1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel Debug Core
4 *
5 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
6 *
7 * Copyright (C) 2000-2001 VERITAS Software Corporation.
8 * Copyright (C) 2002-2004 Timesys Corporation
9 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
10 * Copyright (C) 2004 Pavel Machek <pavel@ucw.cz>
11 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
12 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
13 * Copyright (C) 2005-2009 Wind River Systems, Inc.
14 * Copyright (C) 2007 MontaVista Software, Inc.
15 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
16 *
17 * Contributors at various stages not listed above:
18 * Jason Wessel ( jason.wessel@windriver.com )
19 * George Anzinger <george@mvista.com>
20 * Anurekh Saxena (anurekh.saxena@timesys.com)
21 * Lake Stevens Instrument Division (Glenn Engel)
22 * Jim Kingdon, Cygnus Support.
23 *
24 * Original KGDB stub: David Grothe <dave@gcom.com>,
25 * Tigran Aivazian <tigran@sco.com>
26 */
27
28 #define pr_fmt(fmt) "KGDB: " fmt
29
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/serial_core.h>
33 #include <linux/interrupt.h>
34 #include <linux/spinlock.h>
35 #include <linux/console.h>
36 #include <linux/threads.h>
37 #include <linux/uaccess.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/ptrace.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/reboot.h>
46 #include <linux/init.h>
47 #include <linux/kgdb.h>
48 #include <linux/kdb.h>
49 #include <linux/nmi.h>
50 #include <linux/pid.h>
51 #include <linux/smp.h>
52 #include <linux/mm.h>
53 #include <linux/vmacache.h>
54 #include <linux/rcupdate.h>
55 #include <linux/irq.h>
56
57 #include <asm/cacheflush.h>
58 #include <asm/byteorder.h>
59 #include <linux/atomic.h>
60
61 #include "debug_core.h"
62
63 static int kgdb_break_asap;
64
65 struct debuggerinfo_struct kgdb_info[NR_CPUS];
66
67 /* kgdb_connected - Is a host GDB connected to us? */
68 int kgdb_connected;
69 EXPORT_SYMBOL_GPL(kgdb_connected);
70
71 /* All the KGDB handlers are installed */
72 int kgdb_io_module_registered;
73
74 /* Guard for recursive entry */
75 static int exception_level;
76
77 struct kgdb_io *dbg_io_ops;
78 static DEFINE_SPINLOCK(kgdb_registration_lock);
79
80 /* Action for the reboot notifier, a global allow kdb to change it */
81 static int kgdbreboot;
82 /* kgdb console driver is loaded */
83 static int kgdb_con_registered;
84 /* determine if kgdb console output should be used */
85 static int kgdb_use_con;
86 /* Flag for alternate operations for early debugging */
87 bool dbg_is_early = true;
88 /* Next cpu to become the master debug core */
89 int dbg_switch_cpu;
90
91 /* Use kdb or gdbserver mode */
92 int dbg_kdb_mode = 1;
93
94 module_param(kgdb_use_con, int, 0644);
95 module_param(kgdbreboot, int, 0644);
96
97 /*
98 * Holds information about breakpoints in a kernel. These breakpoints are
99 * added and removed by gdb.
100 */
101 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
102 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
103 };
104
105 /*
106 * The CPU# of the active CPU, or -1 if none:
107 */
108 atomic_t kgdb_active = ATOMIC_INIT(-1);
109 EXPORT_SYMBOL_GPL(kgdb_active);
110 static DEFINE_RAW_SPINLOCK(dbg_master_lock);
111 static DEFINE_RAW_SPINLOCK(dbg_slave_lock);
112
113 /*
114 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
115 * bootup code (which might not have percpu set up yet):
116 */
117 static atomic_t masters_in_kgdb;
118 static atomic_t slaves_in_kgdb;
119 atomic_t kgdb_setting_breakpoint;
120
121 struct task_struct *kgdb_usethread;
122 struct task_struct *kgdb_contthread;
123
124 int kgdb_single_step;
125 static pid_t kgdb_sstep_pid;
126
127 /* to keep track of the CPU which is doing the single stepping*/
128 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
129
130 /*
131 * If you are debugging a problem where roundup (the collection of
132 * all other CPUs) is a problem [this should be extremely rare],
133 * then use the nokgdbroundup option to avoid roundup. In that case
134 * the other CPUs might interfere with your debugging context, so
135 * use this with care:
136 */
137 static int kgdb_do_roundup = 1;
138
opt_nokgdbroundup(char * str)139 static int __init opt_nokgdbroundup(char *str)
140 {
141 kgdb_do_roundup = 0;
142
143 return 0;
144 }
145
146 early_param("nokgdbroundup", opt_nokgdbroundup);
147
148 /*
149 * Finally, some KGDB code :-)
150 */
151
152 /*
153 * Weak aliases for breakpoint management,
154 * can be overridden by architectures when needed:
155 */
kgdb_arch_set_breakpoint(struct kgdb_bkpt * bpt)156 int __weak kgdb_arch_set_breakpoint(struct kgdb_bkpt *bpt)
157 {
158 int err;
159
160 err = copy_from_kernel_nofault(bpt->saved_instr, (char *)bpt->bpt_addr,
161 BREAK_INSTR_SIZE);
162 if (err)
163 return err;
164 err = copy_to_kernel_nofault((char *)bpt->bpt_addr,
165 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
166 return err;
167 }
168 NOKPROBE_SYMBOL(kgdb_arch_set_breakpoint);
169
kgdb_arch_remove_breakpoint(struct kgdb_bkpt * bpt)170 int __weak kgdb_arch_remove_breakpoint(struct kgdb_bkpt *bpt)
171 {
172 return copy_to_kernel_nofault((char *)bpt->bpt_addr,
173 (char *)bpt->saved_instr, BREAK_INSTR_SIZE);
174 }
175 NOKPROBE_SYMBOL(kgdb_arch_remove_breakpoint);
176
kgdb_validate_break_address(unsigned long addr)177 int __weak kgdb_validate_break_address(unsigned long addr)
178 {
179 struct kgdb_bkpt tmp;
180 int err;
181
182 if (kgdb_within_blocklist(addr))
183 return -EINVAL;
184
185 /* Validate setting the breakpoint and then removing it. If the
186 * remove fails, the kernel needs to emit a bad message because we
187 * are deep trouble not being able to put things back the way we
188 * found them.
