1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/fs.h>
44 #include <linux/mm.h>
45 #include <linux/vmacache.h>
46 #include <linux/nsproxy.h>
47 #include <linux/capability.h>
48 #include <linux/cpu.h>
49 #include <linux/cgroup.h>
50 #include <linux/security.h>
51 #include <linux/hugetlb.h>
52 #include <linux/seccomp.h>
53 #include <linux/swap.h>
54 #include <linux/syscalls.h>
55 #include <linux/jiffies.h>
56 #include <linux/futex.h>
57 #include <linux/compat.h>
58 #include <linux/kthread.h>
59 #include <linux/task_io_accounting_ops.h>
60 #include <linux/rcupdate.h>
61 #include <linux/ptrace.h>
62 #include <linux/mount.h>
63 #include <linux/audit.h>
64 #include <linux/memcontrol.h>
65 #include <linux/ftrace.h>
66 #include <linux/proc_fs.h>
67 #include <linux/profile.h>
68 #include <linux/rmap.h>
69 #include <linux/ksm.h>
70 #include <linux/acct.h>
71 #include <linux/userfaultfd_k.h>
72 #include <linux/tsacct_kern.h>
73 #include <linux/cn_proc.h>
74 #include <linux/freezer.h>
75 #include <linux/delayacct.h>
76 #include <linux/taskstats_kern.h>
77 #include <linux/random.h>
78 #include <linux/tty.h>
79 #include <linux/blkdev.h>
80 #include <linux/fs_struct.h>
81 #include <linux/magic.h>
82 #include <linux/perf_event.h>
83 #include <linux/posix-timers.h>
84 #include <linux/user-return-notifier.h>
85 #include <linux/oom.h>
86 #include <linux/khugepaged.h>
87 #include <linux/signalfd.h>
88 #include <linux/uprobes.h>
89 #include <linux/aio.h>
90 #include <linux/compiler.h>
91 #include <linux/sysctl.h>
92 #include <linux/kcov.h>
93 #include <linux/livepatch.h>
94 #include <linux/thread_info.h>
95 #include <linux/stackleak.h>
96 #include <linux/kasan.h>
97 #include <linux/scs.h>
98 #include <linux/io_uring.h>
99 #include <linux/bpf.h>
100
101 #include <asm/pgalloc.h>
102 #include <linux/uaccess.h>
103 #include <asm/mmu_context.h>
104 #include <asm/cacheflush.h>
105 #include <asm/tlbflush.h>
106
107 #include <trace/events/sched.h>
108
109 #define CREATE_TRACE_POINTS
110 #include <trace/events/task.h>
111
112 /*
113 * Minimum number of threads to boot the kernel
114 */
115 #define MIN_THREADS 20
116
117 /*
118 * Maximum number of threads
119 */
120 #define MAX_THREADS FUTEX_TID_MASK
121
122 /*
123 * Protected counters by write_lock_irq(&tasklist_lock)
124 */
125 unsigned long total_forks; /* Handle normal Linux uptimes. */
126 int nr_threads; /* The idle threads do not count.. */
127
128 static int max_threads; /* tunable limit on nr_threads */
129
130 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
131
132 static const char * const resident_page_types[] = {
133 NAMED_ARRAY_INDEX(MM_FILEPAGES),
134 NAMED_ARRAY_INDEX(MM_ANONPAGES),
135 NAMED_ARRAY_INDEX(MM_SWAPENTS),
136 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
137 };
138
139 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
140
141 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
142
143 #ifdef CONFIG_PROVE_RCU
lockdep_tasklist_lock_is_held(void)144 int lockdep_tasklist_lock_is_held(void)
145 {
146 return lockdep_is_held(&tasklist_lock);
147 }
148 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
149 #endif /* #ifdef CONFIG_PROVE_RCU */
150
nr_processes(void)151 int nr_processes(void)
152 {
153 int cpu;
154 int total = 0;
155
156 for_each_possible_cpu(cpu)
157 total += per_cpu(process_counts, cpu);
158
159 return total;
160 }
161
arch_release_task_struct(struct task_struct * tsk)162 void __weak arch_release_task_struct(struct task_struct *tsk)
163 {
164 }
165
166 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
167 static struct kmem_cache *task_struct_cachep;
168
alloc_task_struct_node(int node)169 static inline struct task_struct *alloc_task_struct_node(int node)
170 {
171 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
172 }
173
free_task_struct(struct task_struct * tsk)174 static inline void free_task_struct(struct task_struct *tsk)
175 {
176 kmem_cache_free(task_struct_cachep, tsk);
177 }
178 #endif
179
180 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
181
182 /*
183 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
184 * kmemcache based allocator.
185 */
186 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
187
188 #ifdef CONFIG_VMAP_STACK
189 /*
190 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
191 * flush. Try to minimize the number of calls by caching stacks.
192 */
193 #define NR_CACHED_STACKS 2
194 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
195
free_vm_stack_cache(unsigned int cpu)196 static int free_vm_stack_cache(unsigned int cpu)
197 {
198 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
199 int i;
200
201 for (i = 0; i < NR_CACHED_STACKS; i++) {
202 struct vm_struct *vm_stack = cached_vm_stacks[i];
203
204 if (!vm_stack)
205 continue;
206
207 vfree(vm_stack->addr);
208 cached_vm_stacks[i] = NULL;
209 }
210
211 return 0;
212 }
213 #endif
214
alloc_thread_stack_node(struct task_struct * tsk,int node)215 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
216 {
217 #ifdef CONFIG_VMAP_STACK
218 void *stack;
219 int i;
220
221 for (i = 0; i < NR_CACHED_STACKS; i++) {
222 struct vm_struct *s;
223
224 s = this_cpu_xchg(cached_stacks[i], NULL);
225
226 if (!s)
227 continue;
228
229 /* Mark stack accessible for KASAN. */
230 kasan_unpoison_range(s->addr, THREAD_SIZE);
231
232 /* Clear stale pointers from reused stack. */
233 memset(s->addr, 0, THREAD_SIZE);
234
235 tsk->stack_vm_area = s;
236 tsk->stack = s->addr;
237 return s->addr;
238 }
239
240 /*
241 * Allocated stacks are cached and later reused by new threads,
242 * so memcg accounting is performed manually on assigning/releasing
243 * stacks to tasks. Drop __GFP_ACCOUNT.
244 */
245 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
246 VMALLOC_START, VMALLOC_END,
247 THREADINFO_GFP & ~__GFP_ACCOUNT,
248 PAGE_KERNEL,
249 0, node, __builtin_return_address(0));
250
251 /*
252 * We can't call find_vm_area() in interrupt context, and
253 * free_thread_stack() can be called in interrupt context,
254 * so cache the vm_struct.
255 */
256 if (stack) {
257 tsk->stack_vm_area = find_vm_area(stack);
258 tsk->stack = stack;
259 }
260 return stack;
261 #else
262 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
263 THREAD_SIZE_ORDER);
264
265 if (likely(page)) {
266 tsk->stack = kasan_reset_tag(page_address(page));
267 return tsk->stack;
268 }
269 return NULL;
270 #endif
271 }
272
free_thread_stack(struct task_struct * tsk)273 static inline void free_thread_stack(struct task_struct *tsk)
274 {
275 #ifdef CONFIG_VMAP_STACK
276 struct vm_struct *vm = task_stack_vm_area(tsk);
277
278 if (vm) {
279 int i;
280
281 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
282 memcg_kmem_uncharge_page(vm->pages[i], 0);
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295 #endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
alloc_thread_stack_node(struct task_struct * tsk,int node)302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304 {
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 stack = kasan_reset_tag(stack);
308 tsk->stack = stack;
309 return stack;
310 }
311
free_thread_stack(struct task_struct * tsk)312 static void free_thread_stack(struct task_struct *tsk)
313 {
314 kmem_cache_free(thread_stack_cache, tsk->stack);
315 }
316
thread_stack_cache_init(void)317 void thread_stack_cache_init(void)
318 {
319 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
320 THREAD_SIZE, THREAD_SIZE, 0, 0,
321 THREAD_SIZE, NULL);
322 BUG_ON(thread_stack_cache == NULL);
323 }
324 # endif
325 #endif
326
327 /* SLAB cache for signal_struct structures (tsk->signal) */
328 static struct kmem_cache *signal_cachep;
329
330 /* SLAB cache for sighand_struct structures (tsk->sighand) */
331 struct kmem_cache *sighand_cachep;
332
333 /* SLAB cache for files_struct structures (tsk->files) */
334 struct kmem_cache *files_cachep;
335
336 /* SLAB cache for fs_struct structures (tsk->fs) */
337 struct kmem_cache *fs_cachep;
338
339 /* SLAB cache for vm_area_struct structures */
340 static struct kmem_cache *vm_area_cachep;
341
342 /* SLAB cache for mm_struct structures (tsk->mm) */
343 static struct kmem_cache *mm_cachep;
344
vm_area_alloc(struct mm_struct * mm)345 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
346 {
347 struct vm_area_struct *vma;
348
349 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
350 if (vma)
351 vma_init(vma, mm);
352 return vma;
353 }
354
vm_area_dup(struct vm_area_struct * orig)355 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
356 {
357 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
358
359 if (new) {
360 ASSERT_EXCLUSIVE_WRITER(orig->vm_flags);
361 ASSERT_EXCLUSIVE_WRITER(orig->vm_file);
362 /*
363 * orig->shared.rb may be modified concurrently, but the clone
364 * will be reinitialized.
365 */
366 *new = data_race(*orig);
367 INIT_LIST_HEAD(&new->anon_vma_chain);
368 new->vm_next = new->vm_prev = NULL;
369 }
370 return new;
371 }
372
vm_area_free(struct vm_area_struct * vma)373 void vm_area_free(struct vm_area_struct *vma)
374 {
375 kmem_cache_free(vm_area_cachep, vma);
376 }
377
account_kernel_stack(struct task_struct * tsk,int account)378 static void account_kernel_stack(struct task_struct *tsk, int account)
379 {
380 void *stack = task_stack_page(tsk);
381 struct vm_struct *vm = task_stack_vm_area(tsk);
382
383 if (vm) {
384 int i;
385
386 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++)
387 mod_lruvec_page_state(vm->pages[i], NR_KERNEL_STACK_KB,
388 account * (PAGE_SIZE / 1024));
389 } else {
390 /* All stack pages are in the same node. */
391 mod_lruvec_kmem_state(stack, NR_KERNEL_STACK_KB,
392 account * (THREAD_SIZE / 1024));
393 }
394 }
395
memcg_charge_kernel_stack(struct task_struct * tsk)396 static int memcg_charge_kernel_stack(struct task_struct *tsk)
397 {
398 #ifdef CONFIG_VMAP_STACK
399 struct vm_struct *vm = task_stack_vm_area(tsk);
400 int ret;
401
402 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
403
404 if (vm) {
405 int i;
406
407 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
408
409 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
410 /*
411 * If memcg_kmem_charge_page() fails, page's
412 * memory cgroup pointer is NULL, and
413 * memcg_kmem_uncharge_page() in free_thread_stack()
414 * will ignore this page.
415 */
416 ret = memcg_kmem_charge_page(vm->pages[i], GFP_KERNEL,
417 0);
418 if (ret)
419 return ret;
420 }
421 }
422 #endif
423 return 0;
424 }
425
release_task_stack(struct task_struct * tsk)426 static void release_task_stack(struct task_struct *tsk)
427 {
428 if (WARN_ON(READ_ONCE(tsk->__state) != TASK_DEAD))
429 return; /* Better to leak the stack than to free prematurely */
430
431 account_kernel_stack(tsk, -1);
432 free_thread_stack(tsk);
433 tsk->stack = NULL;
434 #ifdef CONFIG_VMAP_STACK
435 tsk->stack_vm_area = NULL;
436 #endif
437 }
438
439 #ifdef CONFIG_THREAD_INFO_IN_TASK
put_task_stack(struct task_struct * tsk)440 void put_task_stack(struct task_struct *tsk)
441 {
442 if (refcount_dec_and_test(&tsk->stack_refcount))
443 release_task_stack(tsk);
444 }
445 #endif
446
free_task(struct task_struct * tsk)447 void free_task(struct task_struct *tsk)
448 {
449 release_user_cpus_ptr(tsk);
450 scs_release(tsk);
451
452 #ifndef CONFIG_THREAD_INFO_IN_TASK
453 /*
454 * The task is finally done with both the stack and thread_info,
455 * so free both.
456 */
457 release_task_stack(tsk);
458 #else
459 /*
460 * If the task had a separate stack allocation, it should be gone
461 * by now.
462 */
463 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
464 #endif
465 rt_mutex_debug_task_free(tsk);
466 ftrace_graph_exit_task(tsk);
467 arch_release_task_struct(tsk);
468 if (tsk->flags & PF_KTHREAD)
469 free_kthread_struct(tsk);
470 free_task_struct(tsk);
471 }
472 EXPORT_SYMBOL(free_task);
473
dup_mm_exe_file(struct mm_struct * mm,struct mm_struct * oldmm)474 static void dup_mm_exe_file(struct mm_struct *mm, struct mm_struct *oldmm)
475 {
476 struct file *exe_file;
477
478 exe_file = get_mm_exe_file(oldmm);
479 RCU_INIT_POINTER(mm->exe_file, exe_file);
480 /*
481 * We depend on the oldmm having properly denied write access to the
482 * exe_file already.
