1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/exit.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/mm.h>
9 #include <linux/slab.h>
10 #include <linux/sched/autogroup.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/stat.h>
13 #include <linux/sched/task.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/sched/cputime.h>
16 #include <linux/interrupt.h>
17 #include <linux/module.h>
18 #include <linux/capability.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/tty.h>
22 #include <linux/iocontext.h>
23 #include <linux/key.h>
24 #include <linux/cpu.h>
25 #include <linux/acct.h>
26 #include <linux/tsacct_kern.h>
27 #include <linux/file.h>
28 #include <linux/fdtable.h>
29 #include <linux/freezer.h>
30 #include <linux/binfmts.h>
31 #include <linux/nsproxy.h>
32 #include <linux/pid_namespace.h>
33 #include <linux/ptrace.h>
34 #include <linux/profile.h>
35 #include <linux/mount.h>
36 #include <linux/proc_fs.h>
37 #include <linux/kthread.h>
38 #include <linux/mempolicy.h>
39 #include <linux/taskstats_kern.h>
40 #include <linux/delayacct.h>
41 #include <linux/cgroup.h>
42 #include <linux/syscalls.h>
43 #include <linux/signal.h>
44 #include <linux/posix-timers.h>
45 #include <linux/cn_proc.h>
46 #include <linux/mutex.h>
47 #include <linux/futex.h>
48 #include <linux/pipe_fs_i.h>
49 #include <linux/audit.h> /* for audit_free() */
50 #include <linux/resource.h>
51 #include <linux/blkdev.h>
52 #include <linux/task_io_accounting_ops.h>
53 #include <linux/tracehook.h>
54 #include <linux/fs_struct.h>
55 #include <linux/init_task.h>
56 #include <linux/perf_event.h>
57 #include <trace/events/sched.h>
58 #include <linux/hw_breakpoint.h>
59 #include <linux/oom.h>
60 #include <linux/writeback.h>
61 #include <linux/shm.h>
62 #include <linux/kcov.h>
63 #include <linux/random.h>
64 #include <linux/rcuwait.h>
65 #include <linux/compat.h>
66 #include <linux/io_uring.h>
67 
68 #include <linux/uaccess.h>
69 #include <asm/unistd.h>
70 #include <asm/mmu_context.h>
71 
__unhash_process(struct task_struct * p,bool group_dead)72 static void __unhash_process(struct task_struct *p, bool group_dead)
73 {
74 	nr_threads--;
75 	detach_pid(p, PIDTYPE_PID);
76 	if (group_dead) {
77 		detach_pid(p, PIDTYPE_TGID);
78 		detach_pid(p, PIDTYPE_PGID);
79 		detach_pid(p, PIDTYPE_SID);
80 
81 		list_del_rcu(&p->tasks);
82 		list_del_init(&p->sibling);
83 		__this_cpu_dec(process_counts);
84 	}
85 	list_del_rcu(&p->thread_group);
86 	list_del_rcu(&p->thread_node);
87 }
88 
89 /*
90  * This function expects the tasklist_lock write-locked.
91  */
__exit_signal(struct task_struct * tsk)92 static void __exit_signal(struct task_struct *tsk)
93 {
94 	struct signal_struct *sig = tsk->signal;
95 	bool group_dead = thread_group_leader(tsk);
96 	struct sighand_struct *sighand;
97 	struct tty_struct *tty;
98 	u64 utime, stime;
99 
100 	sighand = rcu_dereference_check(tsk->sighand,
101 					lockdep_tasklist_lock_is_held());
102 	spin_lock(&sighand->siglock);
103 
104 #ifdef CONFIG_POSIX_TIMERS
105 	posix_cpu_timers_exit(tsk);
106 	if (group_dead)
107 		posix_cpu_timers_exit_group(tsk);
108 #endif
109 
110 	if (group_dead) {
111 		tty = sig->tty;
112 		sig->tty = NULL;
113 	} else {
114 		/*
115 		 * If there is any task waiting for the group exit
116 		 * then notify it:
117 		 */
118 		if (sig->notify_count > 0 && !--sig->notify_count)
119 			wake_up_process(sig->group_exit_task);
120 
121 		if (tsk == sig->curr_target)
122 			sig->curr_target = next_thread(tsk);
123 	}
124 
125 	add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
126 			      sizeof(unsigned long long));
127 
128 	/*
129 	 * Accumulate here the counters for all threads as they die. We could
130 	 * skip the group leader because it is the last user of signal_struct,
131 	 * but we want to avoid the race with thread_group_cputime() which can
132 	 * see the empty ->thread_head list.
133 	 */
134 	task_cputime(tsk, &utime, &stime);
135 	write_seqlock(&sig->stats_lock);
136 	sig->utime += utime;
137 	sig->stime += stime;
138 	sig->gtime += task_gtime(tsk);
139 	sig->min_flt += tsk->min_flt;
140 	sig->maj_flt += tsk->maj_flt;
141 	sig->nvcsw += tsk->nvcsw;
142 	sig->nivcsw += tsk->nivcsw;
143 	sig->inblock += task_io_get_inblock(tsk);
144 	sig->oublock += task_io_get_oublock(tsk);
145 	task_io_accounting_add(&sig->ioac, &tsk->ioac);
146 	sig->sum_sched_runtime += tsk->se.sum_exec_runtime;
147 	sig->nr_threads--;
148 	__unhash_process(tsk, group_dead);
149 	write_sequnlock(&sig->stats_lock);
150 
151 	/*
152 	 * Do this under ->siglock, we can race with another thread
153 	 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
154 	 */
155 	flush_sigqueue(&tsk->pending);
156 	tsk->sighand = NULL;
157 	spin_unlock(&sighand->siglock);
158 
159 	__cleanup_sighand(sighand);
160 	clear_tsk_thread_flag(tsk, TIF_SIGPENDING);
161 	if (group_dead) {
162 		flush_sigqueue(&sig->shared_pending);
163 		tty_kref_put(tty);
164 	}
165 }
166 
delayed_put_task_struct(struct rcu_head * rhp)167 static void delayed_put_task_struct(struct rcu_head *rhp)
168 {
169 	struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
170 
171 	perf_event_delayed_put(tsk);
172 	trace_sched_process_free(tsk);
173 	put_task_struct(tsk);
174 }
175 
put_task_struct_rcu_user(struct task_struct * task)176 void put_task_struct_rcu_user(struct task_struct *task)
177 {
178 	if (refcount_dec_and_test(&task->rcu_users))
179 		call_rcu(&task->rcu, delayed_put_task_struct);
180 }
181 
release_task(struct task_struct * p)182 void release_task(struct task_struct *p)
183 {
184 	struct task_struct *leader;
185 	struct pid *thread_pid;
186 	int zap_leader;
187 repeat:
188 	/* don't need to get the RCU readlock here - the process is dead and
189 	 * can't be modifying its own credentials. But shut RCU-lockdep up */
190 	rcu_read_lock();
191 	dec_rlimit_ucounts(task_ucounts(p), UCOUNT_RLIMIT_NPROC, 1);
192 	rcu_read_unlock();
193 
194 	cgroup_release(p);
195 
196 	write_lock_irq(&tasklist_lock);
197 	ptrace_release_task(p);
198 	thread_pid = get_pid(p->thread_pid);
199 	__exit_signal(p);
200 
201 	/*
202 	 * If we are the last non-leader member of the thread
203 	 * group, and the leader is zombie, then notify the
204 	 * group leader's parent process. (if it wants notification.)
205 	 */
206 	zap_leader = 0;
207 	leader = p->group_leader;
208 	if (leader != p && thread_group_empty(leader)
209 			&& leader->exit_state == EXIT_ZOMBIE) {
210 		/*
211 		 * If we were the last child thread and the leader has
212 		 * exited already, and the leader's parent ignores SIGCHLD,
213 		 * then we are the one who should release the leader.
214 		 */
215 		zap_leader = do_notify_parent(leader, leader->exit_signal);
216 		if (zap_leader)
217 			leader->exit_state = EXIT_DEAD;
218 	}
219 
220 	write_unlock_irq(&tasklist_lock);
221 	seccomp_filter_release(p);
222 	proc_flush_pid(thread_pid);
223 	put_pid(thread_pid);
224 	release_thread(p);
225 	put_task_struct_rcu_user(p);
226 
227 	p = leader;
228 	if (unlikely(zap_leader))
229 		goto repeat;
230 }
231 
rcuwait_wake_up(struct rcuwait * w)232 int rcuwait_wake_up(struct rcuwait *w)
233 {
234 	int ret = 0;
235 	struct task_struct *task;
236 
237 	rcu_read_lock();
238 
239 	/*
240 	 * Order condition vs @task, such that everything prior to the load
241 	 * of @task is visible. This is the condition as to why the user called
242 	 * rcuwait_wake() in the first place. Pairs with set_current_state()
243 	 * barrier (A) in rcuwait_wait_event().