189 */
190 tmp.bpt_addr = addr;
191 err = kgdb_arch_set_breakpoint(&tmp);
192 if (err)
193 return err;
194 err = kgdb_arch_remove_breakpoint(&tmp);
195 if (err)
196 pr_err("Critical breakpoint error, kernel memory destroyed at: %lx\n",
197 addr);
198 return err;
199 }
200
kgdb_arch_pc(int exception,struct pt_regs * regs)201 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
202 {
203 return instruction_pointer(regs);
204 }
205 NOKPROBE_SYMBOL(kgdb_arch_pc);
206
kgdb_arch_init(void)207 int __weak kgdb_arch_init(void)
208 {
209 return 0;
210 }
211
kgdb_skipexception(int exception,struct pt_regs * regs)212 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
213 {
214 return 0;
215 }
216 NOKPROBE_SYMBOL(kgdb_skipexception);
217
218 #ifdef CONFIG_SMP
219
220 /*
221 * Default (weak) implementation for kgdb_roundup_cpus
222 */
223
kgdb_call_nmi_hook(void * ignored)224 void __weak kgdb_call_nmi_hook(void *ignored)
225 {
226 /*
227 * NOTE: get_irq_regs() is supposed to get the registers from
228 * before the IPI interrupt happened and so is supposed to
229 * show where the processor was. In some situations it's
230 * possible we might be called without an IPI, so it might be
231 * safer to figure out how to make kgdb_breakpoint() work
232 * properly here.
233 */
234 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
235 }
236 NOKPROBE_SYMBOL(kgdb_call_nmi_hook);
237
238 static DEFINE_PER_CPU(call_single_data_t, kgdb_roundup_csd) =
239 CSD_INIT(kgdb_call_nmi_hook, NULL);
240
kgdb_roundup_cpus(void)241 void __weak kgdb_roundup_cpus(void)
242 {
243 call_single_data_t *csd;
244 int this_cpu = raw_smp_processor_id();
245 int cpu;
246 int ret;
247
248 for_each_online_cpu(cpu) {
249 /* No need to roundup ourselves */
250 if (cpu == this_cpu)
251 continue;
252
253 csd = &per_cpu(kgdb_roundup_csd, cpu);
254
255 /*
256 * If it didn't round up last time, don't try again
257 * since smp_call_function_single_async() will block.
258 *
259 * If rounding_up is false then we know that the
260 * previous call must have at least started and that
261 * means smp_call_function_single_async() won't block.
262 */
263 if (kgdb_info[cpu].rounding_up)
264 continue;
265 kgdb_info[cpu].rounding_up = true;
266
267 ret = smp_call_function_single_async(cpu, csd);
268 if (ret)
269 kgdb_info[cpu].rounding_up = false;
270 }
271 }
272 NOKPROBE_SYMBOL(kgdb_roundup_cpus);
273
274 #endif
275
276 /*
277 * Some architectures need cache flushes when we set/clear a
278 * breakpoint:
279 */
kgdb_flush_swbreak_addr(unsigned long addr)280 static void kgdb_flush_swbreak_addr(unsigned long addr)
281 {
282 if (!CACHE_FLUSH_IS_SAFE)
283 return;
284
285 if (current->mm) {
286 int i;
287
288 for (i = 0; i < VMACACHE_SIZE; i++) {
289 if (!current->vmacache.vmas[i])
290 continue;
291 flush_cache_range(current->vmacache.vmas[i],
292 addr, addr + BREAK_INSTR_SIZE);
293 }
294 }
295
296 /* Force flush instruction cache if it was outside the mm */
297 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
298 }
299 NOKPROBE_SYMBOL(kgdb_flush_swbreak_addr);
300
301 /*
302 * SW breakpoint management:
303 */
dbg_activate_sw_breakpoints(void)304 int dbg_activate_sw_breakpoints(void)
305 {
306 int error;
307 int ret = 0;
308 int i;
309
310 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
311 if (kgdb_break[i].state != BP_SET)
312 continue;
313
314 error = kgdb_arch_set_breakpoint(&kgdb_break[i]);
315 if (error) {
316 ret = error;
317 pr_info("BP install failed: %lx\n",
318 kgdb_break[i].bpt_addr);
319 continue;
320 }
321
322 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
323 kgdb_break[i].state = BP_ACTIVE;
324 }
325 return ret;
326 }
327 NOKPROBE_SYMBOL(dbg_activate_sw_breakpoints);
328
dbg_set_sw_break(unsigned long addr)329 int dbg_set_sw_break(unsigned long addr)
330 {
331 int err = kgdb_validate_break_address(addr);
332 int breakno = -1;
333 int i;
334
335 if (err)
336 return err;
337
