1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 */
6
7 #define INCLUDE_VERMAGIC
8
9 #include <linux/export.h>
10 #include <linux/extable.h>
11 #include <linux/moduleloader.h>
12 #include <linux/module_signature.h>
13 #include <linux/trace_events.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/buildid.h>
17 #include <linux/file.h>
18 #include <linux/fs.h>
19 #include <linux/sysfs.h>
20 #include <linux/kernel.h>
21 #include <linux/kernel_read_file.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/proc_fs.h>
26 #include <linux/security.h>
27 #include <linux/seq_file.h>
28 #include <linux/syscalls.h>
29 #include <linux/fcntl.h>
30 #include <linux/rcupdate.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/moduleparam.h>
34 #include <linux/errno.h>
35 #include <linux/err.h>
36 #include <linux/vermagic.h>
37 #include <linux/notifier.h>
38 #include <linux/sched.h>
39 #include <linux/device.h>
40 #include <linux/string.h>
41 #include <linux/mutex.h>
42 #include <linux/rculist.h>
43 #include <linux/uaccess.h>
44 #include <asm/cacheflush.h>
45 #include <linux/set_memory.h>
46 #include <asm/mmu_context.h>
47 #include <linux/license.h>
48 #include <asm/sections.h>
49 #include <linux/tracepoint.h>
50 #include <linux/ftrace.h>
51 #include <linux/livepatch.h>
52 #include <linux/async.h>
53 #include <linux/percpu.h>
54 #include <linux/kmemleak.h>
55 #include <linux/jump_label.h>
56 #include <linux/pfn.h>
57 #include <linux/bsearch.h>
58 #include <linux/dynamic_debug.h>
59 #include <linux/audit.h>
60 #include <uapi/linux/module.h>
61 #include "module-internal.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/module.h>
65
66 #ifndef ARCH_SHF_SMALL
67 #define ARCH_SHF_SMALL 0
68 #endif
69
70 /*
71 * Modules' sections will be aligned on page boundaries
72 * to ensure complete separation of code and data, but
73 * only when CONFIG_ARCH_HAS_STRICT_MODULE_RWX=y
74 */
75 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
76 # define debug_align(X) ALIGN(X, PAGE_SIZE)
77 #else
78 # define debug_align(X) (X)
79 #endif
80
81 /* If this is set, the section belongs in the init part of the module */
82 #define INIT_OFFSET_MASK (1UL << (BITS_PER_LONG-1))
83
84 /*
85 * Mutex protects:
86 * 1) List of modules (also safely readable with preempt_disable),
87 * 2) module_use links,
88 * 3) module_addr_min/module_addr_max.
89 * (delete and add uses RCU list operations).
90 */
91 static DEFINE_MUTEX(module_mutex);
92 static LIST_HEAD(modules);
93
94 /* Work queue for freeing init sections in success case */
95 static void do_free_init(struct work_struct *w);
96 static DECLARE_WORK(init_free_wq, do_free_init);
97 static LLIST_HEAD(init_free_list);
98
99 #ifdef CONFIG_MODULES_TREE_LOOKUP
100
101 /*
102 * Use a latched RB-tree for __module_address(); this allows us to use
103 * RCU-sched lookups of the address from any context.
104 *
105 * This is conditional on PERF_EVENTS || TRACING because those can really hit
106 * __module_address() hard by doing a lot of stack unwinding; potentially from
107 * NMI context.
108 */
109
__mod_tree_val(struct latch_tree_node * n)110 static __always_inline unsigned long __mod_tree_val(struct latch_tree_node *n)
111 {
112 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
113
114 return (unsigned long)layout->base;
115 }
116
__mod_tree_size(struct latch_tree_node * n)117 static __always_inline unsigned long __mod_tree_size(struct latch_tree_node *n)
118 {
119 struct module_layout *layout = container_of(n, struct module_layout, mtn.node);
120
121 return (unsigned long)layout->size;
122 }
123
124 static __always_inline bool
mod_tree_less(struct latch_tree_node * a,struct latch_tree_node * b)125 mod_tree_less(struct latch_tree_node *a, struct latch_tree_node *b)
126 {
127 return __mod_tree_val(a) < __mod_tree_val(b);
128 }
129
130 static __always_inline int
mod_tree_comp(void * key,struct latch_tree_node * n)131 mod_tree_comp(void *key, struct latch_tree_node *n)
132 {
133 unsigned long val = (unsigned long)key;
134 unsigned long start, end;
135
136 start = __mod_tree_val(n);
137 if (val < start)
138 return -1;
139
140 end = start + __mod_tree_size(n);
141 if (val >= end)
142 return 1;
143
144 return 0;
145 }
146
147 static const struct latch_tree_ops mod_tree_ops = {
148 .less = mod_tree_less,
149 .comp = mod_tree_comp,
150 };
151
152 static struct mod_tree_root {
153 struct latch_tree_root root;
154 unsigned long addr_min;
155 unsigned long addr_max;
156 } mod_tree __cacheline_aligned = {
157 .addr_min = -1UL,
158 };
159
160 #define module_addr_min mod_tree.addr_min
161 #define module_addr_max mod_tree.addr_max
162
__mod_tree_insert(struct mod_tree_node * node)163 static noinline void __mod_tree_insert(struct mod_tree_node *node)
164 {
165 latch_tree_insert(&node->node, &mod_tree.root, &mod_tree_ops);
166 }
167
__mod_tree_remove(struct mod_tree_node * node)168 static void __mod_tree_remove(struct mod_tree_node *node)
169 {
170 latch_tree_erase(&node->node, &mod_tree.root, &mod_tree_ops);
171 }
172
173 /*
174 * These modifications: insert, remove_init and remove; are serialized by the
175 * module_mutex.
176 */
mod_tree_insert(struct module * mod)177 static void mod_tree_insert(struct module *mod)
178 {
179 mod->core_layout.mtn.mod = mod;
180 mod->init_layout.mtn.mod = mod;
181
182 __mod_tree_insert(&mod->core_layout.mtn);
183 if (mod->init_layout.size)
184 __mod_tree_insert(&mod->init_layout.mtn);
185 }
186
mod_tree_remove_init(struct module * mod)187 static void mod_tree_remove_init(struct module *mod)
188 {
189 if (mod->init_layout.size)
190 __mod_tree_remove(&mod->init_layout.mtn);
191 }
192
mod_tree_remove(struct module * mod)193 static void mod_tree_remove(struct module *mod)
194 {
195 __mod_tree_remove(&mod->core_layout.mtn);
196 mod_tree_remove_init(mod);
197 }
198
mod_find(unsigned long addr)199 static struct module *mod_find(unsigned long addr)
200 {
201 struct latch_tree_node *ltn;
202
203 ltn = latch_tree_find((void *)addr, &mod_tree.root, &mod_tree_ops);
204 if (!ltn)
205 return NULL;
206
207 return container_of(ltn, struct mod_tree_node, node)->mod;
208 }
209
210 #else /* MODULES_TREE_LOOKUP */
211
212 static unsigned long module_addr_min = -1UL, module_addr_max = 0;
213
mod_tree_insert(struct module * mod)214 static void mod_tree_insert(struct module *mod) { }
mod_tree_remove_init(struct module * mod)215 static void mod_tree_remove_init(struct module *mod) { }
mod_tree_remove(struct module * mod)216 static void mod_tree_remove(struct module *mod) { }
217
mod_find(unsigned long addr)218 static struct module *mod_find(unsigned long addr)
219 {
220 struct module *mod;
221
222 list_for_each_entry_rcu(mod, &modules, list,
223 lockdep_is_held(&module_mutex)) {
224 if (within_module(addr, mod))
225 return mod;
226 }
227
228 return NULL;
229 }
230
231 #endif /* MODULES_TREE_LOOKUP */
232
233 /*
234 * Bounds of module text, for speeding up __module_address.
235 * Protected by module_mutex.
236 */
__mod_update_bounds(void * base,unsigned int size)237 static void __mod_update_bounds(void *base, unsigned int size)
238 {
239 unsigned long min = (unsigned long)base;
240 unsigned long max = min + size;
241
242 if (min < module_addr_min)
243 module_addr_min = min;
244 if (max > module_addr_max)
245 module_addr_max = max;
246 }
247
mod_update_bounds(struct module * mod)248 static void mod_update_bounds(struct module *mod)
249 {
250 __mod_update_bounds(mod->core_layout.base, mod->core_layout.size);
251 if (mod->init_layout.size)
252 __mod_update_bounds(mod->init_layout.base, mod->init_layout.size);
253 }
254
255 #ifdef CONFIG_KGDB_KDB
256 struct list_head *kdb_modules = &modules; /* kdb needs the list of modules */
257 #endif /* CONFIG_KGDB_KDB */
258
module_assert_mutex_or_preempt(void)259 static void module_assert_mutex_or_preempt(void)
260 {
261 #ifdef CONFIG_LOCKDEP
262 if (unlikely(!debug_locks))
263 return;
264
265 WARN_ON_ONCE(!rcu_read_lock_sched_held() &&
266 !lockdep_is_held(&module_mutex));
267 #endif
268 }
269
270 #ifdef CONFIG_MODULE_SIG
271 static bool sig_enforce = IS_ENABLED(CONFIG_MODULE_SIG_FORCE);
272 module_param(sig_enforce, bool_enable_only, 0644);
273
set_module_sig_enforced(void)274 void set_module_sig_enforced(void)
275 {
276 sig_enforce = true;
277 }
278 #else
279 #define sig_enforce false
280 #endif
281
282 /*
283 * Export sig_enforce kernel cmdline parameter to allow other subsystems rely
284 * on that instead of directly to CONFIG_MODULE_SIG_FORCE config.
285 */
is_module_sig_enforced(void)286 bool is_module_sig_enforced(void)
287 {
288 return sig_enforce;
289 }
290 EXPORT_SYMBOL(is_module_sig_enforced);
291
292 /* Block module loading/unloading? */
293 int modules_disabled = 0;
294 core_param(nomodule, modules_disabled, bint, 0);
295
296 /* Waiting for a module to finish initializing? */
297 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
298
299 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
300
register_module_notifier(struct notifier_block * nb)301 int register_module_notifier(struct notifier_block *nb)
302 {
303 return blocking_notifier_chain_register(&module_notify_list, nb);
304 }
305 EXPORT_SYMBOL(register_module_notifier);
306
unregister_module_notifier(struct notifier_block * nb)307 int unregister_module_notifier(struct notifier_block *nb)
308 {
309 return blocking_notifier_chain_unregister(&module_notify_list, nb);
310 }
311 EXPORT_SYMBOL(unregister_module_notifier);
312
313 /*
314 * We require a truly strong try_module_get(): 0 means success.
315 * Otherwise an error is returned due to ongoing or failed
316 * initialization etc.
317 */
strong_try_module_get(struct module * mod)318 static inline int strong_try_module_get(struct module *mod)
319 {
320 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
321 if (mod && mod->state == MODULE_STATE_COMING)
322 return -EBUSY;
323 if (try_module_get(mod))
324 return 0;
325 else
326 return -ENOENT;
327 }
328
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)329 static inline void add_taint_module(struct module *mod, unsigned flag,
330 enum lockdep_ok lockdep_ok)
331 {
332 add_taint(flag, lockdep_ok);
333 set_bit(flag, &mod->taints);
334 }
335
336 /*
337 * A thread that wants to hold a reference to a module only while it
338 * is running can call this to safely exit. nfsd and lockd use this.
339 */
__module_put_and_exit(struct module * mod,long code)340 void __noreturn __module_put_and_exit(struct module *mod, long code)
341 {
342 module_put(mod);
343 do_exit(code);
344 }
345 EXPORT_SYMBOL(__module_put_and_exit);
346
347 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)348 static unsigned int find_sec(const struct load_info *info, const char *name)
349 {
350 unsigned int i;
351
352 for (i = 1; i < info->hdr->e_shnum; i++) {
353 Elf_Shdr *shdr = &info->sechdrs[i];
354 /* Alloc bit cleared means "ignore it." */
355 if ((shdr->sh_flags & SHF_ALLOC)
356 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
357 return i;
358 }
359 return 0;
360 }
361
362 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)363 static void *section_addr(const struct load_info *info, const char *name)
364 {
365 /* Section 0 has sh_addr 0. */
366 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
367 }
368
369 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)370 static void *section_objs(const struct load_info *info,
371 const char *name,
372 size_t object_size,
373 unsigned int *num)
374 {
375 unsigned int sec = find_sec(info, name);
376
377 /* Section 0 has sh_addr 0 and sh_size 0. */
378 *num = info->sechdrs[sec].sh_size / object_size;
379 return (void *)info->sechdrs[sec].sh_addr;
380 }
381
382 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)383 static unsigned int find_any_sec(const struct load_info *info, const char *name)
384 {
385 unsigned int i;
386
387 for (i = 1; i < info->hdr->e_shnum; i++) {
388 Elf_Shdr *shdr = &info->sechdrs[i];
389 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
390 return i;
391 }
392 return 0;
393 }
394
395 /*
396 * Find a module section, or NULL. Fill in number of "objects" in section.
397 * Ignores SHF_ALLOC flag.
398 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)399 static __maybe_unused void *any_section_objs(const struct load_info *info,
400 const char *name,
401 size_t object_size,
402 unsigned int *num)
403 {
404 unsigned int sec = find_any_sec(info, name);
405
406 /* Section 0 has sh_addr 0 and sh_size 0. */
407 *num = info->sechdrs[sec].sh_size / object_size;
408 return (void *)info->sechdrs[sec].sh_addr;
409 }
410
411 /* Provided by the linker */
412 extern const struct kernel_symbol __start___ksymtab[];
413 extern const struct kernel_symbol __stop___ksymtab[];
414 extern const struct kernel_symbol __start___ksymtab_gpl[];
415 extern const struct kernel_symbol __stop___ksymtab_gpl[];
416 extern const s32 __start___kcrctab[];
417 extern const s32 __start___kcrctab_gpl[];
418
419 #ifndef CONFIG_MODVERSIONS
420 #define symversion(base, idx) NULL
421 #else
422 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
423 #endif
424
425 struct symsearch {
426 const struct kernel_symbol *start, *stop;
427 const s32 *crcs;
428 enum mod_license {
429 NOT_GPL_ONLY,
430 GPL_ONLY,
431 } license;
432 };
433
434 struct find_symbol_arg {
435 /* Input */
436 const char *name;
437 bool gplok;
438 bool warn;
439
440 /* Output */
441 struct module *owner;
442 const s32 *crc;
443 const struct kernel_symbol *sym;
444 enum mod_license license;
445 };
446
check_exported_symbol(const struct symsearch * syms,struct module * owner,unsigned int symnum,void * data)447 static bool check_exported_symbol(const struct symsearch *syms,
448 struct module *owner,
449 unsigned int symnum, void *data)
450 {
451 struct find_symbol_arg *fsa = data;
452
453 if (!fsa->gplok && syms->license == GPL_ONLY)
454 return false;
455 fsa->owner = owner;
456 fsa->crc = symversion(syms->crcs, symnum);
457 fsa->sym = &syms->start[symnum];
458 fsa->license = syms->license;
459 return true;
460 }
461
kernel_symbol_value(const struct kernel_symbol * sym)462 static unsigned long kernel_symbol_value(const struct kernel_symbol *sym)
463 {
464 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
465 return (unsigned long)offset_to_ptr(&sym->value_offset);
466 #else
467 return sym->value;
468 #endif
469 }
470
kernel_symbol_name(const struct kernel_symbol * sym)471 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
472 {
473 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
474 return offset_to_ptr(&sym->name_offset);
475 #else
476 return sym->name;
477 #endif
478 }
479
kernel_symbol_namespace(const struct kernel_symbol * sym)480 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
481 {
482 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
483 if (!sym->namespace_offset)
484 return NULL;
485 return offset_to_ptr(&sym->namespace_offset);
486 #else
487 return sym->namespace;
488 #endif
489 }
490
cmp_name(const void * name,const void * sym)491 static int cmp_name(const void *name, const void *sym)
492 {
493 return strcmp(name, kernel_symbol_name(sym));
494 }
495
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,void * data)496 static bool find_exported_symbol_in_section(const struct symsearch *syms,
497 struct module *owner,
498 void *data)
499 {
500 struct find_symbol_arg *fsa = data;
501 struct kernel_symbol *sym;
502
503 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
504 sizeof(struct kernel_symbol), cmp_name);
505
506 if (sym != NULL && check_exported_symbol(syms, owner,
507 sym - syms->start, data))
508 return true;
509
510 return false;
511 }
512
513 /*
514 * Find an exported symbol and return it, along with, (optional) crc and
515 * (optional) module which owns it. Needs preempt disabled or module_mutex.
516 */
find_symbol(struct find_symbol_arg * fsa)517 static bool find_symbol(struct find_symbol_arg *fsa)
518 {
519 static const struct symsearch arr[] = {
520 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
521 NOT_GPL_ONLY },
522 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
523 __start___kcrctab_gpl,
524 GPL_ONLY },
525 };
526 struct module *mod;
527 unsigned int i;
528
529 module_assert_mutex_or_preempt();
530
531 for (i = 0; i < ARRAY_SIZE(arr); i++)
532 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
533 return true;
534
535 list_for_each_entry_rcu(mod, &modules, list,
536 lockdep_is_held(&module_mutex)) {
537 struct symsearch arr[] = {
538 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
539 NOT_GPL_ONLY },
540 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
541 mod->gpl_crcs,
542 GPL_ONLY },
543 };
544
545 if (mod->state == MODULE_STATE_UNFORMED)
546 continue;
547
548 for (i = 0; i < ARRAY_SIZE(arr); i++)
549 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
550 return true;
551 }
552
553 pr_debug("Failed to find symbol %s\n", fsa->name);
554 return false;
555 }
556
557 /*
558 * Search for module by name: must hold module_mutex (or preempt disabled
559 * for read-only access).
560 */
find_module_all(const char * name,size_t len,bool even_unformed)561 static struct module *find_module_all(const char *name, size_t len,
562 bool even_unformed)
563 {
564 struct module *mod;
565
566 module_assert_mutex_or_preempt();
567
568 list_for_each_entry_rcu(mod, &modules, list,
569 lockdep_is_held(&module_mutex)) {
570 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
571 continue;
572 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
573 return mod;
574 }
575 return NULL;
576 }
577
find_module(const char * name)578 struct module *find_module(const char *name)
579 {
580 return find_module_all(name, strlen(name), false);
581 }
582
583 #ifdef CONFIG_SMP
584
mod_percpu(struct module * mod)585 static inline void __percpu *mod_percpu(struct module *mod)
586 {
587 return mod->percpu;
588 }
589
percpu_modalloc(struct module * mod,struct load_info * info)590 static int percpu_modalloc(struct module *mod, struct load_info *info)
591 {
592 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
593 unsigned long align = pcpusec->sh_addralign;
594
595 if (!pcpusec->sh_size)
596 return 0;
597
598 if (align > PAGE_SIZE) {
599 pr_warn("%s: per-cpu alignment %li > %li\n",
600 mod->name, align, PAGE_SIZE);
601 align = PAGE_SIZE;
602 }
603
604 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
605 if (!mod->percpu) {
606 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
607 mod->name, (unsigned long)pcpusec->sh_size);
608 return -ENOMEM;
609 }
610 mod->percpu_size = pcpusec->sh_size;
611 return 0;
612 }
613
percpu_modfree(struct module * mod)614 static void percpu_modfree(struct module *mod)
615 {
616 free_percpu(mod->percpu);
617 }
618
find_pcpusec(struct load_info * info)619 static unsigned int find_pcpusec(struct load_info *info)
620 {
621 return find_sec(info, ".data..percpu");
622 }
623
percpu_modcopy(struct module * mod,const void * from,unsigned long size)624 static void percpu_modcopy(struct module *mod,
625 const void *from, unsigned long size)
626 {
627 int cpu;
628
629 for_each_possible_cpu(cpu)
630 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
631 }
632
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)633 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
634 {
635 struct module *mod;
636 unsigned int cpu;
637
638 preempt_disable();
639
640 list_for_each_entry_rcu(mod, &modules, list) {
641 if (mod->state == MODULE_STATE_UNFORMED)
642 continue;
643 if (!mod->percpu_size)
644 continue;
645 for_each_possible_cpu(cpu) {
646 void *start = per_cpu_ptr(mod->percpu, cpu);
647 void *va = (void *)addr;
648
649 if (va >= start && va < start + mod->percpu_size) {
650 if (can_addr) {
651 *can_addr = (unsigned long) (va - start);
652 *can_addr += (unsigned long)
653 per_cpu_ptr(mod->percpu,
654 get_boot_cpu_id());
655 }
656 preempt_enable();
657 return true;
658 }
659 }
660 }
661
662 preempt_enable();
663 return false;
664 }
665
666 /**
667 * is_module_percpu_address() - test whether address is from module static percpu
668 * @addr: address to test
669 *
670 * Test whether @addr belongs to module static percpu area.
