1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Coherent per-device memory handling.
4 * Borrowed from i386
5 */
6 #include <linux/io.h>
7 #include <linux/slab.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/dma-direct.h>
11 #include <linux/dma-map-ops.h>
12
13 struct dma_coherent_mem {
14 void *virt_base;
15 dma_addr_t device_base;
16 unsigned long pfn_base;
17 int size;
18 unsigned long *bitmap;
19 spinlock_t spinlock;
20 bool use_dev_dma_pfn_offset;
21 };
22
dev_get_coherent_memory(struct device * dev)23 static inline struct dma_coherent_mem *dev_get_coherent_memory(struct device *dev)
24 {
25 if (dev && dev->dma_mem)
26 return dev->dma_mem;
27 return NULL;
28 }
29
dma_get_device_base(struct device * dev,struct dma_coherent_mem * mem)30 static inline dma_addr_t dma_get_device_base(struct device *dev,
31 struct dma_coherent_mem * mem)
32 {
33 if (mem->use_dev_dma_pfn_offset)
34 return phys_to_dma(dev, PFN_PHYS(mem->pfn_base));
35 return mem->device_base;
36 }
37
dma_init_coherent_memory(phys_addr_t phys_addr,dma_addr_t device_addr,size_t size,bool use_dma_pfn_offset)38 static struct dma_coherent_mem *dma_init_coherent_memory(phys_addr_t phys_addr,
39 dma_addr_t device_addr, size_t size, bool use_dma_pfn_offset)
40 {
41 struct dma_coherent_mem *dma_mem;
42 int pages = size >> PAGE_SHIFT;
43 int bitmap_size = BITS_TO_LONGS(pages) * sizeof(long);
44 void *mem_base;
45
46 if (!size)
47 return ERR_PTR(-EINVAL);
48
49 mem_base = memremap(phys_addr, size, MEMREMAP_WC);
50 if (!mem_base)
51 return ERR_PTR(-EINVAL);
52
53 dma_mem = kzalloc(sizeof(struct dma_coherent_mem), GFP_KERNEL);
54 if (!dma_mem)
55 goto out_unmap_membase;
56 dma_mem->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
57 if (!dma_mem->bitmap)
58 goto out_free_dma_mem;
59
60 dma_mem->virt_base = mem_base;
61 dma_mem->device_base = device_addr;
62 dma_mem->pfn_base = PFN_DOWN(phys_addr);
63 dma_mem->size = pages;
64 dma_mem->use_dev_dma_pfn_offset = use_dma_pfn_offset;
65 spin_lock_init(&dma_mem->spinlock);
66
67 return dma_mem;
68
69 out_free_dma_mem:
70 kfree(dma_mem);
71 out_unmap_membase:
72 memunmap(mem_base);
73 pr_err("Reserved memory: failed to init DMA memory pool at %pa, size %zd MiB\n",
74 &phys_addr, size / SZ_1M);
75 return ERR_PTR(-ENOMEM);
76 }
77
dma_release_coherent_memory(struct dma_coherent_mem * mem)78 static void dma_release_coherent_memory(struct dma_coherent_mem *mem)
79 {
80 if (!mem)
81 return;
82
83 memunmap(mem->virt_base);
84 kfree(mem->bitmap);
85 kfree(mem);
86 }
87
dma_assign_coherent_memory(struct device * dev,struct dma_coherent_mem * mem)88 static int dma_assign_coherent_memory(struct device *dev,
89 struct dma_coherent_mem *mem)
90 {
91 if (!dev)
92 return -ENODEV;
93
94 if (dev->dma_mem)
95 return -EBUSY;
96
97 dev->dma_mem = mem;
98 return 0;
99 }
100
101 /*
102 * Declare a region of memory to be handed out by dma_alloc_coherent() when it
103 * is asked for coherent memory for this device. This shall only be used
104 * from platform code, usually based on the device tree description.
105 *
106 * phys_addr is the CPU physical address to which the memory is currently
107 * assigned (this will be ioremapped so the CPU can access the region).