338 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
339 if ((kgdb_break[i].state == BP_SET) &&
340 (kgdb_break[i].bpt_addr == addr))
341 return -EEXIST;
342 }
343 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
344 if (kgdb_break[i].state == BP_REMOVED &&
345 kgdb_break[i].bpt_addr == addr) {
346 breakno = i;
347 break;
348 }
349 }
350
351 if (breakno == -1) {
352 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
353 if (kgdb_break[i].state == BP_UNDEFINED) {
354 breakno = i;
355 break;
356 }
357 }
358 }
359
360 if (breakno == -1)
361 return -E2BIG;
362
363 kgdb_break[breakno].state = BP_SET;
364 kgdb_break[breakno].type = BP_BREAKPOINT;
365 kgdb_break[breakno].bpt_addr = addr;
366
367 return 0;
368 }
369
dbg_deactivate_sw_breakpoints(void)370 int dbg_deactivate_sw_breakpoints(void)
371 {
372 int error;
373 int ret = 0;
374 int i;
375
376 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
377 if (kgdb_break[i].state != BP_ACTIVE)
378 continue;
379 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
380 if (error) {
381 pr_info("BP remove failed: %lx\n",
382 kgdb_break[i].bpt_addr);
383 ret = error;
384 }
385
386 kgdb_flush_swbreak_addr(kgdb_break[i].bpt_addr);
387 kgdb_break[i].state = BP_SET;
388 }
389 return ret;
390 }
391 NOKPROBE_SYMBOL(dbg_deactivate_sw_breakpoints);
392
dbg_remove_sw_break(unsigned long addr)393 int dbg_remove_sw_break(unsigned long addr)
394 {
395 int i;
396
397 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
398 if ((kgdb_break[i].state == BP_SET) &&
399 (kgdb_break[i].bpt_addr == addr)) {
400 kgdb_break[i].state = BP_REMOVED;
401 return 0;
402 }
403 }
404 return -ENOENT;
405 }
406
kgdb_isremovedbreak(unsigned long addr)407 int kgdb_isremovedbreak(unsigned long addr)
408 {
409 int i;
410
411 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
412 if ((kgdb_break[i].state == BP_REMOVED) &&
413 (kgdb_break[i].bpt_addr == addr))
414 return 1;
415 }
416 return 0;
417 }
418
kgdb_has_hit_break(unsigned long addr)419 int kgdb_has_hit_break(unsigned long addr)
420 {
421 int i;
422
423 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
424 if (kgdb_break[i].state == BP_ACTIVE &&
425 kgdb_break[i].bpt_addr == addr)
426 return 1;
427 }
428 return 0;
429 }
430
dbg_remove_all_break(void)431 int dbg_remove_all_break(void)
432 {
433 int error;
434 int i;
435
436 /* Clear memory breakpoints. */
437 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
438 if (kgdb_break[i].state != BP_ACTIVE)
439 goto setundefined;
440 error = kgdb_arch_remove_breakpoint(&kgdb_break[i]);
441 if (error)
442 pr_err("breakpoint remove failed: %lx\n",
443 kgdb_break[i].bpt_addr);
444 setundefined:
445 kgdb_break[i].state = BP_UNDEFINED;
446 }
447
448 /* Clear hardware breakpoints. */
449 if (arch_kgdb_ops.remove_all_hw_break)
450 arch_kgdb_ops.remove_all_hw_break();
451
452 return 0;
453 }
454
kgdb_free_init_mem(void)455 void kgdb_free_init_mem(void)
456 {
457 int i;
458
459 /* Clear init memory breakpoints. */
460 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
461 if (init_section_contains((void *)kgdb_break[i].bpt_addr, 0))
462 kgdb_break[i].state = BP_UNDEFINED;
463 }
464 }
465
466 #ifdef CONFIG_KGDB_KDB
kdb_dump_stack_on_cpu(int cpu)467 void kdb_dump_stack_on_cpu(int cpu)
468 {
469 if (cpu == raw_smp_processor_id() || !IS_ENABLED(CONFIG_SMP)) {
470 dump_stack();
471 return;
472 }
473
474 if (!(kgdb_info[cpu].exception_state & DCPU_IS_SLAVE)) {
475 kdb_printf("ERROR: Task on cpu %d didn't stop in the debugger\n",
476 cpu);
477 return;
478 }
479
480 /*
481 * In general, architectures don't support dumping the stack of a
482 * "running" process that's not the current one. From the point of
483 * view of the Linux, kernel processes that are looping in the kgdb
484 * slave loop are still "running". There's also no API (that actually
485 * works across all architectures) that can do a stack crawl based
486 * on registers passed as a parameter.