483 */
484 if (exe_file && deny_write_access(exe_file))
485 pr_warn_once("deny_write_access() failed in %s\n", __func__);
486 }
487
488 #ifdef CONFIG_MMU
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)489 static __latent_entropy int dup_mmap(struct mm_struct *mm,
490 struct mm_struct *oldmm)
491 {
492 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
493 struct rb_node **rb_link, *rb_parent;
494 int retval;
495 unsigned long charge;
496 LIST_HEAD(uf);
497
498 uprobe_start_dup_mmap();
499 if (mmap_write_lock_killable(oldmm)) {
500 retval = -EINTR;
501 goto fail_uprobe_end;
502 }
503 flush_cache_dup_mm(oldmm);
504 uprobe_dup_mmap(oldmm, mm);
505 /*
506 * Not linked in yet - no deadlock potential:
507 */
508 mmap_write_lock_nested(mm, SINGLE_DEPTH_NESTING);
509
510 /* No ordering required: file already has been exposed. */
511 dup_mm_exe_file(mm, oldmm);
512
513 mm->total_vm = oldmm->total_vm;
514 mm->data_vm = oldmm->data_vm;
515 mm->exec_vm = oldmm->exec_vm;
516 mm->stack_vm = oldmm->stack_vm;
517
518 rb_link = &mm->mm_rb.rb_node;
519 rb_parent = NULL;
520 pprev = &mm->mmap;
521 retval = ksm_fork(mm, oldmm);
522 if (retval)
523 goto out;
524 retval = khugepaged_fork(mm, oldmm);
525 if (retval)
526 goto out;
527
528 prev = NULL;
529 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
530 struct file *file;
531
532 if (mpnt->vm_flags & VM_DONTCOPY) {
533 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
534 continue;
535 }
536 charge = 0;
537 /*
538 * Don't duplicate many vmas if we've been oom-killed (for
539 * example)
540 */
541 if (fatal_signal_pending(current)) {
542 retval = -EINTR;
543 goto out;
544 }
545 if (mpnt->vm_flags & VM_ACCOUNT) {
546 unsigned long len = vma_pages(mpnt);
547
548 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
549 goto fail_nomem;
550 charge = len;
551 }
552 tmp = vm_area_dup(mpnt);
553 if (!tmp)
554 goto fail_nomem;
555 retval = vma_dup_policy(mpnt, tmp);
556 if (retval)
557 goto fail_nomem_policy;
558 tmp->vm_mm = mm;
559 retval = dup_userfaultfd(tmp, &uf);
560 if (retval)
561 goto fail_nomem_anon_vma_fork;
562 if (tmp->vm_flags & VM_WIPEONFORK) {
563 /*
564 * VM_WIPEONFORK gets a clean slate in the child.
565 * Don't prepare anon_vma until fault since we don't
566 * copy page for current vma.
567 */
568 tmp->anon_vma = NULL;
569 } else if (anon_vma_fork(tmp, mpnt))
570 goto fail_nomem_anon_vma_fork;
571 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
572 file = tmp->vm_file;
573 if (file) {
574 struct address_space *mapping = file->f_mapping;
575
576 get_file(file);
577 i_mmap_lock_write(mapping);
578 if (tmp->vm_flags & VM_SHARED)
579 mapping_allow_writable(mapping);
580 flush_dcache_mmap_lock(mapping);
581 /* insert tmp into the share list, just after mpnt */
582 vma_interval_tree_insert_after(tmp, mpnt,
583 &mapping->i_mmap);
584 flush_dcache_mmap_unlock(mapping);
585 i_mmap_unlock_write(mapping);
586 }
587
588 /*
589 * Clear hugetlb-related page reserves for children. This only
590 * affects MAP_PRIVATE mappings. Faults generated by the child
591 * are not guaranteed to succeed, even if read-only
592 */
593 if (is_vm_hugetlb_page(tmp))
594 reset_vma_resv_huge_pages(tmp);
595
596 /*
597 * Link in the new vma and copy the page table entries.
598 */
599 *pprev = tmp;
600 pprev = &tmp->vm_next;
601 tmp->vm_prev = prev;
602 prev = tmp;
603
604 __vma_link_rb(mm, tmp, rb_link, rb_parent);
605 rb_link = &tmp->vm_rb.rb_right;
606 rb_parent = &tmp->vm_rb;
607
608 mm->map_count++;
609 if (!(tmp->vm_flags & VM_WIPEONFORK))
610 retval = copy_page_range(tmp, mpnt);
611
612 if (tmp->vm_ops && tmp->vm_ops->open)
613 tmp->vm_ops->open(tmp);
614
615 if (retval)
616 goto out;
617 }
618 /* a new mm has just been created */
619 retval = arch_dup_mmap(oldmm, mm);
620 out:
621 mmap_write_unlock(mm);
622 flush_tlb_mm(oldmm);
623 mmap_write_unlock(oldmm);
624 dup_userfaultfd_complete(&uf);
625 fail_uprobe_end:
626 uprobe_end_dup_mmap();
627 return retval;
628 fail_nomem_anon_vma_fork:
629 mpol_put(vma_policy(tmp));
630 fail_nomem_policy:
631 vm_area_free(tmp);
632 fail_nomem:
633 retval = -ENOMEM;
634 vm_unacct_memory(charge);
635 goto out;
636 }
637
mm_alloc_pgd(struct mm_struct * mm)638 static inline int mm_alloc_pgd(struct mm_struct *mm)
639 {
640 mm->pgd = pgd_alloc(mm);
641 if (unlikely(!mm->pgd))
642 return -ENOMEM;
643 return 0;
644 }
645
mm_free_pgd(struct mm_struct * mm)646 static inline void mm_free_pgd(struct mm_struct *mm)
647 {
648 pgd_free(mm, mm->pgd);
649 }
650 #else
dup_mmap(struct mm_struct * mm,struct mm_struct * oldmm)651 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
652 {
653 mmap_write_lock(oldmm);
654 dup_mm_exe_file(mm, oldmm);
655 mmap_write_unlock(oldmm);
656 return 0;
657 }
658 #define mm_alloc_pgd(mm) (0)
659 #define mm_free_pgd(mm)
660 #endif /* CONFIG_MMU */
661
check_mm(struct mm_struct * mm)662 static void check_mm(struct mm_struct *mm)
663 {
664 int i;
665
666 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
667 "Please make sure 'struct resident_page_types[]' is updated as well");
668
669 for (i = 0; i < NR_MM_COUNTERS; i++) {
670 long x = atomic_long_read(&mm->rss_stat.count[i]);
671
672 if (unlikely(x))
673 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
674 mm, resident_page_types[i], x);
675 }
676
677 if (mm_pgtables_bytes(mm))
678 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
679 mm_pgtables_bytes(mm));
680
681 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
682 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
683 #endif
684 }
685
686 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
687 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
688
689 /*
690 * Called when the last reference to the mm
691 * is dropped: either by a lazy thread or by
692 * mmput. Free the page directory and the mm.
693 */
__mmdrop(struct mm_struct * mm)694 void __mmdrop(struct mm_struct *mm)
695 {
696 BUG_ON(mm == &init_mm);
697 WARN_ON_ONCE(mm == current->mm);
698 WARN_ON_ONCE(mm == current->active_mm);
699 mm_free_pgd(mm);
700 destroy_context(mm);
701 mmu_notifier_subscriptions_destroy(mm);
702 check_mm(mm);
703 put_user_ns(mm->user_ns);
704 free_mm(mm);
705 }
706 EXPORT_SYMBOL_GPL(__mmdrop);
707
mmdrop_async_fn(struct work_struct * work)708 static void mmdrop_async_fn(struct work_struct *work)
709 {
710 struct mm_struct *mm;
711
712 mm = container_of(work, struct mm_struct, async_put_work);
713 __mmdrop(mm);
714 }
715
mmdrop_async(struct mm_struct * mm)716 static void mmdrop_async(struct mm_struct *mm)
717 {
718 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
719 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
720 schedule_work(&mm->async_put_work);
721 }
722 }
723
free_signal_struct(struct signal_struct * sig)724 static inline void free_signal_struct(struct signal_struct *sig)
725 {
726 taskstats_tgid_free(sig);
727 sched_autogroup_exit(sig);
728 /*
729 * __mmdrop is not safe to call from softirq context on x86 due to
730 * pgd_dtor so postpone it to the async context
731 */
732 if (sig->oom_mm)
733 mmdrop_async(sig->oom_mm);
734 kmem_cache_free(signal_cachep, sig);
735 }
736
put_signal_struct(struct signal_struct * sig)737 static inline void put_signal_struct(struct signal_struct *sig)
738 {
739 if (refcount_dec_and_test(&sig->sigcnt))
740 free_signal_struct(sig);
741 }
742
__put_task_struct(struct task_struct * tsk)743 void __put_task_struct(struct task_struct *tsk)
744 {
745 WARN_ON(!tsk->exit_state);
746 WARN_ON(refcount_read(&tsk->usage));
747 WARN_ON(tsk == current);
748
749 io_uring_free(tsk);
750 cgroup_free(tsk);
751 task_numa_free(tsk, true);
752 security_task_free(tsk);
753 bpf_task_storage_free(tsk);
754 exit_creds(tsk);
755 delayacct_tsk_free(tsk);
756 put_signal_struct(tsk->signal);
757 sched_core_free(tsk);
758
759 if (!profile_handoff_task(tsk))
760 free_task(tsk);
761 }
762 EXPORT_SYMBOL_GPL(__put_task_struct);
763
arch_task_cache_init(void)764 void __init __weak arch_task_cache_init(void) { }
765
766 /*
767 * set_max_threads
768 */
set_max_threads(unsigned int max_threads_suggested)769 static void set_max_threads(unsigned int max_threads_suggested)
770 {
771 u64 threads;
772 unsigned long nr_pages = totalram_pages();
773
774 /*
775 * The number of threads shall be limited such that the thread
776 * structures may only consume a small part of the available memory.
777 */
778 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
779 threads = MAX_THREADS;
780 else
781 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
782 (u64) THREAD_SIZE * 8UL);
783
784 if (threads > max_threads_suggested)
785 threads = max_threads_suggested;
786
787 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
788 }
789
790 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
791 /* Initialized by the architecture: */
792 int arch_task_struct_size __read_mostly;
793 #endif
794
795 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
task_struct_whitelist(unsigned long * offset,unsigned long * size)796 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
797 {
798 /* Fetch thread_struct whitelist for the architecture. */
799 arch_thread_struct_whitelist(offset, size);
800
801 /*
802 * Handle zero-sized whitelist or empty thread_struct, otherwise
803 * adjust offset to position of thread_struct in task_struct.
804 */
805 if (unlikely(*size == 0))
806 *offset = 0;
807 else
808 *offset += offsetof(struct task_struct, thread);
809 }
810 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
811
fork_init(void)812 void __init fork_init(void)
813 {
814 int i;
815 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
816 #ifndef ARCH_MIN_TASKALIGN
817 #define ARCH_MIN_TASKALIGN 0
818 #endif
819 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
820 unsigned long useroffset, usersize;
821
822 /* create a slab on which task_structs can be allocated */
823 task_struct_whitelist(&useroffset, &usersize);
824 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
825 arch_task_struct_size, align,
826 SLAB_PANIC|SLAB_ACCOUNT,
827 useroffset, usersize, NULL);
828 #endif
829
830 /* do the arch specific task caches init */
831 arch_task_cache_init();
832
833 set_max_threads(MAX_THREADS);
834
835 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
836 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
837 init_task.signal->rlim[RLIMIT_SIGPENDING] =
838 init_task.signal->rlim[RLIMIT_NPROC];
839
840 for (i = 0; i < MAX_PER_NAMESPACE_UCOUNTS; i++)
841 init_user_ns.ucount_max[i] = max_threads/2;
842
843 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_NPROC, RLIM_INFINITY);
844 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MSGQUEUE, RLIM_INFINITY);
845 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_SIGPENDING, RLIM_INFINITY);
846 set_rlimit_ucount_max(&init_user_ns, UCOUNT_RLIMIT_MEMLOCK, RLIM_INFINITY);
847
848 #ifdef CONFIG_VMAP_STACK
849 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
850 NULL, free_vm_stack_cache);
851 #endif
852
853 scs_init();
854
855 lockdep_init_task(&init_task);
856 uprobes_init();
857 }
858
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)859 int __weak arch_dup_task_struct(struct task_struct *dst,
860 struct task_struct *src)
861 {
862 *dst = *src;
863 return 0;
864 }
865
set_task_stack_end_magic(struct task_struct * tsk)866 void set_task_stack_end_magic(struct task_struct *tsk)
867 {
868 unsigned long *stackend;
869
870 stackend = end_of_stack(tsk);
871 *stackend = STACK_END_MAGIC; /* for overflow detection */
872 }
873
dup_task_struct(struct task_struct * orig,int node)874 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
875 {
876 struct task_struct *tsk;
877 unsigned long *stack;
878 struct vm_struct *stack_vm_area __maybe_unused;
879 int err;
880
881 if (node == NUMA_NO_NODE)
882 node = tsk_fork_get_node(orig);
883 tsk = alloc_task_struct_node(node);
884 if (!tsk)
885 return NULL;
886
887 stack = alloc_thread_stack_node(tsk, node);
888 if (!stack)
889 goto free_tsk;
890
891 if (memcg_charge_kernel_stack(tsk))
892 goto free_stack;
893
894 stack_vm_area = task_stack_vm_area(tsk);
895
896 err = arch_dup_task_struct(tsk, orig);
897
898 /*
899 * arch_dup_task_struct() clobbers the stack-related fields. Make
900 * sure they're properly initialized before using any stack-related
901 * functions again.