671 *
672 * Return: %true if @addr is from module static percpu area
673 */
is_module_percpu_address(unsigned long addr)674 bool is_module_percpu_address(unsigned long addr)
675 {
676 return __is_module_percpu_address(addr, NULL);
677 }
678
679 #else /* ... !CONFIG_SMP */
680
mod_percpu(struct module * mod)681 static inline void __percpu *mod_percpu(struct module *mod)
682 {
683 return NULL;
684 }
percpu_modalloc(struct module * mod,struct load_info * info)685 static int percpu_modalloc(struct module *mod, struct load_info *info)
686 {
687 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
688 if (info->sechdrs[info->index.pcpu].sh_size != 0)
689 return -ENOMEM;
690 return 0;
691 }
percpu_modfree(struct module * mod)692 static inline void percpu_modfree(struct module *mod)
693 {
694 }
find_pcpusec(struct load_info * info)695 static unsigned int find_pcpusec(struct load_info *info)
696 {
697 return 0;
698 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)699 static inline void percpu_modcopy(struct module *mod,
700 const void *from, unsigned long size)
701 {
702 /* pcpusec should be 0, and size of that section should be 0. */
703 BUG_ON(size != 0);
704 }
is_module_percpu_address(unsigned long addr)705 bool is_module_percpu_address(unsigned long addr)
706 {
707 return false;
708 }
709
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)710 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
711 {
712 return false;
713 }
714
715 #endif /* CONFIG_SMP */
716
717 #define MODINFO_ATTR(field) \
718 static void setup_modinfo_##field(struct module *mod, const char *s) \
719 { \
720 mod->field = kstrdup(s, GFP_KERNEL); \
721 } \
722 static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
723 struct module_kobject *mk, char *buffer) \
724 { \
725 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
726 } \
727 static int modinfo_##field##_exists(struct module *mod) \
728 { \
729 return mod->field != NULL; \
730 } \
731 static void free_modinfo_##field(struct module *mod) \
732 { \
733 kfree(mod->field); \
734 mod->field = NULL; \
735 } \
736 static struct module_attribute modinfo_##field = { \
737 .attr = { .name = __stringify(field), .mode = 0444 }, \
738 .show = show_modinfo_##field, \
739 .setup = setup_modinfo_##field, \
740 .test = modinfo_##field##_exists, \
741 .free = free_modinfo_##field, \
742 };
743
744 MODINFO_ATTR(version);
745 MODINFO_ATTR(srcversion);
746
747 static char last_unloaded_module[MODULE_NAME_LEN+1];
748
749 #ifdef CONFIG_MODULE_UNLOAD
750
751 EXPORT_TRACEPOINT_SYMBOL(module_get);
752
753 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
754 #define MODULE_REF_BASE 1
755
756 /* Init the unload section of the module. */
module_unload_init(struct module * mod)757 static int module_unload_init(struct module *mod)
758 {
759 /*
760 * Initialize reference counter to MODULE_REF_BASE.
761 * refcnt == 0 means module is going.
762 */
763 atomic_set(&mod->refcnt, MODULE_REF_BASE);
764
765 INIT_LIST_HEAD(&mod->source_list);
766 INIT_LIST_HEAD(&mod->target_list);
767
768 /* Hold reference count during initialization. */
769 atomic_inc(&mod->refcnt);
770
771 return 0;
772 }
773
774 /* Does a already use b? */
already_uses(struct module * a,struct module * b)775 static int already_uses(struct module *a, struct module *b)
776 {
777 struct module_use *use;
778
779 list_for_each_entry(use, &b->source_list, source_list) {
780 if (use->source == a) {
781 pr_debug("%s uses %s!\n", a->name, b->name);
782 return 1;
783 }
784 }
785 pr_debug("%s does not use %s!\n", a->name, b->name);
786 return 0;
787 }
788
789 /*
790 * Module a uses b
791 * - we add 'a' as a "source", 'b' as a "target" of module use
792 * - the module_use is added to the list of 'b' sources (so
793 * 'b' can walk the list to see who sourced them), and of 'a'
794 * targets (so 'a' can see what modules it targets).
795 */
add_module_usage(struct module * a,struct module * b)796 static int add_module_usage(struct module *a, struct module *b)
797 {
798 struct module_use *use;
799
800 pr_debug("Allocating new usage for %s.\n", a->name);
801 use = kmalloc(sizeof(*use), GFP_ATOMIC);
802 if (!use)
803 return -ENOMEM;
804
805 use->source = a;
806 use->target = b;
807 list_add(&use->source_list, &b->source_list);
808 list_add(&use->target_list, &a->target_list);
809 return 0;
810 }
811
812 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)813 static int ref_module(struct module *a, struct module *b)
814 {
815 int err;
816
817 if (b == NULL || already_uses(a, b))
818 return 0;
819
820 /* If module isn't available, we fail. */
821 err = strong_try_module_get(b);
822 if (err)
823 return err;
824
825 err = add_module_usage(a, b);
826 if (err) {
827 module_put(b);
828 return err;
829 }
830 return 0;
831 }
832
833 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)834 static void module_unload_free(struct module *mod)
835 {
836 struct module_use *use, *tmp;
837
838 mutex_lock(&module_mutex);
839 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
840 struct module *i = use->target;
841 pr_debug("%s unusing %s\n", mod->name, i->name);
842 module_put(i);
843 list_del(&use->source_list);
844 list_del(&use->target_list);
845 kfree(use);
846 }
847 mutex_unlock(&module_mutex);
848 }
849
850 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)851 static inline int try_force_unload(unsigned int flags)
852 {
853 int ret = (flags & O_TRUNC);
854 if (ret)
855 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
856 return ret;
857 }
858 #else
try_force_unload(unsigned int flags)859 static inline int try_force_unload(unsigned int flags)
860 {
861 return 0;
862 }
863 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
864
865 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)866 static int try_release_module_ref(struct module *mod)
867 {
868 int ret;
869
870 /* Try to decrement refcnt which we set at loading */
871 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
872 BUG_ON(ret < 0);
873 if (ret)
874 /* Someone can put this right now, recover with checking */
875 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
876
877 return ret;
878 }
879
try_stop_module(struct module * mod,int flags,int * forced)880 static int try_stop_module(struct module *mod, int flags, int *forced)
881 {
882 /* If it's not unused, quit unless we're forcing. */
883 if (try_release_module_ref(mod) != 0) {
884 *forced = try_force_unload(flags);
885 if (!(*forced))
886 return -EWOULDBLOCK;
887 }
888
889 /* Mark it as dying. */
890 mod->state = MODULE_STATE_GOING;
891
892 return 0;
893 }
894
895 /**
896 * module_refcount() - return the refcount or -1 if unloading
897 * @mod: the module we're checking
898 *
899 * Return:
900 * -1 if the module is in the process of unloading
901 * otherwise the number of references in the kernel to the module
902 */
module_refcount(struct module * mod)903 int module_refcount(struct module *mod)
904 {
905 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
906 }
907 EXPORT_SYMBOL(module_refcount);
908
909 /* This exists whether we can unload or not */
910 static void free_module(struct module *mod);
911
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)912 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
913 unsigned int, flags)
914 {
915 struct module *mod;
916 char name[MODULE_NAME_LEN];
917 int ret, forced = 0;
918
919 if (!capable(CAP_SYS_MODULE) || modules_disabled)
920 return -EPERM;
921
922 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
923 return -EFAULT;
924 name[MODULE_NAME_LEN-1] = '\0';
925
926 audit_log_kern_module(name);
927
928 if (mutex_lock_interruptible(&module_mutex) != 0)
929 return -EINTR;
930
931 mod = find_module(name);
932 if (!mod) {
933 ret = -ENOENT;
934 goto out;
935 }
936
937 if (!list_empty(&mod->source_list)) {
938 /* Other modules depend on us: get rid of them first. */
939 ret = -EWOULDBLOCK;
940 goto out;
941 }
942
943 /* Doing init or already dying? */
944 if (mod->state != MODULE_STATE_LIVE) {
945 /* FIXME: if (force), slam module count damn the torpedoes */
946 pr_debug("%s already dying\n", mod->name);
947 ret = -EBUSY;
948 goto out;
949 }
950
951 /* If it has an init func, it must have an exit func to unload */
952 if (mod->init && !mod->exit) {
953 forced = try_force_unload(flags);
954 if (!forced) {
955 /* This module can't be removed */
956 ret = -EBUSY;
957 goto out;
958 }
959 }
960
961 /* Stop the machine so refcounts can't move and disable module. */
962 ret = try_stop_module(mod, flags, &forced);
963 if (ret != 0)
964 goto out;
965
966 mutex_unlock(&module_mutex);
967 /* Final destruction now no one is using it. */
968 if (mod->exit != NULL)
969 mod->exit();
970 blocking_notifier_call_chain(&module_notify_list,
971 MODULE_STATE_GOING, mod);
972 klp_module_going(mod);
973 ftrace_release_mod(mod);
974
975 async_synchronize_full();
976
977 /* Store the name of the last unloaded module for diagnostic purposes */
978 strlcpy(last_unloaded_module, mod->name, sizeof(last_unloaded_module));
979
980 free_module(mod);
981 /* someone could wait for the module in add_unformed_module() */
982 wake_up_all(&module_wq);
983 return 0;
984 out:
985 mutex_unlock(&module_mutex);
986 return ret;
987 }
988
print_unload_info(struct seq_file * m,struct module * mod)989 static inline void print_unload_info(struct seq_file *m, struct module *mod)
990 {
991 struct module_use *use;
992 int printed_something = 0;
993
994 seq_printf(m, " %i ", module_refcount(mod));
995
996 /*
997 * Always include a trailing , so userspace can differentiate
998 * between this and the old multi-field proc format.
999 */
1000 list_for_each_entry(use, &mod->source_list, source_list) {
1001 printed_something = 1;
1002 seq_printf(m, "%s,", use->source->name);
1003 }
1004
1005 if (mod->init != NULL && mod->exit == NULL) {
1006 printed_something = 1;
1007 seq_puts(m, "[permanent],");
1008 }
1009
1010 if (!printed_something)
1011 seq_puts(m, "-");
1012 }
1013
__symbol_put(const char * symbol)1014 void __symbol_put(const char *symbol)
1015 {
1016 struct find_symbol_arg fsa = {
1017 .name = symbol,
1018 .gplok = true,
1019 };
1020
1021 preempt_disable();
1022 BUG_ON(!find_symbol(&fsa));
1023 module_put(fsa.owner);
1024 preempt_enable();
1025 }
1026 EXPORT_SYMBOL(__symbol_put);
1027
1028 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)1029 void symbol_put_addr(void *addr)
1030 {
1031 struct module *modaddr;
1032 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
1033
1034 if (core_kernel_text(a))
1035 return;
1036
1037 /*
1038 * Even though we hold a reference on the module; we still need to
1039 * disable preemption in order to safely traverse the data structure.
1040 */
1041 preempt_disable();
1042 modaddr = __module_text_address(a);
1043 BUG_ON(!modaddr);
1044 module_put(modaddr);
1045 preempt_enable();
1046 }
1047 EXPORT_SYMBOL_GPL(symbol_put_addr);
1048
show_refcnt(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1049 static ssize_t show_refcnt(struct module_attribute *mattr,
1050 struct module_kobject *mk, char *buffer)
1051 {
1052 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
1053 }
1054
1055 static struct module_attribute modinfo_refcnt =
1056 __ATTR(refcnt, 0444, show_refcnt, NULL);
1057
__module_get(struct module * module)1058 void __module_get(struct module *module)
1059 {
1060 if (module) {
1061 preempt_disable();
1062 atomic_inc(&module->refcnt);
1063 trace_module_get(module, _RET_IP_);
1064 preempt_enable();
1065 }
1066 }
1067 EXPORT_SYMBOL(__module_get);
1068
try_module_get(struct module * module)1069 bool try_module_get(struct module *module)
1070 {
1071 bool ret = true;
1072
1073 if (module) {
1074 preempt_disable();
1075 /* Note: here, we can fail to get a reference */
1076 if (likely(module_is_live(module) &&
1077 atomic_inc_not_zero(&module->refcnt) != 0))
1078 trace_module_get(module, _RET_IP_);
1079 else
1080 ret = false;
1081
1082 preempt_enable();
1083 }
1084 return ret;
1085 }
1086 EXPORT_SYMBOL(try_module_get);
1087
module_put(struct module * module)1088 void module_put(struct module *module)
1089 {
1090 int ret;
1091
1092 if (module) {
1093 preempt_disable();
1094 ret = atomic_dec_if_positive(&module->refcnt);
1095 WARN_ON(ret < 0); /* Failed to put refcount */
1096 trace_module_put(module, _RET_IP_);
1097 preempt_enable();
1098 }
1099 }
1100 EXPORT_SYMBOL(module_put);
1101
1102 #else /* !CONFIG_MODULE_UNLOAD */
print_unload_info(struct seq_file * m,struct module * mod)1103 static inline void print_unload_info(struct seq_file *m, struct module *mod)
1104 {
1105 /* We don't know the usage count, or what modules are using. */
1106 seq_puts(m, " - -");
1107 }
1108
module_unload_free(struct module * mod)1109 static inline void module_unload_free(struct module *mod)
1110 {
1111 }
1112
ref_module(struct module * a,struct module * b)1113 static int ref_module(struct module *a, struct module *b)
1114 {
1115 return strong_try_module_get(b);
1116 }
1117
module_unload_init(struct module * mod)1118 static inline int module_unload_init(struct module *mod)
1119 {
1120 return 0;
1121 }
1122 #endif /* CONFIG_MODULE_UNLOAD */
1123
module_flags_taint(struct module * mod,char * buf)1124 static size_t module_flags_taint(struct module *mod, char *buf)
1125 {
1126 size_t l = 0;
1127 int i;
1128
1129 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
1130 if (taint_flags[i].module && test_bit(i, &mod->taints))
1131 buf[l++] = taint_flags[i].c_true;
1132 }
1133
1134 return l;
1135 }
1136
show_initstate(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1137 static ssize_t show_initstate(struct module_attribute *mattr,
1138 struct module_kobject *mk, char *buffer)
1139 {
1140 const char *state = "unknown";
1141
1142 switch (mk->mod->state) {
1143 case MODULE_STATE_LIVE:
1144 state = "live";
1145 break;
1146 case MODULE_STATE_COMING:
1147 state = "coming";
1148 break;
1149 case MODULE_STATE_GOING:
1150 state = "going";
1151 break;
1152 default:
1153 BUG();
1154 }
1155 return sprintf(buffer, "%s\n", state);
1156 }
1157
1158 static struct module_attribute modinfo_initstate =
1159 __ATTR(initstate, 0444, show_initstate, NULL);
1160
store_uevent(struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)1161 static ssize_t store_uevent(struct module_attribute *mattr,
1162 struct module_kobject *mk,
1163 const char *buffer, size_t count)
1164 {
1165 int rc;
1166
1167 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
1168 return rc ? rc : count;
1169 }
1170
1171 struct module_attribute module_uevent =
1172 __ATTR(uevent, 0200, NULL, store_uevent);
1173
show_coresize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1174 static ssize_t show_coresize(struct module_attribute *mattr,
1175 struct module_kobject *mk, char *buffer)
1176 {
1177 return sprintf(buffer, "%u\n", mk->mod->core_layout.size);
1178 }
1179
1180 static struct module_attribute modinfo_coresize =
1181 __ATTR(coresize, 0444, show_coresize, NULL);
1182
show_initsize(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1183 static ssize_t show_initsize(struct module_attribute *mattr,
1184 struct module_kobject *mk, char *buffer)
1185 {
1186 return sprintf(buffer, "%u\n", mk->mod->init_layout.size);
1187 }
1188
1189 static struct module_attribute modinfo_initsize =
1190 __ATTR(initsize, 0444, show_initsize, NULL);
1191
show_taint(struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1192 static ssize_t show_taint(struct module_attribute *mattr,
1193 struct module_kobject *mk, char *buffer)
1194 {
1195 size_t l;
1196
1197 l = module_flags_taint(mk->mod, buffer);
1198 buffer[l++] = '\n';
1199 return l;
1200 }
1201
1202 static struct module_attribute modinfo_taint =
1203 __ATTR(taint, 0444, show_taint, NULL);
1204
1205 static struct module_attribute *modinfo_attrs[] = {
1206 &module_uevent,
1207 &modinfo_version,
1208 &modinfo_srcversion,
1209 &modinfo_initstate,
1210 &modinfo_coresize,
1211 &modinfo_initsize,
1212 &modinfo_taint,
1213 #ifdef CONFIG_MODULE_UNLOAD
1214 &modinfo_refcnt,
1215 #endif
1216 NULL,
1217 };
1218
1219 static const char vermagic[] = VERMAGIC_STRING;
1220
try_to_force_load(struct module * mod,const char * reason)1221 static int try_to_force_load(struct module *mod, const char *reason)
1222 {
1223 #ifdef CONFIG_MODULE_FORCE_LOAD
1224 if (!test_taint(TAINT_FORCED_MODULE))
1225 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1226 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1227 return 0;
1228 #else
1229 return -ENOEXEC;
1230 #endif
1231 }
1232
1233 #ifdef CONFIG_MODVERSIONS
1234
resolve_rel_crc(const s32 * crc)1235 static u32 resolve_rel_crc(const s32 *crc)
1236 {
1237 return *(u32 *)((void *)crc + *crc);
1238 }
1239
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1240 static int check_version(const struct load_info *info,
1241 const char *symname,
1242 struct module *mod,
1243 const s32 *crc)
1244 {
1245 Elf_Shdr *sechdrs = info->sechdrs;
1246 unsigned int versindex = info->index.vers;
1247 unsigned int i, num_versions;
1248 struct modversion_info *versions;
1249
1250 /* Exporting module didn't supply crcs? OK, we're already tainted. */
1251 if (!crc)
1252 return 1;
1253
1254 /* No versions at all? modprobe --force does this. */
1255 if (versindex == 0)
1256 return try_to_force_load(mod, symname) == 0;
1257
1258 versions = (void *) sechdrs[versindex].sh_addr;
1259 num_versions = sechdrs[versindex].sh_size
1260 / sizeof(struct modversion_info);
1261
1262 for (i = 0; i < num_versions; i++) {
1263 u32 crcval;
1264
1265 if (strcmp(versions[i].name, symname) != 0)
1266 continue;
1267
1268 if (IS_ENABLED(CONFIG_MODULE_REL_CRCS))
1269 crcval = resolve_rel_crc(crc);
1270 else
1271 crcval = *crc;
1272 if (versions[i].crc == crcval)
1273 return 1;
1274 pr_debug("Found checksum %X vs module %lX\n",
1275 crcval, versions[i].crc);
1276 goto bad_version;
1277 }
1278
1279 /* Broken toolchain. Warn once, then let it go.. */
1280 pr_warn_once("%s: no symbol version for %s\n", info->name, symname);
1281 return 1;
1282
1283 bad_version:
1284 pr_warn("%s: disagrees about version of symbol %s\n",
1285 info->name, symname);
1286 return 0;
1287 }
1288
check_modstruct_version(const struct load_info * info,struct module * mod)1289 static inline int check_modstruct_version(const struct load_info *info,
1290 struct module *mod)
1291 {
1292 struct find_symbol_arg fsa = {
1293 .name = "module_layout",
1294 .gplok = true,
1295 };
1296
1297 /*
1298 * Since this should be found in kernel (which can't be removed), no
1299 * locking is necessary -- use preempt_disable() to placate lockdep.
