1 /* SPDX-License-Identifier: GPL-2.0-or-later
2  *
3  * Copyright (C) 2005 David Brownell
4  */
5 
6 #ifndef __LINUX_SPI_H
7 #define __LINUX_SPI_H
8 
9 #include <linux/bits.h>
10 #include <linux/device.h>
11 #include <linux/mod_devicetable.h>
12 #include <linux/slab.h>
13 #include <linux/kthread.h>
14 #include <linux/completion.h>
15 #include <linux/scatterlist.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/ptp_clock_kernel.h>
18 
19 #include <uapi/linux/spi/spi.h>
20 
21 struct dma_chan;
22 struct software_node;
23 struct spi_controller;
24 struct spi_transfer;
25 struct spi_controller_mem_ops;
26 
27 /*
28  * INTERFACES between SPI master-side drivers and SPI slave protocol handlers,
29  * and SPI infrastructure.
30  */
31 extern struct bus_type spi_bus_type;
32 
33 /**
34  * struct spi_statistics - statistics for spi transfers
35  * @lock:          lock protecting this structure
36  *
37  * @messages:      number of spi-messages handled
38  * @transfers:     number of spi_transfers handled
39  * @errors:        number of errors during spi_transfer
40  * @timedout:      number of timeouts during spi_transfer
41  *
42  * @spi_sync:      number of times spi_sync is used
43  * @spi_sync_immediate:
44  *                 number of times spi_sync is executed immediately
45  *                 in calling context without queuing and scheduling
46  * @spi_async:     number of times spi_async is used
47  *
48  * @bytes:         number of bytes transferred to/from device
49  * @bytes_tx:      number of bytes sent to device
50  * @bytes_rx:      number of bytes received from device
51  *
52  * @transfer_bytes_histo:
53  *                 transfer bytes histogramm
54  *
55  * @transfers_split_maxsize:
56  *                 number of transfers that have been split because of
57  *                 maxsize limit
58  */
59 struct spi_statistics {
60 	spinlock_t		lock; /* lock for the whole structure */
61 
62 	unsigned long		messages;
63 	unsigned long		transfers;
64 	unsigned long		errors;
65 	unsigned long		timedout;
66 
67 	unsigned long		spi_sync;
68 	unsigned long		spi_sync_immediate;
69 	unsigned long		spi_async;
70 
71 	unsigned long long	bytes;
72 	unsigned long long	bytes_rx;
73 	unsigned long long	bytes_tx;
74 
75 #define SPI_STATISTICS_HISTO_SIZE 17
76 	unsigned long transfer_bytes_histo[SPI_STATISTICS_HISTO_SIZE];
77 
78 	unsigned long transfers_split_maxsize;
79 };
80 
81 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
82 				       struct spi_transfer *xfer,
83 				       struct spi_controller *ctlr);
84 
85 #define SPI_STATISTICS_ADD_TO_FIELD(stats, field, count)	\
86 	do {							\
87 		unsigned long flags;				\
88 		spin_lock_irqsave(&(stats)->lock, flags);	\
89 		(stats)->field += count;			\
90 		spin_unlock_irqrestore(&(stats)->lock, flags);	\
91 	} while (0)
92 
93 #define SPI_STATISTICS_INCREMENT_FIELD(stats, field)	\
94 	SPI_STATISTICS_ADD_TO_FIELD(stats, field, 1)
95 
96 /**
97  * struct spi_delay - SPI delay information
98  * @value: Value for the delay
99  * @unit: Unit for the delay
100  */
101 struct spi_delay {
102 #define SPI_DELAY_UNIT_USECS	0
103 #define SPI_DELAY_UNIT_NSECS	1
104 #define SPI_DELAY_UNIT_SCK	2
105 	u16	value;
106 	u8	unit;
107 };
108 
109 extern int spi_delay_to_ns(struct spi_delay *_delay, struct spi_transfer *xfer);
110 extern int spi_delay_exec(struct spi_delay *_delay, struct spi_transfer *xfer);
111 
112 /**
113  * struct spi_device - Controller side proxy for an SPI slave device
114  * @dev: Driver model representation of the device.
115  * @controller: SPI controller used with the device.
116  * @master: Copy of controller, for backwards compatibility.
117  * @max_speed_hz: Maximum clock rate to be used with this chip
118  *	(on this board); may be changed by the device's driver.
119  *	The spi_transfer.speed_hz can override this for each transfer.
120  * @chip_select: Chipselect, distinguishing chips handled by @controller.
121  * @mode: The spi mode defines how data is clocked out and in.
122  *	This may be changed by the device's driver.
123  *	The "active low" default for chipselect mode can be overridden
124  *	(by specifying SPI_CS_HIGH) as can the "MSB first" default for
125  *	each word in a transfer (by specifying SPI_LSB_FIRST).
126  * @bits_per_word: Data transfers involve one or more words; word sizes
127  *	like eight or 12 bits are common.  In-memory wordsizes are
128  *	powers of two bytes (e.g. 20 bit samples use 32 bits).
129  *	This may be changed by the device's driver, or left at the
130  *	default (0) indicating protocol words are eight bit bytes.
131  *	The spi_transfer.bits_per_word can override this for each transfer.
132  * @rt: Make the pump thread real time priority.
133  * @irq: Negative, or the number passed to request_irq() to receive
134  *	interrupts from this device.
135  * @controller_state: Controller's runtime state
136  * @controller_data: Board-specific definitions for controller, such as
137  *	FIFO initialization parameters; from board_info.controller_data
138  * @modalias: Name of the driver to use with this device, or an alias
139  *	for that name.  This appears in the sysfs "modalias" attribute
140  *	for driver coldplugging, and in uevents used for hotplugging
141  * @driver_override: If the name of a driver is written to this attribute, then
142  *	the device will bind to the named driver and only the named driver.
143  * @cs_gpio: LEGACY: gpio number of the chipselect line (optional, -ENOENT when
144  *	not using a GPIO line) use cs_gpiod in new drivers by opting in on
145  *	the spi_master.
146  * @cs_gpiod: gpio descriptor of the chipselect line (optional, NULL when
147  *	not using a GPIO line)
148  * @word_delay: delay to be inserted between consecutive
149  *	words of a transfer
150  * @cs_setup: delay to be introduced by the controller after CS is asserted
151  * @cs_hold: delay to be introduced by the controller before CS is deasserted
152  * @cs_inactive: delay to be introduced by the controller after CS is
153  *	deasserted. If @cs_change_delay is used from @spi_transfer, then the
154  *	two delays will be added up.