487 *
488 * Solve this conundrum by asking slave CPUs to do the backtrace
489 * themselves.
490 */
491 kgdb_info[cpu].exception_state |= DCPU_WANT_BT;
492 while (kgdb_info[cpu].exception_state & DCPU_WANT_BT)
493 cpu_relax();
494 }
495 #endif
496
497 /*
498 * Return true if there is a valid kgdb I/O module. Also if no
499 * debugger is attached a message can be printed to the console about
500 * waiting for the debugger to attach.
501 *
502 * The print_wait argument is only to be true when called from inside
503 * the core kgdb_handle_exception, because it will wait for the
504 * debugger to attach.
505 */
kgdb_io_ready(int print_wait)506 static int kgdb_io_ready(int print_wait)
507 {
508 if (!dbg_io_ops)
509 return 0;
510 if (kgdb_connected)
511 return 1;
512 if (atomic_read(&kgdb_setting_breakpoint))
513 return 1;
514 if (print_wait) {
515 #ifdef CONFIG_KGDB_KDB
516 if (!dbg_kdb_mode)
517 pr_crit("waiting... or $3#33 for KDB\n");
518 #else
519 pr_crit("Waiting for remote debugger\n");
520 #endif
521 }
522 return 1;
523 }
524 NOKPROBE_SYMBOL(kgdb_io_ready);
525
kgdb_reenter_check(struct kgdb_state * ks)526 static int kgdb_reenter_check(struct kgdb_state *ks)
527 {
528 unsigned long addr;
529
530 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
531 return 0;
532
533 /* Panic on recursive debugger calls: */
534 exception_level++;
535 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
536 dbg_deactivate_sw_breakpoints();
537
538 /*
539 * If the break point removed ok at the place exception
540 * occurred, try to recover and print a warning to the end
541 * user because the user planted a breakpoint in a place that
542 * KGDB needs in order to function.
543 */
544 if (dbg_remove_sw_break(addr) == 0) {
545 exception_level = 0;
546 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
547 dbg_activate_sw_breakpoints();
548 pr_crit("re-enter error: breakpoint removed %lx\n", addr);
549 WARN_ON_ONCE(1);
550
551 return 1;
552 }
553 dbg_remove_all_break();
554 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
555
556 if (exception_level > 1) {
557 dump_stack();
558 kgdb_io_module_registered = false;
559 panic("Recursive entry to debugger");
560 }
561
562 pr_crit("re-enter exception: ALL breakpoints killed\n");
563 #ifdef CONFIG_KGDB_KDB
564 /* Allow kdb to debug itself one level */
565 return 0;
566 #endif
567 dump_stack();
568 panic("Recursive entry to debugger");
569
570 return 1;
571 }
572 NOKPROBE_SYMBOL(kgdb_reenter_check);
573
dbg_touch_watchdogs(void)574 static void dbg_touch_watchdogs(void)
575 {
576 touch_softlockup_watchdog_sync();
577 clocksource_touch_watchdog();
578 rcu_cpu_stall_reset();
579 }
580 NOKPROBE_SYMBOL(dbg_touch_watchdogs);
581
kgdb_cpu_enter(struct kgdb_state * ks,struct pt_regs * regs,int exception_state)582 static int kgdb_cpu_enter(struct kgdb_state *ks, struct pt_regs *regs,
583 int exception_state)
584 {
585 unsigned long flags;
586 int sstep_tries = 100;
587 int error;
588 int cpu;
589 int trace_on = 0;
590 int online_cpus = num_online_cpus();
591 u64 time_left;
592
593 kgdb_info[ks->cpu].enter_kgdb++;
594 kgdb_info[ks->cpu].exception_state |= exception_state;
595
596 if (exception_state == DCPU_WANT_MASTER)
597 atomic_inc(&masters_in_kgdb);
598 else
599 atomic_inc(&slaves_in_kgdb);
600
601 if (arch_kgdb_ops.disable_hw_break)
602 arch_kgdb_ops.disable_hw_break(regs);
603
604 acquirelock:
605 rcu_read_lock();
606 /*
607 * Interrupts will be restored by the 'trap return' code, except when
608 * single stepping.
609 */
610 local_irq_save(flags);
611
612 cpu = ks->cpu;
613 kgdb_info[cpu].debuggerinfo = regs;
614 kgdb_info[cpu].task = current;
615 kgdb_info[cpu].ret_state = 0;
616 kgdb_info[cpu].irq_depth = hardirq_count() >> HARDIRQ_SHIFT;
617
618 /* Make sure the above info reaches the primary CPU */
619 smp_mb();
620
621 if (exception_level == 1) {
622 if (raw_spin_trylock(&dbg_master_lock))
623 atomic_xchg(&kgdb_active, cpu);
624 goto cpu_master_loop;
625 }
626
627 /*
628 * CPU will loop if it is a slave or request to become a kgdb
629 * master cpu and acquire the kgdb_active lock:
630 */
631 while (1) {
632 cpu_loop:
633 if (kgdb_info[cpu].exception_state & DCPU_NEXT_MASTER) {
634 kgdb_info[cpu].exception_state &= ~DCPU_NEXT_MASTER;
635 goto cpu_master_loop;
636 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_MASTER) {
637 if (raw_spin_trylock(&dbg_master_lock)) {
638 atomic_xchg(&kgdb_active, cpu);
639 break;
640 }
641 } else if (kgdb_info[cpu].exception_state & DCPU_WANT_BT) {
642 dump_stack();
643 kgdb_info[cpu].exception_state &= ~DCPU_WANT_BT;
644 } else if (kgdb_info[cpu].exception_state & DCPU_IS_SLAVE) {
645 if (!raw_spin_is_locked(&dbg_slave_lock))
646 goto return_normal;
647 } else {
648 return_normal:
649 /* Return to normal operation by executing any
650 * hw breakpoint fixup.
