1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/lockdep.c
4 *
5 * Runtime locking correctness validator
6 *
7 * Started by Ingo Molnar:
8 *
9 * Copyright (C) 2006,2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
11 *
12 * this code maps all the lock dependencies as they occur in a live kernel
13 * and will warn about the following classes of locking bugs:
14 *
15 * - lock inversion scenarios
16 * - circular lock dependencies
17 * - hardirq/softirq safe/unsafe locking bugs
18 *
19 * Bugs are reported even if the current locking scenario does not cause
20 * any deadlock at this point.
21 *
22 * I.e. if anytime in the past two locks were taken in a different order,
23 * even if it happened for another task, even if those were different
24 * locks (but of the same class as this lock), this code will detect it.
25 *
26 * Thanks to Arjan van de Ven for coming up with the initial idea of
27 * mapping lock dependencies runtime.
28 */
29 #define DISABLE_BRANCH_PROFILING
30 #include <linux/mutex.h>
31 #include <linux/sched.h>
32 #include <linux/sched/clock.h>
33 #include <linux/sched/task.h>
34 #include <linux/sched/mm.h>
35 #include <linux/delay.h>
36 #include <linux/module.h>
37 #include <linux/proc_fs.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/stacktrace.h>
43 #include <linux/debug_locks.h>
44 #include <linux/irqflags.h>
45 #include <linux/utsname.h>
46 #include <linux/hash.h>
47 #include <linux/ftrace.h>
48 #include <linux/stringify.h>
49 #include <linux/bitmap.h>
50 #include <linux/bitops.h>
51 #include <linux/gfp.h>
52 #include <linux/random.h>
53 #include <linux/jhash.h>
54 #include <linux/nmi.h>
55 #include <linux/rcupdate.h>
56 #include <linux/kprobes.h>
57 #include <linux/lockdep.h>
58
59 #include <asm/sections.h>
60
61 #include "lockdep_internals.h"
62
63 #define CREATE_TRACE_POINTS
64 #include <trace/events/lock.h>
65
66 #ifdef CONFIG_PROVE_LOCKING
67 int prove_locking = 1;
68 module_param(prove_locking, int, 0644);
69 #else
70 #define prove_locking 0
71 #endif
72
73 #ifdef CONFIG_LOCK_STAT
74 int lock_stat = 1;
75 module_param(lock_stat, int, 0644);
76 #else
77 #define lock_stat 0
78 #endif
79
80 DEFINE_PER_CPU(unsigned int, lockdep_recursion);
81 EXPORT_PER_CPU_SYMBOL_GPL(lockdep_recursion);
82
lockdep_enabled(void)83 static __always_inline bool lockdep_enabled(void)
84 {
85 if (!debug_locks)
86 return false;
87
88 if (this_cpu_read(lockdep_recursion))
89 return false;
90
91 if (current->lockdep_recursion)
92 return false;
93
94 return true;
95 }
96
97 /*
98 * lockdep_lock: protects the lockdep graph, the hashes and the
99 * class/list/hash allocators.
100 *
101 * This is one of the rare exceptions where it's justified
102 * to use a raw spinlock - we really dont want the spinlock
103 * code to recurse back into the lockdep code...
104 */
105 static arch_spinlock_t __lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
106 static struct task_struct *__owner;
107
lockdep_lock(void)108 static inline void lockdep_lock(void)
109 {
110 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
111
112 __this_cpu_inc(lockdep_recursion);
113 arch_spin_lock(&__lock);
114 __owner = current;
115 }
116
lockdep_unlock(void)117 static inline void lockdep_unlock(void)
118 {
119 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
120
121 if (debug_locks && DEBUG_LOCKS_WARN_ON(__owner != current))
122 return;
123
124 __owner = NULL;
125 arch_spin_unlock(&__lock);
126 __this_cpu_dec(lockdep_recursion);
127 }
128
lockdep_assert_locked(void)129 static inline bool lockdep_assert_locked(void)
130 {
131 return DEBUG_LOCKS_WARN_ON(__owner != current);
132 }
133
134 static struct task_struct *lockdep_selftest_task_struct;
135
136
graph_lock(void)137 static int graph_lock(void)
138 {
139 lockdep_lock();
140 /*
141 * Make sure that if another CPU detected a bug while
142 * walking the graph we dont change it (while the other
143 * CPU is busy printing out stuff with the graph lock
144 * dropped already)
145 */
146 if (!debug_locks) {
147 lockdep_unlock();
148 return 0;
149 }
150 return 1;
151 }
152
graph_unlock(void)153 static inline void graph_unlock(void)
154 {
155 lockdep_unlock();
156 }
157
158 /*
159 * Turn lock debugging off and return with 0 if it was off already,
160 * and also release the graph lock:
161 */
debug_locks_off_graph_unlock(void)162 static inline int debug_locks_off_graph_unlock(void)
163 {
164 int ret = debug_locks_off();
165
166 lockdep_unlock();
167
168 return ret;
169 }
170
171 unsigned long nr_list_entries;
172 static struct lock_list list_entries[MAX_LOCKDEP_ENTRIES];
173 static DECLARE_BITMAP(list_entries_in_use, MAX_LOCKDEP_ENTRIES);
174
175 /*
176 * All data structures here are protected by the global debug_lock.
177 *
178 * nr_lock_classes is the number of elements of lock_classes[] that is
179 * in use.
180 */
181 #define KEYHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
182 #define KEYHASH_SIZE (1UL << KEYHASH_BITS)
183 static struct hlist_head lock_keys_hash[KEYHASH_SIZE];
184 unsigned long nr_lock_classes;
185 unsigned long nr_zapped_classes;
186 #ifndef CONFIG_DEBUG_LOCKDEP
187 static
188 #endif
189 struct lock_class lock_classes[MAX_LOCKDEP_KEYS];
190 static DECLARE_BITMAP(lock_classes_in_use, MAX_LOCKDEP_KEYS);
191
hlock_class(struct held_lock * hlock)192 static inline struct lock_class *hlock_class(struct held_lock *hlock)
193 {
194 unsigned int class_idx = hlock->class_idx;
195
196 /* Don't re-read hlock->class_idx, can't use READ_ONCE() on bitfield */
197 barrier();
198
199 if (!test_bit(class_idx, lock_classes_in_use)) {
200 /*
201 * Someone passed in garbage, we give up.
202 */
203 DEBUG_LOCKS_WARN_ON(1);
204 return NULL;
205 }
206
207 /*
208 * At this point, if the passed hlock->class_idx is still garbage,
209 * we just have to live with it
210 */
211 return lock_classes + class_idx;
212 }
213
214 #ifdef CONFIG_LOCK_STAT
215 static DEFINE_PER_CPU(struct lock_class_stats[MAX_LOCKDEP_KEYS], cpu_lock_stats);
216
lockstat_clock(void)217 static inline u64 lockstat_clock(void)
218 {
219 return local_clock();
220 }
221
lock_point(unsigned long points[],unsigned long ip)222 static int lock_point(unsigned long points[], unsigned long ip)
223 {
224 int i;
225
226 for (i = 0; i < LOCKSTAT_POINTS; i++) {
227 if (points[i] == 0) {
228 points[i] = ip;
229 break;
230 }
231 if (points[i] == ip)
232 break;
233 }
234
235 return i;
236 }
237
lock_time_inc(struct lock_time * lt,u64 time)238 static void lock_time_inc(struct lock_time *lt, u64 time)
239 {
240 if (time > lt->max)
241 lt->max = time;
242
243 if (time < lt->min || !lt->nr)
244 lt->min = time;
245
246 lt->total += time;
247 lt->nr++;
248 }
249
lock_time_add(struct lock_time * src,struct lock_time * dst)250 static inline void lock_time_add(struct lock_time *src, struct lock_time *dst)
251 {
252 if (!src->nr)
253 return;
254
255 if (src->max > dst->max)
256 dst->max = src->max;
257
258 if (src->min < dst->min || !dst->nr)
259 dst->min = src->min;
260
261 dst->total += src->total;
262 dst->nr += src->nr;
263 }
264
lock_stats(struct lock_class * class)265 struct lock_class_stats lock_stats(struct lock_class *class)
266 {
267 struct lock_class_stats stats;
268 int cpu, i;
269
270 memset(&stats, 0, sizeof(struct lock_class_stats));
271 for_each_possible_cpu(cpu) {
272 struct lock_class_stats *pcs =
273 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
274
275 for (i = 0; i < ARRAY_SIZE(stats.contention_point); i++)
276 stats.contention_point[i] += pcs->contention_point[i];
277
278 for (i = 0; i < ARRAY_SIZE(stats.contending_point); i++)
279 stats.contending_point[i] += pcs->contending_point[i];
280
281 lock_time_add(&pcs->read_waittime, &stats.read_waittime);
282 lock_time_add(&pcs->write_waittime, &stats.write_waittime);
283
284 lock_time_add(&pcs->read_holdtime, &stats.read_holdtime);
285 lock_time_add(&pcs->write_holdtime, &stats.write_holdtime);
286
287 for (i = 0; i < ARRAY_SIZE(stats.bounces); i++)
288 stats.bounces[i] += pcs->bounces[i];
289 }
290
291 return stats;
292 }
293
clear_lock_stats(struct lock_class * class)294 void clear_lock_stats(struct lock_class *class)
295 {
296 int cpu;
297
298 for_each_possible_cpu(cpu) {
299 struct lock_class_stats *cpu_stats =
300 &per_cpu(cpu_lock_stats, cpu)[class - lock_classes];
301
302 memset(cpu_stats, 0, sizeof(struct lock_class_stats));
303 }
304 memset(class->contention_point, 0, sizeof(class->contention_point));
305 memset(class->contending_point, 0, sizeof(class->contending_point));
306 }
307
get_lock_stats(struct lock_class * class)308 static struct lock_class_stats *get_lock_stats(struct lock_class *class)
309 {
310 return &this_cpu_ptr(cpu_lock_stats)[class - lock_classes];
311 }
312
lock_release_holdtime(struct held_lock * hlock)313 static void lock_release_holdtime(struct held_lock *hlock)
314 {
315 struct lock_class_stats *stats;
316 u64 holdtime;
317
318 if (!lock_stat)
319 return;
320
321 holdtime = lockstat_clock() - hlock->holdtime_stamp;
322
323 stats = get_lock_stats(hlock_class(hlock));
324 if (hlock->read)
325 lock_time_inc(&stats->read_holdtime, holdtime);
326 else
327 lock_time_inc(&stats->write_holdtime, holdtime);
328 }
329 #else
lock_release_holdtime(struct held_lock * hlock)330 static inline void lock_release_holdtime(struct held_lock *hlock)
331 {
332 }
333 #endif
334
335 /*
336 * We keep a global list of all lock classes. The list is only accessed with
337 * the lockdep spinlock lock held. free_lock_classes is a list with free
338 * elements. These elements are linked together by the lock_entry member in
339 * struct lock_class.
340 */
341 LIST_HEAD(all_lock_classes);
342 static LIST_HEAD(free_lock_classes);
343
344 /**
345 * struct pending_free - information about data structures about to be freed
346 * @zapped: Head of a list with struct lock_class elements.
347 * @lock_chains_being_freed: Bitmap that indicates which lock_chains[] elements
348 * are about to be freed.
349 */
350 struct pending_free {
351 struct list_head zapped;
352 DECLARE_BITMAP(lock_chains_being_freed, MAX_LOCKDEP_CHAINS);
353 };
354
355 /**
356 * struct delayed_free - data structures used for delayed freeing
357 *
358 * A data structure for delayed freeing of data structures that may be
359 * accessed by RCU readers at the time these were freed.
360 *
361 * @rcu_head: Used to schedule an RCU callback for freeing data structures.
362 * @index: Index of @pf to which freed data structures are added.
363 * @scheduled: Whether or not an RCU callback has been scheduled.
364 * @pf: Array with information about data structures about to be freed.
365 */
366 static struct delayed_free {
367 struct rcu_head rcu_head;
368 int index;
369 int scheduled;
370 struct pending_free pf[2];
371 } delayed_free;
372
373 /*
374 * The lockdep classes are in a hash-table as well, for fast lookup:
375 */
376 #define CLASSHASH_BITS (MAX_LOCKDEP_KEYS_BITS - 1)
377 #define CLASSHASH_SIZE (1UL << CLASSHASH_BITS)
378 #define __classhashfn(key) hash_long((unsigned long)key, CLASSHASH_BITS)
379 #define classhashentry(key) (classhash_table + __classhashfn((key)))
380
381 static struct hlist_head classhash_table[CLASSHASH_SIZE];
382
383 /*
384 * We put the lock dependency chains into a hash-table as well, to cache
385 * their existence:
386 */
387 #define CHAINHASH_BITS (MAX_LOCKDEP_CHAINS_BITS-1)
388 #define CHAINHASH_SIZE (1UL << CHAINHASH_BITS)
389 #define __chainhashfn(chain) hash_long(chain, CHAINHASH_BITS)
390 #define chainhashentry(chain) (chainhash_table + __chainhashfn((chain)))
391
392 static struct hlist_head chainhash_table[CHAINHASH_SIZE];
393
394 /*
395 * the id of held_lock
396 */
hlock_id(struct held_lock * hlock)397 static inline u16 hlock_id(struct held_lock *hlock)
398 {
399 BUILD_BUG_ON(MAX_LOCKDEP_KEYS_BITS + 2 > 16);
400
401 return (hlock->class_idx | (hlock->read << MAX_LOCKDEP_KEYS_BITS));
402 }
403
chain_hlock_class_idx(u16 hlock_id)404 static inline unsigned int chain_hlock_class_idx(u16 hlock_id)
405 {
406 return hlock_id & (MAX_LOCKDEP_KEYS - 1);
407 }
408
409 /*
410 * The hash key of the lock dependency chains is a hash itself too:
411 * it's a hash of all locks taken up to that lock, including that lock.
412 * It's a 64-bit hash, because it's important for the keys to be
413 * unique.
414 */
iterate_chain_key(u64 key,u32 idx)415 static inline u64 iterate_chain_key(u64 key, u32 idx)
416 {
417 u32 k0 = key, k1 = key >> 32;
418
419 __jhash_mix(idx, k0, k1); /* Macro that modifies arguments! */
420
421 return k0 | (u64)k1 << 32;
422 }
423
lockdep_init_task(struct task_struct * task)424 void lockdep_init_task(struct task_struct *task)
425 {
426 task->lockdep_depth = 0; /* no locks held yet */
427 task->curr_chain_key = INITIAL_CHAIN_KEY;
428 task->lockdep_recursion = 0;
429 }
430
lockdep_recursion_inc(void)431 static __always_inline void lockdep_recursion_inc(void)
432 {
433 __this_cpu_inc(lockdep_recursion);
434 }
435
lockdep_recursion_finish(void)436 static __always_inline void lockdep_recursion_finish(void)
437 {
438 if (WARN_ON_ONCE(__this_cpu_dec_return(lockdep_recursion)))
439 __this_cpu_write(lockdep_recursion, 0);
440 }
441
lockdep_set_selftest_task(struct task_struct * task)442 void lockdep_set_selftest_task(struct task_struct *task)
443 {
444 lockdep_selftest_task_struct = task;
445 }
446
447 /*
448 * Debugging switches:
449 */
450
451 #define VERBOSE 0
452 #define VERY_VERBOSE 0
453
454 #if VERBOSE
455 # define HARDIRQ_VERBOSE 1
456 # define SOFTIRQ_VERBOSE 1
457 #else
458 # define HARDIRQ_VERBOSE 0
459 # define SOFTIRQ_VERBOSE 0
460 #endif
461
462 #if VERBOSE || HARDIRQ_VERBOSE || SOFTIRQ_VERBOSE
463 /*
464 * Quick filtering for interesting events:
465 */
class_filter(struct lock_class * class)466 static int class_filter(struct lock_class *class)
467 {
468 #if 0
469 /* Example */
470 if (class->name_version == 1 &&
471 !strcmp(class->name, "lockname"))
472 return 1;
473 if (class->name_version == 1 &&
474 !strcmp(class->name, "&struct->lockfield"))
475 return 1;
476 #endif
477 /* Filter everything else. 1 would be to allow everything else */
478 return 0;
479 }
480 #endif
481
verbose(struct lock_class * class)482 static int verbose(struct lock_class *class)
483 {
484 #if VERBOSE
485 return class_filter(class);
486 #endif
487 return 0;
488 }
489
print_lockdep_off(const char * bug_msg)490 static void print_lockdep_off(const char *bug_msg)
491 {
492 printk(KERN_DEBUG "%s\n", bug_msg);
493 printk(KERN_DEBUG "turning off the locking correctness validator.\n");
494 #ifdef CONFIG_LOCK_STAT
495 printk(KERN_DEBUG "Please attach the output of /proc/lock_stat to the bug report\n");
496 #endif
497 }
498
499 unsigned long nr_stack_trace_entries;
500
501 #ifdef CONFIG_PROVE_LOCKING
502 /**
503 * struct lock_trace - single stack backtrace
504 * @hash_entry: Entry in a stack_trace_hash[] list.
505 * @hash: jhash() of @entries.
506 * @nr_entries: Number of entries in @entries.
507 * @entries: Actual stack backtrace.
508 */
509 struct lock_trace {
510 struct hlist_node hash_entry;
511 u32 hash;
512 u32 nr_entries;
513 unsigned long entries[] __aligned(sizeof(unsigned long));
514 };
515 #define LOCK_TRACE_SIZE_IN_LONGS \
516 (sizeof(struct lock_trace) / sizeof(unsigned long))
517 /*
518 * Stack-trace: sequence of lock_trace structures. Protected by the graph_lock.
519 */
520 static unsigned long stack_trace[MAX_STACK_TRACE_ENTRIES];
521 static struct hlist_head stack_trace_hash[STACK_TRACE_HASH_SIZE];
522
traces_identical(struct lock_trace * t1,struct lock_trace * t2)523 static bool traces_identical(struct lock_trace *t1, struct lock_trace *t2)
524 {
525 return t1->hash == t2->hash && t1->nr_entries == t2->nr_entries &&
526 memcmp(t1->entries, t2->entries,
527 t1->nr_entries * sizeof(t1->entries[0])) == 0;
528 }
529
save_trace(void)530 static struct lock_trace *save_trace(void)
531 {
532 struct lock_trace *trace, *t2;
533 struct hlist_head *hash_head;
534 u32 hash;
535 int max_entries;
536
537 BUILD_BUG_ON_NOT_POWER_OF_2(STACK_TRACE_HASH_SIZE);
538 BUILD_BUG_ON(LOCK_TRACE_SIZE_IN_LONGS >= MAX_STACK_TRACE_ENTRIES);
539
540 trace = (struct lock_trace *)(stack_trace + nr_stack_trace_entries);
541 max_entries = MAX_STACK_TRACE_ENTRIES - nr_stack_trace_entries -
542 LOCK_TRACE_SIZE_IN_LONGS;
543
544 if (max_entries <= 0) {
545 if (!debug_locks_off_graph_unlock())
546 return NULL;
547
548 print_lockdep_off("BUG: MAX_STACK_TRACE_ENTRIES too low!");
549 dump_stack();
550
551 return NULL;
552 }
553 trace->nr_entries = stack_trace_save(trace->entries, max_entries, 3);
554
555 hash = jhash(trace->entries, trace->nr_entries *
556 sizeof(trace->entries[0]), 0);
557 trace->hash = hash;
558 hash_head = stack_trace_hash + (hash & (STACK_TRACE_HASH_SIZE - 1));
559 hlist_for_each_entry(t2, hash_head, hash_entry) {
560 if (traces_identical(trace, t2))
561 return t2;
562 }
563 nr_stack_trace_entries += LOCK_TRACE_SIZE_IN_LONGS + trace->nr_entries;
564 hlist_add_head(&trace->hash_entry, hash_head);
565
566 return trace;
567 }
568
569 /* Return the number of stack traces in the stack_trace[] array. */
lockdep_stack_trace_count(void)570 u64 lockdep_stack_trace_count(void)
571 {
572 struct lock_trace *trace;
573 u64 c = 0;
574 int i;
575
576 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++) {
577 hlist_for_each_entry(trace, &stack_trace_hash[i], hash_entry) {
578 c++;
579 }
580 }
581
582 return c;
583 }
584
585 /* Return the number of stack hash chains that have at least one stack trace. */
lockdep_stack_hash_count(void)586 u64 lockdep_stack_hash_count(void)
587 {
588 u64 c = 0;
589 int i;
590
591 for (i = 0; i < ARRAY_SIZE(stack_trace_hash); i++)
592 if (!hlist_empty(&stack_trace_hash[i]))
593 c++;
594
595 return c;
596 }
597 #endif
598
599 unsigned int nr_hardirq_chains;
600 unsigned int nr_softirq_chains;
601 unsigned int nr_process_chains;
602 unsigned int max_lockdep_depth;
603
604 #ifdef CONFIG_DEBUG_LOCKDEP
605 /*
606 * Various lockdep statistics:
607 */
608 DEFINE_PER_CPU(struct lockdep_stats, lockdep_stats);
609 #endif
610
611 #ifdef CONFIG_PROVE_LOCKING
612 /*
613 * Locking printouts:
614 */
615
616 #define __USAGE(__STATE) \
617 [LOCK_USED_IN_##__STATE] = "IN-"__stringify(__STATE)"-W", \
618 [LOCK_ENABLED_##__STATE] = __stringify(__STATE)"-ON-W", \
619 [LOCK_USED_IN_##__STATE##_READ] = "IN-"__stringify(__STATE)"-R",\
620 [LOCK_ENABLED_##__STATE##_READ] = __stringify(__STATE)"-ON-R",
621
622 static const char *usage_str[] =
623 {
624 #define LOCKDEP_STATE(__STATE) __USAGE(__STATE)
625 #include "lockdep_states.h"
626 #undef LOCKDEP_STATE
627 [LOCK_USED] = "INITIAL USE",
628 [LOCK_USED_READ] = "INITIAL READ USE",
629 /* abused as string storage for verify_lock_unused() */
630 [LOCK_USAGE_STATES] = "IN-NMI",
631 };
632 #endif
633
__get_key_name(const struct lockdep_subclass_key * key,char * str)634 const char *__get_key_name(const struct lockdep_subclass_key *key, char *str)
635 {
636 return kallsyms_lookup((unsigned long)key, NULL, NULL, NULL, str);
637 }
638
lock_flag(enum lock_usage_bit bit)639 static inline unsigned long lock_flag(enum lock_usage_bit bit)
640 {
641 return 1UL << bit;
642 }
643
get_usage_char(struct lock_class * class,enum lock_usage_bit bit)644 static char get_usage_char(struct lock_class *class, enum lock_usage_bit bit)
645 {
646 /*
647 * The usage character defaults to '.' (i.e., irqs disabled and not in
648 * irq context), which is the safest usage category.
649 */
650 char c = '.';
651
652 /*
653 * The order of the following usage checks matters, which will
654 * result in the outcome character as follows:
655 *
656 * - '+': irq is enabled and not in irq context
657 * - '-': in irq context and irq is disabled
658 * - '?': in irq context and irq is enabled
659 */
660 if (class->usage_mask & lock_flag(bit + LOCK_USAGE_DIR_MASK)) {
661 c = '+';
662 if (class->usage_mask & lock_flag(bit))
663 c = '?';
664 } else if (class->usage_mask & lock_flag(bit))
665 c = '-';
666
667 return c;
668 }
669
get_usage_chars(struct lock_class * class,char usage[LOCK_USAGE_CHARS])670 void get_usage_chars(struct lock_class *class, char usage[LOCK_USAGE_CHARS])
671 {
672 int i = 0;
673
674 #define LOCKDEP_STATE(__STATE) \
675 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE); \
676 usage[i++] = get_usage_char(class, LOCK_USED_IN_##__STATE##_READ);
677 #include "lockdep_states.h"
678 #undef LOCKDEP_STATE
679
680 usage[i] = '\0';
681 }
682
__print_lock_name(struct lock_class * class)683 static void __print_lock_name(struct lock_class *class)
684 {
685 char str[KSYM_NAME_LEN];
686 const char *name;
687
688 name = class->name;
689 if (!name) {
690 name = __get_key_name(class->key, str);
691 printk(KERN_CONT "%s", name);
692 } else {
693 printk(KERN_CONT "%s", name);
694 if (class->name_version > 1)
695 printk(KERN_CONT "#%d", class->name_version);
696 if (class->subclass)
697 printk(KERN_CONT "/%d", class->subclass);
698 }
699 }
700
print_lock_name(struct lock_class * class)701 static void print_lock_name(struct lock_class *class)
702 {
703 char usage[LOCK_USAGE_CHARS];
704
705 get_usage_chars(class, usage);
706
707 printk(KERN_CONT " (");
708 __print_lock_name(class);
709 printk(KERN_CONT "){%s}-{%d:%d}", usage,
710 class->wait_type_outer ?: class->wait_type_inner,
711 class->wait_type_inner);
712 }
713
print_lockdep_cache(struct lockdep_map * lock)714 static void print_lockdep_cache(struct lockdep_map *lock)
715 {
716 const char *name;
717 char str[KSYM_NAME_LEN];
718
719 name = lock->name;
720 if (!name)
721 name = __get_key_name(lock->key->subkeys, str);
722
723 printk(KERN_CONT "%s", name);
724 }
725
print_lock(struct held_lock * hlock)726 static void print_lock(struct held_lock *hlock)
727 {
728 /*
729 * We can be called locklessly through debug_show_all_locks() so be
730 * extra careful, the hlock might have been released and cleared.
731 *
732 * If this indeed happens, lets pretend it does not hurt to continue
733 * to print the lock unless the hlock class_idx does not point to a
734 * registered class. The rationale here is: since we don't attempt
735 * to distinguish whether we are in this situation, if it just
736 * happened we can't count on class_idx to tell either.
737 */
738 struct lock_class *lock = hlock_class(hlock);
739
740 if (!lock) {
741 printk(KERN_CONT "<RELEASED>\n");
742 return;
743 }
744
745 printk(KERN_CONT "%px", hlock->instance);
746 print_lock_name(lock);
747 printk(KERN_CONT ", at: %pS\n", (void *)hlock->acquire_ip);
748 }
749
lockdep_print_held_locks(struct task_struct * p)750 static void lockdep_print_held_locks(struct task_struct *p)
751 {
752 int i, depth = READ_ONCE(p->lockdep_depth);
753
754 if (!depth)
755 printk("no locks held by %s/%d.\n", p->comm, task_pid_nr(p));
756 else
757 printk("%d lock%s held by %s/%d:\n", depth,
758 depth > 1 ? "s" : "", p->comm, task_pid_nr(p));
759 /*
760 * It's not reliable to print a task's held locks if it's not sleeping
761 * and it's not the current task.
762 */
763 if (p != current && task_is_running(p))
764 return;
765 for (i = 0; i < depth; i++) {
766 printk(" #%d: ", i);
767 print_lock(p->held_locks + i);
768 }
769 }
770
print_kernel_ident(void)771 static void print_kernel_ident(void)
772 {
773 printk("%s %.*s %s\n", init_utsname()->release,
774 (int)strcspn(init_utsname()->version, " "),
775 init_utsname()->version,
776 print_tainted());
777 }
778
very_verbose(struct lock_class * class)779 static int very_verbose(struct lock_class *class)
780 {
781 #if VERY_VERBOSE
782 return class_filter(class);
783 #endif
784 return 0;
785 }
786
787 /*
788 * Is this the address of a static object:
789 */
790 #ifdef __KERNEL__
static_obj(const void * obj)791 static int static_obj(const void *obj)
792 {
793 unsigned long start = (unsigned long) &_stext,
794 end = (unsigned long) &_end,
795 addr = (unsigned long) obj;
796
797 if (arch_is_kernel_initmem_freed(addr))
798 return 0;
799
800 /*
801 * static variable?
802 */
803 if ((addr >= start) && (addr < end))
804 return 1;
805
806 if (arch_is_kernel_data(addr))
807 return 1;
808
809 /*
810 * in-kernel percpu var?
811 */
812 if (is_kernel_percpu_address(addr))
813 return 1;
814
815 /*
816 * module static or percpu var?
817 */
818 return is_module_address(addr) || is_module_percpu_address(addr);
819 }
820 #endif
821
822 /*
823 * To make lock name printouts unique, we calculate a unique
824 * class->name_version generation counter. The caller must hold the graph
825 * lock.
826 */
count_matching_names(struct lock_class * new_class)827 static int count_matching_names(struct lock_class *new_class)
828 {
829 struct lock_class *class;
830 int count = 0;
831
832 if (!new_class->name)
833 return 0;
834
835 list_for_each_entry(class, &all_lock_classes, lock_entry) {
836 if (new_class->key - new_class->subclass == class->key)
837 return class->name_version;
838 if (class->name && !strcmp(class->name, new_class->name))
839 count = max(count, class->name_version);
840 }
841
842 return count + 1;
843 }
844
845 /* used from NMI context -- must be lockless */
846 static noinstr struct lock_class *
look_up_lock_class(const struct lockdep_map * lock,unsigned int subclass)847 look_up_lock_class(const struct lockdep_map *lock, unsigned int subclass)
848 {
849 struct lockdep_subclass_key *key;
850 struct hlist_head *hash_head;
851 struct lock_class *class;
852
853 if (unlikely(subclass >= MAX_LOCKDEP_SUBCLASSES)) {
854 instrumentation_begin();
855 debug_locks_off();
856 printk(KERN_ERR
857 "BUG: looking up invalid subclass: %u\n", subclass);
858 printk(KERN_ERR
859 "turning off the locking correctness validator.\n");
860 dump_stack();
861 instrumentation_end();
862 return NULL;
863 }
864
865 /*
866 * If it is not initialised then it has never been locked,
867 * so it won't be present in the hash table.
868 */
869 if (unlikely(!lock->key))
870 return NULL;
871
872 /*
873 * NOTE: the class-key must be unique. For dynamic locks, a static
874 * lock_class_key variable is passed in through the mutex_init()
875 * (or spin_lock_init()) call - which acts as the key. For static
876 * locks we use the lock object itself as the key.