902 */
903 tsk->stack = stack;
904 #ifdef CONFIG_VMAP_STACK
905 tsk->stack_vm_area = stack_vm_area;
906 #endif
907 #ifdef CONFIG_THREAD_INFO_IN_TASK
908 refcount_set(&tsk->stack_refcount, 1);
909 #endif
910
911 if (err)
912 goto free_stack;
913
914 err = scs_prepare(tsk, node);
915 if (err)
916 goto free_stack;
917
918 #ifdef CONFIG_SECCOMP
919 /*
920 * We must handle setting up seccomp filters once we're under
921 * the sighand lock in case orig has changed between now and
922 * then. Until then, filter must be NULL to avoid messing up
923 * the usage counts on the error path calling free_task.
924 */
925 tsk->seccomp.filter = NULL;
926 #endif
927
928 setup_thread_stack(tsk, orig);
929 clear_user_return_notifier(tsk);
930 clear_tsk_need_resched(tsk);
931 set_task_stack_end_magic(tsk);
932 clear_syscall_work_syscall_user_dispatch(tsk);
933
934 #ifdef CONFIG_STACKPROTECTOR
935 tsk->stack_canary = get_random_canary();
936 #endif
937 if (orig->cpus_ptr == &orig->cpus_mask)
938 tsk->cpus_ptr = &tsk->cpus_mask;
939 dup_user_cpus_ptr(tsk, orig, node);
940
941 /*
942 * One for the user space visible state that goes away when reaped.
943 * One for the scheduler.
944 */
945 refcount_set(&tsk->rcu_users, 2);
946 /* One for the rcu users */
947 refcount_set(&tsk->usage, 1);
948 #ifdef CONFIG_BLK_DEV_IO_TRACE
949 tsk->btrace_seq = 0;
950 #endif
951 tsk->splice_pipe = NULL;
952 tsk->task_frag.page = NULL;
953 tsk->wake_q.next = NULL;
954 tsk->pf_io_worker = NULL;
955
956 account_kernel_stack(tsk, 1);
957
958 kcov_task_init(tsk);
959 kmap_local_fork(tsk);
960
961 #ifdef CONFIG_FAULT_INJECTION
962 tsk->fail_nth = 0;
963 #endif
964
965 #ifdef CONFIG_BLK_CGROUP
966 tsk->throttle_queue = NULL;
967 tsk->use_memdelay = 0;
968 #endif
969
970 #ifdef CONFIG_MEMCG
971 tsk->active_memcg = NULL;
972 #endif
973 return tsk;
974
975 free_stack:
976 free_thread_stack(tsk);
977 free_tsk:
978 free_task_struct(tsk);
979 return NULL;
980 }
981
982 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
983
984 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
985
coredump_filter_setup(char * s)986 static int __init coredump_filter_setup(char *s)
987 {
988 default_dump_filter =
989 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
990 MMF_DUMP_FILTER_MASK;
991 return 1;
992 }
993
994 __setup("coredump_filter=", coredump_filter_setup);
995
996 #include <linux/init_task.h>
997
mm_init_aio(struct mm_struct * mm)998 static void mm_init_aio(struct mm_struct *mm)
999 {
1000 #ifdef CONFIG_AIO
1001 spin_lock_init(&mm->ioctx_lock);
1002 mm->ioctx_table = NULL;
1003 #endif
1004 }
1005
mm_clear_owner(struct mm_struct * mm,struct task_struct * p)1006 static __always_inline void mm_clear_owner(struct mm_struct *mm,
1007 struct task_struct *p)
1008 {
1009 #ifdef CONFIG_MEMCG
1010 if (mm->owner == p)
1011 WRITE_ONCE(mm->owner, NULL);
1012 #endif
1013 }
1014
mm_init_owner(struct mm_struct * mm,struct task_struct * p)1015 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1016 {
1017 #ifdef CONFIG_MEMCG
1018 mm->owner = p;
1019 #endif
1020 }
1021
mm_init_pasid(struct mm_struct * mm)1022 static void mm_init_pasid(struct mm_struct *mm)
1023 {
1024 #ifdef CONFIG_IOMMU_SUPPORT
1025 mm->pasid = INIT_PASID;
1026 #endif
1027 }
1028
mm_init_uprobes_state(struct mm_struct * mm)1029 static void mm_init_uprobes_state(struct mm_struct *mm)
1030 {
1031 #ifdef CONFIG_UPROBES
1032 mm->uprobes_state.xol_area = NULL;
1033 #endif
1034 }
1035
mm_init(struct mm_struct * mm,struct task_struct * p,struct user_namespace * user_ns)1036 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1037 struct user_namespace *user_ns)
1038 {
1039 mm->mmap = NULL;
1040 mm->mm_rb = RB_ROOT;
1041 mm->vmacache_seqnum = 0;
1042 atomic_set(&mm->mm_users, 1);
1043 atomic_set(&mm->mm_count, 1);
1044 seqcount_init(&mm->write_protect_seq);
1045 mmap_init_lock(mm);
1046 INIT_LIST_HEAD(&mm->mmlist);
1047 mm->core_state = NULL;
1048 mm_pgtables_bytes_init(mm);
1049 mm->map_count = 0;
1050 mm->locked_vm = 0;
1051 atomic64_set(&mm->pinned_vm, 0);
1052 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1053 spin_lock_init(&mm->page_table_lock);
1054 spin_lock_init(&mm->arg_lock);
1055 mm_init_cpumask(mm);
1056 mm_init_aio(mm);
1057 mm_init_owner(mm, p);
1058 mm_init_pasid(mm);
1059 RCU_INIT_POINTER(mm->exe_file, NULL);
1060 mmu_notifier_subscriptions_init(mm);
1061 init_tlb_flush_pending(mm);
1062 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1063 mm->pmd_huge_pte = NULL;
1064 #endif
1065 mm_init_uprobes_state(mm);
1066 hugetlb_count_init(mm);
1067
1068 if (current->mm) {
1069 mm->flags = current->mm->flags & MMF_INIT_MASK;
1070 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1071 } else {
1072 mm->flags = default_dump_filter;
1073 mm->def_flags = 0;
1074 }
1075
1076 if (mm_alloc_pgd(mm))
1077 goto fail_nopgd;
1078
1079 if (init_new_context(p, mm))
1080 goto fail_nocontext;
1081
1082 mm->user_ns = get_user_ns(user_ns);
1083 return mm;
1084
1085 fail_nocontext:
1086 mm_free_pgd(mm);
1087 fail_nopgd:
1088 free_mm(mm);
1089 return NULL;
1090 }
1091
1092 /*
1093 * Allocate and initialize an mm_struct.
1094 */
mm_alloc(void)1095 struct mm_struct *mm_alloc(void)
1096 {
1097 struct mm_struct *mm;
1098
1099 mm = allocate_mm();
1100 if (!mm)
1101 return NULL;
1102
1103 memset(mm, 0, sizeof(*mm));
1104 return mm_init(mm, current, current_user_ns());
1105 }
1106
__mmput(struct mm_struct * mm)1107 static inline void __mmput(struct mm_struct *mm)
1108 {
1109 VM_BUG_ON(atomic_read(&mm->mm_users));
1110
1111 uprobe_clear_state(mm);
1112 exit_aio(mm);
1113 ksm_exit(mm);
1114 khugepaged_exit(mm); /* must run before exit_mmap */
1115 exit_mmap(mm);
1116 mm_put_huge_zero_page(mm);
1117 set_mm_exe_file(mm, NULL);
1118 if (!list_empty(&mm->mmlist)) {
1119 spin_lock(&mmlist_lock);
1120 list_del(&mm->mmlist);
1121 spin_unlock(&mmlist_lock);
1122 }
1123 if (mm->binfmt)
1124 module_put(mm->binfmt->module);
1125 mmdrop(mm);
1126 }
1127
1128 /*
1129 * Decrement the use count and release all resources for an mm.
1130 */
mmput(struct mm_struct * mm)1131 void mmput(struct mm_struct *mm)
1132 {
1133 might_sleep();
1134
1135 if (atomic_dec_and_test(&mm->mm_users))
1136 __mmput(mm);
1137 }
1138 EXPORT_SYMBOL_GPL(mmput);
1139
1140 #ifdef CONFIG_MMU
mmput_async_fn(struct work_struct * work)1141 static void mmput_async_fn(struct work_struct *work)
1142 {
1143 struct mm_struct *mm = container_of(work, struct mm_struct,
1144 async_put_work);
1145
1146 __mmput(mm);
1147 }
1148
mmput_async(struct mm_struct * mm)1149 void mmput_async(struct mm_struct *mm)
1150 {
1151 if (atomic_dec_and_test(&mm->mm_users)) {
1152 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1153 schedule_work(&mm->async_put_work);
1154 }
1155 }
1156 #endif
1157
1158 /**
1159 * set_mm_exe_file - change a reference to the mm's executable file
1160 *
1161 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1162 *
1163 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1164 * invocations: in mmput() nobody alive left, in execve task is single
1165 * threaded.
1166 *
1167 * Can only fail if new_exe_file != NULL.
1168 */
set_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1169 int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1170 {
1171 struct file *old_exe_file;
1172
1173 /*
1174 * It is safe to dereference the exe_file without RCU as
1175 * this function is only called if nobody else can access
1176 * this mm -- see comment above for justification.
1177 */
1178 old_exe_file = rcu_dereference_raw(mm->exe_file);
1179
1180 if (new_exe_file) {
1181 /*
1182 * We expect the caller (i.e., sys_execve) to already denied
1183 * write access, so this is unlikely to fail.
1184 */
1185 if (unlikely(deny_write_access(new_exe_file)))
1186 return -EACCES;
1187 get_file(new_exe_file);
1188 }
1189 rcu_assign_pointer(mm->exe_file, new_exe_file);
1190 if (old_exe_file) {
1191 allow_write_access(old_exe_file);
1192 fput(old_exe_file);
1193 }
1194 return 0;
1195 }
1196
1197 /**
1198 * replace_mm_exe_file - replace a reference to the mm's executable file
1199 *
1200 * This changes mm's executable file (shown as symlink /proc/[pid]/exe),
1201 * dealing with concurrent invocation and without grabbing the mmap lock in
1202 * write mode.
1203 *
1204 * Main user is sys_prctl(PR_SET_MM_MAP/EXE_FILE).
1205 */
replace_mm_exe_file(struct mm_struct * mm,struct file * new_exe_file)1206 int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1207 {
1208 struct vm_area_struct *vma;
1209 struct file *old_exe_file;
1210 int ret = 0;
1211
1212 /* Forbid mm->exe_file change if old file still mapped. */
1213 old_exe_file = get_mm_exe_file(mm);
1214 if (old_exe_file) {
1215 mmap_read_lock(mm);
1216 for (vma = mm->mmap; vma && !ret; vma = vma->vm_next) {
1217 if (!vma->vm_file)
1218 continue;
1219 if (path_equal(&vma->vm_file->f_path,
1220 &old_exe_file->f_path))
1221 ret = -EBUSY;
1222 }
1223 mmap_read_unlock(mm);
1224 fput(old_exe_file);
1225 if (ret)
1226 return ret;
1227 }
1228
1229 /* set the new file, lockless */
1230 ret = deny_write_access(new_exe_file);
1231 if (ret)
1232 return -EACCES;
1233 get_file(new_exe_file);
1234
1235 old_exe_file = xchg(&mm->exe_file, new_exe_file);
1236 if (old_exe_file) {
1237 /*
1238 * Don't race with dup_mmap() getting the file and disallowing
1239 * write access while someone might open the file writable.
1240 */
1241 mmap_read_lock(mm);
1242 allow_write_access(old_exe_file);
1243 fput(old_exe_file);
1244 mmap_read_unlock(mm);
1245 }
1246 return 0;
1247 }
1248
1249 /**
1250 * get_mm_exe_file - acquire a reference to the mm's executable file
1251 *
1252 * Returns %NULL if mm has no associated executable file.
1253 * User must release file via fput().
1254 */
get_mm_exe_file(struct mm_struct * mm)1255 struct file *get_mm_exe_file(struct mm_struct *mm)
1256 {
1257 struct file *exe_file;
1258
1259 rcu_read_lock();
1260 exe_file = rcu_dereference(mm->exe_file);
1261 if (exe_file && !get_file_rcu(exe_file))
1262 exe_file = NULL;
1263 rcu_read_unlock();
1264 return exe_file;
1265 }
1266
1267 /**
1268 * get_task_exe_file - acquire a reference to the task's executable file
1269 *
1270 * Returns %NULL if task's mm (if any) has no associated executable file or
1271 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1272 * User must release file via fput().
1273 */
get_task_exe_file(struct task_struct * task)1274 struct file *get_task_exe_file(struct task_struct *task)
1275 {
1276 struct file *exe_file = NULL;
1277 struct mm_struct *mm;
1278
1279 task_lock(task);
1280 mm = task->mm;
1281 if (mm) {
1282 if (!(task->flags & PF_KTHREAD))
1283 exe_file = get_mm_exe_file(mm);
1284 }
1285 task_unlock(task);
1286 return exe_file;
1287 }
1288
1289 /**
1290 * get_task_mm - acquire a reference to the task's mm
1291 *
1292 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1293 * this kernel workthread has transiently adopted a user mm with use_mm,
1294 * to do its AIO) is not set and if so returns a reference to it, after
1295 * bumping up the use count. User must release the mm via mmput()
1296 * after use. Typically used by /proc and ptrace.