244 	 *
245 	 *    WAIT                WAKE
246 	 *    [S] tsk = current	  [S] cond = true
247 	 *        MB (A)	      MB (B)
248 	 *    [L] cond		  [L] tsk
249 	 */
250 	smp_mb(); /* (B) */
251 
252 	task = rcu_dereference(w->task);
253 	if (task)
254 		ret = wake_up_process(task);
255 	rcu_read_unlock();
256 
257 	return ret;
258 }
259 EXPORT_SYMBOL_GPL(rcuwait_wake_up);
260 
261 /*
262  * Determine if a process group is "orphaned", according to the POSIX
263  * definition in 2.2.2.52.  Orphaned process groups are not to be affected
264  * by terminal-generated stop signals.  Newly orphaned process groups are
265  * to receive a SIGHUP and a SIGCONT.
266  *
267  * "I ask you, have you ever known what it is to be an orphan?"
268  */
will_become_orphaned_pgrp(struct pid * pgrp,struct task_struct * ignored_task)269 static int will_become_orphaned_pgrp(struct pid *pgrp,
270 					struct task_struct *ignored_task)
271 {
272 	struct task_struct *p;
273 
274 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
275 		if ((p == ignored_task) ||
276 		    (p->exit_state && thread_group_empty(p)) ||
277 		    is_global_init(p->real_parent))
278 			continue;
279 
280 		if (task_pgrp(p->real_parent) != pgrp &&
281 		    task_session(p->real_parent) == task_session(p))
282 			return 0;
283 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
284 
285 	return 1;
286 }
287 
is_current_pgrp_orphaned(void)288 int is_current_pgrp_orphaned(void)
289 {
290 	int retval;
291 
292 	read_lock(&tasklist_lock);
293 	retval = will_become_orphaned_pgrp(task_pgrp(current), NULL);
294 	read_unlock(&tasklist_lock);
295 
296 	return retval;
297 }
298 
has_stopped_jobs(struct pid * pgrp)299 static bool has_stopped_jobs(struct pid *pgrp)
300 {
301 	struct task_struct *p;
302 
303 	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
304 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
305 			return true;
306 	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
307 
308 	return false;
309 }
310 
311 /*
312  * Check to see if any process groups have become orphaned as
313  * a result of our exiting, and if they have any stopped jobs,
314  * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
315  */
316 static void
kill_orphaned_pgrp(struct task_struct * tsk,struct task_struct * parent)317 kill_orphaned_pgrp(struct task_struct *tsk, struct task_struct *parent)
318 {
319 	struct pid *pgrp = task_pgrp(tsk);
320 	struct task_struct *ignored_task = tsk;
321 
322 	if (!parent)
323 		/* exit: our father is in a different pgrp than
324 		 * we are and we were the only connection outside.
325 		 */
326 		parent = tsk->real_parent;
327 	else
328 		/* reparent: our child is in a different pgrp than
329 		 * we are, and it was the only connection outside.
330 		 */
331 		ignored_task = NULL;
332 
333 	if (task_pgrp(parent) != pgrp &&
334 	    task_session(parent) == task_session(tsk) &&
335 	    will_become_orphaned_pgrp(pgrp, ignored_task) &&
336 	    has_stopped_jobs(pgrp)) {
337 		__kill_pgrp_info(SIGHUP, SEND_SIG_PRIV, pgrp);
338 		__kill_pgrp_info(SIGCONT, SEND_SIG_PRIV, pgrp);
339 	}
340 }
341 
342 #ifdef CONFIG_MEMCG
343 /*
344  * A task is exiting.   If it owned this mm, find a new owner for the mm.
345  */
mm_update_next_owner(struct mm_struct * mm)346 void mm_update_next_owner(struct mm_struct *mm)
347 {
348 	struct task_struct *c, *g, *p = current;
349 
350 retry:
351 	/*
352 	 * If the exiting or execing task is not the owner, it's
353 	 * someone else's problem.
354 	 */
355 	if (mm->owner != p)
356 		return;
357 	/*
358 	 * The current owner is exiting/execing and there are no other
359 	 * candidates.  Do not leave the mm pointing to a possibly
360 	 * freed task structure.
361 	 */
362 	if (atomic_read(&mm->mm_users) <= 1) {
363 		WRITE_ONCE(mm->owner, NULL);
364 		return;
365 	}
366 
367 	read_lock(&tasklist_lock);
368 	/*
369 	 * Search in the children
370 	 */
371 	list_for_each_entry(c, &p->children, sibling) {
372 		if (c->mm == mm)
373 			goto assign_new_owner;
374 	}
375 
376 	/*
377 	 * Search in the siblings
378 	 */
379 	list_for_each_entry(c, &p->real_parent->children, sibling) {
380 		if (c->mm == mm)
381 			goto assign_new_owner;
382 	}
383 
384 	/*
385 	 * Search through everything else, we should not get here often.
386 	 */
387 	for_each_process(g) {
388 		if (g->flags & PF_KTHREAD)
389 			continue;
390 		for_each_thread(g, c) {
391 			if (c->mm == mm)
392 				goto assign_new_owner;
393 			if (c->mm)
394 				break;
395 		}
396 	}
397 	read_unlock(&tasklist_lock);
398 	/*
399 	 * We found no owner yet mm_users > 1: this implies that we are
400 	 * most likely racing with swapoff (try_to_unuse()) or /proc or
401 	 * ptrace or page migration (get_task_mm()).  Mark owner as NULL.
402 	 */
403 	WRITE_ONCE(mm->owner, NULL);
404 	return;
405 
406 assign_new_owner:
407 	BUG_ON(c == p);
408 	get_task_struct(c);
409 	/*
410 	 * The task_lock protects c->mm from changing.
411 	 * We always want mm->owner->mm == mm
412 	 */
413 	task_lock(c);
414 	/*
415 	 * Delay read_unlock() till we have the task_lock()
416 	 * to ensure that c does not slip away underneath us
417 	 */
418 	read_unlock(&tasklist_lock);
419 	if (c->mm != mm) {
420 		task_unlock(c);
421 		put_task_struct(c);
422 		goto retry;
423 	}
424 	WRITE_ONCE(mm->owner, c);
425 	task_unlock(c);
426 	put_task_struct(c);
427 }
428 #endif /* CONFIG_MEMCG */
429 
430 /*
431  * Turn us into a lazy TLB process if we
432  * aren't already..
433  */
exit_mm(void)434 static void exit_mm(void)
435 {
436 	struct mm_struct *mm = current->mm;
437 	struct core_state *core_state;
438 
439 	exit_mm_release(current, mm);
440 	if (!mm)
441 		return;
442 	sync_mm_rss(mm);
443 	/*
444 	 * Serialize with any possible pending coredump.
445 	 * We must hold mmap_lock around checking core_state
446 	 * and clearing tsk->mm.  The core-inducing thread
447 	 * will increment ->nr_threads for each thread in the
448 	 * group with ->mm != NULL.
449 	 */
450 	mmap_read_lock(mm);
451 	core_state = mm->core_state;
452 	if (core_state) {
453 		struct core_thread self;
454 
455 		mmap_read_unlock(mm);
456 
457 		self.task = current;
458 		if (self.task->flags & PF_SIGNALED)
459 			self.next = xchg(&core_state->dumper.next, &self);
460 		else
461 			self.task = NULL;
462 		/*
463 		 * Implies mb(), the result of xchg() must be visible
464 		 * to core_state->dumper.
465 		 */
466 		if (atomic_dec_and_test(&core_state->nr_threads))
467 			complete(&core_state->startup);
468 
469 		for (;;) {
470 			set_current_state(TASK_UNINTERRUPTIBLE);
471 			if (!self.task) /* see coredump_finish() */
472 				break;
473 			freezable_schedule();
474 		}
475 		__set_current_state(TASK_RUNNING);
476 		mmap_read_lock(mm);
477 	}
478 	mmgrab(mm);
479 	BUG_ON(mm != current->active_mm);
480 	/* more a memory barrier than a real lock */
481 	task_lock(current);
482 	/*
483 	 * When a thread stops operating on an address space, the loop
484 	 * in membarrier_private_expedited() may not observe that
485 	 * tsk->mm, and the loop in membarrier_global_expedited() may
486 	 * not observe a MEMBARRIER_STATE_GLOBAL_EXPEDITED
487 	 * rq->membarrier_state, so those would not issue an IPI.