108 *
109 * device_addr is the DMA address the device needs to be programmed with to
110 * actually address this memory (this will be handed out as the dma_addr_t in
111 * dma_alloc_coherent()).
112 *
113 * size is the size of the area (must be a multiple of PAGE_SIZE).
114 *
115 * As a simplification for the platforms, only *one* such region of memory may
116 * be declared per device.
117 */
dma_declare_coherent_memory(struct device * dev,phys_addr_t phys_addr,dma_addr_t device_addr,size_t size)118 int dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
119 dma_addr_t device_addr, size_t size)
120 {
121 struct dma_coherent_mem *mem;
122 int ret;
123
124 mem = dma_init_coherent_memory(phys_addr, device_addr, size, false);
125 if (IS_ERR(mem))
126 return PTR_ERR(mem);
127
128 ret = dma_assign_coherent_memory(dev, mem);
129 if (ret)
130 dma_release_coherent_memory(mem);
131 return ret;
132 }
133
__dma_alloc_from_coherent(struct device * dev,struct dma_coherent_mem * mem,ssize_t size,dma_addr_t * dma_handle)134 static void *__dma_alloc_from_coherent(struct device *dev,
135 struct dma_coherent_mem *mem,
136 ssize_t size, dma_addr_t *dma_handle)
137 {
138 int order = get_order(size);
139 unsigned long flags;
140 int pageno;
141 void *ret;
142
143 spin_lock_irqsave(&mem->spinlock, flags);
144
145 if (unlikely(size > ((dma_addr_t)mem->size << PAGE_SHIFT)))
146 goto err;
147
148 pageno = bitmap_find_free_region(mem->bitmap, mem->size, order);
149 if (unlikely(pageno < 0))
150 goto err;
151
152 /*
153 * Memory was found in the coherent area.
154 */
155 *dma_handle = dma_get_device_base(dev, mem) +
156 ((dma_addr_t)pageno << PAGE_SHIFT);
157 ret = mem->virt_base + ((dma_addr_t)pageno << PAGE_SHIFT);
158 spin_unlock_irqrestore(&mem->spinlock, flags);
159 memset(ret, 0, size);
160 return ret;
161 err:
162 spin_unlock_irqrestore(&mem->spinlock, flags);
163 return NULL;
164 }
165
166 /**
167 * dma_alloc_from_dev_coherent() - allocate memory from device coherent pool
168 * @dev: device from which we allocate memory
169 * @size: size of requested memory area
170 * @dma_handle: This will be filled with the correct dma handle
171 * @ret: This pointer will be filled with the virtual address
172 * to allocated area.
173 *
174 * This function should be only called from per-arch dma_alloc_coherent()
175 * to support allocation from per-device coherent memory pools.
176 *
177 * Returns 0 if dma_alloc_coherent should continue with allocating from
178 * generic memory areas, or !0 if dma_alloc_coherent should return @ret.
179 */
dma_alloc_from_dev_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle,void ** ret)180 int dma_alloc_from_dev_coherent(struct device *dev, ssize_t size,
181 dma_addr_t *dma_handle, void **ret)
182 {
183 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
184
185 if (!mem)
186 return 0;
187
188 *ret = __dma_alloc_from_coherent(dev, mem, size, dma_handle);
189 return 1;
190 }
191
__dma_release_from_coherent(struct dma_coherent_mem * mem,int order,void * vaddr)192 static int __dma_release_from_coherent(struct dma_coherent_mem *mem,
193 int order, void *vaddr)
194 {
195 if (mem && vaddr >= mem->virt_base && vaddr <
196 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
197 int page = (vaddr - mem->virt_base) >> PAGE_SHIFT;
198 unsigned long flags;
199
200 spin_lock_irqsave(&mem->spinlock, flags);
201 bitmap_release_region(mem->bitmap, page, order);
202 spin_unlock_irqrestore(&mem->spinlock, flags);
203 return 1;
204 }
205 return 0;
206 }
207
208 /**
209 * dma_release_from_dev_coherent() - free memory to device coherent memory pool
210 * @dev: device from which the memory was allocated
211 * @order: the order of pages allocated
212 * @vaddr: virtual address of allocated pages
213 *
214 * This checks whether the memory was allocated from the per-device
215 * coherent memory pool and if so, releases that memory.