651 */
652 if (arch_kgdb_ops.correct_hw_break)
653 arch_kgdb_ops.correct_hw_break();
654 if (trace_on)
655 tracing_on();
656 kgdb_info[cpu].debuggerinfo = NULL;
657 kgdb_info[cpu].task = NULL;
658 kgdb_info[cpu].exception_state &=
659 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
660 kgdb_info[cpu].enter_kgdb--;
661 smp_mb__before_atomic();
662 atomic_dec(&slaves_in_kgdb);
663 dbg_touch_watchdogs();
664 local_irq_restore(flags);
665 rcu_read_unlock();
666 return 0;
667 }
668 cpu_relax();
669 }
670
671 /*
672 * For single stepping, try to only enter on the processor
673 * that was single stepping. To guard against a deadlock, the
674 * kernel will only try for the value of sstep_tries before
675 * giving up and continuing on.
676 */
677 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
678 (kgdb_info[cpu].task &&
679 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
680 atomic_set(&kgdb_active, -1);
681 raw_spin_unlock(&dbg_master_lock);
682 dbg_touch_watchdogs();
683 local_irq_restore(flags);
684 rcu_read_unlock();
685
686 goto acquirelock;
687 }
688
689 if (!kgdb_io_ready(1)) {
690 kgdb_info[cpu].ret_state = 1;
691 goto kgdb_restore; /* No I/O connection, resume the system */
692 }
693
694 /*
695 * Don't enter if we have hit a removed breakpoint.
696 */
697 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
698 goto kgdb_restore;
699
700 atomic_inc(&ignore_console_lock_warning);
701
702 /* Call the I/O driver's pre_exception routine */
703 if (dbg_io_ops->pre_exception)
704 dbg_io_ops->pre_exception();
705
706 /*
707 * Get the passive CPU lock which will hold all the non-primary
708 * CPU in a spin state while the debugger is active
709 */
710 if (!kgdb_single_step)
711 raw_spin_lock(&dbg_slave_lock);
712
713 #ifdef CONFIG_SMP
714 /* If send_ready set, slaves are already waiting */
715 if (ks->send_ready)
716 atomic_set(ks->send_ready, 1);
717
718 /* Signal the other CPUs to enter kgdb_wait() */
719 else if ((!kgdb_single_step) && kgdb_do_roundup)
720 kgdb_roundup_cpus();
721 #endif
722
723 /*
724 * Wait for the other CPUs to be notified and be waiting for us:
725 */
726 time_left = MSEC_PER_SEC;
727 while (kgdb_do_roundup && --time_left &&
728 (atomic_read(&masters_in_kgdb) + atomic_read(&slaves_in_kgdb)) !=
729 online_cpus)
730 udelay(1000);
731 if (!time_left)
732 pr_crit("Timed out waiting for secondary CPUs.\n");
733
734 /*
735 * At this point the primary processor is completely
736 * in the debugger and all secondary CPUs are quiescent
737 */
738 dbg_deactivate_sw_breakpoints();
739 kgdb_single_step = 0;
740 kgdb_contthread = current;
741 exception_level = 0;
742 trace_on = tracing_is_on();
743 if (trace_on)
744 tracing_off();
745
746 while (1) {
747 cpu_master_loop:
748 if (dbg_kdb_mode) {
749 kgdb_connected = 1;
750 error = kdb_stub(ks);
751 if (error == -1)
752 continue;
753 kgdb_connected = 0;
754 } else {
755 error = gdb_serial_stub(ks);
756 }
757
758 if (error == DBG_PASS_EVENT) {
759 dbg_kdb_mode = !dbg_kdb_mode;
760 } else if (error == DBG_SWITCH_CPU_EVENT) {
761 kgdb_info[dbg_switch_cpu].exception_state |=
762 DCPU_NEXT_MASTER;
763 goto cpu_loop;
764 } else {
765 kgdb_info[cpu].ret_state = error;
766 break;
767 }
768 }
769
770 dbg_activate_sw_breakpoints();
771
772 /* Call the I/O driver's post_exception routine */
773 if (dbg_io_ops->post_exception)
774 dbg_io_ops->post_exception();
775
776 atomic_dec(&ignore_console_lock_warning);
777
778 if (!kgdb_single_step) {
779 raw_spin_unlock(&dbg_slave_lock);
780 /* Wait till all the CPUs have quit from the debugger. */
781 while (kgdb_do_roundup && atomic_read(&slaves_in_kgdb))
782 cpu_relax();
783 }
784
785 kgdb_restore:
786 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
787 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
788 if (kgdb_info[sstep_cpu].task)
789 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
790 else
791 kgdb_sstep_pid = 0;