1300 */
1301 preempt_disable();
1302 if (!find_symbol(&fsa)) {
1303 preempt_enable();
1304 BUG();
1305 }
1306 preempt_enable();
1307 return check_version(info, "module_layout", mod, fsa.crc);
1308 }
1309
1310 /* First part is kernel version, which we ignore if module has crcs. */
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1311 static inline int same_magic(const char *amagic, const char *bmagic,
1312 bool has_crcs)
1313 {
1314 if (has_crcs) {
1315 amagic += strcspn(amagic, " ");
1316 bmagic += strcspn(bmagic, " ");
1317 }
1318 return strcmp(amagic, bmagic) == 0;
1319 }
1320 #else
check_version(const struct load_info * info,const char * symname,struct module * mod,const s32 * crc)1321 static inline int check_version(const struct load_info *info,
1322 const char *symname,
1323 struct module *mod,
1324 const s32 *crc)
1325 {
1326 return 1;
1327 }
1328
check_modstruct_version(const struct load_info * info,struct module * mod)1329 static inline int check_modstruct_version(const struct load_info *info,
1330 struct module *mod)
1331 {
1332 return 1;
1333 }
1334
same_magic(const char * amagic,const char * bmagic,bool has_crcs)1335 static inline int same_magic(const char *amagic, const char *bmagic,
1336 bool has_crcs)
1337 {
1338 return strcmp(amagic, bmagic) == 0;
1339 }
1340 #endif /* CONFIG_MODVERSIONS */
1341
1342 static char *get_modinfo(const struct load_info *info, const char *tag);
1343 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1344 char *prev);
1345
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1346 static int verify_namespace_is_imported(const struct load_info *info,
1347 const struct kernel_symbol *sym,
1348 struct module *mod)
1349 {
1350 const char *namespace;
1351 char *imported_namespace;
1352
1353 namespace = kernel_symbol_namespace(sym);
1354 if (namespace && namespace[0]) {
1355 imported_namespace = get_modinfo(info, "import_ns");
1356 while (imported_namespace) {
1357 if (strcmp(namespace, imported_namespace) == 0)
1358 return 0;
1359 imported_namespace = get_next_modinfo(
1360 info, "import_ns", imported_namespace);
1361 }
1362 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1363 pr_warn(
1364 #else
1365 pr_err(
1366 #endif
1367 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1368 mod->name, kernel_symbol_name(sym), namespace);
1369 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1370 return -EINVAL;
1371 #endif
1372 }
1373 return 0;
1374 }
1375
inherit_taint(struct module * mod,struct module * owner)1376 static bool inherit_taint(struct module *mod, struct module *owner)
1377 {
1378 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1379 return true;
1380
1381 if (mod->using_gplonly_symbols) {
1382 pr_err("%s: module using GPL-only symbols uses symbols from proprietary module %s.\n",
1383 mod->name, owner->name);
1384 return false;
1385 }
1386
1387 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1388 pr_warn("%s: module uses symbols from proprietary module %s, inheriting taint.\n",
1389 mod->name, owner->name);
1390 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1391 }
1392 return true;
1393 }
1394
1395 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1396 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1397 const struct load_info *info,
1398 const char *name,
1399 char ownername[])
1400 {
1401 struct find_symbol_arg fsa = {
1402 .name = name,
1403 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1404 .warn = true,
1405 };
1406 int err;
1407
1408 /*
1409 * The module_mutex should not be a heavily contended lock;
1410 * if we get the occasional sleep here, we'll go an extra iteration
1411 * in the wait_event_interruptible(), which is harmless.
1412 */
1413 sched_annotate_sleep();
1414 mutex_lock(&module_mutex);
1415 if (!find_symbol(&fsa))
1416 goto unlock;
1417
1418 if (fsa.license == GPL_ONLY)
1419 mod->using_gplonly_symbols = true;
1420
1421 if (!inherit_taint(mod, fsa.owner)) {
1422 fsa.sym = NULL;
1423 goto getname;
1424 }
1425
1426 if (!check_version(info, name, mod, fsa.crc)) {
1427 fsa.sym = ERR_PTR(-EINVAL);
1428 goto getname;
1429 }
1430
1431 err = verify_namespace_is_imported(info, fsa.sym, mod);
1432 if (err) {
1433 fsa.sym = ERR_PTR(err);
1434 goto getname;
1435 }
1436
1437 err = ref_module(mod, fsa.owner);
1438 if (err) {
1439 fsa.sym = ERR_PTR(err);
1440 goto getname;
1441 }
1442
1443 getname:
1444 /* We must make copy under the lock if we failed to get ref. */
1445 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1446 unlock:
1447 mutex_unlock(&module_mutex);
1448 return fsa.sym;
1449 }
1450
1451 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1452 resolve_symbol_wait(struct module *mod,
1453 const struct load_info *info,
1454 const char *name)
1455 {
1456 const struct kernel_symbol *ksym;
1457 char owner[MODULE_NAME_LEN];
1458
1459 if (wait_event_interruptible_timeout(module_wq,
1460 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1461 || PTR_ERR(ksym) != -EBUSY,
1462 30 * HZ) <= 0) {
1463 pr_warn("%s: gave up waiting for init of module %s.\n",
1464 mod->name, owner);
1465 }
1466 return ksym;
1467 }
1468
1469 #ifdef CONFIG_KALLSYMS
sect_empty(const Elf_Shdr * sect)1470 static inline bool sect_empty(const Elf_Shdr *sect)
1471 {
1472 return !(sect->sh_flags & SHF_ALLOC) || sect->sh_size == 0;
1473 }
1474 #endif
1475
1476 /*
1477 * /sys/module/foo/sections stuff
1478 * J. Corbet <corbet@lwn.net>
1479 */
1480 #ifdef CONFIG_SYSFS
1481
1482 #ifdef CONFIG_KALLSYMS
1483 struct module_sect_attr {
1484 struct bin_attribute battr;
1485 unsigned long address;
1486 };
1487
1488 struct module_sect_attrs {
1489 struct attribute_group grp;
1490 unsigned int nsections;
1491 struct module_sect_attr attrs[];
1492 };
1493
1494 #define MODULE_SECT_READ_SIZE (3 /* "0x", "\n" */ + (BITS_PER_LONG / 4))
module_sect_read(struct file * file,struct kobject * kobj,struct bin_attribute * battr,char * buf,loff_t pos,size_t count)1495 static ssize_t module_sect_read(struct file *file, struct kobject *kobj,
1496 struct bin_attribute *battr,
1497 char *buf, loff_t pos, size_t count)
1498 {
1499 struct module_sect_attr *sattr =
1500 container_of(battr, struct module_sect_attr, battr);
1501 char bounce[MODULE_SECT_READ_SIZE + 1];
1502 size_t wrote;
1503
1504 if (pos != 0)
1505 return -EINVAL;
1506
1507 /*
1508 * Since we're a binary read handler, we must account for the
1509 * trailing NUL byte that sprintf will write: if "buf" is
1510 * too small to hold the NUL, or the NUL is exactly the last
1511 * byte, the read will look like it got truncated by one byte.
1512 * Since there is no way to ask sprintf nicely to not write
1513 * the NUL, we have to use a bounce buffer.
1514 */
1515 wrote = scnprintf(bounce, sizeof(bounce), "0x%px\n",
1516 kallsyms_show_value(file->f_cred)
1517 ? (void *)sattr->address : NULL);
1518 count = min(count, wrote);
1519 memcpy(buf, bounce, count);
1520
1521 return count;
1522 }
1523
free_sect_attrs(struct module_sect_attrs * sect_attrs)1524 static void free_sect_attrs(struct module_sect_attrs *sect_attrs)
1525 {
1526 unsigned int section;
1527
1528 for (section = 0; section < sect_attrs->nsections; section++)
1529 kfree(sect_attrs->attrs[section].battr.attr.name);
1530 kfree(sect_attrs);
1531 }
1532
add_sect_attrs(struct module * mod,const struct load_info * info)1533 static void add_sect_attrs(struct module *mod, const struct load_info *info)
1534 {
1535 unsigned int nloaded = 0, i, size[2];
1536 struct module_sect_attrs *sect_attrs;
1537 struct module_sect_attr *sattr;
1538 struct bin_attribute **gattr;
1539
1540 /* Count loaded sections and allocate structures */
1541 for (i = 0; i < info->hdr->e_shnum; i++)
1542 if (!sect_empty(&info->sechdrs[i]))
1543 nloaded++;
1544 size[0] = ALIGN(struct_size(sect_attrs, attrs, nloaded),
1545 sizeof(sect_attrs->grp.bin_attrs[0]));
1546 size[1] = (nloaded + 1) * sizeof(sect_attrs->grp.bin_attrs[0]);
1547 sect_attrs = kzalloc(size[0] + size[1], GFP_KERNEL);
1548 if (sect_attrs == NULL)
1549 return;
1550
1551 /* Setup section attributes. */
1552 sect_attrs->grp.name = "sections";
1553 sect_attrs->grp.bin_attrs = (void *)sect_attrs + size[0];
1554
1555 sect_attrs->nsections = 0;
1556 sattr = §_attrs->attrs[0];
1557 gattr = §_attrs->grp.bin_attrs[0];
1558 for (i = 0; i < info->hdr->e_shnum; i++) {
1559 Elf_Shdr *sec = &info->sechdrs[i];
1560 if (sect_empty(sec))
1561 continue;
1562 sysfs_bin_attr_init(&sattr->battr);
1563 sattr->address = sec->sh_addr;
1564 sattr->battr.attr.name =
1565 kstrdup(info->secstrings + sec->sh_name, GFP_KERNEL);
1566 if (sattr->battr.attr.name == NULL)
1567 goto out;
1568 sect_attrs->nsections++;
1569 sattr->battr.read = module_sect_read;
1570 sattr->battr.size = MODULE_SECT_READ_SIZE;
1571 sattr->battr.attr.mode = 0400;
1572 *(gattr++) = &(sattr++)->battr;
1573 }
1574 *gattr = NULL;
1575
1576 if (sysfs_create_group(&mod->mkobj.kobj, §_attrs->grp))
1577 goto out;
1578
1579 mod->sect_attrs = sect_attrs;
1580 return;
1581 out:
1582 free_sect_attrs(sect_attrs);
1583 }
1584
remove_sect_attrs(struct module * mod)1585 static void remove_sect_attrs(struct module *mod)
1586 {
1587 if (mod->sect_attrs) {
1588 sysfs_remove_group(&mod->mkobj.kobj,
1589 &mod->sect_attrs->grp);
1590 /*
1591 * We are positive that no one is using any sect attrs
1592 * at this point. Deallocate immediately.
1593 */
1594 free_sect_attrs(mod->sect_attrs);
1595 mod->sect_attrs = NULL;
1596 }
1597 }
1598
1599 /*
1600 * /sys/module/foo/notes/.section.name gives contents of SHT_NOTE sections.
1601 */
1602
1603 struct module_notes_attrs {
1604 struct kobject *dir;
1605 unsigned int notes;
1606 struct bin_attribute attrs[];
1607 };
1608
module_notes_read(struct file * filp,struct kobject * kobj,struct bin_attribute * bin_attr,char * buf,loff_t pos,size_t count)1609 static ssize_t module_notes_read(struct file *filp, struct kobject *kobj,
1610 struct bin_attribute *bin_attr,
1611 char *buf, loff_t pos, size_t count)
1612 {
1613 /*
1614 * The caller checked the pos and count against our size.
1615 */
1616 memcpy(buf, bin_attr->private + pos, count);
1617 return count;
1618 }
1619
free_notes_attrs(struct module_notes_attrs * notes_attrs,unsigned int i)1620 static void free_notes_attrs(struct module_notes_attrs *notes_attrs,
1621 unsigned int i)
1622 {
1623 if (notes_attrs->dir) {
1624 while (i-- > 0)
1625 sysfs_remove_bin_file(notes_attrs->dir,
1626 ¬es_attrs->attrs[i]);
1627 kobject_put(notes_attrs->dir);
1628 }
1629 kfree(notes_attrs);
1630 }
1631
add_notes_attrs(struct module * mod,const struct load_info * info)1632 static void add_notes_attrs(struct module *mod, const struct load_info *info)
1633 {
1634 unsigned int notes, loaded, i;
1635 struct module_notes_attrs *notes_attrs;
1636 struct bin_attribute *nattr;
1637
1638 /* failed to create section attributes, so can't create notes */
1639 if (!mod->sect_attrs)
1640 return;
1641
1642 /* Count notes sections and allocate structures. */
1643 notes = 0;
1644 for (i = 0; i < info->hdr->e_shnum; i++)
1645 if (!sect_empty(&info->sechdrs[i]) &&
1646 (info->sechdrs[i].sh_type == SHT_NOTE))
1647 ++notes;
1648
1649 if (notes == 0)
1650 return;
1651
1652 notes_attrs = kzalloc(struct_size(notes_attrs, attrs, notes),
1653 GFP_KERNEL);
1654 if (notes_attrs == NULL)
1655 return;
1656
1657 notes_attrs->notes = notes;
1658 nattr = ¬es_attrs->attrs[0];
1659 for (loaded = i = 0; i < info->hdr->e_shnum; ++i) {
1660 if (sect_empty(&info->sechdrs[i]))
1661 continue;
1662 if (info->sechdrs[i].sh_type == SHT_NOTE) {
1663 sysfs_bin_attr_init(nattr);
1664 nattr->attr.name = mod->sect_attrs->attrs[loaded].battr.attr.name;
1665 nattr->attr.mode = S_IRUGO;
1666 nattr->size = info->sechdrs[i].sh_size;
1667 nattr->private = (void *) info->sechdrs[i].sh_addr;
1668 nattr->read = module_notes_read;
1669 ++nattr;
1670 }
1671 ++loaded;
1672 }
1673
1674 notes_attrs->dir = kobject_create_and_add("notes", &mod->mkobj.kobj);
1675 if (!notes_attrs->dir)
1676 goto out;
1677
1678 for (i = 0; i < notes; ++i)
1679 if (sysfs_create_bin_file(notes_attrs->dir,
1680 ¬es_attrs->attrs[i]))
1681 goto out;
1682
1683 mod->notes_attrs = notes_attrs;
1684 return;
1685
1686 out:
1687 free_notes_attrs(notes_attrs, i);
1688 }
1689
remove_notes_attrs(struct module * mod)1690 static void remove_notes_attrs(struct module *mod)
1691 {
1692 if (mod->notes_attrs)
1693 free_notes_attrs(mod->notes_attrs, mod->notes_attrs->notes);
1694 }
1695
1696 #else
1697
add_sect_attrs(struct module * mod,const struct load_info * info)1698 static inline void add_sect_attrs(struct module *mod,
1699 const struct load_info *info)
1700 {
1701 }
1702
remove_sect_attrs(struct module * mod)1703 static inline void remove_sect_attrs(struct module *mod)
1704 {
1705 }
1706
add_notes_attrs(struct module * mod,const struct load_info * info)1707 static inline void add_notes_attrs(struct module *mod,
1708 const struct load_info *info)
1709 {
1710 }
1711
remove_notes_attrs(struct module * mod)1712 static inline void remove_notes_attrs(struct module *mod)
1713 {
1714 }
1715 #endif /* CONFIG_KALLSYMS */
1716
del_usage_links(struct module * mod)1717 static void del_usage_links(struct module *mod)
1718 {
1719 #ifdef CONFIG_MODULE_UNLOAD
1720 struct module_use *use;
1721
1722 mutex_lock(&module_mutex);
1723 list_for_each_entry(use, &mod->target_list, target_list)
1724 sysfs_remove_link(use->target->holders_dir, mod->name);
1725 mutex_unlock(&module_mutex);
1726 #endif
1727 }
1728
add_usage_links(struct module * mod)1729 static int add_usage_links(struct module *mod)
1730 {
1731 int ret = 0;
1732 #ifdef CONFIG_MODULE_UNLOAD
1733 struct module_use *use;
1734
1735 mutex_lock(&module_mutex);
1736 list_for_each_entry(use, &mod->target_list, target_list) {
1737 ret = sysfs_create_link(use->target->holders_dir,
1738 &mod->mkobj.kobj, mod->name);
1739 if (ret)
1740 break;
1741 }
1742 mutex_unlock(&module_mutex);
1743 if (ret)
1744 del_usage_links(mod);
1745 #endif
1746 return ret;
1747 }
1748
1749 static void module_remove_modinfo_attrs(struct module *mod, int end);
1750
module_add_modinfo_attrs(struct module * mod)1751 static int module_add_modinfo_attrs(struct module *mod)
1752 {
1753 struct module_attribute *attr;
1754 struct module_attribute *temp_attr;
1755 int error = 0;
1756 int i;
1757
1758 mod->modinfo_attrs = kzalloc((sizeof(struct module_attribute) *
1759 (ARRAY_SIZE(modinfo_attrs) + 1)),
1760 GFP_KERNEL);
1761 if (!mod->modinfo_attrs)
1762 return -ENOMEM;
1763
1764 temp_attr = mod->modinfo_attrs;
1765 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1766 if (!attr->test || attr->test(mod)) {
1767 memcpy(temp_attr, attr, sizeof(*temp_attr));
1768 sysfs_attr_init(&temp_attr->attr);
1769 error = sysfs_create_file(&mod->mkobj.kobj,
1770 &temp_attr->attr);
1771 if (error)
1772 goto error_out;
1773 ++temp_attr;
1774 }
1775 }
1776
1777 return 0;
1778
1779 error_out:
1780 if (i > 0)
1781 module_remove_modinfo_attrs(mod, --i);
1782 else
1783 kfree(mod->modinfo_attrs);
1784 return error;
1785 }
1786
module_remove_modinfo_attrs(struct module * mod,int end)1787 static void module_remove_modinfo_attrs(struct module *mod, int end)
1788 {
1789 struct module_attribute *attr;
1790 int i;
1791
1792 for (i = 0; (attr = &mod->modinfo_attrs[i]); i++) {
1793 if (end >= 0 && i > end)
1794 break;
1795 /* pick a field to test for end of list */
1796 if (!attr->attr.name)
1797 break;
1798 sysfs_remove_file(&mod->mkobj.kobj, &attr->attr);
1799 if (attr->free)
1800 attr->free(mod);
1801 }
1802 kfree(mod->modinfo_attrs);
1803 }
1804
mod_kobject_put(struct module * mod)1805 static void mod_kobject_put(struct module *mod)
1806 {
1807 DECLARE_COMPLETION_ONSTACK(c);
1808 mod->mkobj.kobj_completion = &c;
1809 kobject_put(&mod->mkobj.kobj);
1810 wait_for_completion(&c);
1811 }
1812
mod_sysfs_init(struct module * mod)1813 static int mod_sysfs_init(struct module *mod)
1814 {
1815 int err;
1816 struct kobject *kobj;
1817
1818 if (!module_sysfs_initialized) {
1819 pr_err("%s: module sysfs not initialized\n", mod->name);
1820 err = -EINVAL;
1821 goto out;
1822 }
1823
1824 kobj = kset_find_obj(module_kset, mod->name);
1825 if (kobj) {
1826 pr_err("%s: module is already loaded\n", mod->name);
1827 kobject_put(kobj);
1828 err = -EINVAL;
1829 goto out;
1830 }
1831
1832 mod->mkobj.mod = mod;
1833
1834 memset(&mod->mkobj.kobj, 0, sizeof(mod->mkobj.kobj));
1835 mod->mkobj.kobj.kset = module_kset;
1836 err = kobject_init_and_add(&mod->mkobj.kobj, &module_ktype, NULL,
1837 "%s", mod->name);
1838 if (err)
1839 mod_kobject_put(mod);
1840
1841 out:
1842 return err;
1843 }
1844
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1845 static int mod_sysfs_setup(struct module *mod,
1846 const struct load_info *info,
1847 struct kernel_param *kparam,
1848 unsigned int num_params)
1849 {
1850 int err;
1851
1852 err = mod_sysfs_init(mod);
1853 if (err)
1854 goto out;
1855
1856 mod->holders_dir = kobject_create_and_add("holders", &mod->mkobj.kobj);
1857 if (!mod->holders_dir) {
1858 err = -ENOMEM;
1859 goto out_unreg;
1860 }
1861
1862 err = module_param_sysfs_setup(mod, kparam, num_params);
1863 if (err)
1864 goto out_unreg_holders;
1865
1866 err = module_add_modinfo_attrs(mod);
1867 if (err)
1868 goto out_unreg_param;
1869
1870 err = add_usage_links(mod);
1871 if (err)
1872 goto out_unreg_modinfo_attrs;
1873
1874 add_sect_attrs(mod, info);
1875 add_notes_attrs(mod, info);
1876
1877 return 0;
1878
1879 out_unreg_modinfo_attrs:
1880 module_remove_modinfo_attrs(mod, -1);
1881 out_unreg_param:
1882 module_param_sysfs_remove(mod);
1883 out_unreg_holders:
1884 kobject_put(mod->holders_dir);
1885 out_unreg:
1886 mod_kobject_put(mod);
1887 out:
1888 return err;
1889 }
1890
mod_sysfs_fini(struct module * mod)1891 static void mod_sysfs_fini(struct module *mod)
1892 {
1893 remove_notes_attrs(mod);
1894 remove_sect_attrs(mod);
1895 mod_kobject_put(mod);
1896 }
1897
init_param_lock(struct module * mod)1898 static void init_param_lock(struct module *mod)
1899 {
1900 mutex_init(&mod->param_lock);
1901 }
1902 #else /* !CONFIG_SYSFS */
1903
mod_sysfs_setup(struct module * mod,const struct load_info * info,struct kernel_param * kparam,unsigned int num_params)1904 static int mod_sysfs_setup(struct module *mod,
1905 const struct load_info *info,
1906 struct kernel_param *kparam,
1907 unsigned int num_params)
1908 {
1909 return 0;
1910 }
1911
mod_sysfs_fini(struct module * mod)1912 static void mod_sysfs_fini(struct module *mod)
1913 {
1914 }
1915
module_remove_modinfo_attrs(struct module * mod,int end)1916 static void module_remove_modinfo_attrs(struct module *mod, int end)
1917 {
1918 }
1919
del_usage_links(struct module * mod)1920 static void del_usage_links(struct module *mod)
1921 {
1922 }
1923
init_param_lock(struct module * mod)1924 static void init_param_lock(struct module *mod)
1925 {
1926 }
1927 #endif /* CONFIG_SYSFS */
1928
mod_sysfs_teardown(struct module * mod)1929 static void mod_sysfs_teardown(struct module *mod)
1930 {
1931 del_usage_links(mod);
1932 module_remove_modinfo_attrs(mod, -1);
1933 module_param_sysfs_remove(mod);
1934 kobject_put(mod->mkobj.drivers_dir);
1935 kobject_put(mod->holders_dir);
1936 mod_sysfs_fini(mod);
1937 }
1938
1939 /*
1940 * LKM RO/NX protection: protect module's text/ro-data
1941 * from modification and any data from execution.
