1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/percpu-rwsem.h>
35 #include <linux/cpuset.h>
36
37 #include <trace/events/power.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/cpuhp.h>
40
41 #include "smpboot.h"
42
43 /**
44 * struct cpuhp_cpu_state - Per cpu hotplug state storage
45 * @state: The current cpu state
46 * @target: The target state
47 * @fail: Current CPU hotplug callback state
48 * @thread: Pointer to the hotplug thread
49 * @should_run: Thread should execute
50 * @rollback: Perform a rollback
51 * @single: Single callback invocation
52 * @bringup: Single callback bringup or teardown selector
53 * @cpu: CPU number
54 * @node: Remote CPU node; for multi-instance, do a
55 * single entry callback for install/remove
56 * @last: For multi-instance rollback, remember how far we got
57 * @cb_state: The state for a single callback (install/uninstall)
58 * @result: Result of the operation
59 * @done_up: Signal completion to the issuer of the task for cpu-up
60 * @done_down: Signal completion to the issuer of the task for cpu-down
61 */
62 struct cpuhp_cpu_state {
63 enum cpuhp_state state;
64 enum cpuhp_state target;
65 enum cpuhp_state fail;
66 #ifdef CONFIG_SMP
67 struct task_struct *thread;
68 bool should_run;
69 bool rollback;
70 bool single;
71 bool bringup;
72 int cpu;
73 struct hlist_node *node;
74 struct hlist_node *last;
75 enum cpuhp_state cb_state;
76 int result;
77 struct completion done_up;
78 struct completion done_down;
79 #endif
80 };
81
82 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
83 .fail = CPUHP_INVALID,
84 };
85
86 #ifdef CONFIG_SMP
87 cpumask_t cpus_booted_once_mask;
88 #endif
89
90 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
91 static struct lockdep_map cpuhp_state_up_map =
92 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
93 static struct lockdep_map cpuhp_state_down_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
95
96
cpuhp_lock_acquire(bool bringup)97 static inline void cpuhp_lock_acquire(bool bringup)
98 {
99 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
100 }
101
cpuhp_lock_release(bool bringup)102 static inline void cpuhp_lock_release(bool bringup)
103 {
104 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
105 }
106 #else
107
cpuhp_lock_acquire(bool bringup)108 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)109 static inline void cpuhp_lock_release(bool bringup) { }
110
111 #endif
112
113 /**
114 * struct cpuhp_step - Hotplug state machine step
115 * @name: Name of the step
116 * @startup: Startup function of the step
117 * @teardown: Teardown function of the step
118 * @cant_stop: Bringup/teardown can't be stopped at this step
119 * @multi_instance: State has multiple instances which get added afterwards
120 */
121 struct cpuhp_step {
122 const char *name;
123 union {
124 int (*single)(unsigned int cpu);
125 int (*multi)(unsigned int cpu,
126 struct hlist_node *node);
127 } startup;
128 union {
129 int (*single)(unsigned int cpu);
130 int (*multi)(unsigned int cpu,
131 struct hlist_node *node);
132 } teardown;
133 /* private: */
134 struct hlist_head list;
135 /* public: */
136 bool cant_stop;
137 bool multi_instance;
138 };
139
140 static DEFINE_MUTEX(cpuhp_state_mutex);
141 static struct cpuhp_step cpuhp_hp_states[];
142
cpuhp_get_step(enum cpuhp_state state)143 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
144 {
145 return cpuhp_hp_states + state;
146 }
147
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)148 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
149 {
150 return bringup ? !step->startup.single : !step->teardown.single;
151 }
152
153 /**
154 * cpuhp_invoke_callback - Invoke the callbacks for a given state
155 * @cpu: The cpu for which the callback should be invoked
156 * @state: The state to do callbacks for
157 * @bringup: True if the bringup callback should be invoked
158 * @node: For multi-instance, do a single entry callback for install/remove
159 * @lastp: For multi-instance rollback, remember how far we got
160 *
161 * Called from cpu hotplug and from the state register machinery.
162 *
163 * Return: %0 on success or a negative errno code
164 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)165 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
166 bool bringup, struct hlist_node *node,
167 struct hlist_node **lastp)
168 {
169 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
170 struct cpuhp_step *step = cpuhp_get_step(state);
171 int (*cbm)(unsigned int cpu, struct hlist_node *node);
172 int (*cb)(unsigned int cpu);
173 int ret, cnt;
174
175 if (st->fail == state) {
176 st->fail = CPUHP_INVALID;
177 return -EAGAIN;
178 }
179
180 if (cpuhp_step_empty(bringup, step)) {
181 WARN_ON_ONCE(1);
182 return 0;
183 }
184
185 if (!step->multi_instance) {
186 WARN_ON_ONCE(lastp && *lastp);
187 cb = bringup ? step->startup.single : step->teardown.single;
188
189 trace_cpuhp_enter(cpu, st->target, state, cb);
190 ret = cb(cpu);
191 trace_cpuhp_exit(cpu, st->state, state, ret);
192 return ret;
193 }
194 cbm = bringup ? step->startup.multi : step->teardown.multi;
195
196 /* Single invocation for instance add/remove */
197 if (node) {
198 WARN_ON_ONCE(lastp && *lastp);
199 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
200 ret = cbm(cpu, node);
201 trace_cpuhp_exit(cpu, st->state, state, ret);
202 return ret;
203 }
204
205 /* State transition. Invoke on all instances */
206 cnt = 0;
207 hlist_for_each(node, &step->list) {
208 if (lastp && node == *lastp)
209 break;
210
211 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
212 ret = cbm(cpu, node);
213 trace_cpuhp_exit(cpu, st->state, state, ret);
214 if (ret) {
215 if (!lastp)
216 goto err;
217
218 *lastp = node;
219 return ret;
220 }
221 cnt++;
222 }
223 if (lastp)
224 *lastp = NULL;
225 return 0;
226 err:
227 /* Rollback the instances if one failed */
228 cbm = !bringup ? step->startup.multi : step->teardown.multi;
229 if (!cbm)
230 return ret;
231
232 hlist_for_each(node, &step->list) {
233 if (!cnt--)
234 break;
235
236 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
237 ret = cbm(cpu, node);
238 trace_cpuhp_exit(cpu, st->state, state, ret);
239 /*
240 * Rollback must not fail,
241 */
242 WARN_ON_ONCE(ret);
243 }
244 return ret;
245 }
246
247 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)248 static bool cpuhp_is_ap_state(enum cpuhp_state state)
249 {
250 /*
251 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
252 * purposes as that state is handled explicitly in cpu_down.
253 */
254 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
255 }
256
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)257 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
258 {
259 struct completion *done = bringup ? &st->done_up : &st->done_down;
260 wait_for_completion(done);
261 }
262
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)263 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
264 {
265 struct completion *done = bringup ? &st->done_up : &st->done_down;
266 complete(done);
267 }
268
269 /*
270 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
271 */
cpuhp_is_atomic_state(enum cpuhp_state state)272 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
273 {
274 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
275 }
276
277 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
278 static DEFINE_MUTEX(cpu_add_remove_lock);
279 bool cpuhp_tasks_frozen;
280 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
281
282 /*
283 * The following two APIs (cpu_maps_update_begin/done) must be used when
284 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
285 */
cpu_maps_update_begin(void)286 void cpu_maps_update_begin(void)
287 {
288 mutex_lock(&cpu_add_remove_lock);
289 }
290
cpu_maps_update_done(void)291 void cpu_maps_update_done(void)
292 {
293 mutex_unlock(&cpu_add_remove_lock);
294 }
295
296 /*
297 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
298 * Should always be manipulated under cpu_add_remove_lock
299 */
300 static int cpu_hotplug_disabled;
301
302 #ifdef CONFIG_HOTPLUG_CPU
303
304 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
305
cpus_read_lock(void)306 void cpus_read_lock(void)
307 {
308 percpu_down_read(&cpu_hotplug_lock);
309 }
310 EXPORT_SYMBOL_GPL(cpus_read_lock);
311
cpus_read_trylock(void)312 int cpus_read_trylock(void)
313 {
314 return percpu_down_read_trylock(&cpu_hotplug_lock);
315 }
316 EXPORT_SYMBOL_GPL(cpus_read_trylock);
317
cpus_read_unlock(void)318 void cpus_read_unlock(void)
319 {
320 percpu_up_read(&cpu_hotplug_lock);
321 }
322 EXPORT_SYMBOL_GPL(cpus_read_unlock);
323
cpus_write_lock(void)324 void cpus_write_lock(void)
325 {
326 percpu_down_write(&cpu_hotplug_lock);
327 }
328
cpus_write_unlock(void)329 void cpus_write_unlock(void)
330 {
331 percpu_up_write(&cpu_hotplug_lock);
332 }
333
lockdep_assert_cpus_held(void)334 void lockdep_assert_cpus_held(void)
335 {
336 /*
337 * We can't have hotplug operations before userspace starts running,
338 * and some init codepaths will knowingly not take the hotplug lock.
339 * This is all valid, so mute lockdep until it makes sense to report
340 * unheld locks.
341 */
342 if (system_state < SYSTEM_RUNNING)
343 return;
344
345 percpu_rwsem_assert_held(&cpu_hotplug_lock);
346 }
347
348 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)349 int lockdep_is_cpus_held(void)
350 {
351 return percpu_rwsem_is_held(&cpu_hotplug_lock);
352 }
353 #endif
354
lockdep_acquire_cpus_lock(void)355 static void lockdep_acquire_cpus_lock(void)
356 {
357 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
358 }
359
lockdep_release_cpus_lock(void)360 static void lockdep_release_cpus_lock(void)
361 {
362 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
363 }
364
365 /*
366 * Wait for currently running CPU hotplug operations to complete (if any) and
367 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
368 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
369 * hotplug path before performing hotplug operations. So acquiring that lock
370 * guarantees mutual exclusion from any currently running hotplug operations.