877 */
878 BUILD_BUG_ON(sizeof(struct lock_class_key) >
879 sizeof(struct lockdep_map));
880
881 key = lock->key->subkeys + subclass;
882
883 hash_head = classhashentry(key);
884
885 /*
886 * We do an RCU walk of the hash, see lockdep_free_key_range().
887 */
888 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
889 return NULL;
890
891 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
892 if (class->key == key) {
893 /*
894 * Huh! same key, different name? Did someone trample
895 * on some memory? We're most confused.
896 */
897 WARN_ON_ONCE(class->name != lock->name &&
898 lock->key != &__lockdep_no_validate__);
899 return class;
900 }
901 }
902
903 return NULL;
904 }
905
906 /*
907 * Static locks do not have their class-keys yet - for them the key is
908 * the lock object itself. If the lock is in the per cpu area, the
909 * canonical address of the lock (per cpu offset removed) is used.
910 */
assign_lock_key(struct lockdep_map * lock)911 static bool assign_lock_key(struct lockdep_map *lock)
912 {
913 unsigned long can_addr, addr = (unsigned long)lock;
914
915 #ifdef __KERNEL__
916 /*
917 * lockdep_free_key_range() assumes that struct lock_class_key
918 * objects do not overlap. Since we use the address of lock
919 * objects as class key for static objects, check whether the
920 * size of lock_class_key objects does not exceed the size of
921 * the smallest lock object.
922 */
923 BUILD_BUG_ON(sizeof(struct lock_class_key) > sizeof(raw_spinlock_t));
924 #endif
925
926 if (__is_kernel_percpu_address(addr, &can_addr))
927 lock->key = (void *)can_addr;
928 else if (__is_module_percpu_address(addr, &can_addr))
929 lock->key = (void *)can_addr;
930 else if (static_obj(lock))
931 lock->key = (void *)lock;
932 else {
933 /* Debug-check: all keys must be persistent! */
934 debug_locks_off();
935 pr_err("INFO: trying to register non-static key.\n");
936 pr_err("The code is fine but needs lockdep annotation, or maybe\n");
937 pr_err("you didn't initialize this object before use?\n");
938 pr_err("turning off the locking correctness validator.\n");
939 dump_stack();
940 return false;
941 }
942
943 return true;
944 }
945
946 #ifdef CONFIG_DEBUG_LOCKDEP
947
948 /* Check whether element @e occurs in list @h */
in_list(struct list_head * e,struct list_head * h)949 static bool in_list(struct list_head *e, struct list_head *h)
950 {
951 struct list_head *f;
952
953 list_for_each(f, h) {
954 if (e == f)
955 return true;
956 }
957
958 return false;
959 }
960
961 /*
962 * Check whether entry @e occurs in any of the locks_after or locks_before
963 * lists.
964 */
in_any_class_list(struct list_head * e)965 static bool in_any_class_list(struct list_head *e)
966 {
967 struct lock_class *class;
968 int i;
969
970 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
971 class = &lock_classes[i];
972 if (in_list(e, &class->locks_after) ||
973 in_list(e, &class->locks_before))
974 return true;
975 }
976 return false;
977 }
978
class_lock_list_valid(struct lock_class * c,struct list_head * h)979 static bool class_lock_list_valid(struct lock_class *c, struct list_head *h)
980 {
981 struct lock_list *e;
982
983 list_for_each_entry(e, h, entry) {
984 if (e->links_to != c) {
985 printk(KERN_INFO "class %s: mismatch for lock entry %ld; class %s <> %s",
986 c->name ? : "(?)",
987 (unsigned long)(e - list_entries),
988 e->links_to && e->links_to->name ?
989 e->links_to->name : "(?)",
990 e->class && e->class->name ? e->class->name :
991 "(?)");
992 return false;
993 }
994 }
995 return true;
996 }
997
998 #ifdef CONFIG_PROVE_LOCKING
999 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
1000 #endif
1001
check_lock_chain_key(struct lock_chain * chain)1002 static bool check_lock_chain_key(struct lock_chain *chain)
1003 {
1004 #ifdef CONFIG_PROVE_LOCKING
1005 u64 chain_key = INITIAL_CHAIN_KEY;
1006 int i;
1007
1008 for (i = chain->base; i < chain->base + chain->depth; i++)
1009 chain_key = iterate_chain_key(chain_key, chain_hlocks[i]);
1010 /*
1011 * The 'unsigned long long' casts avoid that a compiler warning
1012 * is reported when building tools/lib/lockdep.
1013 */
1014 if (chain->chain_key != chain_key) {
1015 printk(KERN_INFO "chain %lld: key %#llx <> %#llx\n",
1016 (unsigned long long)(chain - lock_chains),
1017 (unsigned long long)chain->chain_key,
1018 (unsigned long long)chain_key);
1019 return false;
1020 }
1021 #endif
1022 return true;
1023 }
1024
in_any_zapped_class_list(struct lock_class * class)1025 static bool in_any_zapped_class_list(struct lock_class *class)
1026 {
1027 struct pending_free *pf;
1028 int i;
1029
1030 for (i = 0, pf = delayed_free.pf; i < ARRAY_SIZE(delayed_free.pf); i++, pf++) {
1031 if (in_list(&class->lock_entry, &pf->zapped))
1032 return true;
1033 }
1034
1035 return false;
1036 }
1037
__check_data_structures(void)1038 static bool __check_data_structures(void)
1039 {
1040 struct lock_class *class;
1041 struct lock_chain *chain;
1042 struct hlist_head *head;
1043 struct lock_list *e;
1044 int i;
1045
1046 /* Check whether all classes occur in a lock list. */
1047 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1048 class = &lock_classes[i];
1049 if (!in_list(&class->lock_entry, &all_lock_classes) &&
1050 !in_list(&class->lock_entry, &free_lock_classes) &&
1051 !in_any_zapped_class_list(class)) {
1052 printk(KERN_INFO "class %px/%s is not in any class list\n",
1053 class, class->name ? : "(?)");
1054 return false;
1055 }
1056 }
1057
1058 /* Check whether all classes have valid lock lists. */
1059 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1060 class = &lock_classes[i];
1061 if (!class_lock_list_valid(class, &class->locks_before))
1062 return false;
1063 if (!class_lock_list_valid(class, &class->locks_after))
1064 return false;
1065 }
1066
1067 /* Check the chain_key of all lock chains. */
1068 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
1069 head = chainhash_table + i;
1070 hlist_for_each_entry_rcu(chain, head, entry) {
1071 if (!check_lock_chain_key(chain))
1072 return false;
1073 }
1074 }
1075
1076 /*
1077 * Check whether all list entries that are in use occur in a class
1078 * lock list.
1079 */
1080 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1081 e = list_entries + i;
1082 if (!in_any_class_list(&e->entry)) {
1083 printk(KERN_INFO "list entry %d is not in any class list; class %s <> %s\n",
1084 (unsigned int)(e - list_entries),
1085 e->class->name ? : "(?)",
1086 e->links_to->name ? : "(?)");
1087 return false;
1088 }
1089 }
1090
1091 /*
1092 * Check whether all list entries that are not in use do not occur in
1093 * a class lock list.
1094 */
1095 for_each_clear_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
1096 e = list_entries + i;
1097 if (in_any_class_list(&e->entry)) {
1098 printk(KERN_INFO "list entry %d occurs in a class list; class %s <> %s\n",
1099 (unsigned int)(e - list_entries),
1100 e->class && e->class->name ? e->class->name :
1101 "(?)",
1102 e->links_to && e->links_to->name ?
1103 e->links_to->name : "(?)");
1104 return false;
1105 }
1106 }
1107
1108 return true;
1109 }
1110
1111 int check_consistency = 0;
1112 module_param(check_consistency, int, 0644);
1113
check_data_structures(void)1114 static void check_data_structures(void)
1115 {
1116 static bool once = false;
1117
1118 if (check_consistency && !once) {
1119 if (!__check_data_structures()) {
1120 once = true;
1121 WARN_ON(once);
1122 }
1123 }
1124 }
1125
1126 #else /* CONFIG_DEBUG_LOCKDEP */
1127
check_data_structures(void)1128 static inline void check_data_structures(void) { }
1129
1130 #endif /* CONFIG_DEBUG_LOCKDEP */
1131
1132 static void init_chain_block_buckets(void);
1133
1134 /*
1135 * Initialize the lock_classes[] array elements, the free_lock_classes list
1136 * and also the delayed_free structure.
1137 */
init_data_structures_once(void)1138 static void init_data_structures_once(void)
1139 {
1140 static bool __read_mostly ds_initialized, rcu_head_initialized;
1141 int i;
1142
1143 if (likely(rcu_head_initialized))
1144 return;
1145
1146 if (system_state >= SYSTEM_SCHEDULING) {
1147 init_rcu_head(&delayed_free.rcu_head);
1148 rcu_head_initialized = true;
1149 }
1150
1151 if (ds_initialized)
1152 return;
1153
1154 ds_initialized = true;
1155
1156 INIT_LIST_HEAD(&delayed_free.pf[0].zapped);
1157 INIT_LIST_HEAD(&delayed_free.pf[1].zapped);
1158
1159 for (i = 0; i < ARRAY_SIZE(lock_classes); i++) {
1160 list_add_tail(&lock_classes[i].lock_entry, &free_lock_classes);
1161 INIT_LIST_HEAD(&lock_classes[i].locks_after);
1162 INIT_LIST_HEAD(&lock_classes[i].locks_before);
1163 }
1164 init_chain_block_buckets();
1165 }
1166
keyhashentry(const struct lock_class_key * key)1167 static inline struct hlist_head *keyhashentry(const struct lock_class_key *key)
1168 {
1169 unsigned long hash = hash_long((uintptr_t)key, KEYHASH_BITS);
1170
1171 return lock_keys_hash + hash;
1172 }
1173
1174 /* Register a dynamically allocated key. */
lockdep_register_key(struct lock_class_key * key)1175 void lockdep_register_key(struct lock_class_key *key)
1176 {
1177 struct hlist_head *hash_head;
1178 struct lock_class_key *k;
1179 unsigned long flags;
1180
1181 if (WARN_ON_ONCE(static_obj(key)))
1182 return;
1183 hash_head = keyhashentry(key);
1184
1185 raw_local_irq_save(flags);
1186 if (!graph_lock())
1187 goto restore_irqs;
1188 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1189 if (WARN_ON_ONCE(k == key))
1190 goto out_unlock;
1191 }
1192 hlist_add_head_rcu(&key->hash_entry, hash_head);
1193 out_unlock:
1194 graph_unlock();
1195 restore_irqs:
1196 raw_local_irq_restore(flags);
1197 }
1198 EXPORT_SYMBOL_GPL(lockdep_register_key);
1199
1200 /* Check whether a key has been registered as a dynamic key. */
is_dynamic_key(const struct lock_class_key * key)1201 static bool is_dynamic_key(const struct lock_class_key *key)
1202 {
1203 struct hlist_head *hash_head;
1204 struct lock_class_key *k;
1205 bool found = false;
1206
1207 if (WARN_ON_ONCE(static_obj(key)))
1208 return false;
1209
1210 /*
1211 * If lock debugging is disabled lock_keys_hash[] may contain
1212 * pointers to memory that has already been freed. Avoid triggering
1213 * a use-after-free in that case by returning early.
1214 */
1215 if (!debug_locks)
1216 return true;
1217
1218 hash_head = keyhashentry(key);
1219
1220 rcu_read_lock();
1221 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
1222 if (k == key) {
1223 found = true;
1224 break;
1225 }
1226 }
1227 rcu_read_unlock();
1228
1229 return found;
1230 }
1231
1232 /*
1233 * Register a lock's class in the hash-table, if the class is not present
1234 * yet. Otherwise we look it up. We cache the result in the lock object
1235 * itself, so actual lookup of the hash should be once per lock object.
1236 */
1237 static struct lock_class *
register_lock_class(struct lockdep_map * lock,unsigned int subclass,int force)1238 register_lock_class(struct lockdep_map *lock, unsigned int subclass, int force)
1239 {
1240 struct lockdep_subclass_key *key;
1241 struct hlist_head *hash_head;
1242 struct lock_class *class;
1243
1244 DEBUG_LOCKS_WARN_ON(!irqs_disabled());
1245
1246 class = look_up_lock_class(lock, subclass);
1247 if (likely(class))
1248 goto out_set_class_cache;
1249
1250 if (!lock->key) {
1251 if (!assign_lock_key(lock))
1252 return NULL;
1253 } else if (!static_obj(lock->key) && !is_dynamic_key(lock->key)) {
1254 return NULL;
1255 }
1256
1257 key = lock->key->subkeys + subclass;
1258 hash_head = classhashentry(key);
1259
1260 if (!graph_lock()) {
1261 return NULL;
1262 }
1263 /*
1264 * We have to do the hash-walk again, to avoid races
1265 * with another CPU:
1266 */
1267 hlist_for_each_entry_rcu(class, hash_head, hash_entry) {
1268 if (class->key == key)
1269 goto out_unlock_set;
1270 }
1271
1272 init_data_structures_once();
1273
1274 /* Allocate a new lock class and add it to the hash. */
1275 class = list_first_entry_or_null(&free_lock_classes, typeof(*class),
1276 lock_entry);
1277 if (!class) {
1278 if (!debug_locks_off_graph_unlock()) {
1279 return NULL;
1280 }
1281
1282 print_lockdep_off("BUG: MAX_LOCKDEP_KEYS too low!");
1283 dump_stack();
1284 return NULL;
1285 }
1286 nr_lock_classes++;
1287 __set_bit(class - lock_classes, lock_classes_in_use);
1288 debug_atomic_inc(nr_unused_locks);
1289 class->key = key;
1290 class->name = lock->name;
1291 class->subclass = subclass;
1292 WARN_ON_ONCE(!list_empty(&class->locks_before));
1293 WARN_ON_ONCE(!list_empty(&class->locks_after));
1294 class->name_version = count_matching_names(class);
1295 class->wait_type_inner = lock->wait_type_inner;
1296 class->wait_type_outer = lock->wait_type_outer;
1297 class->lock_type = lock->lock_type;
1298 /*
1299 * We use RCU's safe list-add method to make
1300 * parallel walking of the hash-list safe:
1301 */
1302 hlist_add_head_rcu(&class->hash_entry, hash_head);
1303 /*
1304 * Remove the class from the free list and add it to the global list
1305 * of classes.
1306 */
1307 list_move_tail(&class->lock_entry, &all_lock_classes);
1308
1309 if (verbose(class)) {
1310 graph_unlock();
1311
1312 printk("\nnew class %px: %s", class->key, class->name);
1313 if (class->name_version > 1)
1314 printk(KERN_CONT "#%d", class->name_version);
1315 printk(KERN_CONT "\n");
1316 dump_stack();
1317
1318 if (!graph_lock()) {
1319 return NULL;
1320 }
1321 }
1322 out_unlock_set:
1323 graph_unlock();
1324
1325 out_set_class_cache:
1326 if (!subclass || force)
1327 lock->class_cache[0] = class;
1328 else if (subclass < NR_LOCKDEP_CACHING_CLASSES)
1329 lock->class_cache[subclass] = class;
1330
1331 /*
1332 * Hash collision, did we smoke some? We found a class with a matching
1333 * hash but the subclass -- which is hashed in -- didn't match.
1334 */
1335 if (DEBUG_LOCKS_WARN_ON(class->subclass != subclass))
1336 return NULL;
1337
1338 return class;
1339 }
1340
1341 #ifdef CONFIG_PROVE_LOCKING
1342 /*
1343 * Allocate a lockdep entry. (assumes the graph_lock held, returns
1344 * with NULL on failure)
1345 */
alloc_list_entry(void)1346 static struct lock_list *alloc_list_entry(void)
1347 {
1348 int idx = find_first_zero_bit(list_entries_in_use,
1349 ARRAY_SIZE(list_entries));
1350
1351 if (idx >= ARRAY_SIZE(list_entries)) {
1352 if (!debug_locks_off_graph_unlock())
1353 return NULL;
1354
1355 print_lockdep_off("BUG: MAX_LOCKDEP_ENTRIES too low!");
1356 dump_stack();
1357 return NULL;
1358 }
1359 nr_list_entries++;
1360 __set_bit(idx, list_entries_in_use);
1361 return list_entries + idx;
1362 }
1363
1364 /*
1365 * Add a new dependency to the head of the list:
1366 */
add_lock_to_list(struct lock_class * this,struct lock_class * links_to,struct list_head * head,unsigned long ip,u16 distance,u8 dep,const struct lock_trace * trace)1367 static int add_lock_to_list(struct lock_class *this,
1368 struct lock_class *links_to, struct list_head *head,
1369 unsigned long ip, u16 distance, u8 dep,
1370 const struct lock_trace *trace)
1371 {
1372 struct lock_list *entry;
1373 /*
1374 * Lock not present yet - get a new dependency struct and
1375 * add it to the list:
1376 */
1377 entry = alloc_list_entry();
1378 if (!entry)
1379 return 0;
1380
1381 entry->class = this;
1382 entry->links_to = links_to;
1383 entry->dep = dep;
1384 entry->distance = distance;
1385 entry->trace = trace;
1386 /*
1387 * Both allocation and removal are done under the graph lock; but
1388 * iteration is under RCU-sched; see look_up_lock_class() and
1389 * lockdep_free_key_range().
1390 */
1391 list_add_tail_rcu(&entry->entry, head);
1392
1393 return 1;
1394 }
1395
1396 /*
1397 * For good efficiency of modular, we use power of 2
1398 */
1399 #define MAX_CIRCULAR_QUEUE_SIZE (1UL << CONFIG_LOCKDEP_CIRCULAR_QUEUE_BITS)
1400 #define CQ_MASK (MAX_CIRCULAR_QUEUE_SIZE-1)
1401
1402 /*
1403 * The circular_queue and helpers are used to implement graph
1404 * breadth-first search (BFS) algorithm, by which we can determine
1405 * whether there is a path from a lock to another. In deadlock checks,
1406 * a path from the next lock to be acquired to a previous held lock
1407 * indicates that adding the <prev> -> <next> lock dependency will
1408 * produce a circle in the graph. Breadth-first search instead of
1409 * depth-first search is used in order to find the shortest (circular)
1410 * path.
1411 */
1412 struct circular_queue {
1413 struct lock_list *element[MAX_CIRCULAR_QUEUE_SIZE];
1414 unsigned int front, rear;
1415 };
1416
1417 static struct circular_queue lock_cq;
1418
1419 unsigned int max_bfs_queue_depth;
1420
1421 static unsigned int lockdep_dependency_gen_id;
1422
__cq_init(struct circular_queue * cq)1423 static inline void __cq_init(struct circular_queue *cq)
1424 {
1425 cq->front = cq->rear = 0;
1426 lockdep_dependency_gen_id++;
1427 }
1428
__cq_empty(struct circular_queue * cq)1429 static inline int __cq_empty(struct circular_queue *cq)
1430 {
1431 return (cq->front == cq->rear);
1432 }
1433
__cq_full(struct circular_queue * cq)1434 static inline int __cq_full(struct circular_queue *cq)
1435 {
1436 return ((cq->rear + 1) & CQ_MASK) == cq->front;
1437 }
1438
__cq_enqueue(struct circular_queue * cq,struct lock_list * elem)1439 static inline int __cq_enqueue(struct circular_queue *cq, struct lock_list *elem)
1440 {
1441 if (__cq_full(cq))
1442 return -1;
1443
1444 cq->element[cq->rear] = elem;
1445 cq->rear = (cq->rear + 1) & CQ_MASK;
1446 return 0;
1447 }
1448
1449 /*
1450 * Dequeue an element from the circular_queue, return a lock_list if
1451 * the queue is not empty, or NULL if otherwise.
1452 */
__cq_dequeue(struct circular_queue * cq)1453 static inline struct lock_list * __cq_dequeue(struct circular_queue *cq)
1454 {
1455 struct lock_list * lock;
1456
1457 if (__cq_empty(cq))
1458 return NULL;
1459
1460 lock = cq->element[cq->front];
1461 cq->front = (cq->front + 1) & CQ_MASK;
1462
1463 return lock;
1464 }
1465
__cq_get_elem_count(struct circular_queue * cq)1466 static inline unsigned int __cq_get_elem_count(struct circular_queue *cq)
1467 {
1468 return (cq->rear - cq->front) & CQ_MASK;
1469 }
1470
mark_lock_accessed(struct lock_list * lock)1471 static inline void mark_lock_accessed(struct lock_list *lock)
1472 {
1473 lock->class->dep_gen_id = lockdep_dependency_gen_id;
1474 }
1475
visit_lock_entry(struct lock_list * lock,struct lock_list * parent)1476 static inline void visit_lock_entry(struct lock_list *lock,
1477 struct lock_list *parent)
1478 {
1479 lock->parent = parent;
1480 }
1481
lock_accessed(struct lock_list * lock)1482 static inline unsigned long lock_accessed(struct lock_list *lock)
1483 {
1484 return lock->class->dep_gen_id == lockdep_dependency_gen_id;
1485 }
1486
get_lock_parent(struct lock_list * child)1487 static inline struct lock_list *get_lock_parent(struct lock_list *child)
1488 {
1489 return child->parent;
1490 }
1491
get_lock_depth(struct lock_list * child)1492 static inline int get_lock_depth(struct lock_list *child)
1493 {
1494 int depth = 0;
1495 struct lock_list *parent;
1496
1497 while ((parent = get_lock_parent(child))) {
1498 child = parent;
1499 depth++;
1500 }
1501 return depth;
1502 }
1503
1504 /*
1505 * Return the forward or backward dependency list.
1506 *
1507 * @lock: the lock_list to get its class's dependency list
1508 * @offset: the offset to struct lock_class to determine whether it is
1509 * locks_after or locks_before
1510 */
get_dep_list(struct lock_list * lock,int offset)1511 static inline struct list_head *get_dep_list(struct lock_list *lock, int offset)
1512 {
1513 void *lock_class = lock->class;
1514
1515 return lock_class + offset;
1516 }
1517 /*
1518 * Return values of a bfs search:
1519 *
1520 * BFS_E* indicates an error
1521 * BFS_R* indicates a result (match or not)
1522 *
1523 * BFS_EINVALIDNODE: Find a invalid node in the graph.
1524 *
1525 * BFS_EQUEUEFULL: The queue is full while doing the bfs.
1526 *
1527 * BFS_RMATCH: Find the matched node in the graph, and put that node into
1528 * *@target_entry.
1529 *
1530 * BFS_RNOMATCH: Haven't found the matched node and keep *@target_entry
1531 * _unchanged_.
1532 */
1533 enum bfs_result {
1534 BFS_EINVALIDNODE = -2,
1535 BFS_EQUEUEFULL = -1,
1536 BFS_RMATCH = 0,
1537 BFS_RNOMATCH = 1,
1538 };
1539
1540 /*
1541 * bfs_result < 0 means error
1542 */
bfs_error(enum bfs_result res)1543 static inline bool bfs_error(enum bfs_result res)
1544 {
1545 return res < 0;
1546 }
1547
1548 /*
1549 * DEP_*_BIT in lock_list::dep
1550 *
1551 * For dependency @prev -> @next:
1552 *
1553 * SR: @prev is shared reader (->read != 0) and @next is recursive reader
1554 * (->read == 2)
1555 * ER: @prev is exclusive locker (->read == 0) and @next is recursive reader
1556 * SN: @prev is shared reader and @next is non-recursive locker (->read != 2)
1557 * EN: @prev is exclusive locker and @next is non-recursive locker
1558 *
1559 * Note that we define the value of DEP_*_BITs so that:
1560 * bit0 is prev->read == 0
1561 * bit1 is next->read != 2
1562 */
1563 #define DEP_SR_BIT (0 + (0 << 1)) /* 0 */
1564 #define DEP_ER_BIT (1 + (0 << 1)) /* 1 */
1565 #define DEP_SN_BIT (0 + (1 << 1)) /* 2 */
1566 #define DEP_EN_BIT (1 + (1 << 1)) /* 3 */
1567
1568 #define DEP_SR_MASK (1U << (DEP_SR_BIT))
1569 #define DEP_ER_MASK (1U << (DEP_ER_BIT))
1570 #define DEP_SN_MASK (1U << (DEP_SN_BIT))
1571 #define DEP_EN_MASK (1U << (DEP_EN_BIT))
1572
1573 static inline unsigned int
__calc_dep_bit(struct held_lock * prev,struct held_lock * next)1574 __calc_dep_bit(struct held_lock *prev, struct held_lock *next)
1575 {
1576 return (prev->read == 0) + ((next->read != 2) << 1);
1577 }
1578
calc_dep(struct held_lock * prev,struct held_lock * next)1579 static inline u8 calc_dep(struct held_lock *prev, struct held_lock *next)
1580 {
1581 return 1U << __calc_dep_bit(prev, next);
1582 }
1583
1584 /*
1585 * calculate the dep_bit for backwards edges. We care about whether @prev is
1586 * shared and whether @next is recursive.
1587 */
1588 static inline unsigned int
__calc_dep_bitb(struct held_lock * prev,struct held_lock * next)1589 __calc_dep_bitb(struct held_lock *prev, struct held_lock *next)
1590 {
1591 return (next->read != 2) + ((prev->read == 0) << 1);
1592 }
1593
calc_depb(struct held_lock * prev,struct held_lock * next)1594 static inline u8 calc_depb(struct held_lock *prev, struct held_lock *next)
1595 {
1596 return 1U << __calc_dep_bitb(prev, next);
1597 }
1598
1599 /*
1600 * Initialize a lock_list entry @lock belonging to @class as the root for a BFS
1601 * search.
1602 */
__bfs_init_root(struct lock_list * lock,struct lock_class * class)1603 static inline void __bfs_init_root(struct lock_list *lock,
1604 struct lock_class *class)
1605 {
1606 lock->class = class;
1607 lock->parent = NULL;
1608 lock->only_xr = 0;
1609 }
1610
1611 /*
1612 * Initialize a lock_list entry @lock based on a lock acquisition @hlock as the
1613 * root for a BFS search.
1614 *
1615 * ->only_xr of the initial lock node is set to @hlock->read == 2, to make sure
1616 * that <prev> -> @hlock and @hlock -> <whatever __bfs() found> is not -(*R)->
1617 * and -(S*)->.
1618 */
bfs_init_root(struct lock_list * lock,struct held_lock * hlock)1619 static inline void bfs_init_root(struct lock_list *lock,
1620 struct held_lock *hlock)
1621 {
1622 __bfs_init_root(lock, hlock_class(hlock));
1623 lock->only_xr = (hlock->read == 2);
1624 }
1625
1626 /*
1627 * Similar to bfs_init_root() but initialize the root for backwards BFS.
1628 *
1629 * ->only_xr of the initial lock node is set to @hlock->read != 0, to make sure
1630 * that <next> -> @hlock and @hlock -> <whatever backwards BFS found> is not
1631 * -(*S)-> and -(R*)-> (reverse order of -(*R)-> and -(S*)->).
1632 */
bfs_init_rootb(struct lock_list * lock,struct held_lock * hlock)1633 static inline void bfs_init_rootb(struct lock_list *lock,
1634 struct held_lock *hlock)
1635 {
1636 __bfs_init_root(lock, hlock_class(hlock));
1637 lock->only_xr = (hlock->read != 0);
1638 }
1639
__bfs_next(struct lock_list * lock,int offset)1640 static inline struct lock_list *__bfs_next(struct lock_list *lock, int offset)
1641 {
1642 if (!lock || !lock->parent)
1643 return NULL;
1644
1645 return list_next_or_null_rcu(get_dep_list(lock->parent, offset),
1646 &lock->entry, struct lock_list, entry);
1647 }
1648
1649 /*
1650 * Breadth-First Search to find a strong path in the dependency graph.
1651 *
1652 * @source_entry: the source of the path we are searching for.
1653 * @data: data used for the second parameter of @match function
1654 * @match: match function for the search
1655 * @target_entry: pointer to the target of a matched path
1656 * @offset: the offset to struct lock_class to determine whether it is
1657 * locks_after or locks_before
1658 *
1659 * We may have multiple edges (considering different kinds of dependencies,
1660 * e.g. ER and SN) between two nodes in the dependency graph. But
1661 * only the strong dependency path in the graph is relevant to deadlocks. A
1662 * strong dependency path is a dependency path that doesn't have two adjacent
1663 * dependencies as -(*R)-> -(S*)->, please see:
1664 *
1665 * Documentation/locking/lockdep-design.rst
1666 *
1667 * for more explanation of the definition of strong dependency paths
1668 *
1669 * In __bfs(), we only traverse in the strong dependency path:
1670 *
1671 * In lock_list::only_xr, we record whether the previous dependency only
1672 * has -(*R)-> in the search, and if it does (prev only has -(*R)->), we
1673 * filter out any -(S*)-> in the current dependency and after that, the
1674 * ->only_xr is set according to whether we only have -(*R)-> left.
1675 */
__bfs(struct lock_list * source_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry,int offset)1676 static enum bfs_result __bfs(struct lock_list *source_entry,
1677 void *data,
1678 bool (*match)(struct lock_list *entry, void *data),
1679 bool (*skip)(struct lock_list *entry, void *data),
1680 struct lock_list **target_entry,
1681 int offset)
1682 {
1683 struct circular_queue *cq = &lock_cq;
1684 struct lock_list *lock = NULL;
1685 struct lock_list *entry;
1686 struct list_head *head;
1687 unsigned int cq_depth;
1688 bool first;
1689
1690 lockdep_assert_locked();
1691
1692 __cq_init(cq);
1693 __cq_enqueue(cq, source_entry);
1694
1695 while ((lock = __bfs_next(lock, offset)) || (lock = __cq_dequeue(cq))) {
1696 if (!lock->class)
1697 return BFS_EINVALIDNODE;
1698
1699 /*
1700 * Step 1: check whether we already finish on this one.
