 * Flush the instruction cache, since we've played with text.
3482 	 * Do it before processing of module parameters, so the module
3483 	 * can provide parameter accessor functions of its own.
3484 	 */
3485 	if (mod->init_layout.base)
3486 		flush_icache_range((unsigned long)mod->init_layout.base,
3487 				   (unsigned long)mod->init_layout.base
3488 				   + mod->init_layout.size);
3489 	flush_icache_range((unsigned long)mod->core_layout.base,
3490 			   (unsigned long)mod->core_layout.base + mod->core_layout.size);
3491 }
3492 
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3493 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3494 				     Elf_Shdr *sechdrs,
3495 				     char *secstrings,
3496 				     struct module *mod)
3497 {
3498 	return 0;
3499 }
3500 
3501 /* module_blacklist is a comma-separated list of module names */
3502 static char *module_blacklist;
blacklisted(const char * module_name)3503 static bool blacklisted(const char *module_name)
3504 {
3505 	const char *p;
3506 	size_t len;
3507 
3508 	if (!module_blacklist)
3509 		return false;
3510 
3511 	for (p = module_blacklist; *p; p += len) {
3512 		len = strcspn(p, ",");
3513 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
3514 			return true;
3515 		if (p[len] == ',')
3516 			len++;
3517 	}
3518 	return false;
3519 }
3520 core_param(module_blacklist, module_blacklist, charp, 0400);
3521 
layout_and_allocate(struct load_info * info,int flags)3522 static struct module *layout_and_allocate(struct load_info *info, int flags)
3523 {
3524 	struct module *mod;
3525 	unsigned int ndx;
3526 	int err;
3527 
3528 	err = check_modinfo(info->mod, info, flags);
3529 	if (err)
3530 		return ERR_PTR(err);
3531 
3532 	/* Allow arches to frob section contents and sizes.  */
3533 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
3534 					info->secstrings, info->mod);
3535 	if (err < 0)
3536 		return ERR_PTR(err);
3537 
3538 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3539 					  info->secstrings, info->mod);
3540 	if (err < 0)
3541 		return ERR_PTR(err);
3542 
3543 	/* We will do a special allocation for per-cpu sections later. */
3544 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3545 
3546 	/*
3547 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3548 	 * layout_sections() can put it in the right place.
3549 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3550 	 */
3551 	ndx = find_sec(info, ".data..ro_after_init");
3552 	if (ndx)
3553 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3554 	/*
3555 	 * Mark the __jump_table section as ro_after_init as well: these data
3556 	 * structures are never modified, with the exception of entries that
3557 	 * refer to code in the __init section, which are annotated as such
3558 	 * at module load time.
3559 	 */
3560 	ndx = find_sec(info, "__jump_table");
3561 	if (ndx)
3562 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3563 
3564 	/*
3565 	 * Determine total sizes, and put offsets in sh_entsize.  For now
3566 	 * this is done generically; there doesn't appear to be any
3567 	 * special cases for the architectures.
3568 	 */
3569 	layout_sections(info->mod, info);
3570 	layout_symtab(info->mod, info);
3571 
3572 	/* Allocate and move to the final place */
3573 	err = move_module(info->mod, info);
3574 	if (err)
3575 		return ERR_PTR(err);
3576 
3577 	/* Module has been copied to its final place now: return it. */
3578 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3579 	kmemleak_load_module(mod, info);
3580 	return mod;
3581 }
3582 
3583 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3584 static void module_deallocate(struct module *mod, struct load_info *info)
3585 {
3586 	percpu_modfree(mod);
3587 	module_arch_freeing_init(mod);
3588 	module_memfree(mod->init_layout.base);
3589 	module_memfree(mod->core_layout.base);
3590 }
3591 
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3592 int __weak module_finalize(const Elf_Ehdr *hdr,
3593 			   const Elf_Shdr *sechdrs,
3594 			   struct module *me)
3595 {
3596 	return 0;
3597 }
3598 
post_relocation(struct module * mod,const struct load_info * info)3599 static int post_relocation(struct module *mod, const struct load_info *info)
3600 {
3601 	/* Sort exception table now relocations are done. */
3602 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
3603 
3604 	/* Copy relocated percpu area over. */
3605 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3606 		       info->sechdrs[info->index.pcpu].sh_size);
3607 
3608 	/* Setup kallsyms-specific fields. */
3609 	add_kallsyms(mod, info);
3610 
3611 	/* Arch-specific module finalizing. */
3612 	return module_finalize(info->hdr, info->sechdrs, mod);
3613 }
3614 
3615 /* Is this module of this name done loading?  No locks held. */
finished_loading(const char * name)3616 static bool finished_loading(const char *name)
3617 {
3618 	struct module *mod;
3619 	bool ret;
3620 
3621 	/*
3622 	 * The module_mutex should not be a heavily contended lock;
3623 	 * if we get the occasional sleep here, we'll go an extra iteration
3624 	 * in the wait_event_interruptible(), which is harmless.