371 */
cpu_hotplug_disable(void)372 void cpu_hotplug_disable(void)
373 {
374 cpu_maps_update_begin();
375 cpu_hotplug_disabled++;
376 cpu_maps_update_done();
377 }
378 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
379
__cpu_hotplug_enable(void)380 static void __cpu_hotplug_enable(void)
381 {
382 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
383 return;
384 cpu_hotplug_disabled--;
385 }
386
cpu_hotplug_enable(void)387 void cpu_hotplug_enable(void)
388 {
389 cpu_maps_update_begin();
390 __cpu_hotplug_enable();
391 cpu_maps_update_done();
392 }
393 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
394
395 #else
396
lockdep_acquire_cpus_lock(void)397 static void lockdep_acquire_cpus_lock(void)
398 {
399 }
400
lockdep_release_cpus_lock(void)401 static void lockdep_release_cpus_lock(void)
402 {
403 }
404
405 #endif /* CONFIG_HOTPLUG_CPU */
406
407 /*
408 * Architectures that need SMT-specific errata handling during SMT hotplug
409 * should override this.
410 */
arch_smt_update(void)411 void __weak arch_smt_update(void) { }
412
413 #ifdef CONFIG_HOTPLUG_SMT
414 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
415
cpu_smt_disable(bool force)416 void __init cpu_smt_disable(bool force)
417 {
418 if (!cpu_smt_possible())
419 return;
420
421 if (force) {
422 pr_info("SMT: Force disabled\n");
423 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
424 } else {
425 pr_info("SMT: disabled\n");
426 cpu_smt_control = CPU_SMT_DISABLED;
427 }
428 }
429
430 /*
431 * The decision whether SMT is supported can only be done after the full
432 * CPU identification. Called from architecture code.
433 */
cpu_smt_check_topology(void)434 void __init cpu_smt_check_topology(void)
435 {
436 if (!topology_smt_supported())
437 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
438 }
439
smt_cmdline_disable(char * str)440 static int __init smt_cmdline_disable(char *str)
441 {
442 cpu_smt_disable(str && !strcmp(str, "force"));
443 return 0;
444 }
445 early_param("nosmt", smt_cmdline_disable);
446
cpu_smt_allowed(unsigned int cpu)447 static inline bool cpu_smt_allowed(unsigned int cpu)
448 {
449 if (cpu_smt_control == CPU_SMT_ENABLED)
450 return true;
451
452 if (topology_is_primary_thread(cpu))
453 return true;
454
455 /*
456 * On x86 it's required to boot all logical CPUs at least once so
457 * that the init code can get a chance to set CR4.MCE on each
458 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
459 * core will shutdown the machine.
460 */
461 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
462 }
463
464 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)465 bool cpu_smt_possible(void)
466 {
467 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
468 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
469 }
470 EXPORT_SYMBOL_GPL(cpu_smt_possible);
471 #else
cpu_smt_allowed(unsigned int cpu)472 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
473 #endif
474
475 static inline enum cpuhp_state
cpuhp_set_state(struct cpuhp_cpu_state * st,enum cpuhp_state target)476 cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
477 {
478 enum cpuhp_state prev_state = st->state;
479 bool bringup = st->state < target;
480
481 st->rollback = false;
482 st->last = NULL;
483
484 st->target = target;
485 st->single = false;
486 st->bringup = bringup;
487 if (cpu_dying(st->cpu) != !bringup)
488 set_cpu_dying(st->cpu, !bringup);
489
490 return prev_state;
491 }
492
493 static inline void
cpuhp_reset_state(struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)494 cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
495 {
496 bool bringup = !st->bringup;
497
498 st->target = prev_state;
499
500 /*
501 * Already rolling back. No need invert the bringup value or to change
502 * the current state.
503 */
504 if (st->rollback)
505 return;
506
507 st->rollback = true;
508
509 /*
510 * If we have st->last we need to undo partial multi_instance of this
511 * state first. Otherwise start undo at the previous state.
512 */
513 if (!st->last) {
514 if (st->bringup)
515 st->state--;
516 else
517 st->state++;
518 }
519
520 st->bringup = bringup;
521 if (cpu_dying(st->cpu) != !bringup)
522 set_cpu_dying(st->cpu, !bringup);
523 }
524
525 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)526 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
527 {
528 if (!st->single && st->state == st->target)
529 return;
530
531 st->result = 0;
532 /*
533 * Make sure the above stores are visible before should_run becomes
534 * true. Paired with the mb() above in cpuhp_thread_fun()
535 */
536 smp_mb();
537 st->should_run = true;
538 wake_up_process(st->thread);
539 wait_for_ap_thread(st, st->bringup);
540 }
541
cpuhp_kick_ap(struct cpuhp_cpu_state * st,enum cpuhp_state target)542 static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
543 {
544 enum cpuhp_state prev_state;
545 int ret;
546
547 prev_state = cpuhp_set_state(st, target);
548 __cpuhp_kick_ap(st);
549 if ((ret = st->result)) {
550 cpuhp_reset_state(st, prev_state);
551 __cpuhp_kick_ap(st);
552 }
553
554 return ret;
555 }
556
bringup_wait_for_ap(unsigned int cpu)557 static int bringup_wait_for_ap(unsigned int cpu)
558 {
559 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
560
561 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
562 wait_for_ap_thread(st, true);
563 if (WARN_ON_ONCE((!cpu_online(cpu))))
564 return -ECANCELED;
565
566 /* Unpark the hotplug thread of the target cpu */
567 kthread_unpark(st->thread);
568
569 /*
570 * SMT soft disabling on X86 requires to bring the CPU out of the
571 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
572 * CPU marked itself as booted_once in notify_cpu_starting() so the
573 * cpu_smt_allowed() check will now return false if this is not the
574 * primary sibling.
575 */
576 if (!cpu_smt_allowed(cpu))
577 return -ECANCELED;
578
579 if (st->target <= CPUHP_AP_ONLINE_IDLE)
580 return 0;
581
582 return cpuhp_kick_ap(st, st->target);
583 }
584
bringup_cpu(unsigned int cpu)585 static int bringup_cpu(unsigned int cpu)
586 {
587 struct task_struct *idle = idle_thread_get(cpu);
588 int ret;
589
590 /*
591 * Some architectures have to walk the irq descriptors to
592 * setup the vector space for the cpu which comes online.
593 * Prevent irq alloc/free across the bringup.
594 */
595 irq_lock_sparse();
596
597 /* Arch-specific enabling code. */
598 ret = __cpu_up(cpu, idle);
599 irq_unlock_sparse();
600 if (ret)
601 return ret;
602 return bringup_wait_for_ap(cpu);
603 }
604
finish_cpu(unsigned int cpu)605 static int finish_cpu(unsigned int cpu)
606 {
607 struct task_struct *idle = idle_thread_get(cpu);
608 struct mm_struct *mm = idle->active_mm;
609
610 /*
611 * idle_task_exit() will have switched to &init_mm, now
612 * clean up any remaining active_mm state.
613 */
614 if (mm != &init_mm)
615 idle->active_mm = &init_mm;
616 mmdrop(mm);
617 return 0;
618 }
619
620 /*
621 * Hotplug state machine related functions
622 */
623
624 /*
625 * Get the next state to run. Empty ones will be skipped. Returns true if a
626 * state must be run.
627 *
628 * st->state will be modified ahead of time, to match state_to_run, as if it
629 * has already ran.
630 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)631 static bool cpuhp_next_state(bool bringup,
632 enum cpuhp_state *state_to_run,
633 struct cpuhp_cpu_state *st,
634 enum cpuhp_state target)
635 {
636 do {
637 if (bringup) {
638 if (st->state >= target)
639 return false;
640
641 *state_to_run = ++st->state;
642 } else {
643 if (st->state <= target)
644 return false;
645
646 *state_to_run = st->state--;
647 }
648
649 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
650 break;
651 } while (true);
652
653 return true;
654 }
655
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)656 static int cpuhp_invoke_callback_range(bool bringup,
657 unsigned int cpu,
658 struct cpuhp_cpu_state *st,
659 enum cpuhp_state target)
660 {
661 enum cpuhp_state state;
662 int err = 0;
663
664 while (cpuhp_next_state(bringup, &state, st, target)) {
665 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
666 if (err)
667 break;
668 }
669
670 return err;
671 }
672
can_rollback_cpu(struct cpuhp_cpu_state * st)673 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
674 {
675 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
676 return true;
677 /*
678 * When CPU hotplug is disabled, then taking the CPU down is not
679 * possible because takedown_cpu() and the architecture and
680 * subsystem specific mechanisms are not available. So the CPU
681 * which would be completely unplugged again needs to stay around
682 * in the current state.
683 */
684 return st->state <= CPUHP_BRINGUP_CPU;
685 }
686
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)687 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
688 enum cpuhp_state target)
689 {
690 enum cpuhp_state prev_state = st->state;
691 int ret = 0;
692
693 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
694 if (ret) {
695 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
696 ret, cpu, cpuhp_get_step(st->state)->name,
697 st->state);
698
699 cpuhp_reset_state(st, prev_state);
700 if (can_rollback_cpu(st))
701 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
702 prev_state));
703 }
704 return ret;
705 }
706
707 /*
708 * The cpu hotplug threads manage the bringup and teardown of the cpus
709 */
cpuhp_create(unsigned int cpu)710 static void cpuhp_create(unsigned int cpu)
711 {
712 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
713
714 init_completion(&st->done_up);
715 init_completion(&st->done_down);
716 st->cpu = cpu;
717 }
718
cpuhp_should_run(unsigned int cpu)719 static int cpuhp_should_run(unsigned int cpu)
720 {
721 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
722
723 return st->should_run;
724 }
725
726 /*
727 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
728 * callbacks when a state gets [un]installed at runtime.
729 *
730 * Each invocation of this function by the smpboot thread does a single AP
731 * state callback.
