1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Functions to manage eBPF programs attached to cgroups
4 *
5 * Copyright (c) 2016 Daniel Mack
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/atomic.h>
10 #include <linux/cgroup.h>
11 #include <linux/filter.h>
12 #include <linux/slab.h>
13 #include <linux/sysctl.h>
14 #include <linux/string.h>
15 #include <linux/bpf.h>
16 #include <linux/bpf-cgroup.h>
17 #include <net/sock.h>
18 #include <net/bpf_sk_storage.h>
19
20 #include "../cgroup/cgroup-internal.h"
21
22 DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_CGROUP_BPF_ATTACH_TYPE);
23 EXPORT_SYMBOL(cgroup_bpf_enabled_key);
24
cgroup_bpf_offline(struct cgroup * cgrp)25 void cgroup_bpf_offline(struct cgroup *cgrp)
26 {
27 cgroup_get(cgrp);
28 percpu_ref_kill(&cgrp->bpf.refcnt);
29 }
30
bpf_cgroup_storages_free(struct bpf_cgroup_storage * storages[])31 static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
32 {
33 enum bpf_cgroup_storage_type stype;
34
35 for_each_cgroup_storage_type(stype)
36 bpf_cgroup_storage_free(storages[stype]);
37 }
38
bpf_cgroup_storages_alloc(struct bpf_cgroup_storage * storages[],struct bpf_cgroup_storage * new_storages[],enum bpf_attach_type type,struct bpf_prog * prog,struct cgroup * cgrp)39 static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
40 struct bpf_cgroup_storage *new_storages[],
41 enum bpf_attach_type type,
42 struct bpf_prog *prog,
43 struct cgroup *cgrp)
44 {
45 enum bpf_cgroup_storage_type stype;
46 struct bpf_cgroup_storage_key key;
47 struct bpf_map *map;
48
49 key.cgroup_inode_id = cgroup_id(cgrp);
50 key.attach_type = type;
51
52 for_each_cgroup_storage_type(stype) {
53 map = prog->aux->cgroup_storage[stype];
54 if (!map)
55 continue;
56
57 storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
58 if (storages[stype])
59 continue;
60
61 storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
62 if (IS_ERR(storages[stype])) {
63 bpf_cgroup_storages_free(new_storages);
64 return -ENOMEM;
65 }
66
67 new_storages[stype] = storages[stype];
68 }
69
70 return 0;
71 }
72
bpf_cgroup_storages_assign(struct bpf_cgroup_storage * dst[],struct bpf_cgroup_storage * src[])73 static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
74 struct bpf_cgroup_storage *src[])
75 {
76 enum bpf_cgroup_storage_type stype;
77
78 for_each_cgroup_storage_type(stype)
79 dst[stype] = src[stype];
80 }
81
bpf_cgroup_storages_link(struct bpf_cgroup_storage * storages[],struct cgroup * cgrp,enum bpf_attach_type attach_type)82 static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
83 struct cgroup *cgrp,
84 enum bpf_attach_type attach_type)
85 {
86 enum bpf_cgroup_storage_type stype;
87
88 for_each_cgroup_storage_type(stype)
89 bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
90 }
91
92 /* Called when bpf_cgroup_link is auto-detached from dying cgroup.
93 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
94 * doesn't free link memory, which will eventually be done by bpf_link's
95 * release() callback, when its last FD is closed.
96 */
bpf_cgroup_link_auto_detach(struct bpf_cgroup_link * link)97 static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
98 {
99 cgroup_put(link->cgroup);
100 link->cgroup = NULL;
101 }
102
103 /**
104 * cgroup_bpf_release() - put references of all bpf programs and
105 * release all cgroup bpf data
106 * @work: work structure embedded into the cgroup to modify
107 */
cgroup_bpf_release(struct work_struct * work)108 static void cgroup_bpf_release(struct work_struct *work)
109 {
110 struct cgroup *p, *cgrp = container_of(work, struct cgroup,
111 bpf.release_work);
112 struct bpf_prog_array *old_array;
113 struct list_head *storages = &cgrp->bpf.storages;
114 struct bpf_cgroup_storage *storage, *stmp;
115
116 unsigned int atype;
117
118 mutex_lock(&cgroup_mutex);
119
120 for (atype = 0; atype < ARRAY_SIZE(cgrp->bpf.progs); atype++) {
121 struct list_head *progs = &cgrp->bpf.progs[atype];
122 struct bpf_prog_list *pl, *pltmp;
123
124 list_for_each_entry_safe(pl, pltmp, progs, node) {
125 list_del(&pl->node);
126 if (pl->prog)
127 bpf_prog_put(pl->prog);
128 if (pl->link)
129 bpf_cgroup_link_auto_detach(pl->link);
130 kfree(pl);
131 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
132 }
133 old_array = rcu_dereference_protected(
134 cgrp->bpf.effective[atype],
135 lockdep_is_held(&cgroup_mutex));
136 bpf_prog_array_free(old_array);
137 }
138
139 list_for_each_entry_safe(storage, stmp, storages, list_cg) {
140 bpf_cgroup_storage_unlink(storage);
141 bpf_cgroup_storage_free(storage);
142 }
143
144 mutex_unlock(&cgroup_mutex);
145
146 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
147 cgroup_bpf_put(p);
148
149 percpu_ref_exit(&cgrp->bpf.refcnt);
150 cgroup_put(cgrp);
151 }
152
153 /**
154 * cgroup_bpf_release_fn() - callback used to schedule releasing
155 * of bpf cgroup data
156 * @ref: percpu ref counter structure
157 */
cgroup_bpf_release_fn(struct percpu_ref * ref)158 static void cgroup_bpf_release_fn(struct percpu_ref *ref)
159 {
160 struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
161
162 INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
163 queue_work(system_wq, &cgrp->bpf.release_work);
164 }
165
166 /* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
167 * link or direct prog.
168 */
prog_list_prog(struct bpf_prog_list * pl)169 static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
170 {
171 if (pl->prog)
172 return pl->prog;
173 if (pl->link)
174 return pl->link->link.prog;
175 return NULL;
176 }
177
178 /* count number of elements in the list.
179 * it's slow but the list cannot be long
180 */
prog_list_length(struct list_head * head)181 static u32 prog_list_length(struct list_head *head)
182 {
183 struct bpf_prog_list *pl;
184 u32 cnt = 0;
185
186 list_for_each_entry(pl, head, node) {
187 if (!prog_list_prog(pl))
188 continue;
189 cnt++;
190 }
191 return cnt;
192 }
193
194 /* if parent has non-overridable prog attached,
195 * disallow attaching new programs to the descendent cgroup.
196 * if parent has overridable or multi-prog, allow attaching
197 */
hierarchy_allows_attach(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)198 static bool hierarchy_allows_attach(struct cgroup *cgrp,
199 enum cgroup_bpf_attach_type atype)
200 {
201 struct cgroup *p;
202
203 p = cgroup_parent(cgrp);
204 if (!p)
205 return true;
206 do {
207 u32 flags = p->bpf.flags[atype];
208 u32 cnt;
209
210 if (flags & BPF_F_ALLOW_MULTI)
211 return true;
212 cnt = prog_list_length(&p->bpf.progs[atype]);
213 WARN_ON_ONCE(cnt > 1);
214 if (cnt == 1)
215 return !!(flags & BPF_F_ALLOW_OVERRIDE);
216 p = cgroup_parent(p);
217 } while (p);
218 return true;
219 }
220
221 /* compute a chain of effective programs for a given cgroup:
222 * start from the list of programs in this cgroup and add
223 * all parent programs.