792 }
793 if (arch_kgdb_ops.correct_hw_break)
794 arch_kgdb_ops.correct_hw_break();
795 if (trace_on)
796 tracing_on();
797
798 kgdb_info[cpu].debuggerinfo = NULL;
799 kgdb_info[cpu].task = NULL;
800 kgdb_info[cpu].exception_state &=
801 ~(DCPU_WANT_MASTER | DCPU_IS_SLAVE);
802 kgdb_info[cpu].enter_kgdb--;
803 smp_mb__before_atomic();
804 atomic_dec(&masters_in_kgdb);
805 /* Free kgdb_active */
806 atomic_set(&kgdb_active, -1);
807 raw_spin_unlock(&dbg_master_lock);
808 dbg_touch_watchdogs();
809 local_irq_restore(flags);
810 rcu_read_unlock();
811
812 return kgdb_info[cpu].ret_state;
813 }
814 NOKPROBE_SYMBOL(kgdb_cpu_enter);
815
816 /*
817 * kgdb_handle_exception() - main entry point from a kernel exception
818 *
819 * Locking hierarchy:
820 * interface locks, if any (begin_session)
821 * kgdb lock (kgdb_active)
822 */
823 int
kgdb_handle_exception(int evector,int signo,int ecode,struct pt_regs * regs)824 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
825 {
826 struct kgdb_state kgdb_var;
827 struct kgdb_state *ks = &kgdb_var;
828 int ret = 0;
829
830 if (arch_kgdb_ops.enable_nmi)
831 arch_kgdb_ops.enable_nmi(0);
832 /*
833 * Avoid entering the debugger if we were triggered due to an oops
834 * but panic_timeout indicates the system should automatically
835 * reboot on panic. We don't want to get stuck waiting for input
836 * on such systems, especially if its "just" an oops.
837 */
838 if (signo != SIGTRAP && panic_timeout)
839 return 1;
840
841 memset(ks, 0, sizeof(struct kgdb_state));
842 ks->cpu = raw_smp_processor_id();
843 ks->ex_vector = evector;
844 ks->signo = signo;
845 ks->err_code = ecode;
846 ks->linux_regs = regs;
847
848 if (kgdb_reenter_check(ks))
849 goto out; /* Ouch, double exception ! */
850 if (kgdb_info[ks->cpu].enter_kgdb != 0)
851 goto out;
852
853 ret = kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
854 out:
855 if (arch_kgdb_ops.enable_nmi)
856 arch_kgdb_ops.enable_nmi(1);
857 return ret;
858 }
859 NOKPROBE_SYMBOL(kgdb_handle_exception);
860
861 /*
862 * GDB places a breakpoint at this function to know dynamically loaded objects.
863 */
module_event(struct notifier_block * self,unsigned long val,void * data)864 static int module_event(struct notifier_block *self, unsigned long val,
865 void *data)
866 {
867 return 0;
868 }
869
870 static struct notifier_block dbg_module_load_nb = {
871 .notifier_call = module_event,
872 };
873
kgdb_nmicallback(int cpu,void * regs)874 int kgdb_nmicallback(int cpu, void *regs)
875 {
876 #ifdef CONFIG_SMP
877 struct kgdb_state kgdb_var;
878 struct kgdb_state *ks = &kgdb_var;
879
880 kgdb_info[cpu].rounding_up = false;
881
882 memset(ks, 0, sizeof(struct kgdb_state));
883 ks->cpu = cpu;
884 ks->linux_regs = regs;
885
886 if (kgdb_info[ks->cpu].enter_kgdb == 0 &&
887 raw_spin_is_locked(&dbg_master_lock)) {
888 kgdb_cpu_enter(ks, regs, DCPU_IS_SLAVE);
889 return 0;
890 }
891 #endif
892 return 1;
893 }
894 NOKPROBE_SYMBOL(kgdb_nmicallback);
895
kgdb_nmicallin(int cpu,int trapnr,void * regs,int err_code,atomic_t * send_ready)896 int kgdb_nmicallin(int cpu, int trapnr, void *regs, int err_code,
897 atomic_t *send_ready)
898 {
899 #ifdef CONFIG_SMP
900 if (!kgdb_io_ready(0) || !send_ready)
901 return 1;
902
903 if (kgdb_info[cpu].enter_kgdb == 0) {
904 struct kgdb_state kgdb_var;
905 struct kgdb_state *ks = &kgdb_var;
906
907 memset(ks, 0, sizeof(struct kgdb_state));
908 ks->cpu = cpu;
909 ks->ex_vector = trapnr;
910 ks->signo = SIGTRAP;
911 ks->err_code = err_code;
912 ks->linux_regs = regs;
913 ks->send_ready = send_ready;
914 kgdb_cpu_enter(ks, regs, DCPU_WANT_MASTER);
915 return 0;
916 }
917 #endif
918 return 1;
919 }
920 NOKPROBE_SYMBOL(kgdb_nmicallin);
921
kgdb_console_write(struct console * co,const char * s,unsigned count)922 static void kgdb_console_write(struct console *co, const char *s,
923 unsigned count)
924 {
925 unsigned long flags;
926