155  * @statistics: statistics for the spi_device
156  *
157  * A @spi_device is used to interchange data between an SPI slave
158  * (usually a discrete chip) and CPU memory.
159  *
160  * In @dev, the platform_data is used to hold information about this
161  * device that's meaningful to the device's protocol driver, but not
162  * to its controller.  One example might be an identifier for a chip
163  * variant with slightly different functionality; another might be
164  * information about how this particular board wires the chip's pins.
165  */
166 struct spi_device {
167 	struct device		dev;
168 	struct spi_controller	*controller;
169 	struct spi_controller	*master;	/* compatibility layer */
170 	u32			max_speed_hz;
171 	u8			chip_select;
172 	u8			bits_per_word;
173 	bool			rt;
174 #define SPI_NO_TX	BIT(31)		/* no transmit wire */
175 #define SPI_NO_RX	BIT(30)		/* no receive wire */
176 	/*
177 	 * All bits defined above should be covered by SPI_MODE_KERNEL_MASK.
178 	 * The SPI_MODE_KERNEL_MASK has the SPI_MODE_USER_MASK counterpart,
179 	 * which is defined in 'include/uapi/linux/spi/spi.h'.
180 	 * The bits defined here are from bit 31 downwards, while in
181 	 * SPI_MODE_USER_MASK are from 0 upwards.
182 	 * These bits must not overlap. A static assert check should make sure of that.
183 	 * If adding extra bits, make sure to decrease the bit index below as well.
184 	 */
185 #define SPI_MODE_KERNEL_MASK	(~(BIT(30) - 1))
186 	u32			mode;
187 	int			irq;
188 	void			*controller_state;
189 	void			*controller_data;
190 	char			modalias[SPI_NAME_SIZE];
191 	const char		*driver_override;
192 	int			cs_gpio;	/* LEGACY: chip select gpio */
193 	struct gpio_desc	*cs_gpiod;	/* chip select gpio desc */
194 	struct spi_delay	word_delay; /* inter-word delay */
195 	/* CS delays */
196 	struct spi_delay	cs_setup;
197 	struct spi_delay	cs_hold;
198 	struct spi_delay	cs_inactive;
199 
200 	/* the statistics */
201 	struct spi_statistics	statistics;
202 
203 	/*
204 	 * likely need more hooks for more protocol options affecting how
205 	 * the controller talks to each chip, like:
206 	 *  - memory packing (12 bit samples into low bits, others zeroed)
207 	 *  - priority
208 	 *  - chipselect delays
209 	 *  - ...
210 	 */
211 };
212 
213 /* Make sure that SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK don't overlap */
214 static_assert((SPI_MODE_KERNEL_MASK & SPI_MODE_USER_MASK) == 0,
215 	      "SPI_MODE_USER_MASK & SPI_MODE_KERNEL_MASK must not overlap");
216 
to_spi_device(struct device * dev)217 static inline struct spi_device *to_spi_device(struct device *dev)
218 {
219 	return dev ? container_of(dev, struct spi_device, dev) : NULL;
220 }
221 
222 /* most drivers won't need to care about device refcounting */
spi_dev_get(struct spi_device * spi)223 static inline struct spi_device *spi_dev_get(struct spi_device *spi)
224 {
225 	return (spi && get_device(&spi->dev)) ? spi : NULL;
226 }
227 
spi_dev_put(struct spi_device * spi)228 static inline void spi_dev_put(struct spi_device *spi)
229 {
230 	if (spi)
231 		put_device(&spi->dev);
232 }
233 
234 /* ctldata is for the bus_controller driver's runtime state */
spi_get_ctldata(struct spi_device * spi)235 static inline void *spi_get_ctldata(struct spi_device *spi)
236 {
237 	return spi->controller_state;
238 }
239 
spi_set_ctldata(struct spi_device * spi,void * state)240 static inline void spi_set_ctldata(struct spi_device *spi, void *state)
241 {
242 	spi->controller_state = state;
243 }
244 
245 /* device driver data */
246 
spi_set_drvdata(struct spi_device * spi,void * data)247 static inline void spi_set_drvdata(struct spi_device *spi, void *data)
248 {
249 	dev_set_drvdata(&spi->dev, data);
250 }
251 
spi_get_drvdata(struct spi_device * spi)252 static inline void *spi_get_drvdata(struct spi_device *spi)
253 {
254 	return dev_get_drvdata(&spi->dev);
255 }
256 
257 struct spi_message;
258 
259 /**
260  * struct spi_driver - Host side "protocol" driver
261  * @id_table: List of SPI devices supported by this driver
262  * @probe: Binds this driver to the spi device.  Drivers can verify
263  *	that the device is actually present, and may need to configure
264  *	characteristics (such as bits_per_word) which weren't needed for
265  *	the initial configuration done during system setup.
266  * @remove: Unbinds this driver from the spi device
267  * @shutdown: Standard shutdown callback used during system state
268  *	transitions such as powerdown/halt and kexec
269  * @driver: SPI device drivers should initialize the name and owner
270  *	field of this structure.
271  *
272  * This represents the kind of device driver that uses SPI messages to
273  * interact with the hardware at the other end of a SPI link.  It's called
274  * a "protocol" driver because it works through messages rather than talking
275  * directly to SPI hardware (which is what the underlying SPI controller
276  * driver does to pass those messages).  These protocols are defined in the
277  * specification for the device(s) supported by the driver.
278  *
279  * As a rule, those device protocols represent the lowest level interface
280  * supported by a driver, and it will support upper level interfaces too.
281  * Examples of such upper levels include frameworks like MTD, networking,
282  * MMC, RTC, filesystem character device nodes, and hardware monitoring.