1701 *
1702 * If we have visited all the dependencies from this @lock to
1703 * others (iow, if we have visited all lock_list entries in
1704 * @lock->class->locks_{after,before}) we skip, otherwise go
1705 * and visit all the dependencies in the list and mark this
1706 * list accessed.
1707 */
1708 if (lock_accessed(lock))
1709 continue;
1710 else
1711 mark_lock_accessed(lock);
1712
1713 /*
1714 * Step 2: check whether prev dependency and this form a strong
1715 * dependency path.
1716 */
1717 if (lock->parent) { /* Parent exists, check prev dependency */
1718 u8 dep = lock->dep;
1719 bool prev_only_xr = lock->parent->only_xr;
1720
1721 /*
1722 * Mask out all -(S*)-> if we only have *R in previous
1723 * step, because -(*R)-> -(S*)-> don't make up a strong
1724 * dependency.
1725 */
1726 if (prev_only_xr)
1727 dep &= ~(DEP_SR_MASK | DEP_SN_MASK);
1728
1729 /* If nothing left, we skip */
1730 if (!dep)
1731 continue;
1732
1733 /* If there are only -(*R)-> left, set that for the next step */
1734 lock->only_xr = !(dep & (DEP_SN_MASK | DEP_EN_MASK));
1735 }
1736
1737 /*
1738 * Step 3: we haven't visited this and there is a strong
1739 * dependency path to this, so check with @match.
1740 * If @skip is provide and returns true, we skip this
1741 * lock (and any path this lock is in).
1742 */
1743 if (skip && skip(lock, data))
1744 continue;
1745
1746 if (match(lock, data)) {
1747 *target_entry = lock;
1748 return BFS_RMATCH;
1749 }
1750
1751 /*
1752 * Step 4: if not match, expand the path by adding the
1753 * forward or backwards dependencies in the search
1754 *
1755 */
1756 first = true;
1757 head = get_dep_list(lock, offset);
1758 list_for_each_entry_rcu(entry, head, entry) {
1759 visit_lock_entry(entry, lock);
1760
1761 /*
1762 * Note we only enqueue the first of the list into the
1763 * queue, because we can always find a sibling
1764 * dependency from one (see __bfs_next()), as a result
1765 * the space of queue is saved.
1766 */
1767 if (!first)
1768 continue;
1769
1770 first = false;
1771
1772 if (__cq_enqueue(cq, entry))
1773 return BFS_EQUEUEFULL;
1774
1775 cq_depth = __cq_get_elem_count(cq);
1776 if (max_bfs_queue_depth < cq_depth)
1777 max_bfs_queue_depth = cq_depth;
1778 }
1779 }
1780
1781 return BFS_RNOMATCH;
1782 }
1783
1784 static inline enum bfs_result
__bfs_forwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1785 __bfs_forwards(struct lock_list *src_entry,
1786 void *data,
1787 bool (*match)(struct lock_list *entry, void *data),
1788 bool (*skip)(struct lock_list *entry, void *data),
1789 struct lock_list **target_entry)
1790 {
1791 return __bfs(src_entry, data, match, skip, target_entry,
1792 offsetof(struct lock_class, locks_after));
1793
1794 }
1795
1796 static inline enum bfs_result
__bfs_backwards(struct lock_list * src_entry,void * data,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)1797 __bfs_backwards(struct lock_list *src_entry,
1798 void *data,
1799 bool (*match)(struct lock_list *entry, void *data),
1800 bool (*skip)(struct lock_list *entry, void *data),
1801 struct lock_list **target_entry)
1802 {
1803 return __bfs(src_entry, data, match, skip, target_entry,
1804 offsetof(struct lock_class, locks_before));
1805
1806 }
1807
print_lock_trace(const struct lock_trace * trace,unsigned int spaces)1808 static void print_lock_trace(const struct lock_trace *trace,
1809 unsigned int spaces)
1810 {
1811 stack_trace_print(trace->entries, trace->nr_entries, spaces);
1812 }
1813
1814 /*
1815 * Print a dependency chain entry (this is only done when a deadlock
1816 * has been detected):
1817 */
1818 static noinline void
print_circular_bug_entry(struct lock_list * target,int depth)1819 print_circular_bug_entry(struct lock_list *target, int depth)
1820 {
1821 if (debug_locks_silent)
1822 return;
1823 printk("\n-> #%u", depth);
1824 print_lock_name(target->class);
1825 printk(KERN_CONT ":\n");
1826 print_lock_trace(target->trace, 6);
1827 }
1828
1829 static void
print_circular_lock_scenario(struct held_lock * src,struct held_lock * tgt,struct lock_list * prt)1830 print_circular_lock_scenario(struct held_lock *src,
1831 struct held_lock *tgt,
1832 struct lock_list *prt)
1833 {
1834 struct lock_class *source = hlock_class(src);
1835 struct lock_class *target = hlock_class(tgt);
1836 struct lock_class *parent = prt->class;
1837
1838 /*
1839 * A direct locking problem where unsafe_class lock is taken
1840 * directly by safe_class lock, then all we need to show
1841 * is the deadlock scenario, as it is obvious that the
1842 * unsafe lock is taken under the safe lock.
1843 *
1844 * But if there is a chain instead, where the safe lock takes
1845 * an intermediate lock (middle_class) where this lock is
1846 * not the same as the safe lock, then the lock chain is
1847 * used to describe the problem. Otherwise we would need
1848 * to show a different CPU case for each link in the chain
1849 * from the safe_class lock to the unsafe_class lock.
1850 */
1851 if (parent != source) {
1852 printk("Chain exists of:\n ");
1853 __print_lock_name(source);
1854 printk(KERN_CONT " --> ");
1855 __print_lock_name(parent);
1856 printk(KERN_CONT " --> ");
1857 __print_lock_name(target);
1858 printk(KERN_CONT "\n\n");
1859 }
1860
1861 printk(" Possible unsafe locking scenario:\n\n");
1862 printk(" CPU0 CPU1\n");
1863 printk(" ---- ----\n");
1864 printk(" lock(");
1865 __print_lock_name(target);
1866 printk(KERN_CONT ");\n");
1867 printk(" lock(");
1868 __print_lock_name(parent);
1869 printk(KERN_CONT ");\n");
1870 printk(" lock(");
1871 __print_lock_name(target);
1872 printk(KERN_CONT ");\n");
1873 printk(" lock(");
1874 __print_lock_name(source);
1875 printk(KERN_CONT ");\n");
1876 printk("\n *** DEADLOCK ***\n\n");
1877 }
1878
1879 /*
1880 * When a circular dependency is detected, print the
1881 * header first:
1882 */
1883 static noinline void
print_circular_bug_header(struct lock_list * entry,unsigned int depth,struct held_lock * check_src,struct held_lock * check_tgt)1884 print_circular_bug_header(struct lock_list *entry, unsigned int depth,
1885 struct held_lock *check_src,
1886 struct held_lock *check_tgt)
1887 {
1888 struct task_struct *curr = current;
1889
1890 if (debug_locks_silent)
1891 return;
1892
1893 pr_warn("\n");
1894 pr_warn("======================================================\n");
1895 pr_warn("WARNING: possible circular locking dependency detected\n");
1896 print_kernel_ident();
1897 pr_warn("------------------------------------------------------\n");
1898 pr_warn("%s/%d is trying to acquire lock:\n",
1899 curr->comm, task_pid_nr(curr));
1900 print_lock(check_src);
1901
1902 pr_warn("\nbut task is already holding lock:\n");
1903
1904 print_lock(check_tgt);
1905 pr_warn("\nwhich lock already depends on the new lock.\n\n");
1906 pr_warn("\nthe existing dependency chain (in reverse order) is:\n");
1907
1908 print_circular_bug_entry(entry, depth);
1909 }
1910
1911 /*
1912 * We are about to add A -> B into the dependency graph, and in __bfs() a
1913 * strong dependency path A -> .. -> B is found: hlock_class equals
1914 * entry->class.
1915 *
1916 * If A -> .. -> B can replace A -> B in any __bfs() search (means the former
1917 * is _stronger_ than or equal to the latter), we consider A -> B as redundant.
1918 * For example if A -> .. -> B is -(EN)-> (i.e. A -(E*)-> .. -(*N)-> B), and A
1919 * -> B is -(ER)-> or -(EN)->, then we don't need to add A -> B into the
1920 * dependency graph, as any strong path ..-> A -> B ->.. we can get with
1921 * having dependency A -> B, we could already get a equivalent path ..-> A ->
1922 * .. -> B -> .. with A -> .. -> B. Therefore A -> B is redundant.
1923 *
1924 * We need to make sure both the start and the end of A -> .. -> B is not
1925 * weaker than A -> B. For the start part, please see the comment in
1926 * check_redundant(). For the end part, we need:
1927 *
1928 * Either
1929 *
1930 * a) A -> B is -(*R)-> (everything is not weaker than that)
1931 *
1932 * or
1933 *
1934 * b) A -> .. -> B is -(*N)-> (nothing is stronger than this)
1935 *
1936 */
hlock_equal(struct lock_list * entry,void * data)1937 static inline bool hlock_equal(struct lock_list *entry, void *data)
1938 {
1939 struct held_lock *hlock = (struct held_lock *)data;
1940
1941 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1942 (hlock->read == 2 || /* A -> B is -(*R)-> */
1943 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1944 }
1945
1946 /*
1947 * We are about to add B -> A into the dependency graph, and in __bfs() a
1948 * strong dependency path A -> .. -> B is found: hlock_class equals
1949 * entry->class.
1950 *
1951 * We will have a deadlock case (conflict) if A -> .. -> B -> A is a strong
1952 * dependency cycle, that means:
1953 *
1954 * Either
1955 *
1956 * a) B -> A is -(E*)->
1957 *
1958 * or
1959 *
1960 * b) A -> .. -> B is -(*N)-> (i.e. A -> .. -(*N)-> B)
1961 *
1962 * as then we don't have -(*R)-> -(S*)-> in the cycle.
1963 */
hlock_conflict(struct lock_list * entry,void * data)1964 static inline bool hlock_conflict(struct lock_list *entry, void *data)
1965 {
1966 struct held_lock *hlock = (struct held_lock *)data;
1967
1968 return hlock_class(hlock) == entry->class && /* Found A -> .. -> B */
1969 (hlock->read == 0 || /* B -> A is -(E*)-> */
1970 !entry->only_xr); /* A -> .. -> B is -(*N)-> */
1971 }
1972
print_circular_bug(struct lock_list * this,struct lock_list * target,struct held_lock * check_src,struct held_lock * check_tgt)1973 static noinline void print_circular_bug(struct lock_list *this,
1974 struct lock_list *target,
1975 struct held_lock *check_src,
1976 struct held_lock *check_tgt)
1977 {
1978 struct task_struct *curr = current;
1979 struct lock_list *parent;
1980 struct lock_list *first_parent;
1981 int depth;
1982
1983 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
1984 return;
1985
1986 this->trace = save_trace();
1987 if (!this->trace)
1988 return;
1989
1990 depth = get_lock_depth(target);
1991
1992 print_circular_bug_header(target, depth, check_src, check_tgt);
1993
1994 parent = get_lock_parent(target);
1995 first_parent = parent;
1996
1997 while (parent) {
1998 print_circular_bug_entry(parent, --depth);
1999 parent = get_lock_parent(parent);
2000 }
2001
2002 printk("\nother info that might help us debug this:\n\n");
2003 print_circular_lock_scenario(check_src, check_tgt,
2004 first_parent);
2005
2006 lockdep_print_held_locks(curr);
2007
2008 printk("\nstack backtrace:\n");
2009 dump_stack();
2010 }
2011
print_bfs_bug(int ret)2012 static noinline void print_bfs_bug(int ret)
2013 {
2014 if (!debug_locks_off_graph_unlock())
2015 return;
2016
2017 /*
2018 * Breadth-first-search failed, graph got corrupted?
2019 */
2020 WARN(1, "lockdep bfs error:%d\n", ret);
2021 }
2022
noop_count(struct lock_list * entry,void * data)2023 static bool noop_count(struct lock_list *entry, void *data)
2024 {
2025 (*(unsigned long *)data)++;
2026 return false;
2027 }
2028
__lockdep_count_forward_deps(struct lock_list * this)2029 static unsigned long __lockdep_count_forward_deps(struct lock_list *this)
2030 {
2031 unsigned long count = 0;
2032 struct lock_list *target_entry;
2033
2034 __bfs_forwards(this, (void *)&count, noop_count, NULL, &target_entry);
2035
2036 return count;
2037 }
lockdep_count_forward_deps(struct lock_class * class)2038 unsigned long lockdep_count_forward_deps(struct lock_class *class)
2039 {
2040 unsigned long ret, flags;
2041 struct lock_list this;
2042
2043 __bfs_init_root(&this, class);
2044
2045 raw_local_irq_save(flags);
2046 lockdep_lock();
2047 ret = __lockdep_count_forward_deps(&this);
2048 lockdep_unlock();
2049 raw_local_irq_restore(flags);
2050
2051 return ret;
2052 }
2053
__lockdep_count_backward_deps(struct lock_list * this)2054 static unsigned long __lockdep_count_backward_deps(struct lock_list *this)
2055 {
2056 unsigned long count = 0;
2057 struct lock_list *target_entry;
2058
2059 __bfs_backwards(this, (void *)&count, noop_count, NULL, &target_entry);
2060
2061 return count;
2062 }
2063
lockdep_count_backward_deps(struct lock_class * class)2064 unsigned long lockdep_count_backward_deps(struct lock_class *class)
2065 {
2066 unsigned long ret, flags;
2067 struct lock_list this;
2068
2069 __bfs_init_root(&this, class);
2070
2071 raw_local_irq_save(flags);
2072 lockdep_lock();
2073 ret = __lockdep_count_backward_deps(&this);
2074 lockdep_unlock();
2075 raw_local_irq_restore(flags);
2076
2077 return ret;
2078 }
2079
2080 /*
2081 * Check that the dependency graph starting at <src> can lead to
2082 * <target> or not.
2083 */
2084 static noinline enum bfs_result
check_path(struct held_lock * target,struct lock_list * src_entry,bool (* match)(struct lock_list * entry,void * data),bool (* skip)(struct lock_list * entry,void * data),struct lock_list ** target_entry)2085 check_path(struct held_lock *target, struct lock_list *src_entry,
2086 bool (*match)(struct lock_list *entry, void *data),
2087 bool (*skip)(struct lock_list *entry, void *data),
2088 struct lock_list **target_entry)
2089 {
2090 enum bfs_result ret;
2091
2092 ret = __bfs_forwards(src_entry, target, match, skip, target_entry);
2093
2094 if (unlikely(bfs_error(ret)))
2095 print_bfs_bug(ret);
2096
2097 return ret;
2098 }
2099
2100 /*
2101 * Prove that the dependency graph starting at <src> can not
2102 * lead to <target>. If it can, there is a circle when adding
2103 * <target> -> <src> dependency.
2104 *
2105 * Print an error and return BFS_RMATCH if it does.
2106 */
2107 static noinline enum bfs_result
check_noncircular(struct held_lock * src,struct held_lock * target,struct lock_trace ** const trace)2108 check_noncircular(struct held_lock *src, struct held_lock *target,
2109 struct lock_trace **const trace)
2110 {
2111 enum bfs_result ret;
2112 struct lock_list *target_entry;
2113 struct lock_list src_entry;
2114
2115 bfs_init_root(&src_entry, src);
2116
2117 debug_atomic_inc(nr_cyclic_checks);
2118
2119 ret = check_path(target, &src_entry, hlock_conflict, NULL, &target_entry);
2120
2121 if (unlikely(ret == BFS_RMATCH)) {
2122 if (!*trace) {
2123 /*
2124 * If save_trace fails here, the printing might
2125 * trigger a WARN but because of the !nr_entries it
2126 * should not do bad things.
2127 */
2128 *trace = save_trace();
2129 }
2130
2131 print_circular_bug(&src_entry, target_entry, src, target);
2132 }
2133
2134 return ret;
2135 }
2136
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138
2139 /*
2140 * Forwards and backwards subgraph searching, for the purposes of
2141 * proving that two subgraphs can be connected by a new dependency
2142 * without creating any illegal irq-safe -> irq-unsafe lock dependency.
2143 *
2144 * A irq safe->unsafe deadlock happens with the following conditions:
2145 *
2146 * 1) We have a strong dependency path A -> ... -> B
2147 *
2148 * 2) and we have ENABLED_IRQ usage of B and USED_IN_IRQ usage of A, therefore
2149 * irq can create a new dependency B -> A (consider the case that a holder
2150 * of B gets interrupted by an irq whose handler will try to acquire A).
2151 *
2152 * 3) the dependency circle A -> ... -> B -> A we get from 1) and 2) is a
2153 * strong circle:
2154 *
2155 * For the usage bits of B:
2156 * a) if A -> B is -(*N)->, then B -> A could be any type, so any
2157 * ENABLED_IRQ usage suffices.
2158 * b) if A -> B is -(*R)->, then B -> A must be -(E*)->, so only
2159 * ENABLED_IRQ_*_READ usage suffices.
2160 *
2161 * For the usage bits of A:
2162 * c) if A -> B is -(E*)->, then B -> A could be any type, so any
2163 * USED_IN_IRQ usage suffices.
2164 * d) if A -> B is -(S*)->, then B -> A must be -(*N)->, so only
2165 * USED_IN_IRQ_*_READ usage suffices.
2166 */
2167
2168 /*
2169 * There is a strong dependency path in the dependency graph: A -> B, and now
2170 * we need to decide which usage bit of A should be accumulated to detect
2171 * safe->unsafe bugs.
2172 *
2173 * Note that usage_accumulate() is used in backwards search, so ->only_xr
2174 * stands for whether A -> B only has -(S*)-> (in this case ->only_xr is true).
2175 *
2176 * As above, if only_xr is false, which means A -> B has -(E*)-> dependency
2177 * path, any usage of A should be considered. Otherwise, we should only
2178 * consider _READ usage.
2179 */
usage_accumulate(struct lock_list * entry,void * mask)2180 static inline bool usage_accumulate(struct lock_list *entry, void *mask)
2181 {
2182 if (!entry->only_xr)
2183 *(unsigned long *)mask |= entry->class->usage_mask;
2184 else /* Mask out _READ usage bits */
2185 *(unsigned long *)mask |= (entry->class->usage_mask & LOCKF_IRQ);
2186
2187 return false;
2188 }
2189
2190 /*
2191 * There is a strong dependency path in the dependency graph: A -> B, and now
2192 * we need to decide which usage bit of B conflicts with the usage bits of A,
2193 * i.e. which usage bit of B may introduce safe->unsafe deadlocks.
2194 *
2195 * As above, if only_xr is false, which means A -> B has -(*N)-> dependency
2196 * path, any usage of B should be considered. Otherwise, we should only
2197 * consider _READ usage.
2198 */
usage_match(struct lock_list * entry,void * mask)2199 static inline bool usage_match(struct lock_list *entry, void *mask)
2200 {
2201 if (!entry->only_xr)
2202 return !!(entry->class->usage_mask & *(unsigned long *)mask);
2203 else /* Mask out _READ usage bits */
2204 return !!((entry->class->usage_mask & LOCKF_IRQ) & *(unsigned long *)mask);
2205 }
2206
usage_skip(struct lock_list * entry,void * mask)2207 static inline bool usage_skip(struct lock_list *entry, void *mask)
2208 {
2209 /*
2210 * Skip local_lock() for irq inversion detection.
2211 *
2212 * For !RT, local_lock() is not a real lock, so it won't carry any
2213 * dependency.
2214 *
2215 * For RT, an irq inversion happens when we have lock A and B, and on
2216 * some CPU we can have:
2217 *
2218 * lock(A);
2219 * <interrupted>
2220 * lock(B);
2221 *
2222 * where lock(B) cannot sleep, and we have a dependency B -> ... -> A.
2223 *
2224 * Now we prove local_lock() cannot exist in that dependency. First we
2225 * have the observation for any lock chain L1 -> ... -> Ln, for any
2226 * 1 <= i <= n, Li.inner_wait_type <= L1.inner_wait_type, otherwise
2227 * wait context check will complain. And since B is not a sleep lock,
2228 * therefore B.inner_wait_type >= 2, and since the inner_wait_type of
2229 * local_lock() is 3, which is greater than 2, therefore there is no
2230 * way the local_lock() exists in the dependency B -> ... -> A.
2231 *
2232 * As a result, we will skip local_lock(), when we search for irq
2233 * inversion bugs.
2234 */
2235 if (entry->class->lock_type == LD_LOCK_PERCPU) {
2236 if (DEBUG_LOCKS_WARN_ON(entry->class->wait_type_inner < LD_WAIT_CONFIG))
2237 return false;
2238
2239 return true;
2240 }
2241
2242 return false;
2243 }
2244
2245 /*
2246 * Find a node in the forwards-direction dependency sub-graph starting
2247 * at @root->class that matches @bit.
2248 *
2249 * Return BFS_MATCH if such a node exists in the subgraph, and put that node
2250 * into *@target_entry.
2251 */
2252 static enum bfs_result
find_usage_forwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2253 find_usage_forwards(struct lock_list *root, unsigned long usage_mask,
2254 struct lock_list **target_entry)
2255 {
2256 enum bfs_result result;
2257
2258 debug_atomic_inc(nr_find_usage_forwards_checks);
2259
2260 result = __bfs_forwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2261
2262 return result;
2263 }
2264
2265 /*
2266 * Find a node in the backwards-direction dependency sub-graph starting
2267 * at @root->class that matches @bit.
2268 */
2269 static enum bfs_result
find_usage_backwards(struct lock_list * root,unsigned long usage_mask,struct lock_list ** target_entry)2270 find_usage_backwards(struct lock_list *root, unsigned long usage_mask,
2271 struct lock_list **target_entry)
2272 {
2273 enum bfs_result result;
2274
2275 debug_atomic_inc(nr_find_usage_backwards_checks);
2276
2277 result = __bfs_backwards(root, &usage_mask, usage_match, usage_skip, target_entry);
2278
2279 return result;
2280 }
2281
print_lock_class_header(struct lock_class * class,int depth)2282 static void print_lock_class_header(struct lock_class *class, int depth)
2283 {
2284 int bit;
2285
2286 printk("%*s->", depth, "");
2287 print_lock_name(class);
2288 #ifdef CONFIG_DEBUG_LOCKDEP
2289 printk(KERN_CONT " ops: %lu", debug_class_ops_read(class));
2290 #endif
2291 printk(KERN_CONT " {\n");
2292
2293 for (bit = 0; bit < LOCK_TRACE_STATES; bit++) {
2294 if (class->usage_mask & (1 << bit)) {
2295 int len = depth;
2296
2297 len += printk("%*s %s", depth, "", usage_str[bit]);
2298 len += printk(KERN_CONT " at:\n");
2299 print_lock_trace(class->usage_traces[bit], len);
2300 }
2301 }
2302 printk("%*s }\n", depth, "");
2303
2304 printk("%*s ... key at: [<%px>] %pS\n",
2305 depth, "", class->key, class->key);
2306 }
2307
2308 /*
2309 * Dependency path printing:
2310 *
2311 * After BFS we get a lock dependency path (linked via ->parent of lock_list),
2312 * printing out each lock in the dependency path will help on understanding how
2313 * the deadlock could happen. Here are some details about dependency path
2314 * printing:
2315 *
2316 * 1) A lock_list can be either forwards or backwards for a lock dependency,
2317 * for a lock dependency A -> B, there are two lock_lists:
2318 *
2319 * a) lock_list in the ->locks_after list of A, whose ->class is B and
2320 * ->links_to is A. In this case, we can say the lock_list is
2321 * "A -> B" (forwards case).
2322 *
2323 * b) lock_list in the ->locks_before list of B, whose ->class is A
2324 * and ->links_to is B. In this case, we can say the lock_list is
2325 * "B <- A" (bacwards case).
2326 *
2327 * The ->trace of both a) and b) point to the call trace where B was
2328 * acquired with A held.
2329 *
2330 * 2) A "helper" lock_list is introduced during BFS, this lock_list doesn't
2331 * represent a certain lock dependency, it only provides an initial entry
2332 * for BFS. For example, BFS may introduce a "helper" lock_list whose
2333 * ->class is A, as a result BFS will search all dependencies starting with
2334 * A, e.g. A -> B or A -> C.
2335 *
2336 * The notation of a forwards helper lock_list is like "-> A", which means
2337 * we should search the forwards dependencies starting with "A", e.g A -> B
2338 * or A -> C.
2339 *
2340 * The notation of a bacwards helper lock_list is like "<- B", which means
2341 * we should search the backwards dependencies ending with "B", e.g.
2342 * B <- A or B <- C.
2343 */
2344
2345 /*
2346 * printk the shortest lock dependencies from @root to @leaf in reverse order.
2347 *
2348 * We have a lock dependency path as follow:
2349 *
2350 * @root @leaf
2351 * | |
2352 * V V
2353 * ->parent ->parent
2354 * | lock_list | <--------- | lock_list | ... | lock_list | <--------- | lock_list |
2355 * | -> L1 | | L1 -> L2 | ... |Ln-2 -> Ln-1| | Ln-1 -> Ln|
2356 *
2357 * , so it's natural that we start from @leaf and print every ->class and
2358 * ->trace until we reach the @root.
2359 */
2360 static void __used
print_shortest_lock_dependencies(struct lock_list * leaf,struct lock_list * root)2361 print_shortest_lock_dependencies(struct lock_list *leaf,
2362 struct lock_list *root)
2363 {
2364 struct lock_list *entry = leaf;
2365 int depth;
2366
2367 /*compute depth from generated tree by BFS*/
2368 depth = get_lock_depth(leaf);
2369
2370 do {
2371 print_lock_class_header(entry->class, depth);
2372 printk("%*s ... acquired at:\n", depth, "");
2373 print_lock_trace(entry->trace, 2);
2374 printk("\n");
2375
2376 if (depth == 0 && (entry != root)) {
2377 printk("lockdep:%s bad path found in chain graph\n", __func__);
2378 break;
2379 }
2380
2381 entry = get_lock_parent(entry);
2382 depth--;
2383 } while (entry && (depth >= 0));
2384 }
2385
2386 /*
2387 * printk the shortest lock dependencies from @leaf to @root.
2388 *
2389 * We have a lock dependency path (from a backwards search) as follow:
2390 *
2391 * @leaf @root
2392 * | |
2393 * V V
2394 * ->parent ->parent
2395 * | lock_list | ---------> | lock_list | ... | lock_list | ---------> | lock_list |
2396 * | L2 <- L1 | | L3 <- L2 | ... | Ln <- Ln-1 | | <- Ln |
2397 *
2398 * , so when we iterate from @leaf to @root, we actually print the lock
2399 * dependency path L1 -> L2 -> .. -> Ln in the non-reverse order.
2400 *
2401 * Another thing to notice here is that ->class of L2 <- L1 is L1, while the
2402 * ->trace of L2 <- L1 is the call trace of L2, in fact we don't have the call
2403 * trace of L1 in the dependency path, which is alright, because most of the
2404 * time we can figure out where L1 is held from the call trace of L2.
2405 */
2406 static void __used
print_shortest_lock_dependencies_backwards(struct lock_list * leaf,struct lock_list * root)2407 print_shortest_lock_dependencies_backwards(struct lock_list *leaf,
2408 struct lock_list *root)
2409 {
2410 struct lock_list *entry = leaf;
2411 const struct lock_trace *trace = NULL;
2412 int depth;
2413
2414 /*compute depth from generated tree by BFS*/
2415 depth = get_lock_depth(leaf);
2416
2417 do {
2418 print_lock_class_header(entry->class, depth);
2419 if (trace) {
2420 printk("%*s ... acquired at:\n", depth, "");
2421 print_lock_trace(trace, 2);
2422 printk("\n");
2423 }
2424
2425 /*
2426 * Record the pointer to the trace for the next lock_list
2427 * entry, see the comments for the function.
2428 */
2429 trace = entry->trace;
2430
2431 if (depth == 0 && (entry != root)) {
2432 printk("lockdep:%s bad path found in chain graph\n", __func__);
2433 break;
2434 }
2435
2436 entry = get_lock_parent(entry);
2437 depth--;
2438 } while (entry && (depth >= 0));
2439 }
2440
2441 static void
print_irq_lock_scenario(struct lock_list * safe_entry,struct lock_list * unsafe_entry,struct lock_class * prev_class,struct lock_class * next_class)2442 print_irq_lock_scenario(struct lock_list *safe_entry,
2443 struct lock_list *unsafe_entry,
2444 struct lock_class *prev_class,
2445 struct lock_class *next_class)
2446 {
2447 struct lock_class *safe_class = safe_entry->class;
2448 struct lock_class *unsafe_class = unsafe_entry->class;
2449 struct lock_class *middle_class = prev_class;
2450
2451 if (middle_class == safe_class)
2452 middle_class = next_class;
2453
2454 /*
2455 * A direct locking problem where unsafe_class lock is taken
2456 * directly by safe_class lock, then all we need to show
2457 * is the deadlock scenario, as it is obvious that the
2458 * unsafe lock is taken under the safe lock.
2459 *
2460 * But if there is a chain instead, where the safe lock takes
2461 * an intermediate lock (middle_class) where this lock is
2462 * not the same as the safe lock, then the lock chain is
2463 * used to describe the problem. Otherwise we would need
2464 * to show a different CPU case for each link in the chain
2465 * from the safe_class lock to the unsafe_class lock.