1942 *
1943 * General layout of module is:
1944 * [text] [read-only-data] [ro-after-init] [writable data]
1945 * text_size -----^ ^ ^ ^
1946 * ro_size ------------------------| | |
1947 * ro_after_init_size -----------------------------| |
1948 * size -----------------------------------------------------------|
1949 *
1950 * These values are always page-aligned (as is base)
1951 */
1952
1953 /*
1954 * Since some arches are moving towards PAGE_KERNEL module allocations instead
1955 * of PAGE_KERNEL_EXEC, keep frob_text() and module_enable_x() outside of the
1956 * CONFIG_STRICT_MODULE_RWX block below because they are needed regardless of
1957 * whether we are strict.
1958 */
1959 #ifdef CONFIG_ARCH_HAS_STRICT_MODULE_RWX
frob_text(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1960 static void frob_text(const struct module_layout *layout,
1961 int (*set_memory)(unsigned long start, int num_pages))
1962 {
1963 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1964 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1965 set_memory((unsigned long)layout->base,
1966 layout->text_size >> PAGE_SHIFT);
1967 }
1968
module_enable_x(const struct module * mod)1969 static void module_enable_x(const struct module *mod)
1970 {
1971 frob_text(&mod->core_layout, set_memory_x);
1972 frob_text(&mod->init_layout, set_memory_x);
1973 }
1974 #else /* !CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
module_enable_x(const struct module * mod)1975 static void module_enable_x(const struct module *mod) { }
1976 #endif /* CONFIG_ARCH_HAS_STRICT_MODULE_RWX */
1977
1978 #ifdef CONFIG_STRICT_MODULE_RWX
frob_rodata(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1979 static void frob_rodata(const struct module_layout *layout,
1980 int (*set_memory)(unsigned long start, int num_pages))
1981 {
1982 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1983 BUG_ON((unsigned long)layout->text_size & (PAGE_SIZE-1));
1984 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1985 set_memory((unsigned long)layout->base + layout->text_size,
1986 (layout->ro_size - layout->text_size) >> PAGE_SHIFT);
1987 }
1988
frob_ro_after_init(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1989 static void frob_ro_after_init(const struct module_layout *layout,
1990 int (*set_memory)(unsigned long start, int num_pages))
1991 {
1992 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
1993 BUG_ON((unsigned long)layout->ro_size & (PAGE_SIZE-1));
1994 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
1995 set_memory((unsigned long)layout->base + layout->ro_size,
1996 (layout->ro_after_init_size - layout->ro_size) >> PAGE_SHIFT);
1997 }
1998
frob_writable_data(const struct module_layout * layout,int (* set_memory)(unsigned long start,int num_pages))1999 static void frob_writable_data(const struct module_layout *layout,
2000 int (*set_memory)(unsigned long start, int num_pages))
2001 {
2002 BUG_ON((unsigned long)layout->base & (PAGE_SIZE-1));
2003 BUG_ON((unsigned long)layout->ro_after_init_size & (PAGE_SIZE-1));
2004 BUG_ON((unsigned long)layout->size & (PAGE_SIZE-1));
2005 set_memory((unsigned long)layout->base + layout->ro_after_init_size,
2006 (layout->size - layout->ro_after_init_size) >> PAGE_SHIFT);
2007 }
2008
module_enable_ro(const struct module * mod,bool after_init)2009 static void module_enable_ro(const struct module *mod, bool after_init)
2010 {
2011 if (!rodata_enabled)
2012 return;
2013
2014 set_vm_flush_reset_perms(mod->core_layout.base);
2015 set_vm_flush_reset_perms(mod->init_layout.base);
2016 frob_text(&mod->core_layout, set_memory_ro);
2017
2018 frob_rodata(&mod->core_layout, set_memory_ro);
2019 frob_text(&mod->init_layout, set_memory_ro);
2020 frob_rodata(&mod->init_layout, set_memory_ro);
2021
2022 if (after_init)
2023 frob_ro_after_init(&mod->core_layout, set_memory_ro);
2024 }
2025
module_enable_nx(const struct module * mod)2026 static void module_enable_nx(const struct module *mod)
2027 {
2028 frob_rodata(&mod->core_layout, set_memory_nx);
2029 frob_ro_after_init(&mod->core_layout, set_memory_nx);
2030 frob_writable_data(&mod->core_layout, set_memory_nx);
2031 frob_rodata(&mod->init_layout, set_memory_nx);
2032 frob_writable_data(&mod->init_layout, set_memory_nx);
2033 }
2034
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2035 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2036 char *secstrings, struct module *mod)
2037 {
2038 const unsigned long shf_wx = SHF_WRITE|SHF_EXECINSTR;
2039 int i;
2040
2041 for (i = 0; i < hdr->e_shnum; i++) {
2042 if ((sechdrs[i].sh_flags & shf_wx) == shf_wx) {
2043 pr_err("%s: section %s (index %d) has invalid WRITE|EXEC flags\n",
2044 mod->name, secstrings + sechdrs[i].sh_name, i);
2045 return -ENOEXEC;
2046 }
2047 }
2048
2049 return 0;
2050 }
2051
2052 #else /* !CONFIG_STRICT_MODULE_RWX */
module_enable_nx(const struct module * mod)2053 static void module_enable_nx(const struct module *mod) { }
module_enable_ro(const struct module * mod,bool after_init)2054 static void module_enable_ro(const struct module *mod, bool after_init) {}
module_enforce_rwx_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2055 static int module_enforce_rwx_sections(Elf_Ehdr *hdr, Elf_Shdr *sechdrs,
2056 char *secstrings, struct module *mod)
2057 {
2058 return 0;
2059 }
2060 #endif /* CONFIG_STRICT_MODULE_RWX */
2061
2062 #ifdef CONFIG_LIVEPATCH
2063 /*
2064 * Persist Elf information about a module. Copy the Elf header,
2065 * section header table, section string table, and symtab section
2066 * index from info to mod->klp_info.
2067 */
copy_module_elf(struct module * mod,struct load_info * info)2068 static int copy_module_elf(struct module *mod, struct load_info *info)
2069 {
2070 unsigned int size, symndx;
2071 int ret;
2072
2073 size = sizeof(*mod->klp_info);
2074 mod->klp_info = kmalloc(size, GFP_KERNEL);
2075 if (mod->klp_info == NULL)
2076 return -ENOMEM;
2077
2078 /* Elf header */
2079 size = sizeof(mod->klp_info->hdr);
2080 memcpy(&mod->klp_info->hdr, info->hdr, size);
2081
2082 /* Elf section header table */
2083 size = sizeof(*info->sechdrs) * info->hdr->e_shnum;
2084 mod->klp_info->sechdrs = kmemdup(info->sechdrs, size, GFP_KERNEL);
2085 if (mod->klp_info->sechdrs == NULL) {
2086 ret = -ENOMEM;
2087 goto free_info;
2088 }
2089
2090 /* Elf section name string table */
2091 size = info->sechdrs[info->hdr->e_shstrndx].sh_size;
2092 mod->klp_info->secstrings = kmemdup(info->secstrings, size, GFP_KERNEL);
2093 if (mod->klp_info->secstrings == NULL) {
2094 ret = -ENOMEM;
2095 goto free_sechdrs;
2096 }
2097
2098 /* Elf symbol section index */
2099 symndx = info->index.sym;
2100 mod->klp_info->symndx = symndx;
2101
2102 /*
2103 * For livepatch modules, core_kallsyms.symtab is a complete
2104 * copy of the original symbol table. Adjust sh_addr to point
2105 * to core_kallsyms.symtab since the copy of the symtab in module
2106 * init memory is freed at the end of do_init_module().
2107 */
2108 mod->klp_info->sechdrs[symndx].sh_addr = \
2109 (unsigned long) mod->core_kallsyms.symtab;
2110
2111 return 0;
2112
2113 free_sechdrs:
2114 kfree(mod->klp_info->sechdrs);
2115 free_info:
2116 kfree(mod->klp_info);
2117 return ret;
2118 }
2119
free_module_elf(struct module * mod)2120 static void free_module_elf(struct module *mod)
2121 {
2122 kfree(mod->klp_info->sechdrs);
2123 kfree(mod->klp_info->secstrings);
2124 kfree(mod->klp_info);
2125 }
2126 #else /* !CONFIG_LIVEPATCH */
copy_module_elf(struct module * mod,struct load_info * info)2127 static int copy_module_elf(struct module *mod, struct load_info *info)
2128 {
2129 return 0;
2130 }
2131
free_module_elf(struct module * mod)2132 static void free_module_elf(struct module *mod)
2133 {
2134 }
2135 #endif /* CONFIG_LIVEPATCH */
2136
module_memfree(void * module_region)2137 void __weak module_memfree(void *module_region)
2138 {
2139 /*
2140 * This memory may be RO, and freeing RO memory in an interrupt is not
2141 * supported by vmalloc.
2142 */
2143 WARN_ON(in_interrupt());
2144 vfree(module_region);
2145 }
2146
module_arch_cleanup(struct module * mod)2147 void __weak module_arch_cleanup(struct module *mod)
2148 {
2149 }
2150
module_arch_freeing_init(struct module * mod)2151 void __weak module_arch_freeing_init(struct module *mod)
2152 {
2153 }
2154
2155 static void cfi_cleanup(struct module *mod);
2156
2157 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)2158 static void free_module(struct module *mod)
2159 {
2160 trace_module_free(mod);
2161
2162 mod_sysfs_teardown(mod);
2163
2164 /*
2165 * We leave it in list to prevent duplicate loads, but make sure
2166 * that noone uses it while it's being deconstructed.
2167 */
2168 mutex_lock(&module_mutex);
2169 mod->state = MODULE_STATE_UNFORMED;
2170 mutex_unlock(&module_mutex);
2171
2172 /* Remove dynamic debug info */
2173 ddebug_remove_module(mod->name);
2174
2175 /* Arch-specific cleanup. */
2176 module_arch_cleanup(mod);
2177
2178 /* Module unload stuff */
2179 module_unload_free(mod);
2180
2181 /* Free any allocated parameters. */
2182 destroy_params(mod->kp, mod->num_kp);
2183
2184 if (is_livepatch_module(mod))
2185 free_module_elf(mod);
2186
2187 /* Now we can delete it from the lists */
2188 mutex_lock(&module_mutex);
2189 /* Unlink carefully: kallsyms could be walking list. */
2190 list_del_rcu(&mod->list);
2191 mod_tree_remove(mod);
2192 /* Remove this module from bug list, this uses list_del_rcu */
2193 module_bug_cleanup(mod);
2194 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
2195 synchronize_rcu();
2196 mutex_unlock(&module_mutex);
2197
2198 /* Clean up CFI for the module. */
2199 cfi_cleanup(mod);
2200
2201 /* This may be empty, but that's OK */
2202 module_arch_freeing_init(mod);
2203 module_memfree(mod->init_layout.base);
2204 kfree(mod->args);
2205 percpu_modfree(mod);
2206
2207 /* Free lock-classes; relies on the preceding sync_rcu(). */
2208 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
2209
2210 /* Finally, free the core (containing the module structure) */
2211 module_memfree(mod->core_layout.base);
2212 }
2213
__symbol_get(const char * symbol)2214 void *__symbol_get(const char *symbol)
2215 {
2216 struct find_symbol_arg fsa = {
2217 .name = symbol,
2218 .gplok = true,
2219 .warn = true,
2220 };
2221
2222 preempt_disable();
2223 if (!find_symbol(&fsa) || strong_try_module_get(fsa.owner)) {
2224 preempt_enable();
2225 return NULL;
2226 }
2227 preempt_enable();
2228 return (void *)kernel_symbol_value(fsa.sym);
2229 }
2230 EXPORT_SYMBOL_GPL(__symbol_get);
2231
2232 /*
2233 * Ensure that an exported symbol [global namespace] does not already exist
2234 * in the kernel or in some other module's exported symbol table.
2235 *
2236 * You must hold the module_mutex.
2237 */
verify_exported_symbols(struct module * mod)2238 static int verify_exported_symbols(struct module *mod)
2239 {
2240 unsigned int i;
2241 const struct kernel_symbol *s;
2242 struct {
2243 const struct kernel_symbol *sym;
2244 unsigned int num;
2245 } arr[] = {
2246 { mod->syms, mod->num_syms },
2247 { mod->gpl_syms, mod->num_gpl_syms },
2248 };
2249
2250 for (i = 0; i < ARRAY_SIZE(arr); i++) {
2251 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
2252 struct find_symbol_arg fsa = {
2253 .name = kernel_symbol_name(s),
2254 .gplok = true,
2255 };
2256 if (find_symbol(&fsa)) {
2257 pr_err("%s: exports duplicate symbol %s"
2258 " (owned by %s)\n",
2259 mod->name, kernel_symbol_name(s),
2260 module_name(fsa.owner));
2261 return -ENOEXEC;
2262 }
2263 }
2264 }
2265 return 0;
2266 }
2267
ignore_undef_symbol(Elf_Half emachine,const char * name)2268 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
2269 {
2270 /*
2271 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
2272 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
2273 * i386 has a similar problem but may not deserve a fix.
2274 *
2275 * If we ever have to ignore many symbols, consider refactoring the code to
2276 * only warn if referenced by a relocation.
2277 */
2278 if (emachine == EM_386 || emachine == EM_X86_64)
2279 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
2280 return false;
2281 }
2282
2283 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)2284 static int simplify_symbols(struct module *mod, const struct load_info *info)
2285 {
2286 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2287 Elf_Sym *sym = (void *)symsec->sh_addr;
2288 unsigned long secbase;
2289 unsigned int i;
2290 int ret = 0;
2291 const struct kernel_symbol *ksym;
2292
2293 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
2294 const char *name = info->strtab + sym[i].st_name;
2295
2296 switch (sym[i].st_shndx) {
2297 case SHN_COMMON:
2298 /* Ignore common symbols */
2299 if (!strncmp(name, "__gnu_lto", 9))
2300 break;
2301
2302 /*
2303 * We compiled with -fno-common. These are not
2304 * supposed to happen.
2305 */
2306 pr_debug("Common symbol: %s\n", name);
2307 pr_warn("%s: please compile with -fno-common\n",
2308 mod->name);
2309 ret = -ENOEXEC;
2310 break;
2311
2312 case SHN_ABS:
2313 /* Don't need to do anything */
2314 pr_debug("Absolute symbol: 0x%08lx\n",
2315 (long)sym[i].st_value);
2316 break;
2317
2318 case SHN_LIVEPATCH:
2319 /* Livepatch symbols are resolved by livepatch */
2320 break;
2321
2322 case SHN_UNDEF:
2323 ksym = resolve_symbol_wait(mod, info, name);
2324 /* Ok if resolved. */
2325 if (ksym && !IS_ERR(ksym)) {
2326 sym[i].st_value = kernel_symbol_value(ksym);
2327 break;
2328 }
2329
2330 /* Ok if weak or ignored. */
2331 if (!ksym &&
2332 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
2333 ignore_undef_symbol(info->hdr->e_machine, name)))
2334 break;
2335
2336 ret = PTR_ERR(ksym) ?: -ENOENT;
2337 pr_warn("%s: Unknown symbol %s (err %d)\n",
2338 mod->name, name, ret);
2339 break;
2340
2341 default:
2342 /* Divert to percpu allocation if a percpu var. */
2343 if (sym[i].st_shndx == info->index.pcpu)
2344 secbase = (unsigned long)mod_percpu(mod);
2345 else
2346 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
2347 sym[i].st_value += secbase;
2348 break;
2349 }
2350 }
2351
2352 return ret;
2353 }
2354
apply_relocations(struct module * mod,const struct load_info * info)2355 static int apply_relocations(struct module *mod, const struct load_info *info)
2356 {
2357 unsigned int i;
2358 int err = 0;
2359
2360 /* Now do relocations. */
2361 for (i = 1; i < info->hdr->e_shnum; i++) {
2362 unsigned int infosec = info->sechdrs[i].sh_info;
2363
2364 /* Not a valid relocation section? */
2365 if (infosec >= info->hdr->e_shnum)
2366 continue;
2367
2368 /* Don't bother with non-allocated sections */
2369 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
2370 continue;
2371
2372 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
2373 err = klp_apply_section_relocs(mod, info->sechdrs,
2374 info->secstrings,
2375 info->strtab,
2376 info->index.sym, i,
2377 NULL);
2378 else if (info->sechdrs[i].sh_type == SHT_REL)
2379 err = apply_relocate(info->sechdrs, info->strtab,
2380 info->index.sym, i, mod);
2381 else if (info->sechdrs[i].sh_type == SHT_RELA)
2382 err = apply_relocate_add(info->sechdrs, info->strtab,
2383 info->index.sym, i, mod);
2384 if (err < 0)
2385 break;
2386 }
2387 return err;
2388 }
2389
2390 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)2391 unsigned int __weak arch_mod_section_prepend(struct module *mod,
2392 unsigned int section)
2393 {
2394 /* default implementation just returns zero */
2395 return 0;
2396 }
2397
2398 /* Update size with this section: return offset. */
get_offset(struct module * mod,unsigned int * size,Elf_Shdr * sechdr,unsigned int section)2399 static long get_offset(struct module *mod, unsigned int *size,
2400 Elf_Shdr *sechdr, unsigned int section)
2401 {
2402 long ret;
2403
2404 *size += arch_mod_section_prepend(mod, section);
2405 ret = ALIGN(*size, sechdr->sh_addralign ?: 1);
2406 *size = ret + sechdr->sh_size;
2407 return ret;
2408 }
2409
module_init_layout_section(const char * sname)2410 static bool module_init_layout_section(const char *sname)
2411 {
2412 #ifndef CONFIG_MODULE_UNLOAD
2413 if (module_exit_section(sname))
2414 return true;
2415 #endif
2416 return module_init_section(sname);
2417 }
2418
2419 /*
2420 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
2421 * might -- code, read-only data, read-write data, small data. Tally
2422 * sizes, and place the offsets into sh_entsize fields: high bit means it
2423 * belongs in init.