1297 */
get_task_mm(struct task_struct * task)1298 struct mm_struct *get_task_mm(struct task_struct *task)
1299 {
1300 struct mm_struct *mm;
1301
1302 task_lock(task);
1303 mm = task->mm;
1304 if (mm) {
1305 if (task->flags & PF_KTHREAD)
1306 mm = NULL;
1307 else
1308 mmget(mm);
1309 }
1310 task_unlock(task);
1311 return mm;
1312 }
1313 EXPORT_SYMBOL_GPL(get_task_mm);
1314
mm_access(struct task_struct * task,unsigned int mode)1315 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1316 {
1317 struct mm_struct *mm;
1318 int err;
1319
1320 err = down_read_killable(&task->signal->exec_update_lock);
1321 if (err)
1322 return ERR_PTR(err);
1323
1324 mm = get_task_mm(task);
1325 if (mm && mm != current->mm &&
1326 !ptrace_may_access(task, mode)) {
1327 mmput(mm);
1328 mm = ERR_PTR(-EACCES);
1329 }
1330 up_read(&task->signal->exec_update_lock);
1331
1332 return mm;
1333 }
1334
complete_vfork_done(struct task_struct * tsk)1335 static void complete_vfork_done(struct task_struct *tsk)
1336 {
1337 struct completion *vfork;
1338
1339 task_lock(tsk);
1340 vfork = tsk->vfork_done;
1341 if (likely(vfork)) {
1342 tsk->vfork_done = NULL;
1343 complete(vfork);
1344 }
1345 task_unlock(tsk);
1346 }
1347
wait_for_vfork_done(struct task_struct * child,struct completion * vfork)1348 static int wait_for_vfork_done(struct task_struct *child,
1349 struct completion *vfork)
1350 {
1351 int killed;
1352
1353 freezer_do_not_count();
1354 cgroup_enter_frozen();
1355 killed = wait_for_completion_killable(vfork);
1356 cgroup_leave_frozen(false);
1357 freezer_count();
1358
1359 if (killed) {
1360 task_lock(child);
1361 child->vfork_done = NULL;
1362 task_unlock(child);
1363 }
1364
1365 put_task_struct(child);
1366 return killed;
1367 }
1368
1369 /* Please note the differences between mmput and mm_release.
1370 * mmput is called whenever we stop holding onto a mm_struct,
1371 * error success whatever.
1372 *
1373 * mm_release is called after a mm_struct has been removed
1374 * from the current process.
1375 *
1376 * This difference is important for error handling, when we
1377 * only half set up a mm_struct for a new process and need to restore
1378 * the old one. Because we mmput the new mm_struct before
1379 * restoring the old one. . .
1380 * Eric Biederman 10 January 1998
1381 */
mm_release(struct task_struct * tsk,struct mm_struct * mm)1382 static void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1383 {
1384 uprobe_free_utask(tsk);
1385
1386 /* Get rid of any cached register state */
1387 deactivate_mm(tsk, mm);
1388
1389 /*
1390 * Signal userspace if we're not exiting with a core dump
1391 * because we want to leave the value intact for debugging
1392 * purposes.
1393 */
1394 if (tsk->clear_child_tid) {
1395 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1396 atomic_read(&mm->mm_users) > 1) {
1397 /*
1398 * We don't check the error code - if userspace has
1399 * not set up a proper pointer then tough luck.
1400 */
1401 put_user(0, tsk->clear_child_tid);
1402 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1403 1, NULL, NULL, 0, 0);
1404 }
1405 tsk->clear_child_tid = NULL;
1406 }
1407
1408 /*
1409 * All done, finally we can wake up parent and return this mm to him.
1410 * Also kthread_stop() uses this completion for synchronization.
1411 */
1412 if (tsk->vfork_done)
1413 complete_vfork_done(tsk);
1414 }
1415
exit_mm_release(struct task_struct * tsk,struct mm_struct * mm)1416 void exit_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1417 {
1418 futex_exit_release(tsk);
1419 mm_release(tsk, mm);
1420 }
1421
exec_mm_release(struct task_struct * tsk,struct mm_struct * mm)1422 void exec_mm_release(struct task_struct *tsk, struct mm_struct *mm)
1423 {
1424 futex_exec_release(tsk);
1425 mm_release(tsk, mm);
1426 }
1427
1428 /**
1429 * dup_mm() - duplicates an existing mm structure
1430 * @tsk: the task_struct with which the new mm will be associated.
1431 * @oldmm: the mm to duplicate.
1432 *
1433 * Allocates a new mm structure and duplicates the provided @oldmm structure
1434 * content into it.
1435 *
1436 * Return: the duplicated mm or NULL on failure.
1437 */
dup_mm(struct task_struct * tsk,struct mm_struct * oldmm)1438 static struct mm_struct *dup_mm(struct task_struct *tsk,
1439 struct mm_struct *oldmm)
1440 {
1441 struct mm_struct *mm;
1442 int err;
1443
1444 mm = allocate_mm();
1445 if (!mm)
1446 goto fail_nomem;
1447
1448 memcpy(mm, oldmm, sizeof(*mm));
1449
1450 if (!mm_init(mm, tsk, mm->user_ns))
1451 goto fail_nomem;
1452
1453 err = dup_mmap(mm, oldmm);
1454 if (err)
1455 goto free_pt;
1456
1457 mm->hiwater_rss = get_mm_rss(mm);
1458 mm->hiwater_vm = mm->total_vm;
1459
1460 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1461 goto free_pt;
1462
1463 return mm;
1464
1465 free_pt:
1466 /* don't put binfmt in mmput, we haven't got module yet */
1467 mm->binfmt = NULL;
1468 mm_init_owner(mm, NULL);
1469 mmput(mm);
1470
1471 fail_nomem:
1472 return NULL;
1473 }
1474
copy_mm(unsigned long clone_flags,struct task_struct * tsk)1475 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1476 {
1477 struct mm_struct *mm, *oldmm;
1478
1479 tsk->min_flt = tsk->maj_flt = 0;
1480 tsk->nvcsw = tsk->nivcsw = 0;
1481 #ifdef CONFIG_DETECT_HUNG_TASK
1482 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1483 tsk->last_switch_time = 0;
1484 #endif
1485
1486 tsk->mm = NULL;
1487 tsk->active_mm = NULL;
1488
1489 /*
1490 * Are we cloning a kernel thread?
1491 *
1492 * We need to steal a active VM for that..
1493 */
1494 oldmm = current->mm;
1495 if (!oldmm)
1496 return 0;
1497
1498 /* initialize the new vmacache entries */
1499 vmacache_flush(tsk);
1500
1501 if (clone_flags & CLONE_VM) {
1502 mmget(oldmm);
1503 mm = oldmm;
1504 } else {
1505 mm = dup_mm(tsk, current->mm);
1506 if (!mm)
1507 return -ENOMEM;
1508 }
1509
1510 tsk->mm = mm;
1511 tsk->active_mm = mm;
1512 return 0;
1513 }
1514
copy_fs(unsigned long clone_flags,struct task_struct * tsk)1515 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1516 {
1517 struct fs_struct *fs = current->fs;
1518 if (clone_flags & CLONE_FS) {
1519 /* tsk->fs is already what we want */
1520 spin_lock(&fs->lock);
1521 if (fs->in_exec) {
1522 spin_unlock(&fs->lock);
1523 return -EAGAIN;
1524 }
1525 fs->users++;
1526 spin_unlock(&fs->lock);
1527 return 0;
1528 }
1529 tsk->fs = copy_fs_struct(fs);
1530 if (!tsk->fs)
1531 return -ENOMEM;
1532 return 0;
1533 }
1534
copy_files(unsigned long clone_flags,struct task_struct * tsk)1535 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1536 {
1537 struct files_struct *oldf, *newf;
1538 int error = 0;
1539
1540 /*
1541 * A background process may not have any files ...
1542 */
1543 oldf = current->files;
1544 if (!oldf)
1545 goto out;
1546
1547 if (clone_flags & CLONE_FILES) {
1548 atomic_inc(&oldf->count);
1549 goto out;
1550 }
1551
1552 newf = dup_fd(oldf, NR_OPEN_MAX, &error);
1553 if (!newf)
1554 goto out;
1555
1556 tsk->files = newf;
1557 error = 0;
1558 out:
1559 return error;
1560 }
1561
copy_io(unsigned long clone_flags,struct task_struct * tsk)1562 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1563 {
1564 #ifdef CONFIG_BLOCK
1565 struct io_context *ioc = current->io_context;
1566 struct io_context *new_ioc;
1567
1568 if (!ioc)
1569 return 0;
1570 /*
1571 * Share io context with parent, if CLONE_IO is set
1572 */
1573 if (clone_flags & CLONE_IO) {
1574 ioc_task_link(ioc);
1575 tsk->io_context = ioc;
1576 } else if (ioprio_valid(ioc->ioprio)) {
1577 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1578 if (unlikely(!new_ioc))
1579 return -ENOMEM;
1580
1581 new_ioc->ioprio = ioc->ioprio;
1582 put_io_context(new_ioc);
1583 }
1584 #endif
1585 return 0;
1586 }
1587
copy_sighand(unsigned long clone_flags,struct task_struct * tsk)1588 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1589 {
1590 struct sighand_struct *sig;
1591
1592 if (clone_flags & CLONE_SIGHAND) {
1593 refcount_inc(¤t->sighand->count);
1594 return 0;
1595 }
1596 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1597 RCU_INIT_POINTER(tsk->sighand, sig);
1598 if (!sig)
1599 return -ENOMEM;
1600
1601 refcount_set(&sig->count, 1);
1602 spin_lock_irq(¤t->sighand->siglock);
1603 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1604 spin_unlock_irq(¤t->sighand->siglock);
1605
1606 /* Reset all signal handler not set to SIG_IGN to SIG_DFL. */
1607 if (clone_flags & CLONE_CLEAR_SIGHAND)
1608 flush_signal_handlers(tsk, 0);
1609
1610 return 0;
1611 }
1612
__cleanup_sighand(struct sighand_struct * sighand)1613 void __cleanup_sighand(struct sighand_struct *sighand)
1614 {
1615 if (refcount_dec_and_test(&sighand->count)) {
1616 signalfd_cleanup(sighand);
1617 /*
1618 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1619 * without an RCU grace period, see __lock_task_sighand().
1620 */
1621 kmem_cache_free(sighand_cachep, sighand);
1622 }
1623 }
1624
1625 /*
1626 * Initialize POSIX timer handling for a thread group.
1627 */
posix_cpu_timers_init_group(struct signal_struct * sig)1628 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1629 {
1630 struct posix_cputimers *pct = &sig->posix_cputimers;
1631 unsigned long cpu_limit;
1632
1633 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1634 posix_cputimers_group_init(pct, cpu_limit);
1635 }
1636
copy_signal(unsigned long clone_flags,struct task_struct * tsk)1637 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1638 {
1639 struct signal_struct *sig;
1640
1641 if (clone_flags & CLONE_THREAD)
1642 return 0;
1643
1644 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1645 tsk->signal = sig;
1646 if (!sig)
1647 return -ENOMEM;
1648
1649 sig->nr_threads = 1;
1650 atomic_set(&sig->live, 1);
1651 refcount_set(&sig->sigcnt, 1);
1652
1653 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1654 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1655 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1656
1657 init_waitqueue_head(&sig->wait_chldexit);
1658 sig->curr_target = tsk;
1659 init_sigpending(&sig->shared_pending);
1660 INIT_HLIST_HEAD(&sig->multiprocess);
1661 seqlock_init(&sig->stats_lock);
1662 prev_cputime_init(&sig->prev_cputime);
1663
1664 #ifdef CONFIG_POSIX_TIMERS
1665 INIT_LIST_HEAD(&sig->posix_timers);
1666 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1667 sig->real_timer.function = it_real_fn;
1668 #endif
1669
1670 task_lock(current->group_leader);
1671 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1672 task_unlock(current->group_leader);
1673
1674 posix_cpu_timers_init_group(sig);
1675
1676 tty_audit_fork(sig);
1677 sched_autogroup_fork(sig);
1678
1679 sig->oom_score_adj = current->signal->oom_score_adj;
1680 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1681
1682 mutex_init(&sig->cred_guard_mutex);
1683 init_rwsem(&sig->exec_update_lock);
1684
1685 return 0;
1686 }
1687
copy_seccomp(struct task_struct * p)1688 static void copy_seccomp(struct task_struct *p)
1689 {
1690 #ifdef CONFIG_SECCOMP
1691 /*
1692 * Must be called with sighand->lock held, which is common to
1693 * all threads in the group. Holding cred_guard_mutex is not
1694 * needed because this new task is not yet running and cannot
1695 * be racing exec.
1696 */
1697 assert_spin_locked(¤t->sighand->siglock);
1698
1699 /* Ref-count the new filter user, and assign it. */
1700 get_seccomp_filter(current);
1701 p->seccomp = current->seccomp;
1702
1703 /*
1704 * Explicitly enable no_new_privs here in case it got set
1705 * between the task_struct being duplicated and holding the
1706 * sighand lock. The seccomp state and nnp must be in sync.