283  */
284 struct spi_driver {
285 	const struct spi_device_id *id_table;
286 	int			(*probe)(struct spi_device *spi);
287 	int			(*remove)(struct spi_device *spi);
288 	void			(*shutdown)(struct spi_device *spi);
289 	struct device_driver	driver;
290 };
291 
to_spi_driver(struct device_driver * drv)292 static inline struct spi_driver *to_spi_driver(struct device_driver *drv)
293 {
294 	return drv ? container_of(drv, struct spi_driver, driver) : NULL;
295 }
296 
297 extern int __spi_register_driver(struct module *owner, struct spi_driver *sdrv);
298 
299 /**
300  * spi_unregister_driver - reverse effect of spi_register_driver
301  * @sdrv: the driver to unregister
302  * Context: can sleep
303  */
spi_unregister_driver(struct spi_driver * sdrv)304 static inline void spi_unregister_driver(struct spi_driver *sdrv)
305 {
306 	if (sdrv)
307 		driver_unregister(&sdrv->driver);
308 }
309 
310 extern struct spi_device *spi_new_ancillary_device(struct spi_device *spi, u8 chip_select);
311 
312 /* use a define to avoid include chaining to get THIS_MODULE */
313 #define spi_register_driver(driver) \
314 	__spi_register_driver(THIS_MODULE, driver)
315 
316 /**
317  * module_spi_driver() - Helper macro for registering a SPI driver
318  * @__spi_driver: spi_driver struct
319  *
320  * Helper macro for SPI drivers which do not do anything special in module
321  * init/exit. This eliminates a lot of boilerplate. Each module may only
322  * use this macro once, and calling it replaces module_init() and module_exit()
323  */
324 #define module_spi_driver(__spi_driver) \
325 	module_driver(__spi_driver, spi_register_driver, \
326 			spi_unregister_driver)
327 
328 /**
329  * struct spi_controller - interface to SPI master or slave controller
330  * @dev: device interface to this driver
331  * @list: link with the global spi_controller list
332  * @bus_num: board-specific (and often SOC-specific) identifier for a
333  *	given SPI controller.
334  * @num_chipselect: chipselects are used to distinguish individual
335  *	SPI slaves, and are numbered from zero to num_chipselects.
336  *	each slave has a chipselect signal, but it's common that not
337  *	every chipselect is connected to a slave.
338  * @dma_alignment: SPI controller constraint on DMA buffers alignment.
339  * @mode_bits: flags understood by this controller driver
340  * @buswidth_override_bits: flags to override for this controller driver
341  * @bits_per_word_mask: A mask indicating which values of bits_per_word are
342  *	supported by the driver. Bit n indicates that a bits_per_word n+1 is
343  *	supported. If set, the SPI core will reject any transfer with an
344  *	unsupported bits_per_word. If not set, this value is simply ignored,
345  *	and it's up to the individual driver to perform any validation.
346  * @min_speed_hz: Lowest supported transfer speed
347  * @max_speed_hz: Highest supported transfer speed
348  * @flags: other constraints relevant to this driver
349  * @slave: indicates that this is an SPI slave controller
350  * @devm_allocated: whether the allocation of this struct is devres-managed
351  * @max_transfer_size: function that returns the max transfer size for
352  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
353  * @max_message_size: function that returns the max message size for
354  *	a &spi_device; may be %NULL, so the default %SIZE_MAX will be used.
355  * @io_mutex: mutex for physical bus access
356  * @bus_lock_spinlock: spinlock for SPI bus locking
357  * @bus_lock_mutex: mutex for exclusion of multiple callers
358  * @bus_lock_flag: indicates that the SPI bus is locked for exclusive use
359  * @setup: updates the device mode and clocking records used by a
360  *	device's SPI controller; protocol code may call this.  This
361  *	must fail if an unrecognized or unsupported mode is requested.
362  *	It's always safe to call this unless transfers are pending on
363  *	the device whose settings are being modified.
364  * @set_cs_timing: optional hook for SPI devices to request SPI master
365  * controller for configuring specific CS setup time, hold time and inactive
366  * delay interms of clock counts
367  * @transfer: adds a message to the controller's transfer queue.
368  * @cleanup: frees controller-specific state
369  * @can_dma: determine whether this controller supports DMA
370  * @queued: whether this controller is providing an internal message queue
371  * @kworker: pointer to thread struct for message pump
372  * @pump_messages: work struct for scheduling work to the message pump
373  * @queue_lock: spinlock to syncronise access to message queue
374  * @queue: message queue
375  * @idling: the device is entering idle state
376  * @cur_msg: the currently in-flight message
377  * @cur_msg_prepared: spi_prepare_message was called for the currently
378  *                    in-flight message
379  * @cur_msg_mapped: message has been mapped for DMA
380  * @last_cs_enable: was enable true on the last call to set_cs.
381  * @last_cs_mode_high: was (mode & SPI_CS_HIGH) true on the last call to set_cs.
382  * @xfer_completion: used by core transfer_one_message()
383  * @busy: message pump is busy
384  * @running: message pump is running
385  * @rt: whether this queue is set to run as a realtime task
386  * @auto_runtime_pm: the core should ensure a runtime PM reference is held
387  *                   while the hardware is prepared, using the parent
388  *                   device for the spidev
389  * @max_dma_len: Maximum length of a DMA transfer for the device.
390  * @prepare_transfer_hardware: a message will soon arrive from the queue
391  *	so the subsystem requests the driver to prepare the transfer hardware
392  *	by issuing this call
393  * @transfer_one_message: the subsystem calls the driver to transfer a single
394  *	message while queuing transfers that arrive in the meantime. When the
395  *	driver is finished with this message, it must call
396  *	spi_finalize_current_message() so the subsystem can issue the next
397  *	message
398  * @unprepare_transfer_hardware: there are currently no more messages on the
399  *	queue so the subsystem notifies the driver that it may relax the
400  *	hardware by issuing this call
401  *
402  * @set_cs: set the logic level of the chip select line.  May be called
403  *          from interrupt context.
404  * @prepare_message: set up the controller to transfer a single message,
405  *                   for example doing DMA mapping.  Called from threaded
406  *                   context.
407  * @transfer_one: transfer a single spi_transfer.
408  *
409  *                  - return 0 if the transfer is finished,
410  *                  - return 1 if the transfer is still in progress. When
411  *                    the driver is finished with this transfer it must
412  *                    call spi_finalize_current_transfer() so the subsystem
413  *                    can issue the next transfer. Note: transfer_one and
414  *                    transfer_one_message are mutually exclusive; when both
415  *                    are set, the generic subsystem does not call your
416  *                    transfer_one callback.
417  * @handle_err: the subsystem calls the driver to handle an error that occurs
418  *		in the generic implementation of transfer_one_message().
419  * @mem_ops: optimized/dedicated operations for interactions with SPI memory.
420  *	     This field is optional and should only be implemented if the
421  *	     controller has native support for memory like operations.