3625 	 */
3626 	sched_annotate_sleep();
3627 	mutex_lock(&module_mutex);
3628 	mod = find_module_all(name, strlen(name), true);
3629 	ret = !mod || mod->state == MODULE_STATE_LIVE;
3630 	mutex_unlock(&module_mutex);
3631 
3632 	return ret;
3633 }
3634 
3635 /* Call module constructors. */
do_mod_ctors(struct module * mod)3636 static void do_mod_ctors(struct module *mod)
3637 {
3638 #ifdef CONFIG_CONSTRUCTORS
3639 	unsigned long i;
3640 
3641 	for (i = 0; i < mod->num_ctors; i++)
3642 		mod->ctors[i]();
3643 #endif
3644 }
3645 
3646 /* For freeing module_init on success, in case kallsyms traversing */
3647 struct mod_initfree {
3648 	struct llist_node node;
3649 	void *module_init;
3650 };
3651 
do_free_init(struct work_struct * w)3652 static void do_free_init(struct work_struct *w)
3653 {
3654 	struct llist_node *pos, *n, *list;
3655 	struct mod_initfree *initfree;
3656 
3657 	list = llist_del_all(&init_free_list);
3658 
3659 	synchronize_rcu();
3660 
3661 	llist_for_each_safe(pos, n, list) {
3662 		initfree = container_of(pos, struct mod_initfree, node);
3663 		module_memfree(initfree->module_init);
3664 		kfree(initfree);
3665 	}
3666 }
3667 
3668 /*
3669  * This is where the real work happens.
3670  *
3671  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3672  * helper command 'lx-symbols'.
3673  */
do_init_module(struct module * mod)3674 static noinline int do_init_module(struct module *mod)
3675 {
3676 	int ret = 0;
3677 	struct mod_initfree *freeinit;
3678 
3679 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3680 	if (!freeinit) {
3681 		ret = -ENOMEM;
3682 		goto fail;
3683 	}
3684 	freeinit->module_init = mod->init_layout.base;
3685 
3686 	/*
3687 	 * We want to find out whether @mod uses async during init.  Clear
3688 	 * PF_USED_ASYNC.  async_schedule*() will set it.
3689 	 */
3690 	current->flags &= ~PF_USED_ASYNC;
3691 
3692 	do_mod_ctors(mod);
3693 	/* Start the module */
3694 	if (mod->init != NULL)
3695 		ret = do_one_initcall(mod->init);
3696 	if (ret < 0) {
3697 		goto fail_free_freeinit;
3698 	}
3699 	if (ret > 0) {
3700 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3701 			"follow 0/-E convention\n"
3702 			"%s: loading module anyway...\n",
3703 			__func__, mod->name, ret, __func__);
3704 		dump_stack();
3705 	}
3706 
3707 	/* Now it's a first class citizen! */
3708 	mod->state = MODULE_STATE_LIVE;
3709 	blocking_notifier_call_chain(&module_notify_list,
3710 				     MODULE_STATE_LIVE, mod);
3711 
3712 	/* Delay uevent until module has finished its init routine */
3713 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3714 
3715 	/*
3716 	 * We need to finish all async code before the module init sequence
3717 	 * is done.  This has potential to deadlock.  For example, a newly
3718 	 * detected block device can trigger request_module() of the
3719 	 * default iosched from async probing task.  Once userland helper
3720 	 * reaches here, async_synchronize_full() will wait on the async
3721 	 * task waiting on request_module() and deadlock.
3722 	 *
3723 	 * This deadlock is avoided by perfomring async_synchronize_full()
3724 	 * iff module init queued any async jobs.  This isn't a full
3725 	 * solution as it will deadlock the same if module loading from
3726 	 * async jobs nests more than once; however, due to the various
3727 	 * constraints, this hack seems to be the best option for now.
3728 	 * Please refer to the following thread for details.
3729 	 *
3730 	 * http://thread.gmane.org/gmane.linux.kernel/1420814
3731 	 */
3732 	if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3733 		async_synchronize_full();
3734 
3735 	ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3736 			mod->init_layout.size);
3737 	mutex_lock(&module_mutex);
3738 	/* Drop initial reference. */
3739 	module_put(mod);
3740 	trim_init_extable(mod);
3741 #ifdef CONFIG_KALLSYMS
3742 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3743 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3744 #endif
3745 	module_enable_ro(mod, true);
3746 	mod_tree_remove_init(mod);
3747 	module_arch_freeing_init(mod);
3748 	mod->init_layout.base = NULL;
3749 	mod->init_layout.size = 0;
3750 	mod->init_layout.ro_size = 0;
3751 	mod->init_layout.ro_after_init_size = 0;
3752 	mod->init_layout.text_size = 0;
3753 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3754 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3755 	mod->btf_data = NULL;
3756 #endif
3757 	/*
3758 	 * We want to free module_init, but be aware that kallsyms may be
3759 	 * walking this with preempt disabled.  In all the failure paths, we
3760 	 * call synchronize_rcu(), but we don't want to slow down the success
3761 	 * path. module_memfree() cannot be called in an interrupt, so do the
3762 	 * work and call synchronize_rcu() in a work queue.
3763 	 *
3764 	 * Note that module_alloc() on most architectures creates W+X page
3765 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3766 	 * code such as mark_rodata_ro() which depends on those mappings to
3767 	 * be cleaned up needs to sync with the queued work - ie
3768 	 * rcu_barrier()
3769 	 */
3770 	if (llist_add(&freeinit->node, &init_free_list))
3771 		schedule_work(&init_free_wq);
3772 
3773 	mutex_unlock(&module_mutex);
3774 	wake_up_all(&module_wq);
3775 
3776 	return 0;
3777 
3778 fail_free_freeinit:
3779 	kfree(freeinit);
3780 fail:
3781 	/* Try to protect us from buggy refcounters. */
3782 	mod->state = MODULE_STATE_GOING;
3783 	synchronize_rcu();
3784 	module_put(mod);
3785 	blocking_notifier_call_chain(&module_notify_list,
3786 				     MODULE_STATE_GOING, mod);
3787 	klp_module_going(mod);
3788 	ftrace_release_mod(mod);
3789 	free_module(mod);
3790 	wake_up_all(&module_wq);
3791 	return ret;
3792 }
3793 
may_init_module(void)3794 static int may_init_module(void)
3795 {
3796 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3797 		return -EPERM;
3798 
3799 	return 0;
3800 }
3801 
3802 /*
3803  * We try to place it in the list now to make sure it's unique before
3804  * we dedicate too many resources.  In particular, temporary percpu
3805  * memory exhaustion.