1707 */
1708 if (task_no_new_privs(current))
1709 task_set_no_new_privs(p);
1710
1711 /*
1712 * If the parent gained a seccomp mode after copying thread
1713 * flags and between before we held the sighand lock, we have
1714 * to manually enable the seccomp thread flag here.
1715 */
1716 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1717 set_task_syscall_work(p, SECCOMP);
1718 #endif
1719 }
1720
SYSCALL_DEFINE1(set_tid_address,int __user *,tidptr)1721 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1722 {
1723 current->clear_child_tid = tidptr;
1724
1725 return task_pid_vnr(current);
1726 }
1727
rt_mutex_init_task(struct task_struct * p)1728 static void rt_mutex_init_task(struct task_struct *p)
1729 {
1730 raw_spin_lock_init(&p->pi_lock);
1731 #ifdef CONFIG_RT_MUTEXES
1732 p->pi_waiters = RB_ROOT_CACHED;
1733 p->pi_top_task = NULL;
1734 p->pi_blocked_on = NULL;
1735 #endif
1736 }
1737
init_task_pid_links(struct task_struct * task)1738 static inline void init_task_pid_links(struct task_struct *task)
1739 {
1740 enum pid_type type;
1741
1742 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type)
1743 INIT_HLIST_NODE(&task->pid_links[type]);
1744 }
1745
1746 static inline void
init_task_pid(struct task_struct * task,enum pid_type type,struct pid * pid)1747 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1748 {
1749 if (type == PIDTYPE_PID)
1750 task->thread_pid = pid;
1751 else
1752 task->signal->pids[type] = pid;
1753 }
1754
rcu_copy_process(struct task_struct * p)1755 static inline void rcu_copy_process(struct task_struct *p)
1756 {
1757 #ifdef CONFIG_PREEMPT_RCU
1758 p->rcu_read_lock_nesting = 0;
1759 p->rcu_read_unlock_special.s = 0;
1760 p->rcu_blocked_node = NULL;
1761 INIT_LIST_HEAD(&p->rcu_node_entry);
1762 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1763 #ifdef CONFIG_TASKS_RCU
1764 p->rcu_tasks_holdout = false;
1765 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1766 p->rcu_tasks_idle_cpu = -1;
1767 #endif /* #ifdef CONFIG_TASKS_RCU */
1768 #ifdef CONFIG_TASKS_TRACE_RCU
1769 p->trc_reader_nesting = 0;
1770 p->trc_reader_special.s = 0;
1771 INIT_LIST_HEAD(&p->trc_holdout_list);
1772 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
1773 }
1774
pidfd_pid(const struct file * file)1775 struct pid *pidfd_pid(const struct file *file)
1776 {
1777 if (file->f_op == &pidfd_fops)
1778 return file->private_data;
1779
1780 return ERR_PTR(-EBADF);
1781 }
1782
pidfd_release(struct inode * inode,struct file * file)1783 static int pidfd_release(struct inode *inode, struct file *file)
1784 {
1785 struct pid *pid = file->private_data;
1786
1787 file->private_data = NULL;
1788 put_pid(pid);
1789 return 0;
1790 }
1791
1792 #ifdef CONFIG_PROC_FS
1793 /**
1794 * pidfd_show_fdinfo - print information about a pidfd
1795 * @m: proc fdinfo file
1796 * @f: file referencing a pidfd
1797 *
1798 * Pid:
1799 * This function will print the pid that a given pidfd refers to in the
1800 * pid namespace of the procfs instance.
1801 * If the pid namespace of the process is not a descendant of the pid
1802 * namespace of the procfs instance 0 will be shown as its pid. This is
1803 * similar to calling getppid() on a process whose parent is outside of
1804 * its pid namespace.
1805 *
1806 * NSpid:
1807 * If pid namespaces are supported then this function will also print
1808 * the pid of a given pidfd refers to for all descendant pid namespaces
1809 * starting from the current pid namespace of the instance, i.e. the
1810 * Pid field and the first entry in the NSpid field will be identical.
1811 * If the pid namespace of the process is not a descendant of the pid
1812 * namespace of the procfs instance 0 will be shown as its first NSpid
1813 * entry and no others will be shown.
1814 * Note that this differs from the Pid and NSpid fields in
1815 * /proc/<pid>/status where Pid and NSpid are always shown relative to
1816 * the pid namespace of the procfs instance. The difference becomes
1817 * obvious when sending around a pidfd between pid namespaces from a
1818 * different branch of the tree, i.e. where no ancestral relation is
1819 * present between the pid namespaces:
1820 * - create two new pid namespaces ns1 and ns2 in the initial pid
1821 * namespace (also take care to create new mount namespaces in the
1822 * new pid namespace and mount procfs)
1823 * - create a process with a pidfd in ns1
1824 * - send pidfd from ns1 to ns2
1825 * - read /proc/self/fdinfo/<pidfd> and observe that both Pid and NSpid
1826 * have exactly one entry, which is 0
1827 */
pidfd_show_fdinfo(struct seq_file * m,struct file * f)1828 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1829 {
1830 struct pid *pid = f->private_data;
1831 struct pid_namespace *ns;
1832 pid_t nr = -1;
1833
1834 if (likely(pid_has_task(pid, PIDTYPE_PID))) {
1835 ns = proc_pid_ns(file_inode(m->file)->i_sb);
1836 nr = pid_nr_ns(pid, ns);
1837 }
1838
1839 seq_put_decimal_ll(m, "Pid:\t", nr);
1840
1841 #ifdef CONFIG_PID_NS
1842 seq_put_decimal_ll(m, "\nNSpid:\t", nr);
1843 if (nr > 0) {
1844 int i;
1845
1846 /* If nr is non-zero it means that 'pid' is valid and that
1847 * ns, i.e. the pid namespace associated with the procfs
1848 * instance, is in the pid namespace hierarchy of pid.
1849 * Start at one below the already printed level.
1850 */
1851 for (i = ns->level + 1; i <= pid->level; i++)
1852 seq_put_decimal_ll(m, "\t", pid->numbers[i].nr);
1853 }
1854 #endif
1855 seq_putc(m, '\n');
1856 }
1857 #endif
1858
1859 /*
1860 * Poll support for process exit notification.
1861 */
pidfd_poll(struct file * file,struct poll_table_struct * pts)1862 static __poll_t pidfd_poll(struct file *file, struct poll_table_struct *pts)
1863 {
1864 struct pid *pid = file->private_data;
1865 __poll_t poll_flags = 0;
1866
1867 poll_wait(file, &pid->wait_pidfd, pts);
1868
1869 /*
1870 * Inform pollers only when the whole thread group exits.
1871 * If the thread group leader exits before all other threads in the
1872 * group, then poll(2) should block, similar to the wait(2) family.
1873 */
1874 if (thread_group_exited(pid))
1875 poll_flags = EPOLLIN | EPOLLRDNORM;
1876
1877 return poll_flags;
1878 }
1879
1880 const struct file_operations pidfd_fops = {
1881 .release = pidfd_release,
1882 .poll = pidfd_poll,
1883 #ifdef CONFIG_PROC_FS
1884 .show_fdinfo = pidfd_show_fdinfo,
1885 #endif
1886 };
1887
__delayed_free_task(struct rcu_head * rhp)1888 static void __delayed_free_task(struct rcu_head *rhp)
1889 {
1890 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1891
1892 free_task(tsk);
1893 }
1894
delayed_free_task(struct task_struct * tsk)1895 static __always_inline void delayed_free_task(struct task_struct *tsk)
1896 {
1897 if (IS_ENABLED(CONFIG_MEMCG))
1898 call_rcu(&tsk->rcu, __delayed_free_task);
1899 else
1900 free_task(tsk);
1901 }
1902
copy_oom_score_adj(u64 clone_flags,struct task_struct * tsk)1903 static void copy_oom_score_adj(u64 clone_flags, struct task_struct *tsk)
1904 {
1905 /* Skip if kernel thread */
1906 if (!tsk->mm)
1907 return;
1908
1909 /* Skip if spawning a thread or using vfork */
1910 if ((clone_flags & (CLONE_VM | CLONE_THREAD | CLONE_VFORK)) != CLONE_VM)
1911 return;
1912
1913 /* We need to synchronize with __set_oom_adj */
1914 mutex_lock(&oom_adj_mutex);
1915 set_bit(MMF_MULTIPROCESS, &tsk->mm->flags);
1916 /* Update the values in case they were changed after copy_signal */
1917 tsk->signal->oom_score_adj = current->signal->oom_score_adj;
1918 tsk->signal->oom_score_adj_min = current->signal->oom_score_adj_min;
1919 mutex_unlock(&oom_adj_mutex);
1920 }
1921
1922 /*
1923 * This creates a new process as a copy of the old one,
1924 * but does not actually start it yet.
1925 *
1926 * It copies the registers, and all the appropriate
1927 * parts of the process environment (as per the clone
1928 * flags). The actual kick-off is left to the caller.
1929 */
copy_process(struct pid * pid,int trace,int node,struct kernel_clone_args * args)1930 static __latent_entropy struct task_struct *copy_process(
1931 struct pid *pid,
1932 int trace,
1933 int node,
1934 struct kernel_clone_args *args)
1935 {
1936 int pidfd = -1, retval;
1937 struct task_struct *p;
1938 struct multiprocess_signals delayed;
1939 struct file *pidfile = NULL;
1940 u64 clone_flags = args->flags;
1941 struct nsproxy *nsp = current->nsproxy;
1942
1943 /*
1944 * Don't allow sharing the root directory with processes in a different
1945 * namespace
1946 */
1947 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1948 return ERR_PTR(-EINVAL);
1949
1950 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1951 return ERR_PTR(-EINVAL);
1952
1953 /*
1954 * Thread groups must share signals as well, and detached threads
1955 * can only be started up within the thread group.
1956 */
1957 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1958 return ERR_PTR(-EINVAL);
1959
1960 /*
1961 * Shared signal handlers imply shared VM. By way of the above,
1962 * thread groups also imply shared VM. Blocking this case allows
1963 * for various simplifications in other code.
1964 */
1965 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1966 return ERR_PTR(-EINVAL);
1967
1968 /*
1969 * Siblings of global init remain as zombies on exit since they are
1970 * not reaped by their parent (swapper). To solve this and to avoid
1971 * multi-rooted process trees, prevent global and container-inits
1972 * from creating siblings.
1973 */
1974 if ((clone_flags & CLONE_PARENT) &&
1975 current->signal->flags & SIGNAL_UNKILLABLE)
1976 return ERR_PTR(-EINVAL);
1977
1978 /*
1979 * If the new process will be in a different pid or user namespace
1980 * do not allow it to share a thread group with the forking task.
1981 */
1982 if (clone_flags & CLONE_THREAD) {
1983 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1984 (task_active_pid_ns(current) != nsp->pid_ns_for_children))
1985 return ERR_PTR(-EINVAL);
1986 }
1987
1988 /*
1989 * If the new process will be in a different time namespace
1990 * do not allow it to share VM or a thread group with the forking task.
1991 */
1992 if (clone_flags & (CLONE_THREAD | CLONE_VM)) {
1993 if (nsp->time_ns != nsp->time_ns_for_children)
1994 return ERR_PTR(-EINVAL);
1995 }
1996
1997 if (clone_flags & CLONE_PIDFD) {
1998 /*
1999 * - CLONE_DETACHED is blocked so that we can potentially
2000 * reuse it later for CLONE_PIDFD.
2001 * - CLONE_THREAD is blocked until someone really needs it.
2002 */
2003 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
2004 return ERR_PTR(-EINVAL);
2005 }
2006
2007 /*
2008 * Force any signals received before this point to be delivered
2009 * before the fork happens. Collect up signals sent to multiple
2010 * processes that happen during the fork and delay them so that
2011 * they appear to happen after the fork.
2012 */
2013 sigemptyset(&delayed.signal);
2014 INIT_HLIST_NODE(&delayed.node);
2015
2016 spin_lock_irq(¤t->sighand->siglock);
2017 if (!(clone_flags & CLONE_THREAD))
2018 hlist_add_head(&delayed.node, ¤t->signal->multiprocess);
2019 recalc_sigpending();
2020 spin_unlock_irq(¤t->sighand->siglock);
2021 retval = -ERESTARTNOINTR;
2022 if (task_sigpending(current))
2023 goto fork_out;
2024
2025 retval = -ENOMEM;
2026 p = dup_task_struct(current, node);
2027 if (!p)
2028 goto fork_out;
2029 if (args->io_thread) {
2030 /*
2031 * Mark us an IO worker, and block any signal that isn't
2032 * fatal or STOP
2033 */
2034 p->flags |= PF_IO_WORKER;
2035 siginitsetinv(&p->blocked, sigmask(SIGKILL)|sigmask(SIGSTOP));
2036 }
2037
2038 /*
2039 * This _must_ happen before we call free_task(), i.e. before we jump
2040 * to any of the bad_fork_* labels. This is to avoid freeing
2041 * p->set_child_tid which is (ab)used as a kthread's data pointer for
2042 * kernel threads (PF_KTHREAD).
2043 */
2044 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
2045 /*
2046 * Clear TID on mm_release()?