488 	 * Membarrier requires a memory barrier after accessing
489 	 * user-space memory, before clearing tsk->mm or the
490 	 * rq->membarrier_state.
491 	 */
492 	smp_mb__after_spinlock();
493 	local_irq_disable();
494 	current->mm = NULL;
495 	membarrier_update_current_mm(NULL);
496 	enter_lazy_tlb(mm, current);
497 	local_irq_enable();
498 	task_unlock(current);
499 	mmap_read_unlock(mm);
500 	mm_update_next_owner(mm);
501 	mmput(mm);
502 	if (test_thread_flag(TIF_MEMDIE))
503 		exit_oom_victim();
504 }
505 
find_alive_thread(struct task_struct * p)506 static struct task_struct *find_alive_thread(struct task_struct *p)
507 {
508 	struct task_struct *t;
509 
510 	for_each_thread(p, t) {
511 		if (!(t->flags & PF_EXITING))
512 			return t;
513 	}
514 	return NULL;
515 }
516 
find_child_reaper(struct task_struct * father,struct list_head * dead)517 static struct task_struct *find_child_reaper(struct task_struct *father,
518 						struct list_head *dead)
519 	__releases(&tasklist_lock)
520 	__acquires(&tasklist_lock)
521 {
522 	struct pid_namespace *pid_ns = task_active_pid_ns(father);
523 	struct task_struct *reaper = pid_ns->child_reaper;
524 	struct task_struct *p, *n;
525 
526 	if (likely(reaper != father))
527 		return reaper;
528 
529 	reaper = find_alive_thread(father);
530 	if (reaper) {
531 		pid_ns->child_reaper = reaper;
532 		return reaper;
533 	}
534 
535 	write_unlock_irq(&tasklist_lock);
536 
537 	list_for_each_entry_safe(p, n, dead, ptrace_entry) {
538 		list_del_init(&p->ptrace_entry);
539 		release_task(p);
540 	}
541 
542 	zap_pid_ns_processes(pid_ns);
543 	write_lock_irq(&tasklist_lock);
544 
545 	return father;
546 }
547 
548 /*
549  * When we die, we re-parent all our children, and try to:
550  * 1. give them to another thread in our thread group, if such a member exists
551  * 2. give it to the first ancestor process which prctl'd itself as a
552  *    child_subreaper for its children (like a service manager)
553  * 3. give it to the init process (PID 1) in our pid namespace
554  */
find_new_reaper(struct task_struct * father,struct task_struct * child_reaper)555 static struct task_struct *find_new_reaper(struct task_struct *father,
556 					   struct task_struct *child_reaper)
557 {
558 	struct task_struct *thread, *reaper;
559 
560 	thread = find_alive_thread(father);
561 	if (thread)
562 		return thread;
563 
564 	if (father->signal->has_child_subreaper) {
565 		unsigned int ns_level = task_pid(father)->level;
566 		/*
567 		 * Find the first ->is_child_subreaper ancestor in our pid_ns.
568 		 * We can't check reaper != child_reaper to ensure we do not
569 		 * cross the namespaces, the exiting parent could be injected
570 		 * by setns() + fork().
571 		 * We check pid->level, this is slightly more efficient than
572 		 * task_active_pid_ns(reaper) != task_active_pid_ns(father).
573 		 */
574 		for (reaper = father->real_parent;
575 		     task_pid(reaper)->level == ns_level;
576 		     reaper = reaper->real_parent) {
577 			if (reaper == &init_task)
578 				break;
579 			if (!reaper->signal->is_child_subreaper)
580 				continue;
581 			thread = find_alive_thread(reaper);
582 			if (thread)
583 				return thread;
584 		}
585 	}
586 
587 	return child_reaper;
588 }
589 
590 /*
591 * Any that need to be release_task'd are put on the @dead list.
592  */
reparent_leader(struct task_struct * father,struct task_struct * p,struct list_head * dead)593 static void reparent_leader(struct task_struct *father, struct task_struct *p,
594 				struct list_head *dead)
595 {
596 	if (unlikely(p->exit_state == EXIT_DEAD))
597 		return;
598 
599 	/* We don't want people slaying init. */
600 	p->exit_signal = SIGCHLD;
601 
602 	/* If it has exited notify the new parent about this child's death. */
603 	if (!p->ptrace &&
604 	    p->exit_state == EXIT_ZOMBIE && thread_group_empty(p)) {
605 		if (do_notify_parent(p, p->exit_signal)) {
606 			p->exit_state = EXIT_DEAD;
607 			list_add(&p->ptrace_entry, dead);
608 		}
609 	}
610 
611 	kill_orphaned_pgrp(p, father);
612 }
613 
614 /*
615  * This does two things:
616  *
617  * A.  Make init inherit all the child processes
618  * B.  Check to see if any process groups have become orphaned
619  *	as a result of our exiting, and if they have any stopped
620  *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2)
621  */
forget_original_parent(struct task_struct * father,struct list_head * dead)622 static void forget_original_parent(struct task_struct *father,
623 					struct list_head *dead)
624 {
625 	struct task_struct *p, *t, *reaper;
626 
627 	if (unlikely(!list_empty(&father->ptraced)))
628 		exit_ptrace(father, dead);
629 
630 	/* Can drop and reacquire tasklist_lock */
631 	reaper = find_child_reaper(father, dead);
632 	if (list_empty(&father->children))
633 		return;
634 
635 	reaper = find_new_reaper(father, reaper);
636 	list_for_each_entry(p, &father->children, sibling) {
637 		for_each_thread(p, t) {
638 			RCU_INIT_POINTER(t->real_parent, reaper);
639 			BUG_ON((!t->ptrace) != (rcu_access_pointer(t->parent) == father));
640 			if (likely(!t->ptrace))
641 				t->parent = t->real_parent;
642 			if (t->pdeath_signal)
643 				group_send_sig_info(t->pdeath_signal,
644 						    SEND_SIG_NOINFO, t,
645 						    PIDTYPE_TGID);
646 		}
647 		/*
648 		 * If this is a threaded reparent there is no need to
649 		 * notify anyone anything has happened.
650 		 */
651 		if (!same_thread_group(reaper, father))
652 			reparent_leader(father, p, dead);
653 	}
654 	list_splice_tail_init(&father->children, &reaper->children);
655 }
656 
657 /*
658  * Send signals to all our closest relatives so that they know
659  * to properly mourn us..
660  */
exit_notify(struct task_struct * tsk,int group_dead)661 static void exit_notify(struct task_struct *tsk, int group_dead)
662 {
663 	bool autoreap;
664 	struct task_struct *p, *n;
665 	LIST_HEAD(dead);
666 
667 	write_lock_irq(&tasklist_lock);
668 	forget_original_parent(tsk, &dead);
669 
670 	if (group_dead)
671 		kill_orphaned_pgrp(tsk->group_leader, NULL);
672 
673 	tsk->exit_state = EXIT_ZOMBIE;
674 	if (unlikely(tsk->ptrace)) {
675 		int sig = thread_group_leader(tsk) &&
676 				thread_group_empty(tsk) &&
677 				!ptrace_reparented(tsk) ?
678 			tsk->exit_signal : SIGCHLD;
679 		autoreap = do_notify_parent(tsk, sig);
680 	} else if (thread_group_leader(tsk)) {
681 		autoreap = thread_group_empty(tsk) &&
682 			do_notify_parent(tsk, tsk->exit_signal);
683 	} else {
684 		autoreap = true;
685 	}
686 
687 	if (autoreap) {
688 		tsk->exit_state = EXIT_DEAD;
689 		list_add(&tsk->ptrace_entry, &dead);
690 	}
691 
692 	/* mt-exec, de_thread() is waiting for group leader */
693 	if (unlikely(tsk->signal->notify_count < 0))
694 		wake_up_process(tsk->signal->group_exit_task);
695 	write_unlock_irq(&tasklist_lock);
696 
697 	list_for_each_entry_safe(p, n, &dead, ptrace_entry) {
698 		list_del_init(&p->ptrace_entry);
699 		release_task(p);
700 	}
701 }
702 
703 #ifdef CONFIG_DEBUG_STACK_USAGE
check_stack_usage(void)704 static void check_stack_usage(void)
705 {
706 	static DEFINE_SPINLOCK(low_water_lock);
707 	static int lowest_to_date = THREAD_SIZE;
708 	unsigned long free;
709 
710 	free = stack_not_used(current);
711 
712 	if (free >= lowest_to_date)
713 		return;
714 
715 	spin_lock(&low_water_lock);
716 	if (free < lowest_to_date) {
717 		pr_info("%s (%d) used greatest stack depth: %lu bytes left\n",
718 			current->comm, task_pid_nr(current), free);
719 		lowest_to_date = free;
720 	}
721 	spin_unlock(&low_water_lock);
722 }
723 #else
check_stack_usage(void)724 static inline void check_stack_usage(void) {}
725 #endif
726 
do_exit(long code)727 void __noreturn do_exit(long code)
728 {
729 	struct task_struct *tsk = current;
730 	int group_dead;
731 
732 	/*
733 	 * We can get here from a kernel oops, sometimes with preemption off.