224 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
225 * to programs in this cgroup
226 */
compute_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array ** array)227 static int compute_effective_progs(struct cgroup *cgrp,
228 enum cgroup_bpf_attach_type atype,
229 struct bpf_prog_array **array)
230 {
231 struct bpf_prog_array_item *item;
232 struct bpf_prog_array *progs;
233 struct bpf_prog_list *pl;
234 struct cgroup *p = cgrp;
235 int cnt = 0;
236
237 /* count number of effective programs by walking parents */
238 do {
239 if (cnt == 0 || (p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
240 cnt += prog_list_length(&p->bpf.progs[atype]);
241 p = cgroup_parent(p);
242 } while (p);
243
244 progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
245 if (!progs)
246 return -ENOMEM;
247
248 /* populate the array with effective progs */
249 cnt = 0;
250 p = cgrp;
251 do {
252 if (cnt > 0 && !(p->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
253 continue;
254
255 list_for_each_entry(pl, &p->bpf.progs[atype], node) {
256 if (!prog_list_prog(pl))
257 continue;
258
259 item = &progs->items[cnt];
260 item->prog = prog_list_prog(pl);
261 bpf_cgroup_storages_assign(item->cgroup_storage,
262 pl->storage);
263 cnt++;
264 }
265 } while ((p = cgroup_parent(p)));
266
267 *array = progs;
268 return 0;
269 }
270
activate_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_prog_array * old_array)271 static void activate_effective_progs(struct cgroup *cgrp,
272 enum cgroup_bpf_attach_type atype,
273 struct bpf_prog_array *old_array)
274 {
275 old_array = rcu_replace_pointer(cgrp->bpf.effective[atype], old_array,
276 lockdep_is_held(&cgroup_mutex));
277 /* free prog array after grace period, since __cgroup_bpf_run_*()
278 * might be still walking the array
279 */
280 bpf_prog_array_free(old_array);
281 }
282
283 /**
284 * cgroup_bpf_inherit() - inherit effective programs from parent
285 * @cgrp: the cgroup to modify
286 */
cgroup_bpf_inherit(struct cgroup * cgrp)287 int cgroup_bpf_inherit(struct cgroup *cgrp)
288 {
289 /* has to use marco instead of const int, since compiler thinks
290 * that array below is variable length
291 */
292 #define NR ARRAY_SIZE(cgrp->bpf.effective)
293 struct bpf_prog_array *arrays[NR] = {};
294 struct cgroup *p;
295 int ret, i;
296
297 ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
298 GFP_KERNEL);
299 if (ret)
300 return ret;
301
302 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
303 cgroup_bpf_get(p);
304
305 for (i = 0; i < NR; i++)
306 INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
307
308 INIT_LIST_HEAD(&cgrp->bpf.storages);
309
310 for (i = 0; i < NR; i++)
311 if (compute_effective_progs(cgrp, i, &arrays[i]))
312 goto cleanup;
313
314 for (i = 0; i < NR; i++)
315 activate_effective_progs(cgrp, i, arrays[i]);
316
317 return 0;
318 cleanup:
319 for (i = 0; i < NR; i++)
320 bpf_prog_array_free(arrays[i]);
321
322 for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
323 cgroup_bpf_put(p);
324
325 percpu_ref_exit(&cgrp->bpf.refcnt);
326
327 return -ENOMEM;
328 }
329
update_effective_progs(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype)330 static int update_effective_progs(struct cgroup *cgrp,
331 enum cgroup_bpf_attach_type atype)
332 {
333 struct cgroup_subsys_state *css;
334 int err;
335
336 /* allocate and recompute effective prog arrays */
337 css_for_each_descendant_pre(css, &cgrp->self) {
338 struct cgroup *desc = container_of(css, struct cgroup, self);
339
340 if (percpu_ref_is_zero(&desc->bpf.refcnt))
341 continue;
342
343 err = compute_effective_progs(desc, atype, &desc->bpf.inactive);
344 if (err)
345 goto cleanup;
346 }
347
348 /* all allocations were successful. Activate all prog arrays */
349 css_for_each_descendant_pre(css, &cgrp->self) {
350 struct cgroup *desc = container_of(css, struct cgroup, self);
351
352 if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
353 if (unlikely(desc->bpf.inactive)) {
354 bpf_prog_array_free(desc->bpf.inactive);
355 desc->bpf.inactive = NULL;
356 }
357 continue;
358 }
359
360 activate_effective_progs(desc, atype, desc->bpf.inactive);
361 desc->bpf.inactive = NULL;
362 }
363
364 return 0;
365
366 cleanup:
367 /* oom while computing effective. Free all computed effective arrays
368 * since they were not activated
369 */
370 css_for_each_descendant_pre(css, &cgrp->self) {
371 struct cgroup *desc = container_of(css, struct cgroup, self);
372
373 bpf_prog_array_free(desc->bpf.inactive);
374 desc->bpf.inactive = NULL;
375 }
376
377 return err;
378 }
379
380 #define BPF_CGROUP_MAX_PROGS 64
381
find_attach_entry(struct list_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,struct bpf_prog * replace_prog,bool allow_multi)382 static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
383 struct bpf_prog *prog,
384 struct bpf_cgroup_link *link,
385 struct bpf_prog *replace_prog,
386 bool allow_multi)
387 {
388 struct bpf_prog_list *pl;
389
390 /* single-attach case */
391 if (!allow_multi) {
392 if (list_empty(progs))
393 return NULL;
394 return list_first_entry(progs, typeof(*pl), node);
395 }
396
397 list_for_each_entry(pl, progs, node) {
398 if (prog && pl->prog == prog && prog != replace_prog)
399 /* disallow attaching the same prog twice */
400 return ERR_PTR(-EINVAL);
401 if (link && pl->link == link)
402 /* disallow attaching the same link twice */
403 return ERR_PTR(-EINVAL);
404 }
405
406 /* direct prog multi-attach w/ replacement case */
407 if (replace_prog) {
408 list_for_each_entry(pl, progs, node) {
409 if (pl->prog == replace_prog)
410 /* a match found */
411 return pl;
412 }
413 /* prog to replace not found for cgroup */
414 return ERR_PTR(-ENOENT);
415 }
416
417 return NULL;
418 }
419
420 /**
421 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
422 * propagate the change to descendants
423 * @cgrp: The cgroup which descendants to traverse
424 * @prog: A program to attach
425 * @link: A link to attach
426 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
427 * @type: Type of attach operation
428 * @flags: Option flags
429 *
430 * Exactly one of @prog or @link can be non-null.
431 * Must be called with cgroup_mutex held.
432 */
__cgroup_bpf_attach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_prog * replace_prog,struct bpf_cgroup_link * link,enum bpf_attach_type type,u32 flags)433 int __cgroup_bpf_attach(struct cgroup *cgrp,
434 struct bpf_prog *prog, struct bpf_prog *replace_prog,
435 struct bpf_cgroup_link *link,
436 enum bpf_attach_type type, u32 flags)
437 {
438 u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
439 struct bpf_prog *old_prog = NULL;
440 struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
441 struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
442 enum cgroup_bpf_attach_type atype;
443 struct bpf_prog_list *pl;
444 struct list_head *progs;
445 int err;
446
447 if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
448 ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
449 /* invalid combination */
450 return -EINVAL;
451 if (link && (prog || replace_prog))
452 /* only either link or prog/replace_prog can be specified */
453 return -EINVAL;
454 if (!!replace_prog != !!(flags & BPF_F_REPLACE))
455 /* replace_prog implies BPF_F_REPLACE, and vice versa */
456 return -EINVAL;
457
458 atype = to_cgroup_bpf_attach_type(type);
459 if (atype < 0)
460 return -EINVAL;
461
462 progs = &cgrp->bpf.progs[atype];
463
464 if (!hierarchy_allows_attach(cgrp, atype))
465 return -EPERM;
466
467 if (!list_empty(progs) && cgrp->bpf.flags[atype] != saved_flags)
468 /* Disallow attaching non-overridable on top
469 * of existing overridable in this cgroup.
470 * Disallow attaching multi-prog if overridable or none
471 */
472 return -EPERM;
473
474 if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
475 return -E2BIG;
476
477 pl = find_attach_entry(progs, prog, link, replace_prog,
478 flags & BPF_F_ALLOW_MULTI);
479 if (IS_ERR(pl))
480 return PTR_ERR(pl);
481
482 if (bpf_cgroup_storages_alloc(storage, new_storage, type,
483 prog ? : link->link.prog, cgrp))
484 return -ENOMEM;
485
486 if (pl) {
487 old_prog = pl->prog;
488 } else {
489 pl = kmalloc(sizeof(*pl), GFP_KERNEL);
490 if (!pl) {
491 bpf_cgroup_storages_free(new_storage);
492 return -ENOMEM;
493 }
494 list_add_tail(&pl->node, progs);
495 }
496
497 pl->prog = prog;
498 pl->link = link;
499 bpf_cgroup_storages_assign(pl->storage, storage);
500 cgrp->bpf.flags[atype] = saved_flags;
501
502 err = update_effective_progs(cgrp, atype);
503 if (err)
504 goto cleanup;
505
506 if (old_prog)
507 bpf_prog_put(old_prog);
508 else
509 static_branch_inc(&cgroup_bpf_enabled_key[atype]);
510 bpf_cgroup_storages_link(new_storage, cgrp, type);
511 return 0;
512
513 cleanup:
514 if (old_prog) {
515 pl->prog = old_prog;
516 pl->link = NULL;
517 }
518 bpf_cgroup_storages_free(new_storage);
519 if (!old_prog) {
520 list_del(&pl->node);
521 kfree(pl);
522 }
523 return err;
524 }
525
526 /* Swap updated BPF program for given link in effective program arrays across
527 * all descendant cgroups. This function is guaranteed to succeed.