2424 */
layout_sections(struct module * mod,struct load_info * info)2425 static void layout_sections(struct module *mod, struct load_info *info)
2426 {
2427 static unsigned long const masks[][2] = {
2428 /*
2429 * NOTE: all executable code must be the first section
2430 * in this array; otherwise modify the text_size
2431 * finder in the two loops below
2432 */
2433 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
2434 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
2435 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
2436 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
2437 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
2438 };
2439 unsigned int m, i;
2440
2441 for (i = 0; i < info->hdr->e_shnum; i++)
2442 info->sechdrs[i].sh_entsize = ~0UL;
2443
2444 pr_debug("Core section allocation order:\n");
2445 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2446 for (i = 0; i < info->hdr->e_shnum; ++i) {
2447 Elf_Shdr *s = &info->sechdrs[i];
2448 const char *sname = info->secstrings + s->sh_name;
2449
2450 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2451 || (s->sh_flags & masks[m][1])
2452 || s->sh_entsize != ~0UL
2453 || module_init_layout_section(sname))
2454 continue;
2455 s->sh_entsize = get_offset(mod, &mod->core_layout.size, s, i);
2456 pr_debug("\t%s\n", sname);
2457 }
2458 switch (m) {
2459 case 0: /* executable */
2460 mod->core_layout.size = debug_align(mod->core_layout.size);
2461 mod->core_layout.text_size = mod->core_layout.size;
2462 break;
2463 case 1: /* RO: text and ro-data */
2464 mod->core_layout.size = debug_align(mod->core_layout.size);
2465 mod->core_layout.ro_size = mod->core_layout.size;
2466 break;
2467 case 2: /* RO after init */
2468 mod->core_layout.size = debug_align(mod->core_layout.size);
2469 mod->core_layout.ro_after_init_size = mod->core_layout.size;
2470 break;
2471 case 4: /* whole core */
2472 mod->core_layout.size = debug_align(mod->core_layout.size);
2473 break;
2474 }
2475 }
2476
2477 pr_debug("Init section allocation order:\n");
2478 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
2479 for (i = 0; i < info->hdr->e_shnum; ++i) {
2480 Elf_Shdr *s = &info->sechdrs[i];
2481 const char *sname = info->secstrings + s->sh_name;
2482
2483 if ((s->sh_flags & masks[m][0]) != masks[m][0]
2484 || (s->sh_flags & masks[m][1])
2485 || s->sh_entsize != ~0UL
2486 || !module_init_layout_section(sname))
2487 continue;
2488 s->sh_entsize = (get_offset(mod, &mod->init_layout.size, s, i)
2489 | INIT_OFFSET_MASK);
2490 pr_debug("\t%s\n", sname);
2491 }
2492 switch (m) {
2493 case 0: /* executable */
2494 mod->init_layout.size = debug_align(mod->init_layout.size);
2495 mod->init_layout.text_size = mod->init_layout.size;
2496 break;
2497 case 1: /* RO: text and ro-data */
2498 mod->init_layout.size = debug_align(mod->init_layout.size);
2499 mod->init_layout.ro_size = mod->init_layout.size;
2500 break;
2501 case 2:
2502 /*
2503 * RO after init doesn't apply to init_layout (only
2504 * core_layout), so it just takes the value of ro_size.
2505 */
2506 mod->init_layout.ro_after_init_size = mod->init_layout.ro_size;
2507 break;
2508 case 4: /* whole init */
2509 mod->init_layout.size = debug_align(mod->init_layout.size);
2510 break;
2511 }
2512 }
2513 }
2514
set_license(struct module * mod,const char * license)2515 static void set_license(struct module *mod, const char *license)
2516 {
2517 if (!license)
2518 license = "unspecified";
2519
2520 if (!license_is_gpl_compatible(license)) {
2521 if (!test_taint(TAINT_PROPRIETARY_MODULE))
2522 pr_warn("%s: module license '%s' taints kernel.\n",
2523 mod->name, license);
2524 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2525 LOCKDEP_NOW_UNRELIABLE);
2526 }
2527 }
2528
2529 /* Parse tag=value strings from .modinfo section */
next_string(char * string,unsigned long * secsize)2530 static char *next_string(char *string, unsigned long *secsize)
2531 {
2532 /* Skip non-zero chars */
2533 while (string[0]) {
2534 string++;
2535 if ((*secsize)-- <= 1)
2536 return NULL;
2537 }
2538
2539 /* Skip any zero padding. */
2540 while (!string[0]) {
2541 string++;
2542 if ((*secsize)-- <= 1)
2543 return NULL;
2544 }
2545 return string;
2546 }
2547
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)2548 static char *get_next_modinfo(const struct load_info *info, const char *tag,
2549 char *prev)
2550 {
2551 char *p;
2552 unsigned int taglen = strlen(tag);
2553 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
2554 unsigned long size = infosec->sh_size;
2555
2556 /*
2557 * get_modinfo() calls made before rewrite_section_headers()
2558 * must use sh_offset, as sh_addr isn't set!
2559 */
2560 char *modinfo = (char *)info->hdr + infosec->sh_offset;
2561
2562 if (prev) {
2563 size -= prev - modinfo;
2564 modinfo = next_string(prev, &size);
2565 }
2566
2567 for (p = modinfo; p; p = next_string(p, &size)) {
2568 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
2569 return p + taglen + 1;
2570 }
2571 return NULL;
2572 }
2573
get_modinfo(const struct load_info * info,const char * tag)2574 static char *get_modinfo(const struct load_info *info, const char *tag)
2575 {
2576 return get_next_modinfo(info, tag, NULL);
2577 }
2578
setup_modinfo(struct module * mod,struct load_info * info)2579 static void setup_modinfo(struct module *mod, struct load_info *info)
2580 {
2581 struct module_attribute *attr;
2582 int i;
2583
2584 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2585 if (attr->setup)
2586 attr->setup(mod, get_modinfo(info, attr->attr.name));
2587 }
2588 }
2589
free_modinfo(struct module * mod)2590 static void free_modinfo(struct module *mod)
2591 {
2592 struct module_attribute *attr;
2593 int i;
2594
2595 for (i = 0; (attr = modinfo_attrs[i]); i++) {
2596 if (attr->free)
2597 attr->free(mod);
2598 }
2599 }
2600
2601 #ifdef CONFIG_KALLSYMS
2602
2603 /* Lookup exported symbol in given range of kernel_symbols */
lookup_exported_symbol(const char * name,const struct kernel_symbol * start,const struct kernel_symbol * stop)2604 static const struct kernel_symbol *lookup_exported_symbol(const char *name,
2605 const struct kernel_symbol *start,
2606 const struct kernel_symbol *stop)
2607 {
2608 return bsearch(name, start, stop - start,
2609 sizeof(struct kernel_symbol), cmp_name);
2610 }
2611
is_exported(const char * name,unsigned long value,const struct module * mod)2612 static int is_exported(const char *name, unsigned long value,
2613 const struct module *mod)
2614 {
2615 const struct kernel_symbol *ks;
2616 if (!mod)
2617 ks = lookup_exported_symbol(name, __start___ksymtab, __stop___ksymtab);
2618 else
2619 ks = lookup_exported_symbol(name, mod->syms, mod->syms + mod->num_syms);
2620
2621 return ks != NULL && kernel_symbol_value(ks) == value;
2622 }
2623
2624 /* As per nm */
elf_type(const Elf_Sym * sym,const struct load_info * info)2625 static char elf_type(const Elf_Sym *sym, const struct load_info *info)
2626 {
2627 const Elf_Shdr *sechdrs = info->sechdrs;
2628
2629 if (ELF_ST_BIND(sym->st_info) == STB_WEAK) {
2630 if (ELF_ST_TYPE(sym->st_info) == STT_OBJECT)
2631 return 'v';
2632 else
2633 return 'w';
2634 }
2635 if (sym->st_shndx == SHN_UNDEF)
2636 return 'U';
2637 if (sym->st_shndx == SHN_ABS || sym->st_shndx == info->index.pcpu)
2638 return 'a';
2639 if (sym->st_shndx >= SHN_LORESERVE)
2640 return '?';
2641 if (sechdrs[sym->st_shndx].sh_flags & SHF_EXECINSTR)
2642 return 't';
2643 if (sechdrs[sym->st_shndx].sh_flags & SHF_ALLOC
2644 && sechdrs[sym->st_shndx].sh_type != SHT_NOBITS) {
2645 if (!(sechdrs[sym->st_shndx].sh_flags & SHF_WRITE))
2646 return 'r';
2647 else if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2648 return 'g';
2649 else
2650 return 'd';
2651 }
2652 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
2653 if (sechdrs[sym->st_shndx].sh_flags & ARCH_SHF_SMALL)
2654 return 's';
2655 else
2656 return 'b';
2657 }
2658 if (strstarts(info->secstrings + sechdrs[sym->st_shndx].sh_name,
2659 ".debug")) {
2660 return 'n';
2661 }
2662 return '?';
2663 }
2664
is_core_symbol(const Elf_Sym * src,const Elf_Shdr * sechdrs,unsigned int shnum,unsigned int pcpundx)2665 static bool is_core_symbol(const Elf_Sym *src, const Elf_Shdr *sechdrs,
2666 unsigned int shnum, unsigned int pcpundx)
2667 {
2668 const Elf_Shdr *sec;
2669
2670 if (src->st_shndx == SHN_UNDEF
2671 || src->st_shndx >= shnum
2672 || !src->st_name)
2673 return false;
2674
2675 #ifdef CONFIG_KALLSYMS_ALL
2676 if (src->st_shndx == pcpundx)
2677 return true;
2678 #endif
2679
2680 sec = sechdrs + src->st_shndx;
2681 if (!(sec->sh_flags & SHF_ALLOC)
2682 #ifndef CONFIG_KALLSYMS_ALL
2683 || !(sec->sh_flags & SHF_EXECINSTR)
2684 #endif
2685 || (sec->sh_entsize & INIT_OFFSET_MASK))
2686 return false;
2687
2688 return true;
2689 }
2690
2691 /*
2692 * We only allocate and copy the strings needed by the parts of symtab
2693 * we keep. This is simple, but has the effect of making multiple
2694 * copies of duplicates. We could be more sophisticated, see
2695 * linux-kernel thread starting with
2696 * <73defb5e4bca04a6431392cc341112b1@localhost>.
2697 */
layout_symtab(struct module * mod,struct load_info * info)2698 static void layout_symtab(struct module *mod, struct load_info *info)
2699 {
2700 Elf_Shdr *symsect = info->sechdrs + info->index.sym;
2701 Elf_Shdr *strsect = info->sechdrs + info->index.str;
2702 const Elf_Sym *src;
2703 unsigned int i, nsrc, ndst, strtab_size = 0;
2704
2705 /* Put symbol section at end of init part of module. */
2706 symsect->sh_flags |= SHF_ALLOC;
2707 symsect->sh_entsize = get_offset(mod, &mod->init_layout.size, symsect,
2708 info->index.sym) | INIT_OFFSET_MASK;
2709 pr_debug("\t%s\n", info->secstrings + symsect->sh_name);
2710
2711 src = (void *)info->hdr + symsect->sh_offset;
2712 nsrc = symsect->sh_size / sizeof(*src);
2713
2714 /* Compute total space required for the core symbols' strtab. */
2715 for (ndst = i = 0; i < nsrc; i++) {
2716 if (i == 0 || is_livepatch_module(mod) ||
2717 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2718 info->index.pcpu)) {
2719 strtab_size += strlen(&info->strtab[src[i].st_name])+1;
2720 ndst++;
2721 }
2722 }
2723
2724 /* Append room for core symbols at end of core part. */
2725 info->symoffs = ALIGN(mod->core_layout.size, symsect->sh_addralign ?: 1);
2726 info->stroffs = mod->core_layout.size = info->symoffs + ndst * sizeof(Elf_Sym);
2727 mod->core_layout.size += strtab_size;
2728 info->core_typeoffs = mod->core_layout.size;
2729 mod->core_layout.size += ndst * sizeof(char);
2730 mod->core_layout.size = debug_align(mod->core_layout.size);
2731
2732 /* Put string table section at end of init part of module. */
2733 strsect->sh_flags |= SHF_ALLOC;
2734 strsect->sh_entsize = get_offset(mod, &mod->init_layout.size, strsect,
2735 info->index.str) | INIT_OFFSET_MASK;
2736 pr_debug("\t%s\n", info->secstrings + strsect->sh_name);
2737
2738 /* We'll tack temporary mod_kallsyms on the end. */
2739 mod->init_layout.size = ALIGN(mod->init_layout.size,
2740 __alignof__(struct mod_kallsyms));
2741 info->mod_kallsyms_init_off = mod->init_layout.size;
2742 mod->init_layout.size += sizeof(struct mod_kallsyms);
2743 info->init_typeoffs = mod->init_layout.size;
2744 mod->init_layout.size += nsrc * sizeof(char);
2745 mod->init_layout.size = debug_align(mod->init_layout.size);
2746 }
2747
2748 /*
2749 * We use the full symtab and strtab which layout_symtab arranged to
2750 * be appended to the init section. Later we switch to the cut-down
2751 * core-only ones.
2752 */
add_kallsyms(struct module * mod,const struct load_info * info)2753 static void add_kallsyms(struct module *mod, const struct load_info *info)
2754 {
2755 unsigned int i, ndst;
2756 const Elf_Sym *src;
2757 Elf_Sym *dst;
2758 char *s;
2759 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
2760
2761 /* Set up to point into init section. */
2762 mod->kallsyms = mod->init_layout.base + info->mod_kallsyms_init_off;
2763
2764 mod->kallsyms->symtab = (void *)symsec->sh_addr;
2765 mod->kallsyms->num_symtab = symsec->sh_size / sizeof(Elf_Sym);
2766 /* Make sure we get permanent strtab: don't use info->strtab. */
2767 mod->kallsyms->strtab = (void *)info->sechdrs[info->index.str].sh_addr;
2768 mod->kallsyms->typetab = mod->init_layout.base + info->init_typeoffs;
2769
2770 /*
2771 * Now populate the cut down core kallsyms for after init
2772 * and set types up while we still have access to sections.
2773 */
2774 mod->core_kallsyms.symtab = dst = mod->core_layout.base + info->symoffs;
2775 mod->core_kallsyms.strtab = s = mod->core_layout.base + info->stroffs;
2776 mod->core_kallsyms.typetab = mod->core_layout.base + info->core_typeoffs;
2777 src = mod->kallsyms->symtab;
2778 for (ndst = i = 0; i < mod->kallsyms->num_symtab; i++) {
2779 mod->kallsyms->typetab[i] = elf_type(src + i, info);
2780 if (i == 0 || is_livepatch_module(mod) ||
2781 is_core_symbol(src+i, info->sechdrs, info->hdr->e_shnum,
2782 info->index.pcpu)) {
2783 mod->core_kallsyms.typetab[ndst] =
2784 mod->kallsyms->typetab[i];
2785 dst[ndst] = src[i];
2786 dst[ndst++].st_name = s - mod->core_kallsyms.strtab;
2787 s += strlcpy(s, &mod->kallsyms->strtab[src[i].st_name],
2788 KSYM_NAME_LEN) + 1;
2789 }
2790 }
2791 mod->core_kallsyms.num_symtab = ndst;
2792 }
2793 #else
layout_symtab(struct module * mod,struct load_info * info)2794 static inline void layout_symtab(struct module *mod, struct load_info *info)
2795 {
2796 }
2797
add_kallsyms(struct module * mod,const struct load_info * info)2798 static void add_kallsyms(struct module *mod, const struct load_info *info)
2799 {
2800 }
2801 #endif /* CONFIG_KALLSYMS */
2802
2803 #if IS_ENABLED(CONFIG_KALLSYMS) && IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
init_build_id(struct module * mod,const struct load_info * info)2804 static void init_build_id(struct module *mod, const struct load_info *info)
2805 {
2806 const Elf_Shdr *sechdr;
2807 unsigned int i;
2808
2809 for (i = 0; i < info->hdr->e_shnum; i++) {
2810 sechdr = &info->sechdrs[i];
2811 if (!sect_empty(sechdr) && sechdr->sh_type == SHT_NOTE &&
2812 !build_id_parse_buf((void *)sechdr->sh_addr, mod->build_id,
2813 sechdr->sh_size))
2814 break;
2815 }
2816 }
2817 #else
init_build_id(struct module * mod,const struct load_info * info)2818 static void init_build_id(struct module *mod, const struct load_info *info)
2819 {
2820 }
2821 #endif
2822
dynamic_debug_setup(struct module * mod,struct _ddebug * debug,unsigned int num)2823 static void dynamic_debug_setup(struct module *mod, struct _ddebug *debug, unsigned int num)
2824 {
2825 if (!debug)
2826 return;
2827 ddebug_add_module(debug, num, mod->name);
2828 }
2829
dynamic_debug_remove(struct module * mod,struct _ddebug * debug)2830 static void dynamic_debug_remove(struct module *mod, struct _ddebug *debug)
2831 {
2832 if (debug)
2833 ddebug_remove_module(mod->name);
2834 }
2835
module_alloc(unsigned long size)2836 void * __weak module_alloc(unsigned long size)
2837 {
2838 return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
2839 GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
2840 NUMA_NO_NODE, __builtin_return_address(0));
2841 }
2842
module_init_section(const char * name)2843 bool __weak module_init_section(const char *name)
2844 {
2845 return strstarts(name, ".init");
2846 }
2847
module_exit_section(const char * name)2848 bool __weak module_exit_section(const char *name)
2849 {
2850 return strstarts(name, ".exit");
2851 }
2852
2853 #ifdef CONFIG_DEBUG_KMEMLEAK
kmemleak_load_module(const struct module * mod,const struct load_info * info)2854 static void kmemleak_load_module(const struct module *mod,
2855 const struct load_info *info)
2856 {
2857 unsigned int i;
2858
2859 /* only scan the sections containing data */
2860 kmemleak_scan_area(mod, sizeof(struct module), GFP_KERNEL);
2861
2862 for (i = 1; i < info->hdr->e_shnum; i++) {
2863 /* Scan all writable sections that's not executable */
2864 if (!(info->sechdrs[i].sh_flags & SHF_ALLOC) ||
2865 !(info->sechdrs[i].sh_flags & SHF_WRITE) ||
2866 (info->sechdrs[i].sh_flags & SHF_EXECINSTR))
2867 continue;
2868
2869 kmemleak_scan_area((void *)info->sechdrs[i].sh_addr,
2870 info->sechdrs[i].sh_size, GFP_KERNEL);
2871 }
2872 }
2873 #else
kmemleak_load_module(const struct module * mod,const struct load_info * info)2874 static inline void kmemleak_load_module(const struct module *mod,
2875 const struct load_info *info)
2876 {
2877 }
2878 #endif
2879
2880 #ifdef CONFIG_MODULE_SIG
module_sig_check(struct load_info * info,int flags)2881 static int module_sig_check(struct load_info *info, int flags)
2882 {
2883 int err = -ENODATA;
2884 const unsigned long markerlen = sizeof(MODULE_SIG_STRING) - 1;
2885 const char *reason;
2886 const void *mod = info->hdr;
2887
2888 /*
2889 * Require flags == 0, as a module with version information
2890 * removed is no longer the module that was signed
2891 */
2892 if (flags == 0 &&
2893 info->len > markerlen &&
2894 memcmp(mod + info->len - markerlen, MODULE_SIG_STRING, markerlen) == 0) {
2895 /* We truncate the module to discard the signature */
2896 info->len -= markerlen;
2897 err = mod_verify_sig(mod, info);
2898 if (!err) {
2899 info->sig_ok = true;
2900 return 0;
2901 }
2902 }
2903
2904 /*
2905 * We don't permit modules to be loaded into the trusted kernels
2906 * without a valid signature on them, but if we're not enforcing,
2907 * certain errors are non-fatal.
2908 */
2909 switch (err) {
2910 case -ENODATA:
2911 reason = "unsigned module";
2912 break;
2913 case -ENOPKG:
2914 reason = "module with unsupported crypto";
2915 break;
2916 case -ENOKEY:
2917 reason = "module with unavailable key";
2918 break;
2919
2920 default:
2921 /*
2922 * All other errors are fatal, including lack of memory,
2923 * unparseable signatures, and signature check failures --
2924 * even if signatures aren't required.
2925 */
2926 return err;
2927 }
2928
2929 if (is_module_sig_enforced()) {
2930 pr_notice("Loading of %s is rejected\n", reason);
2931 return -EKEYREJECTED;
2932 }
2933
2934 return security_locked_down(LOCKDOWN_MODULE_SIGNATURE);
2935 }
2936 #else /* !CONFIG_MODULE_SIG */
module_sig_check(struct load_info * info,int flags)2937 static int module_sig_check(struct load_info *info, int flags)
2938 {
2939 return 0;
2940 }
2941 #endif /* !CONFIG_MODULE_SIG */
2942
validate_section_offset(struct load_info * info,Elf_Shdr * shdr)2943 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
2944 {
2945 unsigned long secend;
2946
2947 /*
2948 * Check for both overflow and offset/size being
2949 * too large.