422  * @unprepare_message: undo any work done by prepare_message().
423  * @slave_abort: abort the ongoing transfer request on an SPI slave controller
424  * @cs_gpios: LEGACY: array of GPIO descs to use as chip select lines; one per
425  *	CS number. Any individual value may be -ENOENT for CS lines that
426  *	are not GPIOs (driven by the SPI controller itself). Use the cs_gpiods
427  *	in new drivers.
428  * @cs_gpiods: Array of GPIO descs to use as chip select lines; one per CS
429  *	number. Any individual value may be NULL for CS lines that
430  *	are not GPIOs (driven by the SPI controller itself).
431  * @use_gpio_descriptors: Turns on the code in the SPI core to parse and grab
432  *	GPIO descriptors rather than using global GPIO numbers grabbed by the
433  *	driver. This will fill in @cs_gpiods and @cs_gpios should not be used,
434  *	and SPI devices will have the cs_gpiod assigned rather than cs_gpio.
435  * @unused_native_cs: When cs_gpiods is used, spi_register_controller() will
436  *	fill in this field with the first unused native CS, to be used by SPI
437  *	controller drivers that need to drive a native CS when using GPIO CS.
438  * @max_native_cs: When cs_gpiods is used, and this field is filled in,
439  *	spi_register_controller() will validate all native CS (including the
440  *	unused native CS) against this value.
441  * @statistics: statistics for the spi_controller
442  * @dma_tx: DMA transmit channel
443  * @dma_rx: DMA receive channel
444  * @dummy_rx: dummy receive buffer for full-duplex devices
445  * @dummy_tx: dummy transmit buffer for full-duplex devices
446  * @fw_translate_cs: If the boot firmware uses different numbering scheme
447  *	what Linux expects, this optional hook can be used to translate
448  *	between the two.
449  * @ptp_sts_supported: If the driver sets this to true, it must provide a
450  *	time snapshot in @spi_transfer->ptp_sts as close as possible to the
451  *	moment in time when @spi_transfer->ptp_sts_word_pre and
452  *	@spi_transfer->ptp_sts_word_post were transmitted.
453  *	If the driver does not set this, the SPI core takes the snapshot as
454  *	close to the driver hand-over as possible.
455  * @irq_flags: Interrupt enable state during PTP system timestamping
456  * @fallback: fallback to pio if dma transfer return failure with
457  *	SPI_TRANS_FAIL_NO_START.
458  *
459  * Each SPI controller can communicate with one or more @spi_device
460  * children.  These make a small bus, sharing MOSI, MISO and SCK signals
461  * but not chip select signals.  Each device may be configured to use a
462  * different clock rate, since those shared signals are ignored unless
463  * the chip is selected.
464  *
465  * The driver for an SPI controller manages access to those devices through
466  * a queue of spi_message transactions, copying data between CPU memory and
467  * an SPI slave device.  For each such message it queues, it calls the
468  * message's completion function when the transaction completes.
469  */
470 struct spi_controller {
471 	struct device	dev;
472 
473 	struct list_head list;
474 
475 	/* other than negative (== assign one dynamically), bus_num is fully
476 	 * board-specific.  usually that simplifies to being SOC-specific.
477 	 * example:  one SOC has three SPI controllers, numbered 0..2,
478 	 * and one board's schematics might show it using SPI-2.  software
479 	 * would normally use bus_num=2 for that controller.
480 	 */
481 	s16			bus_num;
482 
483 	/* chipselects will be integral to many controllers; some others
484 	 * might use board-specific GPIOs.
485 	 */
486 	u16			num_chipselect;
487 
488 	/* some SPI controllers pose alignment requirements on DMAable
489 	 * buffers; let protocol drivers know about these requirements.
490 	 */
491 	u16			dma_alignment;
492 
493 	/* spi_device.mode flags understood by this controller driver */
494 	u32			mode_bits;
495 
496 	/* spi_device.mode flags override flags for this controller */
497 	u32			buswidth_override_bits;
498 
499 	/* bitmask of supported bits_per_word for transfers */
500 	u32			bits_per_word_mask;
501 #define SPI_BPW_MASK(bits) BIT((bits) - 1)
502 #define SPI_BPW_RANGE_MASK(min, max) GENMASK((max) - 1, (min) - 1)
503 
504 	/* limits on transfer speed */
505 	u32			min_speed_hz;
506 	u32			max_speed_hz;
507 
508 	/* other constraints relevant to this driver */
509 	u16			flags;
510 #define SPI_CONTROLLER_HALF_DUPLEX	BIT(0)	/* can't do full duplex */
511 #define SPI_CONTROLLER_NO_RX		BIT(1)	/* can't do buffer read */
512 #define SPI_CONTROLLER_NO_TX		BIT(2)	/* can't do buffer write */
513 #define SPI_CONTROLLER_MUST_RX		BIT(3)	/* requires rx */
514 #define SPI_CONTROLLER_MUST_TX		BIT(4)	/* requires tx */
515 
516 #define SPI_MASTER_GPIO_SS		BIT(5)	/* GPIO CS must select slave */
517 
518 	/* flag indicating if the allocation of this struct is devres-managed */
519 	bool			devm_allocated;
520 
521 	/* flag indicating this is an SPI slave controller */
522 	bool			slave;
523 
524 	/*
525 	 * on some hardware transfer / message size may be constrained
526 	 * the limit may depend on device transfer settings
527 	 */
528 	size_t (*max_transfer_size)(struct spi_device *spi);
529 	size_t (*max_message_size)(struct spi_device *spi);
530 
531 	/* I/O mutex */
532 	struct mutex		io_mutex;
533 
534 	/* Used to avoid adding the same CS twice */
535 	struct mutex		add_lock;
536 
537 	/* lock and mutex for SPI bus locking */
538 	spinlock_t		bus_lock_spinlock;
539 	struct mutex		bus_lock_mutex;
540 
541 	/* flag indicating that the SPI bus is locked for exclusive use */
542 	bool			bus_lock_flag;
543 
544 	/* Setup mode and clock, etc (spi driver may call many times).
545 	 *
546 	 * IMPORTANT:  this may be called when transfers to another
547 	 * device are active.  DO NOT UPDATE SHARED REGISTERS in ways
548 	 * which could break those transfers.