528 */
replace_effective_prog(struct cgroup * cgrp,enum cgroup_bpf_attach_type atype,struct bpf_cgroup_link * link)529 static void replace_effective_prog(struct cgroup *cgrp,
530 enum cgroup_bpf_attach_type atype,
531 struct bpf_cgroup_link *link)
532 {
533 struct bpf_prog_array_item *item;
534 struct cgroup_subsys_state *css;
535 struct bpf_prog_array *progs;
536 struct bpf_prog_list *pl;
537 struct list_head *head;
538 struct cgroup *cg;
539 int pos;
540
541 css_for_each_descendant_pre(css, &cgrp->self) {
542 struct cgroup *desc = container_of(css, struct cgroup, self);
543
544 if (percpu_ref_is_zero(&desc->bpf.refcnt))
545 continue;
546
547 /* find position of link in effective progs array */
548 for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
549 if (pos && !(cg->bpf.flags[atype] & BPF_F_ALLOW_MULTI))
550 continue;
551
552 head = &cg->bpf.progs[atype];
553 list_for_each_entry(pl, head, node) {
554 if (!prog_list_prog(pl))
555 continue;
556 if (pl->link == link)
557 goto found;
558 pos++;
559 }
560 }
561 found:
562 BUG_ON(!cg);
563 progs = rcu_dereference_protected(
564 desc->bpf.effective[atype],
565 lockdep_is_held(&cgroup_mutex));
566 item = &progs->items[pos];
567 WRITE_ONCE(item->prog, link->link.prog);
568 }
569 }
570
571 /**
572 * __cgroup_bpf_replace() - Replace link's program and propagate the change
573 * to descendants
574 * @cgrp: The cgroup which descendants to traverse
575 * @link: A link for which to replace BPF program
576 * @type: Type of attach operation
577 *
578 * Must be called with cgroup_mutex held.
579 */
__cgroup_bpf_replace(struct cgroup * cgrp,struct bpf_cgroup_link * link,struct bpf_prog * new_prog)580 static int __cgroup_bpf_replace(struct cgroup *cgrp,
581 struct bpf_cgroup_link *link,
582 struct bpf_prog *new_prog)
583 {
584 enum cgroup_bpf_attach_type atype;
585 struct bpf_prog *old_prog;
586 struct bpf_prog_list *pl;
587 struct list_head *progs;
588 bool found = false;
589
590 atype = to_cgroup_bpf_attach_type(link->type);
591 if (atype < 0)
592 return -EINVAL;
593
594 progs = &cgrp->bpf.progs[atype];
595
596 if (link->link.prog->type != new_prog->type)
597 return -EINVAL;
598
599 list_for_each_entry(pl, progs, node) {
600 if (pl->link == link) {
601 found = true;
602 break;
603 }
604 }
605 if (!found)
606 return -ENOENT;
607
608 old_prog = xchg(&link->link.prog, new_prog);
609 replace_effective_prog(cgrp, atype, link);
610 bpf_prog_put(old_prog);
611 return 0;
612 }
613
cgroup_bpf_replace(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)614 static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
615 struct bpf_prog *old_prog)
616 {
617 struct bpf_cgroup_link *cg_link;
618 int ret;
619
620 cg_link = container_of(link, struct bpf_cgroup_link, link);
621
622 mutex_lock(&cgroup_mutex);
623 /* link might have been auto-released by dying cgroup, so fail */
624 if (!cg_link->cgroup) {
625 ret = -ENOLINK;
626 goto out_unlock;
627 }
628 if (old_prog && link->prog != old_prog) {
629 ret = -EPERM;
630 goto out_unlock;
631 }
632 ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
633 out_unlock:
634 mutex_unlock(&cgroup_mutex);
635 return ret;
636 }
637
find_detach_entry(struct list_head * progs,struct bpf_prog * prog,struct bpf_cgroup_link * link,bool allow_multi)638 static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
639 struct bpf_prog *prog,
640 struct bpf_cgroup_link *link,
641 bool allow_multi)
642 {
643 struct bpf_prog_list *pl;
644
645 if (!allow_multi) {
646 if (list_empty(progs))
647 /* report error when trying to detach and nothing is attached */
648 return ERR_PTR(-ENOENT);
649
650 /* to maintain backward compatibility NONE and OVERRIDE cgroups
651 * allow detaching with invalid FD (prog==NULL) in legacy mode
652 */
653 return list_first_entry(progs, typeof(*pl), node);
654 }
655
656 if (!prog && !link)
657 /* to detach MULTI prog the user has to specify valid FD
658 * of the program or link to be detached
659 */
660 return ERR_PTR(-EINVAL);
661
662 /* find the prog or link and detach it */
663 list_for_each_entry(pl, progs, node) {
664 if (pl->prog == prog && pl->link == link)
665 return pl;
666 }
667 return ERR_PTR(-ENOENT);
668 }
669
670 /**
671 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
672 * propagate the change to descendants
673 * @cgrp: The cgroup which descendants to traverse
674 * @prog: A program to detach or NULL
675 * @prog: A link to detach or NULL
676 * @type: Type of detach operation
677 *
678 * At most one of @prog or @link can be non-NULL.
679 * Must be called with cgroup_mutex held.
680 */
__cgroup_bpf_detach(struct cgroup * cgrp,struct bpf_prog * prog,struct bpf_cgroup_link * link,enum bpf_attach_type type)681 int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
682 struct bpf_cgroup_link *link, enum bpf_attach_type type)
683 {
684 enum cgroup_bpf_attach_type atype;
685 struct bpf_prog *old_prog;
686 struct bpf_prog_list *pl;
687 struct list_head *progs;
688 u32 flags;
689 int err;
690
691 atype = to_cgroup_bpf_attach_type(type);
692 if (atype < 0)
693 return -EINVAL;
694
695 progs = &cgrp->bpf.progs[atype];
696 flags = cgrp->bpf.flags[atype];
697
698 if (prog && link)
699 /* only one of prog or link can be specified */
700 return -EINVAL;
701
702 pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
703 if (IS_ERR(pl))
704 return PTR_ERR(pl);
705
706 /* mark it deleted, so it's ignored while recomputing effective */
707 old_prog = pl->prog;
708 pl->prog = NULL;
709 pl->link = NULL;
710
711 err = update_effective_progs(cgrp, atype);
712 if (err)
713 goto cleanup;
714
715 /* now can actually delete it from this cgroup list */
716 list_del(&pl->node);
717 kfree(pl);
718 if (list_empty(progs))
719 /* last program was detached, reset flags to zero */
720 cgrp->bpf.flags[atype] = 0;
721 if (old_prog)
722 bpf_prog_put(old_prog);
723 static_branch_dec(&cgroup_bpf_enabled_key[atype]);
724 return 0;
725
726 cleanup:
727 /* restore back prog or link */
728 pl->prog = old_prog;
729 pl->link = link;
730 return err;
731 }
732
733 /* Must be called with cgroup_mutex held to avoid races. */
__cgroup_bpf_query(struct cgroup * cgrp,const union bpf_attr * attr,union bpf_attr __user * uattr)734 int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
735 union bpf_attr __user *uattr)
736 {
737 __u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
738 enum bpf_attach_type type = attr->query.attach_type;
739 enum cgroup_bpf_attach_type atype;
740 struct bpf_prog_array *effective;
741 struct list_head *progs;
742 struct bpf_prog *prog;
743 int cnt, ret = 0, i;
744 u32 flags;
745
746 atype = to_cgroup_bpf_attach_type(type);
747 if (atype < 0)
748 return -EINVAL;
749
750 progs = &cgrp->bpf.progs[atype];
751 flags = cgrp->bpf.flags[atype];
752
753 effective = rcu_dereference_protected(cgrp->bpf.effective[atype],
754 lockdep_is_held(&cgroup_mutex));
755
756 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
757 cnt = bpf_prog_array_length(effective);
758 else
759 cnt = prog_list_length(progs);
760
761 if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
762 return -EFAULT;
763 if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
764 return -EFAULT;
765 if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
766 /* return early if user requested only program count + flags */
767 return 0;
768 if (attr->query.prog_cnt < cnt) {
769 cnt = attr->query.prog_cnt;
770 ret = -ENOSPC;
771 }
772
773 if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
774 return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
775 } else {
776 struct bpf_prog_list *pl;
777 u32 id;
778
779 i = 0;
780 list_for_each_entry(pl, progs, node) {
781 prog = prog_list_prog(pl);
782 id = prog->aux->id;
783 if (copy_to_user(prog_ids + i, &id, sizeof(id)))
784 return -EFAULT;
785 if (++i == cnt)
786 break;
787 }
788 }
789 return ret;
790 }
791