2047 */
2048 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
2049
2050 ftrace_graph_init_task(p);
2051
2052 rt_mutex_init_task(p);
2053
2054 lockdep_assert_irqs_enabled();
2055 #ifdef CONFIG_PROVE_LOCKING
2056 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
2057 #endif
2058 retval = -EAGAIN;
2059 if (is_ucounts_overlimit(task_ucounts(p), UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC))) {
2060 if (p->real_cred->user != INIT_USER &&
2061 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
2062 goto bad_fork_free;
2063 }
2064 current->flags &= ~PF_NPROC_EXCEEDED;
2065
2066 retval = copy_creds(p, clone_flags);
2067 if (retval < 0)
2068 goto bad_fork_free;
2069
2070 /*
2071 * If multiple threads are within copy_process(), then this check
2072 * triggers too late. This doesn't hurt, the check is only there
2073 * to stop root fork bombs.
2074 */
2075 retval = -EAGAIN;
2076 if (data_race(nr_threads >= max_threads))
2077 goto bad_fork_cleanup_count;
2078
2079 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
2080 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE | PF_NO_SETAFFINITY);
2081 p->flags |= PF_FORKNOEXEC;
2082 INIT_LIST_HEAD(&p->children);
2083 INIT_LIST_HEAD(&p->sibling);
2084 rcu_copy_process(p);
2085 p->vfork_done = NULL;
2086 spin_lock_init(&p->alloc_lock);
2087
2088 init_sigpending(&p->pending);
2089
2090 p->utime = p->stime = p->gtime = 0;
2091 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
2092 p->utimescaled = p->stimescaled = 0;
2093 #endif
2094 prev_cputime_init(&p->prev_cputime);
2095
2096 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
2097 seqcount_init(&p->vtime.seqcount);
2098 p->vtime.starttime = 0;
2099 p->vtime.state = VTIME_INACTIVE;
2100 #endif
2101
2102 #ifdef CONFIG_IO_URING
2103 p->io_uring = NULL;
2104 #endif
2105
2106 #if defined(SPLIT_RSS_COUNTING)
2107 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
2108 #endif
2109
2110 p->default_timer_slack_ns = current->timer_slack_ns;
2111
2112 #ifdef CONFIG_PSI
2113 p->psi_flags = 0;
2114 #endif
2115
2116 task_io_accounting_init(&p->ioac);
2117 acct_clear_integrals(p);
2118
2119 posix_cputimers_init(&p->posix_cputimers);
2120
2121 p->io_context = NULL;
2122 audit_set_context(p, NULL);
2123 cgroup_fork(p);
2124 #ifdef CONFIG_NUMA
2125 p->mempolicy = mpol_dup(p->mempolicy);
2126 if (IS_ERR(p->mempolicy)) {
2127 retval = PTR_ERR(p->mempolicy);
2128 p->mempolicy = NULL;
2129 goto bad_fork_cleanup_threadgroup_lock;
2130 }
2131 #endif
2132 #ifdef CONFIG_CPUSETS
2133 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
2134 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
2135 seqcount_spinlock_init(&p->mems_allowed_seq, &p->alloc_lock);
2136 #endif
2137 #ifdef CONFIG_TRACE_IRQFLAGS
2138 memset(&p->irqtrace, 0, sizeof(p->irqtrace));
2139 p->irqtrace.hardirq_disable_ip = _THIS_IP_;
2140 p->irqtrace.softirq_enable_ip = _THIS_IP_;
2141 p->softirqs_enabled = 1;
2142 p->softirq_context = 0;
2143 #endif
2144
2145 p->pagefault_disabled = 0;
2146
2147 #ifdef CONFIG_LOCKDEP
2148 lockdep_init_task(p);
2149 #endif
2150
2151 #ifdef CONFIG_DEBUG_MUTEXES
2152 p->blocked_on = NULL; /* not blocked yet */
2153 #endif
2154 #ifdef CONFIG_BCACHE
2155 p->sequential_io = 0;
2156 p->sequential_io_avg = 0;
2157 #endif
2158 #ifdef CONFIG_BPF_SYSCALL
2159 RCU_INIT_POINTER(p->bpf_storage, NULL);
2160 p->bpf_ctx = NULL;
2161 #endif
2162
2163 /* Perform scheduler related setup. Assign this task to a CPU. */
2164 retval = sched_fork(clone_flags, p);
2165 if (retval)
2166 goto bad_fork_cleanup_policy;
2167
2168 retval = perf_event_init_task(p, clone_flags);
2169 if (retval)
2170 goto bad_fork_cleanup_policy;
2171 retval = audit_alloc(p);
2172 if (retval)
2173 goto bad_fork_cleanup_perf;
2174 /* copy all the process information */
2175 shm_init_task(p);
2176 retval = security_task_alloc(p, clone_flags);
2177 if (retval)
2178 goto bad_fork_cleanup_audit;
2179 retval = copy_semundo(clone_flags, p);
2180 if (retval)
2181 goto bad_fork_cleanup_security;
2182 retval = copy_files(clone_flags, p);
2183 if (retval)
2184 goto bad_fork_cleanup_semundo;
2185 retval = copy_fs(clone_flags, p);
2186 if (retval)
2187 goto bad_fork_cleanup_files;
2188 retval = copy_sighand(clone_flags, p);
2189 if (retval)
2190 goto bad_fork_cleanup_fs;
2191 retval = copy_signal(clone_flags, p);
2192 if (retval)
2193 goto bad_fork_cleanup_sighand;
2194 retval = copy_mm(clone_flags, p);
2195 if (retval)
2196 goto bad_fork_cleanup_signal;
2197 retval = copy_namespaces(clone_flags, p);
2198 if (retval)
2199 goto bad_fork_cleanup_mm;
2200 retval = copy_io(clone_flags, p);
2201 if (retval)
2202 goto bad_fork_cleanup_namespaces;
2203 retval = copy_thread(clone_flags, args->stack, args->stack_size, p, args->tls);
2204 if (retval)
2205 goto bad_fork_cleanup_io;
2206
2207 stackleak_task_init(p);
2208
2209 if (pid != &init_struct_pid) {
2210 pid = alloc_pid(p->nsproxy->pid_ns_for_children, args->set_tid,
2211 args->set_tid_size);
2212 if (IS_ERR(pid)) {
2213 retval = PTR_ERR(pid);
2214 goto bad_fork_cleanup_thread;
2215 }
2216 }
2217
2218 /*
2219 * This has to happen after we've potentially unshared the file
2220 * descriptor table (so that the pidfd doesn't leak into the child
2221 * if the fd table isn't shared).
2222 */
2223 if (clone_flags & CLONE_PIDFD) {
2224 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2225 if (retval < 0)
2226 goto bad_fork_free_pid;
2227
2228 pidfd = retval;
2229
2230 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2231 O_RDWR | O_CLOEXEC);
2232 if (IS_ERR(pidfile)) {
2233 put_unused_fd(pidfd);
2234 retval = PTR_ERR(pidfile);
2235 goto bad_fork_free_pid;
2236 }
2237 get_pid(pid); /* held by pidfile now */
2238
2239 retval = put_user(pidfd, args->pidfd);
2240 if (retval)
2241 goto bad_fork_put_pidfd;
2242 }
2243
2244 #ifdef CONFIG_BLOCK
2245 p->plug = NULL;
2246 #endif
2247 futex_init_task(p);
2248
2249 /*
2250 * sigaltstack should be cleared when sharing the same VM
2251 */
2252 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2253 sas_ss_reset(p);
2254
2255 /*
2256 * Syscall tracing and stepping should be turned off in the
2257 * child regardless of CLONE_PTRACE.
2258 */
2259 user_disable_single_step(p);
2260 clear_task_syscall_work(p, SYSCALL_TRACE);
2261 #if defined(CONFIG_GENERIC_ENTRY) || defined(TIF_SYSCALL_EMU)
2262 clear_task_syscall_work(p, SYSCALL_EMU);
2263 #endif
2264 clear_tsk_latency_tracing(p);
2265
2266 /* ok, now we should be set up.. */
2267 p->pid = pid_nr(pid);
2268 if (clone_flags & CLONE_THREAD) {
2269 p->group_leader = current->group_leader;
2270 p->tgid = current->tgid;
2271 } else {
2272 p->group_leader = p;
2273 p->tgid = p->pid;
2274 }
2275
2276 p->nr_dirtied = 0;
2277 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2278 p->dirty_paused_when = 0;
2279
2280 p->pdeath_signal = 0;
2281 INIT_LIST_HEAD(&p->thread_group);
2282 p->task_works = NULL;
2283
2284 #ifdef CONFIG_KRETPROBES
2285 p->kretprobe_instances.first = NULL;
2286 #endif
2287
2288 /*
2289 * Ensure that the cgroup subsystem policies allow the new process to be
2290 * forked. It should be noted that the new process's css_set can be changed
2291 * between here and cgroup_post_fork() if an organisation operation is in
2292 * progress.
2293 */
2294 retval = cgroup_can_fork(p, args);
2295 if (retval)
2296 goto bad_fork_put_pidfd;
2297
2298 /*
2299 * From this point on we must avoid any synchronous user-space
2300 * communication until we take the tasklist-lock. In particular, we do
2301 * not want user-space to be able to predict the process start-time by
2302 * stalling fork(2) after we recorded the start_time but before it is
2303 * visible to the system.
2304 */
2305
2306 p->start_time = ktime_get_ns();
2307 p->start_boottime = ktime_get_boottime_ns();
2308
2309 /*
2310 * Make it visible to the rest of the system, but dont wake it up yet.
2311 * Need tasklist lock for parent etc handling!
2312 */
2313 write_lock_irq(&tasklist_lock);
2314
2315 /* CLONE_PARENT re-uses the old parent */
2316 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2317 p->real_parent = current->real_parent;
2318 p->parent_exec_id = current->parent_exec_id;
2319 if (clone_flags & CLONE_THREAD)
2320 p->exit_signal = -1;
2321 else
2322 p->exit_signal = current->group_leader->exit_signal;
2323 } else {
2324 p->real_parent = current;
2325 p->parent_exec_id = current->self_exec_id;
2326 p->exit_signal = args->exit_signal;
2327 }
2328
2329 klp_copy_process(p);
2330
2331 sched_core_fork(p);
2332
2333 spin_lock(¤t->sighand->siglock);
2334
2335 /*
2336 * Copy seccomp details explicitly here, in case they were changed
2337 * before holding sighand lock.
2338 */
2339 copy_seccomp(p);
2340
2341 rseq_fork(p, clone_flags);
2342
2343 /* Don't start children in a dying pid namespace */
2344 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2345 retval = -ENOMEM;
2346 goto bad_fork_cancel_cgroup;
2347 }
2348
2349 /* Let kill terminate clone/fork in the middle */
2350 if (fatal_signal_pending(current)) {
2351 retval = -EINTR;
2352 goto bad_fork_cancel_cgroup;
2353 }
2354
2355 /* past the last point of failure */
2356 if (pidfile)
2357 fd_install(pidfd, pidfile);
2358
2359 init_task_pid_links(p);
2360 if (likely(p->pid)) {
2361 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2362
2363 init_task_pid(p, PIDTYPE_PID, pid);
2364 if (thread_group_leader(p)) {
2365 init_task_pid(p, PIDTYPE_TGID, pid);
2366 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2367 init_task_pid(p, PIDTYPE_SID, task_session(current));
2368
2369 if (is_child_reaper(pid)) {
2370 ns_of_pid(pid)->child_reaper = p;
2371 p->signal->flags |= SIGNAL_UNKILLABLE;
2372 }
2373 p->signal->shared_pending.signal = delayed.signal;
2374 p->signal->tty = tty_kref_get(current->signal->tty);
2375 /*
2376 * Inherit has_child_subreaper flag under the same
2377 * tasklist_lock with adding child to the process tree
2378 * for propagate_has_child_subreaper optimization.