734 	 * Start by checking for critical errors.
735 	 * Then fix up important state like USER_DS and preemption.
736 	 * Then do everything else.
737 	 */
738 
739 	WARN_ON(blk_needs_flush_plug(tsk));
740 
741 	if (unlikely(in_interrupt()))
742 		panic("Aiee, killing interrupt handler!");
743 	if (unlikely(!tsk->pid))
744 		panic("Attempted to kill the idle task!");
745 
746 	/*
747 	 * If do_exit is called because this processes oopsed, it's possible
748 	 * that get_fs() was left as KERNEL_DS, so reset it to USER_DS before
749 	 * continuing. Amongst other possible reasons, this is to prevent
750 	 * mm_release()->clear_child_tid() from writing to a user-controlled
751 	 * kernel address.
752 	 */
753 	force_uaccess_begin();
754 
755 	if (unlikely(in_atomic())) {
756 		pr_info("note: %s[%d] exited with preempt_count %d\n",
757 			current->comm, task_pid_nr(current),
758 			preempt_count());
759 		preempt_count_set(PREEMPT_ENABLED);
760 	}
761 
762 	profile_task_exit(tsk);
763 	kcov_task_exit(tsk);
764 
765 	ptrace_event(PTRACE_EVENT_EXIT, code);
766 
767 	validate_creds_for_do_exit(tsk);
768 
769 	/*
770 	 * We're taking recursive faults here in do_exit. Safest is to just
771 	 * leave this task alone and wait for reboot.
772 	 */
773 	if (unlikely(tsk->flags & PF_EXITING)) {
774 		pr_alert("Fixing recursive fault but reboot is needed!\n");
775 		futex_exit_recursive(tsk);
776 		set_current_state(TASK_UNINTERRUPTIBLE);
777 		schedule();
778 	}
779 
780 	io_uring_files_cancel();
781 	exit_signals(tsk);  /* sets PF_EXITING */
782 
783 	/* sync mm's RSS info before statistics gathering */
784 	if (tsk->mm)
785 		sync_mm_rss(tsk->mm);
786 	acct_update_integrals(tsk);
787 	group_dead = atomic_dec_and_test(&tsk->signal->live);
788 	if (group_dead) {
789 		/*
790 		 * If the last thread of global init has exited, panic
791 		 * immediately to get a useable coredump.
792 		 */
793 		if (unlikely(is_global_init(tsk)))
794 			panic("Attempted to kill init! exitcode=0x%08x\n",
795 				tsk->signal->group_exit_code ?: (int)code);
796 
797 #ifdef CONFIG_POSIX_TIMERS
798 		hrtimer_cancel(&tsk->signal->real_timer);
799 		exit_itimers(tsk->signal);
800 #endif
801 		if (tsk->mm)
802 			setmax_mm_hiwater_rss(&tsk->signal->maxrss, tsk->mm);
803 	}
804 	acct_collect(code, group_dead);
805 	if (group_dead)
806 		tty_audit_exit();
807 	audit_free(tsk);
808 
809 	tsk->exit_code = code;
810 	taskstats_exit(tsk, group_dead);
811 
812 	exit_mm();
813 
814 	if (group_dead)
815 		acct_process();
816 	trace_sched_process_exit(tsk);
817 
818 	exit_sem(tsk);
819 	exit_shm(tsk);
820 	exit_files(tsk);
821 	exit_fs(tsk);
822 	if (group_dead)
823 		disassociate_ctty(1);
824 	exit_task_namespaces(tsk);
825 	exit_task_work(tsk);
826 	exit_thread(tsk);
827 
828 	/*
829 	 * Flush inherited counters to the parent - before the parent
830 	 * gets woken up by child-exit notifications.
831 	 *
832 	 * because of cgroup mode, must be called before cgroup_exit()
833 	 */
834 	perf_event_exit_task(tsk);
835 
836 	sched_autogroup_exit_task(tsk);
837 	cgroup_exit(tsk);
838 
839 	/*
840 	 * FIXME: do that only when needed, using sched_exit tracepoint
841 	 */
842 	flush_ptrace_hw_breakpoint(tsk);
843 
844 	exit_tasks_rcu_start();
845 	exit_notify(tsk, group_dead);
846 	proc_exit_connector(tsk);
847 	mpol_put_task_policy(tsk);
848 #ifdef CONFIG_FUTEX
849 	if (unlikely(current->pi_state_cache))
850 		kfree(current->pi_state_cache);
851 #endif
852 	/*
853 	 * Make sure we are holding no locks:
854 	 */
855 	debug_check_no_locks_held();
856 
857 	if (tsk->io_context)
858 		exit_io_context(tsk);
859 
860 	if (tsk->splice_pipe)
861 		free_pipe_info(tsk->splice_pipe);
862 
863 	if (tsk->task_frag.page)
864 		put_page(tsk->task_frag.page);
865 
866 	validate_creds_for_do_exit(tsk);
867 
868 	check_stack_usage();
869 	preempt_disable();
870 	if (tsk->nr_dirtied)
871 		__this_cpu_add(dirty_throttle_leaks, tsk->nr_dirtied);
872 	exit_rcu();
873 	exit_tasks_rcu_finish();
874 
875 	lockdep_free_task(tsk);
876 	do_task_dead();
877 }
878 EXPORT_SYMBOL_GPL(do_exit);
879 
complete_and_exit(struct completion * comp,long code)880 void complete_and_exit(struct completion *comp, long code)
881 {
882 	if (comp)
883 		complete(comp);
884 
885 	do_exit(code);
886 }
887 EXPORT_SYMBOL(complete_and_exit);
888 
SYSCALL_DEFINE1(exit,int,error_code)889 SYSCALL_DEFINE1(exit, int, error_code)
890 {
891 	do_exit((error_code&0xff)<<8);
892 }
893 
894 /*
895  * Take down every thread in the group.  This is called by fatal signals
896  * as well as by sys_exit_group (below).
897  */
898 void
do_group_exit(int exit_code)899 do_group_exit(int exit_code)
900 {
901 	struct signal_struct *sig = current->signal;
902 
903 	BUG_ON(exit_code & 0x80); /* core dumps don't get here */
904 
905 	if (signal_group_exit(sig))
906 		exit_code = sig->group_exit_code;
907 	else if (!thread_group_empty(current)) {
908 		struct sighand_struct *const sighand = current->sighand;
909 
910 		spin_lock_irq(&sighand->siglock);
911 		if (signal_group_exit(sig))
912 			/* Another thread got here before we took the lock.  */
913 			exit_code = sig->group_exit_code;
914 		else {
915 			sig->group_exit_code = exit_code;
916 			sig->flags = SIGNAL_GROUP_EXIT;
917 			zap_other_threads(current);
918 		}
919 		spin_unlock_irq(&sighand->siglock);
920 	}
921 
922 	do_exit(exit_code);
923 	/* NOTREACHED */
924 }
925 
926 /*
927  * this kills every thread in the thread group. Note that any externally
928  * wait4()-ing process will get the correct exit code - even if this
929  * thread is not the thread group leader.
930  */
SYSCALL_DEFINE1(exit_group,int,error_code)931 SYSCALL_DEFINE1(exit_group, int, error_code)
932 {
933 	do_group_exit((error_code & 0xff) << 8);
934 	/* NOTREACHED */
935 	return 0;
936 }
937 
938 struct waitid_info {
939 	pid_t pid;
940 	uid_t uid;
941 	int status;
942 	int cause;
943 };
944 
945 struct wait_opts {
946 	enum pid_type		wo_type;
947 	int			wo_flags;
948 	struct pid		*wo_pid;
949 
950 	struct waitid_info	*wo_info;
951 	int			wo_stat;
952 	struct rusage		*wo_rusage;
953 
954 	wait_queue_entry_t		child_wait;
955 	int			notask_error;
956 };
957 
eligible_pid(struct wait_opts * wo,struct task_struct * p)958 static int eligible_pid(struct wait_opts *wo, struct task_struct *p)
959 {
960 	return	wo->wo_type == PIDTYPE_MAX ||
961 		task_pid_type(p, wo->wo_type) == wo->wo_pid;
962 }
963 
964 static int
eligible_child(struct wait_opts * wo,bool ptrace,struct task_struct * p)965 eligible_child(struct wait_opts *wo, bool ptrace, struct task_struct *p)
966 {
967 	if (!eligible_pid(wo, p))
968 		return 0;
969 
970 	/*
971 	 * Wait for all children (clone and not) if __WALL is set or
972 	 * if it is traced by us.