cgroup_bpf_prog_attach(const union bpf_attr * attr,enum bpf_prog_type ptype,struct bpf_prog * prog)792 int cgroup_bpf_prog_attach(const union bpf_attr *attr,
793 enum bpf_prog_type ptype, struct bpf_prog *prog)
794 {
795 struct bpf_prog *replace_prog = NULL;
796 struct cgroup *cgrp;
797 int ret;
798
799 cgrp = cgroup_get_from_fd(attr->target_fd);
800 if (IS_ERR(cgrp))
801 return PTR_ERR(cgrp);
802
803 if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
804 (attr->attach_flags & BPF_F_REPLACE)) {
805 replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
806 if (IS_ERR(replace_prog)) {
807 cgroup_put(cgrp);
808 return PTR_ERR(replace_prog);
809 }
810 }
811
812 ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
813 attr->attach_type, attr->attach_flags);
814
815 if (replace_prog)
816 bpf_prog_put(replace_prog);
817 cgroup_put(cgrp);
818 return ret;
819 }
820
cgroup_bpf_prog_detach(const union bpf_attr * attr,enum bpf_prog_type ptype)821 int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
822 {
823 struct bpf_prog *prog;
824 struct cgroup *cgrp;
825 int ret;
826
827 cgrp = cgroup_get_from_fd(attr->target_fd);
828 if (IS_ERR(cgrp))
829 return PTR_ERR(cgrp);
830
831 prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
832 if (IS_ERR(prog))
833 prog = NULL;
834
835 ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
836 if (prog)
837 bpf_prog_put(prog);
838
839 cgroup_put(cgrp);
840 return ret;
841 }
842
bpf_cgroup_link_release(struct bpf_link * link)843 static void bpf_cgroup_link_release(struct bpf_link *link)
844 {
845 struct bpf_cgroup_link *cg_link =
846 container_of(link, struct bpf_cgroup_link, link);
847 struct cgroup *cg;
848
849 /* link might have been auto-detached by dying cgroup already,
850 * in that case our work is done here
851 */
852 if (!cg_link->cgroup)
853 return;
854
855 mutex_lock(&cgroup_mutex);
856
857 /* re-check cgroup under lock again */
858 if (!cg_link->cgroup) {
859 mutex_unlock(&cgroup_mutex);
860 return;
861 }
862
863 WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
864 cg_link->type));
865
866 cg = cg_link->cgroup;
867 cg_link->cgroup = NULL;
868
869 mutex_unlock(&cgroup_mutex);
870
871 cgroup_put(cg);
872 }
873
bpf_cgroup_link_dealloc(struct bpf_link * link)874 static void bpf_cgroup_link_dealloc(struct bpf_link *link)
875 {
876 struct bpf_cgroup_link *cg_link =
877 container_of(link, struct bpf_cgroup_link, link);
878
879 kfree(cg_link);
880 }
881
bpf_cgroup_link_detach(struct bpf_link * link)882 static int bpf_cgroup_link_detach(struct bpf_link *link)
883 {
884 bpf_cgroup_link_release(link);
885
886 return 0;
887 }
888
bpf_cgroup_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)889 static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
890 struct seq_file *seq)
891 {
892 struct bpf_cgroup_link *cg_link =
893 container_of(link, struct bpf_cgroup_link, link);
894 u64 cg_id = 0;
895
896 mutex_lock(&cgroup_mutex);
897 if (cg_link->cgroup)
898 cg_id = cgroup_id(cg_link->cgroup);
899 mutex_unlock(&cgroup_mutex);
900
901 seq_printf(seq,
902 "cgroup_id:\t%llu\n"
903 "attach_type:\t%d\n",
904 cg_id,
905 cg_link->type);
906 }
907
bpf_cgroup_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)908 static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
909 struct bpf_link_info *info)
910 {
911 struct bpf_cgroup_link *cg_link =
912 container_of(link, struct bpf_cgroup_link, link);
913 u64 cg_id = 0;
914
915 mutex_lock(&cgroup_mutex);
916 if (cg_link->cgroup)
917 cg_id = cgroup_id(cg_link->cgroup);
918 mutex_unlock(&cgroup_mutex);
919
920 info->cgroup.cgroup_id = cg_id;
921 info->cgroup.attach_type = cg_link->type;
922 return 0;
923 }
924
925 static const struct bpf_link_ops bpf_cgroup_link_lops = {
926 .release = bpf_cgroup_link_release,
927 .dealloc = bpf_cgroup_link_dealloc,
928 .detach = bpf_cgroup_link_detach,
929 .update_prog = cgroup_bpf_replace,
930 .show_fdinfo = bpf_cgroup_link_show_fdinfo,
931 .fill_link_info = bpf_cgroup_link_fill_link_info,
932 };
933
cgroup_bpf_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)934 int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
935 {
936 struct bpf_link_primer link_primer;
937 struct bpf_cgroup_link *link;
938 struct cgroup *cgrp;
939 int err;
940
941 if (attr->link_create.flags)
942 return -EINVAL;
943
944 cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
945 if (IS_ERR(cgrp))
946 return PTR_ERR(cgrp);
947
948 link = kzalloc(sizeof(*link), GFP_USER);
949 if (!link) {
950 err = -ENOMEM;
951 goto out_put_cgroup;
952 }
953 bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
954 prog);
955 link->cgroup = cgrp;
956 link->type = attr->link_create.attach_type;
957
958 err = bpf_link_prime(&link->link, &link_primer);
959 if (err) {
960 kfree(link);
961 goto out_put_cgroup;
962 }
963
964 err = cgroup_bpf_attach(cgrp, NULL, NULL, link,
965 link->type, BPF_F_ALLOW_MULTI);
966 if (err) {
967 bpf_link_cleanup(&link_primer);
968 goto out_put_cgroup;
969 }
970
971 return bpf_link_settle(&link_primer);
972
973 out_put_cgroup:
974 cgroup_put(cgrp);
975 return err;
976 }
977
cgroup_bpf_prog_query(const union bpf_attr * attr,union bpf_attr __user * uattr)978 int cgroup_bpf_prog_query(const union bpf_attr *attr,
979 union bpf_attr __user *uattr)
980 {
981 struct cgroup *cgrp;
982 int ret;
983
984 cgrp = cgroup_get_from_fd(attr->query.target_fd);
985 if (IS_ERR(cgrp))
986 return PTR_ERR(cgrp);
987
988 ret = cgroup_bpf_query(cgrp, attr, uattr);
989
990 cgroup_put(cgrp);
991 return ret;
992 }
993
994 /**
995 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
996 * @sk: The socket sending or receiving traffic
997 * @skb: The skb that is being sent or received
998 * @type: The type of program to be exectuted
999 *
1000 * If no socket is passed, or the socket is not of type INET or INET6,
1001 * this function does nothing and returns 0.
1002 *
1003 * The program type passed in via @type must be suitable for network
1004 * filtering. No further check is performed to assert that.
1005 *
1006 * For egress packets, this function can return:
1007 * NET_XMIT_SUCCESS (0) - continue with packet output
1008 * NET_XMIT_DROP (1) - drop packet and notify TCP to call cwr
1009 * NET_XMIT_CN (2) - continue with packet output and notify TCP
1010 * to call cwr
1011 * -EPERM - drop packet
1012 *
1013 * For ingress packets, this function will return -EPERM if any
1014 * attached program was found and if it returned != 1 during execution.
1015 * Otherwise 0 is returned.
1016 */
__cgroup_bpf_run_filter_skb(struct sock * sk,struct sk_buff * skb,enum cgroup_bpf_attach_type atype)1017 int __cgroup_bpf_run_filter_skb(struct sock *sk,
1018 struct sk_buff *skb,
1019 enum cgroup_bpf_attach_type atype)
1020 {
1021 unsigned int offset = skb->data - skb_network_header(skb);
1022 struct sock *save_sk;
1023 void *saved_data_end;
1024 struct cgroup *cgrp;
1025 int ret;
1026
1027 if (!sk || !sk_fullsock(sk))
1028 return 0;
1029
1030 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1031 return 0;
1032
1033 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1034 save_sk = skb->sk;
1035 skb->sk = sk;
1036 __skb_push(skb, offset);
1037
1038 /* compute pointers for the bpf prog */
1039 bpf_compute_and_save_data_end(skb, &saved_data_end);
1040
1041 if (atype == CGROUP_INET_EGRESS) {
1042 ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1043 cgrp->bpf.effective[atype], skb, __bpf_prog_run_save_cb);
1044 } else {
1045 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], skb,
1046 __bpf_prog_run_save_cb);
1047 ret = (ret == 1 ? 0 : -EPERM);
1048 }
1049 bpf_restore_data_end(skb, saved_data_end);
1050 __skb_pull(skb, offset);
1051 skb->sk = save_sk;
1052
1053 return ret;
1054 }
1055 EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1056
1057 /**
1058 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1059 * @sk: sock structure to manipulate
1060 * @type: The type of program to be exectuted
1061 *
1062 * socket is passed is expected to be of type INET or INET6.