2466 */
2467 if (middle_class != unsafe_class) {
2468 printk("Chain exists of:\n ");
2469 __print_lock_name(safe_class);
2470 printk(KERN_CONT " --> ");
2471 __print_lock_name(middle_class);
2472 printk(KERN_CONT " --> ");
2473 __print_lock_name(unsafe_class);
2474 printk(KERN_CONT "\n\n");
2475 }
2476
2477 printk(" Possible interrupt unsafe locking scenario:\n\n");
2478 printk(" CPU0 CPU1\n");
2479 printk(" ---- ----\n");
2480 printk(" lock(");
2481 __print_lock_name(unsafe_class);
2482 printk(KERN_CONT ");\n");
2483 printk(" local_irq_disable();\n");
2484 printk(" lock(");
2485 __print_lock_name(safe_class);
2486 printk(KERN_CONT ");\n");
2487 printk(" lock(");
2488 __print_lock_name(middle_class);
2489 printk(KERN_CONT ");\n");
2490 printk(" <Interrupt>\n");
2491 printk(" lock(");
2492 __print_lock_name(safe_class);
2493 printk(KERN_CONT ");\n");
2494 printk("\n *** DEADLOCK ***\n\n");
2495 }
2496
2497 static void
print_bad_irq_dependency(struct task_struct * curr,struct lock_list * prev_root,struct lock_list * next_root,struct lock_list * backwards_entry,struct lock_list * forwards_entry,struct held_lock * prev,struct held_lock * next,enum lock_usage_bit bit1,enum lock_usage_bit bit2,const char * irqclass)2498 print_bad_irq_dependency(struct task_struct *curr,
2499 struct lock_list *prev_root,
2500 struct lock_list *next_root,
2501 struct lock_list *backwards_entry,
2502 struct lock_list *forwards_entry,
2503 struct held_lock *prev,
2504 struct held_lock *next,
2505 enum lock_usage_bit bit1,
2506 enum lock_usage_bit bit2,
2507 const char *irqclass)
2508 {
2509 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2510 return;
2511
2512 pr_warn("\n");
2513 pr_warn("=====================================================\n");
2514 pr_warn("WARNING: %s-safe -> %s-unsafe lock order detected\n",
2515 irqclass, irqclass);
2516 print_kernel_ident();
2517 pr_warn("-----------------------------------------------------\n");
2518 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] is trying to acquire:\n",
2519 curr->comm, task_pid_nr(curr),
2520 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
2521 curr->softirq_context, softirq_count() >> SOFTIRQ_SHIFT,
2522 lockdep_hardirqs_enabled(),
2523 curr->softirqs_enabled);
2524 print_lock(next);
2525
2526 pr_warn("\nand this task is already holding:\n");
2527 print_lock(prev);
2528 pr_warn("which would create a new lock dependency:\n");
2529 print_lock_name(hlock_class(prev));
2530 pr_cont(" ->");
2531 print_lock_name(hlock_class(next));
2532 pr_cont("\n");
2533
2534 pr_warn("\nbut this new dependency connects a %s-irq-safe lock:\n",
2535 irqclass);
2536 print_lock_name(backwards_entry->class);
2537 pr_warn("\n... which became %s-irq-safe at:\n", irqclass);
2538
2539 print_lock_trace(backwards_entry->class->usage_traces[bit1], 1);
2540
2541 pr_warn("\nto a %s-irq-unsafe lock:\n", irqclass);
2542 print_lock_name(forwards_entry->class);
2543 pr_warn("\n... which became %s-irq-unsafe at:\n", irqclass);
2544 pr_warn("...");
2545
2546 print_lock_trace(forwards_entry->class->usage_traces[bit2], 1);
2547
2548 pr_warn("\nother info that might help us debug this:\n\n");
2549 print_irq_lock_scenario(backwards_entry, forwards_entry,
2550 hlock_class(prev), hlock_class(next));
2551
2552 lockdep_print_held_locks(curr);
2553
2554 pr_warn("\nthe dependencies between %s-irq-safe lock and the holding lock:\n", irqclass);
2555 print_shortest_lock_dependencies_backwards(backwards_entry, prev_root);
2556
2557 pr_warn("\nthe dependencies between the lock to be acquired");
2558 pr_warn(" and %s-irq-unsafe lock:\n", irqclass);
2559 next_root->trace = save_trace();
2560 if (!next_root->trace)
2561 return;
2562 print_shortest_lock_dependencies(forwards_entry, next_root);
2563
2564 pr_warn("\nstack backtrace:\n");
2565 dump_stack();
2566 }
2567
2568 static const char *state_names[] = {
2569 #define LOCKDEP_STATE(__STATE) \
2570 __stringify(__STATE),
2571 #include "lockdep_states.h"
2572 #undef LOCKDEP_STATE
2573 };
2574
2575 static const char *state_rnames[] = {
2576 #define LOCKDEP_STATE(__STATE) \
2577 __stringify(__STATE)"-READ",
2578 #include "lockdep_states.h"
2579 #undef LOCKDEP_STATE
2580 };
2581
state_name(enum lock_usage_bit bit)2582 static inline const char *state_name(enum lock_usage_bit bit)
2583 {
2584 if (bit & LOCK_USAGE_READ_MASK)
2585 return state_rnames[bit >> LOCK_USAGE_DIR_MASK];
2586 else
2587 return state_names[bit >> LOCK_USAGE_DIR_MASK];
2588 }
2589
2590 /*
2591 * The bit number is encoded like:
2592 *
2593 * bit0: 0 exclusive, 1 read lock
2594 * bit1: 0 used in irq, 1 irq enabled
2595 * bit2-n: state
2596 */
exclusive_bit(int new_bit)2597 static int exclusive_bit(int new_bit)
2598 {
2599 int state = new_bit & LOCK_USAGE_STATE_MASK;
2600 int dir = new_bit & LOCK_USAGE_DIR_MASK;
2601
2602 /*
2603 * keep state, bit flip the direction and strip read.
2604 */
2605 return state | (dir ^ LOCK_USAGE_DIR_MASK);
2606 }
2607
2608 /*
2609 * Observe that when given a bitmask where each bitnr is encoded as above, a
2610 * right shift of the mask transforms the individual bitnrs as -1 and
2611 * conversely, a left shift transforms into +1 for the individual bitnrs.
2612 *
2613 * So for all bits whose number have LOCK_ENABLED_* set (bitnr1 == 1), we can
2614 * create the mask with those bit numbers using LOCK_USED_IN_* (bitnr1 == 0)
2615 * instead by subtracting the bit number by 2, or shifting the mask right by 2.
2616 *
2617 * Similarly, bitnr1 == 0 becomes bitnr1 == 1 by adding 2, or shifting left 2.
2618 *
2619 * So split the mask (note that LOCKF_ENABLED_IRQ_ALL|LOCKF_USED_IN_IRQ_ALL is
2620 * all bits set) and recompose with bitnr1 flipped.
2621 */
invert_dir_mask(unsigned long mask)2622 static unsigned long invert_dir_mask(unsigned long mask)
2623 {
2624 unsigned long excl = 0;
2625
2626 /* Invert dir */
2627 excl |= (mask & LOCKF_ENABLED_IRQ_ALL) >> LOCK_USAGE_DIR_MASK;
2628 excl |= (mask & LOCKF_USED_IN_IRQ_ALL) << LOCK_USAGE_DIR_MASK;
2629
2630 return excl;
2631 }
2632
2633 /*
2634 * Note that a LOCK_ENABLED_IRQ_*_READ usage and a LOCK_USED_IN_IRQ_*_READ
2635 * usage may cause deadlock too, for example:
2636 *
2637 * P1 P2
2638 * <irq disabled>
2639 * write_lock(l1); <irq enabled>
2640 * read_lock(l2);
2641 * write_lock(l2);
2642 * <in irq>
2643 * read_lock(l1);
2644 *
2645 * , in above case, l1 will be marked as LOCK_USED_IN_IRQ_HARDIRQ_READ and l2
2646 * will marked as LOCK_ENABLE_IRQ_HARDIRQ_READ, and this is a possible
2647 * deadlock.
2648 *
2649 * In fact, all of the following cases may cause deadlocks:
2650 *
2651 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*
2652 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*
2653 * LOCK_USED_IN_IRQ_* -> LOCK_ENABLED_IRQ_*_READ
2654 * LOCK_USED_IN_IRQ_*_READ -> LOCK_ENABLED_IRQ_*_READ
2655 *
2656 * As a result, to calculate the "exclusive mask", first we invert the
2657 * direction (USED_IN/ENABLED) of the original mask, and 1) for all bits with
2658 * bitnr0 set (LOCK_*_READ), add those with bitnr0 cleared (LOCK_*). 2) for all
2659 * bits with bitnr0 cleared (LOCK_*_READ), add those with bitnr0 set (LOCK_*).
2660 */
exclusive_mask(unsigned long mask)2661 static unsigned long exclusive_mask(unsigned long mask)
2662 {
2663 unsigned long excl = invert_dir_mask(mask);
2664
2665 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2666 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2667
2668 return excl;
2669 }
2670
2671 /*
2672 * Retrieve the _possible_ original mask to which @mask is
2673 * exclusive. Ie: this is the opposite of exclusive_mask().
2674 * Note that 2 possible original bits can match an exclusive
2675 * bit: one has LOCK_USAGE_READ_MASK set, the other has it
2676 * cleared. So both are returned for each exclusive bit.
2677 */
original_mask(unsigned long mask)2678 static unsigned long original_mask(unsigned long mask)
2679 {
2680 unsigned long excl = invert_dir_mask(mask);
2681
2682 /* Include read in existing usages */
2683 excl |= (excl & LOCKF_IRQ_READ) >> LOCK_USAGE_READ_MASK;
2684 excl |= (excl & LOCKF_IRQ) << LOCK_USAGE_READ_MASK;
2685
2686 return excl;
2687 }
2688
2689 /*
2690 * Find the first pair of bit match between an original
2691 * usage mask and an exclusive usage mask.
2692 */
find_exclusive_match(unsigned long mask,unsigned long excl_mask,enum lock_usage_bit * bitp,enum lock_usage_bit * excl_bitp)2693 static int find_exclusive_match(unsigned long mask,
2694 unsigned long excl_mask,
2695 enum lock_usage_bit *bitp,
2696 enum lock_usage_bit *excl_bitp)
2697 {
2698 int bit, excl, excl_read;
2699
2700 for_each_set_bit(bit, &mask, LOCK_USED) {
2701 /*
2702 * exclusive_bit() strips the read bit, however,
2703 * LOCK_ENABLED_IRQ_*_READ may cause deadlocks too, so we need
2704 * to search excl | LOCK_USAGE_READ_MASK as well.
2705 */
2706 excl = exclusive_bit(bit);
2707 excl_read = excl | LOCK_USAGE_READ_MASK;
2708 if (excl_mask & lock_flag(excl)) {
2709 *bitp = bit;
2710 *excl_bitp = excl;
2711 return 0;
2712 } else if (excl_mask & lock_flag(excl_read)) {
2713 *bitp = bit;
2714 *excl_bitp = excl_read;
2715 return 0;
2716 }
2717 }
2718 return -1;
2719 }
2720
2721 /*
2722 * Prove that the new dependency does not connect a hardirq-safe(-read)
2723 * lock with a hardirq-unsafe lock - to achieve this we search
2724 * the backwards-subgraph starting at <prev>, and the
2725 * forwards-subgraph starting at <next>:
2726 */
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2727 static int check_irq_usage(struct task_struct *curr, struct held_lock *prev,
2728 struct held_lock *next)
2729 {
2730 unsigned long usage_mask = 0, forward_mask, backward_mask;
2731 enum lock_usage_bit forward_bit = 0, backward_bit = 0;
2732 struct lock_list *target_entry1;
2733 struct lock_list *target_entry;
2734 struct lock_list this, that;
2735 enum bfs_result ret;
2736
2737 /*
2738 * Step 1: gather all hard/soft IRQs usages backward in an
2739 * accumulated usage mask.
2740 */
2741 bfs_init_rootb(&this, prev);
2742
2743 ret = __bfs_backwards(&this, &usage_mask, usage_accumulate, usage_skip, NULL);
2744 if (bfs_error(ret)) {
2745 print_bfs_bug(ret);
2746 return 0;
2747 }
2748
2749 usage_mask &= LOCKF_USED_IN_IRQ_ALL;
2750 if (!usage_mask)
2751 return 1;
2752
2753 /*
2754 * Step 2: find exclusive uses forward that match the previous
2755 * backward accumulated mask.
2756 */
2757 forward_mask = exclusive_mask(usage_mask);
2758
2759 bfs_init_root(&that, next);
2760
2761 ret = find_usage_forwards(&that, forward_mask, &target_entry1);
2762 if (bfs_error(ret)) {
2763 print_bfs_bug(ret);
2764 return 0;
2765 }
2766 if (ret == BFS_RNOMATCH)
2767 return 1;
2768
2769 /*
2770 * Step 3: we found a bad match! Now retrieve a lock from the backward
2771 * list whose usage mask matches the exclusive usage mask from the
2772 * lock found on the forward list.
2773 *
2774 * Note, we should only keep the LOCKF_ENABLED_IRQ_ALL bits, considering
2775 * the follow case:
2776 *
2777 * When trying to add A -> B to the graph, we find that there is a
2778 * hardirq-safe L, that L -> ... -> A, and another hardirq-unsafe M,
2779 * that B -> ... -> M. However M is **softirq-safe**, if we use exact
2780 * invert bits of M's usage_mask, we will find another lock N that is
2781 * **softirq-unsafe** and N -> ... -> A, however N -> .. -> M will not
2782 * cause a inversion deadlock.
2783 */
2784 backward_mask = original_mask(target_entry1->class->usage_mask & LOCKF_ENABLED_IRQ_ALL);
2785
2786 ret = find_usage_backwards(&this, backward_mask, &target_entry);
2787 if (bfs_error(ret)) {
2788 print_bfs_bug(ret);
2789 return 0;
2790 }
2791 if (DEBUG_LOCKS_WARN_ON(ret == BFS_RNOMATCH))
2792 return 1;
2793
2794 /*
2795 * Step 4: narrow down to a pair of incompatible usage bits
2796 * and report it.
2797 */
2798 ret = find_exclusive_match(target_entry->class->usage_mask,
2799 target_entry1->class->usage_mask,
2800 &backward_bit, &forward_bit);
2801 if (DEBUG_LOCKS_WARN_ON(ret == -1))
2802 return 1;
2803
2804 print_bad_irq_dependency(curr, &this, &that,
2805 target_entry, target_entry1,
2806 prev, next,
2807 backward_bit, forward_bit,
2808 state_name(backward_bit));
2809
2810 return 0;
2811 }
2812
2813 #else
2814
check_irq_usage(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2815 static inline int check_irq_usage(struct task_struct *curr,
2816 struct held_lock *prev, struct held_lock *next)
2817 {
2818 return 1;
2819 }
2820
usage_skip(struct lock_list * entry,void * mask)2821 static inline bool usage_skip(struct lock_list *entry, void *mask)
2822 {
2823 return false;
2824 }
2825
2826 #endif /* CONFIG_TRACE_IRQFLAGS */
2827
2828 #ifdef CONFIG_LOCKDEP_SMALL
2829 /*
2830 * Check that the dependency graph starting at <src> can lead to
2831 * <target> or not. If it can, <src> -> <target> dependency is already
2832 * in the graph.
2833 *
2834 * Return BFS_RMATCH if it does, or BFS_RNOMATCH if it does not, return BFS_E* if
2835 * any error appears in the bfs search.
2836 */
2837 static noinline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2838 check_redundant(struct held_lock *src, struct held_lock *target)
2839 {
2840 enum bfs_result ret;
2841 struct lock_list *target_entry;
2842 struct lock_list src_entry;
2843
2844 bfs_init_root(&src_entry, src);
2845 /*
2846 * Special setup for check_redundant().
2847 *
2848 * To report redundant, we need to find a strong dependency path that
2849 * is equal to or stronger than <src> -> <target>. So if <src> is E,
2850 * we need to let __bfs() only search for a path starting at a -(E*)->,
2851 * we achieve this by setting the initial node's ->only_xr to true in
2852 * that case. And if <prev> is S, we set initial ->only_xr to false
2853 * because both -(S*)-> (equal) and -(E*)-> (stronger) are redundant.
2854 */
2855 src_entry.only_xr = src->read == 0;
2856
2857 debug_atomic_inc(nr_redundant_checks);
2858
2859 /*
2860 * Note: we skip local_lock() for redundant check, because as the
2861 * comment in usage_skip(), A -> local_lock() -> B and A -> B are not
2862 * the same.
2863 */
2864 ret = check_path(target, &src_entry, hlock_equal, usage_skip, &target_entry);
2865
2866 if (ret == BFS_RMATCH)
2867 debug_atomic_inc(nr_redundant);
2868
2869 return ret;
2870 }
2871
2872 #else
2873
2874 static inline enum bfs_result
check_redundant(struct held_lock * src,struct held_lock * target)2875 check_redundant(struct held_lock *src, struct held_lock *target)
2876 {
2877 return BFS_RNOMATCH;
2878 }
2879
2880 #endif
2881
inc_chains(int irq_context)2882 static void inc_chains(int irq_context)
2883 {
2884 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2885 nr_hardirq_chains++;
2886 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2887 nr_softirq_chains++;
2888 else
2889 nr_process_chains++;
2890 }
2891
dec_chains(int irq_context)2892 static void dec_chains(int irq_context)
2893 {
2894 if (irq_context & LOCK_CHAIN_HARDIRQ_CONTEXT)
2895 nr_hardirq_chains--;
2896 else if (irq_context & LOCK_CHAIN_SOFTIRQ_CONTEXT)
2897 nr_softirq_chains--;
2898 else
2899 nr_process_chains--;
2900 }
2901
2902 static void
print_deadlock_scenario(struct held_lock * nxt,struct held_lock * prv)2903 print_deadlock_scenario(struct held_lock *nxt, struct held_lock *prv)
2904 {
2905 struct lock_class *next = hlock_class(nxt);
2906 struct lock_class *prev = hlock_class(prv);
2907
2908 printk(" Possible unsafe locking scenario:\n\n");
2909 printk(" CPU0\n");
2910 printk(" ----\n");
2911 printk(" lock(");
2912 __print_lock_name(prev);
2913 printk(KERN_CONT ");\n");
2914 printk(" lock(");
2915 __print_lock_name(next);
2916 printk(KERN_CONT ");\n");
2917 printk("\n *** DEADLOCK ***\n\n");
2918 printk(" May be due to missing lock nesting notation\n\n");
2919 }
2920
2921 static void
print_deadlock_bug(struct task_struct * curr,struct held_lock * prev,struct held_lock * next)2922 print_deadlock_bug(struct task_struct *curr, struct held_lock *prev,
2923 struct held_lock *next)
2924 {
2925 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
2926 return;
2927
2928 pr_warn("\n");
2929 pr_warn("============================================\n");
2930 pr_warn("WARNING: possible recursive locking detected\n");
2931 print_kernel_ident();
2932 pr_warn("--------------------------------------------\n");
2933 pr_warn("%s/%d is trying to acquire lock:\n",
2934 curr->comm, task_pid_nr(curr));
2935 print_lock(next);
2936 pr_warn("\nbut task is already holding lock:\n");
2937 print_lock(prev);
2938
2939 pr_warn("\nother info that might help us debug this:\n");
2940 print_deadlock_scenario(next, prev);
2941 lockdep_print_held_locks(curr);
2942
2943 pr_warn("\nstack backtrace:\n");
2944 dump_stack();
2945 }
2946
2947 /*
2948 * Check whether we are holding such a class already.
2949 *
2950 * (Note that this has to be done separately, because the graph cannot
2951 * detect such classes of deadlocks.)
2952 *
2953 * Returns: 0 on deadlock detected, 1 on OK, 2 if another lock with the same
2954 * lock class is held but nest_lock is also held, i.e. we rely on the
2955 * nest_lock to avoid the deadlock.
2956 */
2957 static int
check_deadlock(struct task_struct * curr,struct held_lock * next)2958 check_deadlock(struct task_struct *curr, struct held_lock *next)
2959 {
2960 struct held_lock *prev;
2961 struct held_lock *nest = NULL;
2962 int i;
2963
2964 for (i = 0; i < curr->lockdep_depth; i++) {
2965 prev = curr->held_locks + i;
2966
2967 if (prev->instance == next->nest_lock)
2968 nest = prev;
2969
2970 if (hlock_class(prev) != hlock_class(next))
2971 continue;
2972
2973 /*
2974 * Allow read-after-read recursion of the same
2975 * lock class (i.e. read_lock(lock)+read_lock(lock)):
2976 */
2977 if ((next->read == 2) && prev->read)
2978 continue;
2979
2980 /*
2981 * We're holding the nest_lock, which serializes this lock's
2982 * nesting behaviour.
2983 */
2984 if (nest)
2985 return 2;
2986
2987 print_deadlock_bug(curr, prev, next);
2988 return 0;
2989 }
2990 return 1;
2991 }
2992
2993 /*
2994 * There was a chain-cache miss, and we are about to add a new dependency
2995 * to a previous lock. We validate the following rules:
2996 *
2997 * - would the adding of the <prev> -> <next> dependency create a
2998 * circular dependency in the graph? [== circular deadlock]
2999 *
3000 * - does the new prev->next dependency connect any hardirq-safe lock
3001 * (in the full backwards-subgraph starting at <prev>) with any
3002 * hardirq-unsafe lock (in the full forwards-subgraph starting at
3003 * <next>)? [== illegal lock inversion with hardirq contexts]
3004 *
3005 * - does the new prev->next dependency connect any softirq-safe lock
3006 * (in the full backwards-subgraph starting at <prev>) with any
3007 * softirq-unsafe lock (in the full forwards-subgraph starting at
3008 * <next>)? [== illegal lock inversion with softirq contexts]
3009 *
3010 * any of these scenarios could lead to a deadlock.
3011 *
3012 * Then if all the validations pass, we add the forwards and backwards
3013 * dependency.
3014 */
3015 static int
check_prev_add(struct task_struct * curr,struct held_lock * prev,struct held_lock * next,u16 distance,struct lock_trace ** const trace)3016 check_prev_add(struct task_struct *curr, struct held_lock *prev,
3017 struct held_lock *next, u16 distance,
3018 struct lock_trace **const trace)
3019 {
3020 struct lock_list *entry;
3021 enum bfs_result ret;
3022
3023 if (!hlock_class(prev)->key || !hlock_class(next)->key) {
3024 /*
3025 * The warning statements below may trigger a use-after-free
3026 * of the class name. It is better to trigger a use-after free
3027 * and to have the class name most of the time instead of not
3028 * having the class name available.
3029 */
3030 WARN_ONCE(!debug_locks_silent && !hlock_class(prev)->key,
3031 "Detected use-after-free of lock class %px/%s\n",
3032 hlock_class(prev),
3033 hlock_class(prev)->name);
3034 WARN_ONCE(!debug_locks_silent && !hlock_class(next)->key,
3035 "Detected use-after-free of lock class %px/%s\n",
3036 hlock_class(next),
3037 hlock_class(next)->name);
3038 return 2;
3039 }
3040
3041 /*
3042 * Prove that the new <prev> -> <next> dependency would not
3043 * create a circular dependency in the graph. (We do this by
3044 * a breadth-first search into the graph starting at <next>,
3045 * and check whether we can reach <prev>.)
3046 *
3047 * The search is limited by the size of the circular queue (i.e.,
3048 * MAX_CIRCULAR_QUEUE_SIZE) which keeps track of a breadth of nodes
3049 * in the graph whose neighbours are to be checked.
3050 */
3051 ret = check_noncircular(next, prev, trace);
3052 if (unlikely(bfs_error(ret) || ret == BFS_RMATCH))
3053 return 0;
3054
3055 if (!check_irq_usage(curr, prev, next))
3056 return 0;
3057
3058 /*
3059 * Is the <prev> -> <next> dependency already present?
3060 *
3061 * (this may occur even though this is a new chain: consider
3062 * e.g. the L1 -> L2 -> L3 -> L4 and the L5 -> L1 -> L2 -> L3
3063 * chains - the second one will be new, but L1 already has
3064 * L2 added to its dependency list, due to the first chain.)
3065 */
3066 list_for_each_entry(entry, &hlock_class(prev)->locks_after, entry) {
3067 if (entry->class == hlock_class(next)) {
3068 if (distance == 1)
3069 entry->distance = 1;
3070 entry->dep |= calc_dep(prev, next);
3071
3072 /*
3073 * Also, update the reverse dependency in @next's
3074 * ->locks_before list.
3075 *
3076 * Here we reuse @entry as the cursor, which is fine
3077 * because we won't go to the next iteration of the
3078 * outer loop:
3079 *
3080 * For normal cases, we return in the inner loop.
3081 *
3082 * If we fail to return, we have inconsistency, i.e.
3083 * <prev>::locks_after contains <next> while
3084 * <next>::locks_before doesn't contain <prev>. In
3085 * that case, we return after the inner and indicate
3086 * something is wrong.
3087 */
3088 list_for_each_entry(entry, &hlock_class(next)->locks_before, entry) {
3089 if (entry->class == hlock_class(prev)) {
3090 if (distance == 1)
3091 entry->distance = 1;
3092 entry->dep |= calc_depb(prev, next);
3093 return 1;
3094 }
3095 }
3096
3097 /* <prev> is not found in <next>::locks_before */
3098 return 0;
3099 }
3100 }
3101
3102 /*
3103 * Is the <prev> -> <next> link redundant?
3104 */
3105 ret = check_redundant(prev, next);
3106 if (bfs_error(ret))
3107 return 0;
3108 else if (ret == BFS_RMATCH)
3109 return 2;
3110
3111 if (!*trace) {
3112 *trace = save_trace();
3113 if (!*trace)
3114 return 0;
3115 }
3116
3117 /*
3118 * Ok, all validations passed, add the new lock
3119 * to the previous lock's dependency list:
3120 */
3121 ret = add_lock_to_list(hlock_class(next), hlock_class(prev),
3122 &hlock_class(prev)->locks_after,
3123 next->acquire_ip, distance,
3124 calc_dep(prev, next),
3125 *trace);
3126
3127 if (!ret)
3128 return 0;
3129
3130 ret = add_lock_to_list(hlock_class(prev), hlock_class(next),
3131 &hlock_class(next)->locks_before,
3132 next->acquire_ip, distance,
3133 calc_depb(prev, next),
3134 *trace);
3135 if (!ret)
3136 return 0;
3137
3138 return 2;
3139 }
3140
3141 /*
3142 * Add the dependency to all directly-previous locks that are 'relevant'.
3143 * The ones that are relevant are (in increasing distance from curr):
3144 * all consecutive trylock entries and the final non-trylock entry - or
3145 * the end of this context's lock-chain - whichever comes first.
3146 */
3147 static int
check_prevs_add(struct task_struct * curr,struct held_lock * next)3148 check_prevs_add(struct task_struct *curr, struct held_lock *next)
3149 {
3150 struct lock_trace *trace = NULL;
3151 int depth = curr->lockdep_depth;
3152 struct held_lock *hlock;
3153
3154 /*
3155 * Debugging checks.
3156 *
3157 * Depth must not be zero for a non-head lock:
3158 */
3159 if (!depth)
3160 goto out_bug;
3161 /*
3162 * At least two relevant locks must exist for this
3163 * to be a head:
3164 */
3165 if (curr->held_locks[depth].irq_context !=
3166 curr->held_locks[depth-1].irq_context)
3167 goto out_bug;
3168
3169 for (;;) {
3170 u16 distance = curr->lockdep_depth - depth + 1;
3171 hlock = curr->held_locks + depth - 1;
3172
3173 if (hlock->check) {
3174 int ret = check_prev_add(curr, hlock, next, distance, &trace);
3175 if (!ret)
3176 return 0;
3177
3178 /*
3179 * Stop after the first non-trylock entry,
3180 * as non-trylock entries have added their
3181 * own direct dependencies already, so this
3182 * lock is connected to them indirectly:
3183 */
3184 if (!hlock->trylock)
3185 break;
3186 }
3187
3188 depth--;
3189 /*
3190 * End of lock-stack?
3191 */
3192 if (!depth)
3193 break;
3194 /*
3195 * Stop the search if we cross into another context:
3196 */
3197 if (curr->held_locks[depth].irq_context !=
3198 curr->held_locks[depth-1].irq_context)
3199 break;
3200 }
3201 return 1;
3202 out_bug:
3203 if (!debug_locks_off_graph_unlock())
3204 return 0;
3205
3206 /*
3207 * Clearly we all shouldn't be here, but since we made it we
3208 * can reliable say we messed up our state. See the above two
3209 * gotos for reasons why we could possibly end up here.
3210 */
3211 WARN_ON(1);
3212
3213 return 0;
3214 }
3215
3216 struct lock_chain lock_chains[MAX_LOCKDEP_CHAINS];
3217 static DECLARE_BITMAP(lock_chains_in_use, MAX_LOCKDEP_CHAINS);
3218 static u16 chain_hlocks[MAX_LOCKDEP_CHAIN_HLOCKS];
3219 unsigned long nr_zapped_lock_chains;
3220 unsigned int nr_free_chain_hlocks; /* Free chain_hlocks in buckets */
3221 unsigned int nr_lost_chain_hlocks; /* Lost chain_hlocks */
3222 unsigned int nr_large_chain_blocks; /* size > MAX_CHAIN_BUCKETS */
3223
3224 /*
3225 * The first 2 chain_hlocks entries in the chain block in the bucket
3226 * list contains the following meta data:
3227 *
3228 * entry[0]:
3229 * Bit 15 - always set to 1 (it is not a class index)
3230 * Bits 0-14 - upper 15 bits of the next block index
3231 * entry[1] - lower 16 bits of next block index
3232 *
3233 * A next block index of all 1 bits means it is the end of the list.
3234 *
3235 * On the unsized bucket (bucket-0), the 3rd and 4th entries contain
3236 * the chain block size:
3237 *
3238 * entry[2] - upper 16 bits of the chain block size
3239 * entry[3] - lower 16 bits of the chain block size
3240 */
3241 #define MAX_CHAIN_BUCKETS 16
3242 #define CHAIN_BLK_FLAG (1U << 15)
3243 #define CHAIN_BLK_LIST_END 0xFFFFU
3244
3245 static int chain_block_buckets[MAX_CHAIN_BUCKETS];
3246
size_to_bucket(int size)3247 static inline int size_to_bucket(int size)
3248 {
3249 if (size > MAX_CHAIN_BUCKETS)
3250 return 0;
3251
3252 return size - 1;
3253 }
3254
3255 /*
3256 * Iterate all the chain blocks in a bucket.