216 *
217 * Returns 1 if we correctly released the memory, or 0 if the caller should
218 * proceed with releasing memory from generic pools.
219 */
dma_release_from_dev_coherent(struct device * dev,int order,void * vaddr)220 int dma_release_from_dev_coherent(struct device *dev, int order, void *vaddr)
221 {
222 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
223
224 return __dma_release_from_coherent(mem, order, vaddr);
225 }
226
__dma_mmap_from_coherent(struct dma_coherent_mem * mem,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)227 static int __dma_mmap_from_coherent(struct dma_coherent_mem *mem,
228 struct vm_area_struct *vma, void *vaddr, size_t size, int *ret)
229 {
230 if (mem && vaddr >= mem->virt_base && vaddr + size <=
231 (mem->virt_base + ((dma_addr_t)mem->size << PAGE_SHIFT))) {
232 unsigned long off = vma->vm_pgoff;
233 int start = (vaddr - mem->virt_base) >> PAGE_SHIFT;
234 unsigned long user_count = vma_pages(vma);
235 int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
236
237 *ret = -ENXIO;
238 if (off < count && user_count <= count - off) {
239 unsigned long pfn = mem->pfn_base + start + off;
240 *ret = remap_pfn_range(vma, vma->vm_start, pfn,
241 user_count << PAGE_SHIFT,
242 vma->vm_page_prot);
243 }
244 return 1;
245 }
246 return 0;
247 }
248
249 /**
250 * dma_mmap_from_dev_coherent() - mmap memory from the device coherent pool
251 * @dev: device from which the memory was allocated
252 * @vma: vm_area for the userspace memory
253 * @vaddr: cpu address returned by dma_alloc_from_dev_coherent
254 * @size: size of the memory buffer allocated
255 * @ret: result from remap_pfn_range()
256 *
257 * This checks whether the memory was allocated from the per-device
258 * coherent memory pool and if so, maps that memory to the provided vma.
259 *
260 * Returns 1 if @vaddr belongs to the device coherent pool and the caller
261 * should return @ret, or 0 if they should proceed with mapping memory from
262 * generic areas.
263 */
dma_mmap_from_dev_coherent(struct device * dev,struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)264 int dma_mmap_from_dev_coherent(struct device *dev, struct vm_area_struct *vma,
265 void *vaddr, size_t size, int *ret)
266 {
267 struct dma_coherent_mem *mem = dev_get_coherent_memory(dev);
268
269 return __dma_mmap_from_coherent(mem, vma, vaddr, size, ret);
270 }
271
272 #ifdef CONFIG_DMA_GLOBAL_POOL
273 static struct dma_coherent_mem *dma_coherent_default_memory __ro_after_init;
274
dma_alloc_from_global_coherent(struct device * dev,ssize_t size,dma_addr_t * dma_handle)275 void *dma_alloc_from_global_coherent(struct device *dev, ssize_t size,
276 dma_addr_t *dma_handle)
277 {
278 if (!dma_coherent_default_memory)
279 return NULL;
280
281 return __dma_alloc_from_coherent(dev, dma_coherent_default_memory, size,
282 dma_handle);
283 }
284
dma_release_from_global_coherent(int order,void * vaddr)285 int dma_release_from_global_coherent(int order, void *vaddr)
286 {
287 if (!dma_coherent_default_memory)
288 return 0;
289
290 return __dma_release_from_coherent(dma_coherent_default_memory, order,
291 vaddr);
292 }
293
dma_mmap_from_global_coherent(struct vm_area_struct * vma,void * vaddr,size_t size,int * ret)294 int dma_mmap_from_global_coherent(struct vm_area_struct *vma, void *vaddr,