3806  */
add_unformed_module(struct module * mod)3807 static int add_unformed_module(struct module *mod)
3808 {
3809 	int err;
3810 	struct module *old;
3811 
3812 	mod->state = MODULE_STATE_UNFORMED;
3813 
3814 again:
3815 	mutex_lock(&module_mutex);
3816 	old = find_module_all(mod->name, strlen(mod->name), true);
3817 	if (old != NULL) {
3818 		if (old->state != MODULE_STATE_LIVE) {
3819 			/* Wait in case it fails to load. */
3820 			mutex_unlock(&module_mutex);
3821 			err = wait_event_interruptible(module_wq,
3822 					       finished_loading(mod->name));
3823 			if (err)
3824 				goto out_unlocked;
3825 			goto again;
3826 		}
3827 		err = -EEXIST;
3828 		goto out;
3829 	}
3830 	mod_update_bounds(mod);
3831 	list_add_rcu(&mod->list, &modules);
3832 	mod_tree_insert(mod);
3833 	err = 0;
3834 
3835 out:
3836 	mutex_unlock(&module_mutex);
3837 out_unlocked:
3838 	return err;
3839 }
3840 
complete_formation(struct module * mod,struct load_info * info)3841 static int complete_formation(struct module *mod, struct load_info *info)
3842 {
3843 	int err;
3844 
3845 	mutex_lock(&module_mutex);
3846 
3847 	/* Find duplicate symbols (must be called under lock). */
3848 	err = verify_exported_symbols(mod);
3849 	if (err < 0)
3850 		goto out;
3851 
3852 	/* This relies on module_mutex for list integrity. */
3853 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3854 
3855 	module_enable_ro(mod, false);
3856 	module_enable_nx(mod);
3857 	module_enable_x(mod);
3858 
3859 	/*
3860 	 * Mark state as coming so strong_try_module_get() ignores us,
3861 	 * but kallsyms etc. can see us.
3862 	 */
3863 	mod->state = MODULE_STATE_COMING;
3864 	mutex_unlock(&module_mutex);
3865 
3866 	return 0;
3867 
3868 out:
3869 	mutex_unlock(&module_mutex);
3870 	return err;
3871 }
3872 
prepare_coming_module(struct module * mod)3873 static int prepare_coming_module(struct module *mod)
3874 {
3875 	int err;
3876 
3877 	ftrace_module_enable(mod);
3878 	err = klp_module_coming(mod);
3879 	if (err)
3880 		return err;
3881 
3882 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3883 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3884 	err = notifier_to_errno(err);
3885 	if (err)
3886 		klp_module_going(mod);
3887 
3888 	return err;
3889 }
3890 
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3891 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3892 				   void *arg)
3893 {
3894 	struct module *mod = arg;
3895 	int ret;
3896 
3897 	if (strcmp(param, "async_probe") == 0) {
3898 		mod->async_probe_requested = true;
3899 		return 0;
3900 	}
3901 
3902 	/* Check for magic 'dyndbg' arg */
3903 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3904 	if (ret != 0)
3905 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3906 	return 0;
3907 }
3908 
3909 static void cfi_init(struct module *mod);
3910 
3911 /*
3912  * Allocate and load the module: note that size of section 0 is always
3913  * zero, and we rely on this for optional sections.
3914  */
load_module(struct load_info * info,const char __user * uargs,int flags)3915 static int load_module(struct load_info *info, const char __user *uargs,
3916 		       int flags)
3917 {
3918 	struct module *mod;
3919 	long err = 0;
3920 	char *after_dashes;
3921 
3922 	/*
3923 	 * Do the signature check (if any) first. All that
3924 	 * the signature check needs is info->len, it does
3925 	 * not need any of the section info. That can be
3926 	 * set up later. This will minimize the chances
3927 	 * of a corrupt module causing problems before
3928 	 * we even get to the signature check.
3929 	 *
3930 	 * The check will also adjust info->len by stripping
3931 	 * off the sig length at the end of the module, making
3932 	 * checks against info->len more correct.
3933 	 */
3934 	err = module_sig_check(info, flags);
3935 	if (err)
3936 		goto free_copy;
3937 
3938 	/*
3939 	 * Do basic sanity checks against the ELF header and
3940 	 * sections.
3941 	 */
3942 	err = elf_validity_check(info);
3943 	if (err) {
3944 		pr_err("Module has invalid ELF structures\n");
3945 		goto free_copy;
3946 	}
3947 
3948 	/*
3949 	 * Everything checks out, so set up the section info
3950 	 * in the info structure.
3951 	 */
3952 	err = setup_load_info(info, flags);
3953 	if (err)
3954 		goto free_copy;
3955 
3956 	/*
3957 	 * Now that we know we have the correct module name, check
3958 	 * if it's blacklisted.