549 	 */
550 	int			(*setup)(struct spi_device *spi);
551 
552 	/*
553 	 * set_cs_timing() method is for SPI controllers that supports
554 	 * configuring CS timing.
555 	 *
556 	 * This hook allows SPI client drivers to request SPI controllers
557 	 * to configure specific CS timing through spi_set_cs_timing() after
558 	 * spi_setup().
559 	 */
560 	int (*set_cs_timing)(struct spi_device *spi);
561 
562 	/* bidirectional bulk transfers
563 	 *
564 	 * + The transfer() method may not sleep; its main role is
565 	 *   just to add the message to the queue.
566 	 * + For now there's no remove-from-queue operation, or
567 	 *   any other request management
568 	 * + To a given spi_device, message queueing is pure fifo
569 	 *
570 	 * + The controller's main job is to process its message queue,
571 	 *   selecting a chip (for masters), then transferring data
572 	 * + If there are multiple spi_device children, the i/o queue
573 	 *   arbitration algorithm is unspecified (round robin, fifo,
574 	 *   priority, reservations, preemption, etc)
575 	 *
576 	 * + Chipselect stays active during the entire message
577 	 *   (unless modified by spi_transfer.cs_change != 0).
578 	 * + The message transfers use clock and SPI mode parameters
579 	 *   previously established by setup() for this device
580 	 */
581 	int			(*transfer)(struct spi_device *spi,
582 						struct spi_message *mesg);
583 
584 	/* called on release() to free memory provided by spi_controller */
585 	void			(*cleanup)(struct spi_device *spi);
586 
587 	/*
588 	 * Used to enable core support for DMA handling, if can_dma()
589 	 * exists and returns true then the transfer will be mapped
590 	 * prior to transfer_one() being called.  The driver should
591 	 * not modify or store xfer and dma_tx and dma_rx must be set
592 	 * while the device is prepared.
593 	 */
594 	bool			(*can_dma)(struct spi_controller *ctlr,
595 					   struct spi_device *spi,
596 					   struct spi_transfer *xfer);
597 	struct device *dma_map_dev;
598 
599 	/*
600 	 * These hooks are for drivers that want to use the generic
601 	 * controller transfer queueing mechanism. If these are used, the
602 	 * transfer() function above must NOT be specified by the driver.
603 	 * Over time we expect SPI drivers to be phased over to this API.
604 	 */
605 	bool				queued;
606 	struct kthread_worker		*kworker;
607 	struct kthread_work		pump_messages;
608 	spinlock_t			queue_lock;
609 	struct list_head		queue;
610 	struct spi_message		*cur_msg;
611 	bool				idling;
612 	bool				busy;
613 	bool				running;
614 	bool				rt;
615 	bool				auto_runtime_pm;
616 	bool                            cur_msg_prepared;
617 	bool				cur_msg_mapped;
618 	bool				last_cs_enable;
619 	bool				last_cs_mode_high;
620 	bool                            fallback;
621 	struct completion               xfer_completion;
622 	size_t				max_dma_len;
623 
624 	int (*prepare_transfer_hardware)(struct spi_controller *ctlr);
625 	int (*transfer_one_message)(struct spi_controller *ctlr,
626 				    struct spi_message *mesg);
627 	int (*unprepare_transfer_hardware)(struct spi_controller *ctlr);
628 	int (*prepare_message)(struct spi_controller *ctlr,
629 			       struct spi_message *message);
630 	int (*unprepare_message)(struct spi_controller *ctlr,
631 				 struct spi_message *message);
632 	int (*slave_abort)(struct spi_controller *ctlr);
633 
634 	/*
635 	 * These hooks are for drivers that use a generic implementation
636 	 * of transfer_one_message() provided by the core.
637 	 */
638 	void (*set_cs)(struct spi_device *spi, bool enable);
639 	int (*transfer_one)(struct spi_controller *ctlr, struct spi_device *spi,
640 			    struct spi_transfer *transfer);
641 	void (*handle_err)(struct spi_controller *ctlr,
642 			   struct spi_message *message);
643 
644 	/* Optimized handlers for SPI memory-like operations. */
645 	const struct spi_controller_mem_ops *mem_ops;
646 
647 	/* gpio chip select */
648 	int			*cs_gpios;
649 	struct gpio_desc	**cs_gpiods;
650 	bool			use_gpio_descriptors;
651 	s8			unused_native_cs;
652 	s8			max_native_cs;
653 
654 	/* statistics */
655 	struct spi_statistics	statistics;
656 
657 	/* DMA channels for use with core dmaengine helpers */
658 	struct dma_chan		*dma_tx;
659 	struct dma_chan		*dma_rx;
660 
661 	/* dummy data for full duplex devices */
662 	void			*dummy_rx;
663 	void			*dummy_tx;
664 
665 	int (*fw_translate_cs)(struct spi_controller *ctlr, unsigned cs);
666 
667 	/*
668 	 * Driver sets this field to indicate it is able to snapshot SPI
669 	 * transfers (needed e.g. for reading the time of POSIX clocks)
670 	 */
671 	bool			ptp_sts_supported;
672 
673 	/* Interrupt enable state during PTP system timestamping */
674 	unsigned long		irq_flags;
675 };
676 
spi_controller_get_devdata(struct spi_controller * ctlr)677 static inline void *spi_controller_get_devdata(struct spi_controller *ctlr)
678 {
679 	return dev_get_drvdata(&ctlr->dev);
680 }
681 
spi_controller_set_devdata(struct spi_controller * ctlr,void * data)682 static inline void spi_controller_set_devdata(struct spi_controller *ctlr,
683 					      void *data)
684 {
685 	dev_set_drvdata(&ctlr->dev, data);
686 }
687 
spi_controller_get(struct spi_controller * ctlr)688 static inline struct spi_controller *spi_controller_get(struct spi_controller *ctlr)
689 {
690 	if (!ctlr || !get_device(&ctlr->dev))
691 		return NULL;
692 	return ctlr;
693 }
694 
spi_controller_put(struct spi_controller * ctlr)695 static inline void spi_controller_put(struct spi_controller *ctlr)
696 {
697 	if (ctlr)
698 		put_device(&ctlr->dev);
699 }
700 
spi_controller_is_slave(struct spi_controller * ctlr)701 static inline bool spi_controller_is_slave(struct spi_controller *ctlr)
702 {
703 	return IS_ENABLED(CONFIG_SPI_SLAVE) && ctlr->slave;
704 }
705 
706 /* PM calls that need to be issued by the driver */
707 extern int spi_controller_suspend(struct spi_controller *ctlr);
708 extern int spi_controller_resume(struct spi_controller *ctlr);
709 