732 *
733 * It has 3 modes of operation:
734 * - single: runs st->cb_state
735 * - up: runs ++st->state, while st->state < st->target
736 * - down: runs st->state--, while st->state > st->target
737 *
738 * When complete or on error, should_run is cleared and the completion is fired.
739 */
cpuhp_thread_fun(unsigned int cpu)740 static void cpuhp_thread_fun(unsigned int cpu)
741 {
742 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
743 bool bringup = st->bringup;
744 enum cpuhp_state state;
745
746 if (WARN_ON_ONCE(!st->should_run))
747 return;
748
749 /*
750 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
751 * that if we see ->should_run we also see the rest of the state.
752 */
753 smp_mb();
754
755 /*
756 * The BP holds the hotplug lock, but we're now running on the AP,
757 * ensure that anybody asserting the lock is held, will actually find
758 * it so.
759 */
760 lockdep_acquire_cpus_lock();
761 cpuhp_lock_acquire(bringup);
762
763 if (st->single) {
764 state = st->cb_state;
765 st->should_run = false;
766 } else {
767 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
768 if (!st->should_run)
769 goto end;
770 }
771
772 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
773
774 if (cpuhp_is_atomic_state(state)) {
775 local_irq_disable();
776 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
777 local_irq_enable();
778
779 /*
780 * STARTING/DYING must not fail!
781 */
782 WARN_ON_ONCE(st->result);
783 } else {
784 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
785 }
786
787 if (st->result) {
788 /*
789 * If we fail on a rollback, we're up a creek without no
790 * paddle, no way forward, no way back. We loose, thanks for
791 * playing.
792 */
793 WARN_ON_ONCE(st->rollback);
794 st->should_run = false;
795 }
796
797 end:
798 cpuhp_lock_release(bringup);
799 lockdep_release_cpus_lock();
800
801 if (!st->should_run)
802 complete_ap_thread(st, bringup);
803 }
804
805 /* Invoke a single callback on a remote cpu */
806 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)807 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
808 struct hlist_node *node)
809 {
810 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
811 int ret;
812
813 if (!cpu_online(cpu))
814 return 0;
815
816 cpuhp_lock_acquire(false);
817 cpuhp_lock_release(false);
818
819 cpuhp_lock_acquire(true);
820 cpuhp_lock_release(true);
821
822 /*
823 * If we are up and running, use the hotplug thread. For early calls
824 * we invoke the thread function directly.
825 */
826 if (!st->thread)
827 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
828
829 st->rollback = false;
830 st->last = NULL;
831
832 st->node = node;
833 st->bringup = bringup;
834 st->cb_state = state;
835 st->single = true;
836
837 __cpuhp_kick_ap(st);
838
839 /*
840 * If we failed and did a partial, do a rollback.
841 */
842 if ((ret = st->result) && st->last) {
843 st->rollback = true;
844 st->bringup = !bringup;
845
846 __cpuhp_kick_ap(st);
847 }
848
849 /*
850 * Clean up the leftovers so the next hotplug operation wont use stale
851 * data.
852 */
853 st->node = st->last = NULL;
854 return ret;
855 }
856
cpuhp_kick_ap_work(unsigned int cpu)857 static int cpuhp_kick_ap_work(unsigned int cpu)
858 {
859 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
860 enum cpuhp_state prev_state = st->state;
861 int ret;
862
863 cpuhp_lock_acquire(false);
864 cpuhp_lock_release(false);
865
866 cpuhp_lock_acquire(true);
867 cpuhp_lock_release(true);
868
869 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
870 ret = cpuhp_kick_ap(st, st->target);
871 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
872
873 return ret;
874 }
875
876 static struct smp_hotplug_thread cpuhp_threads = {
877 .store = &cpuhp_state.thread,
878 .create = &cpuhp_create,
879 .thread_should_run = cpuhp_should_run,
880 .thread_fn = cpuhp_thread_fun,
881 .thread_comm = "cpuhp/%u",
882 .selfparking = true,
883 };
884
cpuhp_threads_init(void)885 void __init cpuhp_threads_init(void)
886 {
887 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
888 kthread_unpark(this_cpu_read(cpuhp_state.thread));
889 }
890
891 /*
892 *
893 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
894 * protected region.
895 *
896 * The operation is still serialized against concurrent CPU hotplug via
897 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
898 * serialized against other hotplug related activity like adding or
899 * removing of state callbacks and state instances, which invoke either the
900 * startup or the teardown callback of the affected state.
901 *
902 * This is required for subsystems which are unfixable vs. CPU hotplug and
903 * evade lock inversion problems by scheduling work which has to be
904 * completed _before_ cpu_up()/_cpu_down() returns.
905 *
906 * Don't even think about adding anything to this for any new code or even
907 * drivers. It's only purpose is to keep existing lock order trainwrecks
908 * working.
909 *
910 * For cpu_down() there might be valid reasons to finish cleanups which are
911 * not required to be done under cpu_hotplug_lock, but that's a different
912 * story and would be not invoked via this.
913 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)914 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
915 {
916 /*
917 * cpusets delegate hotplug operations to a worker to "solve" the
918 * lock order problems. Wait for the worker, but only if tasks are
919 * _not_ frozen (suspend, hibernate) as that would wait forever.
920 *
921 * The wait is required because otherwise the hotplug operation
922 * returns with inconsistent state, which could even be observed in
923 * user space when a new CPU is brought up. The CPU plug uevent
924 * would be delivered and user space reacting on it would fail to
925 * move tasks to the newly plugged CPU up to the point where the
926 * work has finished because up to that point the newly plugged CPU
927 * is not assignable in cpusets/cgroups. On unplug that's not
928 * necessarily a visible issue, but it is still inconsistent state,
929 * which is the real problem which needs to be "fixed". This can't
930 * prevent the transient state between scheduling the work and
931 * returning from waiting for it.
932 */
933 if (!tasks_frozen)
934 cpuset_wait_for_hotplug();
935 }
936
937 #ifdef CONFIG_HOTPLUG_CPU
938 #ifndef arch_clear_mm_cpumask_cpu
939 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
940 #endif
941
942 /**
943 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
944 * @cpu: a CPU id
945 *
946 * This function walks all processes, finds a valid mm struct for each one and
947 * then clears a corresponding bit in mm's cpumask. While this all sounds
948 * trivial, there are various non-obvious corner cases, which this function
949 * tries to solve in a safe manner.
950 *
951 * Also note that the function uses a somewhat relaxed locking scheme, so it may
952 * be called only for an already offlined CPU.
953 */
clear_tasks_mm_cpumask(int cpu)954 void clear_tasks_mm_cpumask(int cpu)
955 {
956 struct task_struct *p;
957
958 /*
959 * This function is called after the cpu is taken down and marked
960 * offline, so its not like new tasks will ever get this cpu set in
961 * their mm mask. -- Peter Zijlstra
962 * Thus, we may use rcu_read_lock() here, instead of grabbing
963 * full-fledged tasklist_lock.
964 */
965 WARN_ON(cpu_online(cpu));
966 rcu_read_lock();
967 for_each_process(p) {
968 struct task_struct *t;
969
970 /*
971 * Main thread might exit, but other threads may still have
972 * a valid mm. Find one.
973 */
974 t = find_lock_task_mm(p);
975 if (!t)
976 continue;
977 arch_clear_mm_cpumask_cpu(cpu, t->mm);
978 task_unlock(t);
979 }
980 rcu_read_unlock();
981 }
982
983 /* Take this CPU down. */
take_cpu_down(void * _param)984 static int take_cpu_down(void *_param)
985 {
986 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
987 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
988 int err, cpu = smp_processor_id();
989 int ret;
990
991 /* Ensure this CPU doesn't handle any more interrupts. */
992 err = __cpu_disable();
993 if (err < 0)
994 return err;
995
996 /*
997 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
998 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
999 */
1000 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1001
1002 /* Invoke the former CPU_DYING callbacks */
1003 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1004
1005 /*
1006 * DYING must not fail!
1007 */
1008 WARN_ON_ONCE(ret);
1009
1010 /* Give up timekeeping duties */
1011 tick_handover_do_timer();
1012 /* Remove CPU from timer broadcasting */
1013 tick_offline_cpu(cpu);
1014 /* Park the stopper thread */
1015 stop_machine_park(cpu);
1016 return 0;
1017 }
1018
takedown_cpu(unsigned int cpu)1019 static int takedown_cpu(unsigned int cpu)
1020 {
1021 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1022 int err;
1023
1024 /* Park the smpboot threads */
1025 kthread_park(st->thread);
1026
1027 /*
1028 * Prevent irq alloc/free while the dying cpu reorganizes the
1029 * interrupt affinities.
1030 */
1031 irq_lock_sparse();
1032
1033 /*
1034 * So now all preempt/rcu users must observe !cpu_active().
1035 */
1036 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1037 if (err) {
1038 /* CPU refused to die */
1039 irq_unlock_sparse();
1040 /* Unpark the hotplug thread so we can rollback there */
1041 kthread_unpark(st->thread);
1042 return err;
1043 }
1044 BUG_ON(cpu_online(cpu));
1045
1046 /*
1047 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1048 * all runnable tasks from the CPU, there's only the idle task left now
1049 * that the migration thread is done doing the stop_machine thing.
1050 *
1051 * Wait for the stop thread to go away.
1052 */
1053 wait_for_ap_thread(st, false);
1054 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1055
1056 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1057 irq_unlock_sparse();
1058
1059 hotplug_cpu__broadcast_tick_pull(cpu);
1060 /* This actually kills the CPU. */
1061 __cpu_die(cpu);
1062
1063 tick_cleanup_dead_cpu(cpu);
1064 rcutree_migrate_callbacks(cpu);
1065 return 0;
1066 }
1067
cpuhp_complete_idle_dead(void * arg)1068 static void cpuhp_complete_idle_dead(void *arg)
1069 {
1070 struct cpuhp_cpu_state *st = arg;
1071
1072 complete_ap_thread(st, false);
1073 }
1074
cpuhp_report_idle_dead(void)1075 void cpuhp_report_idle_dead(void)
1076 {
1077 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1078
1079 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1080 rcu_report_dead(smp_processor_id());
1081 st->state = CPUHP_AP_IDLE_DEAD;
1082 /*
1083 * We cannot call complete after rcu_report_dead() so we delegate it
1084 * to an online cpu.