3959 	 */
3960 	if (blacklisted(info->name)) {
3961 		err = -EPERM;
3962 		pr_err("Module %s is blacklisted\n", info->name);
3963 		goto free_copy;
3964 	}
3965 
3966 	err = rewrite_section_headers(info, flags);
3967 	if (err)
3968 		goto free_copy;
3969 
3970 	/* Check module struct version now, before we try to use module. */
3971 	if (!check_modstruct_version(info, info->mod)) {
3972 		err = -ENOEXEC;
3973 		goto free_copy;
3974 	}
3975 
3976 	/* Figure out module layout, and allocate all the memory. */
3977 	mod = layout_and_allocate(info, flags);
3978 	if (IS_ERR(mod)) {
3979 		err = PTR_ERR(mod);
3980 		goto free_copy;
3981 	}
3982 
3983 	audit_log_kern_module(mod->name);
3984 
3985 	/* Reserve our place in the list. */
3986 	err = add_unformed_module(mod);
3987 	if (err)
3988 		goto free_module;
3989 
3990 #ifdef CONFIG_MODULE_SIG
3991 	mod->sig_ok = info->sig_ok;
3992 	if (!mod->sig_ok) {
3993 		pr_notice_once("%s: module verification failed: signature "
3994 			       "and/or required key missing - tainting "
3995 			       "kernel\n", mod->name);
3996 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3997 	}
3998 #endif
3999 
4000 	/* To avoid stressing percpu allocator, do this once we're unique. */
4001 	err = percpu_modalloc(mod, info);
4002 	if (err)
4003 		goto unlink_mod;
4004 
4005 	/* Now module is in final location, initialize linked lists, etc. */
4006 	err = module_unload_init(mod);
4007 	if (err)
4008 		goto unlink_mod;
4009 
4010 	init_param_lock(mod);
4011 
4012 	/*
4013 	 * Now we've got everything in the final locations, we can
4014 	 * find optional sections.
4015 	 */
4016 	err = find_module_sections(mod, info);
4017 	if (err)
4018 		goto free_unload;
4019 
4020 	err = check_module_license_and_versions(mod);
4021 	if (err)
4022 		goto free_unload;
4023 
4024 	/* Set up MODINFO_ATTR fields */
4025 	setup_modinfo(mod, info);
4026 
4027 	/* Fix up syms, so that st_value is a pointer to location. */
4028 	err = simplify_symbols(mod, info);
4029 	if (err < 0)
4030 		goto free_modinfo;
4031 
4032 	err = apply_relocations(mod, info);
4033 	if (err < 0)
4034 		goto free_modinfo;
4035 
4036 	err = post_relocation(mod, info);
4037 	if (err < 0)
4038 		goto free_modinfo;
4039 
4040 	flush_module_icache(mod);
4041 
4042 	/* Setup CFI for the module. */
4043 	cfi_init(mod);
4044 
4045 	/* Now copy in args */
4046 	mod->args = strndup_user(uargs, ~0UL >> 1);
4047 	if (IS_ERR(mod->args)) {
4048 		err = PTR_ERR(mod->args);
4049 		goto free_arch_cleanup;
4050 	}
4051 
4052 	init_build_id(mod, info);
4053 	dynamic_debug_setup(mod, info->debug, info->num_debug);
4054 
4055 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4056 	ftrace_module_init(mod);
4057 
4058 	/* Finally it's fully formed, ready to start executing. */
4059 	err = complete_formation(mod, info);
4060 	if (err)
4061 		goto ddebug_cleanup;
4062 
4063 	err = prepare_coming_module(mod);
4064 	if (err)
4065 		goto bug_cleanup;
4066 
4067 	/* Module is ready to execute: parsing args may do that. */
4068 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4069 				  -32768, 32767, mod,
4070 				  unknown_module_param_cb);
4071 	if (IS_ERR(after_dashes)) {
4072 		err = PTR_ERR(after_dashes);
4073 		goto coming_cleanup;
4074 	} else if (after_dashes) {
4075 		pr_warn("%s: parameters '%s' after `--' ignored\n",
4076 		       mod->name, after_dashes);
4077 	}
4078 
4079 	/* Link in to sysfs. */
4080 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4081 	if (err < 0)
4082 		goto coming_cleanup;
4083 
4084 	if (is_livepatch_module(mod)) {
4085 		err = copy_module_elf(mod, info);
4086 		if (err < 0)
4087 			goto sysfs_cleanup;
4088 	}
4089 
4090 	/* Get rid of temporary copy. */
4091 	free_copy(info);
4092 
4093 	/* Done! */
4094 	trace_module_load(mod);
4095 
4096 	return do_init_module(mod);
4097 
4098  sysfs_cleanup:
4099 	mod_sysfs_teardown(mod);
4100  coming_cleanup:
4101 	mod->state = MODULE_STATE_GOING;
4102 	destroy_params(mod->kp, mod->num_kp);
4103 	blocking_notifier_call_chain(&module_notify_list,
4104 				     MODULE_STATE_GOING, mod);
4105 	klp_module_going(mod);
4106  bug_cleanup:
4107 	mod->state = MODULE_STATE_GOING;
4108 	/* module_bug_cleanup needs module_mutex protection */
4109 	mutex_lock(&module_mutex);
4110 	module_bug_cleanup(mod);
4111 	mutex_unlock(&module_mutex);
4112 
4113  ddebug_cleanup:
4114 	ftrace_release_mod(mod);
4115 	dynamic_debug_remove(mod, info->debug);
4116 	synchronize_rcu();
4117 	kfree(mod->args);
4118  free_arch_cleanup:
4119 	cfi_cleanup(mod);
4120 	module_arch_cleanup(mod);
4121  free_modinfo:
4122 	free_modinfo(mod);
4123  free_unload:
4124 	module_unload_free(mod);
4125  unlink_mod:
4126 	mutex_lock(&module_mutex);
4127 	/* Unlink carefully: kallsyms could be walking list. */