710 /* Calls the driver make to interact with the message queue */
711 extern struct spi_message *spi_get_next_queued_message(struct spi_controller *ctlr);
712 extern void spi_finalize_current_message(struct spi_controller *ctlr);
713 extern void spi_finalize_current_transfer(struct spi_controller *ctlr);
714 
715 /* Helper calls for driver to timestamp transfer */
716 void spi_take_timestamp_pre(struct spi_controller *ctlr,
717 			    struct spi_transfer *xfer,
718 			    size_t progress, bool irqs_off);
719 void spi_take_timestamp_post(struct spi_controller *ctlr,
720 			     struct spi_transfer *xfer,
721 			     size_t progress, bool irqs_off);
722 
723 /* the spi driver core manages memory for the spi_controller classdev */
724 extern struct spi_controller *__spi_alloc_controller(struct device *host,
725 						unsigned int size, bool slave);
726 
spi_alloc_master(struct device * host,unsigned int size)727 static inline struct spi_controller *spi_alloc_master(struct device *host,
728 						      unsigned int size)
729 {
730 	return __spi_alloc_controller(host, size, false);
731 }
732 
spi_alloc_slave(struct device * host,unsigned int size)733 static inline struct spi_controller *spi_alloc_slave(struct device *host,
734 						     unsigned int size)
735 {
736 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
737 		return NULL;
738 
739 	return __spi_alloc_controller(host, size, true);
740 }
741 
742 struct spi_controller *__devm_spi_alloc_controller(struct device *dev,
743 						   unsigned int size,
744 						   bool slave);
745 
devm_spi_alloc_master(struct device * dev,unsigned int size)746 static inline struct spi_controller *devm_spi_alloc_master(struct device *dev,
747 							   unsigned int size)
748 {
749 	return __devm_spi_alloc_controller(dev, size, false);
750 }
751 
devm_spi_alloc_slave(struct device * dev,unsigned int size)752 static inline struct spi_controller *devm_spi_alloc_slave(struct device *dev,
753 							  unsigned int size)
754 {
755 	if (!IS_ENABLED(CONFIG_SPI_SLAVE))
756 		return NULL;
757 
758 	return __devm_spi_alloc_controller(dev, size, true);
759 }
760 
761 extern int spi_register_controller(struct spi_controller *ctlr);
762 extern int devm_spi_register_controller(struct device *dev,
763 					struct spi_controller *ctlr);
764 extern void spi_unregister_controller(struct spi_controller *ctlr);
765 
766 extern struct spi_controller *spi_busnum_to_master(u16 busnum);
767 
768 /*
769  * SPI resource management while processing a SPI message
770  */
771 
772 typedef void (*spi_res_release_t)(struct spi_controller *ctlr,
773 				  struct spi_message *msg,
774 				  void *res);
775 
776 /**
777  * struct spi_res - spi resource management structure
778  * @entry:   list entry
779  * @release: release code called prior to freeing this resource
780  * @data:    extra data allocated for the specific use-case
781  *
782  * this is based on ideas from devres, but focused on life-cycle
783  * management during spi_message processing
784  */
785 struct spi_res {
786 	struct list_head        entry;
787 	spi_res_release_t       release;
788 	unsigned long long      data[]; /* guarantee ull alignment */
789 };
790 
791 extern void *spi_res_alloc(struct spi_device *spi,
792 			   spi_res_release_t release,
793 			   size_t size, gfp_t gfp);
794 extern void spi_res_add(struct spi_message *message, void *res);
795 extern void spi_res_free(void *res);
796 
797 extern void spi_res_release(struct spi_controller *ctlr,
798 			    struct spi_message *message);
799 
800 /*---------------------------------------------------------------------------*/
801 
802 /*
803  * I/O INTERFACE between SPI controller and protocol drivers
804  *
805  * Protocol drivers use a queue of spi_messages, each transferring data
806  * between the controller and memory buffers.
807  *
808  * The spi_messages themselves consist of a series of read+write transfer
809  * segments.  Those segments always read the same number of bits as they
810  * write; but one or the other is easily ignored by passing a null buffer
811  * pointer.  (This is unlike most types of I/O API, because SPI hardware
812  * is full duplex.)
813  *
814  * NOTE:  Allocation of spi_transfer and spi_message memory is entirely
815  * up to the protocol driver, which guarantees the integrity of both (as
816  * well as the data buffers) for as long as the message is queued.
817  */
818 
819 /**
820  * struct spi_transfer - a read/write buffer pair
821  * @tx_buf: data to be written (dma-safe memory), or NULL
822  * @rx_buf: data to be read (dma-safe memory), or NULL
823  * @tx_dma: DMA address of tx_buf, if @spi_message.is_dma_mapped
824  * @rx_dma: DMA address of rx_buf, if @spi_message.is_dma_mapped
825  * @tx_nbits: number of bits used for writing. If 0 the default
826  *      (SPI_NBITS_SINGLE) is used.
827  * @rx_nbits: number of bits used for reading. If 0 the default
828  *      (SPI_NBITS_SINGLE) is used.
829  * @len: size of rx and tx buffers (in bytes)
830  * @speed_hz: Select a speed other than the device default for this
831  *      transfer. If 0 the default (from @spi_device) is used.
832  * @bits_per_word: select a bits_per_word other than the device default
833  *      for this transfer. If 0 the default (from @spi_device) is used.
834  * @dummy_data: indicates transfer is dummy bytes transfer.
835  * @cs_change: affects chipselect after this transfer completes
836  * @cs_change_delay: delay between cs deassert and assert when
837  *      @cs_change is set and @spi_transfer is not the last in @spi_message
838  * @delay: delay to be introduced after this transfer before
839  *	(optionally) changing the chipselect status, then starting
840  *	the next transfer or completing this @spi_message.
841  * @word_delay: inter word delay to be introduced after each word size
842  *	(set by bits_per_word) transmission.
843  * @effective_speed_hz: the effective SCK-speed that was used to
844  *      transfer this transfer. Set to 0 if the spi bus driver does
845  *      not support it.