1085 */
1086 smp_call_function_single(cpumask_first(cpu_online_mask),
1087 cpuhp_complete_idle_dead, st, 0);
1088 }
1089
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1090 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1091 enum cpuhp_state target)
1092 {
1093 enum cpuhp_state prev_state = st->state;
1094 int ret = 0;
1095
1096 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1097 if (ret) {
1098 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1099 ret, cpu, cpuhp_get_step(st->state)->name,
1100 st->state);
1101
1102 cpuhp_reset_state(st, prev_state);
1103
1104 if (st->state < prev_state)
1105 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1106 prev_state));
1107 }
1108
1109 return ret;
1110 }
1111
1112 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1113 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1114 enum cpuhp_state target)
1115 {
1116 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1117 int prev_state, ret = 0;
1118
1119 if (num_online_cpus() == 1)
1120 return -EBUSY;
1121
1122 if (!cpu_present(cpu))
1123 return -EINVAL;
1124
1125 cpus_write_lock();
1126
1127 cpuhp_tasks_frozen = tasks_frozen;
1128
1129 prev_state = cpuhp_set_state(st, target);
1130 /*
1131 * If the current CPU state is in the range of the AP hotplug thread,
1132 * then we need to kick the thread.
1133 */
1134 if (st->state > CPUHP_TEARDOWN_CPU) {
1135 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1136 ret = cpuhp_kick_ap_work(cpu);
1137 /*
1138 * The AP side has done the error rollback already. Just
1139 * return the error code..
1140 */
1141 if (ret)
1142 goto out;
1143
1144 /*
1145 * We might have stopped still in the range of the AP hotplug
1146 * thread. Nothing to do anymore.
1147 */
1148 if (st->state > CPUHP_TEARDOWN_CPU)
1149 goto out;
1150
1151 st->target = target;
1152 }
1153 /*
1154 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1155 * to do the further cleanups.
1156 */
1157 ret = cpuhp_down_callbacks(cpu, st, target);
1158 if (ret && st->state < prev_state) {
1159 if (st->state == CPUHP_TEARDOWN_CPU) {
1160 cpuhp_reset_state(st, prev_state);
1161 __cpuhp_kick_ap(st);
1162 } else {
1163 WARN(1, "DEAD callback error for CPU%d", cpu);
1164 }
1165 }
1166
1167 out:
1168 cpus_write_unlock();
1169 /*
1170 * Do post unplug cleanup. This is still protected against
1171 * concurrent CPU hotplug via cpu_add_remove_lock.
1172 */
1173 lockup_detector_cleanup();
1174 arch_smt_update();
1175 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1176 return ret;
1177 }
1178
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1179 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1180 {
1181 if (cpu_hotplug_disabled)
1182 return -EBUSY;
1183 return _cpu_down(cpu, 0, target);
1184 }
1185
cpu_down(unsigned int cpu,enum cpuhp_state target)1186 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1187 {
1188 int err;
1189
1190 cpu_maps_update_begin();
1191 err = cpu_down_maps_locked(cpu, target);
1192 cpu_maps_update_done();
1193 return err;
1194 }
1195
1196 /**
1197 * cpu_device_down - Bring down a cpu device
1198 * @dev: Pointer to the cpu device to offline
1199 *
1200 * This function is meant to be used by device core cpu subsystem only.
1201 *
1202 * Other subsystems should use remove_cpu() instead.
1203 *
1204 * Return: %0 on success or a negative errno code
1205 */
cpu_device_down(struct device * dev)1206 int cpu_device_down(struct device *dev)
1207 {
1208 return cpu_down(dev->id, CPUHP_OFFLINE);
1209 }
1210
remove_cpu(unsigned int cpu)1211 int remove_cpu(unsigned int cpu)
1212 {
1213 int ret;
1214
1215 lock_device_hotplug();
1216 ret = device_offline(get_cpu_device(cpu));
1217 unlock_device_hotplug();
1218
1219 return ret;
1220 }
1221 EXPORT_SYMBOL_GPL(remove_cpu);
1222
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1223 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1224 {
1225 unsigned int cpu;
1226 int error;
1227
1228 cpu_maps_update_begin();
1229
1230 /*
1231 * Make certain the cpu I'm about to reboot on is online.
1232 *
1233 * This is inline to what migrate_to_reboot_cpu() already do.
1234 */
1235 if (!cpu_online(primary_cpu))
1236 primary_cpu = cpumask_first(cpu_online_mask);
1237
1238 for_each_online_cpu(cpu) {
1239 if (cpu == primary_cpu)
1240 continue;
1241
1242 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1243 if (error) {
1244 pr_err("Failed to offline CPU%d - error=%d",
1245 cpu, error);
1246 break;
1247 }
1248 }
1249
1250 /*
1251 * Ensure all but the reboot CPU are offline.
1252 */
1253 BUG_ON(num_online_cpus() > 1);
1254
1255 /*
1256 * Make sure the CPUs won't be enabled by someone else after this
1257 * point. Kexec will reboot to a new kernel shortly resetting
1258 * everything along the way.
1259 */
1260 cpu_hotplug_disabled++;
1261
1262 cpu_maps_update_done();
1263 }
1264
1265 #else
1266 #define takedown_cpu NULL
1267 #endif /*CONFIG_HOTPLUG_CPU*/
1268
1269 /**
1270 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1271 * @cpu: cpu that just started
1272 *
1273 * It must be called by the arch code on the new cpu, before the new cpu
1274 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1275 */
notify_cpu_starting(unsigned int cpu)1276 void notify_cpu_starting(unsigned int cpu)
1277 {
1278 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1279 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1280 int ret;
1281
1282 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1283 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1284 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
1285
1286 /*
1287 * STARTING must not fail!
1288 */
1289 WARN_ON_ONCE(ret);
1290 }
1291
1292 /*
1293 * Called from the idle task. Wake up the controlling task which brings the
1294 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1295 * online bringup to the hotplug thread.
1296 */
cpuhp_online_idle(enum cpuhp_state state)1297 void cpuhp_online_idle(enum cpuhp_state state)
1298 {
1299 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1300
1301 /* Happens for the boot cpu */
1302 if (state != CPUHP_AP_ONLINE_IDLE)
1303 return;
1304
1305 /*
1306 * Unpart the stopper thread before we start the idle loop (and start
1307 * scheduling); this ensures the stopper task is always available.
1308 */
1309 stop_machine_unpark(smp_processor_id());
1310
1311 st->state = CPUHP_AP_ONLINE_IDLE;
1312 complete_ap_thread(st, true);
1313 }
1314
1315 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1316 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1317 {
1318 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1319 struct task_struct *idle;
1320 int ret = 0;
1321
1322 cpus_write_lock();
1323
1324 if (!cpu_present(cpu)) {
1325 ret = -EINVAL;
1326 goto out;
1327 }
1328
1329 /*
1330 * The caller of cpu_up() might have raced with another
1331 * caller. Nothing to do.
1332 */
1333 if (st->state >= target)
1334 goto out;
1335
1336 if (st->state == CPUHP_OFFLINE) {
1337 /* Let it fail before we try to bring the cpu up */
1338 idle = idle_thread_get(cpu);
1339 if (IS_ERR(idle)) {
1340 ret = PTR_ERR(idle);
1341 goto out;
1342 }
1343 }
1344
1345 cpuhp_tasks_frozen = tasks_frozen;
1346
1347 cpuhp_set_state(st, target);
1348 /*
1349 * If the current CPU state is in the range of the AP hotplug thread,
1350 * then we need to kick the thread once more.
1351 */
1352 if (st->state > CPUHP_BRINGUP_CPU) {
1353 ret = cpuhp_kick_ap_work(cpu);
1354 /*
1355 * The AP side has done the error rollback already. Just
1356 * return the error code..
1357 */
1358 if (ret)
1359 goto out;
1360 }
1361
1362 /*
1363 * Try to reach the target state. We max out on the BP at
1364 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1365 * responsible for bringing it up to the target state.
1366 */
1367 target = min((int)target, CPUHP_BRINGUP_CPU);
1368 ret = cpuhp_up_callbacks(cpu, st, target);
1369 out:
1370 cpus_write_unlock();
1371 arch_smt_update();
1372 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1373 return ret;
1374 }
1375
cpu_up(unsigned int cpu,enum cpuhp_state target)1376 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1377 {
1378 int err = 0;
1379
1380 if (!cpu_possible(cpu)) {
1381 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1382 cpu);
1383 #if defined(CONFIG_IA64)
1384 pr_err("please check additional_cpus= boot parameter\n");
1385 #endif
1386 return -EINVAL;
1387 }
1388
1389 err = try_online_node(cpu_to_node(cpu));
1390 if (err)
1391 return err;
1392
1393 cpu_maps_update_begin();
1394
1395 if (cpu_hotplug_disabled) {
1396 err = -EBUSY;
1397 goto out;
1398 }
1399 if (!cpu_smt_allowed(cpu)) {
1400 err = -EPERM;
1401 goto out;
1402 }
1403
1404 err = _cpu_up(cpu, 0, target);
1405 out:
1406 cpu_maps_update_done();
1407 return err;
1408 }
1409
1410 /**
1411 * cpu_device_up - Bring up a cpu device
1412 * @dev: Pointer to the cpu device to online
1413 *
1414 * This function is meant to be used by device core cpu subsystem only.
1415 *
1416 * Other subsystems should use add_cpu() instead.