3257 */
3258 #define for_each_chain_block(bucket, prev, curr) \
3259 for ((prev) = -1, (curr) = chain_block_buckets[bucket]; \
3260 (curr) >= 0; \
3261 (prev) = (curr), (curr) = chain_block_next(curr))
3262
3263 /*
3264 * next block or -1
3265 */
chain_block_next(int offset)3266 static inline int chain_block_next(int offset)
3267 {
3268 int next = chain_hlocks[offset];
3269
3270 WARN_ON_ONCE(!(next & CHAIN_BLK_FLAG));
3271
3272 if (next == CHAIN_BLK_LIST_END)
3273 return -1;
3274
3275 next &= ~CHAIN_BLK_FLAG;
3276 next <<= 16;
3277 next |= chain_hlocks[offset + 1];
3278
3279 return next;
3280 }
3281
3282 /*
3283 * bucket-0 only
3284 */
chain_block_size(int offset)3285 static inline int chain_block_size(int offset)
3286 {
3287 return (chain_hlocks[offset + 2] << 16) | chain_hlocks[offset + 3];
3288 }
3289
init_chain_block(int offset,int next,int bucket,int size)3290 static inline void init_chain_block(int offset, int next, int bucket, int size)
3291 {
3292 chain_hlocks[offset] = (next >> 16) | CHAIN_BLK_FLAG;
3293 chain_hlocks[offset + 1] = (u16)next;
3294
3295 if (size && !bucket) {
3296 chain_hlocks[offset + 2] = size >> 16;
3297 chain_hlocks[offset + 3] = (u16)size;
3298 }
3299 }
3300
add_chain_block(int offset,int size)3301 static inline void add_chain_block(int offset, int size)
3302 {
3303 int bucket = size_to_bucket(size);
3304 int next = chain_block_buckets[bucket];
3305 int prev, curr;
3306
3307 if (unlikely(size < 2)) {
3308 /*
3309 * We can't store single entries on the freelist. Leak them.
3310 *
3311 * One possible way out would be to uniquely mark them, other
3312 * than with CHAIN_BLK_FLAG, such that we can recover them when
3313 * the block before it is re-added.
3314 */
3315 if (size)
3316 nr_lost_chain_hlocks++;
3317 return;
3318 }
3319
3320 nr_free_chain_hlocks += size;
3321 if (!bucket) {
3322 nr_large_chain_blocks++;
3323
3324 /*
3325 * Variable sized, sort large to small.
3326 */
3327 for_each_chain_block(0, prev, curr) {
3328 if (size >= chain_block_size(curr))
3329 break;
3330 }
3331 init_chain_block(offset, curr, 0, size);
3332 if (prev < 0)
3333 chain_block_buckets[0] = offset;
3334 else
3335 init_chain_block(prev, offset, 0, 0);
3336 return;
3337 }
3338 /*
3339 * Fixed size, add to head.
3340 */
3341 init_chain_block(offset, next, bucket, size);
3342 chain_block_buckets[bucket] = offset;
3343 }
3344
3345 /*
3346 * Only the first block in the list can be deleted.
3347 *
3348 * For the variable size bucket[0], the first block (the largest one) is
3349 * returned, broken up and put back into the pool. So if a chain block of
3350 * length > MAX_CHAIN_BUCKETS is ever used and zapped, it will just be
3351 * queued up after the primordial chain block and never be used until the
3352 * hlock entries in the primordial chain block is almost used up. That
3353 * causes fragmentation and reduce allocation efficiency. That can be
3354 * monitored by looking at the "large chain blocks" number in lockdep_stats.
3355 */
del_chain_block(int bucket,int size,int next)3356 static inline void del_chain_block(int bucket, int size, int next)
3357 {
3358 nr_free_chain_hlocks -= size;
3359 chain_block_buckets[bucket] = next;
3360
3361 if (!bucket)
3362 nr_large_chain_blocks--;
3363 }
3364
init_chain_block_buckets(void)3365 static void init_chain_block_buckets(void)
3366 {
3367 int i;
3368
3369 for (i = 0; i < MAX_CHAIN_BUCKETS; i++)
3370 chain_block_buckets[i] = -1;
3371
3372 add_chain_block(0, ARRAY_SIZE(chain_hlocks));
3373 }
3374
3375 /*
3376 * Return offset of a chain block of the right size or -1 if not found.
3377 *
3378 * Fairly simple worst-fit allocator with the addition of a number of size
3379 * specific free lists.
3380 */
alloc_chain_hlocks(int req)3381 static int alloc_chain_hlocks(int req)
3382 {
3383 int bucket, curr, size;
3384
3385 /*
3386 * We rely on the MSB to act as an escape bit to denote freelist
3387 * pointers. Make sure this bit isn't set in 'normal' class_idx usage.
3388 */
3389 BUILD_BUG_ON((MAX_LOCKDEP_KEYS-1) & CHAIN_BLK_FLAG);
3390
3391 init_data_structures_once();
3392
3393 if (nr_free_chain_hlocks < req)
3394 return -1;
3395
3396 /*
3397 * We require a minimum of 2 (u16) entries to encode a freelist
3398 * 'pointer'.
3399 */
3400 req = max(req, 2);
3401 bucket = size_to_bucket(req);
3402 curr = chain_block_buckets[bucket];
3403
3404 if (bucket) {
3405 if (curr >= 0) {
3406 del_chain_block(bucket, req, chain_block_next(curr));
3407 return curr;
3408 }
3409 /* Try bucket 0 */
3410 curr = chain_block_buckets[0];
3411 }
3412
3413 /*
3414 * The variable sized freelist is sorted by size; the first entry is
3415 * the largest. Use it if it fits.
3416 */
3417 if (curr >= 0) {
3418 size = chain_block_size(curr);
3419 if (likely(size >= req)) {
3420 del_chain_block(0, size, chain_block_next(curr));
3421 add_chain_block(curr + req, size - req);
3422 return curr;
3423 }
3424 }
3425
3426 /*
3427 * Last resort, split a block in a larger sized bucket.
3428 */
3429 for (size = MAX_CHAIN_BUCKETS; size > req; size--) {
3430 bucket = size_to_bucket(size);
3431 curr = chain_block_buckets[bucket];
3432 if (curr < 0)
3433 continue;
3434
3435 del_chain_block(bucket, size, chain_block_next(curr));
3436 add_chain_block(curr + req, size - req);
3437 return curr;
3438 }
3439
3440 return -1;
3441 }
3442
free_chain_hlocks(int base,int size)3443 static inline void free_chain_hlocks(int base, int size)
3444 {
3445 add_chain_block(base, max(size, 2));
3446 }
3447
lock_chain_get_class(struct lock_chain * chain,int i)3448 struct lock_class *lock_chain_get_class(struct lock_chain *chain, int i)
3449 {
3450 u16 chain_hlock = chain_hlocks[chain->base + i];
3451 unsigned int class_idx = chain_hlock_class_idx(chain_hlock);
3452
3453 return lock_classes + class_idx - 1;
3454 }
3455
3456 /*
3457 * Returns the index of the first held_lock of the current chain
3458 */
get_first_held_lock(struct task_struct * curr,struct held_lock * hlock)3459 static inline int get_first_held_lock(struct task_struct *curr,
3460 struct held_lock *hlock)
3461 {
3462 int i;
3463 struct held_lock *hlock_curr;
3464
3465 for (i = curr->lockdep_depth - 1; i >= 0; i--) {
3466 hlock_curr = curr->held_locks + i;
3467 if (hlock_curr->irq_context != hlock->irq_context)
3468 break;
3469
3470 }
3471
3472 return ++i;
3473 }
3474
3475 #ifdef CONFIG_DEBUG_LOCKDEP
3476 /*
3477 * Returns the next chain_key iteration
3478 */
print_chain_key_iteration(u16 hlock_id,u64 chain_key)3479 static u64 print_chain_key_iteration(u16 hlock_id, u64 chain_key)
3480 {
3481 u64 new_chain_key = iterate_chain_key(chain_key, hlock_id);
3482
3483 printk(" hlock_id:%d -> chain_key:%016Lx",
3484 (unsigned int)hlock_id,
3485 (unsigned long long)new_chain_key);
3486 return new_chain_key;
3487 }
3488
3489 static void
print_chain_keys_held_locks(struct task_struct * curr,struct held_lock * hlock_next)3490 print_chain_keys_held_locks(struct task_struct *curr, struct held_lock *hlock_next)
3491 {
3492 struct held_lock *hlock;
3493 u64 chain_key = INITIAL_CHAIN_KEY;
3494 int depth = curr->lockdep_depth;
3495 int i = get_first_held_lock(curr, hlock_next);
3496
3497 printk("depth: %u (irq_context %u)\n", depth - i + 1,
3498 hlock_next->irq_context);
3499 for (; i < depth; i++) {
3500 hlock = curr->held_locks + i;
3501 chain_key = print_chain_key_iteration(hlock_id(hlock), chain_key);
3502
3503 print_lock(hlock);
3504 }
3505
3506 print_chain_key_iteration(hlock_id(hlock_next), chain_key);
3507 print_lock(hlock_next);
3508 }
3509
print_chain_keys_chain(struct lock_chain * chain)3510 static void print_chain_keys_chain(struct lock_chain *chain)
3511 {
3512 int i;
3513 u64 chain_key = INITIAL_CHAIN_KEY;
3514 u16 hlock_id;
3515
3516 printk("depth: %u\n", chain->depth);
3517 for (i = 0; i < chain->depth; i++) {
3518 hlock_id = chain_hlocks[chain->base + i];
3519 chain_key = print_chain_key_iteration(hlock_id, chain_key);
3520
3521 print_lock_name(lock_classes + chain_hlock_class_idx(hlock_id) - 1);
3522 printk("\n");
3523 }
3524 }
3525
print_collision(struct task_struct * curr,struct held_lock * hlock_next,struct lock_chain * chain)3526 static void print_collision(struct task_struct *curr,
3527 struct held_lock *hlock_next,
3528 struct lock_chain *chain)
3529 {
3530 pr_warn("\n");
3531 pr_warn("============================\n");
3532 pr_warn("WARNING: chain_key collision\n");
3533 print_kernel_ident();
3534 pr_warn("----------------------------\n");
3535 pr_warn("%s/%d: ", current->comm, task_pid_nr(current));
3536 pr_warn("Hash chain already cached but the contents don't match!\n");
3537
3538 pr_warn("Held locks:");
3539 print_chain_keys_held_locks(curr, hlock_next);
3540
3541 pr_warn("Locks in cached chain:");
3542 print_chain_keys_chain(chain);
3543
3544 pr_warn("\nstack backtrace:\n");
3545 dump_stack();
3546 }
3547 #endif
3548
3549 /*
3550 * Checks whether the chain and the current held locks are consistent
3551 * in depth and also in content. If they are not it most likely means
3552 * that there was a collision during the calculation of the chain_key.
3553 * Returns: 0 not passed, 1 passed
3554 */
check_no_collision(struct task_struct * curr,struct held_lock * hlock,struct lock_chain * chain)3555 static int check_no_collision(struct task_struct *curr,
3556 struct held_lock *hlock,
3557 struct lock_chain *chain)
3558 {
3559 #ifdef CONFIG_DEBUG_LOCKDEP
3560 int i, j, id;
3561
3562 i = get_first_held_lock(curr, hlock);
3563
3564 if (DEBUG_LOCKS_WARN_ON(chain->depth != curr->lockdep_depth - (i - 1))) {
3565 print_collision(curr, hlock, chain);
3566 return 0;
3567 }
3568
3569 for (j = 0; j < chain->depth - 1; j++, i++) {
3570 id = hlock_id(&curr->held_locks[i]);
3571
3572 if (DEBUG_LOCKS_WARN_ON(chain_hlocks[chain->base + j] != id)) {
3573 print_collision(curr, hlock, chain);
3574 return 0;
3575 }
3576 }
3577 #endif
3578 return 1;
3579 }
3580
3581 /*
3582 * Given an index that is >= -1, return the index of the next lock chain.
3583 * Return -2 if there is no next lock chain.
3584 */
lockdep_next_lockchain(long i)3585 long lockdep_next_lockchain(long i)
3586 {
3587 i = find_next_bit(lock_chains_in_use, ARRAY_SIZE(lock_chains), i + 1);
3588 return i < ARRAY_SIZE(lock_chains) ? i : -2;
3589 }
3590
lock_chain_count(void)3591 unsigned long lock_chain_count(void)
3592 {
3593 return bitmap_weight(lock_chains_in_use, ARRAY_SIZE(lock_chains));
3594 }
3595
3596 /* Must be called with the graph lock held. */
alloc_lock_chain(void)3597 static struct lock_chain *alloc_lock_chain(void)
3598 {
3599 int idx = find_first_zero_bit(lock_chains_in_use,
3600 ARRAY_SIZE(lock_chains));
3601
3602 if (unlikely(idx >= ARRAY_SIZE(lock_chains)))
3603 return NULL;
3604 __set_bit(idx, lock_chains_in_use);
3605 return lock_chains + idx;
3606 }
3607
3608 /*
3609 * Adds a dependency chain into chain hashtable. And must be called with
3610 * graph_lock held.
3611 *
3612 * Return 0 if fail, and graph_lock is released.
3613 * Return 1 if succeed, with graph_lock held.
3614 */
add_chain_cache(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3615 static inline int add_chain_cache(struct task_struct *curr,
3616 struct held_lock *hlock,
3617 u64 chain_key)
3618 {
3619 struct hlist_head *hash_head = chainhashentry(chain_key);
3620 struct lock_chain *chain;
3621 int i, j;
3622
3623 /*
3624 * The caller must hold the graph lock, ensure we've got IRQs
3625 * disabled to make this an IRQ-safe lock.. for recursion reasons
3626 * lockdep won't complain about its own locking errors.
3627 */
3628 if (lockdep_assert_locked())
3629 return 0;
3630
3631 chain = alloc_lock_chain();
3632 if (!chain) {
3633 if (!debug_locks_off_graph_unlock())
3634 return 0;
3635
3636 print_lockdep_off("BUG: MAX_LOCKDEP_CHAINS too low!");
3637 dump_stack();
3638 return 0;
3639 }
3640 chain->chain_key = chain_key;
3641 chain->irq_context = hlock->irq_context;
3642 i = get_first_held_lock(curr, hlock);
3643 chain->depth = curr->lockdep_depth + 1 - i;
3644
3645 BUILD_BUG_ON((1UL << 24) <= ARRAY_SIZE(chain_hlocks));
3646 BUILD_BUG_ON((1UL << 6) <= ARRAY_SIZE(curr->held_locks));
3647 BUILD_BUG_ON((1UL << 8*sizeof(chain_hlocks[0])) <= ARRAY_SIZE(lock_classes));
3648
3649 j = alloc_chain_hlocks(chain->depth);
3650 if (j < 0) {
3651 if (!debug_locks_off_graph_unlock())
3652 return 0;
3653
3654 print_lockdep_off("BUG: MAX_LOCKDEP_CHAIN_HLOCKS too low!");
3655 dump_stack();
3656 return 0;
3657 }
3658
3659 chain->base = j;
3660 for (j = 0; j < chain->depth - 1; j++, i++) {
3661 int lock_id = hlock_id(curr->held_locks + i);
3662
3663 chain_hlocks[chain->base + j] = lock_id;
3664 }
3665 chain_hlocks[chain->base + j] = hlock_id(hlock);
3666 hlist_add_head_rcu(&chain->entry, hash_head);
3667 debug_atomic_inc(chain_lookup_misses);
3668 inc_chains(chain->irq_context);
3669
3670 return 1;
3671 }
3672
3673 /*
3674 * Look up a dependency chain. Must be called with either the graph lock or
3675 * the RCU read lock held.
3676 */
lookup_chain_cache(u64 chain_key)3677 static inline struct lock_chain *lookup_chain_cache(u64 chain_key)
3678 {
3679 struct hlist_head *hash_head = chainhashentry(chain_key);
3680 struct lock_chain *chain;
3681
3682 hlist_for_each_entry_rcu(chain, hash_head, entry) {
3683 if (READ_ONCE(chain->chain_key) == chain_key) {
3684 debug_atomic_inc(chain_lookup_hits);
3685 return chain;
3686 }
3687 }
3688 return NULL;
3689 }
3690
3691 /*
3692 * If the key is not present yet in dependency chain cache then
3693 * add it and return 1 - in this case the new dependency chain is
3694 * validated. If the key is already hashed, return 0.
3695 * (On return with 1 graph_lock is held.)
3696 */
lookup_chain_cache_add(struct task_struct * curr,struct held_lock * hlock,u64 chain_key)3697 static inline int lookup_chain_cache_add(struct task_struct *curr,
3698 struct held_lock *hlock,
3699 u64 chain_key)
3700 {
3701 struct lock_class *class = hlock_class(hlock);
3702 struct lock_chain *chain = lookup_chain_cache(chain_key);
3703
3704 if (chain) {
3705 cache_hit:
3706 if (!check_no_collision(curr, hlock, chain))
3707 return 0;
3708
3709 if (very_verbose(class)) {
3710 printk("\nhash chain already cached, key: "
3711 "%016Lx tail class: [%px] %s\n",
3712 (unsigned long long)chain_key,
3713 class->key, class->name);
3714 }
3715
3716 return 0;
3717 }
3718
3719 if (very_verbose(class)) {
3720 printk("\nnew hash chain, key: %016Lx tail class: [%px] %s\n",
3721 (unsigned long long)chain_key, class->key, class->name);
3722 }
3723
3724 if (!graph_lock())
3725 return 0;
3726
3727 /*
3728 * We have to walk the chain again locked - to avoid duplicates:
3729 */
3730 chain = lookup_chain_cache(chain_key);
3731 if (chain) {
3732 graph_unlock();
3733 goto cache_hit;
3734 }
3735
3736 if (!add_chain_cache(curr, hlock, chain_key))
3737 return 0;
3738
3739 return 1;
3740 }
3741
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3742 static int validate_chain(struct task_struct *curr,
3743 struct held_lock *hlock,
3744 int chain_head, u64 chain_key)
3745 {
3746 /*
3747 * Trylock needs to maintain the stack of held locks, but it
3748 * does not add new dependencies, because trylock can be done
3749 * in any order.
3750 *
3751 * We look up the chain_key and do the O(N^2) check and update of
3752 * the dependencies only if this is a new dependency chain.
3753 * (If lookup_chain_cache_add() return with 1 it acquires
3754 * graph_lock for us)
3755 */
3756 if (!hlock->trylock && hlock->check &&
3757 lookup_chain_cache_add(curr, hlock, chain_key)) {
3758 /*
3759 * Check whether last held lock:
3760 *
3761 * - is irq-safe, if this lock is irq-unsafe
3762 * - is softirq-safe, if this lock is hardirq-unsafe
3763 *
3764 * And check whether the new lock's dependency graph
3765 * could lead back to the previous lock:
3766 *
3767 * - within the current held-lock stack
3768 * - across our accumulated lock dependency records
3769 *
3770 * any of these scenarios could lead to a deadlock.
3771 */
3772 /*
3773 * The simple case: does the current hold the same lock
3774 * already?
3775 */
3776 int ret = check_deadlock(curr, hlock);
3777
3778 if (!ret)
3779 return 0;
3780 /*
3781 * Add dependency only if this lock is not the head
3782 * of the chain, and if the new lock introduces no more
3783 * lock dependency (because we already hold a lock with the
3784 * same lock class) nor deadlock (because the nest_lock
3785 * serializes nesting locks), see the comments for
3786 * check_deadlock().
3787 */
3788 if (!chain_head && ret != 2) {
3789 if (!check_prevs_add(curr, hlock))
3790 return 0;
3791 }
3792
3793 graph_unlock();
3794 } else {
3795 /* after lookup_chain_cache_add(): */
3796 if (unlikely(!debug_locks))
3797 return 0;
3798 }
3799
3800 return 1;
3801 }
3802 #else
validate_chain(struct task_struct * curr,struct held_lock * hlock,int chain_head,u64 chain_key)3803 static inline int validate_chain(struct task_struct *curr,
3804 struct held_lock *hlock,
3805 int chain_head, u64 chain_key)
3806 {
3807 return 1;
3808 }
3809
init_chain_block_buckets(void)3810 static void init_chain_block_buckets(void) { }
3811 #endif /* CONFIG_PROVE_LOCKING */
3812
3813 /*
3814 * We are building curr_chain_key incrementally, so double-check
3815 * it from scratch, to make sure that it's done correctly:
3816 */
check_chain_key(struct task_struct * curr)3817 static void check_chain_key(struct task_struct *curr)
3818 {
3819 #ifdef CONFIG_DEBUG_LOCKDEP
3820 struct held_lock *hlock, *prev_hlock = NULL;
3821 unsigned int i;
3822 u64 chain_key = INITIAL_CHAIN_KEY;
3823
3824 for (i = 0; i < curr->lockdep_depth; i++) {
3825 hlock = curr->held_locks + i;
3826 if (chain_key != hlock->prev_chain_key) {
3827 debug_locks_off();
3828 /*
3829 * We got mighty confused, our chain keys don't match
3830 * with what we expect, someone trample on our task state?
3831 */
3832 WARN(1, "hm#1, depth: %u [%u], %016Lx != %016Lx\n",
3833 curr->lockdep_depth, i,
3834 (unsigned long long)chain_key,
3835 (unsigned long long)hlock->prev_chain_key);
3836 return;
3837 }
3838
3839 /*
3840 * hlock->class_idx can't go beyond MAX_LOCKDEP_KEYS, but is
3841 * it registered lock class index?
3842 */
3843 if (DEBUG_LOCKS_WARN_ON(!test_bit(hlock->class_idx, lock_classes_in_use)))
3844 return;
3845
3846 if (prev_hlock && (prev_hlock->irq_context !=
3847 hlock->irq_context))
3848 chain_key = INITIAL_CHAIN_KEY;
3849 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
3850 prev_hlock = hlock;
3851 }
3852 if (chain_key != curr->curr_chain_key) {
3853 debug_locks_off();
3854 /*
3855 * More smoking hash instead of calculating it, damn see these
3856 * numbers float.. I bet that a pink elephant stepped on my memory.
3857 */
3858 WARN(1, "hm#2, depth: %u [%u], %016Lx != %016Lx\n",
3859 curr->lockdep_depth, i,
3860 (unsigned long long)chain_key,
3861 (unsigned long long)curr->curr_chain_key);
3862 }
3863 #endif
3864 }
3865
3866 #ifdef CONFIG_PROVE_LOCKING
3867 static int mark_lock(struct task_struct *curr, struct held_lock *this,
3868 enum lock_usage_bit new_bit);
3869
print_usage_bug_scenario(struct held_lock * lock)3870 static void print_usage_bug_scenario(struct held_lock *lock)
3871 {
3872 struct lock_class *class = hlock_class(lock);
3873
3874 printk(" Possible unsafe locking scenario:\n\n");
3875 printk(" CPU0\n");
3876 printk(" ----\n");
3877 printk(" lock(");
3878 __print_lock_name(class);
3879 printk(KERN_CONT ");\n");
3880 printk(" <Interrupt>\n");
3881 printk(" lock(");
3882 __print_lock_name(class);
3883 printk(KERN_CONT ");\n");
3884 printk("\n *** DEADLOCK ***\n\n");
3885 }
3886
3887 static void
print_usage_bug(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit prev_bit,enum lock_usage_bit new_bit)3888 print_usage_bug(struct task_struct *curr, struct held_lock *this,
3889 enum lock_usage_bit prev_bit, enum lock_usage_bit new_bit)
3890 {
3891 if (!debug_locks_off() || debug_locks_silent)
3892 return;
3893
3894 pr_warn("\n");
3895 pr_warn("================================\n");
3896 pr_warn("WARNING: inconsistent lock state\n");
3897 print_kernel_ident();
3898 pr_warn("--------------------------------\n");
3899
3900 pr_warn("inconsistent {%s} -> {%s} usage.\n",
3901 usage_str[prev_bit], usage_str[new_bit]);
3902
3903 pr_warn("%s/%d [HC%u[%lu]:SC%u[%lu]:HE%u:SE%u] takes:\n",
3904 curr->comm, task_pid_nr(curr),
3905 lockdep_hardirq_context(), hardirq_count() >> HARDIRQ_SHIFT,
3906 lockdep_softirq_context(curr), softirq_count() >> SOFTIRQ_SHIFT,
3907 lockdep_hardirqs_enabled(),
3908 lockdep_softirqs_enabled(curr));
3909 print_lock(this);
3910
3911 pr_warn("{%s} state was registered at:\n", usage_str[prev_bit]);
3912 print_lock_trace(hlock_class(this)->usage_traces[prev_bit], 1);
3913
3914 print_irqtrace_events(curr);
3915 pr_warn("\nother info that might help us debug this:\n");
3916 print_usage_bug_scenario(this);
3917
3918 lockdep_print_held_locks(curr);
3919
3920 pr_warn("\nstack backtrace:\n");
3921 dump_stack();
3922 }
3923
3924 /*
3925 * Print out an error if an invalid bit is set:
3926 */
3927 static inline int
valid_state(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit,enum lock_usage_bit bad_bit)3928 valid_state(struct task_struct *curr, struct held_lock *this,
3929 enum lock_usage_bit new_bit, enum lock_usage_bit bad_bit)
3930 {
3931 if (unlikely(hlock_class(this)->usage_mask & (1 << bad_bit))) {
3932 graph_unlock();
3933 print_usage_bug(curr, this, bad_bit, new_bit);
3934 return 0;
3935 }
3936 return 1;
3937 }
3938
3939
3940 /*
3941 * print irq inversion bug:
3942 */
3943 static void
print_irq_inversion_bug(struct task_struct * curr,struct lock_list * root,struct lock_list * other,struct held_lock * this,int forwards,const char * irqclass)3944 print_irq_inversion_bug(struct task_struct *curr,
3945 struct lock_list *root, struct lock_list *other,
3946 struct held_lock *this, int forwards,
3947 const char *irqclass)
3948 {
3949 struct lock_list *entry = other;
3950 struct lock_list *middle = NULL;
3951 int depth;
3952
3953 if (!debug_locks_off_graph_unlock() || debug_locks_silent)
3954 return;
3955
3956 pr_warn("\n");
3957 pr_warn("========================================================\n");
3958 pr_warn("WARNING: possible irq lock inversion dependency detected\n");
3959 print_kernel_ident();
3960 pr_warn("--------------------------------------------------------\n");
3961 pr_warn("%s/%d just changed the state of lock:\n",
3962 curr->comm, task_pid_nr(curr));
3963 print_lock(this);
3964 if (forwards)
3965 pr_warn("but this lock took another, %s-unsafe lock in the past:\n", irqclass);
3966 else
3967 pr_warn("but this lock was taken by another, %s-safe lock in the past:\n", irqclass);
3968 print_lock_name(other->class);
3969 pr_warn("\n\nand interrupts could create inverse lock ordering between them.\n\n");
3970
3971 pr_warn("\nother info that might help us debug this:\n");
3972
3973 /* Find a middle lock (if one exists) */
3974 depth = get_lock_depth(other);
3975 do {
3976 if (depth == 0 && (entry != root)) {
3977 pr_warn("lockdep:%s bad path found in chain graph\n", __func__);
3978 break;
3979 }
3980 middle = entry;
3981 entry = get_lock_parent(entry);
3982 depth--;
3983 } while (entry && entry != root && (depth >= 0));
3984 if (forwards)
3985 print_irq_lock_scenario(root, other,
3986 middle ? middle->class : root->class, other->class);
3987 else
3988 print_irq_lock_scenario(other, root,
3989 middle ? middle->class : other->class, root->class);
3990
3991 lockdep_print_held_locks(curr);
3992
3993 pr_warn("\nthe shortest dependencies between 2nd lock and 1st lock:\n");
3994 root->trace = save_trace();
3995 if (!root->trace)
3996 return;
3997 print_shortest_lock_dependencies(other, root);
3998
3999 pr_warn("\nstack backtrace:\n");
4000 dump_stack();
4001 }
4002
4003 /*
4004 * Prove that in the forwards-direction subgraph starting at <this>
4005 * there is no lock matching <mask>:
4006 */
4007 static int
check_usage_forwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4008 check_usage_forwards(struct task_struct *curr, struct held_lock *this,
4009 enum lock_usage_bit bit)
4010 {
4011 enum bfs_result ret;
4012 struct lock_list root;
4013 struct lock_list *target_entry;
4014 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4015 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4016
4017 bfs_init_root(&root, this);
4018 ret = find_usage_forwards(&root, usage_mask, &target_entry);
4019 if (bfs_error(ret)) {
4020 print_bfs_bug(ret);
4021 return 0;
4022 }
4023 if (ret == BFS_RNOMATCH)
4024 return 1;
4025
4026 /* Check whether write or read usage is the match */
4027 if (target_entry->class->usage_mask & lock_flag(bit)) {
4028 print_irq_inversion_bug(curr, &root, target_entry,
4029 this, 1, state_name(bit));
4030 } else {
4031 print_irq_inversion_bug(curr, &root, target_entry,
4032 this, 1, state_name(read_bit));
4033 }
4034
4035 return 0;
4036 }
4037
4038 /*
4039 * Prove that in the backwards-direction subgraph starting at <this>
4040 * there is no lock matching <mask>:
4041 */
4042 static int
check_usage_backwards(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit bit)4043 check_usage_backwards(struct task_struct *curr, struct held_lock *this,
4044 enum lock_usage_bit bit)
4045 {
4046 enum bfs_result ret;
4047 struct lock_list root;
4048 struct lock_list *target_entry;
4049 enum lock_usage_bit read_bit = bit + LOCK_USAGE_READ_MASK;
4050 unsigned usage_mask = lock_flag(bit) | lock_flag(read_bit);
4051
4052 bfs_init_rootb(&root, this);
4053 ret = find_usage_backwards(&root, usage_mask, &target_entry);
4054 if (bfs_error(ret)) {
4055 print_bfs_bug(ret);
4056 return 0;
4057 }
4058 if (ret == BFS_RNOMATCH)
4059 return 1;
4060
4061 /* Check whether write or read usage is the match */
4062 if (target_entry->class->usage_mask & lock_flag(bit)) {
4063 print_irq_inversion_bug(curr, &root, target_entry,
4064 this, 0, state_name(bit));
4065 } else {
4066 print_irq_inversion_bug(curr, &root, target_entry,
4067 this, 0, state_name(read_bit));
4068 }
4069
4070 return 0;
4071 }
4072
print_irqtrace_events(struct task_struct * curr)4073 void print_irqtrace_events(struct task_struct *curr)
4074 {
4075 const struct irqtrace_events *trace = &curr->irqtrace;
4076
4077 printk("irq event stamp: %u\n", trace->irq_events);
4078 printk("hardirqs last enabled at (%u): [<%px>] %pS\n",
4079 trace->hardirq_enable_event, (void *)trace->hardirq_enable_ip,
4080 (void *)trace->hardirq_enable_ip);
4081 printk("hardirqs last disabled at (%u): [<%px>] %pS\n",
4082 trace->hardirq_disable_event, (void *)trace->hardirq_disable_ip,
4083 (void *)trace->hardirq_disable_ip);
4084 printk("softirqs last enabled at (%u): [<%px>] %pS\n",
4085 trace->softirq_enable_event, (void *)trace->softirq_enable_ip,
4086 (void *)trace->softirq_enable_ip);
4087 printk("softirqs last disabled at (%u): [<%px>] %pS\n",
4088 trace->softirq_disable_event, (void *)trace->softirq_disable_ip,
4089 (void *)trace->softirq_disable_ip);
4090 }
4091
HARDIRQ_verbose(struct lock_class * class)4092 static int HARDIRQ_verbose(struct lock_class *class)
4093 {
4094 #if HARDIRQ_VERBOSE
4095 return class_filter(class);
4096 #endif
4097 return 0;
4098 }
4099
SOFTIRQ_verbose(struct lock_class * class)4100 static int SOFTIRQ_verbose(struct lock_class *class)
4101 {
4102 #if SOFTIRQ_VERBOSE
4103 return class_filter(class);
4104 #endif
4105 return 0;
4106 }
4107
4108 static int (*state_verbose_f[])(struct lock_class *class) = {
4109 #define LOCKDEP_STATE(__STATE) \
4110 __STATE##_verbose,
4111 #include "lockdep_states.h"
4112 #undef LOCKDEP_STATE
4113 };
4114
state_verbose(enum lock_usage_bit bit,struct lock_class * class)4115 static inline int state_verbose(enum lock_usage_bit bit,
4116 struct lock_class *class)
4117 {
4118 return state_verbose_f[bit >> LOCK_USAGE_DIR_MASK](class);
4119 }
4120
4121 typedef int (*check_usage_f)(struct task_struct *, struct held_lock *,
4122 enum lock_usage_bit bit, const char *name);
4123
4124 static int
mark_lock_irq(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4125 mark_lock_irq(struct task_struct *curr, struct held_lock *this,
4126 enum lock_usage_bit new_bit)
4127 {
4128 int excl_bit = exclusive_bit(new_bit);
4129 int read = new_bit & LOCK_USAGE_READ_MASK;
4130 int dir = new_bit & LOCK_USAGE_DIR_MASK;
4131
4132 /*
4133 * Validate that this particular lock does not have conflicting
4134 * usage states.