2950 */
2951 secend = shdr->sh_offset + shdr->sh_size;
2952 if (secend < shdr->sh_offset || secend > info->len)
2953 return -ENOEXEC;
2954
2955 return 0;
2956 }
2957
2958 /*
2959 * Sanity checks against invalid binaries, wrong arch, weird elf version.
2960 *
2961 * Also do basic validity checks against section offsets and sizes, the
2962 * section name string table, and the indices used for it (sh_name).
2963 */
elf_validity_check(struct load_info * info)2964 static int elf_validity_check(struct load_info *info)
2965 {
2966 unsigned int i;
2967 Elf_Shdr *shdr, *strhdr;
2968 int err;
2969
2970 if (info->len < sizeof(*(info->hdr)))
2971 return -ENOEXEC;
2972
2973 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0
2974 || info->hdr->e_type != ET_REL
2975 || !elf_check_arch(info->hdr)
2976 || info->hdr->e_shentsize != sizeof(Elf_Shdr))
2977 return -ENOEXEC;
2978
2979 /*
2980 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
2981 * known and small. So e_shnum * sizeof(Elf_Shdr)
2982 * will not overflow unsigned long on any platform.
2983 */
2984 if (info->hdr->e_shoff >= info->len
2985 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
2986 info->len - info->hdr->e_shoff))
2987 return -ENOEXEC;
2988
2989 info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
2990
2991 /*
2992 * Verify if the section name table index is valid.
2993 */
2994 if (info->hdr->e_shstrndx == SHN_UNDEF
2995 || info->hdr->e_shstrndx >= info->hdr->e_shnum)
2996 return -ENOEXEC;
2997
2998 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
2999 err = validate_section_offset(info, strhdr);
3000 if (err < 0)
3001 return err;
3002
3003 /*
3004 * The section name table must be NUL-terminated, as required
3005 * by the spec. This makes strcmp and pr_* calls that access
3006 * strings in the section safe.
3007 */
3008 info->secstrings = (void *)info->hdr + strhdr->sh_offset;
3009 if (info->secstrings[strhdr->sh_size - 1] != '\0')
3010 return -ENOEXEC;
3011
3012 /*
3013 * The code assumes that section 0 has a length of zero and
3014 * an addr of zero, so check for it.
3015 */
3016 if (info->sechdrs[0].sh_type != SHT_NULL
3017 || info->sechdrs[0].sh_size != 0
3018 || info->sechdrs[0].sh_addr != 0)
3019 return -ENOEXEC;
3020
3021 for (i = 1; i < info->hdr->e_shnum; i++) {
3022 shdr = &info->sechdrs[i];
3023 switch (shdr->sh_type) {
3024 case SHT_NULL:
3025 case SHT_NOBITS:
3026 continue;
3027 case SHT_SYMTAB:
3028 if (shdr->sh_link == SHN_UNDEF
3029 || shdr->sh_link >= info->hdr->e_shnum)
3030 return -ENOEXEC;
3031 fallthrough;
3032 default:
3033 err = validate_section_offset(info, shdr);
3034 if (err < 0) {
3035 pr_err("Invalid ELF section in module (section %u type %u)\n",
3036 i, shdr->sh_type);
3037 return err;
3038 }
3039
3040 if (shdr->sh_flags & SHF_ALLOC) {
3041 if (shdr->sh_name >= strhdr->sh_size) {
3042 pr_err("Invalid ELF section name in module (section %u type %u)\n",
3043 i, shdr->sh_type);
3044 return -ENOEXEC;
3045 }
3046 }
3047 break;
3048 }
3049 }
3050
3051 return 0;
3052 }
3053
3054 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
3055
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)3056 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
3057 {
3058 do {
3059 unsigned long n = min(len, COPY_CHUNK_SIZE);
3060
3061 if (copy_from_user(dst, usrc, n) != 0)
3062 return -EFAULT;
3063 cond_resched();
3064 dst += n;
3065 usrc += n;
3066 len -= n;
3067 } while (len);
3068 return 0;
3069 }
3070
3071 #ifdef CONFIG_LIVEPATCH
check_modinfo_livepatch(struct module * mod,struct load_info * info)3072 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3073 {
3074 if (get_modinfo(info, "livepatch")) {
3075 mod->klp = true;
3076 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
3077 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
3078 mod->name);
3079 }
3080
3081 return 0;
3082 }
3083 #else /* !CONFIG_LIVEPATCH */
check_modinfo_livepatch(struct module * mod,struct load_info * info)3084 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
3085 {
3086 if (get_modinfo(info, "livepatch")) {
3087 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
3088 mod->name);
3089 return -ENOEXEC;
3090 }
3091
3092 return 0;
3093 }
3094 #endif /* CONFIG_LIVEPATCH */
3095
check_modinfo_retpoline(struct module * mod,struct load_info * info)3096 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
3097 {
3098 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
3099 return;
3100
3101 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
3102 mod->name);
3103 }
3104
3105 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)3106 static int copy_module_from_user(const void __user *umod, unsigned long len,
3107 struct load_info *info)
3108 {
3109 int err;
3110
3111 info->len = len;
3112 if (info->len < sizeof(*(info->hdr)))
3113 return -ENOEXEC;
3114
3115 err = security_kernel_load_data(LOADING_MODULE, true);
3116 if (err)
3117 return err;
3118
3119 /* Suck in entire file: we'll want most of it. */
3120 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
3121 if (!info->hdr)
3122 return -ENOMEM;
3123
3124 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
3125 err = -EFAULT;
3126 goto out;
3127 }
3128
3129 err = security_kernel_post_load_data((char *)info->hdr, info->len,
3130 LOADING_MODULE, "init_module");
3131 out:
3132 if (err)
3133 vfree(info->hdr);
3134
3135 return err;
3136 }
3137
free_copy(struct load_info * info)3138 static void free_copy(struct load_info *info)
3139 {
3140 vfree(info->hdr);
3141 }
3142
rewrite_section_headers(struct load_info * info,int flags)3143 static int rewrite_section_headers(struct load_info *info, int flags)
3144 {
3145 unsigned int i;
3146
3147 /* This should always be true, but let's be sure. */
3148 info->sechdrs[0].sh_addr = 0;
3149
3150 for (i = 1; i < info->hdr->e_shnum; i++) {
3151 Elf_Shdr *shdr = &info->sechdrs[i];
3152
3153 /*
3154 * Mark all sections sh_addr with their address in the
3155 * temporary image.
3156 */
3157 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
3158
3159 }
3160
3161 /* Track but don't keep modinfo and version sections. */
3162 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
3163 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
3164
3165 return 0;
3166 }
3167
3168 /*
3169 * Set up our basic convenience variables (pointers to section headers,
3170 * search for module section index etc), and do some basic section
3171 * verification.
3172 *
3173 * Set info->mod to the temporary copy of the module in info->hdr. The final one
3174 * will be allocated in move_module().
3175 */
setup_load_info(struct load_info * info,int flags)3176 static int setup_load_info(struct load_info *info, int flags)
3177 {
3178 unsigned int i;
3179
3180 /* Try to find a name early so we can log errors with a module name */
3181 info->index.info = find_sec(info, ".modinfo");
3182 if (info->index.info)
3183 info->name = get_modinfo(info, "name");
3184
3185 /* Find internal symbols and strings. */
3186 for (i = 1; i < info->hdr->e_shnum; i++) {
3187 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
3188 info->index.sym = i;
3189 info->index.str = info->sechdrs[i].sh_link;
3190 info->strtab = (char *)info->hdr
3191 + info->sechdrs[info->index.str].sh_offset;
3192 break;
3193 }
3194 }
3195
3196 if (info->index.sym == 0) {
3197 pr_warn("%s: module has no symbols (stripped?)\n",
3198 info->name ?: "(missing .modinfo section or name field)");
3199 return -ENOEXEC;
3200 }
3201
3202 info->index.mod = find_sec(info, ".gnu.linkonce.this_module");
3203 if (!info->index.mod) {
3204 pr_warn("%s: No module found in object\n",
3205 info->name ?: "(missing .modinfo section or name field)");
3206 return -ENOEXEC;
3207 }
3208 /* This is temporary: point mod into copy of data. */
3209 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
3210
3211 /*
3212 * If we didn't load the .modinfo 'name' field earlier, fall back to
3213 * on-disk struct mod 'name' field.
3214 */
3215 if (!info->name)
3216 info->name = info->mod->name;
3217
3218 if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
3219 info->index.vers = 0; /* Pretend no __versions section! */
3220 else
3221 info->index.vers = find_sec(info, "__versions");
3222
3223 info->index.pcpu = find_pcpusec(info);
3224
3225 return 0;
3226 }
3227
check_modinfo(struct module * mod,struct load_info * info,int flags)3228 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
3229 {
3230 const char *modmagic = get_modinfo(info, "vermagic");
3231 int err;
3232
3233 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
3234 modmagic = NULL;
3235
3236 /* This is allowed: modprobe --force will invalidate it. */
3237 if (!modmagic) {
3238 err = try_to_force_load(mod, "bad vermagic");
3239 if (err)
3240 return err;
3241 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
3242 pr_err("%s: version magic '%s' should be '%s'\n",
3243 info->name, modmagic, vermagic);
3244 return -ENOEXEC;
3245 }
3246
3247 if (!get_modinfo(info, "intree")) {
3248 if (!test_taint(TAINT_OOT_MODULE))
3249 pr_warn("%s: loading out-of-tree module taints kernel.\n",
3250 mod->name);
3251 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
3252 }
3253
3254 check_modinfo_retpoline(mod, info);
3255
3256 if (get_modinfo(info, "staging")) {
3257 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
3258 pr_warn("%s: module is from the staging directory, the quality "
3259 "is unknown, you have been warned.\n", mod->name);
3260 }
3261
3262 err = check_modinfo_livepatch(mod, info);
3263 if (err)
3264 return err;
3265
3266 /* Set up license info based on the info section */
3267 set_license(mod, get_modinfo(info, "license"));
3268
3269 return 0;
3270 }
3271
find_module_sections(struct module * mod,struct load_info * info)3272 static int find_module_sections(struct module *mod, struct load_info *info)
3273 {
3274 mod->kp = section_objs(info, "__param",
3275 sizeof(*mod->kp), &mod->num_kp);
3276 mod->syms = section_objs(info, "__ksymtab",
3277 sizeof(*mod->syms), &mod->num_syms);
3278 mod->crcs = section_addr(info, "__kcrctab");
3279 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
3280 sizeof(*mod->gpl_syms),
3281 &mod->num_gpl_syms);
3282 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
3283
3284 #ifdef CONFIG_CONSTRUCTORS
3285 mod->ctors = section_objs(info, ".ctors",
3286 sizeof(*mod->ctors), &mod->num_ctors);
3287 if (!mod->ctors)
3288 mod->ctors = section_objs(info, ".init_array",
3289 sizeof(*mod->ctors), &mod->num_ctors);
3290 else if (find_sec(info, ".init_array")) {
3291 /*
3292 * This shouldn't happen with same compiler and binutils
3293 * building all parts of the module.
3294 */
3295 pr_warn("%s: has both .ctors and .init_array.\n",
3296 mod->name);
3297 return -EINVAL;
3298 }
3299 #endif
3300
3301 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
3302 &mod->noinstr_text_size);
3303
3304 #ifdef CONFIG_TRACEPOINTS
3305 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
3306 sizeof(*mod->tracepoints_ptrs),
3307 &mod->num_tracepoints);
3308 #endif
3309 #ifdef CONFIG_TREE_SRCU
3310 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
3311 sizeof(*mod->srcu_struct_ptrs),
3312 &mod->num_srcu_structs);
3313 #endif
3314 #ifdef CONFIG_BPF_EVENTS
3315 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
3316 sizeof(*mod->bpf_raw_events),
3317 &mod->num_bpf_raw_events);
3318 #endif
3319 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3320 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
3321 #endif
3322 #ifdef CONFIG_JUMP_LABEL
3323 mod->jump_entries = section_objs(info, "__jump_table",
3324 sizeof(*mod->jump_entries),
3325 &mod->num_jump_entries);
3326 #endif
3327 #ifdef CONFIG_EVENT_TRACING
3328 mod->trace_events = section_objs(info, "_ftrace_events",
3329 sizeof(*mod->trace_events),
3330 &mod->num_trace_events);
3331 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
3332 sizeof(*mod->trace_evals),
3333 &mod->num_trace_evals);
3334 #endif
3335 #ifdef CONFIG_TRACING
3336 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
3337 sizeof(*mod->trace_bprintk_fmt_start),
3338 &mod->num_trace_bprintk_fmt);
3339 #endif
3340 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
3341 /* sechdrs[0].sh_size is always zero */
3342 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
3343 sizeof(*mod->ftrace_callsites),
3344 &mod->num_ftrace_callsites);
3345 #endif
3346 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
3347 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
3348 sizeof(*mod->ei_funcs),
3349 &mod->num_ei_funcs);
3350 #endif
3351 #ifdef CONFIG_KPROBES
3352 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
3353 &mod->kprobes_text_size);
3354 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
3355 sizeof(unsigned long),
3356 &mod->num_kprobe_blacklist);
3357 #endif
3358 #ifdef CONFIG_PRINTK_INDEX
3359 mod->printk_index_start = section_objs(info, ".printk_index",
3360 sizeof(*mod->printk_index_start),
3361 &mod->printk_index_size);
3362 #endif
3363 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
3364 mod->static_call_sites = section_objs(info, ".static_call_sites",
3365 sizeof(*mod->static_call_sites),
3366 &mod->num_static_call_sites);
3367 #endif
3368 mod->extable = section_objs(info, "__ex_table",
3369 sizeof(*mod->extable), &mod->num_exentries);
3370
3371 if (section_addr(info, "__obsparm"))
3372 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
3373
3374 info->debug = section_objs(info, "__dyndbg",
3375 sizeof(*info->debug), &info->num_debug);
3376
3377 return 0;
3378 }
3379
move_module(struct module * mod,struct load_info * info)3380 static int move_module(struct module *mod, struct load_info *info)
3381 {
3382 int i;
3383 void *ptr;
3384
3385 /* Do the allocs. */
3386 ptr = module_alloc(mod->core_layout.size);
3387 /*
3388 * The pointer to this block is stored in the module structure
3389 * which is inside the block. Just mark it as not being a
3390 * leak.
3391 */
3392 kmemleak_not_leak(ptr);
3393 if (!ptr)
3394 return -ENOMEM;
3395
3396 memset(ptr, 0, mod->core_layout.size);
3397 mod->core_layout.base = ptr;
3398
3399 if (mod->init_layout.size) {
3400 ptr = module_alloc(mod->init_layout.size);
3401 /*
3402 * The pointer to this block is stored in the module structure
3403 * which is inside the block. This block doesn't need to be
3404 * scanned as it contains data and code that will be freed
3405 * after the module is initialized.
3406 */
3407 kmemleak_ignore(ptr);
3408 if (!ptr) {
3409 module_memfree(mod->core_layout.base);
3410 return -ENOMEM;
3411 }
3412 memset(ptr, 0, mod->init_layout.size);
3413 mod->init_layout.base = ptr;
3414 } else
3415 mod->init_layout.base = NULL;
3416
3417 /* Transfer each section which specifies SHF_ALLOC */
3418 pr_debug("final section addresses:\n");
3419 for (i = 0; i < info->hdr->e_shnum; i++) {
3420 void *dest;
3421 Elf_Shdr *shdr = &info->sechdrs[i];
3422
3423 if (!(shdr->sh_flags & SHF_ALLOC))
3424 continue;
3425
3426 if (shdr->sh_entsize & INIT_OFFSET_MASK)
3427 dest = mod->init_layout.base
3428 + (shdr->sh_entsize & ~INIT_OFFSET_MASK);
3429 else
3430 dest = mod->core_layout.base + shdr->sh_entsize;
3431
3432 if (shdr->sh_type != SHT_NOBITS)
3433 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
3434 /* Update sh_addr to point to copy in image. */
3435 shdr->sh_addr = (unsigned long)dest;
3436 pr_debug("\t0x%lx %s\n",
3437 (long)shdr->sh_addr, info->secstrings + shdr->sh_name);
3438 }
3439
3440 return 0;
3441 }
3442
check_module_license_and_versions(struct module * mod)3443 static int check_module_license_and_versions(struct module *mod)
3444 {
3445 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
3446
3447 /*
3448 * ndiswrapper is under GPL by itself, but loads proprietary modules.
3449 * Don't use add_taint_module(), as it would prevent ndiswrapper from
3450 * using GPL-only symbols it needs.
3451 */
3452 if (strcmp(mod->name, "ndiswrapper") == 0)
3453 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
3454
3455 /* driverloader was caught wrongly pretending to be under GPL */
3456 if (strcmp(mod->name, "driverloader") == 0)
3457 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3458 LOCKDEP_NOW_UNRELIABLE);
3459
3460 /* lve claims to be GPL but upstream won't provide source */
3461 if (strcmp(mod->name, "lve") == 0)
3462 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
3463 LOCKDEP_NOW_UNRELIABLE);
3464
3465 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
3466 pr_warn("%s: module license taints kernel.\n", mod->name);
3467
3468 #ifdef CONFIG_MODVERSIONS
3469 if ((mod->num_syms && !mod->crcs) ||
3470 (mod->num_gpl_syms && !mod->gpl_crcs)) {
3471 return try_to_force_load(mod,
3472 "no versions for exported symbols");
3473 }
3474 #endif
3475 return 0;
3476 }
3477
flush_module_icache(const struct module * mod)3478 static void flush_module_icache(const struct module *mod)
3479 {
3480 /*
3481 * Flush the instruction cache, since we've played with text.
3482 * Do it before processing of module parameters, so the module
3483 * can provide parameter accessor functions of its own.
3484 */
3485 if (mod->init_layout.base)
3486 flush_icache_range((unsigned long)mod->init_layout.base,
3487 (unsigned long)mod->init_layout.base
3488 + mod->init_layout.size);
3489 flush_icache_range((unsigned long)mod->core_layout.base,
3490 (unsigned long)mod->core_layout.base + mod->core_layout.size);
3491 }
3492
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)3493 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
3494 Elf_Shdr *sechdrs,
3495 char *secstrings,
3496 struct module *mod)
3497 {
3498 return 0;
3499 }
3500
3501 /* module_blacklist is a comma-separated list of module names */
3502 static char *module_blacklist;
blacklisted(const char * module_name)3503 static bool blacklisted(const char *module_name)
3504 {
3505 const char *p;
3506 size_t len;
3507
3508 if (!module_blacklist)
3509 return false;
3510
3511 for (p = module_blacklist; *p; p += len) {
3512 len = strcspn(p, ",");
3513 if (strlen(module_name) == len && !memcmp(module_name, p, len))
3514 return true;
3515 if (p[len] == ',')
3516 len++;
3517 }
3518 return false;
3519 }
3520 core_param(module_blacklist, module_blacklist, charp, 0400);
3521
layout_and_allocate(struct load_info * info,int flags)3522 static struct module *layout_and_allocate(struct load_info *info, int flags)
3523 {
3524 struct module *mod;
3525 unsigned int ndx;
3526 int err;
3527
3528 err = check_modinfo(info->mod, info, flags);
3529 if (err)
3530 return ERR_PTR(err);
3531
3532 /* Allow arches to frob section contents and sizes. */
3533 err = module_frob_arch_sections(info->hdr, info->sechdrs,
3534 info->secstrings, info->mod);
3535 if (err < 0)
3536 return ERR_PTR(err);
3537
3538 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
3539 info->secstrings, info->mod);
3540 if (err < 0)
3541 return ERR_PTR(err);
3542
3543 /* We will do a special allocation for per-cpu sections later. */
3544 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
3545
3546 /*
3547 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
3548 * layout_sections() can put it in the right place.
3549 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
3550 */
3551 ndx = find_sec(info, ".data..ro_after_init");
3552 if (ndx)
3553 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3554 /*
3555 * Mark the __jump_table section as ro_after_init as well: these data
3556 * structures are never modified, with the exception of entries that
3557 * refer to code in the __init section, which are annotated as such
3558 * at module load time.
3559 */
3560 ndx = find_sec(info, "__jump_table");
3561 if (ndx)
3562 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
3563
3564 /*
3565 * Determine total sizes, and put offsets in sh_entsize. For now
3566 * this is done generically; there doesn't appear to be any
3567 * special cases for the architectures.