1417 *
1418 * Return: %0 on success or a negative errno code
1419 */
cpu_device_up(struct device * dev)1420 int cpu_device_up(struct device *dev)
1421 {
1422 return cpu_up(dev->id, CPUHP_ONLINE);
1423 }
1424
add_cpu(unsigned int cpu)1425 int add_cpu(unsigned int cpu)
1426 {
1427 int ret;
1428
1429 lock_device_hotplug();
1430 ret = device_online(get_cpu_device(cpu));
1431 unlock_device_hotplug();
1432
1433 return ret;
1434 }
1435 EXPORT_SYMBOL_GPL(add_cpu);
1436
1437 /**
1438 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1439 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1440 *
1441 * On some architectures like arm64, we can hibernate on any CPU, but on
1442 * wake up the CPU we hibernated on might be offline as a side effect of
1443 * using maxcpus= for example.
1444 *
1445 * Return: %0 on success or a negative errno code
1446 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1447 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1448 {
1449 int ret;
1450
1451 if (!cpu_online(sleep_cpu)) {
1452 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1453 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1454 if (ret) {
1455 pr_err("Failed to bring hibernate-CPU up!\n");
1456 return ret;
1457 }
1458 }
1459 return 0;
1460 }
1461
bringup_nonboot_cpus(unsigned int setup_max_cpus)1462 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1463 {
1464 unsigned int cpu;
1465
1466 for_each_present_cpu(cpu) {
1467 if (num_online_cpus() >= setup_max_cpus)
1468 break;
1469 if (!cpu_online(cpu))
1470 cpu_up(cpu, CPUHP_ONLINE);
1471 }
1472 }
1473
1474 #ifdef CONFIG_PM_SLEEP_SMP
1475 static cpumask_var_t frozen_cpus;
1476
freeze_secondary_cpus(int primary)1477 int freeze_secondary_cpus(int primary)
1478 {
1479 int cpu, error = 0;
1480
1481 cpu_maps_update_begin();
1482 if (primary == -1) {
1483 primary = cpumask_first(cpu_online_mask);
1484 if (!housekeeping_cpu(primary, HK_FLAG_TIMER))
1485 primary = housekeeping_any_cpu(HK_FLAG_TIMER);
1486 } else {
1487 if (!cpu_online(primary))
1488 primary = cpumask_first(cpu_online_mask);
1489 }
1490
1491 /*
1492 * We take down all of the non-boot CPUs in one shot to avoid races
1493 * with the userspace trying to use the CPU hotplug at the same time
1494 */
1495 cpumask_clear(frozen_cpus);
1496
1497 pr_info("Disabling non-boot CPUs ...\n");
1498 for_each_online_cpu(cpu) {
1499 if (cpu == primary)
1500 continue;
1501
1502 if (pm_wakeup_pending()) {
1503 pr_info("Wakeup pending. Abort CPU freeze\n");
1504 error = -EBUSY;
1505 break;
1506 }
1507
1508 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1509 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1510 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1511 if (!error)
1512 cpumask_set_cpu(cpu, frozen_cpus);
1513 else {
1514 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1515 break;
1516 }
1517 }
1518
1519 if (!error)
1520 BUG_ON(num_online_cpus() > 1);
1521 else
1522 pr_err("Non-boot CPUs are not disabled\n");
1523
1524 /*
1525 * Make sure the CPUs won't be enabled by someone else. We need to do
1526 * this even in case of failure as all freeze_secondary_cpus() users are
1527 * supposed to do thaw_secondary_cpus() on the failure path.
1528 */
1529 cpu_hotplug_disabled++;
1530
1531 cpu_maps_update_done();
1532 return error;
1533 }
1534
arch_thaw_secondary_cpus_begin(void)1535 void __weak arch_thaw_secondary_cpus_begin(void)
1536 {
1537 }
1538
arch_thaw_secondary_cpus_end(void)1539 void __weak arch_thaw_secondary_cpus_end(void)
1540 {
1541 }
1542
thaw_secondary_cpus(void)1543 void thaw_secondary_cpus(void)
1544 {
1545 int cpu, error;
1546
1547 /* Allow everyone to use the CPU hotplug again */
1548 cpu_maps_update_begin();
1549 __cpu_hotplug_enable();
1550 if (cpumask_empty(frozen_cpus))
1551 goto out;
1552
1553 pr_info("Enabling non-boot CPUs ...\n");
1554
1555 arch_thaw_secondary_cpus_begin();
1556
1557 for_each_cpu(cpu, frozen_cpus) {
1558 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1559 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1560 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1561 if (!error) {
1562 pr_info("CPU%d is up\n", cpu);
1563 continue;
1564 }
1565 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1566 }
1567
1568 arch_thaw_secondary_cpus_end();
1569
1570 cpumask_clear(frozen_cpus);
1571 out:
1572 cpu_maps_update_done();
1573 }
1574
alloc_frozen_cpus(void)1575 static int __init alloc_frozen_cpus(void)
1576 {
1577 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1578 return -ENOMEM;
1579 return 0;
1580 }
1581 core_initcall(alloc_frozen_cpus);
1582
1583 /*
1584 * When callbacks for CPU hotplug notifications are being executed, we must
1585 * ensure that the state of the system with respect to the tasks being frozen
1586 * or not, as reported by the notification, remains unchanged *throughout the
1587 * duration* of the execution of the callbacks.
1588 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1589 *
1590 * This synchronization is implemented by mutually excluding regular CPU
1591 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1592 * Hibernate notifications.
1593 */
1594 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1595 cpu_hotplug_pm_callback(struct notifier_block *nb,
1596 unsigned long action, void *ptr)
1597 {
1598 switch (action) {
1599
1600 case PM_SUSPEND_PREPARE:
1601 case PM_HIBERNATION_PREPARE:
1602 cpu_hotplug_disable();
1603 break;
1604
1605 case PM_POST_SUSPEND:
1606 case PM_POST_HIBERNATION:
1607 cpu_hotplug_enable();
1608 break;
1609
1610 default:
1611 return NOTIFY_DONE;
1612 }
1613
1614 return NOTIFY_OK;
1615 }
1616
1617
cpu_hotplug_pm_sync_init(void)1618 static int __init cpu_hotplug_pm_sync_init(void)
1619 {
1620 /*
1621 * cpu_hotplug_pm_callback has higher priority than x86
1622 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1623 * to disable cpu hotplug to avoid cpu hotplug race.
1624 */
1625 pm_notifier(cpu_hotplug_pm_callback, 0);
1626 return 0;
1627 }
1628 core_initcall(cpu_hotplug_pm_sync_init);
1629
1630 #endif /* CONFIG_PM_SLEEP_SMP */
1631
1632 int __boot_cpu_id;
1633
1634 #endif /* CONFIG_SMP */
1635
1636 /* Boot processor state steps */
1637 static struct cpuhp_step cpuhp_hp_states[] = {
1638 [CPUHP_OFFLINE] = {
1639 .name = "offline",
1640 .startup.single = NULL,
1641 .teardown.single = NULL,
1642 },
1643 #ifdef CONFIG_SMP
1644 [CPUHP_CREATE_THREADS]= {
1645 .name = "threads:prepare",
1646 .startup.single = smpboot_create_threads,
1647 .teardown.single = NULL,
1648 .cant_stop = true,
1649 },
1650 [CPUHP_PERF_PREPARE] = {
1651 .name = "perf:prepare",
1652 .startup.single = perf_event_init_cpu,
1653 .teardown.single = perf_event_exit_cpu,
1654 },
1655 [CPUHP_WORKQUEUE_PREP] = {
1656 .name = "workqueue:prepare",
1657 .startup.single = workqueue_prepare_cpu,
1658 .teardown.single = NULL,
1659 },
1660 [CPUHP_HRTIMERS_PREPARE] = {
1661 .name = "hrtimers:prepare",
1662 .startup.single = hrtimers_prepare_cpu,
1663 .teardown.single = hrtimers_dead_cpu,
1664 },
1665 [CPUHP_SMPCFD_PREPARE] = {
1666 .name = "smpcfd:prepare",
1667 .startup.single = smpcfd_prepare_cpu,
1668 .teardown.single = smpcfd_dead_cpu,
1669 },
1670 [CPUHP_RELAY_PREPARE] = {
1671 .name = "relay:prepare",
1672 .startup.single = relay_prepare_cpu,
1673 .teardown.single = NULL,
1674 },
1675 [CPUHP_SLAB_PREPARE] = {
1676 .name = "slab:prepare",
1677 .startup.single = slab_prepare_cpu,
1678 .teardown.single = slab_dead_cpu,
1679 },
1680 [CPUHP_RCUTREE_PREP] = {
1681 .name = "RCU/tree:prepare",
1682 .startup.single = rcutree_prepare_cpu,
1683 .teardown.single = rcutree_dead_cpu,
1684 },
1685 /*
1686 * On the tear-down path, timers_dead_cpu() must be invoked
1687 * before blk_mq_queue_reinit_notify() from notify_dead(),
1688 * otherwise a RCU stall occurs.
1689 */
1690 [CPUHP_TIMERS_PREPARE] = {
1691 .name = "timers:prepare",
1692 .startup.single = timers_prepare_cpu,
1693 .teardown.single = timers_dead_cpu,
1694 },
1695 /* Kicks the plugged cpu into life */
1696 [CPUHP_BRINGUP_CPU] = {
1697 .name = "cpu:bringup",
1698 .startup.single = bringup_cpu,
1699 .teardown.single = finish_cpu,
1700 .cant_stop = true,
1701 },
1702 /* Final state before CPU kills itself */
1703 [CPUHP_AP_IDLE_DEAD] = {
1704 .name = "idle:dead",
1705 },
1706 /*
1707 * Last state before CPU enters the idle loop to die. Transient state
1708 * for synchronization.