295 size_t size, int *ret)
296 {
297 if (!dma_coherent_default_memory)
298 return 0;
299
300 return __dma_mmap_from_coherent(dma_coherent_default_memory, vma,
301 vaddr, size, ret);
302 }
303
dma_init_global_coherent(phys_addr_t phys_addr,size_t size)304 int dma_init_global_coherent(phys_addr_t phys_addr, size_t size)
305 {
306 struct dma_coherent_mem *mem;
307
308 mem = dma_init_coherent_memory(phys_addr, phys_addr, size, true);
309 if (IS_ERR(mem))
310 return PTR_ERR(mem);
311 dma_coherent_default_memory = mem;
312 pr_info("DMA: default coherent area is set\n");
313 return 0;
314 }
315 #endif /* CONFIG_DMA_GLOBAL_POOL */
316
317 /*
318 * Support for reserved memory regions defined in device tree
319 */
320 #ifdef CONFIG_OF_RESERVED_MEM
321 #include <linux/of.h>
322 #include <linux/of_fdt.h>
323 #include <linux/of_reserved_mem.h>
324
325 #ifdef CONFIG_DMA_GLOBAL_POOL
326 static struct reserved_mem *dma_reserved_default_memory __initdata;
327 #endif
328
rmem_dma_device_init(struct reserved_mem * rmem,struct device * dev)329 static int rmem_dma_device_init(struct reserved_mem *rmem, struct device *dev)
330 {
331 if (!rmem->priv) {
332 struct dma_coherent_mem *mem;
333
334 mem = dma_init_coherent_memory(rmem->base, rmem->base,
335 rmem->size, true);
336 if (IS_ERR(mem))
337 return PTR_ERR(mem);
338 rmem->priv = mem;
339 }
340 dma_assign_coherent_memory(dev, rmem->priv);
341 return 0;
342 }
343
rmem_dma_device_release(struct reserved_mem * rmem,struct device * dev)344 static void rmem_dma_device_release(struct reserved_mem *rmem,
345 struct device *dev)
346 {
347 if (dev)
348 dev->dma_mem = NULL;
349 }
350
351 static const struct reserved_mem_ops rmem_dma_ops = {
352 .device_init = rmem_dma_device_init,
353 .device_release = rmem_dma_device_release,
354 };
355
rmem_dma_setup(struct reserved_mem * rmem)356 static int __init rmem_dma_setup(struct reserved_mem *rmem)
357 {
358 unsigned long node = rmem->fdt_node;
359
360 if (of_get_flat_dt_prop(node, "reusable", NULL))
361 return -EINVAL;
362
363 #ifdef CONFIG_ARM
364 if (!of_get_flat_dt_prop(node, "no-map", NULL)) {
365 pr_err("Reserved memory: regions without no-map are not yet supported\n");
366 return -EINVAL;
367 }
368 #endif
369
370 #ifdef CONFIG_DMA_GLOBAL_POOL
371 if (of_get_flat_dt_prop(node, "linux,dma-default", NULL)) {
372 WARN(dma_reserved_default_memory,
373 "Reserved memory: region for default DMA coherent area is redefined\n");
374 dma_reserved_default_memory = rmem;
375 }
376 #endif
377
378 rmem->ops = &rmem_dma_ops;
379 pr_info("Reserved memory: created DMA memory pool at %pa, size %ld MiB\n",
380 &rmem->base, (unsigned long)rmem->size / SZ_1M);
381 return 0;
382 }
383
384 #ifdef CONFIG_DMA_GLOBAL_POOL
dma_init_reserved_memory(void)385 static int __init dma_init_reserved_memory(void)
386 {
387 if (!dma_reserved_default_memory)
388 return -ENOMEM;
389 return dma_init_global_coherent(dma_reserved_default_memory->base,
390 dma_reserved_default_memory->size);
391 }
392 core_initcall(dma_init_reserved_memory);
393 #endif /* CONFIG_DMA_GLOBAL_POOL */
394
395 RESERVEDMEM_OF_DECLARE(dma, "shared-dma-pool", rmem_dma_setup);
396 #endif
397