4128 	list_del_rcu(&mod->list);
4129 	mod_tree_remove(mod);
4130 	wake_up_all(&module_wq);
4131 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
4132 	synchronize_rcu();
4133 	mutex_unlock(&module_mutex);
4134  free_module:
4135 	/* Free lock-classes; relies on the preceding sync_rcu() */
4136 	lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4137 
4138 	module_deallocate(mod, info);
4139  free_copy:
4140 	free_copy(info);
4141 	return err;
4142 }
4143 
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4144 SYSCALL_DEFINE3(init_module, void __user *, umod,
4145 		unsigned long, len, const char __user *, uargs)
4146 {
4147 	int err;
4148 	struct load_info info = { };
4149 
4150 	err = may_init_module();
4151 	if (err)
4152 		return err;
4153 
4154 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4155 	       umod, len, uargs);
4156 
4157 	err = copy_module_from_user(umod, len, &info);
4158 	if (err)
4159 		return err;
4160 
4161 	return load_module(&info, uargs, 0);
4162 }
4163 
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4164 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4165 {
4166 	struct load_info info = { };
4167 	void *hdr = NULL;
4168 	int err;
4169 
4170 	err = may_init_module();
4171 	if (err)
4172 		return err;
4173 
4174 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4175 
4176 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4177 		      |MODULE_INIT_IGNORE_VERMAGIC))
4178 		return -EINVAL;
4179 
4180 	err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4181 				       READING_MODULE);
4182 	if (err < 0)
4183 		return err;
4184 	info.hdr = hdr;
4185 	info.len = err;
4186 
4187 	return load_module(&info, uargs, flags);
4188 }
4189 
within(unsigned long addr,void * start,unsigned long size)4190 static inline int within(unsigned long addr, void *start, unsigned long size)
4191 {
4192 	return ((void *)addr >= start && (void *)addr < start + size);
4193 }
4194 
4195 #ifdef CONFIG_KALLSYMS
4196 /*
4197  * This ignores the intensely annoying "mapping symbols" found
4198  * in ARM ELF files: $a, $t and $d.
4199  */
is_arm_mapping_symbol(const char * str)4200 static inline int is_arm_mapping_symbol(const char *str)
4201 {
4202 	if (str[0] == '.' && str[1] == 'L')
4203 		return true;
4204 	return str[0] == '$' && strchr("axtd", str[1])
4205 	       && (str[2] == '\0' || str[2] == '.');
4206 }
4207 
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4208 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4209 {
4210 	return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4211 }
4212 
4213 /*
4214  * Given a module and address, find the corresponding symbol and return its name
4215  * while providing its size and offset if needed.
4216  */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4217 static const char *find_kallsyms_symbol(struct module *mod,
4218 					unsigned long addr,
4219 					unsigned long *size,
4220 					unsigned long *offset)
4221 {
4222 	unsigned int i, best = 0;
4223 	unsigned long nextval, bestval;
4224 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4225 
4226 	/* At worse, next value is at end of module */
4227 	if (within_module_init(addr, mod))
4228 		nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4229 	else
4230 		nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4231 
4232 	bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4233 
4234 	/*
4235 	 * Scan for closest preceding symbol, and next symbol. (ELF
4236 	 * starts real symbols at 1).
4237 	 */
4238 	for (i = 1; i < kallsyms->num_symtab; i++) {
4239 		const Elf_Sym *sym = &kallsyms->symtab[i];
4240 		unsigned long thisval = kallsyms_symbol_value(sym);
4241 
4242 		if (sym->st_shndx == SHN_UNDEF)
4243 			continue;
4244 
4245 		/*
4246 		 * We ignore unnamed symbols: they're uninformative
4247 		 * and inserted at a whim.
4248 		 */
4249 		if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4250 		    || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4251 			continue;
4252 
4253 		if (thisval <= addr && thisval > bestval) {
4254 			best = i;
4255 			bestval = thisval;
4256 		}
4257 		if (thisval > addr && thisval < nextval)
4258 			nextval = thisval;
4259 	}
4260 
4261 	if (!best)
4262 		return NULL;
4263 
4264 	if (size)
4265 		*size = nextval - bestval;
4266 	if (offset)
4267 		*offset = addr - bestval;
4268 
4269 	return kallsyms_symbol_name(kallsyms, best);
4270 }
4271 
dereference_module_function_descriptor(struct module * mod,void * ptr)4272 void * __weak dereference_module_function_descriptor(struct module *mod,
4273 						     void *ptr)
4274 {
4275 	return ptr;
4276 }
4277 
4278 /*
4279  * For kallsyms to ask for address resolution.  NULL means not found.  Careful
4280  * not to lock to avoid deadlock on oopses, simply disable preemption.