4135 */
4136 if (!valid_state(curr, this, new_bit, excl_bit))
4137 return 0;
4138
4139 /*
4140 * Check for read in write conflicts
4141 */
4142 if (!read && !valid_state(curr, this, new_bit,
4143 excl_bit + LOCK_USAGE_READ_MASK))
4144 return 0;
4145
4146
4147 /*
4148 * Validate that the lock dependencies don't have conflicting usage
4149 * states.
4150 */
4151 if (dir) {
4152 /*
4153 * mark ENABLED has to look backwards -- to ensure no dependee
4154 * has USED_IN state, which, again, would allow recursion deadlocks.
4155 */
4156 if (!check_usage_backwards(curr, this, excl_bit))
4157 return 0;
4158 } else {
4159 /*
4160 * mark USED_IN has to look forwards -- to ensure no dependency
4161 * has ENABLED state, which would allow recursion deadlocks.
4162 */
4163 if (!check_usage_forwards(curr, this, excl_bit))
4164 return 0;
4165 }
4166
4167 if (state_verbose(new_bit, hlock_class(this)))
4168 return 2;
4169
4170 return 1;
4171 }
4172
4173 /*
4174 * Mark all held locks with a usage bit:
4175 */
4176 static int
mark_held_locks(struct task_struct * curr,enum lock_usage_bit base_bit)4177 mark_held_locks(struct task_struct *curr, enum lock_usage_bit base_bit)
4178 {
4179 struct held_lock *hlock;
4180 int i;
4181
4182 for (i = 0; i < curr->lockdep_depth; i++) {
4183 enum lock_usage_bit hlock_bit = base_bit;
4184 hlock = curr->held_locks + i;
4185
4186 if (hlock->read)
4187 hlock_bit += LOCK_USAGE_READ_MASK;
4188
4189 BUG_ON(hlock_bit >= LOCK_USAGE_STATES);
4190
4191 if (!hlock->check)
4192 continue;
4193
4194 if (!mark_lock(curr, hlock, hlock_bit))
4195 return 0;
4196 }
4197
4198 return 1;
4199 }
4200
4201 /*
4202 * Hardirqs will be enabled:
4203 */
__trace_hardirqs_on_caller(void)4204 static void __trace_hardirqs_on_caller(void)
4205 {
4206 struct task_struct *curr = current;
4207
4208 /*
4209 * We are going to turn hardirqs on, so set the
4210 * usage bit for all held locks:
4211 */
4212 if (!mark_held_locks(curr, LOCK_ENABLED_HARDIRQ))
4213 return;
4214 /*
4215 * If we have softirqs enabled, then set the usage
4216 * bit for all held locks. (disabled hardirqs prevented
4217 * this bit from being set before)
4218 */
4219 if (curr->softirqs_enabled)
4220 mark_held_locks(curr, LOCK_ENABLED_SOFTIRQ);
4221 }
4222
4223 /**
4224 * lockdep_hardirqs_on_prepare - Prepare for enabling interrupts
4225 * @ip: Caller address
4226 *
4227 * Invoked before a possible transition to RCU idle from exit to user or
4228 * guest mode. This ensures that all RCU operations are done before RCU
4229 * stops watching. After the RCU transition lockdep_hardirqs_on() has to be
4230 * invoked to set the final state.
4231 */
lockdep_hardirqs_on_prepare(unsigned long ip)4232 void lockdep_hardirqs_on_prepare(unsigned long ip)
4233 {
4234 if (unlikely(!debug_locks))
4235 return;
4236
4237 /*
4238 * NMIs do not (and cannot) track lock dependencies, nothing to do.
4239 */
4240 if (unlikely(in_nmi()))
4241 return;
4242
4243 if (unlikely(this_cpu_read(lockdep_recursion)))
4244 return;
4245
4246 if (unlikely(lockdep_hardirqs_enabled())) {
4247 /*
4248 * Neither irq nor preemption are disabled here
4249 * so this is racy by nature but losing one hit
4250 * in a stat is not a big deal.
4251 */
4252 __debug_atomic_inc(redundant_hardirqs_on);
4253 return;
4254 }
4255
4256 /*
4257 * We're enabling irqs and according to our state above irqs weren't
4258 * already enabled, yet we find the hardware thinks they are in fact
4259 * enabled.. someone messed up their IRQ state tracing.
4260 */
4261 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4262 return;
4263
4264 /*
4265 * See the fine text that goes along with this variable definition.
4266 */
4267 if (DEBUG_LOCKS_WARN_ON(early_boot_irqs_disabled))
4268 return;
4269
4270 /*
4271 * Can't allow enabling interrupts while in an interrupt handler,
4272 * that's general bad form and such. Recursion, limited stack etc..
4273 */
4274 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirq_context()))
4275 return;
4276
4277 current->hardirq_chain_key = current->curr_chain_key;
4278
4279 lockdep_recursion_inc();
4280 __trace_hardirqs_on_caller();
4281 lockdep_recursion_finish();
4282 }
4283 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on_prepare);
4284
lockdep_hardirqs_on(unsigned long ip)4285 void noinstr lockdep_hardirqs_on(unsigned long ip)
4286 {
4287 struct irqtrace_events *trace = ¤t->irqtrace;
4288
4289 if (unlikely(!debug_locks))
4290 return;
4291
4292 /*
4293 * NMIs can happen in the middle of local_irq_{en,dis}able() where the
4294 * tracking state and hardware state are out of sync.
4295 *
4296 * NMIs must save lockdep_hardirqs_enabled() to restore IRQ state from,
4297 * and not rely on hardware state like normal interrupts.
4298 */
4299 if (unlikely(in_nmi())) {
4300 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4301 return;
4302
4303 /*
4304 * Skip:
4305 * - recursion check, because NMI can hit lockdep;
4306 * - hardware state check, because above;
4307 * - chain_key check, see lockdep_hardirqs_on_prepare().
4308 */
4309 goto skip_checks;
4310 }
4311
4312 if (unlikely(this_cpu_read(lockdep_recursion)))
4313 return;
4314
4315 if (lockdep_hardirqs_enabled()) {
4316 /*
4317 * Neither irq nor preemption are disabled here
4318 * so this is racy by nature but losing one hit
4319 * in a stat is not a big deal.
4320 */
4321 __debug_atomic_inc(redundant_hardirqs_on);
4322 return;
4323 }
4324
4325 /*
4326 * We're enabling irqs and according to our state above irqs weren't
4327 * already enabled, yet we find the hardware thinks they are in fact
4328 * enabled.. someone messed up their IRQ state tracing.
4329 */
4330 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4331 return;
4332
4333 /*
4334 * Ensure the lock stack remained unchanged between
4335 * lockdep_hardirqs_on_prepare() and lockdep_hardirqs_on().
4336 */
4337 DEBUG_LOCKS_WARN_ON(current->hardirq_chain_key !=
4338 current->curr_chain_key);
4339
4340 skip_checks:
4341 /* we'll do an OFF -> ON transition: */
4342 __this_cpu_write(hardirqs_enabled, 1);
4343 trace->hardirq_enable_ip = ip;
4344 trace->hardirq_enable_event = ++trace->irq_events;
4345 debug_atomic_inc(hardirqs_on_events);
4346 }
4347 EXPORT_SYMBOL_GPL(lockdep_hardirqs_on);
4348
4349 /*
4350 * Hardirqs were disabled:
4351 */
lockdep_hardirqs_off(unsigned long ip)4352 void noinstr lockdep_hardirqs_off(unsigned long ip)
4353 {
4354 if (unlikely(!debug_locks))
4355 return;
4356
4357 /*
4358 * Matching lockdep_hardirqs_on(), allow NMIs in the middle of lockdep;
4359 * they will restore the software state. This ensures the software
4360 * state is consistent inside NMIs as well.
4361 */
4362 if (in_nmi()) {
4363 if (!IS_ENABLED(CONFIG_TRACE_IRQFLAGS_NMI))
4364 return;
4365 } else if (__this_cpu_read(lockdep_recursion))
4366 return;
4367
4368 /*
4369 * So we're supposed to get called after you mask local IRQs, but for
4370 * some reason the hardware doesn't quite think you did a proper job.
4371 */
4372 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4373 return;
4374
4375 if (lockdep_hardirqs_enabled()) {
4376 struct irqtrace_events *trace = ¤t->irqtrace;
4377
4378 /*
4379 * We have done an ON -> OFF transition:
4380 */
4381 __this_cpu_write(hardirqs_enabled, 0);
4382 trace->hardirq_disable_ip = ip;
4383 trace->hardirq_disable_event = ++trace->irq_events;
4384 debug_atomic_inc(hardirqs_off_events);
4385 } else {
4386 debug_atomic_inc(redundant_hardirqs_off);
4387 }
4388 }
4389 EXPORT_SYMBOL_GPL(lockdep_hardirqs_off);
4390
4391 /*
4392 * Softirqs will be enabled:
4393 */
lockdep_softirqs_on(unsigned long ip)4394 void lockdep_softirqs_on(unsigned long ip)
4395 {
4396 struct irqtrace_events *trace = ¤t->irqtrace;
4397
4398 if (unlikely(!lockdep_enabled()))
4399 return;
4400
4401 /*
4402 * We fancy IRQs being disabled here, see softirq.c, avoids
4403 * funny state and nesting things.
4404 */
4405 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4406 return;
4407
4408 if (current->softirqs_enabled) {
4409 debug_atomic_inc(redundant_softirqs_on);
4410 return;
4411 }
4412
4413 lockdep_recursion_inc();
4414 /*
4415 * We'll do an OFF -> ON transition:
4416 */
4417 current->softirqs_enabled = 1;
4418 trace->softirq_enable_ip = ip;
4419 trace->softirq_enable_event = ++trace->irq_events;
4420 debug_atomic_inc(softirqs_on_events);
4421 /*
4422 * We are going to turn softirqs on, so set the
4423 * usage bit for all held locks, if hardirqs are
4424 * enabled too:
4425 */
4426 if (lockdep_hardirqs_enabled())
4427 mark_held_locks(current, LOCK_ENABLED_SOFTIRQ);
4428 lockdep_recursion_finish();
4429 }
4430
4431 /*
4432 * Softirqs were disabled:
4433 */
lockdep_softirqs_off(unsigned long ip)4434 void lockdep_softirqs_off(unsigned long ip)
4435 {
4436 if (unlikely(!lockdep_enabled()))
4437 return;
4438
4439 /*
4440 * We fancy IRQs being disabled here, see softirq.c
4441 */
4442 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
4443 return;
4444
4445 if (current->softirqs_enabled) {
4446 struct irqtrace_events *trace = ¤t->irqtrace;
4447
4448 /*
4449 * We have done an ON -> OFF transition:
4450 */
4451 current->softirqs_enabled = 0;
4452 trace->softirq_disable_ip = ip;
4453 trace->softirq_disable_event = ++trace->irq_events;
4454 debug_atomic_inc(softirqs_off_events);
4455 /*
4456 * Whoops, we wanted softirqs off, so why aren't they?
4457 */
4458 DEBUG_LOCKS_WARN_ON(!softirq_count());
4459 } else
4460 debug_atomic_inc(redundant_softirqs_off);
4461 }
4462
4463 static int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4464 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4465 {
4466 if (!check)
4467 goto lock_used;
4468
4469 /*
4470 * If non-trylock use in a hardirq or softirq context, then
4471 * mark the lock as used in these contexts:
4472 */
4473 if (!hlock->trylock) {
4474 if (hlock->read) {
4475 if (lockdep_hardirq_context())
4476 if (!mark_lock(curr, hlock,
4477 LOCK_USED_IN_HARDIRQ_READ))
4478 return 0;
4479 if (curr->softirq_context)
4480 if (!mark_lock(curr, hlock,
4481 LOCK_USED_IN_SOFTIRQ_READ))
4482 return 0;
4483 } else {
4484 if (lockdep_hardirq_context())
4485 if (!mark_lock(curr, hlock, LOCK_USED_IN_HARDIRQ))
4486 return 0;
4487 if (curr->softirq_context)
4488 if (!mark_lock(curr, hlock, LOCK_USED_IN_SOFTIRQ))
4489 return 0;
4490 }
4491 }
4492 if (!hlock->hardirqs_off) {
4493 if (hlock->read) {
4494 if (!mark_lock(curr, hlock,
4495 LOCK_ENABLED_HARDIRQ_READ))
4496 return 0;
4497 if (curr->softirqs_enabled)
4498 if (!mark_lock(curr, hlock,
4499 LOCK_ENABLED_SOFTIRQ_READ))
4500 return 0;
4501 } else {
4502 if (!mark_lock(curr, hlock,
4503 LOCK_ENABLED_HARDIRQ))
4504 return 0;
4505 if (curr->softirqs_enabled)
4506 if (!mark_lock(curr, hlock,
4507 LOCK_ENABLED_SOFTIRQ))
4508 return 0;
4509 }
4510 }
4511
4512 lock_used:
4513 /* mark it as used: */
4514 if (!mark_lock(curr, hlock, LOCK_USED))
4515 return 0;
4516
4517 return 1;
4518 }
4519
task_irq_context(struct task_struct * task)4520 static inline unsigned int task_irq_context(struct task_struct *task)
4521 {
4522 return LOCK_CHAIN_HARDIRQ_CONTEXT * !!lockdep_hardirq_context() +
4523 LOCK_CHAIN_SOFTIRQ_CONTEXT * !!task->softirq_context;
4524 }
4525
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4526 static int separate_irq_context(struct task_struct *curr,
4527 struct held_lock *hlock)
4528 {
4529 unsigned int depth = curr->lockdep_depth;
4530
4531 /*
4532 * Keep track of points where we cross into an interrupt context:
4533 */
4534 if (depth) {
4535 struct held_lock *prev_hlock;
4536
4537 prev_hlock = curr->held_locks + depth-1;
4538 /*
4539 * If we cross into another context, reset the
4540 * hash key (this also prevents the checking and the
4541 * adding of the dependency to 'prev'):
4542 */
4543 if (prev_hlock->irq_context != hlock->irq_context)
4544 return 1;
4545 }
4546 return 0;
4547 }
4548
4549 /*
4550 * Mark a lock with a usage bit, and validate the state transition:
4551 */
mark_lock(struct task_struct * curr,struct held_lock * this,enum lock_usage_bit new_bit)4552 static int mark_lock(struct task_struct *curr, struct held_lock *this,
4553 enum lock_usage_bit new_bit)
4554 {
4555 unsigned int new_mask, ret = 1;
4556
4557 if (new_bit >= LOCK_USAGE_STATES) {
4558 DEBUG_LOCKS_WARN_ON(1);
4559 return 0;
4560 }
4561
4562 if (new_bit == LOCK_USED && this->read)
4563 new_bit = LOCK_USED_READ;
4564
4565 new_mask = 1 << new_bit;
4566
4567 /*
4568 * If already set then do not dirty the cacheline,
4569 * nor do any checks:
4570 */
4571 if (likely(hlock_class(this)->usage_mask & new_mask))
4572 return 1;
4573
4574 if (!graph_lock())
4575 return 0;
4576 /*
4577 * Make sure we didn't race:
4578 */
4579 if (unlikely(hlock_class(this)->usage_mask & new_mask))
4580 goto unlock;
4581
4582 if (!hlock_class(this)->usage_mask)
4583 debug_atomic_dec(nr_unused_locks);
4584
4585 hlock_class(this)->usage_mask |= new_mask;
4586
4587 if (new_bit < LOCK_TRACE_STATES) {
4588 if (!(hlock_class(this)->usage_traces[new_bit] = save_trace()))
4589 return 0;
4590 }
4591
4592 if (new_bit < LOCK_USED) {
4593 ret = mark_lock_irq(curr, this, new_bit);
4594 if (!ret)
4595 return 0;
4596 }
4597
4598 unlock:
4599 graph_unlock();
4600
4601 /*
4602 * We must printk outside of the graph_lock:
4603 */
4604 if (ret == 2) {
4605 printk("\nmarked lock as {%s}:\n", usage_str[new_bit]);
4606 print_lock(this);
4607 print_irqtrace_events(curr);
4608 dump_stack();
4609 }
4610
4611 return ret;
4612 }
4613
task_wait_context(struct task_struct * curr)4614 static inline short task_wait_context(struct task_struct *curr)
4615 {
4616 /*
4617 * Set appropriate wait type for the context; for IRQs we have to take
4618 * into account force_irqthread as that is implied by PREEMPT_RT.
4619 */
4620 if (lockdep_hardirq_context()) {
4621 /*
4622 * Check if force_irqthreads will run us threaded.
4623 */
4624 if (curr->hardirq_threaded || curr->irq_config)
4625 return LD_WAIT_CONFIG;
4626
4627 return LD_WAIT_SPIN;
4628 } else if (curr->softirq_context) {
4629 /*
4630 * Softirqs are always threaded.
4631 */
4632 return LD_WAIT_CONFIG;
4633 }
4634
4635 return LD_WAIT_MAX;
4636 }
4637
4638 static int
print_lock_invalid_wait_context(struct task_struct * curr,struct held_lock * hlock)4639 print_lock_invalid_wait_context(struct task_struct *curr,
4640 struct held_lock *hlock)
4641 {
4642 short curr_inner;
4643
4644 if (!debug_locks_off())
4645 return 0;
4646 if (debug_locks_silent)
4647 return 0;
4648
4649 pr_warn("\n");
4650 pr_warn("=============================\n");
4651 pr_warn("[ BUG: Invalid wait context ]\n");
4652 print_kernel_ident();
4653 pr_warn("-----------------------------\n");
4654
4655 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4656 print_lock(hlock);
4657
4658 pr_warn("other info that might help us debug this:\n");
4659
4660 curr_inner = task_wait_context(curr);
4661 pr_warn("context-{%d:%d}\n", curr_inner, curr_inner);
4662
4663 lockdep_print_held_locks(curr);
4664
4665 pr_warn("stack backtrace:\n");
4666 dump_stack();
4667
4668 return 0;
4669 }
4670
4671 /*
4672 * Verify the wait_type context.
4673 *
4674 * This check validates we takes locks in the right wait-type order; that is it
4675 * ensures that we do not take mutexes inside spinlocks and do not attempt to
4676 * acquire spinlocks inside raw_spinlocks and the sort.
4677 *
4678 * The entire thing is slightly more complex because of RCU, RCU is a lock that
4679 * can be taken from (pretty much) any context but also has constraints.
4680 * However when taken in a stricter environment the RCU lock does not loosen
4681 * the constraints.
4682 *
4683 * Therefore we must look for the strictest environment in the lock stack and
4684 * compare that to the lock we're trying to acquire.
4685 */
check_wait_context(struct task_struct * curr,struct held_lock * next)4686 static int check_wait_context(struct task_struct *curr, struct held_lock *next)
4687 {
4688 u8 next_inner = hlock_class(next)->wait_type_inner;
4689 u8 next_outer = hlock_class(next)->wait_type_outer;
4690 u8 curr_inner;
4691 int depth;
4692
4693 if (!next_inner || next->trylock)
4694 return 0;
4695
4696 if (!next_outer)
4697 next_outer = next_inner;
4698
4699 /*
4700 * Find start of current irq_context..
4701 */
4702 for (depth = curr->lockdep_depth - 1; depth >= 0; depth--) {
4703 struct held_lock *prev = curr->held_locks + depth;
4704 if (prev->irq_context != next->irq_context)
4705 break;
4706 }
4707 depth++;
4708
4709 curr_inner = task_wait_context(curr);
4710
4711 for (; depth < curr->lockdep_depth; depth++) {
4712 struct held_lock *prev = curr->held_locks + depth;
4713 u8 prev_inner = hlock_class(prev)->wait_type_inner;
4714
4715 if (prev_inner) {
4716 /*
4717 * We can have a bigger inner than a previous one
4718 * when outer is smaller than inner, as with RCU.
4719 *
4720 * Also due to trylocks.
4721 */
4722 curr_inner = min(curr_inner, prev_inner);
4723 }
4724 }
4725
4726 if (next_outer > curr_inner)
4727 return print_lock_invalid_wait_context(curr, next);
4728
4729 return 0;
4730 }
4731
4732 #else /* CONFIG_PROVE_LOCKING */
4733
4734 static inline int
mark_usage(struct task_struct * curr,struct held_lock * hlock,int check)4735 mark_usage(struct task_struct *curr, struct held_lock *hlock, int check)
4736 {
4737 return 1;
4738 }
4739
task_irq_context(struct task_struct * task)4740 static inline unsigned int task_irq_context(struct task_struct *task)
4741 {
4742 return 0;
4743 }
4744
separate_irq_context(struct task_struct * curr,struct held_lock * hlock)4745 static inline int separate_irq_context(struct task_struct *curr,
4746 struct held_lock *hlock)
4747 {
4748 return 0;
4749 }
4750
check_wait_context(struct task_struct * curr,struct held_lock * next)4751 static inline int check_wait_context(struct task_struct *curr,
4752 struct held_lock *next)
4753 {
4754 return 0;
4755 }
4756
4757 #endif /* CONFIG_PROVE_LOCKING */
4758
4759 /*
4760 * Initialize a lock instance's lock-class mapping info:
4761 */
lockdep_init_map_type(struct lockdep_map * lock,const char * name,struct lock_class_key * key,int subclass,u8 inner,u8 outer,u8 lock_type)4762 void lockdep_init_map_type(struct lockdep_map *lock, const char *name,
4763 struct lock_class_key *key, int subclass,
4764 u8 inner, u8 outer, u8 lock_type)
4765 {
4766 int i;
4767
4768 for (i = 0; i < NR_LOCKDEP_CACHING_CLASSES; i++)
4769 lock->class_cache[i] = NULL;
4770
4771 #ifdef CONFIG_LOCK_STAT
4772 lock->cpu = raw_smp_processor_id();
4773 #endif
4774
4775 /*
4776 * Can't be having no nameless bastards around this place!
4777 */
4778 if (DEBUG_LOCKS_WARN_ON(!name)) {
4779 lock->name = "NULL";
4780 return;
4781 }
4782
4783 lock->name = name;
4784
4785 lock->wait_type_outer = outer;
4786 lock->wait_type_inner = inner;
4787 lock->lock_type = lock_type;
4788
4789 /*
4790 * No key, no joy, we need to hash something.
4791 */
4792 if (DEBUG_LOCKS_WARN_ON(!key))
4793 return;
4794 /*
4795 * Sanity check, the lock-class key must either have been allocated
4796 * statically or must have been registered as a dynamic key.
4797 */
4798 if (!static_obj(key) && !is_dynamic_key(key)) {
4799 if (debug_locks)
4800 printk(KERN_ERR "BUG: key %px has not been registered!\n", key);
4801 DEBUG_LOCKS_WARN_ON(1);
4802 return;
4803 }
4804 lock->key = key;
4805
4806 if (unlikely(!debug_locks))
4807 return;
4808
4809 if (subclass) {
4810 unsigned long flags;
4811
4812 if (DEBUG_LOCKS_WARN_ON(!lockdep_enabled()))
4813 return;
4814
4815 raw_local_irq_save(flags);
4816 lockdep_recursion_inc();
4817 register_lock_class(lock, subclass, 1);
4818 lockdep_recursion_finish();
4819 raw_local_irq_restore(flags);
4820 }
4821 }
4822 EXPORT_SYMBOL_GPL(lockdep_init_map_type);
4823
4824 struct lock_class_key __lockdep_no_validate__;
4825 EXPORT_SYMBOL_GPL(__lockdep_no_validate__);
4826
4827 static void
print_lock_nested_lock_not_held(struct task_struct * curr,struct held_lock * hlock,unsigned long ip)4828 print_lock_nested_lock_not_held(struct task_struct *curr,
4829 struct held_lock *hlock,
4830 unsigned long ip)
4831 {
4832 if (!debug_locks_off())
4833 return;
4834 if (debug_locks_silent)
4835 return;
4836
4837 pr_warn("\n");
4838 pr_warn("==================================\n");
4839 pr_warn("WARNING: Nested lock was not taken\n");
4840 print_kernel_ident();
4841 pr_warn("----------------------------------\n");
4842
4843 pr_warn("%s/%d is trying to lock:\n", curr->comm, task_pid_nr(curr));
4844 print_lock(hlock);
4845
4846 pr_warn("\nbut this task is not holding:\n");
4847 pr_warn("%s\n", hlock->nest_lock->name);
4848
4849 pr_warn("\nstack backtrace:\n");
4850 dump_stack();
4851
4852 pr_warn("\nother info that might help us debug this:\n");
4853 lockdep_print_held_locks(curr);
4854
4855 pr_warn("\nstack backtrace:\n");
4856 dump_stack();
4857 }
4858
4859 static int __lock_is_held(const struct lockdep_map *lock, int read);
4860
4861 /*
4862 * This gets called for every mutex_lock*()/spin_lock*() operation.
4863 * We maintain the dependency maps and validate the locking attempt:
4864 *
4865 * The callers must make sure that IRQs are disabled before calling it,
4866 * otherwise we could get an interrupt which would want to take locks,
4867 * which would end up in lockdep again.
4868 */
__lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,int hardirqs_off,struct lockdep_map * nest_lock,unsigned long ip,int references,int pin_count)4869 static int __lock_acquire(struct lockdep_map *lock, unsigned int subclass,
4870 int trylock, int read, int check, int hardirqs_off,
4871 struct lockdep_map *nest_lock, unsigned long ip,
4872 int references, int pin_count)
4873 {
4874 struct task_struct *curr = current;
4875 struct lock_class *class = NULL;
4876 struct held_lock *hlock;
4877 unsigned int depth;
4878 int chain_head = 0;
4879 int class_idx;
4880 u64 chain_key;
4881
4882 if (unlikely(!debug_locks))
4883 return 0;
4884
4885 if (!prove_locking || lock->key == &__lockdep_no_validate__)
4886 check = 0;
4887
4888 if (subclass < NR_LOCKDEP_CACHING_CLASSES)
4889 class = lock->class_cache[subclass];
4890 /*
4891 * Not cached?
4892 */
4893 if (unlikely(!class)) {
4894 class = register_lock_class(lock, subclass, 0);
4895 if (!class)
4896 return 0;
4897 }
4898
4899 debug_class_ops_inc(class);
4900
4901 if (very_verbose(class)) {
4902 printk("\nacquire class [%px] %s", class->key, class->name);
4903 if (class->name_version > 1)
4904 printk(KERN_CONT "#%d", class->name_version);
4905 printk(KERN_CONT "\n");
4906 dump_stack();
4907 }
4908
4909 /*
4910 * Add the lock to the list of currently held locks.