3568 */
3569 layout_sections(info->mod, info);
3570 layout_symtab(info->mod, info);
3571
3572 /* Allocate and move to the final place */
3573 err = move_module(info->mod, info);
3574 if (err)
3575 return ERR_PTR(err);
3576
3577 /* Module has been copied to its final place now: return it. */
3578 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
3579 kmemleak_load_module(mod, info);
3580 return mod;
3581 }
3582
3583 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)3584 static void module_deallocate(struct module *mod, struct load_info *info)
3585 {
3586 percpu_modfree(mod);
3587 module_arch_freeing_init(mod);
3588 module_memfree(mod->init_layout.base);
3589 module_memfree(mod->core_layout.base);
3590 }
3591
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)3592 int __weak module_finalize(const Elf_Ehdr *hdr,
3593 const Elf_Shdr *sechdrs,
3594 struct module *me)
3595 {
3596 return 0;
3597 }
3598
post_relocation(struct module * mod,const struct load_info * info)3599 static int post_relocation(struct module *mod, const struct load_info *info)
3600 {
3601 /* Sort exception table now relocations are done. */
3602 sort_extable(mod->extable, mod->extable + mod->num_exentries);
3603
3604 /* Copy relocated percpu area over. */
3605 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
3606 info->sechdrs[info->index.pcpu].sh_size);
3607
3608 /* Setup kallsyms-specific fields. */
3609 add_kallsyms(mod, info);
3610
3611 /* Arch-specific module finalizing. */
3612 return module_finalize(info->hdr, info->sechdrs, mod);
3613 }
3614
3615 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3616 static bool finished_loading(const char *name)
3617 {
3618 struct module *mod;
3619 bool ret;
3620
3621 /*
3622 * The module_mutex should not be a heavily contended lock;
3623 * if we get the occasional sleep here, we'll go an extra iteration
3624 * in the wait_event_interruptible(), which is harmless.
3625 */
3626 sched_annotate_sleep();
3627 mutex_lock(&module_mutex);
3628 mod = find_module_all(name, strlen(name), true);
3629 ret = !mod || mod->state == MODULE_STATE_LIVE;
3630 mutex_unlock(&module_mutex);
3631
3632 return ret;
3633 }
3634
3635 /* Call module constructors. */
do_mod_ctors(struct module * mod)3636 static void do_mod_ctors(struct module *mod)
3637 {
3638 #ifdef CONFIG_CONSTRUCTORS
3639 unsigned long i;
3640
3641 for (i = 0; i < mod->num_ctors; i++)
3642 mod->ctors[i]();
3643 #endif
3644 }
3645
3646 /* For freeing module_init on success, in case kallsyms traversing */
3647 struct mod_initfree {
3648 struct llist_node node;
3649 void *module_init;
3650 };
3651
do_free_init(struct work_struct * w)3652 static void do_free_init(struct work_struct *w)
3653 {
3654 struct llist_node *pos, *n, *list;
3655 struct mod_initfree *initfree;
3656
3657 list = llist_del_all(&init_free_list);
3658
3659 synchronize_rcu();
3660
3661 llist_for_each_safe(pos, n, list) {
3662 initfree = container_of(pos, struct mod_initfree, node);
3663 module_memfree(initfree->module_init);
3664 kfree(initfree);
3665 }
3666 }
3667
3668 /*
3669 * This is where the real work happens.
3670 *
3671 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
3672 * helper command 'lx-symbols'.
3673 */
do_init_module(struct module * mod)3674 static noinline int do_init_module(struct module *mod)
3675 {
3676 int ret = 0;
3677 struct mod_initfree *freeinit;
3678
3679 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
3680 if (!freeinit) {
3681 ret = -ENOMEM;
3682 goto fail;
3683 }
3684 freeinit->module_init = mod->init_layout.base;
3685
3686 /*
3687 * We want to find out whether @mod uses async during init. Clear
3688 * PF_USED_ASYNC. async_schedule*() will set it.
3689 */
3690 current->flags &= ~PF_USED_ASYNC;
3691
3692 do_mod_ctors(mod);
3693 /* Start the module */
3694 if (mod->init != NULL)
3695 ret = do_one_initcall(mod->init);
3696 if (ret < 0) {
3697 goto fail_free_freeinit;
3698 }
3699 if (ret > 0) {
3700 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
3701 "follow 0/-E convention\n"
3702 "%s: loading module anyway...\n",
3703 __func__, mod->name, ret, __func__);
3704 dump_stack();
3705 }
3706
3707 /* Now it's a first class citizen! */
3708 mod->state = MODULE_STATE_LIVE;
3709 blocking_notifier_call_chain(&module_notify_list,
3710 MODULE_STATE_LIVE, mod);
3711
3712 /* Delay uevent until module has finished its init routine */
3713 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3714
3715 /*
3716 * We need to finish all async code before the module init sequence
3717 * is done. This has potential to deadlock. For example, a newly
3718 * detected block device can trigger request_module() of the
3719 * default iosched from async probing task. Once userland helper
3720 * reaches here, async_synchronize_full() will wait on the async
3721 * task waiting on request_module() and deadlock.
3722 *
3723 * This deadlock is avoided by perfomring async_synchronize_full()
3724 * iff module init queued any async jobs. This isn't a full
3725 * solution as it will deadlock the same if module loading from
3726 * async jobs nests more than once; however, due to the various
3727 * constraints, this hack seems to be the best option for now.
3728 * Please refer to the following thread for details.
3729 *
3730 * http://thread.gmane.org/gmane.linux.kernel/1420814
3731 */
3732 if (!mod->async_probe_requested && (current->flags & PF_USED_ASYNC))
3733 async_synchronize_full();
3734
3735 ftrace_free_mem(mod, mod->init_layout.base, mod->init_layout.base +
3736 mod->init_layout.size);
3737 mutex_lock(&module_mutex);
3738 /* Drop initial reference. */
3739 module_put(mod);
3740 trim_init_extable(mod);
3741 #ifdef CONFIG_KALLSYMS
3742 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3743 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3744 #endif
3745 module_enable_ro(mod, true);
3746 mod_tree_remove_init(mod);
3747 module_arch_freeing_init(mod);
3748 mod->init_layout.base = NULL;
3749 mod->init_layout.size = 0;
3750 mod->init_layout.ro_size = 0;
3751 mod->init_layout.ro_after_init_size = 0;
3752 mod->init_layout.text_size = 0;
3753 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3754 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
3755 mod->btf_data = NULL;
3756 #endif
3757 /*
3758 * We want to free module_init, but be aware that kallsyms may be
3759 * walking this with preempt disabled. In all the failure paths, we
3760 * call synchronize_rcu(), but we don't want to slow down the success
3761 * path. module_memfree() cannot be called in an interrupt, so do the
3762 * work and call synchronize_rcu() in a work queue.
3763 *
3764 * Note that module_alloc() on most architectures creates W+X page
3765 * mappings which won't be cleaned up until do_free_init() runs. Any
3766 * code such as mark_rodata_ro() which depends on those mappings to
3767 * be cleaned up needs to sync with the queued work - ie
3768 * rcu_barrier()
3769 */
3770 if (llist_add(&freeinit->node, &init_free_list))
3771 schedule_work(&init_free_wq);
3772
3773 mutex_unlock(&module_mutex);
3774 wake_up_all(&module_wq);
3775
3776 return 0;
3777
3778 fail_free_freeinit:
3779 kfree(freeinit);
3780 fail:
3781 /* Try to protect us from buggy refcounters. */
3782 mod->state = MODULE_STATE_GOING;
3783 synchronize_rcu();
3784 module_put(mod);
3785 blocking_notifier_call_chain(&module_notify_list,
3786 MODULE_STATE_GOING, mod);
3787 klp_module_going(mod);
3788 ftrace_release_mod(mod);
3789 free_module(mod);
3790 wake_up_all(&module_wq);
3791 return ret;
3792 }
3793
may_init_module(void)3794 static int may_init_module(void)
3795 {
3796 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3797 return -EPERM;
3798
3799 return 0;
3800 }
3801
3802 /*
3803 * We try to place it in the list now to make sure it's unique before
3804 * we dedicate too many resources. In particular, temporary percpu
3805 * memory exhaustion.
3806 */
add_unformed_module(struct module * mod)3807 static int add_unformed_module(struct module *mod)
3808 {
3809 int err;
3810 struct module *old;
3811
3812 mod->state = MODULE_STATE_UNFORMED;
3813
3814 again:
3815 mutex_lock(&module_mutex);
3816 old = find_module_all(mod->name, strlen(mod->name), true);
3817 if (old != NULL) {
3818 if (old->state != MODULE_STATE_LIVE) {
3819 /* Wait in case it fails to load. */
3820 mutex_unlock(&module_mutex);
3821 err = wait_event_interruptible(module_wq,
3822 finished_loading(mod->name));
3823 if (err)
3824 goto out_unlocked;
3825 goto again;
3826 }
3827 err = -EEXIST;
3828 goto out;
3829 }
3830 mod_update_bounds(mod);
3831 list_add_rcu(&mod->list, &modules);
3832 mod_tree_insert(mod);
3833 err = 0;
3834
3835 out:
3836 mutex_unlock(&module_mutex);
3837 out_unlocked:
3838 return err;
3839 }
3840
complete_formation(struct module * mod,struct load_info * info)3841 static int complete_formation(struct module *mod, struct load_info *info)
3842 {
3843 int err;
3844
3845 mutex_lock(&module_mutex);
3846
3847 /* Find duplicate symbols (must be called under lock). */
3848 err = verify_exported_symbols(mod);
3849 if (err < 0)
3850 goto out;
3851
3852 /* This relies on module_mutex for list integrity. */
3853 module_bug_finalize(info->hdr, info->sechdrs, mod);
3854
3855 module_enable_ro(mod, false);
3856 module_enable_nx(mod);
3857 module_enable_x(mod);
3858
3859 /*
3860 * Mark state as coming so strong_try_module_get() ignores us,
3861 * but kallsyms etc. can see us.
3862 */
3863 mod->state = MODULE_STATE_COMING;
3864 mutex_unlock(&module_mutex);
3865
3866 return 0;
3867
3868 out:
3869 mutex_unlock(&module_mutex);
3870 return err;
3871 }
3872
prepare_coming_module(struct module * mod)3873 static int prepare_coming_module(struct module *mod)
3874 {
3875 int err;
3876
3877 ftrace_module_enable(mod);
3878 err = klp_module_coming(mod);
3879 if (err)
3880 return err;
3881
3882 err = blocking_notifier_call_chain_robust(&module_notify_list,
3883 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3884 err = notifier_to_errno(err);
3885 if (err)
3886 klp_module_going(mod);
3887
3888 return err;
3889 }
3890
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3891 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3892 void *arg)
3893 {
3894 struct module *mod = arg;
3895 int ret;
3896
3897 if (strcmp(param, "async_probe") == 0) {
3898 mod->async_probe_requested = true;
3899 return 0;
3900 }
3901
3902 /* Check for magic 'dyndbg' arg */
3903 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3904 if (ret != 0)
3905 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3906 return 0;
3907 }
3908
3909 static void cfi_init(struct module *mod);
3910
3911 /*
3912 * Allocate and load the module: note that size of section 0 is always
3913 * zero, and we rely on this for optional sections.
3914 */
load_module(struct load_info * info,const char __user * uargs,int flags)3915 static int load_module(struct load_info *info, const char __user *uargs,
3916 int flags)
3917 {
3918 struct module *mod;
3919 long err = 0;
3920 char *after_dashes;
3921
3922 /*
3923 * Do the signature check (if any) first. All that
3924 * the signature check needs is info->len, it does
3925 * not need any of the section info. That can be
3926 * set up later. This will minimize the chances
3927 * of a corrupt module causing problems before
3928 * we even get to the signature check.
3929 *
3930 * The check will also adjust info->len by stripping
3931 * off the sig length at the end of the module, making
3932 * checks against info->len more correct.
3933 */
3934 err = module_sig_check(info, flags);
3935 if (err)
3936 goto free_copy;
3937
3938 /*
3939 * Do basic sanity checks against the ELF header and
3940 * sections.
3941 */
3942 err = elf_validity_check(info);
3943 if (err) {
3944 pr_err("Module has invalid ELF structures\n");
3945 goto free_copy;
3946 }
3947
3948 /*
3949 * Everything checks out, so set up the section info
3950 * in the info structure.
3951 */
3952 err = setup_load_info(info, flags);
3953 if (err)
3954 goto free_copy;
3955
3956 /*
3957 * Now that we know we have the correct module name, check
3958 * if it's blacklisted.
3959 */
3960 if (blacklisted(info->name)) {
3961 err = -EPERM;
3962 pr_err("Module %s is blacklisted\n", info->name);
3963 goto free_copy;
3964 }
3965
3966 err = rewrite_section_headers(info, flags);
3967 if (err)
3968 goto free_copy;
3969
3970 /* Check module struct version now, before we try to use module. */
3971 if (!check_modstruct_version(info, info->mod)) {
3972 err = -ENOEXEC;
3973 goto free_copy;
3974 }
3975
3976 /* Figure out module layout, and allocate all the memory. */
3977 mod = layout_and_allocate(info, flags);
3978 if (IS_ERR(mod)) {
3979 err = PTR_ERR(mod);
3980 goto free_copy;
3981 }
3982
3983 audit_log_kern_module(mod->name);
3984
3985 /* Reserve our place in the list. */
3986 err = add_unformed_module(mod);
3987 if (err)
3988 goto free_module;
3989
3990 #ifdef CONFIG_MODULE_SIG
3991 mod->sig_ok = info->sig_ok;
3992 if (!mod->sig_ok) {
3993 pr_notice_once("%s: module verification failed: signature "
3994 "and/or required key missing - tainting "
3995 "kernel\n", mod->name);
3996 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
3997 }
3998 #endif
3999
4000 /* To avoid stressing percpu allocator, do this once we're unique. */
4001 err = percpu_modalloc(mod, info);
4002 if (err)
4003 goto unlink_mod;
4004
4005 /* Now module is in final location, initialize linked lists, etc. */
4006 err = module_unload_init(mod);
4007 if (err)
4008 goto unlink_mod;
4009
4010 init_param_lock(mod);
4011
4012 /*
4013 * Now we've got everything in the final locations, we can
4014 * find optional sections.
4015 */
4016 err = find_module_sections(mod, info);
4017 if (err)
4018 goto free_unload;
4019
4020 err = check_module_license_and_versions(mod);
4021 if (err)
4022 goto free_unload;
4023
4024 /* Set up MODINFO_ATTR fields */
4025 setup_modinfo(mod, info);
4026
4027 /* Fix up syms, so that st_value is a pointer to location. */
4028 err = simplify_symbols(mod, info);
4029 if (err < 0)
4030 goto free_modinfo;
4031
4032 err = apply_relocations(mod, info);
4033 if (err < 0)
4034 goto free_modinfo;
4035
4036 err = post_relocation(mod, info);
4037 if (err < 0)
4038 goto free_modinfo;
4039
4040 flush_module_icache(mod);
4041
4042 /* Setup CFI for the module. */
4043 cfi_init(mod);
4044
4045 /* Now copy in args */
4046 mod->args = strndup_user(uargs, ~0UL >> 1);
4047 if (IS_ERR(mod->args)) {
4048 err = PTR_ERR(mod->args);
4049 goto free_arch_cleanup;
4050 }
4051
4052 init_build_id(mod, info);
4053 dynamic_debug_setup(mod, info->debug, info->num_debug);
4054
4055 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
4056 ftrace_module_init(mod);
4057
4058 /* Finally it's fully formed, ready to start executing. */
4059 err = complete_formation(mod, info);
4060 if (err)
4061 goto ddebug_cleanup;
4062
4063 err = prepare_coming_module(mod);
4064 if (err)
4065 goto bug_cleanup;
4066
4067 /* Module is ready to execute: parsing args may do that. */
4068 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
4069 -32768, 32767, mod,
4070 unknown_module_param_cb);
4071 if (IS_ERR(after_dashes)) {
4072 err = PTR_ERR(after_dashes);
4073 goto coming_cleanup;
4074 } else if (after_dashes) {
4075 pr_warn("%s: parameters '%s' after `--' ignored\n",
4076 mod->name, after_dashes);
4077 }
4078
4079 /* Link in to sysfs. */
4080 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
4081 if (err < 0)
4082 goto coming_cleanup;
4083
4084 if (is_livepatch_module(mod)) {
4085 err = copy_module_elf(mod, info);
4086 if (err < 0)
4087 goto sysfs_cleanup;
4088 }
4089
4090 /* Get rid of temporary copy. */
4091 free_copy(info);
4092
4093 /* Done! */
4094 trace_module_load(mod);
4095
4096 return do_init_module(mod);
4097
4098 sysfs_cleanup:
4099 mod_sysfs_teardown(mod);
4100 coming_cleanup:
4101 mod->state = MODULE_STATE_GOING;
4102 destroy_params(mod->kp, mod->num_kp);
4103 blocking_notifier_call_chain(&module_notify_list,
4104 MODULE_STATE_GOING, mod);
4105 klp_module_going(mod);
4106 bug_cleanup:
4107 mod->state = MODULE_STATE_GOING;
4108 /* module_bug_cleanup needs module_mutex protection */
4109 mutex_lock(&module_mutex);
4110 module_bug_cleanup(mod);
4111 mutex_unlock(&module_mutex);
4112
4113 ddebug_cleanup:
4114 ftrace_release_mod(mod);
4115 dynamic_debug_remove(mod, info->debug);
4116 synchronize_rcu();
4117 kfree(mod->args);
4118 free_arch_cleanup:
4119 cfi_cleanup(mod);
4120 module_arch_cleanup(mod);
4121 free_modinfo:
4122 free_modinfo(mod);
4123 free_unload:
4124 module_unload_free(mod);
4125 unlink_mod:
4126 mutex_lock(&module_mutex);
4127 /* Unlink carefully: kallsyms could be walking list. */
4128 list_del_rcu(&mod->list);
4129 mod_tree_remove(mod);
4130 wake_up_all(&module_wq);
4131 /* Wait for RCU-sched synchronizing before releasing mod->list. */
4132 synchronize_rcu();
4133 mutex_unlock(&module_mutex);
4134 free_module:
4135 /* Free lock-classes; relies on the preceding sync_rcu() */
4136 lockdep_free_key_range(mod->core_layout.base, mod->core_layout.size);
4137
4138 module_deallocate(mod, info);
4139 free_copy:
4140 free_copy(info);
4141 return err;
4142 }
4143
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)4144 SYSCALL_DEFINE3(init_module, void __user *, umod,
4145 unsigned long, len, const char __user *, uargs)
4146 {
4147 int err;
4148 struct load_info info = { };
4149
4150 err = may_init_module();
4151 if (err)
4152 return err;
4153
4154 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
4155 umod, len, uargs);
4156
4157 err = copy_module_from_user(umod, len, &info);
4158 if (err)
4159 return err;
4160
4161 return load_module(&info, uargs, 0);
4162 }
4163
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)4164 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
4165 {
4166 struct load_info info = { };
4167 void *hdr = NULL;
4168 int err;
4169
4170 err = may_init_module();
4171 if (err)
4172 return err;
4173
4174 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
4175
4176 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
4177 |MODULE_INIT_IGNORE_VERMAGIC))
4178 return -EINVAL;
4179
4180 err = kernel_read_file_from_fd(fd, 0, &hdr, INT_MAX, NULL,
4181 READING_MODULE);
4182 if (err < 0)
4183 return err;
4184 info.hdr = hdr;
4185 info.len = err;
4186
4187 return load_module(&info, uargs, flags);
4188 }
4189
within(unsigned long addr,void * start,unsigned long size)4190 static inline int within(unsigned long addr, void *start, unsigned long size)
4191 {
4192 return ((void *)addr >= start && (void *)addr < start + size);
4193 }
4194
4195 #ifdef CONFIG_KALLSYMS
4196 /*
4197 * This ignores the intensely annoying "mapping symbols" found
4198 * in ARM ELF files: $a, $t and $d.