846  * @transfer_list: transfers are sequenced through @spi_message.transfers
847  * @tx_sg: Scatterlist for transmit, currently not for client use
848  * @rx_sg: Scatterlist for receive, currently not for client use
849  * @ptp_sts_word_pre: The word (subject to bits_per_word semantics) offset
850  *	within @tx_buf for which the SPI device is requesting that the time
851  *	snapshot for this transfer begins. Upon completing the SPI transfer,
852  *	this value may have changed compared to what was requested, depending
853  *	on the available snapshotting resolution (DMA transfer,
854  *	@ptp_sts_supported is false, etc).
855  * @ptp_sts_word_post: See @ptp_sts_word_post. The two can be equal (meaning
856  *	that a single byte should be snapshotted).
857  *	If the core takes care of the timestamp (if @ptp_sts_supported is false
858  *	for this controller), it will set @ptp_sts_word_pre to 0, and
859  *	@ptp_sts_word_post to the length of the transfer. This is done
860  *	purposefully (instead of setting to spi_transfer->len - 1) to denote
861  *	that a transfer-level snapshot taken from within the driver may still
862  *	be of higher quality.
863  * @ptp_sts: Pointer to a memory location held by the SPI slave device where a
864  *	PTP system timestamp structure may lie. If drivers use PIO or their
865  *	hardware has some sort of assist for retrieving exact transfer timing,
866  *	they can (and should) assert @ptp_sts_supported and populate this
867  *	structure using the ptp_read_system_*ts helper functions.
868  *	The timestamp must represent the time at which the SPI slave device has
869  *	processed the word, i.e. the "pre" timestamp should be taken before
870  *	transmitting the "pre" word, and the "post" timestamp after receiving
871  *	transmit confirmation from the controller for the "post" word.
872  * @timestamped: true if the transfer has been timestamped
873  * @error: Error status logged by spi controller driver.
874  *
875  * SPI transfers always write the same number of bytes as they read.
876  * Protocol drivers should always provide @rx_buf and/or @tx_buf.
877  * In some cases, they may also want to provide DMA addresses for
878  * the data being transferred; that may reduce overhead, when the
879  * underlying driver uses dma.
880  *
881  * If the transmit buffer is null, zeroes will be shifted out
882  * while filling @rx_buf.  If the receive buffer is null, the data
883  * shifted in will be discarded.  Only "len" bytes shift out (or in).
884  * It's an error to try to shift out a partial word.  (For example, by
885  * shifting out three bytes with word size of sixteen or twenty bits;
886  * the former uses two bytes per word, the latter uses four bytes.)
887  *
888  * In-memory data values are always in native CPU byte order, translated
889  * from the wire byte order (big-endian except with SPI_LSB_FIRST).  So
890  * for example when bits_per_word is sixteen, buffers are 2N bytes long
891  * (@len = 2N) and hold N sixteen bit words in CPU byte order.
892  *
893  * When the word size of the SPI transfer is not a power-of-two multiple
894  * of eight bits, those in-memory words include extra bits.  In-memory
895  * words are always seen by protocol drivers as right-justified, so the
896  * undefined (rx) or unused (tx) bits are always the most significant bits.
897  *
898  * All SPI transfers start with the relevant chipselect active.  Normally
899  * it stays selected until after the last transfer in a message.  Drivers
900  * can affect the chipselect signal using cs_change.
901  *
902  * (i) If the transfer isn't the last one in the message, this flag is
903  * used to make the chipselect briefly go inactive in the middle of the
904  * message.  Toggling chipselect in this way may be needed to terminate
905  * a chip command, letting a single spi_message perform all of group of
906  * chip transactions together.
907  *
908  * (ii) When the transfer is the last one in the message, the chip may
909  * stay selected until the next transfer.  On multi-device SPI busses
910  * with nothing blocking messages going to other devices, this is just
911  * a performance hint; starting a message to another device deselects
912  * this one.  But in other cases, this can be used to ensure correctness.
913  * Some devices need protocol transactions to be built from a series of
914  * spi_message submissions, where the content of one message is determined
915  * by the results of previous messages and where the whole transaction
916  * ends when the chipselect goes intactive.
917  *
918  * When SPI can transfer in 1x,2x or 4x. It can get this transfer information
919  * from device through @tx_nbits and @rx_nbits. In Bi-direction, these
920  * two should both be set. User can set transfer mode with SPI_NBITS_SINGLE(1x)
921  * SPI_NBITS_DUAL(2x) and SPI_NBITS_QUAD(4x) to support these three transfer.
922  *
923  * The code that submits an spi_message (and its spi_transfers)
924  * to the lower layers is responsible for managing its memory.
925  * Zero-initialize every field you don't set up explicitly, to
926  * insulate against future API updates.  After you submit a message
927  * and its transfers, ignore them until its completion callback.
928  */
929 struct spi_transfer {
930 	/* it's ok if tx_buf == rx_buf (right?)
931 	 * for MicroWire, one buffer must be null
932 	 * buffers must work with dma_*map_single() calls, unless
933 	 *   spi_message.is_dma_mapped reports a pre-existing mapping
934 	 */
935 	const void	*tx_buf;
936 	void		*rx_buf;
937 	unsigned	len;
938 
939 	dma_addr_t	tx_dma;
940 	dma_addr_t	rx_dma;
941 	struct sg_table tx_sg;
942 	struct sg_table rx_sg;
943 
944 	unsigned	dummy_data:1;
945 	unsigned	cs_change:1;
946 	unsigned	tx_nbits:3;
947 	unsigned	rx_nbits:3;
948 #define	SPI_NBITS_SINGLE	0x01 /* 1bit transfer */
949 #define	SPI_NBITS_DUAL		0x02 /* 2bits transfer */
950 #define	SPI_NBITS_QUAD		0x04 /* 4bits transfer */
951 	u8		bits_per_word;
952 	struct spi_delay	delay;
953 	struct spi_delay	cs_change_delay;
954 	struct spi_delay	word_delay;
955 	u32		speed_hz;
956 
957 	u32		effective_speed_hz;
958 
959 	unsigned int	ptp_sts_word_pre;
960 	unsigned int	ptp_sts_word_post;
961 
962 	struct ptp_system_timestamp *ptp_sts;
963 
964 	bool		timestamped;
965 
966 	struct list_head transfer_list;
967 
968 #define SPI_TRANS_FAIL_NO_START	BIT(0)
969 	u16		error;
970 };
971 
972 /**
973  * struct spi_message - one multi-segment SPI transaction
974  * @transfers: list of transfer segments in this transaction
975  * @spi: SPI device to which the transaction is queued
976  * @is_dma_mapped: if true, the caller provided both dma and cpu virtual
977  *	addresses for each transfer buffer
978  * @complete: called to report transaction completions
979  * @context: the argument to complete() when it's called
980  * @frame_length: the total number of bytes in the message
981  * @actual_length: the total number of bytes that were transferred in all
982  *	successful segments
983  * @status: zero for success, else negative errno
984  * @queue: for use by whichever driver currently owns the message
985  * @state: for use by whichever driver currently owns the message
986  * @resources: for resource management when the spi message is processed
987  *
988  * A @spi_message is used to execute an atomic sequence of data transfers,
989  * each represented by a struct spi_transfer.  The sequence is "atomic"
990  * in the sense that no other spi_message may use that SPI bus until that
991  * sequence completes.  On some systems, many such sequences can execute as
992  * a single programmed DMA transfer.  On all systems, these messages are
993  * queued, and might complete after transactions to other devices.  Messages
994  * sent to a given spi_device are always executed in FIFO order.