4911 * (we dont increase the depth just yet, up until the
4912 * dependency checks are done)
4913 */
4914 depth = curr->lockdep_depth;
4915 /*
4916 * Ran out of static storage for our per-task lock stack again have we?
4917 */
4918 if (DEBUG_LOCKS_WARN_ON(depth >= MAX_LOCK_DEPTH))
4919 return 0;
4920
4921 class_idx = class - lock_classes;
4922
4923 if (depth) { /* we're holding locks */
4924 hlock = curr->held_locks + depth - 1;
4925 if (hlock->class_idx == class_idx && nest_lock) {
4926 if (!references)
4927 references++;
4928
4929 if (!hlock->references)
4930 hlock->references++;
4931
4932 hlock->references += references;
4933
4934 /* Overflow */
4935 if (DEBUG_LOCKS_WARN_ON(hlock->references < references))
4936 return 0;
4937
4938 return 2;
4939 }
4940 }
4941
4942 hlock = curr->held_locks + depth;
4943 /*
4944 * Plain impossible, we just registered it and checked it weren't no
4945 * NULL like.. I bet this mushroom I ate was good!
4946 */
4947 if (DEBUG_LOCKS_WARN_ON(!class))
4948 return 0;
4949 hlock->class_idx = class_idx;
4950 hlock->acquire_ip = ip;
4951 hlock->instance = lock;
4952 hlock->nest_lock = nest_lock;
4953 hlock->irq_context = task_irq_context(curr);
4954 hlock->trylock = trylock;
4955 hlock->read = read;
4956 hlock->check = check;
4957 hlock->hardirqs_off = !!hardirqs_off;
4958 hlock->references = references;
4959 #ifdef CONFIG_LOCK_STAT
4960 hlock->waittime_stamp = 0;
4961 hlock->holdtime_stamp = lockstat_clock();
4962 #endif
4963 hlock->pin_count = pin_count;
4964
4965 if (check_wait_context(curr, hlock))
4966 return 0;
4967
4968 /* Initialize the lock usage bit */
4969 if (!mark_usage(curr, hlock, check))
4970 return 0;
4971
4972 /*
4973 * Calculate the chain hash: it's the combined hash of all the
4974 * lock keys along the dependency chain. We save the hash value
4975 * at every step so that we can get the current hash easily
4976 * after unlock. The chain hash is then used to cache dependency
4977 * results.
4978 *
4979 * The 'key ID' is what is the most compact key value to drive
4980 * the hash, not class->key.
4981 */
4982 /*
4983 * Whoops, we did it again.. class_idx is invalid.
4984 */
4985 if (DEBUG_LOCKS_WARN_ON(!test_bit(class_idx, lock_classes_in_use)))
4986 return 0;
4987
4988 chain_key = curr->curr_chain_key;
4989 if (!depth) {
4990 /*
4991 * How can we have a chain hash when we ain't got no keys?!
4992 */
4993 if (DEBUG_LOCKS_WARN_ON(chain_key != INITIAL_CHAIN_KEY))
4994 return 0;
4995 chain_head = 1;
4996 }
4997
4998 hlock->prev_chain_key = chain_key;
4999 if (separate_irq_context(curr, hlock)) {
5000 chain_key = INITIAL_CHAIN_KEY;
5001 chain_head = 1;
5002 }
5003 chain_key = iterate_chain_key(chain_key, hlock_id(hlock));
5004
5005 if (nest_lock && !__lock_is_held(nest_lock, -1)) {
5006 print_lock_nested_lock_not_held(curr, hlock, ip);
5007 return 0;
5008 }
5009
5010 if (!debug_locks_silent) {
5011 WARN_ON_ONCE(depth && !hlock_class(hlock - 1)->key);
5012 WARN_ON_ONCE(!hlock_class(hlock)->key);
5013 }
5014
5015 if (!validate_chain(curr, hlock, chain_head, chain_key))
5016 return 0;
5017
5018 curr->curr_chain_key = chain_key;
5019 curr->lockdep_depth++;
5020 check_chain_key(curr);
5021 #ifdef CONFIG_DEBUG_LOCKDEP
5022 if (unlikely(!debug_locks))
5023 return 0;
5024 #endif
5025 if (unlikely(curr->lockdep_depth >= MAX_LOCK_DEPTH)) {
5026 debug_locks_off();
5027 print_lockdep_off("BUG: MAX_LOCK_DEPTH too low!");
5028 printk(KERN_DEBUG "depth: %i max: %lu!\n",
5029 curr->lockdep_depth, MAX_LOCK_DEPTH);
5030
5031 lockdep_print_held_locks(current);
5032 debug_show_all_locks();
5033 dump_stack();
5034
5035 return 0;
5036 }
5037
5038 if (unlikely(curr->lockdep_depth > max_lockdep_depth))
5039 max_lockdep_depth = curr->lockdep_depth;
5040
5041 return 1;
5042 }
5043
print_unlock_imbalance_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5044 static void print_unlock_imbalance_bug(struct task_struct *curr,
5045 struct lockdep_map *lock,
5046 unsigned long ip)
5047 {
5048 if (!debug_locks_off())
5049 return;
5050 if (debug_locks_silent)
5051 return;
5052
5053 pr_warn("\n");
5054 pr_warn("=====================================\n");
5055 pr_warn("WARNING: bad unlock balance detected!\n");
5056 print_kernel_ident();
5057 pr_warn("-------------------------------------\n");
5058 pr_warn("%s/%d is trying to release lock (",
5059 curr->comm, task_pid_nr(curr));
5060 print_lockdep_cache(lock);
5061 pr_cont(") at:\n");
5062 print_ip_sym(KERN_WARNING, ip);
5063 pr_warn("but there are no more locks to release!\n");
5064 pr_warn("\nother info that might help us debug this:\n");
5065 lockdep_print_held_locks(curr);
5066
5067 pr_warn("\nstack backtrace:\n");
5068 dump_stack();
5069 }
5070
match_held_lock(const struct held_lock * hlock,const struct lockdep_map * lock)5071 static noinstr int match_held_lock(const struct held_lock *hlock,
5072 const struct lockdep_map *lock)
5073 {
5074 if (hlock->instance == lock)
5075 return 1;
5076
5077 if (hlock->references) {
5078 const struct lock_class *class = lock->class_cache[0];
5079
5080 if (!class)
5081 class = look_up_lock_class(lock, 0);
5082
5083 /*
5084 * If look_up_lock_class() failed to find a class, we're trying
5085 * to test if we hold a lock that has never yet been acquired.
5086 * Clearly if the lock hasn't been acquired _ever_, we're not
5087 * holding it either, so report failure.
5088 */
5089 if (!class)
5090 return 0;
5091
5092 /*
5093 * References, but not a lock we're actually ref-counting?
5094 * State got messed up, follow the sites that change ->references
5095 * and try to make sense of it.
5096 */
5097 if (DEBUG_LOCKS_WARN_ON(!hlock->nest_lock))
5098 return 0;
5099
5100 if (hlock->class_idx == class - lock_classes)
5101 return 1;
5102 }
5103
5104 return 0;
5105 }
5106
5107 /* @depth must not be zero */
find_held_lock(struct task_struct * curr,struct lockdep_map * lock,unsigned int depth,int * idx)5108 static struct held_lock *find_held_lock(struct task_struct *curr,
5109 struct lockdep_map *lock,
5110 unsigned int depth, int *idx)
5111 {
5112 struct held_lock *ret, *hlock, *prev_hlock;
5113 int i;
5114
5115 i = depth - 1;
5116 hlock = curr->held_locks + i;
5117 ret = hlock;
5118 if (match_held_lock(hlock, lock))
5119 goto out;
5120
5121 ret = NULL;
5122 for (i--, prev_hlock = hlock--;
5123 i >= 0;
5124 i--, prev_hlock = hlock--) {
5125 /*
5126 * We must not cross into another context:
5127 */
5128 if (prev_hlock->irq_context != hlock->irq_context) {
5129 ret = NULL;
5130 break;
5131 }
5132 if (match_held_lock(hlock, lock)) {
5133 ret = hlock;
5134 break;
5135 }
5136 }
5137
5138 out:
5139 *idx = i;
5140 return ret;
5141 }
5142
reacquire_held_locks(struct task_struct * curr,unsigned int depth,int idx,unsigned int * merged)5143 static int reacquire_held_locks(struct task_struct *curr, unsigned int depth,
5144 int idx, unsigned int *merged)
5145 {
5146 struct held_lock *hlock;
5147 int first_idx = idx;
5148
5149 if (DEBUG_LOCKS_WARN_ON(!irqs_disabled()))
5150 return 0;
5151
5152 for (hlock = curr->held_locks + idx; idx < depth; idx++, hlock++) {
5153 switch (__lock_acquire(hlock->instance,
5154 hlock_class(hlock)->subclass,
5155 hlock->trylock,
5156 hlock->read, hlock->check,
5157 hlock->hardirqs_off,
5158 hlock->nest_lock, hlock->acquire_ip,
5159 hlock->references, hlock->pin_count)) {
5160 case 0:
5161 return 1;
5162 case 1:
5163 break;
5164 case 2:
5165 *merged += (idx == first_idx);
5166 break;
5167 default:
5168 WARN_ON(1);
5169 return 0;
5170 }
5171 }
5172 return 0;
5173 }
5174
5175 static int
__lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5176 __lock_set_class(struct lockdep_map *lock, const char *name,
5177 struct lock_class_key *key, unsigned int subclass,
5178 unsigned long ip)
5179 {
5180 struct task_struct *curr = current;
5181 unsigned int depth, merged = 0;
5182 struct held_lock *hlock;
5183 struct lock_class *class;
5184 int i;
5185
5186 if (unlikely(!debug_locks))
5187 return 0;
5188
5189 depth = curr->lockdep_depth;
5190 /*
5191 * This function is about (re)setting the class of a held lock,
5192 * yet we're not actually holding any locks. Naughty user!
5193 */
5194 if (DEBUG_LOCKS_WARN_ON(!depth))
5195 return 0;
5196
5197 hlock = find_held_lock(curr, lock, depth, &i);
5198 if (!hlock) {
5199 print_unlock_imbalance_bug(curr, lock, ip);
5200 return 0;
5201 }
5202
5203 lockdep_init_map_waits(lock, name, key, 0,
5204 lock->wait_type_inner,
5205 lock->wait_type_outer);
5206 class = register_lock_class(lock, subclass, 0);
5207 hlock->class_idx = class - lock_classes;
5208
5209 curr->lockdep_depth = i;
5210 curr->curr_chain_key = hlock->prev_chain_key;
5211
5212 if (reacquire_held_locks(curr, depth, i, &merged))
5213 return 0;
5214
5215 /*
5216 * I took it apart and put it back together again, except now I have
5217 * these 'spare' parts.. where shall I put them.
5218 */
5219 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged))
5220 return 0;
5221 return 1;
5222 }
5223
__lock_downgrade(struct lockdep_map * lock,unsigned long ip)5224 static int __lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5225 {
5226 struct task_struct *curr = current;
5227 unsigned int depth, merged = 0;
5228 struct held_lock *hlock;
5229 int i;
5230
5231 if (unlikely(!debug_locks))
5232 return 0;
5233
5234 depth = curr->lockdep_depth;
5235 /*
5236 * This function is about (re)setting the class of a held lock,
5237 * yet we're not actually holding any locks. Naughty user!
5238 */
5239 if (DEBUG_LOCKS_WARN_ON(!depth))
5240 return 0;
5241
5242 hlock = find_held_lock(curr, lock, depth, &i);
5243 if (!hlock) {
5244 print_unlock_imbalance_bug(curr, lock, ip);
5245 return 0;
5246 }
5247
5248 curr->lockdep_depth = i;
5249 curr->curr_chain_key = hlock->prev_chain_key;
5250
5251 WARN(hlock->read, "downgrading a read lock");
5252 hlock->read = 1;
5253 hlock->acquire_ip = ip;
5254
5255 if (reacquire_held_locks(curr, depth, i, &merged))
5256 return 0;
5257
5258 /* Merging can't happen with unchanged classes.. */
5259 if (DEBUG_LOCKS_WARN_ON(merged))
5260 return 0;
5261
5262 /*
5263 * I took it apart and put it back together again, except now I have
5264 * these 'spare' parts.. where shall I put them.
5265 */
5266 if (DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth))
5267 return 0;
5268
5269 return 1;
5270 }
5271
5272 /*
5273 * Remove the lock from the list of currently held locks - this gets
5274 * called on mutex_unlock()/spin_unlock*() (or on a failed
5275 * mutex_lock_interruptible()).
5276 */
5277 static int
__lock_release(struct lockdep_map * lock,unsigned long ip)5278 __lock_release(struct lockdep_map *lock, unsigned long ip)
5279 {
5280 struct task_struct *curr = current;
5281 unsigned int depth, merged = 1;
5282 struct held_lock *hlock;
5283 int i;
5284
5285 if (unlikely(!debug_locks))
5286 return 0;
5287
5288 depth = curr->lockdep_depth;
5289 /*
5290 * So we're all set to release this lock.. wait what lock? We don't
5291 * own any locks, you've been drinking again?
5292 */
5293 if (depth <= 0) {
5294 print_unlock_imbalance_bug(curr, lock, ip);
5295 return 0;
5296 }
5297
5298 /*
5299 * Check whether the lock exists in the current stack
5300 * of held locks:
5301 */
5302 hlock = find_held_lock(curr, lock, depth, &i);
5303 if (!hlock) {
5304 print_unlock_imbalance_bug(curr, lock, ip);
5305 return 0;
5306 }
5307
5308 if (hlock->instance == lock)
5309 lock_release_holdtime(hlock);
5310
5311 WARN(hlock->pin_count, "releasing a pinned lock\n");
5312
5313 if (hlock->references) {
5314 hlock->references--;
5315 if (hlock->references) {
5316 /*
5317 * We had, and after removing one, still have
5318 * references, the current lock stack is still
5319 * valid. We're done!
5320 */
5321 return 1;
5322 }
5323 }
5324
5325 /*
5326 * We have the right lock to unlock, 'hlock' points to it.
5327 * Now we remove it from the stack, and add back the other
5328 * entries (if any), recalculating the hash along the way:
5329 */
5330
5331 curr->lockdep_depth = i;
5332 curr->curr_chain_key = hlock->prev_chain_key;
5333
5334 /*
5335 * The most likely case is when the unlock is on the innermost
5336 * lock. In this case, we are done!
5337 */
5338 if (i == depth-1)
5339 return 1;
5340
5341 if (reacquire_held_locks(curr, depth, i + 1, &merged))
5342 return 0;
5343
5344 /*
5345 * We had N bottles of beer on the wall, we drank one, but now
5346 * there's not N-1 bottles of beer left on the wall...
5347 * Pouring two of the bottles together is acceptable.
5348 */
5349 DEBUG_LOCKS_WARN_ON(curr->lockdep_depth != depth - merged);
5350
5351 /*
5352 * Since reacquire_held_locks() would have called check_chain_key()
5353 * indirectly via __lock_acquire(), we don't need to do it again
5354 * on return.
5355 */
5356 return 0;
5357 }
5358
5359 static __always_inline
__lock_is_held(const struct lockdep_map * lock,int read)5360 int __lock_is_held(const struct lockdep_map *lock, int read)
5361 {
5362 struct task_struct *curr = current;
5363 int i;
5364
5365 for (i = 0; i < curr->lockdep_depth; i++) {
5366 struct held_lock *hlock = curr->held_locks + i;
5367
5368 if (match_held_lock(hlock, lock)) {
5369 if (read == -1 || hlock->read == read)
5370 return LOCK_STATE_HELD;
5371
5372 return LOCK_STATE_NOT_HELD;
5373 }
5374 }
5375
5376 return LOCK_STATE_NOT_HELD;
5377 }
5378
__lock_pin_lock(struct lockdep_map * lock)5379 static struct pin_cookie __lock_pin_lock(struct lockdep_map *lock)
5380 {
5381 struct pin_cookie cookie = NIL_COOKIE;
5382 struct task_struct *curr = current;
5383 int i;
5384
5385 if (unlikely(!debug_locks))
5386 return cookie;
5387
5388 for (i = 0; i < curr->lockdep_depth; i++) {
5389 struct held_lock *hlock = curr->held_locks + i;
5390
5391 if (match_held_lock(hlock, lock)) {
5392 /*
5393 * Grab 16bits of randomness; this is sufficient to not
5394 * be guessable and still allows some pin nesting in
5395 * our u32 pin_count.
5396 */
5397 cookie.val = 1 + (prandom_u32() >> 16);
5398 hlock->pin_count += cookie.val;
5399 return cookie;
5400 }
5401 }
5402
5403 WARN(1, "pinning an unheld lock\n");
5404 return cookie;
5405 }
5406
__lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5407 static void __lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5408 {
5409 struct task_struct *curr = current;
5410 int i;
5411
5412 if (unlikely(!debug_locks))
5413 return;
5414
5415 for (i = 0; i < curr->lockdep_depth; i++) {
5416 struct held_lock *hlock = curr->held_locks + i;
5417
5418 if (match_held_lock(hlock, lock)) {
5419 hlock->pin_count += cookie.val;
5420 return;
5421 }
5422 }
5423
5424 WARN(1, "pinning an unheld lock\n");
5425 }
5426
__lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5427 static void __lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5428 {
5429 struct task_struct *curr = current;
5430 int i;
5431
5432 if (unlikely(!debug_locks))
5433 return;
5434
5435 for (i = 0; i < curr->lockdep_depth; i++) {
5436 struct held_lock *hlock = curr->held_locks + i;
5437
5438 if (match_held_lock(hlock, lock)) {
5439 if (WARN(!hlock->pin_count, "unpinning an unpinned lock\n"))
5440 return;
5441
5442 hlock->pin_count -= cookie.val;
5443
5444 if (WARN((int)hlock->pin_count < 0, "pin count corrupted\n"))
5445 hlock->pin_count = 0;
5446
5447 return;
5448 }
5449 }
5450
5451 WARN(1, "unpinning an unheld lock\n");
5452 }
5453
5454 /*
5455 * Check whether we follow the irq-flags state precisely:
5456 */
check_flags(unsigned long flags)5457 static noinstr void check_flags(unsigned long flags)
5458 {
5459 #if defined(CONFIG_PROVE_LOCKING) && defined(CONFIG_DEBUG_LOCKDEP)
5460 if (!debug_locks)
5461 return;
5462
5463 /* Get the warning out.. */
5464 instrumentation_begin();
5465
5466 if (irqs_disabled_flags(flags)) {
5467 if (DEBUG_LOCKS_WARN_ON(lockdep_hardirqs_enabled())) {
5468 printk("possible reason: unannotated irqs-off.\n");
5469 }
5470 } else {
5471 if (DEBUG_LOCKS_WARN_ON(!lockdep_hardirqs_enabled())) {
5472 printk("possible reason: unannotated irqs-on.\n");
5473 }
5474 }
5475
5476 /*
5477 * We dont accurately track softirq state in e.g.
5478 * hardirq contexts (such as on 4KSTACKS), so only
5479 * check if not in hardirq contexts:
5480 */
5481 if (!hardirq_count()) {
5482 if (softirq_count()) {
5483 /* like the above, but with softirqs */
5484 DEBUG_LOCKS_WARN_ON(current->softirqs_enabled);
5485 } else {
5486 /* lick the above, does it taste good? */
5487 DEBUG_LOCKS_WARN_ON(!current->softirqs_enabled);
5488 }
5489 }
5490
5491 if (!debug_locks)
5492 print_irqtrace_events(current);
5493
5494 instrumentation_end();
5495 #endif
5496 }
5497
lock_set_class(struct lockdep_map * lock,const char * name,struct lock_class_key * key,unsigned int subclass,unsigned long ip)5498 void lock_set_class(struct lockdep_map *lock, const char *name,
5499 struct lock_class_key *key, unsigned int subclass,
5500 unsigned long ip)
5501 {
5502 unsigned long flags;
5503
5504 if (unlikely(!lockdep_enabled()))
5505 return;
5506
5507 raw_local_irq_save(flags);
5508 lockdep_recursion_inc();
5509 check_flags(flags);
5510 if (__lock_set_class(lock, name, key, subclass, ip))
5511 check_chain_key(current);
5512 lockdep_recursion_finish();
5513 raw_local_irq_restore(flags);
5514 }
5515 EXPORT_SYMBOL_GPL(lock_set_class);
5516
lock_downgrade(struct lockdep_map * lock,unsigned long ip)5517 void lock_downgrade(struct lockdep_map *lock, unsigned long ip)
5518 {
5519 unsigned long flags;
5520
5521 if (unlikely(!lockdep_enabled()))
5522 return;
5523
5524 raw_local_irq_save(flags);
5525 lockdep_recursion_inc();
5526 check_flags(flags);
5527 if (__lock_downgrade(lock, ip))
5528 check_chain_key(current);
5529 lockdep_recursion_finish();
5530 raw_local_irq_restore(flags);
5531 }
5532 EXPORT_SYMBOL_GPL(lock_downgrade);
5533
5534 /* NMI context !!! */
verify_lock_unused(struct lockdep_map * lock,struct held_lock * hlock,int subclass)5535 static void verify_lock_unused(struct lockdep_map *lock, struct held_lock *hlock, int subclass)
5536 {
5537 #ifdef CONFIG_PROVE_LOCKING
5538 struct lock_class *class = look_up_lock_class(lock, subclass);
5539 unsigned long mask = LOCKF_USED;
5540
5541 /* if it doesn't have a class (yet), it certainly hasn't been used yet */
5542 if (!class)
5543 return;
5544
5545 /*
5546 * READ locks only conflict with USED, such that if we only ever use
5547 * READ locks, there is no deadlock possible -- RCU.
5548 */
5549 if (!hlock->read)
5550 mask |= LOCKF_USED_READ;
5551
5552 if (!(class->usage_mask & mask))
5553 return;
5554
5555 hlock->class_idx = class - lock_classes;
5556
5557 print_usage_bug(current, hlock, LOCK_USED, LOCK_USAGE_STATES);
5558 #endif
5559 }
5560
lockdep_nmi(void)5561 static bool lockdep_nmi(void)
5562 {
5563 if (raw_cpu_read(lockdep_recursion))
5564 return false;
5565
5566 if (!in_nmi())
5567 return false;
5568
5569 return true;
5570 }
5571
5572 /*
5573 * read_lock() is recursive if:
5574 * 1. We force lockdep think this way in selftests or
5575 * 2. The implementation is not queued read/write lock or
5576 * 3. The locker is at an in_interrupt() context.
5577 */
read_lock_is_recursive(void)5578 bool read_lock_is_recursive(void)
5579 {
5580 return force_read_lock_recursive ||
5581 !IS_ENABLED(CONFIG_QUEUED_RWLOCKS) ||
5582 in_interrupt();
5583 }
5584 EXPORT_SYMBOL_GPL(read_lock_is_recursive);
5585
5586 /*
5587 * We are not always called with irqs disabled - do that here,
5588 * and also avoid lockdep recursion:
5589 */
lock_acquire(struct lockdep_map * lock,unsigned int subclass,int trylock,int read,int check,struct lockdep_map * nest_lock,unsigned long ip)5590 void lock_acquire(struct lockdep_map *lock, unsigned int subclass,
5591 int trylock, int read, int check,
5592 struct lockdep_map *nest_lock, unsigned long ip)
5593 {
5594 unsigned long flags;
5595
5596 trace_lock_acquire(lock, subclass, trylock, read, check, nest_lock, ip);
5597
5598 if (!debug_locks)
5599 return;
5600
5601 if (unlikely(!lockdep_enabled())) {
5602 /* XXX allow trylock from NMI ?!? */
5603 if (lockdep_nmi() && !trylock) {
5604 struct held_lock hlock;
5605
5606 hlock.acquire_ip = ip;
5607 hlock.instance = lock;
5608 hlock.nest_lock = nest_lock;
5609 hlock.irq_context = 2; // XXX
5610 hlock.trylock = trylock;
5611 hlock.read = read;
5612 hlock.check = check;
5613 hlock.hardirqs_off = true;
5614 hlock.references = 0;
5615
5616 verify_lock_unused(lock, &hlock, subclass);
5617 }
5618 return;
5619 }
5620
5621 raw_local_irq_save(flags);
5622 check_flags(flags);
5623
5624 lockdep_recursion_inc();
5625 __lock_acquire(lock, subclass, trylock, read, check,
5626 irqs_disabled_flags(flags), nest_lock, ip, 0, 0);
5627 lockdep_recursion_finish();
5628 raw_local_irq_restore(flags);
5629 }
5630 EXPORT_SYMBOL_GPL(lock_acquire);
5631
lock_release(struct lockdep_map * lock,unsigned long ip)5632 void lock_release(struct lockdep_map *lock, unsigned long ip)
5633 {
5634 unsigned long flags;
5635
5636 trace_lock_release(lock, ip);
5637
5638 if (unlikely(!lockdep_enabled()))
5639 return;
5640
5641 raw_local_irq_save(flags);
5642 check_flags(flags);
5643
5644 lockdep_recursion_inc();
5645 if (__lock_release(lock, ip))
5646 check_chain_key(current);
5647 lockdep_recursion_finish();
5648 raw_local_irq_restore(flags);
5649 }
5650 EXPORT_SYMBOL_GPL(lock_release);
5651
lock_is_held_type(const struct lockdep_map * lock,int read)5652 noinstr int lock_is_held_type(const struct lockdep_map *lock, int read)
5653 {
5654 unsigned long flags;
5655 int ret = LOCK_STATE_NOT_HELD;
5656
5657 /*
5658 * Avoid false negative lockdep_assert_held() and
5659 * lockdep_assert_not_held().
5660 */
5661 if (unlikely(!lockdep_enabled()))
5662 return LOCK_STATE_UNKNOWN;
5663
5664 raw_local_irq_save(flags);
5665 check_flags(flags);
5666
5667 lockdep_recursion_inc();
5668 ret = __lock_is_held(lock, read);
5669 lockdep_recursion_finish();
5670 raw_local_irq_restore(flags);
5671
5672 return ret;
5673 }
5674 EXPORT_SYMBOL_GPL(lock_is_held_type);
5675 NOKPROBE_SYMBOL(lock_is_held_type);
5676
lock_pin_lock(struct lockdep_map * lock)5677 struct pin_cookie lock_pin_lock(struct lockdep_map *lock)
5678 {
5679 struct pin_cookie cookie = NIL_COOKIE;
5680 unsigned long flags;
5681
5682 if (unlikely(!lockdep_enabled()))
5683 return cookie;
5684
5685 raw_local_irq_save(flags);
5686 check_flags(flags);
5687
5688 lockdep_recursion_inc();
5689 cookie = __lock_pin_lock(lock);
5690 lockdep_recursion_finish();
5691 raw_local_irq_restore(flags);
5692
5693 return cookie;
5694 }
5695 EXPORT_SYMBOL_GPL(lock_pin_lock);
5696
lock_repin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5697 void lock_repin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5698 {
5699 unsigned long flags;
5700
5701 if (unlikely(!lockdep_enabled()))
5702 return;
5703
5704 raw_local_irq_save(flags);
5705 check_flags(flags);
5706
5707 lockdep_recursion_inc();
5708 __lock_repin_lock(lock, cookie);
5709 lockdep_recursion_finish();
5710 raw_local_irq_restore(flags);
5711 }
5712 EXPORT_SYMBOL_GPL(lock_repin_lock);
5713
lock_unpin_lock(struct lockdep_map * lock,struct pin_cookie cookie)5714 void lock_unpin_lock(struct lockdep_map *lock, struct pin_cookie cookie)
5715 {
5716 unsigned long flags;
5717
5718 if (unlikely(!lockdep_enabled()))
5719 return;
5720
5721 raw_local_irq_save(flags);
5722 check_flags(flags);
5723
5724 lockdep_recursion_inc();
5725 __lock_unpin_lock(lock, cookie);
5726 lockdep_recursion_finish();
5727 raw_local_irq_restore(flags);
5728 }
5729 EXPORT_SYMBOL_GPL(lock_unpin_lock);
5730
5731 #ifdef CONFIG_LOCK_STAT
print_lock_contention_bug(struct task_struct * curr,struct lockdep_map * lock,unsigned long ip)5732 static void print_lock_contention_bug(struct task_struct *curr,
5733 struct lockdep_map *lock,
5734 unsigned long ip)
5735 {
5736 if (!debug_locks_off())
5737 return;
5738 if (debug_locks_silent)
5739 return;
5740
5741 pr_warn("\n");
5742 pr_warn("=================================\n");
5743 pr_warn("WARNING: bad contention detected!\n");
5744 print_kernel_ident();
5745 pr_warn("---------------------------------\n");
5746 pr_warn("%s/%d is trying to contend lock (",
5747 curr->comm, task_pid_nr(curr));
5748 print_lockdep_cache(lock);
5749 pr_cont(") at:\n");
5750 print_ip_sym(KERN_WARNING, ip);
5751 pr_warn("but there are no locks held!\n");
5752 pr_warn("\nother info that might help us debug this:\n");
5753 lockdep_print_held_locks(curr);
5754
5755 pr_warn("\nstack backtrace:\n");
5756 dump_stack();
5757 }
5758
5759 static void
__lock_contended(struct lockdep_map * lock,unsigned long ip)5760 __lock_contended(struct lockdep_map *lock, unsigned long ip)
5761 {
5762 struct task_struct *curr = current;
5763 struct held_lock *hlock;
5764 struct lock_class_stats *stats;
5765 unsigned int depth;
5766 int i, contention_point, contending_point;
5767
5768 depth = curr->lockdep_depth;
5769 /*
5770 * Whee, we contended on this lock, except it seems we're not
5771 * actually trying to acquire anything much at all..