1709 */
1710 [CPUHP_AP_OFFLINE] = {
1711 .name = "ap:offline",
1712 .cant_stop = true,
1713 },
1714 /* First state is scheduler control. Interrupts are disabled */
1715 [CPUHP_AP_SCHED_STARTING] = {
1716 .name = "sched:starting",
1717 .startup.single = sched_cpu_starting,
1718 .teardown.single = sched_cpu_dying,
1719 },
1720 [CPUHP_AP_RCUTREE_DYING] = {
1721 .name = "RCU/tree:dying",
1722 .startup.single = NULL,
1723 .teardown.single = rcutree_dying_cpu,
1724 },
1725 [CPUHP_AP_SMPCFD_DYING] = {
1726 .name = "smpcfd:dying",
1727 .startup.single = NULL,
1728 .teardown.single = smpcfd_dying_cpu,
1729 },
1730 /* Entry state on starting. Interrupts enabled from here on. Transient
1731 * state for synchronsization */
1732 [CPUHP_AP_ONLINE] = {
1733 .name = "ap:online",
1734 },
1735 /*
1736 * Handled on control processor until the plugged processor manages
1737 * this itself.
1738 */
1739 [CPUHP_TEARDOWN_CPU] = {
1740 .name = "cpu:teardown",
1741 .startup.single = NULL,
1742 .teardown.single = takedown_cpu,
1743 .cant_stop = true,
1744 },
1745
1746 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1747 .name = "sched:waitempty",
1748 .startup.single = NULL,
1749 .teardown.single = sched_cpu_wait_empty,
1750 },
1751
1752 /* Handle smpboot threads park/unpark */
1753 [CPUHP_AP_SMPBOOT_THREADS] = {
1754 .name = "smpboot/threads:online",
1755 .startup.single = smpboot_unpark_threads,
1756 .teardown.single = smpboot_park_threads,
1757 },
1758 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1759 .name = "irq/affinity:online",
1760 .startup.single = irq_affinity_online_cpu,
1761 .teardown.single = NULL,
1762 },
1763 [CPUHP_AP_PERF_ONLINE] = {
1764 .name = "perf:online",
1765 .startup.single = perf_event_init_cpu,
1766 .teardown.single = perf_event_exit_cpu,
1767 },
1768 [CPUHP_AP_WATCHDOG_ONLINE] = {
1769 .name = "lockup_detector:online",
1770 .startup.single = lockup_detector_online_cpu,
1771 .teardown.single = lockup_detector_offline_cpu,
1772 },
1773 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1774 .name = "workqueue:online",
1775 .startup.single = workqueue_online_cpu,
1776 .teardown.single = workqueue_offline_cpu,
1777 },
1778 [CPUHP_AP_RCUTREE_ONLINE] = {
1779 .name = "RCU/tree:online",
1780 .startup.single = rcutree_online_cpu,
1781 .teardown.single = rcutree_offline_cpu,
1782 },
1783 #endif
1784 /*
1785 * The dynamically registered state space is here
1786 */
1787
1788 #ifdef CONFIG_SMP
1789 /* Last state is scheduler control setting the cpu active */
1790 [CPUHP_AP_ACTIVE] = {
1791 .name = "sched:active",
1792 .startup.single = sched_cpu_activate,
1793 .teardown.single = sched_cpu_deactivate,
1794 },
1795 #endif
1796
1797 /* CPU is fully up and running. */
1798 [CPUHP_ONLINE] = {
1799 .name = "online",
1800 .startup.single = NULL,
1801 .teardown.single = NULL,
1802 },
1803 };
1804
1805 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1806 static int cpuhp_cb_check(enum cpuhp_state state)
1807 {
1808 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1809 return -EINVAL;
1810 return 0;
1811 }
1812
1813 /*
1814 * Returns a free for dynamic slot assignment of the Online state. The states
1815 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1816 * by having no name assigned.
1817 */
cpuhp_reserve_state(enum cpuhp_state state)1818 static int cpuhp_reserve_state(enum cpuhp_state state)
1819 {
1820 enum cpuhp_state i, end;
1821 struct cpuhp_step *step;
1822
1823 switch (state) {
1824 case CPUHP_AP_ONLINE_DYN:
1825 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1826 end = CPUHP_AP_ONLINE_DYN_END;
1827 break;
1828 case CPUHP_BP_PREPARE_DYN:
1829 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1830 end = CPUHP_BP_PREPARE_DYN_END;
1831 break;
1832 default:
1833 return -EINVAL;
1834 }
1835
1836 for (i = state; i <= end; i++, step++) {
1837 if (!step->name)
1838 return i;
1839 }
1840 WARN(1, "No more dynamic states available for CPU hotplug\n");
1841 return -ENOSPC;
1842 }
1843
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1844 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1845 int (*startup)(unsigned int cpu),
1846 int (*teardown)(unsigned int cpu),
1847 bool multi_instance)
1848 {
1849 /* (Un)Install the callbacks for further cpu hotplug operations */
1850 struct cpuhp_step *sp;
1851 int ret = 0;
1852
1853 /*
1854 * If name is NULL, then the state gets removed.
1855 *
1856 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1857 * the first allocation from these dynamic ranges, so the removal
1858 * would trigger a new allocation and clear the wrong (already
1859 * empty) state, leaving the callbacks of the to be cleared state
1860 * dangling, which causes wreckage on the next hotplug operation.
1861 */
1862 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1863 state == CPUHP_BP_PREPARE_DYN)) {
1864 ret = cpuhp_reserve_state(state);
1865 if (ret < 0)
1866 return ret;
1867 state = ret;
1868 }
1869 sp = cpuhp_get_step(state);
1870 if (name && sp->name)
1871 return -EBUSY;
1872
1873 sp->startup.single = startup;
1874 sp->teardown.single = teardown;
1875 sp->name = name;
1876 sp->multi_instance = multi_instance;
1877 INIT_HLIST_HEAD(&sp->list);
1878 return ret;
1879 }
1880
cpuhp_get_teardown_cb(enum cpuhp_state state)1881 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1882 {
1883 return cpuhp_get_step(state)->teardown.single;
1884 }
1885
1886 /*
1887 * Call the startup/teardown function for a step either on the AP or
1888 * on the current CPU.
1889 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1890 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1891 struct hlist_node *node)
1892 {
1893 struct cpuhp_step *sp = cpuhp_get_step(state);
1894 int ret;
1895
1896 /*
1897 * If there's nothing to do, we done.
1898 * Relies on the union for multi_instance.
1899 */
1900 if (cpuhp_step_empty(bringup, sp))
1901 return 0;
1902 /*
1903 * The non AP bound callbacks can fail on bringup. On teardown
1904 * e.g. module removal we crash for now.
1905 */
1906 #ifdef CONFIG_SMP
1907 if (cpuhp_is_ap_state(state))
1908 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1909 else
1910 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1911 #else
1912 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1913 #endif
1914 BUG_ON(ret && !bringup);
1915 return ret;
1916 }
1917
1918 /*
1919 * Called from __cpuhp_setup_state on a recoverable failure.
1920 *
1921 * Note: The teardown callbacks for rollback are not allowed to fail!
1922 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1923 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1924 struct hlist_node *node)
1925 {
1926 int cpu;
1927
1928 /* Roll back the already executed steps on the other cpus */
1929 for_each_present_cpu(cpu) {
1930 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1931 int cpustate = st->state;
1932
1933 if (cpu >= failedcpu)
1934 break;
1935
1936 /* Did we invoke the startup call on that cpu ? */
1937 if (cpustate >= state)
1938 cpuhp_issue_call(cpu, state, false, node);
1939 }
1940 }
1941
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1942 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1943 struct hlist_node *node,
1944 bool invoke)
1945 {
1946 struct cpuhp_step *sp;
1947 int cpu;
1948 int ret;
1949
1950 lockdep_assert_cpus_held();
1951
1952 sp = cpuhp_get_step(state);
1953 if (sp->multi_instance == false)
1954 return -EINVAL;
1955
1956 mutex_lock(&cpuhp_state_mutex);
1957
1958 if (!invoke || !sp->startup.multi)
1959 goto add_node;
1960
1961 /*
1962 * Try to call the startup callback for each present cpu
1963 * depending on the hotplug state of the cpu.
1964 */
1965 for_each_present_cpu(cpu) {
1966 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1967 int cpustate = st->state;
1968
1969 if (cpustate < state)
1970 continue;
1971
1972 ret = cpuhp_issue_call(cpu, state, true, node);
1973 if (ret) {
1974 if (sp->teardown.multi)
1975 cpuhp_rollback_install(cpu, state, node);
1976 goto unlock;
1977 }
1978 }
1979 add_node:
1980 ret = 0;
1981 hlist_add_head(node, &sp->list);
1982 unlock:
1983 mutex_unlock(&cpuhp_state_mutex);
1984 return ret;
1985 }
1986
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)1987 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1988 bool invoke)
1989 {
1990 int ret;
1991
1992 cpus_read_lock();
1993 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1994 cpus_read_unlock();
1995 return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1998
1999 /**
2000 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2001 * @state: The state to setup
2002 * @name: Name of the step
2003 * @invoke: If true, the startup function is invoked for cpus where
2004 * cpu state >= @state
2005 * @startup: startup callback function
2006 * @teardown: teardown callback function
2007 * @multi_instance: State is set up for multiple instances which get
2008 * added afterwards.
2009 *
2010 * The caller needs to hold cpus read locked while calling this function.
2011 * Return:
2012 * On success:
2013 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2014 * 0 for all other states
2015 * On failure: proper (negative) error code
2016 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2017 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2018 const char *name, bool invoke,
2019 int (*startup)(unsigned int cpu),
2020 int (*teardown)(unsigned int cpu),
2021 bool multi_instance)
2022 {
2023 int cpu, ret = 0;
2024 bool dynstate;
2025
2026 lockdep_assert_cpus_held();
2027
2028 if (cpuhp_cb_check(state) || !name)
2029 return -EINVAL;
2030
2031 mutex_lock(&cpuhp_state_mutex);
2032
2033 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2034 multi_instance);
2035
2036 dynstate = state == CPUHP_AP_ONLINE_DYN;
2037 if (ret > 0 && dynstate) {
2038 state = ret;
2039 ret = 0;
2040 }
2041
2042 if (ret || !invoke || !startup)
2043 goto out;
2044
2045 /*
2046 * Try to call the startup callback for each present cpu
2047 * depending on the hotplug state of the cpu.