927 /* If we're debugging, or KGDB has not connected, don't try
928 * and print. */
929 if (!kgdb_connected || atomic_read(&kgdb_active) != -1 || dbg_kdb_mode)
930 return;
931
932 local_irq_save(flags);
933 gdbstub_msg_write(s, count);
934 local_irq_restore(flags);
935 }
936
937 static struct console kgdbcons = {
938 .name = "kgdb",
939 .write = kgdb_console_write,
940 .flags = CON_PRINTBUFFER | CON_ENABLED,
941 .index = -1,
942 };
943
opt_kgdb_con(char * str)944 static int __init opt_kgdb_con(char *str)
945 {
946 kgdb_use_con = 1;
947
948 if (kgdb_io_module_registered && !kgdb_con_registered) {
949 register_console(&kgdbcons);
950 kgdb_con_registered = 1;
951 }
952
953 return 0;
954 }
955
956 early_param("kgdbcon", opt_kgdb_con);
957
958 #ifdef CONFIG_MAGIC_SYSRQ
sysrq_handle_dbg(int key)959 static void sysrq_handle_dbg(int key)
960 {
961 if (!dbg_io_ops) {
962 pr_crit("ERROR: No KGDB I/O module available\n");
963 return;
964 }
965 if (!kgdb_connected) {
966 #ifdef CONFIG_KGDB_KDB
967 if (!dbg_kdb_mode)
968 pr_crit("KGDB or $3#33 for KDB\n");
969 #else
970 pr_crit("Entering KGDB\n");
971 #endif
972 }
973
974 kgdb_breakpoint();
975 }
976
977 static const struct sysrq_key_op sysrq_dbg_op = {
978 .handler = sysrq_handle_dbg,
979 .help_msg = "debug(g)",
980 .action_msg = "DEBUG",
981 };
982 #endif
983
kgdb_panic(const char * msg)984 void kgdb_panic(const char *msg)
985 {
986 if (!kgdb_io_module_registered)
987 return;
988
989 /*
990 * We don't want to get stuck waiting for input from user if
991 * "panic_timeout" indicates the system should automatically
992 * reboot on panic.
993 */
994 if (panic_timeout)
995 return;
996
997 if (dbg_kdb_mode)
998 kdb_printf("PANIC: %s\n", msg);
999
1000 kgdb_breakpoint();
1001 }
1002
kgdb_initial_breakpoint(void)1003 static void kgdb_initial_breakpoint(void)
1004 {
1005 kgdb_break_asap = 0;
1006
1007 pr_crit("Waiting for connection from remote gdb...\n");
1008 kgdb_breakpoint();
1009 }
1010
kgdb_arch_late(void)1011 void __weak kgdb_arch_late(void)
1012 {
1013 }
1014
dbg_late_init(void)1015 void __init dbg_late_init(void)
1016 {
1017 dbg_is_early = false;
1018 if (kgdb_io_module_registered)
1019 kgdb_arch_late();
1020 kdb_init(KDB_INIT_FULL);
1021
1022 if (kgdb_io_module_registered && kgdb_break_asap)
1023 kgdb_initial_breakpoint();
1024 }
1025
1026 static int
dbg_notify_reboot(struct notifier_block * this,unsigned long code,void * x)1027 dbg_notify_reboot(struct notifier_block *this, unsigned long code, void *x)
1028 {
1029 /*
1030 * Take the following action on reboot notify depending on value:
1031 * 1 == Enter debugger
1032 * 0 == [the default] detach debug client
1033 * -1 == Do nothing... and use this until the board resets
1034 */
1035 switch (kgdbreboot) {
1036 case 1:
1037 kgdb_breakpoint();
1038 goto done;
1039 case -1:
1040 goto done;
1041 }
1042 if (!dbg_kdb_mode)
1043 gdbstub_exit(code);
1044 done:
1045 return NOTIFY_DONE;
1046 }
1047
1048 static struct notifier_block dbg_reboot_notifier = {
1049 .notifier_call = dbg_notify_reboot,
1050 .next = NULL,
1051 .priority = INT_MAX,
1052 };
1053
kgdb_register_callbacks(void)1054 static void kgdb_register_callbacks(void)
1055 {
1056 if (!kgdb_io_module_registered) {
1057 kgdb_io_module_registered = 1;
1058 kgdb_arch_init();
1059 if (!dbg_is_early)
1060 kgdb_arch_late();
1061 register_module_notifier(&dbg_module_load_nb);
1062 register_reboot_notifier(&dbg_reboot_notifier);
1063 #ifdef CONFIG_MAGIC_SYSRQ
1064 register_sysrq_key('g', &sysrq_dbg_op);
1065 #endif
1066 if (kgdb_use_con && !kgdb_con_registered) {
1067 register_console(&kgdbcons);
1068 kgdb_con_registered = 1;
1069 }
1070 }
1071 }
1072
kgdb_unregister_callbacks(void)1073 static void kgdb_unregister_callbacks(void)
1074 {
1075 /*
1076 * When this routine is called KGDB should unregister from
1077 * handlers and clean up, making sure it is not handling any
1078 * break exceptions at the time.