973 	 */
974 	if (ptrace || (wo->wo_flags & __WALL))
975 		return 1;
976 
977 	/*
978 	 * Otherwise, wait for clone children *only* if __WCLONE is set;
979 	 * otherwise, wait for non-clone children *only*.
980 	 *
981 	 * Note: a "clone" child here is one that reports to its parent
982 	 * using a signal other than SIGCHLD, or a non-leader thread which
983 	 * we can only see if it is traced by us.
984 	 */
985 	if ((p->exit_signal != SIGCHLD) ^ !!(wo->wo_flags & __WCLONE))
986 		return 0;
987 
988 	return 1;
989 }
990 
991 /*
992  * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold
993  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
994  * the lock and this task is uninteresting.  If we return nonzero, we have
995  * released the lock and the system call should return.
996  */
wait_task_zombie(struct wait_opts * wo,struct task_struct * p)997 static int wait_task_zombie(struct wait_opts *wo, struct task_struct *p)
998 {
999 	int state, status;
1000 	pid_t pid = task_pid_vnr(p);
1001 	uid_t uid = from_kuid_munged(current_user_ns(), task_uid(p));
1002 	struct waitid_info *infop;
1003 
1004 	if (!likely(wo->wo_flags & WEXITED))
1005 		return 0;
1006 
1007 	if (unlikely(wo->wo_flags & WNOWAIT)) {
1008 		status = p->exit_code;
1009 		get_task_struct(p);
1010 		read_unlock(&tasklist_lock);
1011 		sched_annotate_sleep();
1012 		if (wo->wo_rusage)
1013 			getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1014 		put_task_struct(p);
1015 		goto out_info;
1016 	}
1017 	/*
1018 	 * Move the task's state to DEAD/TRACE, only one thread can do this.
1019 	 */
1020 	state = (ptrace_reparented(p) && thread_group_leader(p)) ?
1021 		EXIT_TRACE : EXIT_DEAD;
1022 	if (cmpxchg(&p->exit_state, EXIT_ZOMBIE, state) != EXIT_ZOMBIE)
1023 		return 0;
1024 	/*
1025 	 * We own this thread, nobody else can reap it.
1026 	 */
1027 	read_unlock(&tasklist_lock);
1028 	sched_annotate_sleep();
1029 
1030 	/*
1031 	 * Check thread_group_leader() to exclude the traced sub-threads.
1032 	 */
1033 	if (state == EXIT_DEAD && thread_group_leader(p)) {
1034 		struct signal_struct *sig = p->signal;
1035 		struct signal_struct *psig = current->signal;
1036 		unsigned long maxrss;
1037 		u64 tgutime, tgstime;
1038 
1039 		/*
1040 		 * The resource counters for the group leader are in its
1041 		 * own task_struct.  Those for dead threads in the group
1042 		 * are in its signal_struct, as are those for the child
1043 		 * processes it has previously reaped.  All these
1044 		 * accumulate in the parent's signal_struct c* fields.
1045 		 *
1046 		 * We don't bother to take a lock here to protect these
1047 		 * p->signal fields because the whole thread group is dead
1048 		 * and nobody can change them.
1049 		 *
1050 		 * psig->stats_lock also protects us from our sub-theads
1051 		 * which can reap other children at the same time. Until
1052 		 * we change k_getrusage()-like users to rely on this lock
1053 		 * we have to take ->siglock as well.
1054 		 *
1055 		 * We use thread_group_cputime_adjusted() to get times for
1056 		 * the thread group, which consolidates times for all threads
1057 		 * in the group including the group leader.
1058 		 */
1059 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1060 		spin_lock_irq(&current->sighand->siglock);
1061 		write_seqlock(&psig->stats_lock);
1062 		psig->cutime += tgutime + sig->cutime;
1063 		psig->cstime += tgstime + sig->cstime;
1064 		psig->cgtime += task_gtime(p) + sig->gtime + sig->cgtime;
1065 		psig->cmin_flt +=
1066 			p->min_flt + sig->min_flt + sig->cmin_flt;
1067 		psig->cmaj_flt +=
1068 			p->maj_flt + sig->maj_flt + sig->cmaj_flt;
1069 		psig->cnvcsw +=
1070 			p->nvcsw + sig->nvcsw + sig->cnvcsw;
1071 		psig->cnivcsw +=
1072 			p->nivcsw + sig->nivcsw + sig->cnivcsw;
1073 		psig->cinblock +=
1074 			task_io_get_inblock(p) +
1075 			sig->inblock + sig->cinblock;
1076 		psig->coublock +=
1077 			task_io_get_oublock(p) +
1078 			sig->oublock + sig->coublock;
1079 		maxrss = max(sig->maxrss, sig->cmaxrss);
1080 		if (psig->cmaxrss < maxrss)
1081 			psig->cmaxrss = maxrss;
1082 		task_io_accounting_add(&psig->ioac, &p->ioac);
1083 		task_io_accounting_add(&psig->ioac, &sig->ioac);
1084 		write_sequnlock(&psig->stats_lock);
1085 		spin_unlock_irq(&current->sighand->siglock);
1086 	}
1087 
1088 	if (wo->wo_rusage)
1089 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1090 	status = (p->signal->flags & SIGNAL_GROUP_EXIT)
1091 		? p->signal->group_exit_code : p->exit_code;
1092 	wo->wo_stat = status;
1093 
1094 	if (state == EXIT_TRACE) {
1095 		write_lock_irq(&tasklist_lock);
1096 		/* We dropped tasklist, ptracer could die and untrace */
1097 		ptrace_unlink(p);
1098 
1099 		/* If parent wants a zombie, don't release it now */
1100 		state = EXIT_ZOMBIE;
1101 		if (do_notify_parent(p, p->exit_signal))
1102 			state = EXIT_DEAD;
1103 		p->exit_state = state;
1104 		write_unlock_irq(&tasklist_lock);
1105 	}
1106 	if (state == EXIT_DEAD)
1107 		release_task(p);
1108 
1109 out_info:
1110 	infop = wo->wo_info;
1111 	if (infop) {
1112 		if ((status & 0x7f) == 0) {
1113 			infop->cause = CLD_EXITED;
1114 			infop->status = status >> 8;
1115 		} else {
1116 			infop->cause = (status & 0x80) ? CLD_DUMPED : CLD_KILLED;
1117 			infop->status = status & 0x7f;
1118 		}
1119 		infop->pid = pid;
1120 		infop->uid = uid;
1121 	}
1122 
1123 	return pid;
1124 }
1125 
task_stopped_code(struct task_struct * p,bool ptrace)1126 static int *task_stopped_code(struct task_struct *p, bool ptrace)
1127 {
1128 	if (ptrace) {
1129 		if (task_is_traced(p) && !(p->jobctl & JOBCTL_LISTENING))
1130 			return &p->exit_code;
1131 	} else {
1132 		if (p->signal->flags & SIGNAL_STOP_STOPPED)
1133 			return &p->signal->group_exit_code;
1134 	}
1135 	return NULL;
1136 }
1137 
1138 /**
1139  * wait_task_stopped - Wait for %TASK_STOPPED or %TASK_TRACED
1140  * @wo: wait options
1141  * @ptrace: is the wait for ptrace
1142  * @p: task to wait for
1143  *
1144  * Handle sys_wait4() work for %p in state %TASK_STOPPED or %TASK_TRACED.
1145  *
1146  * CONTEXT:
1147  * read_lock(&tasklist_lock), which is released if return value is
1148  * non-zero.  Also, grabs and releases @p->sighand->siglock.
1149  *
1150  * RETURNS:
1151  * 0 if wait condition didn't exist and search for other wait conditions
1152  * should continue.  Non-zero return, -errno on failure and @p's pid on
1153  * success, implies that tasklist_lock is released and wait condition
1154  * search should terminate.