2048 */
2049 for_each_present_cpu(cpu) {
2050 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2051 int cpustate = st->state;
2052
2053 if (cpustate < state)
2054 continue;
2055
2056 ret = cpuhp_issue_call(cpu, state, true, NULL);
2057 if (ret) {
2058 if (teardown)
2059 cpuhp_rollback_install(cpu, state, NULL);
2060 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2061 goto out;
2062 }
2063 }
2064 out:
2065 mutex_unlock(&cpuhp_state_mutex);
2066 /*
2067 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2068 * dynamically allocated state in case of success.
2069 */
2070 if (!ret && dynstate)
2071 return state;
2072 return ret;
2073 }
2074 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2075
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2076 int __cpuhp_setup_state(enum cpuhp_state state,
2077 const char *name, bool invoke,
2078 int (*startup)(unsigned int cpu),
2079 int (*teardown)(unsigned int cpu),
2080 bool multi_instance)
2081 {
2082 int ret;
2083
2084 cpus_read_lock();
2085 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2086 teardown, multi_instance);
2087 cpus_read_unlock();
2088 return ret;
2089 }
2090 EXPORT_SYMBOL(__cpuhp_setup_state);
2091
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2092 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2093 struct hlist_node *node, bool invoke)
2094 {
2095 struct cpuhp_step *sp = cpuhp_get_step(state);
2096 int cpu;
2097
2098 BUG_ON(cpuhp_cb_check(state));
2099
2100 if (!sp->multi_instance)
2101 return -EINVAL;
2102
2103 cpus_read_lock();
2104 mutex_lock(&cpuhp_state_mutex);
2105
2106 if (!invoke || !cpuhp_get_teardown_cb(state))
2107 goto remove;
2108 /*
2109 * Call the teardown callback for each present cpu depending
2110 * on the hotplug state of the cpu. This function is not
2111 * allowed to fail currently!
2112 */
2113 for_each_present_cpu(cpu) {
2114 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2115 int cpustate = st->state;
2116
2117 if (cpustate >= state)
2118 cpuhp_issue_call(cpu, state, false, node);
2119 }
2120
2121 remove:
2122 hlist_del(node);
2123 mutex_unlock(&cpuhp_state_mutex);
2124 cpus_read_unlock();
2125
2126 return 0;
2127 }
2128 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2129
2130 /**
2131 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2132 * @state: The state to remove
2133 * @invoke: If true, the teardown function is invoked for cpus where
2134 * cpu state >= @state
2135 *
2136 * The caller needs to hold cpus read locked while calling this function.
2137 * The teardown callback is currently not allowed to fail. Think
2138 * about module removal!
2139 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2140 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2141 {
2142 struct cpuhp_step *sp = cpuhp_get_step(state);
2143 int cpu;
2144
2145 BUG_ON(cpuhp_cb_check(state));
2146
2147 lockdep_assert_cpus_held();
2148
2149 mutex_lock(&cpuhp_state_mutex);
2150 if (sp->multi_instance) {
2151 WARN(!hlist_empty(&sp->list),
2152 "Error: Removing state %d which has instances left.\n",
2153 state);
2154 goto remove;
2155 }
2156
2157 if (!invoke || !cpuhp_get_teardown_cb(state))
2158 goto remove;
2159
2160 /*
2161 * Call the teardown callback for each present cpu depending
2162 * on the hotplug state of the cpu. This function is not
2163 * allowed to fail currently!
2164 */
2165 for_each_present_cpu(cpu) {
2166 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2167 int cpustate = st->state;
2168
2169 if (cpustate >= state)
2170 cpuhp_issue_call(cpu, state, false, NULL);
2171 }
2172 remove:
2173 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2174 mutex_unlock(&cpuhp_state_mutex);
2175 }
2176 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2177
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2178 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2179 {
2180 cpus_read_lock();
2181 __cpuhp_remove_state_cpuslocked(state, invoke);
2182 cpus_read_unlock();
2183 }
2184 EXPORT_SYMBOL(__cpuhp_remove_state);
2185
2186 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2187 static void cpuhp_offline_cpu_device(unsigned int cpu)
2188 {
2189 struct device *dev = get_cpu_device(cpu);
2190
2191 dev->offline = true;
2192 /* Tell user space about the state change */
2193 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2194 }
2195
cpuhp_online_cpu_device(unsigned int cpu)2196 static void cpuhp_online_cpu_device(unsigned int cpu)
2197 {
2198 struct device *dev = get_cpu_device(cpu);
2199
2200 dev->offline = false;
2201 /* Tell user space about the state change */
2202 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2203 }
2204
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2205 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2206 {
2207 int cpu, ret = 0;
2208
2209 cpu_maps_update_begin();
2210 for_each_online_cpu(cpu) {
2211 if (topology_is_primary_thread(cpu))
2212 continue;
2213 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2214 if (ret)
2215 break;
2216 /*
2217 * As this needs to hold the cpu maps lock it's impossible
2218 * to call device_offline() because that ends up calling
2219 * cpu_down() which takes cpu maps lock. cpu maps lock
2220 * needs to be held as this might race against in kernel
2221 * abusers of the hotplug machinery (thermal management).
2222 *
2223 * So nothing would update device:offline state. That would
2224 * leave the sysfs entry stale and prevent onlining after
2225 * smt control has been changed to 'off' again. This is
2226 * called under the sysfs hotplug lock, so it is properly
2227 * serialized against the regular offline usage.
2228 */
2229 cpuhp_offline_cpu_device(cpu);
2230 }
2231 if (!ret)
2232 cpu_smt_control = ctrlval;
2233 cpu_maps_update_done();
2234 return ret;
2235 }
2236
cpuhp_smt_enable(void)2237 int cpuhp_smt_enable(void)
2238 {
2239 int cpu, ret = 0;
2240
2241 cpu_maps_update_begin();
2242 cpu_smt_control = CPU_SMT_ENABLED;
2243 for_each_present_cpu(cpu) {
2244 /* Skip online CPUs and CPUs on offline nodes */
2245 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2246 continue;
2247 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2248 if (ret)
2249 break;
2250 /* See comment in cpuhp_smt_disable() */
2251 cpuhp_online_cpu_device(cpu);
2252 }
2253 cpu_maps_update_done();
2254 return ret;
2255 }
2256 #endif
2257
2258 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2259 static ssize_t state_show(struct device *dev,
2260 struct device_attribute *attr, char *buf)
2261 {
2262 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2263
2264 return sprintf(buf, "%d\n", st->state);
2265 }
2266 static DEVICE_ATTR_RO(state);
2267
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2268 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2269 const char *buf, size_t count)
2270 {
2271 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2272 struct cpuhp_step *sp;
2273 int target, ret;
2274
2275 ret = kstrtoint(buf, 10, &target);
2276 if (ret)
2277 return ret;
2278
2279 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2280 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2281 return -EINVAL;
2282 #else
2283 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2284 return -EINVAL;
2285 #endif
2286
2287 ret = lock_device_hotplug_sysfs();
2288 if (ret)
2289 return ret;
2290
2291 mutex_lock(&cpuhp_state_mutex);
2292 sp = cpuhp_get_step(target);
2293 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2294 mutex_unlock(&cpuhp_state_mutex);
2295 if (ret)
2296 goto out;
2297
2298 if (st->state < target)
2299 ret = cpu_up(dev->id, target);
2300 else
2301 ret = cpu_down(dev->id, target);
2302 out:
2303 unlock_device_hotplug();
2304 return ret ? ret : count;
2305 }
2306
target_show(struct device * dev,struct device_attribute * attr,char * buf)2307 static ssize_t target_show(struct device *dev,
2308 struct device_attribute *attr, char *buf)
2309 {
2310 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2311
2312 return sprintf(buf, "%d\n", st->target);
2313 }
2314 static DEVICE_ATTR_RW(target);
2315
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2316 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2317 const char *buf, size_t count)
2318 {
2319 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2320 struct cpuhp_step *sp;
2321 int fail, ret;
2322
2323 ret = kstrtoint(buf, 10, &fail);
2324 if (ret)
2325 return ret;
2326
2327 if (fail == CPUHP_INVALID) {
2328 st->fail = fail;
2329 return count;
2330 }
2331
2332 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2333 return -EINVAL;
2334
2335 /*
2336 * Cannot fail STARTING/DYING callbacks.
2337 */
2338 if (cpuhp_is_atomic_state(fail))
2339 return -EINVAL;
2340
2341 /*
2342 * DEAD callbacks cannot fail...
2343 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2344 * triggering STARTING callbacks, a failure in this state would
2345 * hinder rollback.
2346 */
2347 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2348 return -EINVAL;
2349
2350 /*
2351 * Cannot fail anything that doesn't have callbacks.