4199 */
is_arm_mapping_symbol(const char * str)4200 static inline int is_arm_mapping_symbol(const char *str)
4201 {
4202 if (str[0] == '.' && str[1] == 'L')
4203 return true;
4204 return str[0] == '$' && strchr("axtd", str[1])
4205 && (str[2] == '\0' || str[2] == '.');
4206 }
4207
kallsyms_symbol_name(struct mod_kallsyms * kallsyms,unsigned int symnum)4208 static const char *kallsyms_symbol_name(struct mod_kallsyms *kallsyms, unsigned int symnum)
4209 {
4210 return kallsyms->strtab + kallsyms->symtab[symnum].st_name;
4211 }
4212
4213 /*
4214 * Given a module and address, find the corresponding symbol and return its name
4215 * while providing its size and offset if needed.
4216 */
find_kallsyms_symbol(struct module * mod,unsigned long addr,unsigned long * size,unsigned long * offset)4217 static const char *find_kallsyms_symbol(struct module *mod,
4218 unsigned long addr,
4219 unsigned long *size,
4220 unsigned long *offset)
4221 {
4222 unsigned int i, best = 0;
4223 unsigned long nextval, bestval;
4224 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4225
4226 /* At worse, next value is at end of module */
4227 if (within_module_init(addr, mod))
4228 nextval = (unsigned long)mod->init_layout.base+mod->init_layout.text_size;
4229 else
4230 nextval = (unsigned long)mod->core_layout.base+mod->core_layout.text_size;
4231
4232 bestval = kallsyms_symbol_value(&kallsyms->symtab[best]);
4233
4234 /*
4235 * Scan for closest preceding symbol, and next symbol. (ELF
4236 * starts real symbols at 1).
4237 */
4238 for (i = 1; i < kallsyms->num_symtab; i++) {
4239 const Elf_Sym *sym = &kallsyms->symtab[i];
4240 unsigned long thisval = kallsyms_symbol_value(sym);
4241
4242 if (sym->st_shndx == SHN_UNDEF)
4243 continue;
4244
4245 /*
4246 * We ignore unnamed symbols: they're uninformative
4247 * and inserted at a whim.
4248 */
4249 if (*kallsyms_symbol_name(kallsyms, i) == '\0'
4250 || is_arm_mapping_symbol(kallsyms_symbol_name(kallsyms, i)))
4251 continue;
4252
4253 if (thisval <= addr && thisval > bestval) {
4254 best = i;
4255 bestval = thisval;
4256 }
4257 if (thisval > addr && thisval < nextval)
4258 nextval = thisval;
4259 }
4260
4261 if (!best)
4262 return NULL;
4263
4264 if (size)
4265 *size = nextval - bestval;
4266 if (offset)
4267 *offset = addr - bestval;
4268
4269 return kallsyms_symbol_name(kallsyms, best);
4270 }
4271
dereference_module_function_descriptor(struct module * mod,void * ptr)4272 void * __weak dereference_module_function_descriptor(struct module *mod,
4273 void *ptr)
4274 {
4275 return ptr;
4276 }
4277
4278 /*
4279 * For kallsyms to ask for address resolution. NULL means not found. Careful
4280 * not to lock to avoid deadlock on oopses, simply disable preemption.
4281 */
module_address_lookup(unsigned long addr,unsigned long * size,unsigned long * offset,char ** modname,const unsigned char ** modbuildid,char * namebuf)4282 const char *module_address_lookup(unsigned long addr,
4283 unsigned long *size,
4284 unsigned long *offset,
4285 char **modname,
4286 const unsigned char **modbuildid,
4287 char *namebuf)
4288 {
4289 const char *ret = NULL;
4290 struct module *mod;
4291
4292 preempt_disable();
4293 mod = __module_address(addr);
4294 if (mod) {
4295 if (modname)
4296 *modname = mod->name;
4297 if (modbuildid) {
4298 #if IS_ENABLED(CONFIG_STACKTRACE_BUILD_ID)
4299 *modbuildid = mod->build_id;
4300 #else
4301 *modbuildid = NULL;
4302 #endif
4303 }
4304
4305 ret = find_kallsyms_symbol(mod, addr, size, offset);
4306 }
4307 /* Make a copy in here where it's safe */
4308 if (ret) {
4309 strncpy(namebuf, ret, KSYM_NAME_LEN - 1);
4310 ret = namebuf;
4311 }
4312 preempt_enable();
4313
4314 return ret;
4315 }
4316
lookup_module_symbol_name(unsigned long addr,char * symname)4317 int lookup_module_symbol_name(unsigned long addr, char *symname)
4318 {
4319 struct module *mod;
4320
4321 preempt_disable();
4322 list_for_each_entry_rcu(mod, &modules, list) {
4323 if (mod->state == MODULE_STATE_UNFORMED)
4324 continue;
4325 if (within_module(addr, mod)) {
4326 const char *sym;
4327
4328 sym = find_kallsyms_symbol(mod, addr, NULL, NULL);
4329 if (!sym)
4330 goto out;
4331
4332 strlcpy(symname, sym, KSYM_NAME_LEN);
4333 preempt_enable();
4334 return 0;
4335 }
4336 }
4337 out:
4338 preempt_enable();
4339 return -ERANGE;
4340 }
4341
lookup_module_symbol_attrs(unsigned long addr,unsigned long * size,unsigned long * offset,char * modname,char * name)4342 int lookup_module_symbol_attrs(unsigned long addr, unsigned long *size,
4343 unsigned long *offset, char *modname, char *name)
4344 {
4345 struct module *mod;
4346
4347 preempt_disable();
4348 list_for_each_entry_rcu(mod, &modules, list) {
4349 if (mod->state == MODULE_STATE_UNFORMED)
4350 continue;
4351 if (within_module(addr, mod)) {
4352 const char *sym;
4353
4354 sym = find_kallsyms_symbol(mod, addr, size, offset);
4355 if (!sym)
4356 goto out;
4357 if (modname)
4358 strlcpy(modname, mod->name, MODULE_NAME_LEN);
4359 if (name)
4360 strlcpy(name, sym, KSYM_NAME_LEN);
4361 preempt_enable();
4362 return 0;
4363 }
4364 }
4365 out:
4366 preempt_enable();
4367 return -ERANGE;
4368 }
4369
module_get_kallsym(unsigned int symnum,unsigned long * value,char * type,char * name,char * module_name,int * exported)4370 int module_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
4371 char *name, char *module_name, int *exported)
4372 {
4373 struct module *mod;
4374
4375 preempt_disable();
4376 list_for_each_entry_rcu(mod, &modules, list) {
4377 struct mod_kallsyms *kallsyms;
4378
4379 if (mod->state == MODULE_STATE_UNFORMED)
4380 continue;
4381 kallsyms = rcu_dereference_sched(mod->kallsyms);
4382 if (symnum < kallsyms->num_symtab) {
4383 const Elf_Sym *sym = &kallsyms->symtab[symnum];
4384
4385 *value = kallsyms_symbol_value(sym);
4386 *type = kallsyms->typetab[symnum];
4387 strlcpy(name, kallsyms_symbol_name(kallsyms, symnum), KSYM_NAME_LEN);
4388 strlcpy(module_name, mod->name, MODULE_NAME_LEN);
4389 *exported = is_exported(name, *value, mod);
4390 preempt_enable();
4391 return 0;
4392 }
4393 symnum -= kallsyms->num_symtab;
4394 }
4395 preempt_enable();
4396 return -ERANGE;
4397 }
4398
4399 /* Given a module and name of symbol, find and return the symbol's value */
find_kallsyms_symbol_value(struct module * mod,const char * name)4400 static unsigned long find_kallsyms_symbol_value(struct module *mod, const char *name)
4401 {
4402 unsigned int i;
4403 struct mod_kallsyms *kallsyms = rcu_dereference_sched(mod->kallsyms);
4404
4405 for (i = 0; i < kallsyms->num_symtab; i++) {
4406 const Elf_Sym *sym = &kallsyms->symtab[i];
4407
4408 if (strcmp(name, kallsyms_symbol_name(kallsyms, i)) == 0 &&
4409 sym->st_shndx != SHN_UNDEF)
4410 return kallsyms_symbol_value(sym);
4411 }
4412 return 0;
4413 }
4414
4415 /* Look for this name: can be of form module:name. */
module_kallsyms_lookup_name(const char * name)4416 unsigned long module_kallsyms_lookup_name(const char *name)
4417 {
4418 struct module *mod;
4419 char *colon;
4420 unsigned long ret = 0;
4421
4422 /* Don't lock: we're in enough trouble already. */
4423 preempt_disable();
4424 if ((colon = strnchr(name, MODULE_NAME_LEN, ':')) != NULL) {
4425 if ((mod = find_module_all(name, colon - name, false)) != NULL)
4426 ret = find_kallsyms_symbol_value(mod, colon+1);
4427 } else {
4428 list_for_each_entry_rcu(mod, &modules, list) {
4429 if (mod->state == MODULE_STATE_UNFORMED)
4430 continue;
4431 if ((ret = find_kallsyms_symbol_value(mod, name)) != 0)
4432 break;
4433 }
4434 }
4435 preempt_enable();
4436 return ret;
4437 }
4438
4439 #ifdef CONFIG_LIVEPATCH
module_kallsyms_on_each_symbol(int (* fn)(void *,const char *,struct module *,unsigned long),void * data)4440 int module_kallsyms_on_each_symbol(int (*fn)(void *, const char *,
4441 struct module *, unsigned long),
4442 void *data)
4443 {
4444 struct module *mod;
4445 unsigned int i;
4446 int ret = 0;
4447
4448 mutex_lock(&module_mutex);
4449 list_for_each_entry(mod, &modules, list) {
4450 /* We hold module_mutex: no need for rcu_dereference_sched */
4451 struct mod_kallsyms *kallsyms = mod->kallsyms;
4452
4453 if (mod->state == MODULE_STATE_UNFORMED)
4454 continue;
4455 for (i = 0; i < kallsyms->num_symtab; i++) {
4456 const Elf_Sym *sym = &kallsyms->symtab[i];
4457
4458 if (sym->st_shndx == SHN_UNDEF)
4459 continue;
4460
4461 ret = fn(data, kallsyms_symbol_name(kallsyms, i),
4462 mod, kallsyms_symbol_value(sym));
4463 if (ret != 0)
4464 goto out;
4465 }
4466 }
4467 out:
4468 mutex_unlock(&module_mutex);
4469 return ret;
4470 }
4471 #endif /* CONFIG_LIVEPATCH */
4472 #endif /* CONFIG_KALLSYMS */
4473
cfi_init(struct module * mod)4474 static void cfi_init(struct module *mod)
4475 {
4476 #ifdef CONFIG_CFI_CLANG
4477 initcall_t *init;
4478 exitcall_t *exit;
4479
4480 rcu_read_lock_sched();
4481 mod->cfi_check = (cfi_check_fn)
4482 find_kallsyms_symbol_value(mod, "__cfi_check");
4483 init = (initcall_t *)
4484 find_kallsyms_symbol_value(mod, "__cfi_jt_init_module");
4485 exit = (exitcall_t *)
4486 find_kallsyms_symbol_value(mod, "__cfi_jt_cleanup_module");
4487 rcu_read_unlock_sched();
4488
4489 /* Fix init/exit functions to point to the CFI jump table */
4490 if (init)
4491 mod->init = *init;
4492 #ifdef CONFIG_MODULE_UNLOAD
4493 if (exit)
4494 mod->exit = *exit;
4495 #endif
4496
4497 cfi_module_add(mod, module_addr_min);
4498 #endif
4499 }
4500
cfi_cleanup(struct module * mod)4501 static void cfi_cleanup(struct module *mod)
4502 {
4503 #ifdef CONFIG_CFI_CLANG
4504 cfi_module_remove(mod, module_addr_min);
4505 #endif
4506 }
4507
4508 /* Maximum number of characters written by module_flags() */
4509 #define MODULE_FLAGS_BUF_SIZE (TAINT_FLAGS_COUNT + 4)
4510
4511 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf)4512 static char *module_flags(struct module *mod, char *buf)
4513 {
4514 int bx = 0;
4515
4516 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
4517 if (mod->taints ||
4518 mod->state == MODULE_STATE_GOING ||
4519 mod->state == MODULE_STATE_COMING) {
4520 buf[bx++] = '(';
4521 bx += module_flags_taint(mod, buf + bx);
4522 /* Show a - for module-is-being-unloaded */
4523 if (mod->state == MODULE_STATE_GOING)
4524 buf[bx++] = '-';
4525 /* Show a + for module-is-being-loaded */
4526 if (mod->state == MODULE_STATE_COMING)
4527 buf[bx++] = '+';
4528 buf[bx++] = ')';
4529 }
4530 buf[bx] = '\0';
4531
4532 return buf;
4533 }
4534
4535 #ifdef CONFIG_PROC_FS
4536 /* Called by the /proc file system to return a list of modules. */
m_start(struct seq_file * m,loff_t * pos)4537 static void *m_start(struct seq_file *m, loff_t *pos)
4538 {
4539 mutex_lock(&module_mutex);
4540 return seq_list_start(&modules, *pos);
4541 }
4542
m_next(struct seq_file * m,void * p,loff_t * pos)4543 static void *m_next(struct seq_file *m, void *p, loff_t *pos)
4544 {
4545 return seq_list_next(p, &modules, pos);
4546 }
4547
m_stop(struct seq_file * m,void * p)4548 static void m_stop(struct seq_file *m, void *p)
4549 {
4550 mutex_unlock(&module_mutex);
4551 }
4552
m_show(struct seq_file * m,void * p)4553 static int m_show(struct seq_file *m, void *p)
4554 {
4555 struct module *mod = list_entry(p, struct module, list);
4556 char buf[MODULE_FLAGS_BUF_SIZE];
4557 void *value;
4558
4559 /* We always ignore unformed modules. */
4560 if (mod->state == MODULE_STATE_UNFORMED)
4561 return 0;
4562
4563 seq_printf(m, "%s %u",
4564 mod->name, mod->init_layout.size + mod->core_layout.size);
4565 print_unload_info(m, mod);
4566
4567 /* Informative for users. */
4568 seq_printf(m, " %s",
4569 mod->state == MODULE_STATE_GOING ? "Unloading" :
4570 mod->state == MODULE_STATE_COMING ? "Loading" :
4571 "Live");
4572 /* Used by oprofile and other similar tools. */
4573 value = m->private ? NULL : mod->core_layout.base;
4574 seq_printf(m, " 0x%px", value);
4575
4576 /* Taints info */
4577 if (mod->taints)
4578 seq_printf(m, " %s", module_flags(mod, buf));
4579
4580 seq_puts(m, "\n");
4581 return 0;
4582 }
4583
4584 /*
4585 * Format: modulename size refcount deps address
4586 *
4587 * Where refcount is a number or -, and deps is a comma-separated list
4588 * of depends or -.
4589 */
4590 static const struct seq_operations modules_op = {
4591 .start = m_start,
4592 .next = m_next,
4593 .stop = m_stop,
4594 .show = m_show
4595 };
4596
4597 /*
4598 * This also sets the "private" pointer to non-NULL if the
4599 * kernel pointers should be hidden (so you can just test
4600 * "m->private" to see if you should keep the values private).
4601 *
4602 * We use the same logic as for /proc/kallsyms.
4603 */
modules_open(struct inode * inode,struct file * file)4604 static int modules_open(struct inode *inode, struct file *file)
4605 {
4606 int err = seq_open(file, &modules_op);
4607
4608 if (!err) {
4609 struct seq_file *m = file->private_data;
4610 m->private = kallsyms_show_value(file->f_cred) ? NULL : (void *)8ul;
4611 }
4612
4613 return err;
4614 }
4615
4616 static const struct proc_ops modules_proc_ops = {
4617 .proc_flags = PROC_ENTRY_PERMANENT,
4618 .proc_open = modules_open,
4619 .proc_read = seq_read,
4620 .proc_lseek = seq_lseek,
4621 .proc_release = seq_release,
4622 };
4623
proc_modules_init(void)4624 static int __init proc_modules_init(void)
4625 {
4626 proc_create("modules", 0, NULL, &modules_proc_ops);
4627 return 0;
4628 }
4629 module_init(proc_modules_init);
4630 #endif
4631
4632 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)4633 const struct exception_table_entry *search_module_extables(unsigned long addr)
4634 {
4635 const struct exception_table_entry *e = NULL;
4636 struct module *mod;
4637
4638 preempt_disable();
4639 mod = __module_address(addr);
4640 if (!mod)
4641 goto out;
4642
4643 if (!mod->num_exentries)
4644 goto out;
4645
4646 e = search_extable(mod->extable,
4647 mod->num_exentries,
4648 addr);
4649 out:
4650 preempt_enable();
4651
4652 /*
4653 * Now, if we found one, we are running inside it now, hence
4654 * we cannot unload the module, hence no refcnt needed.
4655 */
4656 return e;
4657 }
4658
4659 /**
4660 * is_module_address() - is this address inside a module?
4661 * @addr: the address to check.
4662 *
4663 * See is_module_text_address() if you simply want to see if the address
4664 * is code (not data).
4665 */
is_module_address(unsigned long addr)4666 bool is_module_address(unsigned long addr)
4667 {
4668 bool ret;
4669
4670 preempt_disable();
4671 ret = __module_address(addr) != NULL;
4672 preempt_enable();
4673
4674 return ret;
4675 }
4676
4677 /**
4678 * __module_address() - get the module which contains an address.
4679 * @addr: the address.
4680 *
4681 * Must be called with preempt disabled or module mutex held so that
4682 * module doesn't get freed during this.
4683 */
__module_address(unsigned long addr)4684 struct module *__module_address(unsigned long addr)
4685 {
4686 struct module *mod;
4687
4688 if (addr < module_addr_min || addr > module_addr_max)
4689 return NULL;
4690
4691 module_assert_mutex_or_preempt();
4692
4693 mod = mod_find(addr);
4694 if (mod) {
4695 BUG_ON(!within_module(addr, mod));
4696 if (mod->state == MODULE_STATE_UNFORMED)
4697 mod = NULL;
4698 }
4699 return mod;
4700 }
4701
4702 /**
4703 * is_module_text_address() - is this address inside module code?
4704 * @addr: the address to check.
4705 *
4706 * See is_module_address() if you simply want to see if the address is
4707 * anywhere in a module. See kernel_text_address() for testing if an
4708 * address corresponds to kernel or module code.
4709 */
is_module_text_address(unsigned long addr)4710 bool is_module_text_address(unsigned long addr)
4711 {
4712 bool ret;
4713
4714 preempt_disable();
4715 ret = __module_text_address(addr) != NULL;
4716 preempt_enable();
4717
4718 return ret;
4719 }
4720
4721 /**
4722 * __module_text_address() - get the module whose code contains an address.
4723 * @addr: the address.
4724 *
4725 * Must be called with preempt disabled or module mutex held so that
4726 * module doesn't get freed during this.
4727 */
__module_text_address(unsigned long addr)4728 struct module *__module_text_address(unsigned long addr)
4729 {
4730 struct module *mod = __module_address(addr);
4731 if (mod) {
4732 /* Make sure it's within the text section. */
4733 if (!within(addr, mod->init_layout.base, mod->init_layout.text_size)
4734 && !within(addr, mod->core_layout.base, mod->core_layout.text_size))
4735 mod = NULL;
4736 }
4737 return mod;
4738 }
4739
4740 /* Don't grab lock, we're oopsing. */
print_modules(void)4741 void print_modules(void)
4742 {
4743 struct module *mod;
4744 char buf[MODULE_FLAGS_BUF_SIZE];
4745
4746 printk(KERN_DEFAULT "Modules linked in:");
4747 /* Most callers should already have preempt disabled, but make sure */
4748 preempt_disable();
4749 list_for_each_entry_rcu(mod, &modules, list) {
4750 if (mod->state == MODULE_STATE_UNFORMED)
4751 continue;
4752 pr_cont(" %s%s", mod->name, module_flags(mod, buf));
4753 }
4754 preempt_enable();
4755 if (last_unloaded_module[0])
4756 pr_cont(" [last unloaded: %s]", last_unloaded_module);
4757 pr_cont("\n");
4758 }
4759
4760 #ifdef CONFIG_MODVERSIONS
4761 /*
4762 * Generate the signature for all relevant module structures here.
4763 * If these change, we don't want to try to parse the module.
4764 */
module_layout(struct module * mod,struct modversion_info * ver,struct kernel_param * kp,struct kernel_symbol * ks,struct tracepoint * const * tp)4765 void module_layout(struct module *mod,
4766 struct modversion_info *ver,
4767 struct kernel_param *kp,
4768 struct kernel_symbol *ks,
4769 struct tracepoint * const *tp)
4770 {
4771 }
4772 EXPORT_SYMBOL(module_layout);
4773 #endif
4774