2379 */
2380 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2381 p->real_parent->signal->is_child_subreaper;
2382 list_add_tail(&p->sibling, &p->real_parent->children);
2383 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2384 attach_pid(p, PIDTYPE_TGID);
2385 attach_pid(p, PIDTYPE_PGID);
2386 attach_pid(p, PIDTYPE_SID);
2387 __this_cpu_inc(process_counts);
2388 } else {
2389 current->signal->nr_threads++;
2390 atomic_inc(¤t->signal->live);
2391 refcount_inc(¤t->signal->sigcnt);
2392 task_join_group_stop(p);
2393 list_add_tail_rcu(&p->thread_group,
2394 &p->group_leader->thread_group);
2395 list_add_tail_rcu(&p->thread_node,
2396 &p->signal->thread_head);
2397 }
2398 attach_pid(p, PIDTYPE_PID);
2399 nr_threads++;
2400 }
2401 total_forks++;
2402 hlist_del_init(&delayed.node);
2403 spin_unlock(¤t->sighand->siglock);
2404 syscall_tracepoint_update(p);
2405 write_unlock_irq(&tasklist_lock);
2406
2407 proc_fork_connector(p);
2408 sched_post_fork(p);
2409 cgroup_post_fork(p, args);
2410 perf_event_fork(p);
2411
2412 trace_task_newtask(p, clone_flags);
2413 uprobe_copy_process(p, clone_flags);
2414
2415 copy_oom_score_adj(clone_flags, p);
2416
2417 return p;
2418
2419 bad_fork_cancel_cgroup:
2420 sched_core_free(p);
2421 spin_unlock(¤t->sighand->siglock);
2422 write_unlock_irq(&tasklist_lock);
2423 cgroup_cancel_fork(p, args);
2424 bad_fork_put_pidfd:
2425 if (clone_flags & CLONE_PIDFD) {
2426 fput(pidfile);
2427 put_unused_fd(pidfd);
2428 }
2429 bad_fork_free_pid:
2430 if (pid != &init_struct_pid)
2431 free_pid(pid);
2432 bad_fork_cleanup_thread:
2433 exit_thread(p);
2434 bad_fork_cleanup_io:
2435 if (p->io_context)
2436 exit_io_context(p);
2437 bad_fork_cleanup_namespaces:
2438 exit_task_namespaces(p);
2439 bad_fork_cleanup_mm:
2440 if (p->mm) {
2441 mm_clear_owner(p->mm, p);
2442 mmput(p->mm);
2443 }
2444 bad_fork_cleanup_signal:
2445 if (!(clone_flags & CLONE_THREAD))
2446 free_signal_struct(p->signal);
2447 bad_fork_cleanup_sighand:
2448 __cleanup_sighand(p->sighand);
2449 bad_fork_cleanup_fs:
2450 exit_fs(p); /* blocking */
2451 bad_fork_cleanup_files:
2452 exit_files(p); /* blocking */
2453 bad_fork_cleanup_semundo:
2454 exit_sem(p);
2455 bad_fork_cleanup_security:
2456 security_task_free(p);
2457 bad_fork_cleanup_audit:
2458 audit_free(p);
2459 bad_fork_cleanup_perf:
2460 perf_event_free_task(p);
2461 bad_fork_cleanup_policy:
2462 lockdep_free_task(p);
2463 #ifdef CONFIG_NUMA
2464 mpol_put(p->mempolicy);
2465 bad_fork_cleanup_threadgroup_lock:
2466 #endif
2467 delayacct_tsk_free(p);
2468 bad_fork_cleanup_count:
2469 dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
2470 exit_creds(p);
2471 bad_fork_free:
2472 WRITE_ONCE(p->__state, TASK_DEAD);
2473 put_task_stack(p);
2474 delayed_free_task(p);
2475 fork_out:
2476 spin_lock_irq(¤t->sighand->siglock);
2477 hlist_del_init(&delayed.node);
2478 spin_unlock_irq(¤t->sighand->siglock);
2479 return ERR_PTR(retval);
2480 }
2481
init_idle_pids(struct task_struct * idle)2482 static inline void init_idle_pids(struct task_struct *idle)
2483 {
2484 enum pid_type type;
2485
2486 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2487 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2488 init_task_pid(idle, type, &init_struct_pid);
2489 }
2490 }
2491
fork_idle(int cpu)2492 struct task_struct * __init fork_idle(int cpu)
2493 {
2494 struct task_struct *task;
2495 struct kernel_clone_args args = {
2496 .flags = CLONE_VM,
2497 };
2498
2499 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2500 if (!IS_ERR(task)) {
2501 init_idle_pids(task);
2502 init_idle(task, cpu);
2503 }
2504
2505 return task;
2506 }
2507
copy_init_mm(void)2508 struct mm_struct *copy_init_mm(void)
2509 {
2510 return dup_mm(NULL, &init_mm);
2511 }
2512
2513 /*
2514 * This is like kernel_clone(), but shaved down and tailored to just
2515 * creating io_uring workers. It returns a created task, or an error pointer.
2516 * The returned task is inactive, and the caller must fire it up through
2517 * wake_up_new_task(p). All signals are blocked in the created task.
2518 */
create_io_thread(int (* fn)(void *),void * arg,int node)2519 struct task_struct *create_io_thread(int (*fn)(void *), void *arg, int node)
2520 {
2521 unsigned long flags = CLONE_FS|CLONE_FILES|CLONE_SIGHAND|CLONE_THREAD|
2522 CLONE_IO;
2523 struct kernel_clone_args args = {
2524 .flags = ((lower_32_bits(flags) | CLONE_VM |
2525 CLONE_UNTRACED) & ~CSIGNAL),
2526 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2527 .stack = (unsigned long)fn,
2528 .stack_size = (unsigned long)arg,
2529 .io_thread = 1,
2530 };
2531
2532 return copy_process(NULL, 0, node, &args);
2533 }
2534
2535 /*
2536 * Ok, this is the main fork-routine.
2537 *
2538 * It copies the process, and if successful kick-starts
2539 * it and waits for it to finish using the VM if required.
2540 *
2541 * args->exit_signal is expected to be checked for sanity by the caller.
2542 */
kernel_clone(struct kernel_clone_args * args)2543 pid_t kernel_clone(struct kernel_clone_args *args)
2544 {
2545 u64 clone_flags = args->flags;
2546 struct completion vfork;
2547 struct pid *pid;
2548 struct task_struct *p;
2549 int trace = 0;
2550 pid_t nr;
2551
2552 /*
2553 * For legacy clone() calls, CLONE_PIDFD uses the parent_tid argument
2554 * to return the pidfd. Hence, CLONE_PIDFD and CLONE_PARENT_SETTID are
2555 * mutually exclusive. With clone3() CLONE_PIDFD has grown a separate
2556 * field in struct clone_args and it still doesn't make sense to have
2557 * them both point at the same memory location. Performing this check
2558 * here has the advantage that we don't need to have a separate helper
2559 * to check for legacy clone().
2560 */
2561 if ((args->flags & CLONE_PIDFD) &&
2562 (args->flags & CLONE_PARENT_SETTID) &&
2563 (args->pidfd == args->parent_tid))
2564 return -EINVAL;
2565
2566 /*
2567 * Determine whether and which event to report to ptracer. When
2568 * called from kernel_thread or CLONE_UNTRACED is explicitly
2569 * requested, no event is reported; otherwise, report if the event
2570 * for the type of forking is enabled.
2571 */
2572 if (!(clone_flags & CLONE_UNTRACED)) {
2573 if (clone_flags & CLONE_VFORK)
2574 trace = PTRACE_EVENT_VFORK;
2575 else if (args->exit_signal != SIGCHLD)
2576 trace = PTRACE_EVENT_CLONE;
2577 else
2578 trace = PTRACE_EVENT_FORK;
2579
2580 if (likely(!ptrace_event_enabled(current, trace)))
2581 trace = 0;
2582 }
2583
2584 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2585 add_latent_entropy();
2586
2587 if (IS_ERR(p))
2588 return PTR_ERR(p);
2589
2590 /*
2591 * Do this prior waking up the new thread - the thread pointer
2592 * might get invalid after that point, if the thread exits quickly.
2593 */
2594 trace_sched_process_fork(current, p);
2595
2596 pid = get_task_pid(p, PIDTYPE_PID);
2597 nr = pid_vnr(pid);
2598
2599 if (clone_flags & CLONE_PARENT_SETTID)
2600 put_user(nr, args->parent_tid);
2601
2602 if (clone_flags & CLONE_VFORK) {
2603 p->vfork_done = &vfork;
2604 init_completion(&vfork);
2605 get_task_struct(p);
2606 }
2607
2608 wake_up_new_task(p);
2609
2610 /* forking complete and child started to run, tell ptracer */
2611 if (unlikely(trace))
2612 ptrace_event_pid(trace, pid);
2613
2614 if (clone_flags & CLONE_VFORK) {
2615 if (!wait_for_vfork_done(p, &vfork))
2616 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2617 }
2618
2619 put_pid(pid);
2620 return nr;
2621 }
2622
2623 /*
2624 * Create a kernel thread.
2625 */
kernel_thread(int (* fn)(void *),void * arg,unsigned long flags)2626 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2627 {
2628 struct kernel_clone_args args = {
2629 .flags = ((lower_32_bits(flags) | CLONE_VM |
2630 CLONE_UNTRACED) & ~CSIGNAL),
2631 .exit_signal = (lower_32_bits(flags) & CSIGNAL),
2632 .stack = (unsigned long)fn,
2633 .stack_size = (unsigned long)arg,
2634 };
2635
2636 return kernel_clone(&args);
2637 }
2638
2639 #ifdef __ARCH_WANT_SYS_FORK
SYSCALL_DEFINE0(fork)2640 SYSCALL_DEFINE0(fork)
2641 {
2642 #ifdef CONFIG_MMU
2643 struct kernel_clone_args args = {
2644 .exit_signal = SIGCHLD,
2645 };
2646
2647 return kernel_clone(&args);
2648 #else
2649 /* can not support in nommu mode */
2650 return -EINVAL;
2651 #endif
2652 }
2653 #endif
2654
2655 #ifdef __ARCH_WANT_SYS_VFORK
SYSCALL_DEFINE0(vfork)2656 SYSCALL_DEFINE0(vfork)
2657 {
2658 struct kernel_clone_args args = {
2659 .flags = CLONE_VFORK | CLONE_VM,
2660 .exit_signal = SIGCHLD,
2661 };
2662
2663 return kernel_clone(&args);
2664 }
2665 #endif
2666
2667 #ifdef __ARCH_WANT_SYS_CLONE
2668 #ifdef CONFIG_CLONE_BACKWARDS
SYSCALL_DEFINE5(clone,unsigned long,clone_flags,unsigned long,newsp,int __user *,parent_tidptr,unsigned long,tls,int __user *,child_tidptr)2669 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2670 int __user *, parent_tidptr,
2671 unsigned long, tls,
2672 int __user *, child_tidptr)
2673 #elif defined(CONFIG_CLONE_BACKWARDS2)
2674 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2675 int __user *, parent_tidptr,
2676 int __user *, child_tidptr,
2677 unsigned long, tls)
2678 #elif defined(CONFIG_CLONE_BACKWARDS3)
2679 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2680 int, stack_size,
2681 int __user *, parent_tidptr,
2682 int __user *, child_tidptr,
2683 unsigned long, tls)
2684 #else
2685 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2686 int __user *, parent_tidptr,
2687 int __user *, child_tidptr,
2688 unsigned long, tls)
2689 #endif
2690 {
2691 struct kernel_clone_args args = {
2692 .flags = (lower_32_bits(clone_flags) & ~CSIGNAL),
2693 .pidfd = parent_tidptr,
2694 .child_tid = child_tidptr,
2695 .parent_tid = parent_tidptr,
2696 .exit_signal = (lower_32_bits(clone_flags) & CSIGNAL),
2697 .stack = newsp,
2698 .tls = tls,
2699 };
2700
2701 return kernel_clone(&args);
2702 }
2703 #endif
2704
2705 #ifdef __ARCH_WANT_SYS_CLONE3
2706
copy_clone_args_from_user(struct kernel_clone_args * kargs,struct clone_args __user * uargs,size_t usize)2707 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2708 struct clone_args __user *uargs,
2709 size_t usize)
2710 {
2711 int err;
2712 struct clone_args args;
2713 pid_t *kset_tid = kargs->set_tid;
2714
2715 BUILD_BUG_ON(offsetofend(struct clone_args, tls) !=
2716 CLONE_ARGS_SIZE_VER0);
2717 BUILD_BUG_ON(offsetofend(struct clone_args, set_tid_size) !=
2718 CLONE_ARGS_SIZE_VER1);
2719 BUILD_BUG_ON(offsetofend(struct clone_args, cgroup) !=
2720 CLONE_ARGS_SIZE_VER2);
2721 BUILD_BUG_ON(sizeof(struct clone_args) != CLONE_ARGS_SIZE_VER2);
2722
2723 if (unlikely(usize > PAGE_SIZE))
2724 return -E2BIG;
2725 if (unlikely(usize < CLONE_ARGS_SIZE_VER0))
2726 return -EINVAL;
2727
2728 err = copy_struct_from_user(&args, sizeof(args), uargs, usize);
2729 if (err)
2730 return err;
2731
2732 if (unlikely(args.set_tid_size > MAX_PID_NS_LEVEL))
2733 return -EINVAL;
2734
2735 if (unlikely(!args.set_tid && args.set_tid_size > 0))
2736 return -EINVAL;
2737
2738 if (unlikely(args.set_tid && args.set_tid_size == 0))
2739 return -EINVAL;
2740
2741 /*
2742 * Verify that higher 32bits of exit_signal are unset and that
2743 * it is a valid signal
2744 */
2745 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2746 !valid_signal(args.exit_signal)))
2747 return -EINVAL;
2748
2749 if ((args.flags & CLONE_INTO_CGROUP) &&
2750 (args.cgroup > INT_MAX || usize < CLONE_ARGS_SIZE_VER2))
2751 return -EINVAL;
2752
2753 *kargs = (struct kernel_clone_args){
2754 .flags = args.flags,
2755 .pidfd = u64_to_user_ptr(args.pidfd),
2756 .child_tid = u64_to_user_ptr(args.child_tid),
2757 .parent_tid = u64_to_user_ptr(args.parent_tid),
2758 .exit_signal = args.exit_signal,
2759 .stack = args.stack,
2760 .stack_size = args.stack_size,
2761 .tls = args.tls,
2762 .set_tid_size = args.set_tid_size,
2763 .cgroup = args.cgroup,
2764 };
2765
2766 if (args.set_tid &&
2767 copy_from_user(kset_tid, u64_to_user_ptr(args.set_tid),
2768 (kargs->set_tid_size * sizeof(pid_t))))
2769 return -EFAULT;
2770
2771 kargs->set_tid = kset_tid;
2772
2773 return 0;
2774 }
2775
2776 /**
2777 * clone3_stack_valid - check and prepare stack
2778 * @kargs: kernel clone args
2779 *
2780 * Verify that the stack arguments userspace gave us are sane.