1155  */
wait_task_stopped(struct wait_opts * wo,int ptrace,struct task_struct * p)1156 static int wait_task_stopped(struct wait_opts *wo,
1157 				int ptrace, struct task_struct *p)
1158 {
1159 	struct waitid_info *infop;
1160 	int exit_code, *p_code, why;
1161 	uid_t uid = 0; /* unneeded, required by compiler */
1162 	pid_t pid;
1163 
1164 	/*
1165 	 * Traditionally we see ptrace'd stopped tasks regardless of options.
1166 	 */
1167 	if (!ptrace && !(wo->wo_flags & WUNTRACED))
1168 		return 0;
1169 
1170 	if (!task_stopped_code(p, ptrace))
1171 		return 0;
1172 
1173 	exit_code = 0;
1174 	spin_lock_irq(&p->sighand->siglock);
1175 
1176 	p_code = task_stopped_code(p, ptrace);
1177 	if (unlikely(!p_code))
1178 		goto unlock_sig;
1179 
1180 	exit_code = *p_code;
1181 	if (!exit_code)
1182 		goto unlock_sig;
1183 
1184 	if (!unlikely(wo->wo_flags & WNOWAIT))
1185 		*p_code = 0;
1186 
1187 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1188 unlock_sig:
1189 	spin_unlock_irq(&p->sighand->siglock);
1190 	if (!exit_code)
1191 		return 0;
1192 
1193 	/*
1194 	 * Now we are pretty sure this task is interesting.
1195 	 * Make sure it doesn't get reaped out from under us while we
1196 	 * give up the lock and then examine it below.  We don't want to
1197 	 * keep holding onto the tasklist_lock while we call getrusage and
1198 	 * possibly take page faults for user memory.
1199 	 */
1200 	get_task_struct(p);
1201 	pid = task_pid_vnr(p);
1202 	why = ptrace ? CLD_TRAPPED : CLD_STOPPED;
1203 	read_unlock(&tasklist_lock);
1204 	sched_annotate_sleep();
1205 	if (wo->wo_rusage)
1206 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1207 	put_task_struct(p);
1208 
1209 	if (likely(!(wo->wo_flags & WNOWAIT)))
1210 		wo->wo_stat = (exit_code << 8) | 0x7f;
1211 
1212 	infop = wo->wo_info;
1213 	if (infop) {
1214 		infop->cause = why;
1215 		infop->status = exit_code;
1216 		infop->pid = pid;
1217 		infop->uid = uid;
1218 	}
1219 	return pid;
1220 }
1221 
1222 /*
1223  * Handle do_wait work for one task in a live, non-stopped state.
1224  * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold
1225  * the lock and this task is uninteresting.  If we return nonzero, we have
1226  * released the lock and the system call should return.
1227  */
wait_task_continued(struct wait_opts * wo,struct task_struct * p)1228 static int wait_task_continued(struct wait_opts *wo, struct task_struct *p)
1229 {
1230 	struct waitid_info *infop;
1231 	pid_t pid;
1232 	uid_t uid;
1233 
1234 	if (!unlikely(wo->wo_flags & WCONTINUED))
1235 		return 0;
1236 
1237 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED))
1238 		return 0;
1239 
1240 	spin_lock_irq(&p->sighand->siglock);
1241 	/* Re-check with the lock held.  */
1242 	if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) {
1243 		spin_unlock_irq(&p->sighand->siglock);
1244 		return 0;
1245 	}
1246 	if (!unlikely(wo->wo_flags & WNOWAIT))
1247 		p->signal->flags &= ~SIGNAL_STOP_CONTINUED;
1248 	uid = from_kuid_munged(current_user_ns(), task_uid(p));
1249 	spin_unlock_irq(&p->sighand->siglock);
1250 
1251 	pid = task_pid_vnr(p);
1252 	get_task_struct(p);
1253 	read_unlock(&tasklist_lock);
1254 	sched_annotate_sleep();
1255 	if (wo->wo_rusage)
1256 		getrusage(p, RUSAGE_BOTH, wo->wo_rusage);
1257 	put_task_struct(p);
1258 
1259 	infop = wo->wo_info;
1260 	if (!infop) {
1261 		wo->wo_stat = 0xffff;
1262 	} else {
1263 		infop->cause = CLD_CONTINUED;
1264 		infop->pid = pid;
1265 		infop->uid = uid;
1266 		infop->status = SIGCONT;
1267 	}
1268 	return pid;
1269 }
1270 
1271 /*
1272  * Consider @p for a wait by @parent.
1273  *
1274  * -ECHILD should be in ->notask_error before the first call.
1275  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1276  * Returns zero if the search for a child should continue;
1277  * then ->notask_error is 0 if @p is an eligible child,
1278  * or still -ECHILD.
1279  */
wait_consider_task(struct wait_opts * wo,int ptrace,struct task_struct * p)1280 static int wait_consider_task(struct wait_opts *wo, int ptrace,
1281 				struct task_struct *p)
1282 {
1283 	/*
1284 	 * We can race with wait_task_zombie() from another thread.
1285 	 * Ensure that EXIT_ZOMBIE -> EXIT_DEAD/EXIT_TRACE transition
1286 	 * can't confuse the checks below.
1287 	 */
1288 	int exit_state = READ_ONCE(p->exit_state);
1289 	int ret;
1290 
1291 	if (unlikely(exit_state == EXIT_DEAD))
1292 		return 0;
1293 
1294 	ret = eligible_child(wo, ptrace, p);
1295 	if (!ret)
1296 		return ret;
1297 
1298 	if (unlikely(exit_state == EXIT_TRACE)) {
1299 		/*
1300 		 * ptrace == 0 means we are the natural parent. In this case
1301 		 * we should clear notask_error, debugger will notify us.
1302 		 */
1303 		if (likely(!ptrace))
1304 			wo->notask_error = 0;
1305 		return 0;
1306 	}
1307 
1308 	if (likely(!ptrace) && unlikely(p->ptrace)) {
1309 		/*
1310 		 * If it is traced by its real parent's group, just pretend
1311 		 * the caller is ptrace_do_wait() and reap this child if it
1312 		 * is zombie.
1313 		 *
1314 		 * This also hides group stop state from real parent; otherwise
1315 		 * a single stop can be reported twice as group and ptrace stop.
1316 		 * If a ptracer wants to distinguish these two events for its
1317 		 * own children it should create a separate process which takes
1318 		 * the role of real parent.
1319 		 */
1320 		if (!ptrace_reparented(p))
1321 			ptrace = 1;
1322 	}
1323 
1324 	/* slay zombie? */
1325 	if (exit_state == EXIT_ZOMBIE) {
1326 		/* we don't reap group leaders with subthreads */
1327 		if (!delay_group_leader(p)) {
1328 			/*
1329 			 * A zombie ptracee is only visible to its ptracer.
1330 			 * Notification and reaping will be cascaded to the
1331 			 * real parent when the ptracer detaches.
1332 			 */
1333 			if (unlikely(ptrace) || likely(!p->ptrace))
1334 				return wait_task_zombie(wo, p);
1335 		}
1336 
1337 		/*
1338 		 * Allow access to stopped/continued state via zombie by
1339 		 * falling through.  Clearing of notask_error is complex.
1340 		 *
1341 		 * When !@ptrace:
1342 		 *
1343 		 * If WEXITED is set, notask_error should naturally be
1344 		 * cleared.  If not, subset of WSTOPPED|WCONTINUED is set,
1345 		 * so, if there are live subthreads, there are events to
1346 		 * wait for.  If all subthreads are dead, it's still safe
1347 		 * to clear - this function will be called again in finite
1348 		 * amount time once all the subthreads are released and
1349 		 * will then return without clearing.
1350 		 *
1351 		 * When @ptrace:
1352 		 *
1353 		 * Stopped state is per-task and thus can't change once the
1354 		 * target task dies.  Only continued and exited can happen.
1355 		 * Clear notask_error if WCONTINUED | WEXITED.
1356 		 */
1357 		if (likely(!ptrace) || (wo->wo_flags & (WCONTINUED | WEXITED)))
1358 			wo->notask_error = 0;
1359 	} else {
1360 		/*
1361 		 * @p is alive and it's gonna stop, continue or exit, so
1362 		 * there always is something to wait for.
1363 		 */
1364 		wo->notask_error = 0;
1365 	}
1366 
1367 	/*
1368 	 * Wait for stopped.  Depending on @ptrace, different stopped state
1369 	 * is used and the two don't interact with each other.
1370 	 */
1371 	ret = wait_task_stopped(wo, ptrace, p);
1372 	if (ret)
1373 		return ret;
1374 
1375 	/*
1376 	 * Wait for continued.  There's only one continued state and the
1377 	 * ptracer can consume it which can confuse the real parent.  Don't
1378 	 * use WCONTINUED from ptracer.  You don't need or want it.