1063 *
1064 * The program type passed in via @type must be suitable for sock
1065 * filtering. No further check is performed to assert that.
1066 *
1067 * This function will return %-EPERM if any if an attached program was found
1068 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1069 */
__cgroup_bpf_run_filter_sk(struct sock * sk,enum cgroup_bpf_attach_type atype)1070 int __cgroup_bpf_run_filter_sk(struct sock *sk,
1071 enum cgroup_bpf_attach_type atype)
1072 {
1073 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1074 int ret;
1075
1076 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sk, bpf_prog_run);
1077 return ret == 1 ? 0 : -EPERM;
1078 }
1079 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1080
1081 /**
1082 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1083 * provided by user sockaddr
1084 * @sk: sock struct that will use sockaddr
1085 * @uaddr: sockaddr struct provided by user
1086 * @type: The type of program to be exectuted
1087 * @t_ctx: Pointer to attach type specific context
1088 * @flags: Pointer to u32 which contains higher bits of BPF program
1089 * return value (OR'ed together).
1090 *
1091 * socket is expected to be of type INET or INET6.
1092 *
1093 * This function will return %-EPERM if an attached program is found and
1094 * returned value != 1 during execution. In all other cases, 0 is returned.
1095 */
__cgroup_bpf_run_filter_sock_addr(struct sock * sk,struct sockaddr * uaddr,enum cgroup_bpf_attach_type atype,void * t_ctx,u32 * flags)1096 int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1097 struct sockaddr *uaddr,
1098 enum cgroup_bpf_attach_type atype,
1099 void *t_ctx,
1100 u32 *flags)
1101 {
1102 struct bpf_sock_addr_kern ctx = {
1103 .sk = sk,
1104 .uaddr = uaddr,
1105 .t_ctx = t_ctx,
1106 };
1107 struct sockaddr_storage unspec;
1108 struct cgroup *cgrp;
1109 int ret;
1110
1111 /* Check socket family since not all sockets represent network
1112 * endpoint (e.g. AF_UNIX).
1113 */
1114 if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1115 return 0;
1116
1117 if (!ctx.uaddr) {
1118 memset(&unspec, 0, sizeof(unspec));
1119 ctx.uaddr = (struct sockaddr *)&unspec;
1120 }
1121
1122 cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1123 ret = BPF_PROG_RUN_ARRAY_CG_FLAGS(cgrp->bpf.effective[atype], &ctx,
1124 bpf_prog_run, flags);
1125
1126 return ret == 1 ? 0 : -EPERM;
1127 }
1128 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1129
1130 /**
1131 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1132 * @sk: socket to get cgroup from
1133 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1134 * sk with connection information (IP addresses, etc.) May not contain
1135 * cgroup info if it is a req sock.
1136 * @type: The type of program to be exectuted
1137 *
1138 * socket passed is expected to be of type INET or INET6.
1139 *
1140 * The program type passed in via @type must be suitable for sock_ops
1141 * filtering. No further check is performed to assert that.
1142 *
1143 * This function will return %-EPERM if any if an attached program was found
1144 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1145 */
__cgroup_bpf_run_filter_sock_ops(struct sock * sk,struct bpf_sock_ops_kern * sock_ops,enum cgroup_bpf_attach_type atype)1146 int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1147 struct bpf_sock_ops_kern *sock_ops,
1148 enum cgroup_bpf_attach_type atype)
1149 {
1150 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1151 int ret;
1152
1153 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], sock_ops,
1154 bpf_prog_run);
1155 return ret == 1 ? 0 : -EPERM;
1156 }
1157 EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1158
__cgroup_bpf_check_dev_permission(short dev_type,u32 major,u32 minor,short access,enum cgroup_bpf_attach_type atype)1159 int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1160 short access, enum cgroup_bpf_attach_type atype)
1161 {
1162 struct cgroup *cgrp;
1163 struct bpf_cgroup_dev_ctx ctx = {
1164 .access_type = (access << 16) | dev_type,
1165 .major = major,
1166 .minor = minor,
1167 };
1168 int allow;
1169
1170 rcu_read_lock();
1171 cgrp = task_dfl_cgroup(current);
1172 allow = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx,
1173 bpf_prog_run);
1174 rcu_read_unlock();
1175
1176 return !allow;
1177 }
1178
1179 static const struct bpf_func_proto *
cgroup_base_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1180 cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1181 {
1182 switch (func_id) {
1183 case BPF_FUNC_get_current_uid_gid:
1184 return &bpf_get_current_uid_gid_proto;
1185 case BPF_FUNC_get_local_storage:
1186 return &bpf_get_local_storage_proto;
1187 case BPF_FUNC_get_current_cgroup_id:
1188 return &bpf_get_current_cgroup_id_proto;
1189 case BPF_FUNC_perf_event_output:
1190 return &bpf_event_output_data_proto;
1191 default:
1192 return bpf_base_func_proto(func_id);
1193 }
1194 }
1195
1196 static const struct bpf_func_proto *
cgroup_dev_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1197 cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1198 {
1199 return cgroup_base_func_proto(func_id, prog);
1200 }
1201
cgroup_dev_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1202 static bool cgroup_dev_is_valid_access(int off, int size,
1203 enum bpf_access_type type,
1204 const struct bpf_prog *prog,
1205 struct bpf_insn_access_aux *info)
1206 {
1207 const int size_default = sizeof(__u32);
1208
1209 if (type == BPF_WRITE)
1210 return false;
1211
1212 if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1213 return false;
1214 /* The verifier guarantees that size > 0. */
1215 if (off % size != 0)
1216 return false;
1217
1218 switch (off) {
1219 case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1220 bpf_ctx_record_field_size(info, size_default);
1221 if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1222 return false;
1223 break;
1224 default:
1225 if (size != size_default)
1226 return false;
1227 }
1228
1229 return true;
1230 }
1231
1232 const struct bpf_prog_ops cg_dev_prog_ops = {
1233 };
1234
1235 const struct bpf_verifier_ops cg_dev_verifier_ops = {
1236 .get_func_proto = cgroup_dev_func_proto,
1237 .is_valid_access = cgroup_dev_is_valid_access,
1238 };
1239
1240 /**
1241 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1242 *
1243 * @head: sysctl table header
1244 * @table: sysctl table
1245 * @write: sysctl is being read (= 0) or written (= 1)
1246 * @buf: pointer to buffer (in and out)
1247 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1248 * result is size of @new_buf if program set new value, initial value
1249 * otherwise
1250 * @ppos: value-result argument: value is position at which read from or write
1251 * to sysctl is happening, result is new position if program overrode it,
1252 * initial value otherwise
1253 * @type: type of program to be executed
1254 *
1255 * Program is run when sysctl is being accessed, either read or written, and
1256 * can allow or deny such access.
1257 *
1258 * This function will return %-EPERM if an attached program is found and
1259 * returned value != 1 during execution. In all other cases 0 is returned.
1260 */
__cgroup_bpf_run_filter_sysctl(struct ctl_table_header * head,struct ctl_table * table,int write,char ** buf,size_t * pcount,loff_t * ppos,enum cgroup_bpf_attach_type atype)1261 int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1262 struct ctl_table *table, int write,
1263 char **buf, size_t *pcount, loff_t *ppos,
1264 enum cgroup_bpf_attach_type atype)
1265 {
1266 struct bpf_sysctl_kern ctx = {
1267 .head = head,
1268 .table = table,
1269 .write = write,
1270 .ppos = ppos,
1271 .cur_val = NULL,
1272 .cur_len = PAGE_SIZE,
1273 .new_val = NULL,
1274 .new_len = 0,
1275 .new_updated = 0,
1276 };
1277 struct cgroup *cgrp;
1278 loff_t pos = 0;
1279 int ret;
1280
1281 ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1282 if (!ctx.cur_val ||
1283 table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1284 /* Let BPF program decide how to proceed. */
1285 ctx.cur_len = 0;
1286 }
1287
1288 if (write && *buf && *pcount) {
1289 /* BPF program should be able to override new value with a
1290 * buffer bigger than provided by user.