4281  */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,const unsigned char ** modbuildid,char * namebuf)4282 const char *module_address_lookup(unsigned long addr,
4283 			    unsigned long *size,
4284 			    unsigned long *offset,
4285 			    char **modname,
4286 			    const unsigned char **modbuildid,
4287 			    char *namebuf)
4288 {
4289 	const char *ret = NULL;
4290 	struct module *mod;
4291 
4292 	preempt_disable();
4293 	mod = __module_address(addr);
4294 	if (mod) {
4295 		if (modname)
4296 			*modname = mod->name;
4297 		if (modbuildid) {
4298 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4299 			*modbuildid = mod->build_id;
4300 #else
4301 			*modbuildid = NULL;
4302 #endif
4303 		}
4304 
4305 		ret = find_kallsyms_symbol(mod, addr, size, offset);
4306 	}
4307 	/* Make a copy in here where it's safe */
4308 	if (ret) {
4309 		strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4310 		ret = namebuf;
4311 	}
4312 	preempt_enable();
4313 
4314 	return ret;
4315 }
4316 
lookup_module_symbol_name(unsigned long addr,char * symname)4317 int lookup_module_symbol_name(unsigned long addr, char *symname)
4318 {
4319 	struct module *mod;
4320 
4321 	preempt_disable();
4322 	list_for_each_entry_rcu(mod, &modules, list) {
4323 		if (mod->state == MODULE_STATE_UNFORMED)
4324 			continue;
4325 		if (within_module(addr, mod)) {
4326 			const char *sym;
4327 
4328 			sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4329 			if (!sym)
4330 				goto out;
4331 
4332 			strlcpy(symname, sym, KSYM_NAME_LEN);
4333 			preempt_enable();
4334 			return 0;
4335 		}
4336 	}
4337 out:
4338 	preempt_enable();
4339 	return -ERANGE;
4340 }
4341 
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4342 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4343 			unsigned long *offset, char *modname, char *name)
4344 {
4345 	struct module *mod;
4346 
4347 	preempt_disable();
4348 	list_for_each_entry_rcu(mod, &modules, list) {
4349 		if (mod->state == MODULE_STATE_UNFORMED)
4350 			continue;
4351 		if (within_module(addr, mod)) {
4352 			const char *sym;
4353 
4354 			sym = find_kallsyms_symbol(mod, addr, size, offset);
4355 			if (!sym)
4356 				goto out;
4357 			if (modname)
4358 				strlcpy(modname, mod->name, MODULE_NAME_LEN);
4359 			if (name)
4360 				strlcpy(name, sym, KSYM_NAME_LEN);
4361 			preempt_enable();
4362 			return 0;
4363 		}
4364 	}
4365 out:
4366 	preempt_enable();
4367 	return -ERANGE;
4368 }
4369 
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4370 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4371 			char *name, char *module_name, int *exported)
4372 {
4373 	struct module *mod;
4374 
4375 	preempt_disable();
4376 	list_for_each_entry_rcu(mod, &modules, list) {
4377 		struct mod_kallsyms *kallsyms;
4378 
4379 		if (mod->state == MODULE_STATE_UNFORMED)
4380 			continue;
4381 		kallsyms = rcu_dereference_sched(mod->kallsyms);
4382 		if (symnum < kallsyms->num_symtab) {
4383 			const Elf_Sym *sym = &kallsyms->symtab[symnum];
4384 
4385 			*value = kallsyms_symbol_value(sym);
4386 			*type = kallsyms->typetab[symnum];
4387 			strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4388 			strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4389 			*exported = is_exported(name, *value, mod);
4390 			preempt_enable();
4391 			return 0;
4392 		}
4393 		symnum -= kallsyms->num_symtab;
4394 	}
4395 	preempt_enable();
4396 	return -ERANGE;
4397 }
4398 
4399 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4400 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4401 {
4402 	unsigned int i;
4403 	struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4404 
4405 	for (i = 0; i < kallsyms->num_symtab; i++) {
4406 		const Elf_Sym *sym = &kallsyms->symtab[i];
4407 
4408 		if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4409 		    sym->st_shndx != SHN_UNDEF)
4410 			return kallsyms_symbol_value(sym);
4411 	}
4412 	return 0;
4413 }
4414 
4415 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4416 unsigned long module_kallsyms_lookup_name(const char *name)
4417 {
4418 	struct module *mod;
4419 	char *colon;
4420 	unsigned long ret = 0;
4421 
4422 	/* Don't lock: we're in enough trouble already. */
4423 	preempt_disable();
4424 	if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4425 		if ((mod = find_module_all(name, colon - name, false)) != NULL)
4426 			ret = find_kallsyms_symbol_value(mod, colon+1);
4427 	} else {
4428 		list_for_each_entry_rcu(mod, &modules, list) {
4429 			if (mod->state == MODULE_STATE_UNFORMED)
4430 				continue;
4431 			if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4432 				break;
4433 		}
4434 	}
4435 	preempt_enable();
4436 	return ret;
4437 }
4438 
4439 #ifdef CONFIG_LIVEPATCH
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4440 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4441 					     struct module *, unsigned long),