5772 */
5773 if (DEBUG_LOCKS_WARN_ON(!depth))
5774 return;
5775
5776 hlock = find_held_lock(curr, lock, depth, &i);
5777 if (!hlock) {
5778 print_lock_contention_bug(curr, lock, ip);
5779 return;
5780 }
5781
5782 if (hlock->instance != lock)
5783 return;
5784
5785 hlock->waittime_stamp = lockstat_clock();
5786
5787 contention_point = lock_point(hlock_class(hlock)->contention_point, ip);
5788 contending_point = lock_point(hlock_class(hlock)->contending_point,
5789 lock->ip);
5790
5791 stats = get_lock_stats(hlock_class(hlock));
5792 if (contention_point < LOCKSTAT_POINTS)
5793 stats->contention_point[contention_point]++;
5794 if (contending_point < LOCKSTAT_POINTS)
5795 stats->contending_point[contending_point]++;
5796 if (lock->cpu != smp_processor_id())
5797 stats->bounces[bounce_contended + !!hlock->read]++;
5798 }
5799
5800 static void
__lock_acquired(struct lockdep_map * lock,unsigned long ip)5801 __lock_acquired(struct lockdep_map *lock, unsigned long ip)
5802 {
5803 struct task_struct *curr = current;
5804 struct held_lock *hlock;
5805 struct lock_class_stats *stats;
5806 unsigned int depth;
5807 u64 now, waittime = 0;
5808 int i, cpu;
5809
5810 depth = curr->lockdep_depth;
5811 /*
5812 * Yay, we acquired ownership of this lock we didn't try to
5813 * acquire, how the heck did that happen?
5814 */
5815 if (DEBUG_LOCKS_WARN_ON(!depth))
5816 return;
5817
5818 hlock = find_held_lock(curr, lock, depth, &i);
5819 if (!hlock) {
5820 print_lock_contention_bug(curr, lock, _RET_IP_);
5821 return;
5822 }
5823
5824 if (hlock->instance != lock)
5825 return;
5826
5827 cpu = smp_processor_id();
5828 if (hlock->waittime_stamp) {
5829 now = lockstat_clock();
5830 waittime = now - hlock->waittime_stamp;
5831 hlock->holdtime_stamp = now;
5832 }
5833
5834 stats = get_lock_stats(hlock_class(hlock));
5835 if (waittime) {
5836 if (hlock->read)
5837 lock_time_inc(&stats->read_waittime, waittime);
5838 else
5839 lock_time_inc(&stats->write_waittime, waittime);
5840 }
5841 if (lock->cpu != cpu)
5842 stats->bounces[bounce_acquired + !!hlock->read]++;
5843
5844 lock->cpu = cpu;
5845 lock->ip = ip;
5846 }
5847
lock_contended(struct lockdep_map * lock,unsigned long ip)5848 void lock_contended(struct lockdep_map *lock, unsigned long ip)
5849 {
5850 unsigned long flags;
5851
5852 trace_lock_contended(lock, ip);
5853
5854 if (unlikely(!lock_stat || !lockdep_enabled()))
5855 return;
5856
5857 raw_local_irq_save(flags);
5858 check_flags(flags);
5859 lockdep_recursion_inc();
5860 __lock_contended(lock, ip);
5861 lockdep_recursion_finish();
5862 raw_local_irq_restore(flags);
5863 }
5864 EXPORT_SYMBOL_GPL(lock_contended);
5865
lock_acquired(struct lockdep_map * lock,unsigned long ip)5866 void lock_acquired(struct lockdep_map *lock, unsigned long ip)
5867 {
5868 unsigned long flags;
5869
5870 trace_lock_acquired(lock, ip);
5871
5872 if (unlikely(!lock_stat || !lockdep_enabled()))
5873 return;
5874
5875 raw_local_irq_save(flags);
5876 check_flags(flags);
5877 lockdep_recursion_inc();
5878 __lock_acquired(lock, ip);
5879 lockdep_recursion_finish();
5880 raw_local_irq_restore(flags);
5881 }
5882 EXPORT_SYMBOL_GPL(lock_acquired);
5883 #endif
5884
5885 /*
5886 * Used by the testsuite, sanitize the validator state
5887 * after a simulated failure:
5888 */
5889
lockdep_reset(void)5890 void lockdep_reset(void)
5891 {
5892 unsigned long flags;
5893 int i;
5894
5895 raw_local_irq_save(flags);
5896 lockdep_init_task(current);
5897 memset(current->held_locks, 0, MAX_LOCK_DEPTH*sizeof(struct held_lock));
5898 nr_hardirq_chains = 0;
5899 nr_softirq_chains = 0;
5900 nr_process_chains = 0;
5901 debug_locks = 1;
5902 for (i = 0; i < CHAINHASH_SIZE; i++)
5903 INIT_HLIST_HEAD(chainhash_table + i);
5904 raw_local_irq_restore(flags);
5905 }
5906
5907 /* Remove a class from a lock chain. Must be called with the graph lock held. */
remove_class_from_lock_chain(struct pending_free * pf,struct lock_chain * chain,struct lock_class * class)5908 static void remove_class_from_lock_chain(struct pending_free *pf,
5909 struct lock_chain *chain,
5910 struct lock_class *class)
5911 {
5912 #ifdef CONFIG_PROVE_LOCKING
5913 int i;
5914
5915 for (i = chain->base; i < chain->base + chain->depth; i++) {
5916 if (chain_hlock_class_idx(chain_hlocks[i]) != class - lock_classes)
5917 continue;
5918 /*
5919 * Each lock class occurs at most once in a lock chain so once
5920 * we found a match we can break out of this loop.
5921 */
5922 goto free_lock_chain;
5923 }
5924 /* Since the chain has not been modified, return. */
5925 return;
5926
5927 free_lock_chain:
5928 free_chain_hlocks(chain->base, chain->depth);
5929 /* Overwrite the chain key for concurrent RCU readers. */
5930 WRITE_ONCE(chain->chain_key, INITIAL_CHAIN_KEY);
5931 dec_chains(chain->irq_context);
5932
5933 /*
5934 * Note: calling hlist_del_rcu() from inside a
5935 * hlist_for_each_entry_rcu() loop is safe.
5936 */
5937 hlist_del_rcu(&chain->entry);
5938 __set_bit(chain - lock_chains, pf->lock_chains_being_freed);
5939 nr_zapped_lock_chains++;
5940 #endif
5941 }
5942
5943 /* Must be called with the graph lock held. */
remove_class_from_lock_chains(struct pending_free * pf,struct lock_class * class)5944 static void remove_class_from_lock_chains(struct pending_free *pf,
5945 struct lock_class *class)
5946 {
5947 struct lock_chain *chain;
5948 struct hlist_head *head;
5949 int i;
5950
5951 for (i = 0; i < ARRAY_SIZE(chainhash_table); i++) {
5952 head = chainhash_table + i;
5953 hlist_for_each_entry_rcu(chain, head, entry) {
5954 remove_class_from_lock_chain(pf, chain, class);
5955 }
5956 }
5957 }
5958
5959 /*
5960 * Remove all references to a lock class. The caller must hold the graph lock.
5961 */
zap_class(struct pending_free * pf,struct lock_class * class)5962 static void zap_class(struct pending_free *pf, struct lock_class *class)
5963 {
5964 struct lock_list *entry;
5965 int i;
5966
5967 WARN_ON_ONCE(!class->key);
5968
5969 /*
5970 * Remove all dependencies this lock is
5971 * involved in:
5972 */
5973 for_each_set_bit(i, list_entries_in_use, ARRAY_SIZE(list_entries)) {
5974 entry = list_entries + i;
5975 if (entry->class != class && entry->links_to != class)
5976 continue;
5977 __clear_bit(i, list_entries_in_use);
5978 nr_list_entries--;
5979 list_del_rcu(&entry->entry);
5980 }
5981 if (list_empty(&class->locks_after) &&
5982 list_empty(&class->locks_before)) {
5983 list_move_tail(&class->lock_entry, &pf->zapped);
5984 hlist_del_rcu(&class->hash_entry);
5985 WRITE_ONCE(class->key, NULL);
5986 WRITE_ONCE(class->name, NULL);
5987 nr_lock_classes--;
5988 __clear_bit(class - lock_classes, lock_classes_in_use);
5989 } else {
5990 WARN_ONCE(true, "%s() failed for class %s\n", __func__,
5991 class->name);
5992 }
5993
5994 remove_class_from_lock_chains(pf, class);
5995 nr_zapped_classes++;
5996 }
5997
reinit_class(struct lock_class * class)5998 static void reinit_class(struct lock_class *class)
5999 {
6000 void *const p = class;
6001 const unsigned int offset = offsetof(struct lock_class, key);
6002
6003 WARN_ON_ONCE(!class->lock_entry.next);
6004 WARN_ON_ONCE(!list_empty(&class->locks_after));
6005 WARN_ON_ONCE(!list_empty(&class->locks_before));
6006 memset(p + offset, 0, sizeof(*class) - offset);
6007 WARN_ON_ONCE(!class->lock_entry.next);
6008 WARN_ON_ONCE(!list_empty(&class->locks_after));
6009 WARN_ON_ONCE(!list_empty(&class->locks_before));
6010 }
6011
within(const void * addr,void * start,unsigned long size)6012 static inline int within(const void *addr, void *start, unsigned long size)
6013 {
6014 return addr >= start && addr < start + size;
6015 }
6016
inside_selftest(void)6017 static bool inside_selftest(void)
6018 {
6019 return current == lockdep_selftest_task_struct;
6020 }
6021
6022 /* The caller must hold the graph lock. */
get_pending_free(void)6023 static struct pending_free *get_pending_free(void)
6024 {
6025 return delayed_free.pf + delayed_free.index;
6026 }
6027
6028 static void free_zapped_rcu(struct rcu_head *cb);
6029
6030 /*
6031 * Schedule an RCU callback if no RCU callback is pending. Must be called with
6032 * the graph lock held.
6033 */
call_rcu_zapped(struct pending_free * pf)6034 static void call_rcu_zapped(struct pending_free *pf)
6035 {
6036 WARN_ON_ONCE(inside_selftest());
6037
6038 if (list_empty(&pf->zapped))
6039 return;
6040
6041 if (delayed_free.scheduled)
6042 return;
6043
6044 delayed_free.scheduled = true;
6045
6046 WARN_ON_ONCE(delayed_free.pf + delayed_free.index != pf);
6047 delayed_free.index ^= 1;
6048
6049 call_rcu(&delayed_free.rcu_head, free_zapped_rcu);
6050 }
6051
6052 /* The caller must hold the graph lock. May be called from RCU context. */
__free_zapped_classes(struct pending_free * pf)6053 static void __free_zapped_classes(struct pending_free *pf)
6054 {
6055 struct lock_class *class;
6056
6057 check_data_structures();
6058
6059 list_for_each_entry(class, &pf->zapped, lock_entry)
6060 reinit_class(class);
6061
6062 list_splice_init(&pf->zapped, &free_lock_classes);
6063
6064 #ifdef CONFIG_PROVE_LOCKING
6065 bitmap_andnot(lock_chains_in_use, lock_chains_in_use,
6066 pf->lock_chains_being_freed, ARRAY_SIZE(lock_chains));
6067 bitmap_clear(pf->lock_chains_being_freed, 0, ARRAY_SIZE(lock_chains));
6068 #endif
6069 }
6070
free_zapped_rcu(struct rcu_head * ch)6071 static void free_zapped_rcu(struct rcu_head *ch)
6072 {
6073 struct pending_free *pf;
6074 unsigned long flags;
6075
6076 if (WARN_ON_ONCE(ch != &delayed_free.rcu_head))
6077 return;
6078
6079 raw_local_irq_save(flags);
6080 lockdep_lock();
6081
6082 /* closed head */
6083 pf = delayed_free.pf + (delayed_free.index ^ 1);
6084 __free_zapped_classes(pf);
6085 delayed_free.scheduled = false;
6086
6087 /*
6088 * If there's anything on the open list, close and start a new callback.
6089 */
6090 call_rcu_zapped(delayed_free.pf + delayed_free.index);
6091
6092 lockdep_unlock();
6093 raw_local_irq_restore(flags);
6094 }
6095
6096 /*
6097 * Remove all lock classes from the class hash table and from the
6098 * all_lock_classes list whose key or name is in the address range [start,
6099 * start + size). Move these lock classes to the zapped_classes list. Must
6100 * be called with the graph lock held.
6101 */
__lockdep_free_key_range(struct pending_free * pf,void * start,unsigned long size)6102 static void __lockdep_free_key_range(struct pending_free *pf, void *start,
6103 unsigned long size)
6104 {
6105 struct lock_class *class;
6106 struct hlist_head *head;
6107 int i;
6108
6109 /* Unhash all classes that were created by a module. */
6110 for (i = 0; i < CLASSHASH_SIZE; i++) {
6111 head = classhash_table + i;
6112 hlist_for_each_entry_rcu(class, head, hash_entry) {
6113 if (!within(class->key, start, size) &&
6114 !within(class->name, start, size))
6115 continue;
6116 zap_class(pf, class);
6117 }
6118 }
6119 }
6120
6121 /*
6122 * Used in module.c to remove lock classes from memory that is going to be
6123 * freed; and possibly re-used by other modules.
6124 *
6125 * We will have had one synchronize_rcu() before getting here, so we're
6126 * guaranteed nobody will look up these exact classes -- they're properly dead
6127 * but still allocated.
6128 */
lockdep_free_key_range_reg(void * start,unsigned long size)6129 static void lockdep_free_key_range_reg(void *start, unsigned long size)
6130 {
6131 struct pending_free *pf;
6132 unsigned long flags;
6133
6134 init_data_structures_once();
6135
6136 raw_local_irq_save(flags);
6137 lockdep_lock();
6138 pf = get_pending_free();
6139 __lockdep_free_key_range(pf, start, size);
6140 call_rcu_zapped(pf);
6141 lockdep_unlock();
6142 raw_local_irq_restore(flags);
6143
6144 /*
6145 * Wait for any possible iterators from look_up_lock_class() to pass
6146 * before continuing to free the memory they refer to.
6147 */
6148 synchronize_rcu();
6149 }
6150
6151 /*
6152 * Free all lockdep keys in the range [start, start+size). Does not sleep.
6153 * Ignores debug_locks. Must only be used by the lockdep selftests.
6154 */
lockdep_free_key_range_imm(void * start,unsigned long size)6155 static void lockdep_free_key_range_imm(void *start, unsigned long size)
6156 {
6157 struct pending_free *pf = delayed_free.pf;
6158 unsigned long flags;
6159
6160 init_data_structures_once();
6161
6162 raw_local_irq_save(flags);
6163 lockdep_lock();
6164 __lockdep_free_key_range(pf, start, size);
6165 __free_zapped_classes(pf);
6166 lockdep_unlock();
6167 raw_local_irq_restore(flags);
6168 }
6169
lockdep_free_key_range(void * start,unsigned long size)6170 void lockdep_free_key_range(void *start, unsigned long size)
6171 {
6172 init_data_structures_once();
6173
6174 if (inside_selftest())
6175 lockdep_free_key_range_imm(start, size);
6176 else
6177 lockdep_free_key_range_reg(start, size);
6178 }
6179
6180 /*
6181 * Check whether any element of the @lock->class_cache[] array refers to a
6182 * registered lock class. The caller must hold either the graph lock or the
6183 * RCU read lock.
6184 */
lock_class_cache_is_registered(struct lockdep_map * lock)6185 static bool lock_class_cache_is_registered(struct lockdep_map *lock)
6186 {
6187 struct lock_class *class;
6188 struct hlist_head *head;
6189 int i, j;
6190
6191 for (i = 0; i < CLASSHASH_SIZE; i++) {
6192 head = classhash_table + i;
6193 hlist_for_each_entry_rcu(class, head, hash_entry) {
6194 for (j = 0; j < NR_LOCKDEP_CACHING_CLASSES; j++)
6195 if (lock->class_cache[j] == class)
6196 return true;
6197 }
6198 }
6199 return false;
6200 }
6201
6202 /* The caller must hold the graph lock. Does not sleep. */
__lockdep_reset_lock(struct pending_free * pf,struct lockdep_map * lock)6203 static void __lockdep_reset_lock(struct pending_free *pf,
6204 struct lockdep_map *lock)
6205 {
6206 struct lock_class *class;
6207 int j;
6208
6209 /*
6210 * Remove all classes this lock might have:
6211 */
6212 for (j = 0; j < MAX_LOCKDEP_SUBCLASSES; j++) {
6213 /*
6214 * If the class exists we look it up and zap it:
6215 */
6216 class = look_up_lock_class(lock, j);
6217 if (class)
6218 zap_class(pf, class);
6219 }
6220 /*
6221 * Debug check: in the end all mapped classes should
6222 * be gone.
6223 */
6224 if (WARN_ON_ONCE(lock_class_cache_is_registered(lock)))
6225 debug_locks_off();
6226 }
6227
6228 /*
6229 * Remove all information lockdep has about a lock if debug_locks == 1. Free
6230 * released data structures from RCU context.
6231 */
lockdep_reset_lock_reg(struct lockdep_map * lock)6232 static void lockdep_reset_lock_reg(struct lockdep_map *lock)
6233 {
6234 struct pending_free *pf;
6235 unsigned long flags;
6236 int locked;
6237
6238 raw_local_irq_save(flags);
6239 locked = graph_lock();
6240 if (!locked)
6241 goto out_irq;
6242
6243 pf = get_pending_free();
6244 __lockdep_reset_lock(pf, lock);
6245 call_rcu_zapped(pf);
6246
6247 graph_unlock();
6248 out_irq:
6249 raw_local_irq_restore(flags);
6250 }
6251
6252 /*
6253 * Reset a lock. Does not sleep. Ignores debug_locks. Must only be used by the
6254 * lockdep selftests.
6255 */
lockdep_reset_lock_imm(struct lockdep_map * lock)6256 static void lockdep_reset_lock_imm(struct lockdep_map *lock)
6257 {
6258 struct pending_free *pf = delayed_free.pf;
6259 unsigned long flags;
6260
6261 raw_local_irq_save(flags);
6262 lockdep_lock();
6263 __lockdep_reset_lock(pf, lock);
6264 __free_zapped_classes(pf);
6265 lockdep_unlock();
6266 raw_local_irq_restore(flags);
6267 }
6268
lockdep_reset_lock(struct lockdep_map * lock)6269 void lockdep_reset_lock(struct lockdep_map *lock)
6270 {
6271 init_data_structures_once();
6272
6273 if (inside_selftest())
6274 lockdep_reset_lock_imm(lock);
6275 else
6276 lockdep_reset_lock_reg(lock);
6277 }
6278
6279 /* Unregister a dynamically allocated key. */
lockdep_unregister_key(struct lock_class_key * key)6280 void lockdep_unregister_key(struct lock_class_key *key)
6281 {
6282 struct hlist_head *hash_head = keyhashentry(key);
6283 struct lock_class_key *k;
6284 struct pending_free *pf;
6285 unsigned long flags;
6286 bool found = false;
6287
6288 might_sleep();
6289
6290 if (WARN_ON_ONCE(static_obj(key)))
6291 return;
6292
6293 raw_local_irq_save(flags);
6294 if (!graph_lock())
6295 goto out_irq;
6296
6297 pf = get_pending_free();
6298 hlist_for_each_entry_rcu(k, hash_head, hash_entry) {
6299 if (k == key) {
6300 hlist_del_rcu(&k->hash_entry);
6301 found = true;
6302 break;
6303 }
6304 }
6305 WARN_ON_ONCE(!found);
6306 __lockdep_free_key_range(pf, key, 1);
6307 call_rcu_zapped(pf);
6308 graph_unlock();
6309 out_irq:
6310 raw_local_irq_restore(flags);
6311
6312 /* Wait until is_dynamic_key() has finished accessing k->hash_entry. */
6313 synchronize_rcu();
6314 }
6315 EXPORT_SYMBOL_GPL(lockdep_unregister_key);
6316
lockdep_init(void)6317 void __init lockdep_init(void)
6318 {
6319 printk("Lock dependency validator: Copyright (c) 2006 Red Hat, Inc., Ingo Molnar\n");
6320
6321 printk("... MAX_LOCKDEP_SUBCLASSES: %lu\n", MAX_LOCKDEP_SUBCLASSES);
6322 printk("... MAX_LOCK_DEPTH: %lu\n", MAX_LOCK_DEPTH);
6323 printk("... MAX_LOCKDEP_KEYS: %lu\n", MAX_LOCKDEP_KEYS);
6324 printk("... CLASSHASH_SIZE: %lu\n", CLASSHASH_SIZE);
6325 printk("... MAX_LOCKDEP_ENTRIES: %lu\n", MAX_LOCKDEP_ENTRIES);
6326 printk("... MAX_LOCKDEP_CHAINS: %lu\n", MAX_LOCKDEP_CHAINS);
6327 printk("... CHAINHASH_SIZE: %lu\n", CHAINHASH_SIZE);
6328
6329 printk(" memory used by lock dependency info: %zu kB\n",
6330 (sizeof(lock_classes) +
6331 sizeof(lock_classes_in_use) +
6332 sizeof(classhash_table) +
6333 sizeof(list_entries) +
6334 sizeof(list_entries_in_use) +
6335 sizeof(chainhash_table) +
6336 sizeof(delayed_free)
6337 #ifdef CONFIG_PROVE_LOCKING
6338 + sizeof(lock_cq)
6339 + sizeof(lock_chains)
6340 + sizeof(lock_chains_in_use)
6341 + sizeof(chain_hlocks)
6342 #endif
6343 ) / 1024
6344 );
6345
6346 #if defined(CONFIG_TRACE_IRQFLAGS) && defined(CONFIG_PROVE_LOCKING)
6347 printk(" memory used for stack traces: %zu kB\n",
6348 (sizeof(stack_trace) + sizeof(stack_trace_hash)) / 1024
6349 );
6350 #endif
6351
6352 printk(" per task-struct memory footprint: %zu bytes\n",
6353 sizeof(((struct task_struct *)NULL)->held_locks));
6354 }
6355
6356 static void
print_freed_lock_bug(struct task_struct * curr,const void * mem_from,const void * mem_to,struct held_lock * hlock)6357 print_freed_lock_bug(struct task_struct *curr, const void *mem_from,
6358 const void *mem_to, struct held_lock *hlock)
6359 {
6360 if (!debug_locks_off())
6361 return;
6362 if (debug_locks_silent)
6363 return;
6364
6365 pr_warn("\n");
6366 pr_warn("=========================\n");
6367 pr_warn("WARNING: held lock freed!\n");
6368 print_kernel_ident();
6369 pr_warn("-------------------------\n");
6370 pr_warn("%s/%d is freeing memory %px-%px, with a lock still held there!\n",
6371 curr->comm, task_pid_nr(curr), mem_from, mem_to-1);
6372 print_lock(hlock);
6373 lockdep_print_held_locks(curr);
6374
6375 pr_warn("\nstack backtrace:\n");
6376 dump_stack();
6377 }
6378
not_in_range(const void * mem_from,unsigned long mem_len,const void * lock_from,unsigned long lock_len)6379 static inline int not_in_range(const void* mem_from, unsigned long mem_len,
6380 const void* lock_from, unsigned long lock_len)
6381 {
6382 return lock_from + lock_len <= mem_from ||
6383 mem_from + mem_len <= lock_from;
6384 }
6385
6386 /*
6387 * Called when kernel memory is freed (or unmapped), or if a lock
6388 * is destroyed or reinitialized - this code checks whether there is
6389 * any held lock in the memory range of <from> to <to>:
6390 */
debug_check_no_locks_freed(const void * mem_from,unsigned long mem_len)6391 void debug_check_no_locks_freed(const void *mem_from, unsigned long mem_len)
6392 {
6393 struct task_struct *curr = current;
6394 struct held_lock *hlock;
6395 unsigned long flags;
6396 int i;
6397
6398 if (unlikely(!debug_locks))
6399 return;
6400
6401 raw_local_irq_save(flags);
6402 for (i = 0; i < curr->lockdep_depth; i++) {
6403 hlock = curr->held_locks + i;
6404
6405 if (not_in_range(mem_from, mem_len, hlock->instance,
6406 sizeof(*hlock->instance)))
6407 continue;
6408
6409 print_freed_lock_bug(curr, mem_from, mem_from + mem_len, hlock);
6410 break;
6411 }
6412 raw_local_irq_restore(flags);
6413 }
6414 EXPORT_SYMBOL_GPL(debug_check_no_locks_freed);
6415
print_held_locks_bug(void)6416 static void print_held_locks_bug(void)
6417 {
6418 if (!debug_locks_off())
6419 return;
6420 if (debug_locks_silent)
6421 return;
6422
6423 pr_warn("\n");
6424 pr_warn("====================================\n");
6425 pr_warn("WARNING: %s/%d still has locks held!\n",
6426 current->comm, task_pid_nr(current));
6427 print_kernel_ident();
6428 pr_warn("------------------------------------\n");
6429 lockdep_print_held_locks(current);
6430 pr_warn("\nstack backtrace:\n");
6431 dump_stack();
6432 }
6433
debug_check_no_locks_held(void)6434 void debug_check_no_locks_held(void)
6435 {
6436 if (unlikely(current->lockdep_depth > 0))
6437 print_held_locks_bug();
6438 }
6439 EXPORT_SYMBOL_GPL(debug_check_no_locks_held);
6440
6441 #ifdef __KERNEL__
debug_show_all_locks(void)6442 void debug_show_all_locks(void)
6443 {
6444 struct task_struct *g, *p;
6445
6446 if (unlikely(!debug_locks)) {
6447 pr_warn("INFO: lockdep is turned off.\n");
6448 return;
6449 }
6450 pr_warn("\nShowing all locks held in the system:\n");
6451
6452 rcu_read_lock();
6453 for_each_process_thread(g, p) {
6454 if (!p->lockdep_depth)
6455 continue;
6456 lockdep_print_held_locks(p);
6457 touch_nmi_watchdog();
6458 touch_all_softlockup_watchdogs();
6459 }
6460 rcu_read_unlock();
6461
6462 pr_warn("\n");
6463 pr_warn("=============================================\n\n");
6464 }
6465 EXPORT_SYMBOL_GPL(debug_show_all_locks);
6466 #endif
6467
6468 /*
6469 * Careful: only use this function if you are sure that
6470 * the task cannot run in parallel!
6471 */
debug_show_held_locks(struct task_struct * task)6472 void debug_show_held_locks(struct task_struct *task)
6473 {
6474 if (unlikely(!debug_locks)) {
6475 printk("INFO: lockdep is turned off.\n");
6476 return;
6477 }
6478 lockdep_print_held_locks(task);
6479 }
6480 EXPORT_SYMBOL_GPL(debug_show_held_locks);
6481
lockdep_sys_exit(void)6482 asmlinkage __visible void lockdep_sys_exit(void)
6483 {
6484 struct task_struct *curr = current;
6485
6486 if (unlikely(curr->lockdep_depth)) {
6487 if (!debug_locks_off())
6488 return;
6489 pr_warn("\n");
6490 pr_warn("================================================\n");
6491 pr_warn("WARNING: lock held when returning to user space!\n");
6492 print_kernel_ident();
6493 pr_warn("------------------------------------------------\n");
6494 pr_warn("%s/%d is leaving the kernel with locks still held!\n",
6495 curr->comm, curr->pid);
6496 lockdep_print_held_locks(curr);
6497 }
6498
6499 /*
6500 * The lock history for each syscall should be independent. So wipe the
6501 * slate clean on return to userspace.
6502 */
6503 lockdep_invariant_state(false);
6504 }
6505
lockdep_rcu_suspicious(const char * file,const int line,const char * s)6506 void lockdep_rcu_suspicious(const char *file, const int line, const char *s)
6507 {
6508 struct task_struct *curr = current;
6509 int dl = READ_ONCE(debug_locks);
6510
6511 /* Note: the following can be executed concurrently, so be careful. */
6512 pr_warn("\n");
6513 pr_warn("=============================\n");
6514 pr_warn("WARNING: suspicious RCU usage\n");
6515 print_kernel_ident();
6516 pr_warn("-----------------------------\n");
6517 pr_warn("%s:%d %s!\n", file, line, s);
6518 pr_warn("\nother info that might help us debug this:\n\n");
6519 pr_warn("\n%srcu_scheduler_active = %d, debug_locks = %d\n%s",
6520 !rcu_lockdep_current_cpu_online()
6521 ? "RCU used illegally from offline CPU!\n"
6522 : "",
6523 rcu_scheduler_active, dl,
6524 dl ? "" : "Possible false positive due to lockdep disabling via debug_locks = 0\n");
6525
6526 /*
6527 * If a CPU is in the RCU-free window in idle (ie: in the section
6528 * between rcu_idle_enter() and rcu_idle_exit(), then RCU
6529 * considers that CPU to be in an "extended quiescent state",
6530 * which means that RCU will be completely ignoring that CPU.
6531 * Therefore, rcu_read_lock() and friends have absolutely no
6532 * effect on a CPU running in that state. In other words, even if
6533 * such an RCU-idle CPU has called rcu_read_lock(), RCU might well
6534 * delete data structures out from under it. RCU really has no
6535 * choice here: we need to keep an RCU-free window in idle where
6536 * the CPU may possibly enter into low power mode. This way we can
6537 * notice an extended quiescent state to other CPUs that started a grace
6538 * period. Otherwise we would delay any grace period as long as we run
6539 * in the idle task.
6540 *
6541 * So complain bitterly if someone does call rcu_read_lock(),
6542 * rcu_read_lock_bh() and so on from extended quiescent states.
6543 */
6544 if (!rcu_is_watching())
6545 pr_warn("RCU used illegally from extended quiescent state!\n");
6546
6547 lockdep_print_held_locks(curr);
6548 pr_warn("\nstack backtrace:\n");
6549 dump_stack();
6550 }
6551 EXPORT_SYMBOL_GPL(lockdep_rcu_suspicious);
6552