1291 */
1292 ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1293 ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1294 if (ctx.new_val) {
1295 memcpy(ctx.new_val, *buf, ctx.new_len);
1296 } else {
1297 /* Let BPF program decide how to proceed. */
1298 ctx.new_len = 0;
1299 }
1300 }
1301
1302 rcu_read_lock();
1303 cgrp = task_dfl_cgroup(current);
1304 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[atype], &ctx, bpf_prog_run);
1305 rcu_read_unlock();
1306
1307 kfree(ctx.cur_val);
1308
1309 if (ret == 1 && ctx.new_updated) {
1310 kfree(*buf);
1311 *buf = ctx.new_val;
1312 *pcount = ctx.new_len;
1313 } else {
1314 kfree(ctx.new_val);
1315 }
1316
1317 return ret == 1 ? 0 : -EPERM;
1318 }
1319
1320 #ifdef CONFIG_NET
__cgroup_bpf_prog_array_is_empty(struct cgroup * cgrp,enum cgroup_bpf_attach_type attach_type)1321 static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1322 enum cgroup_bpf_attach_type attach_type)
1323 {
1324 struct bpf_prog_array *prog_array;
1325 bool empty;
1326
1327 rcu_read_lock();
1328 prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1329 empty = bpf_prog_array_is_empty(prog_array);
1330 rcu_read_unlock();
1331
1332 return empty;
1333 }
1334
sockopt_alloc_buf(struct bpf_sockopt_kern * ctx,int max_optlen,struct bpf_sockopt_buf * buf)1335 static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1336 struct bpf_sockopt_buf *buf)
1337 {
1338 if (unlikely(max_optlen < 0))
1339 return -EINVAL;
1340
1341 if (unlikely(max_optlen > PAGE_SIZE)) {
1342 /* We don't expose optvals that are greater than PAGE_SIZE
1343 * to the BPF program.
1344 */
1345 max_optlen = PAGE_SIZE;
1346 }
1347
1348 if (max_optlen <= sizeof(buf->data)) {
1349 /* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1350 * bytes avoid the cost of kzalloc.
1351 */
1352 ctx->optval = buf->data;
1353 ctx->optval_end = ctx->optval + max_optlen;
1354 return max_optlen;
1355 }
1356
1357 ctx->optval = kzalloc(max_optlen, GFP_USER);
1358 if (!ctx->optval)
1359 return -ENOMEM;
1360
1361 ctx->optval_end = ctx->optval + max_optlen;
1362
1363 return max_optlen;
1364 }
1365
sockopt_free_buf(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1366 static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1367 struct bpf_sockopt_buf *buf)
1368 {
1369 if (ctx->optval == buf->data)
1370 return;
1371 kfree(ctx->optval);
1372 }
1373
sockopt_buf_allocated(struct bpf_sockopt_kern * ctx,struct bpf_sockopt_buf * buf)1374 static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1375 struct bpf_sockopt_buf *buf)
1376 {
1377 return ctx->optval != buf->data;
1378 }
1379
__cgroup_bpf_run_filter_setsockopt(struct sock * sk,int * level,int * optname,char __user * optval,int * optlen,char ** kernel_optval)1380 int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1381 int *optname, char __user *optval,
1382 int *optlen, char **kernel_optval)
1383 {
1384 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1385 struct bpf_sockopt_buf buf = {};
1386 struct bpf_sockopt_kern ctx = {
1387 .sk = sk,
1388 .level = *level,
1389 .optname = *optname,
1390 };
1391 int ret, max_optlen;
1392
1393 /* Opportunistic check to see whether we have any BPF program
1394 * attached to the hook so we don't waste time allocating
1395 * memory and locking the socket.
1396 */
1397 if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_SETSOCKOPT))
1398 return 0;
1399
1400 /* Allocate a bit more than the initial user buffer for
1401 * BPF program. The canonical use case is overriding
1402 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1403 */
1404 max_optlen = max_t(int, 16, *optlen);
1405
1406 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1407 if (max_optlen < 0)
1408 return max_optlen;
1409
1410 ctx.optlen = *optlen;
1411
1412 if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1413 ret = -EFAULT;
1414 goto out;
1415 }
1416
1417 lock_sock(sk);
1418 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_SETSOCKOPT],
1419 &ctx, bpf_prog_run);
1420 release_sock(sk);
1421
1422 if (!ret) {
1423 ret = -EPERM;
1424 goto out;
1425 }
1426
1427 if (ctx.optlen == -1) {
1428 /* optlen set to -1, bypass kernel */
1429 ret = 1;
1430 } else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1431 /* optlen is out of bounds */
1432 ret = -EFAULT;
1433 } else {
1434 /* optlen within bounds, run kernel handler */
1435 ret = 0;
1436
1437 /* export any potential modifications */
1438 *level = ctx.level;
1439 *optname = ctx.optname;
1440
1441 /* optlen == 0 from BPF indicates that we should
1442 * use original userspace data.
1443 */
1444 if (ctx.optlen != 0) {
1445 *optlen = ctx.optlen;
1446 /* We've used bpf_sockopt_kern->buf as an intermediary
1447 * storage, but the BPF program indicates that we need
1448 * to pass this data to the kernel setsockopt handler.
1449 * No way to export on-stack buf, have to allocate a
1450 * new buffer.
1451 */
1452 if (!sockopt_buf_allocated(&ctx, &buf)) {
1453 void *p = kmalloc(ctx.optlen, GFP_USER);
1454
1455 if (!p) {
1456 ret = -ENOMEM;
1457 goto out;
1458 }
1459 memcpy(p, ctx.optval, ctx.optlen);
1460 *kernel_optval = p;
1461 } else {
1462 *kernel_optval = ctx.optval;
1463 }
1464 /* export and don't free sockopt buf */
1465 return 0;
1466 }
1467 }
1468
1469 out:
1470 sockopt_free_buf(&ctx, &buf);
1471 return ret;
1472 }
1473
__cgroup_bpf_run_filter_getsockopt(struct sock * sk,int level,int optname,char __user * optval,int __user * optlen,int max_optlen,int retval)1474 int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1475 int optname, char __user *optval,
1476 int __user *optlen, int max_optlen,
1477 int retval)
1478 {
1479 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1480 struct bpf_sockopt_buf buf = {};
1481 struct bpf_sockopt_kern ctx = {
1482 .sk = sk,
1483 .level = level,
1484 .optname = optname,
1485 .retval = retval,
1486 };
1487 int ret;
1488
1489 /* Opportunistic check to see whether we have any BPF program
1490 * attached to the hook so we don't waste time allocating
1491 * memory and locking the socket.
1492 */
1493 if (__cgroup_bpf_prog_array_is_empty(cgrp, CGROUP_GETSOCKOPT))
1494 return retval;
1495
1496 ctx.optlen = max_optlen;
1497
1498 max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1499 if (max_optlen < 0)
1500 return max_optlen;
1501
1502 if (!retval) {
1503 /* If kernel getsockopt finished successfully,
1504 * copy whatever was returned to the user back
1505 * into our temporary buffer. Set optlen to the
1506 * one that kernel returned as well to let
1507 * BPF programs inspect the value.
1508 */
1509
1510 if (get_user(ctx.optlen, optlen)) {
1511 ret = -EFAULT;
1512 goto out;
1513 }
1514
1515 if (ctx.optlen < 0) {
1516 ret = -EFAULT;
1517 goto out;
1518 }
1519
1520 if (copy_from_user(ctx.optval, optval,
1521 min(ctx.optlen, max_optlen)) != 0) {
1522 ret = -EFAULT;
1523 goto out;
1524 }
1525 }
1526
1527 lock_sock(sk);
1528 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1529 &ctx, bpf_prog_run);
1530 release_sock(sk);
1531
1532 if (!ret) {
1533 ret = -EPERM;
1534 goto out;
1535 }
1536
1537 if (ctx.optlen > max_optlen || ctx.optlen < 0) {
1538 ret = -EFAULT;
1539 goto out;
1540 }
1541
1542 /* BPF programs only allowed to set retval to 0, not some
1543 * arbitrary value.
1544 */
1545 if (ctx.retval != 0 && ctx.retval != retval) {
1546 ret = -EFAULT;
1547 goto out;
1548 }
1549
1550 if (ctx.optlen != 0) {
1551 if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1552 put_user(ctx.optlen, optlen)) {
1553 ret = -EFAULT;
1554 goto out;
1555 }
1556 }
1557
1558 ret = ctx.retval;
1559
1560 out:
1561 sockopt_free_buf(&ctx, &buf);
1562 return ret;
1563 }
1564
__cgroup_bpf_run_filter_getsockopt_kern(struct sock * sk,int level,int optname,void * optval,int * optlen,int retval)1565 int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1566 int optname, void *optval,
1567 int *optlen, int retval)
1568 {
1569 struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1570 struct bpf_sockopt_kern ctx = {
1571 .sk = sk,
1572 .level = level,
1573 .optname = optname,
1574 .retval = retval,
1575 .optlen = *optlen,
1576 .optval = optval,
1577 .optval_end = optval + *optlen,
1578 };
1579 int ret;
1580
1581 /* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1582 * user data back into BPF buffer when reval != 0. This is
1583 * done as an optimization to avoid extra copy, assuming
1584 * kernel won't populate the data in case of an error.