4442 				   void *data)
4443 {
4444 	struct module *mod;
4445 	unsigned int i;
4446 	int ret = 0;
4447 
4448 	mutex_lock(&module_mutex);
4449 	list_for_each_entry(mod, &modules, list) {
4450 		/* We hold module_mutex: no need for rcu_dereference_sched */
4451 		struct mod_kallsyms *kallsyms = mod->kallsyms;
4452 
4453 		if (mod->state == MODULE_STATE_UNFORMED)
4454 			continue;
4455 		for (i = 0; i < kallsyms->num_symtab; i++) {
4456 			const Elf_Sym *sym = &kallsyms->symtab[i];
4457 
4458 			if (sym->st_shndx == SHN_UNDEF)
4459 				continue;
4460 
4461 			ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4462 				 mod, kallsyms_symbol_value(sym));
4463 			if (ret != 0)
4464 				goto out;
4465 		}
4466 	}
4467 out:
4468 	mutex_unlock(&module_mutex);
4469 	return ret;
4470 }
4471 #endif /* CONFIG_LIVEPATCH */
4472 #endif /* CONFIG_KALLSYMS */
4473 
cfi_init(struct module * mod)4474 static void cfi_init(struct module *mod)
4475 {
4476 #ifdef CONFIG_CFI_CLANG
4477 	initcall_t *init;
4478 	exitcall_t *exit;
4479 
4480 	rcu_read_lock_sched();
4481 	mod->cfi_check = (cfi_check_fn)
4482 		find_kallsyms_symbol_value(mod, "__cfi_check");
4483 	init = (initcall_t *)
4484 		find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4485 	exit = (exitcall_t *)
4486 		find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4487 	rcu_read_unlock_sched();
4488 
4489 	/* Fix init/exit functions to point to the CFI jump table */
4490 	if (init)
4491 		mod->init = *init;
4492 #ifdef CONFIG_MODULE_UNLOAD
4493 	if (exit)
4494 		mod->exit = *exit;
4495 #endif
4496 
4497 	cfi_module_add(mod, module_addr_min);
4498 #endif
4499 }
4500 
cfi_cleanup(struct module * mod)4501 static void cfi_cleanup(struct module *mod)
4502 {
4503 #ifdef CONFIG_CFI_CLANG
4504 	cfi_module_remove(mod, module_addr_min);
4505 #endif
4506 }
4507 
4508 /* Maximum number of characters written by module_flags() */
4509 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4510 
4511 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4512 static char *module_flags(struct module *mod, char *buf)
4513 {
4514 	int bx = 0;
4515 
4516 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4517 	if (mod->taints ||
4518 	    mod->state == MODULE_STATE_GOING ||
4519 	    mod->state == MODULE_STATE_COMING) {
4520 		buf[bx++] = '(';
4521 		bx += module_flags_taint(mod, buf + bx);
4522 		/* Show a - for module-is-being-unloaded */
4523 		if (mod->state == MODULE_STATE_GOING)
4524 			buf[bx++] = '-';
4525 		/* Show a + for module-is-being-loaded */
4526 		if (mod->state == MODULE_STATE_COMING)
4527 			buf[bx++] = '+';
4528 		buf[bx++] = ')';
4529 	}
4530 	buf[bx] = '\0';
4531 
4532 	return buf;
4533 }
4534 
4535 #ifdef CONFIG_PROC_FS
4536 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4537 static void *m_start(struct seq_file *m, loff_t *pos)
4538 {
4539 	mutex_lock(&module_mutex);
4540 	return seq_list_start(&modules, *pos);
4541 }
4542 
m_next(struct seq_file * m,void * p,loff_t * pos)4543 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4544 {
4545 	return seq_list_next(p, &modules, pos);
4546 }
4547 
m_stop(struct seq_file * m,void * p)4548 static void m_stop(struct seq_file *m, void *p)
4549 {
4550 	mutex_unlock(&module_mutex);
4551 }
4552 
m_show(struct seq_file * m,void * p)4553 static int m_show(struct seq_file *m, void *p)
4554 {
4555 	struct module *mod = list_entry(p, struct module, list);
4556 	char buf[MODULE_FLAGS_BUF_SIZE];
4557 	void *value;
4558 
4559 	/* We always ignore unformed modules. */
4560 	if (mod->state == MODULE_STATE_UNFORMED)
4561 		return 0;
4562 
4563 	seq_printf(m, "%s %u",
4564 		   mod->name, mod->init_layout.size + mod->core_layout.size);
4565 	print_unload_info(m, mod);
4566 
4567 	/* Informative for users. */
4568 	seq_printf(m, " %s",
4569 		   mod->state == MODULE_STATE_GOING ? "Unloading" :
4570 		   mod->state == MODULE_STATE_COMING ? "Loading" :
4571 		   "Live");
4572 	/* Used by oprofile and other similar tools. */
4573 	value = m->private ? NULL : mod->core_layout.base;
4574 	seq_printf(m, " 0x%px", value);
4575 
4576 	/* Taints info */
4577 	if (mod->taints)
4578 		seq_printf(m, " %s", module_flags(mod, buf));
4579 
4580 	seq_puts(m, "\n");
4581 	return 0;
4582 }
4583 
4584 /*
4585  * Format: modulename size refcount deps address
4586  *
4587  * Where refcount is a number or -, and deps is a comma-separated list
4588  * of depends or -.
4589  */
4590 static const struct seq_operations modules_op = {
4591 	.start	= m_start,
4592 	.next	= m_next,
4593 	.stop	= m_stop,
4594 	.show	= m_show
4595 };
4596 
4597 /*
4598  * This also sets the "private" pointer to non-NULL if the
4599  * kernel pointers should be hidden (so you can just test
4600  * "m->private" to see if you should keep the values private).
4601  *
4602  * We use the same logic as for /proc/kallsyms.