1379 	 */
1380 	return wait_task_continued(wo, p);
1381 }
1382 
1383 /*
1384  * Do the work of do_wait() for one thread in the group, @tsk.
1385  *
1386  * -ECHILD should be in ->notask_error before the first call.
1387  * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1388  * Returns zero if the search for a child should continue; then
1389  * ->notask_error is 0 if there were any eligible children,
1390  * or still -ECHILD.
1391  */
do_wait_thread(struct wait_opts * wo,struct task_struct * tsk)1392 static int do_wait_thread(struct wait_opts *wo, struct task_struct *tsk)
1393 {
1394 	struct task_struct *p;
1395 
1396 	list_for_each_entry(p, &tsk->children, sibling) {
1397 		int ret = wait_consider_task(wo, 0, p);
1398 
1399 		if (ret)
1400 			return ret;
1401 	}
1402 
1403 	return 0;
1404 }
1405 
ptrace_do_wait(struct wait_opts * wo,struct task_struct * tsk)1406 static int ptrace_do_wait(struct wait_opts *wo, struct task_struct *tsk)
1407 {
1408 	struct task_struct *p;
1409 
1410 	list_for_each_entry(p, &tsk->ptraced, ptrace_entry) {
1411 		int ret = wait_consider_task(wo, 1, p);
1412 
1413 		if (ret)
1414 			return ret;
1415 	}
1416 
1417 	return 0;
1418 }
1419 
child_wait_callback(wait_queue_entry_t * wait,unsigned mode,int sync,void * key)1420 static int child_wait_callback(wait_queue_entry_t *wait, unsigned mode,
1421 				int sync, void *key)
1422 {
1423 	struct wait_opts *wo = container_of(wait, struct wait_opts,
1424 						child_wait);
1425 	struct task_struct *p = key;
1426 
1427 	if (!eligible_pid(wo, p))
1428 		return 0;
1429 
1430 	if ((wo->wo_flags & __WNOTHREAD) && wait->private != p->parent)
1431 		return 0;
1432 
1433 	return default_wake_function(wait, mode, sync, key);
1434 }
1435 
__wake_up_parent(struct task_struct * p,struct task_struct * parent)1436 void __wake_up_parent(struct task_struct *p, struct task_struct *parent)
1437 {
1438 	__wake_up_sync_key(&parent->signal->wait_chldexit,
1439 			   TASK_INTERRUPTIBLE, p);
1440 }
1441 
is_effectively_child(struct wait_opts * wo,bool ptrace,struct task_struct * target)1442 static bool is_effectively_child(struct wait_opts *wo, bool ptrace,
1443 				 struct task_struct *target)
1444 {
1445 	struct task_struct *parent =
1446 		!ptrace ? target->real_parent : target->parent;
1447 
1448 	return current == parent || (!(wo->wo_flags & __WNOTHREAD) &&
1449 				     same_thread_group(current, parent));
1450 }
1451 
1452 /*
1453  * Optimization for waiting on PIDTYPE_PID. No need to iterate through child
1454  * and tracee lists to find the target task.
1455  */
do_wait_pid(struct wait_opts * wo)1456 static int do_wait_pid(struct wait_opts *wo)
1457 {
1458 	bool ptrace;
1459 	struct task_struct *target;
1460 	int retval;
1461 
1462 	ptrace = false;
1463 	target = pid_task(wo->wo_pid, PIDTYPE_TGID);
1464 	if (target && is_effectively_child(wo, ptrace, target)) {
1465 		retval = wait_consider_task(wo, ptrace, target);
1466 		if (retval)
1467 			return retval;
1468 	}
1469 
1470 	ptrace = true;
1471 	target = pid_task(wo->wo_pid, PIDTYPE_PID);
1472 	if (target && target->ptrace &&
1473 	    is_effectively_child(wo, ptrace, target)) {
1474 		retval = wait_consider_task(wo, ptrace, target);
1475 		if (retval)
1476 			return retval;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
do_wait(struct wait_opts * wo)1482 static long do_wait(struct wait_opts *wo)
1483 {
1484 	int retval;
1485 
1486 	trace_sched_process_wait(wo->wo_pid);
1487 
1488 	init_waitqueue_func_entry(&wo->child_wait, child_wait_callback);
1489 	wo->child_wait.private = current;
1490 	add_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1491 repeat:
1492 	/*
1493 	 * If there is nothing that can match our criteria, just get out.
1494 	 * We will clear ->notask_error to zero if we see any child that
1495 	 * might later match our criteria, even if we are not able to reap
1496 	 * it yet.
1497 	 */
1498 	wo->notask_error = -ECHILD;
1499 	if ((wo->wo_type < PIDTYPE_MAX) &&
1500 	   (!wo->wo_pid || !pid_has_task(wo->wo_pid, wo->wo_type)))
1501 		goto notask;
1502 
1503 	set_current_state(TASK_INTERRUPTIBLE);
1504 	read_lock(&tasklist_lock);
1505 
1506 	if (wo->wo_type == PIDTYPE_PID) {
1507 		retval = do_wait_pid(wo);
1508 		if (retval)
1509 			goto end;
1510 	} else {
1511 		struct task_struct *tsk = current;
1512 
1513 		do {
1514 			retval = do_wait_thread(wo, tsk);
1515 			if (retval)
1516 				goto end;
1517 
1518 			retval = ptrace_do_wait(wo, tsk);
1519 			if (retval)
1520 				goto end;
1521 
1522 			if (wo->wo_flags & __WNOTHREAD)
1523 				break;
1524 		} while_each_thread(current, tsk);
1525 	}
1526 	read_unlock(&tasklist_lock);
1527 
1528 notask:
1529 	retval = wo->notask_error;
1530 	if (!retval && !(wo->wo_flags & WNOHANG)) {
1531 		retval = -ERESTARTSYS;
1532 		if (!signal_pending(current)) {
1533 			schedule();
1534 			goto repeat;
1535 		}
1536 	}
1537 end:
1538 	__set_current_state(TASK_RUNNING);
1539 	remove_wait_queue(&current->signal->wait_chldexit, &wo->child_wait);
1540 	return retval;
1541 }
1542 
kernel_waitid(int which,pid_t upid,struct waitid_info * infop,int options,struct rusage * ru)1543 static long kernel_waitid(int which, pid_t upid, struct waitid_info *infop,
1544 			  int options, struct rusage *ru)
1545 {
1546 	struct wait_opts wo;
1547 	struct pid *pid = NULL;
1548 	enum pid_type type;
1549 	long ret;
1550 	unsigned int f_flags = 0;
1551 
1552 	if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED|
1553 			__WNOTHREAD|__WCLONE|__WALL))
1554 		return -EINVAL;
1555 	if (!(options & (WEXITED|WSTOPPED|WCONTINUED)))
1556 		return -EINVAL;
1557 
1558 	switch (which) {
1559 	case P_ALL:
1560 		type = PIDTYPE_MAX;
1561 		break;
1562 	case P_PID:
1563 		type = PIDTYPE_PID;
1564 		if (upid <= 0)
1565 			return -EINVAL;
1566 
1567 		pid = find_get_pid(upid);
1568 		break;
1569 	case P_PGID:
1570 		type = PIDTYPE_PGID;
1571 		if (upid < 0)
1572 			return -EINVAL;
1573 
1574 		if (upid)
1575 			pid = find_get_pid(upid);
1576 		else
1577 			pid = get_task_pid(current, PIDTYPE_PGID);
1578 		break;
1579 	case P_PIDFD:
1580 		type = PIDTYPE_PID;
1581 		if (upid < 0)
1582 			return -EINVAL;
1583 
1584 		pid = pidfd_get_pid(upid, &f_flags);
1585 		if (IS_ERR(pid))
1586 			return PTR_ERR(pid);
1587 
1588 		break;
1589 	default:
1590 		return -EINVAL;
1591 	}
1592 
1593 	wo.wo_type	= type;
1594 	wo.wo_pid	= pid;
1595 	wo.wo_flags	= options;
1596 	wo.wo_info	= infop;
1597 	wo.wo_rusage	= ru;
1598 	if (f_flags & O_NONBLOCK)
1599 		wo.wo_flags |= WNOHANG;
1600 
1601 	ret = do_wait(&wo);
1602 	if (!ret && !(options & WNOHANG) && (f_flags & O_NONBLOCK))
1603 		ret = -EAGAIN;
1604 