1585 * Here we always pass the data and memset() should
1586 * be called if that data shouldn't be "exported".
1587 */
1588
1589 ret = BPF_PROG_RUN_ARRAY_CG(cgrp->bpf.effective[CGROUP_GETSOCKOPT],
1590 &ctx, bpf_prog_run);
1591 if (!ret)
1592 return -EPERM;
1593
1594 if (ctx.optlen > *optlen)
1595 return -EFAULT;
1596
1597 /* BPF programs only allowed to set retval to 0, not some
1598 * arbitrary value.
1599 */
1600 if (ctx.retval != 0 && ctx.retval != retval)
1601 return -EFAULT;
1602
1603 /* BPF programs can shrink the buffer, export the modifications.
1604 */
1605 if (ctx.optlen != 0)
1606 *optlen = ctx.optlen;
1607
1608 return ctx.retval;
1609 }
1610 #endif
1611
sysctl_cpy_dir(const struct ctl_dir * dir,char ** bufp,size_t * lenp)1612 static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1613 size_t *lenp)
1614 {
1615 ssize_t tmp_ret = 0, ret;
1616
1617 if (dir->header.parent) {
1618 tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1619 if (tmp_ret < 0)
1620 return tmp_ret;
1621 }
1622
1623 ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1624 if (ret < 0)
1625 return ret;
1626 *bufp += ret;
1627 *lenp -= ret;
1628 ret += tmp_ret;
1629
1630 /* Avoid leading slash. */
1631 if (!ret)
1632 return ret;
1633
1634 tmp_ret = strscpy(*bufp, "/", *lenp);
1635 if (tmp_ret < 0)
1636 return tmp_ret;
1637 *bufp += tmp_ret;
1638 *lenp -= tmp_ret;
1639
1640 return ret + tmp_ret;
1641 }
1642
BPF_CALL_4(bpf_sysctl_get_name,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len,u64,flags)1643 BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1644 size_t, buf_len, u64, flags)
1645 {
1646 ssize_t tmp_ret = 0, ret;
1647
1648 if (!buf)
1649 return -EINVAL;
1650
1651 if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1652 if (!ctx->head)
1653 return -EINVAL;
1654 tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1655 if (tmp_ret < 0)
1656 return tmp_ret;
1657 }
1658
1659 ret = strscpy(buf, ctx->table->procname, buf_len);
1660
1661 return ret < 0 ? ret : tmp_ret + ret;
1662 }
1663
1664 static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1665 .func = bpf_sysctl_get_name,
1666 .gpl_only = false,
1667 .ret_type = RET_INTEGER,
1668 .arg1_type = ARG_PTR_TO_CTX,
1669 .arg2_type = ARG_PTR_TO_MEM,
1670 .arg3_type = ARG_CONST_SIZE,
1671 .arg4_type = ARG_ANYTHING,
1672 };
1673
copy_sysctl_value(char * dst,size_t dst_len,char * src,size_t src_len)1674 static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1675 size_t src_len)
1676 {
1677 if (!dst)
1678 return -EINVAL;
1679
1680 if (!dst_len)
1681 return -E2BIG;
1682
1683 if (!src || !src_len) {
1684 memset(dst, 0, dst_len);
1685 return -EINVAL;
1686 }
1687
1688 memcpy(dst, src, min(dst_len, src_len));
1689
1690 if (dst_len > src_len) {
1691 memset(dst + src_len, '\0', dst_len - src_len);
1692 return src_len;
1693 }
1694
1695 dst[dst_len - 1] = '\0';
1696
1697 return -E2BIG;
1698 }
1699
BPF_CALL_3(bpf_sysctl_get_current_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1700 BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1701 char *, buf, size_t, buf_len)
1702 {
1703 return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1704 }
1705
1706 static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1707 .func = bpf_sysctl_get_current_value,
1708 .gpl_only = false,
1709 .ret_type = RET_INTEGER,
1710 .arg1_type = ARG_PTR_TO_CTX,
1711 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1712 .arg3_type = ARG_CONST_SIZE,
1713 };
1714
BPF_CALL_3(bpf_sysctl_get_new_value,struct bpf_sysctl_kern *,ctx,char *,buf,size_t,buf_len)1715 BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1716 size_t, buf_len)
1717 {
1718 if (!ctx->write) {
1719 if (buf && buf_len)
1720 memset(buf, '\0', buf_len);
1721 return -EINVAL;
1722 }
1723 return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1724 }
1725
1726 static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1727 .func = bpf_sysctl_get_new_value,
1728 .gpl_only = false,
1729 .ret_type = RET_INTEGER,
1730 .arg1_type = ARG_PTR_TO_CTX,
1731 .arg2_type = ARG_PTR_TO_UNINIT_MEM,
1732 .arg3_type = ARG_CONST_SIZE,
1733 };
1734
BPF_CALL_3(bpf_sysctl_set_new_value,struct bpf_sysctl_kern *,ctx,const char *,buf,size_t,buf_len)1735 BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1736 const char *, buf, size_t, buf_len)
1737 {
1738 if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1739 return -EINVAL;
1740
1741 if (buf_len > PAGE_SIZE - 1)
1742 return -E2BIG;
1743
1744 memcpy(ctx->new_val, buf, buf_len);
1745 ctx->new_len = buf_len;
1746 ctx->new_updated = 1;
1747
1748 return 0;
1749 }
1750
1751 static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1752 .func = bpf_sysctl_set_new_value,
1753 .gpl_only = false,
1754 .ret_type = RET_INTEGER,
1755 .arg1_type = ARG_PTR_TO_CTX,
1756 .arg2_type = ARG_PTR_TO_MEM,
1757 .arg3_type = ARG_CONST_SIZE,
1758 };
1759
1760 static const struct bpf_func_proto *
sysctl_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1761 sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1762 {
1763 switch (func_id) {
1764 case BPF_FUNC_strtol:
1765 return &bpf_strtol_proto;
1766 case BPF_FUNC_strtoul:
1767 return &bpf_strtoul_proto;
1768 case BPF_FUNC_sysctl_get_name:
1769 return &bpf_sysctl_get_name_proto;
1770 case BPF_FUNC_sysctl_get_current_value:
1771 return &bpf_sysctl_get_current_value_proto;
1772 case BPF_FUNC_sysctl_get_new_value:
1773 return &bpf_sysctl_get_new_value_proto;
1774 case BPF_FUNC_sysctl_set_new_value:
1775 return &bpf_sysctl_set_new_value_proto;
1776 default:
1777 return cgroup_base_func_proto(func_id, prog);
1778 }
1779 }
1780
sysctl_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1781 static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1782 const struct bpf_prog *prog,
1783 struct bpf_insn_access_aux *info)
1784 {
1785 const int size_default = sizeof(__u32);
1786
1787 if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1788 return false;
1789
1790 switch (off) {
1791 case bpf_ctx_range(struct bpf_sysctl, write):
1792 if (type != BPF_READ)
1793 return false;
1794 bpf_ctx_record_field_size(info, size_default);
1795 return bpf_ctx_narrow_access_ok(off, size, size_default);
1796 case bpf_ctx_range(struct bpf_sysctl, file_pos):
1797 if (type == BPF_READ) {
1798 bpf_ctx_record_field_size(info, size_default);
1799 return bpf_ctx_narrow_access_ok(off, size, size_default);
1800 } else {
1801 return size == size_default;
1802 }
1803 default:
1804 return false;
1805 }
1806 }
1807
sysctl_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1808 static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1809 const struct bpf_insn *si,
1810 struct bpf_insn *insn_buf,
1811 struct bpf_prog *prog, u32 *target_size)
1812 {
1813 struct bpf_insn *insn = insn_buf;
1814 u32 read_size;
1815
1816 switch (si->off) {
1817 case offsetof(struct bpf_sysctl, write):
1818 *insn++ = BPF_LDX_MEM(
1819 BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1820 bpf_target_off(struct bpf_sysctl_kern, write,
1821 sizeof_field(struct bpf_sysctl_kern,
1822 write),
1823 target_size));
1824 break;
1825 case offsetof(struct bpf_sysctl, file_pos):
1826 /* ppos is a pointer so it should be accessed via indirect
1827 * loads and stores. Also for stores additional temporary
1828 * register is used since neither src_reg nor dst_reg can be
1829 * overridden.