2352 */
2353 mutex_lock(&cpuhp_state_mutex);
2354 sp = cpuhp_get_step(fail);
2355 if (!sp->startup.single && !sp->teardown.single)
2356 ret = -EINVAL;
2357 mutex_unlock(&cpuhp_state_mutex);
2358 if (ret)
2359 return ret;
2360
2361 st->fail = fail;
2362
2363 return count;
2364 }
2365
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2366 static ssize_t fail_show(struct device *dev,
2367 struct device_attribute *attr, char *buf)
2368 {
2369 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2370
2371 return sprintf(buf, "%d\n", st->fail);
2372 }
2373
2374 static DEVICE_ATTR_RW(fail);
2375
2376 static struct attribute *cpuhp_cpu_attrs[] = {
2377 &dev_attr_state.attr,
2378 &dev_attr_target.attr,
2379 &dev_attr_fail.attr,
2380 NULL
2381 };
2382
2383 static const struct attribute_group cpuhp_cpu_attr_group = {
2384 .attrs = cpuhp_cpu_attrs,
2385 .name = "hotplug",
2386 NULL
2387 };
2388
states_show(struct device * dev,struct device_attribute * attr,char * buf)2389 static ssize_t states_show(struct device *dev,
2390 struct device_attribute *attr, char *buf)
2391 {
2392 ssize_t cur, res = 0;
2393 int i;
2394
2395 mutex_lock(&cpuhp_state_mutex);
2396 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2397 struct cpuhp_step *sp = cpuhp_get_step(i);
2398
2399 if (sp->name) {
2400 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2401 buf += cur;
2402 res += cur;
2403 }
2404 }
2405 mutex_unlock(&cpuhp_state_mutex);
2406 return res;
2407 }
2408 static DEVICE_ATTR_RO(states);
2409
2410 static struct attribute *cpuhp_cpu_root_attrs[] = {
2411 &dev_attr_states.attr,
2412 NULL
2413 };
2414
2415 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2416 .attrs = cpuhp_cpu_root_attrs,
2417 .name = "hotplug",
2418 NULL
2419 };
2420
2421 #ifdef CONFIG_HOTPLUG_SMT
2422
2423 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2424 __store_smt_control(struct device *dev, struct device_attribute *attr,
2425 const char *buf, size_t count)
2426 {
2427 int ctrlval, ret;
2428
2429 if (sysfs_streq(buf, "on"))
2430 ctrlval = CPU_SMT_ENABLED;
2431 else if (sysfs_streq(buf, "off"))
2432 ctrlval = CPU_SMT_DISABLED;
2433 else if (sysfs_streq(buf, "forceoff"))
2434 ctrlval = CPU_SMT_FORCE_DISABLED;
2435 else
2436 return -EINVAL;
2437
2438 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2439 return -EPERM;
2440
2441 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2442 return -ENODEV;
2443
2444 ret = lock_device_hotplug_sysfs();
2445 if (ret)
2446 return ret;
2447
2448 if (ctrlval != cpu_smt_control) {
2449 switch (ctrlval) {
2450 case CPU_SMT_ENABLED:
2451 ret = cpuhp_smt_enable();
2452 break;
2453 case CPU_SMT_DISABLED:
2454 case CPU_SMT_FORCE_DISABLED:
2455 ret = cpuhp_smt_disable(ctrlval);
2456 break;
2457 }
2458 }
2459
2460 unlock_device_hotplug();
2461 return ret ? ret : count;
2462 }
2463
2464 #else /* !CONFIG_HOTPLUG_SMT */
2465 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2466 __store_smt_control(struct device *dev, struct device_attribute *attr,
2467 const char *buf, size_t count)
2468 {
2469 return -ENODEV;
2470 }
2471 #endif /* CONFIG_HOTPLUG_SMT */
2472
2473 static const char *smt_states[] = {
2474 [CPU_SMT_ENABLED] = "on",
2475 [CPU_SMT_DISABLED] = "off",
2476 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2477 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2478 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2479 };
2480
control_show(struct device * dev,struct device_attribute * attr,char * buf)2481 static ssize_t control_show(struct device *dev,
2482 struct device_attribute *attr, char *buf)
2483 {
2484 const char *state = smt_states[cpu_smt_control];
2485
2486 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2487 }
2488
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2489 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2490 const char *buf, size_t count)
2491 {
2492 return __store_smt_control(dev, attr, buf, count);
2493 }
2494 static DEVICE_ATTR_RW(control);
2495
active_show(struct device * dev,struct device_attribute * attr,char * buf)2496 static ssize_t active_show(struct device *dev,
2497 struct device_attribute *attr, char *buf)
2498 {
2499 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2500 }
2501 static DEVICE_ATTR_RO(active);
2502
2503 static struct attribute *cpuhp_smt_attrs[] = {
2504 &dev_attr_control.attr,
2505 &dev_attr_active.attr,
2506 NULL
2507 };
2508
2509 static const struct attribute_group cpuhp_smt_attr_group = {
2510 .attrs = cpuhp_smt_attrs,
2511 .name = "smt",
2512 NULL
2513 };
2514
cpu_smt_sysfs_init(void)2515 static int __init cpu_smt_sysfs_init(void)
2516 {
2517 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2518 &cpuhp_smt_attr_group);
2519 }
2520
cpuhp_sysfs_init(void)2521 static int __init cpuhp_sysfs_init(void)
2522 {
2523 int cpu, ret;
2524
2525 ret = cpu_smt_sysfs_init();
2526 if (ret)
2527 return ret;
2528
2529 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2530 &cpuhp_cpu_root_attr_group);
2531 if (ret)
2532 return ret;
2533
2534 for_each_possible_cpu(cpu) {
2535 struct device *dev = get_cpu_device(cpu);
2536
2537 if (!dev)
2538 continue;
2539 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2540 if (ret)
2541 return ret;
2542 }
2543 return 0;
2544 }
2545 device_initcall(cpuhp_sysfs_init);
2546 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2547
2548 /*
2549 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2550 * represents all NR_CPUS bits binary values of 1<<nr.
2551 *
2552 * It is used by cpumask_of() to get a constant address to a CPU
2553 * mask value that has a single bit set only.
2554 */
2555
2556 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2557 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2558 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2559 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2560 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2561
2562 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2563
2564 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2565 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2566 #if BITS_PER_LONG > 32
2567 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2568 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2569 #endif
2570 };
2571 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2572
2573 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2574 EXPORT_SYMBOL(cpu_all_bits);
2575
2576 #ifdef CONFIG_INIT_ALL_POSSIBLE
2577 struct cpumask __cpu_possible_mask __read_mostly
2578 = {CPU_BITS_ALL};
2579 #else
2580 struct cpumask __cpu_possible_mask __read_mostly;
2581 #endif
2582 EXPORT_SYMBOL(__cpu_possible_mask);
2583
2584 struct cpumask __cpu_online_mask __read_mostly;
2585 EXPORT_SYMBOL(__cpu_online_mask);
2586
2587 struct cpumask __cpu_present_mask __read_mostly;
2588 EXPORT_SYMBOL(__cpu_present_mask);
2589
2590 struct cpumask __cpu_active_mask __read_mostly;
2591 EXPORT_SYMBOL(__cpu_active_mask);
2592
2593 struct cpumask __cpu_dying_mask __read_mostly;
2594 EXPORT_SYMBOL(__cpu_dying_mask);
2595
2596 atomic_t __num_online_cpus __read_mostly;
2597 EXPORT_SYMBOL(__num_online_cpus);
2598
init_cpu_present(const struct cpumask * src)2599 void init_cpu_present(const struct cpumask *src)
2600 {
2601 cpumask_copy(&__cpu_present_mask, src);
2602 }
2603
init_cpu_possible(const struct cpumask * src)2604 void init_cpu_possible(const struct cpumask *src)
2605 {
2606 cpumask_copy(&__cpu_possible_mask, src);
2607 }
2608
init_cpu_online(const struct cpumask * src)2609 void init_cpu_online(const struct cpumask *src)
2610 {
2611 cpumask_copy(&__cpu_online_mask, src);
2612 }
2613
set_cpu_online(unsigned int cpu,bool online)2614 void set_cpu_online(unsigned int cpu, bool online)
2615 {
2616 /*
2617 * atomic_inc/dec() is required to handle the horrid abuse of this
2618 * function by the reboot and kexec code which invoke it from
2619 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2620 * regular CPU hotplug is properly serialized.
2621 *
2622 * Note, that the fact that __num_online_cpus is of type atomic_t
2623 * does not protect readers which are not serialized against
2624 * concurrent hotplug operations.
2625 */
2626 if (online) {
2627 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2628 atomic_inc(&__num_online_cpus);
2629 } else {
2630 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2631 atomic_dec(&__num_online_cpus);
2632 }
2633 }
2634
2635 /*
2636 * Activate the first processor.
2637 */
boot_cpu_init(void)2638 void __init boot_cpu_init(void)
2639 {
2640 int cpu = smp_processor_id();
2641
2642 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2643 set_cpu_online(cpu, true);
2644 set_cpu_active(cpu, true);
2645 set_cpu_present(cpu, true);
2646 set_cpu_possible(cpu, true);
2647
2648 #ifdef CONFIG_SMP
2649 __boot_cpu_id = cpu;
2650 #endif
2651 }
2652
2653 /*
2654 * Must be called _AFTER_ setting up the per_cpu areas
2655 */
boot_cpu_hotplug_init(void)2656 void __init boot_cpu_hotplug_init(void)
2657 {
2658 #ifdef CONFIG_SMP
2659 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2660 #endif
2661 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2662 }
2663
2664 /*
2665 * These are used for a global "mitigations=" cmdline option for toggling
2666 * optional CPU mitigations.
2667 */
2668 enum cpu_mitigations {
2669 CPU_MITIGATIONS_OFF,
2670 CPU_MITIGATIONS_AUTO,
2671 CPU_MITIGATIONS_AUTO_NOSMT,
2672 };
2673
2674 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2675 CPU_MITIGATIONS_AUTO;
2676
mitigations_parse_cmdline(char * arg)2677 static int __init mitigations_parse_cmdline(char *arg)
2678 {
2679 if (!strcmp(arg, "off"))
2680 cpu_mitigations = CPU_MITIGATIONS_OFF;
2681 else if (!strcmp(arg, "auto"))
2682 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2683 else if (!strcmp(arg, "auto,nosmt"))
2684 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2685 else
2686 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2687 arg);
2688
2689 return 0;
2690 }
2691 early_param("mitigations", mitigations_parse_cmdline);
2692
2693 /* mitigations=off */
cpu_mitigations_off(void)2694 bool cpu_mitigations_off(void)
2695 {
2696 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2697 }
2698 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2699
2700 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2701 bool cpu_mitigations_auto_nosmt(void)
2702 {
2703 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2704 }
2705 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2706