2781 * In addition, set the stack direction for userspace since it's easy for us to
2782 * determine.
2783 */
clone3_stack_valid(struct kernel_clone_args * kargs)2784 static inline bool clone3_stack_valid(struct kernel_clone_args *kargs)
2785 {
2786 if (kargs->stack == 0) {
2787 if (kargs->stack_size > 0)
2788 return false;
2789 } else {
2790 if (kargs->stack_size == 0)
2791 return false;
2792
2793 if (!access_ok((void __user *)kargs->stack, kargs->stack_size))
2794 return false;
2795
2796 #if !defined(CONFIG_STACK_GROWSUP) && !defined(CONFIG_IA64)
2797 kargs->stack += kargs->stack_size;
2798 #endif
2799 }
2800
2801 return true;
2802 }
2803
clone3_args_valid(struct kernel_clone_args * kargs)2804 static bool clone3_args_valid(struct kernel_clone_args *kargs)
2805 {
2806 /* Verify that no unknown flags are passed along. */
2807 if (kargs->flags &
2808 ~(CLONE_LEGACY_FLAGS | CLONE_CLEAR_SIGHAND | CLONE_INTO_CGROUP))
2809 return false;
2810
2811 /*
2812 * - make the CLONE_DETACHED bit reusable for clone3
2813 * - make the CSIGNAL bits reusable for clone3
2814 */
2815 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2816 return false;
2817
2818 if ((kargs->flags & (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND)) ==
2819 (CLONE_SIGHAND | CLONE_CLEAR_SIGHAND))
2820 return false;
2821
2822 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2823 kargs->exit_signal)
2824 return false;
2825
2826 if (!clone3_stack_valid(kargs))
2827 return false;
2828
2829 return true;
2830 }
2831
2832 /**
2833 * clone3 - create a new process with specific properties
2834 * @uargs: argument structure
2835 * @size: size of @uargs
2836 *
2837 * clone3() is the extensible successor to clone()/clone2().
2838 * It takes a struct as argument that is versioned by its size.
2839 *
2840 * Return: On success, a positive PID for the child process.
2841 * On error, a negative errno number.
2842 */
SYSCALL_DEFINE2(clone3,struct clone_args __user *,uargs,size_t,size)2843 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2844 {
2845 int err;
2846
2847 struct kernel_clone_args kargs;
2848 pid_t set_tid[MAX_PID_NS_LEVEL];
2849
2850 kargs.set_tid = set_tid;
2851
2852 err = copy_clone_args_from_user(&kargs, uargs, size);
2853 if (err)
2854 return err;
2855
2856 if (!clone3_args_valid(&kargs))
2857 return -EINVAL;
2858
2859 return kernel_clone(&kargs);
2860 }
2861 #endif
2862
walk_process_tree(struct task_struct * top,proc_visitor visitor,void * data)2863 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2864 {
2865 struct task_struct *leader, *parent, *child;
2866 int res;
2867
2868 read_lock(&tasklist_lock);
2869 leader = top = top->group_leader;
2870 down:
2871 for_each_thread(leader, parent) {
2872 list_for_each_entry(child, &parent->children, sibling) {
2873 res = visitor(child, data);
2874 if (res) {
2875 if (res < 0)
2876 goto out;
2877 leader = child;
2878 goto down;
2879 }
2880 up:
2881 ;
2882 }
2883 }
2884
2885 if (leader != top) {
2886 child = leader;
2887 parent = child->real_parent;
2888 leader = parent->group_leader;
2889 goto up;
2890 }
2891 out:
2892 read_unlock(&tasklist_lock);
2893 }
2894
2895 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2896 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2897 #endif
2898
sighand_ctor(void * data)2899 static void sighand_ctor(void *data)
2900 {
2901 struct sighand_struct *sighand = data;
2902
2903 spin_lock_init(&sighand->siglock);
2904 init_waitqueue_head(&sighand->signalfd_wqh);
2905 }
2906
proc_caches_init(void)2907 void __init proc_caches_init(void)
2908 {
2909 unsigned int mm_size;
2910
2911 sighand_cachep = kmem_cache_create("sighand_cache",
2912 sizeof(struct sighand_struct), 0,
2913 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2914 SLAB_ACCOUNT, sighand_ctor);
2915 signal_cachep = kmem_cache_create("signal_cache",
2916 sizeof(struct signal_struct), 0,
2917 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2918 NULL);
2919 files_cachep = kmem_cache_create("files_cache",
2920 sizeof(struct files_struct), 0,
2921 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2922 NULL);
2923 fs_cachep = kmem_cache_create("fs_cache",
2924 sizeof(struct fs_struct), 0,
2925 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2926 NULL);
2927
2928 /*
2929 * The mm_cpumask is located at the end of mm_struct, and is
2930 * dynamically sized based on the maximum CPU number this system
2931 * can have, taking hotplug into account (nr_cpu_ids).
2932 */
2933 mm_size = sizeof(struct mm_struct) + cpumask_size();
2934
2935 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2936 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2937 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2938 offsetof(struct mm_struct, saved_auxv),
2939 sizeof_field(struct mm_struct, saved_auxv),
2940 NULL);
2941 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2942 mmap_init();
2943 nsproxy_cache_init();
2944 }
2945
2946 /*
2947 * Check constraints on flags passed to the unshare system call.
2948 */
check_unshare_flags(unsigned long unshare_flags)2949 static int check_unshare_flags(unsigned long unshare_flags)
2950 {
2951 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2952 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2953 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2954 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP|
2955 CLONE_NEWTIME))
2956 return -EINVAL;
2957 /*
2958 * Not implemented, but pretend it works if there is nothing
2959 * to unshare. Note that unsharing the address space or the
2960 * signal handlers also need to unshare the signal queues (aka
2961 * CLONE_THREAD).
2962 */
2963 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2964 if (!thread_group_empty(current))
2965 return -EINVAL;
2966 }
2967 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2968 if (refcount_read(¤t->sighand->count) > 1)
2969 return -EINVAL;
2970 }
2971 if (unshare_flags & CLONE_VM) {
2972 if (!current_is_single_threaded())
2973 return -EINVAL;
2974 }
2975
2976 return 0;
2977 }
2978
2979 /*
2980 * Unshare the filesystem structure if it is being shared
2981 */
unshare_fs(unsigned long unshare_flags,struct fs_struct ** new_fsp)2982 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2983 {
2984 struct fs_struct *fs = current->fs;
2985
2986 if (!(unshare_flags & CLONE_FS) || !fs)
2987 return 0;
2988
2989 /* don't need lock here; in the worst case we'll do useless copy */
2990 if (fs->users == 1)
2991 return 0;
2992
2993 *new_fsp = copy_fs_struct(fs);
2994 if (!*new_fsp)
2995 return -ENOMEM;
2996
2997 return 0;
2998 }
2999
3000 /*
3001 * Unshare file descriptor table if it is being shared
3002 */
unshare_fd(unsigned long unshare_flags,unsigned int max_fds,struct files_struct ** new_fdp)3003 int unshare_fd(unsigned long unshare_flags, unsigned int max_fds,
3004 struct files_struct **new_fdp)
3005 {
3006 struct files_struct *fd = current->files;
3007 int error = 0;
3008
3009 if ((unshare_flags & CLONE_FILES) &&
3010 (fd && atomic_read(&fd->count) > 1)) {
3011 *new_fdp = dup_fd(fd, max_fds, &error);
3012 if (!*new_fdp)
3013 return error;
3014 }
3015
3016 return 0;
3017 }
3018
3019 /*
3020 * unshare allows a process to 'unshare' part of the process
3021 * context which was originally shared using clone. copy_*
3022 * functions used by kernel_clone() cannot be used here directly
3023 * because they modify an inactive task_struct that is being
3024 * constructed. Here we are modifying the current, active,
3025 * task_struct.
3026 */
ksys_unshare(unsigned long unshare_flags)3027 int ksys_unshare(unsigned long unshare_flags)
3028 {
3029 struct fs_struct *fs, *new_fs = NULL;
3030 struct files_struct *fd, *new_fd = NULL;
3031 struct cred *new_cred = NULL;
3032 struct nsproxy *new_nsproxy = NULL;
3033 int do_sysvsem = 0;
3034 int err;
3035
3036 /*
3037 * If unsharing a user namespace must also unshare the thread group
3038 * and unshare the filesystem root and working directories.
3039 */
3040 if (unshare_flags & CLONE_NEWUSER)
3041 unshare_flags |= CLONE_THREAD | CLONE_FS;
3042 /*
3043 * If unsharing vm, must also unshare signal handlers.
3044 */
3045 if (unshare_flags & CLONE_VM)
3046 unshare_flags |= CLONE_SIGHAND;
3047 /*
3048 * If unsharing a signal handlers, must also unshare the signal queues.
3049 */
3050 if (unshare_flags & CLONE_SIGHAND)
3051 unshare_flags |= CLONE_THREAD;
3052 /*
3053 * If unsharing namespace, must also unshare filesystem information.
3054 */
3055 if (unshare_flags & CLONE_NEWNS)
3056 unshare_flags |= CLONE_FS;
3057
3058 err = check_unshare_flags(unshare_flags);
3059 if (err)
3060 goto bad_unshare_out;
3061 /*
3062 * CLONE_NEWIPC must also detach from the undolist: after switching
3063 * to a new ipc namespace, the semaphore arrays from the old
3064 * namespace are unreachable.
3065 */
3066 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
3067 do_sysvsem = 1;
3068 err = unshare_fs(unshare_flags, &new_fs);
3069 if (err)
3070 goto bad_unshare_out;
3071 err = unshare_fd(unshare_flags, NR_OPEN_MAX, &new_fd);
3072 if (err)
3073 goto bad_unshare_cleanup_fs;
3074 err = unshare_userns(unshare_flags, &new_cred);
3075 if (err)
3076 goto bad_unshare_cleanup_fd;
3077 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
3078 new_cred, new_fs);
3079 if (err)
3080 goto bad_unshare_cleanup_cred;
3081
3082 if (new_cred) {
3083 err = set_cred_ucounts(new_cred);
3084 if (err)
3085 goto bad_unshare_cleanup_cred;
3086 }
3087
3088 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
3089 if (do_sysvsem) {
3090 /*
3091 * CLONE_SYSVSEM is equivalent to sys_exit().
3092 */
3093 exit_sem(current);
3094 }
3095 if (unshare_flags & CLONE_NEWIPC) {
3096 /* Orphan segments in old ns (see sem above). */
3097 exit_shm(current);
3098 shm_init_task(current);
3099 }
3100
3101 if (new_nsproxy)
3102 switch_task_namespaces(current, new_nsproxy);
3103
3104 task_lock(current);
3105
3106 if (new_fs) {
3107 fs = current->fs;
3108 spin_lock(&fs->lock);
3109 current->fs = new_fs;
3110 if (--fs->users)
3111 new_fs = NULL;
3112 else
3113 new_fs = fs;
3114 spin_unlock(&fs->lock);
3115 }
3116
3117 if (new_fd) {
3118 fd = current->files;
3119 current->files = new_fd;
3120 new_fd = fd;
3121 }
3122
3123 task_unlock(current);
3124
3125 if (new_cred) {
3126 /* Install the new user namespace */
3127 commit_creds(new_cred);
3128 new_cred = NULL;
3129 }
3130 }
3131
3132 perf_event_namespaces(current);
3133
3134 bad_unshare_cleanup_cred:
3135 if (new_cred)
3136 put_cred(new_cred);
3137 bad_unshare_cleanup_fd:
3138 if (new_fd)
3139 put_files_struct(new_fd);
3140
3141 bad_unshare_cleanup_fs:
3142 if (new_fs)
3143 free_fs_struct(new_fs);
3144
3145 bad_unshare_out:
3146 return err;
3147 }
3148
SYSCALL_DEFINE1(unshare,unsigned long,unshare_flags)3149 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
3150 {
3151 return ksys_unshare(unshare_flags);
3152 }
3153
3154 /*
3155 * Helper to unshare the files of the current task.
3156 * We don't want to expose copy_files internals to
3157 * the exec layer of the kernel.
3158 */
3159
unshare_files(void)3160 int unshare_files(void)
3161 {
3162 struct task_struct *task = current;
3163 struct files_struct *old, *copy = NULL;
3164 int error;
3165
3166 error = unshare_fd(CLONE_FILES, NR_OPEN_MAX, ©);
3167 if (error || !copy)
3168 return error;
3169
3170 old = task->files;
3171 task_lock(task);
3172 task->files = copy;
3173 task_unlock(task);
3174 put_files_struct(old);
3175 return 0;
3176 }
3177
sysctl_max_threads(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)3178 int sysctl_max_threads(struct ctl_table *table, int write,
3179 void *buffer, size_t *lenp, loff_t *ppos)
3180 {
3181 struct ctl_table t;
3182 int ret;
3183 int threads = max_threads;
3184 int min = 1;
3185 int max = MAX_THREADS;
3186
3187 t = *table;
3188 t.data = &threads;
3189 t.extra1 = &min;
3190 t.extra2 = &max;
3191
3192 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
3193 if (ret || !write)
3194 return ret;
3195
3196 max_threads = threads;
3197
3198 return 0;
3199 }
3200