1605 	put_pid(pid);
1606 	return ret;
1607 }
1608 
SYSCALL_DEFINE5(waitid,int,which,pid_t,upid,struct siginfo __user *,infop,int,options,struct rusage __user *,ru)1609 SYSCALL_DEFINE5(waitid, int, which, pid_t, upid, struct siginfo __user *,
1610 		infop, int, options, struct rusage __user *, ru)
1611 {
1612 	struct rusage r;
1613 	struct waitid_info info = {.status = 0};
1614 	long err = kernel_waitid(which, upid, &info, options, ru ? &r : NULL);
1615 	int signo = 0;
1616 
1617 	if (err > 0) {
1618 		signo = SIGCHLD;
1619 		err = 0;
1620 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1621 			return -EFAULT;
1622 	}
1623 	if (!infop)
1624 		return err;
1625 
1626 	if (!user_write_access_begin(infop, sizeof(*infop)))
1627 		return -EFAULT;
1628 
1629 	unsafe_put_user(signo, &infop->si_signo, Efault);
1630 	unsafe_put_user(0, &infop->si_errno, Efault);
1631 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1632 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1633 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1634 	unsafe_put_user(info.status, &infop->si_status, Efault);
1635 	user_write_access_end();
1636 	return err;
1637 Efault:
1638 	user_write_access_end();
1639 	return -EFAULT;
1640 }
1641 
kernel_wait4(pid_t upid,int __user * stat_addr,int options,struct rusage * ru)1642 long kernel_wait4(pid_t upid, int __user *stat_addr, int options,
1643 		  struct rusage *ru)
1644 {
1645 	struct wait_opts wo;
1646 	struct pid *pid = NULL;
1647 	enum pid_type type;
1648 	long ret;
1649 
1650 	if (options & ~(WNOHANG|WUNTRACED|WCONTINUED|
1651 			__WNOTHREAD|__WCLONE|__WALL))
1652 		return -EINVAL;
1653 
1654 	/* -INT_MIN is not defined */
1655 	if (upid == INT_MIN)
1656 		return -ESRCH;
1657 
1658 	if (upid == -1)
1659 		type = PIDTYPE_MAX;
1660 	else if (upid < 0) {
1661 		type = PIDTYPE_PGID;
1662 		pid = find_get_pid(-upid);
1663 	} else if (upid == 0) {
1664 		type = PIDTYPE_PGID;
1665 		pid = get_task_pid(current, PIDTYPE_PGID);
1666 	} else /* upid > 0 */ {
1667 		type = PIDTYPE_PID;
1668 		pid = find_get_pid(upid);
1669 	}
1670 
1671 	wo.wo_type	= type;
1672 	wo.wo_pid	= pid;
1673 	wo.wo_flags	= options | WEXITED;
1674 	wo.wo_info	= NULL;
1675 	wo.wo_stat	= 0;
1676 	wo.wo_rusage	= ru;
1677 	ret = do_wait(&wo);
1678 	put_pid(pid);
1679 	if (ret > 0 && stat_addr && put_user(wo.wo_stat, stat_addr))
1680 		ret = -EFAULT;
1681 
1682 	return ret;
1683 }
1684 
kernel_wait(pid_t pid,int * stat)1685 int kernel_wait(pid_t pid, int *stat)
1686 {
1687 	struct wait_opts wo = {
1688 		.wo_type	= PIDTYPE_PID,
1689 		.wo_pid		= find_get_pid(pid),
1690 		.wo_flags	= WEXITED,
1691 	};
1692 	int ret;
1693 
1694 	ret = do_wait(&wo);
1695 	if (ret > 0 && wo.wo_stat)
1696 		*stat = wo.wo_stat;
1697 	put_pid(wo.wo_pid);
1698 	return ret;
1699 }
1700 
SYSCALL_DEFINE4(wait4,pid_t,upid,int __user *,stat_addr,int,options,struct rusage __user *,ru)1701 SYSCALL_DEFINE4(wait4, pid_t, upid, int __user *, stat_addr,
1702 		int, options, struct rusage __user *, ru)
1703 {
1704 	struct rusage r;
1705 	long err = kernel_wait4(upid, stat_addr, options, ru ? &r : NULL);
1706 
1707 	if (err > 0) {
1708 		if (ru && copy_to_user(ru, &r, sizeof(struct rusage)))
1709 			return -EFAULT;
1710 	}
1711 	return err;
1712 }
1713 
1714 #ifdef __ARCH_WANT_SYS_WAITPID
1715 
1716 /*
1717  * sys_waitpid() remains for compatibility. waitpid() should be
1718  * implemented by calling sys_wait4() from libc.a.
1719  */
SYSCALL_DEFINE3(waitpid,pid_t,pid,int __user *,stat_addr,int,options)1720 SYSCALL_DEFINE3(waitpid, pid_t, pid, int __user *, stat_addr, int, options)
1721 {
1722 	return kernel_wait4(pid, stat_addr, options, NULL);
1723 }
1724 
1725 #endif
1726 
1727 #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE4(wait4,compat_pid_t,pid,compat_uint_t __user *,stat_addr,int,options,struct compat_rusage __user *,ru)1728 COMPAT_SYSCALL_DEFINE4(wait4,
1729 	compat_pid_t, pid,
1730 	compat_uint_t __user *, stat_addr,
1731 	int, options,
1732 	struct compat_rusage __user *, ru)
1733 {
1734 	struct rusage r;
1735 	long err = kernel_wait4(pid, stat_addr, options, ru ? &r : NULL);
1736 	if (err > 0) {
1737 		if (ru && put_compat_rusage(&r, ru))
1738 			return -EFAULT;
1739 	}
1740 	return err;
1741 }
1742 
COMPAT_SYSCALL_DEFINE5(waitid,int,which,compat_pid_t,pid,struct compat_siginfo __user *,infop,int,options,struct compat_rusage __user *,uru)1743 COMPAT_SYSCALL_DEFINE5(waitid,
1744 		int, which, compat_pid_t, pid,
1745 		struct compat_siginfo __user *, infop, int, options,
1746 		struct compat_rusage __user *, uru)
1747 {
1748 	struct rusage ru;
1749 	struct waitid_info info = {.status = 0};
1750 	long err = kernel_waitid(which, pid, &info, options, uru ? &ru : NULL);
1751 	int signo = 0;
1752 	if (err > 0) {
1753 		signo = SIGCHLD;
1754 		err = 0;
1755 		if (uru) {
1756 			/* kernel_waitid() overwrites everything in ru */
1757 			if (COMPAT_USE_64BIT_TIME)
1758 				err = copy_to_user(uru, &ru, sizeof(ru));
1759 			else
1760 				err = put_compat_rusage(&ru, uru);
1761 			if (err)
1762 				return -EFAULT;
1763 		}
1764 	}
1765 
1766 	if (!infop)
1767 		return err;
1768 
1769 	if (!user_write_access_begin(infop, sizeof(*infop)))
1770 		return -EFAULT;
1771 
1772 	unsafe_put_user(signo, &infop->si_signo, Efault);
1773 	unsafe_put_user(0, &infop->si_errno, Efault);
1774 	unsafe_put_user(info.cause, &infop->si_code, Efault);
1775 	unsafe_put_user(info.pid, &infop->si_pid, Efault);
1776 	unsafe_put_user(info.uid, &infop->si_uid, Efault);
1777 	unsafe_put_user(info.status, &infop->si_status, Efault);
1778 	user_write_access_end();
1779 	return err;
1780 Efault:
1781 	user_write_access_end();
1782 	return -EFAULT;
1783 }
1784 #endif
1785 
1786 /**
1787  * thread_group_exited - check that a thread group has exited
1788  * @pid: tgid of thread group to be checked.
1789  *
1790  * Test if the thread group represented by tgid has exited (all
1791  * threads are zombies, dead or completely gone).
1792  *
1793  * Return: true if the thread group has exited. false otherwise.
1794  */
thread_group_exited(struct pid * pid)1795 bool thread_group_exited(struct pid *pid)
1796 {
1797 	struct task_struct *task;
1798 	bool exited;
1799 
1800 	rcu_read_lock();
1801 	task = pid_task(pid, PIDTYPE_PID);
1802 	exited = !task ||
1803 		(READ_ONCE(task->exit_state) && thread_group_empty(task));
1804 	rcu_read_unlock();
1805 
1806 	return exited;
1807 }
1808 EXPORT_SYMBOL(thread_group_exited);
1809 
abort(void)1810 __weak void abort(void)
1811 {
1812 	BUG();
1813 
1814 	/* if that doesn't kill us, halt */
1815 	panic("Oops failed to kill thread");
1816 }
1817 EXPORT_SYMBOL(abort);
1818