1830 */
1831 if (type == BPF_WRITE) {
1832 int treg = BPF_REG_9;
1833
1834 if (si->src_reg == treg || si->dst_reg == treg)
1835 --treg;
1836 if (si->src_reg == treg || si->dst_reg == treg)
1837 --treg;
1838 *insn++ = BPF_STX_MEM(
1839 BPF_DW, si->dst_reg, treg,
1840 offsetof(struct bpf_sysctl_kern, tmp_reg));
1841 *insn++ = BPF_LDX_MEM(
1842 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1843 treg, si->dst_reg,
1844 offsetof(struct bpf_sysctl_kern, ppos));
1845 *insn++ = BPF_STX_MEM(
1846 BPF_SIZEOF(u32), treg, si->src_reg,
1847 bpf_ctx_narrow_access_offset(
1848 0, sizeof(u32), sizeof(loff_t)));
1849 *insn++ = BPF_LDX_MEM(
1850 BPF_DW, treg, si->dst_reg,
1851 offsetof(struct bpf_sysctl_kern, tmp_reg));
1852 } else {
1853 *insn++ = BPF_LDX_MEM(
1854 BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1855 si->dst_reg, si->src_reg,
1856 offsetof(struct bpf_sysctl_kern, ppos));
1857 read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1858 *insn++ = BPF_LDX_MEM(
1859 BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1860 bpf_ctx_narrow_access_offset(
1861 0, read_size, sizeof(loff_t)));
1862 }
1863 *target_size = sizeof(u32);
1864 break;
1865 }
1866
1867 return insn - insn_buf;
1868 }
1869
1870 const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1871 .get_func_proto = sysctl_func_proto,
1872 .is_valid_access = sysctl_is_valid_access,
1873 .convert_ctx_access = sysctl_convert_ctx_access,
1874 };
1875
1876 const struct bpf_prog_ops cg_sysctl_prog_ops = {
1877 };
1878
1879 #ifdef CONFIG_NET
BPF_CALL_1(bpf_get_netns_cookie_sockopt,struct bpf_sockopt_kern *,ctx)1880 BPF_CALL_1(bpf_get_netns_cookie_sockopt, struct bpf_sockopt_kern *, ctx)
1881 {
1882 const struct net *net = ctx ? sock_net(ctx->sk) : &init_net;
1883
1884 return net->net_cookie;
1885 }
1886
1887 static const struct bpf_func_proto bpf_get_netns_cookie_sockopt_proto = {
1888 .func = bpf_get_netns_cookie_sockopt,
1889 .gpl_only = false,
1890 .ret_type = RET_INTEGER,
1891 .arg1_type = ARG_PTR_TO_CTX_OR_NULL,
1892 };
1893 #endif
1894
1895 static const struct bpf_func_proto *
cg_sockopt_func_proto(enum bpf_func_id func_id,const struct bpf_prog * prog)1896 cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1897 {
1898 switch (func_id) {
1899 #ifdef CONFIG_NET
1900 case BPF_FUNC_get_netns_cookie:
1901 return &bpf_get_netns_cookie_sockopt_proto;
1902 case BPF_FUNC_sk_storage_get:
1903 return &bpf_sk_storage_get_proto;
1904 case BPF_FUNC_sk_storage_delete:
1905 return &bpf_sk_storage_delete_proto;
1906 case BPF_FUNC_setsockopt:
1907 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1908 return &bpf_sk_setsockopt_proto;
1909 return NULL;
1910 case BPF_FUNC_getsockopt:
1911 if (prog->expected_attach_type == BPF_CGROUP_SETSOCKOPT)
1912 return &bpf_sk_getsockopt_proto;
1913 return NULL;
1914 #endif
1915 #ifdef CONFIG_INET
1916 case BPF_FUNC_tcp_sock:
1917 return &bpf_tcp_sock_proto;
1918 #endif
1919 default:
1920 return cgroup_base_func_proto(func_id, prog);
1921 }
1922 }
1923
cg_sockopt_is_valid_access(int off,int size,enum bpf_access_type type,const struct bpf_prog * prog,struct bpf_insn_access_aux * info)1924 static bool cg_sockopt_is_valid_access(int off, int size,
1925 enum bpf_access_type type,
1926 const struct bpf_prog *prog,
1927 struct bpf_insn_access_aux *info)
1928 {
1929 const int size_default = sizeof(__u32);
1930
1931 if (off < 0 || off >= sizeof(struct bpf_sockopt))
1932 return false;
1933
1934 if (off % size != 0)
1935 return false;
1936
1937 if (type == BPF_WRITE) {
1938 switch (off) {
1939 case offsetof(struct bpf_sockopt, retval):
1940 if (size != size_default)
1941 return false;
1942 return prog->expected_attach_type ==
1943 BPF_CGROUP_GETSOCKOPT;
1944 case offsetof(struct bpf_sockopt, optname):
1945 fallthrough;
1946 case offsetof(struct bpf_sockopt, level):
1947 if (size != size_default)
1948 return false;
1949 return prog->expected_attach_type ==
1950 BPF_CGROUP_SETSOCKOPT;
1951 case offsetof(struct bpf_sockopt, optlen):
1952 return size == size_default;
1953 default:
1954 return false;
1955 }
1956 }
1957
1958 switch (off) {
1959 case offsetof(struct bpf_sockopt, sk):
1960 if (size != sizeof(__u64))
1961 return false;
1962 info->reg_type = PTR_TO_SOCKET;
1963 break;
1964 case offsetof(struct bpf_sockopt, optval):
1965 if (size != sizeof(__u64))
1966 return false;
1967 info->reg_type = PTR_TO_PACKET;
1968 break;
1969 case offsetof(struct bpf_sockopt, optval_end):
1970 if (size != sizeof(__u64))
1971 return false;
1972 info->reg_type = PTR_TO_PACKET_END;
1973 break;
1974 case offsetof(struct bpf_sockopt, retval):
1975 if (size != size_default)
1976 return false;
1977 return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1978 default:
1979 if (size != size_default)
1980 return false;
1981 break;
1982 }
1983 return true;
1984 }
1985
1986 #define CG_SOCKOPT_ACCESS_FIELD(T, F) \
1987 T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F), \
1988 si->dst_reg, si->src_reg, \
1989 offsetof(struct bpf_sockopt_kern, F))
1990
cg_sockopt_convert_ctx_access(enum bpf_access_type type,const struct bpf_insn * si,struct bpf_insn * insn_buf,struct bpf_prog * prog,u32 * target_size)1991 static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1992 const struct bpf_insn *si,
1993 struct bpf_insn *insn_buf,
1994 struct bpf_prog *prog,
1995 u32 *target_size)
1996 {
1997 struct bpf_insn *insn = insn_buf;
1998
1999 switch (si->off) {
2000 case offsetof(struct bpf_sockopt, sk):
2001 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
2002 break;
2003 case offsetof(struct bpf_sockopt, level):
2004 if (type == BPF_WRITE)
2005 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
2006 else
2007 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
2008 break;
2009 case offsetof(struct bpf_sockopt, optname):
2010 if (type == BPF_WRITE)
2011 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
2012 else
2013 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
2014 break;
2015 case offsetof(struct bpf_sockopt, optlen):
2016 if (type == BPF_WRITE)
2017 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
2018 else
2019 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
2020 break;
2021 case offsetof(struct bpf_sockopt, retval):
2022 if (type == BPF_WRITE)
2023 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
2024 else
2025 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
2026 break;
2027 case offsetof(struct bpf_sockopt, optval):
2028 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
2029 break;
2030 case offsetof(struct bpf_sockopt, optval_end):
2031 *insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
2032 break;
2033 }
2034
2035 return insn - insn_buf;
2036 }
2037
cg_sockopt_get_prologue(struct bpf_insn * insn_buf,bool direct_write,const struct bpf_prog * prog)2038 static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
2039 bool direct_write,
2040 const struct bpf_prog *prog)
2041 {
2042 /* Nothing to do for sockopt argument. The data is kzalloc'ated.
2043 */
2044 return 0;
2045 }
2046
2047 const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
2048 .get_func_proto = cg_sockopt_func_proto,
2049 .is_valid_access = cg_sockopt_is_valid_access,
2050 .convert_ctx_access = cg_sockopt_convert_ctx_access,
2051 .gen_prologue = cg_sockopt_get_prologue,
2052 };
2053
2054 const struct bpf_prog_ops cg_sockopt_prog_ops = {
2055 };
2056