1079 */
1080 if (kgdb_io_module_registered) {
1081 kgdb_io_module_registered = 0;
1082 unregister_reboot_notifier(&dbg_reboot_notifier);
1083 unregister_module_notifier(&dbg_module_load_nb);
1084 kgdb_arch_exit();
1085 #ifdef CONFIG_MAGIC_SYSRQ
1086 unregister_sysrq_key('g', &sysrq_dbg_op);
1087 #endif
1088 if (kgdb_con_registered) {
1089 unregister_console(&kgdbcons);
1090 kgdb_con_registered = 0;
1091 }
1092 }
1093 }
1094
1095 /**
1096 * kgdb_register_io_module - register KGDB IO module
1097 * @new_dbg_io_ops: the io ops vector
1098 *
1099 * Register it with the KGDB core.
1100 */
kgdb_register_io_module(struct kgdb_io * new_dbg_io_ops)1101 int kgdb_register_io_module(struct kgdb_io *new_dbg_io_ops)
1102 {
1103 struct kgdb_io *old_dbg_io_ops;
1104 int err;
1105
1106 spin_lock(&kgdb_registration_lock);
1107
1108 old_dbg_io_ops = dbg_io_ops;
1109 if (old_dbg_io_ops) {
1110 if (!old_dbg_io_ops->deinit) {
1111 spin_unlock(&kgdb_registration_lock);
1112
1113 pr_err("KGDB I/O driver %s can't replace %s.\n",
1114 new_dbg_io_ops->name, old_dbg_io_ops->name);
1115 return -EBUSY;
1116 }
1117 pr_info("Replacing I/O driver %s with %s\n",
1118 old_dbg_io_ops->name, new_dbg_io_ops->name);
1119 }
1120
1121 if (new_dbg_io_ops->init) {
1122 err = new_dbg_io_ops->init();
1123 if (err) {
1124 spin_unlock(&kgdb_registration_lock);
1125 return err;
1126 }
1127 }
1128
1129 dbg_io_ops = new_dbg_io_ops;
1130
1131 spin_unlock(&kgdb_registration_lock);
1132
1133 if (old_dbg_io_ops) {
1134 old_dbg_io_ops->deinit();
1135 return 0;
1136 }
1137
1138 pr_info("Registered I/O driver %s\n", new_dbg_io_ops->name);
1139
1140 /* Arm KGDB now. */
1141 kgdb_register_callbacks();
1142
1143 if (kgdb_break_asap &&
1144 (!dbg_is_early || IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG)))
1145 kgdb_initial_breakpoint();
1146
1147 return 0;
1148 }
1149 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1150
1151 /**
1152 * kgdb_unregister_io_module - unregister KGDB IO module
1153 * @old_dbg_io_ops: the io ops vector
1154 *
1155 * Unregister it with the KGDB core.
1156 */
kgdb_unregister_io_module(struct kgdb_io * old_dbg_io_ops)1157 void kgdb_unregister_io_module(struct kgdb_io *old_dbg_io_ops)
1158 {
1159 BUG_ON(kgdb_connected);
1160
1161 /*
1162 * KGDB is no longer able to communicate out, so
1163 * unregister our callbacks and reset state.
1164 */
1165 kgdb_unregister_callbacks();
1166
1167 spin_lock(&kgdb_registration_lock);
1168
1169 WARN_ON_ONCE(dbg_io_ops != old_dbg_io_ops);
1170 dbg_io_ops = NULL;
1171
1172 spin_unlock(&kgdb_registration_lock);
1173
1174 if (old_dbg_io_ops->deinit)
1175 old_dbg_io_ops->deinit();
1176
1177 pr_info("Unregistered I/O driver %s, debugger disabled\n",
1178 old_dbg_io_ops->name);
1179 }
1180 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1181
dbg_io_get_char(void)1182 int dbg_io_get_char(void)
1183 {
1184 int ret = dbg_io_ops->read_char();
1185 if (ret == NO_POLL_CHAR)
1186 return -1;
1187 if (!dbg_kdb_mode)
1188 return ret;
1189 if (ret == 127)
1190 return 8;
1191 return ret;
1192 }
1193
1194 /**
1195 * kgdb_breakpoint - generate breakpoint exception
1196 *
1197 * This function will generate a breakpoint exception. It is used at the
1198 * beginning of a program to sync up with a debugger and can be used
1199 * otherwise as a quick means to stop program execution and "break" into
1200 * the debugger.
1201 */
kgdb_breakpoint(void)1202 noinline void kgdb_breakpoint(void)
1203 {
1204 atomic_inc(&kgdb_setting_breakpoint);
1205 wmb(); /* Sync point before breakpoint */
1206 arch_kgdb_breakpoint();
1207 wmb(); /* Sync point after breakpoint */
1208 atomic_dec(&kgdb_setting_breakpoint);
1209 }
1210 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1211
opt_kgdb_wait(char * str)1212 static int __init opt_kgdb_wait(char *str)
1213 {
1214 kgdb_break_asap = 1;
1215
1216 kdb_init(KDB_INIT_EARLY);
1217 if (kgdb_io_module_registered &&
1218 IS_ENABLED(CONFIG_ARCH_HAS_EARLY_DEBUG))
1219 kgdb_initial_breakpoint();
1220
1221 return 0;
1222 }
1223
1224 early_param("kgdbwait", opt_kgdb_wait);
1225