4603  */
modules_open(struct inode * inode,struct file * file)4604 static int modules_open(struct inode *inode, struct file *file)
4605 {
4606 	int err = seq_open(file, &modules_op);
4607 
4608 	if (!err) {
4609 		struct seq_file *m = file->private_data;
4610 		m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4611 	}
4612 
4613 	return err;
4614 }
4615 
4616 static const struct proc_ops modules_proc_ops = {
4617 	.proc_flags	= PROC_ENTRY_PERMANENT,
4618 	.proc_open	= modules_open,
4619 	.proc_read	= seq_read,
4620 	.proc_lseek	= seq_lseek,
4621 	.proc_release	= seq_release,
4622 };
4623 
proc_modules_init(void)4624 static int __init proc_modules_init(void)
4625 {
4626 	proc_create("modules", 0, NULL, &modules_proc_ops);
4627 	return 0;
4628 }
4629 module_init(proc_modules_init);
4630 #endif
4631 
4632 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4633 const struct exception_table_entry *search_module_extables(unsigned long addr)
4634 {
4635 	const struct exception_table_entry *e = NULL;
4636 	struct module *mod;
4637 
4638 	preempt_disable();
4639 	mod = __module_address(addr);
4640 	if (!mod)
4641 		goto out;
4642 
4643 	if (!mod->num_exentries)
4644 		goto out;
4645 
4646 	e = search_extable(mod->extable,
4647 			   mod->num_exentries,
4648 			   addr);
4649 out:
4650 	preempt_enable();
4651 
4652 	/*
4653 	 * Now, if we found one, we are running inside it now, hence
4654 	 * we cannot unload the module, hence no refcnt needed.
4655 	 */
4656 	return e;
4657 }
4658 
4659 /**
4660  * is_module_address() - is this address inside a module?
4661  * @addr: the address to check.
4662  *
4663  * See is_module_text_address() if you simply want to see if the address
4664  * is code (not data).
4665  */
is_module_address(unsigned long addr)4666 bool is_module_address(unsigned long addr)
4667 {
4668 	bool ret;
4669 
4670 	preempt_disable();
4671 	ret = __module_address(addr) != NULL;
4672 	preempt_enable();
4673 
4674 	return ret;
4675 }
4676 
4677 /**
4678  * __module_address() - get the module which contains an address.
4679  * @addr: the address.
4680  *
4681  * Must be called with preempt disabled or module mutex held so that
4682  * module doesn't get freed during this.
4683  */
__module_address(unsigned long addr)4684 struct module *__module_address(unsigned long addr)
4685 {
4686 	struct module *mod;
4687 
4688 	if (addr < module_addr_min || addr > module_addr_max)
4689 		return NULL;
4690 
4691 	module_assert_mutex_or_preempt();
4692 
4693 	mod = mod_find(addr);
4694 	if (mod) {
4695 		BUG_ON(!within_module(addr, mod));
4696 		if (mod->state == MODULE_STATE_UNFORMED)
4697 			mod = NULL;
4698 	}
4699 	return mod;
4700 }
4701 
4702 /**
4703  * is_module_text_address() - is this address inside module code?
4704  * @addr: the address to check.
4705  *
4706  * See is_module_address() if you simply want to see if the address is
4707  * anywhere in a module.  See kernel_text_address() for testing if an
4708  * address corresponds to kernel or module code.
4709  */
is_module_text_address(unsigned long addr)4710 bool is_module_text_address(unsigned long addr)
4711 {
4712 	bool ret;
4713 
4714 	preempt_disable();
4715 	ret = __module_text_address(addr) != NULL;
4716 	preempt_enable();
4717 
4718 	return ret;
4719 }
4720 
4721 /**
4722  * __module_text_address() - get the module whose code contains an address.
4723  * @addr: the address.
4724  *
4725  * Must be called with preempt disabled or module mutex held so that
4726  * module doesn't get freed during this.
4727  */
__module_text_address(unsigned long addr)4728 struct module *__module_text_address(unsigned long addr)
4729 {
4730 	struct module *mod = __module_address(addr);
4731 	if (mod) {
4732 		/* Make sure it's within the text section. */
4733 		if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4734 		    && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4735 			mod = NULL;
4736 	}
4737 	return mod;
4738 }
4739 
4740 /* Don't grab lock, we're oopsing. */
print_modules(void)4741 void print_modules(void)
4742 {
4743 	struct module *mod;
4744 	char buf[MODULE_FLAGS_BUF_SIZE];
4745 
4746 	printk(KERN_DEFAULT "Modules linked in:");
4747 	/* Most callers should already have preempt disabled, but make sure */
4748 	preempt_disable();
4749 	list_for_each_entry_rcu(mod, &modules, list) {
4750 		if (mod->state == MODULE_STATE_UNFORMED)
4751 			continue;
4752 		pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4753 	}
4754 	preempt_enable();
4755 	if (last_unloaded_module[0])
4756 		pr_cont(" [last unloaded: %s]", last_unloaded_module);
4757 	pr_cont("\n");
4758 }
4759 
4760 #ifdef CONFIG_MODVERSIONS
4761 /*
4762  * Generate the signature for all relevant module structures here.
4763  * If these change, we don't want to try to parse the module.
4764  */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4765 void module_layout(struct module *mod,
4766 		   struct modversion_info *ver,
4767 		   struct kernel_param *kp,
4768 		   struct kernel_symbol *ks,
4769 		   struct tracepoint * const *tp)
4770 {
4771 }
4772 EXPORT_SYMBOL(module_layout);
4773 #endif
4774