995  *
996  * The code that submits an spi_message (and its spi_transfers)
997  * to the lower layers is responsible for managing its memory.
998  * Zero-initialize every field you don't set up explicitly, to
999  * insulate against future API updates.  After you submit a message
1000  * and its transfers, ignore them until its completion callback.
1001  */
1002 struct spi_message {
1003 	struct list_head	transfers;
1004 
1005 	struct spi_device	*spi;
1006 
1007 	unsigned		is_dma_mapped:1;
1008 
1009 	/* REVISIT:  we might want a flag affecting the behavior of the
1010 	 * last transfer ... allowing things like "read 16 bit length L"
1011 	 * immediately followed by "read L bytes".  Basically imposing
1012 	 * a specific message scheduling algorithm.
1013 	 *
1014 	 * Some controller drivers (message-at-a-time queue processing)
1015 	 * could provide that as their default scheduling algorithm.  But
1016 	 * others (with multi-message pipelines) could need a flag to
1017 	 * tell them about such special cases.
1018 	 */
1019 
1020 	/* completion is reported through a callback */
1021 	void			(*complete)(void *context);
1022 	void			*context;
1023 	unsigned		frame_length;
1024 	unsigned		actual_length;
1025 	int			status;
1026 
1027 	/* for optional use by whatever driver currently owns the
1028 	 * spi_message ...  between calls to spi_async and then later
1029 	 * complete(), that's the spi_controller controller driver.
1030 	 */
1031 	struct list_head	queue;
1032 	void			*state;
1033 
1034 	/* list of spi_res reources when the spi message is processed */
1035 	struct list_head        resources;
1036 };
1037 
spi_message_init_no_memset(struct spi_message * m)1038 static inline void spi_message_init_no_memset(struct spi_message *m)
1039 {
1040 	INIT_LIST_HEAD(&m->transfers);
1041 	INIT_LIST_HEAD(&m->resources);
1042 }
1043 
spi_message_init(struct spi_message * m)1044 static inline void spi_message_init(struct spi_message *m)
1045 {
1046 	memset(m, 0, sizeof *m);
1047 	spi_message_init_no_memset(m);
1048 }
1049 
1050 static inline void
spi_message_add_tail(struct spi_transfer * t,struct spi_message * m)1051 spi_message_add_tail(struct spi_transfer *t, struct spi_message *m)
1052 {
1053 	list_add_tail(&t->transfer_list, &m->transfers);
1054 }
1055 
1056 static inline void
spi_transfer_del(struct spi_transfer * t)1057 spi_transfer_del(struct spi_transfer *t)
1058 {
1059 	list_del(&t->transfer_list);
1060 }
1061 
1062 static inline int
spi_transfer_delay_exec(struct spi_transfer * t)1063 spi_transfer_delay_exec(struct spi_transfer *t)
1064 {
1065 	return spi_delay_exec(&t->delay, t);
1066 }
1067 
1068 /**
1069  * spi_message_init_with_transfers - Initialize spi_message and append transfers
1070  * @m: spi_message to be initialized
1071  * @xfers: An array of spi transfers
1072  * @num_xfers: Number of items in the xfer array
1073  *
1074  * This function initializes the given spi_message and adds each spi_transfer in
1075  * the given array to the message.
1076  */
1077 static inline void
spi_message_init_with_transfers(struct spi_message * m,struct spi_transfer * xfers,unsigned int num_xfers)1078 spi_message_init_with_transfers(struct spi_message *m,
1079 struct spi_transfer *xfers, unsigned int num_xfers)
1080 {
1081 	unsigned int i;
1082 
1083 	spi_message_init(m);
1084 	for (i = 0; i < num_xfers; ++i)
1085 		spi_message_add_tail(&xfers[i], m);
1086 }
1087 
1088 /* It's fine to embed message and transaction structures in other data
1089  * structures so long as you don't free them while they're in use.
1090  */
1091 
spi_message_alloc(unsigned ntrans,gfp_t flags)1092 static inline struct spi_message *spi_message_alloc(unsigned ntrans, gfp_t flags)
1093 {
1094 	struct spi_message *m;
1095 
1096 	m = kzalloc(sizeof(struct spi_message)
1097 			+ ntrans * sizeof(struct spi_transfer),
1098 			flags);
1099 	if (m) {
1100 		unsigned i;
1101 		struct spi_transfer *t = (struct spi_transfer *)(m + 1);
1102 
1103 		spi_message_init_no_memset(m);
1104 		for (i = 0; i < ntrans; i++, t++)
1105 			spi_message_add_tail(t, m);
1106 	}
1107 	return m;
1108 }
1109 
spi_message_free(struct spi_message * m)1110 static inline void spi_message_free(struct spi_message *m)
1111 {
1112 	kfree(m);
1113 }
1114 
1115 extern int spi_setup(struct spi_device *spi);
1116 extern int spi_async(struct spi_device *spi, struct spi_message *message);
1117 extern int spi_async_locked(struct spi_device *spi,
1118 			    struct spi_message *message);
1119 extern int spi_slave_abort(struct spi_device *spi);
1120 
1121 static inline size_t
spi_max_message_size(struct spi_device * spi)1122 spi_max_message_size(struct spi_device *spi)
1123 {
1124 	struct spi_controller *ctlr = spi->controller;
1125 
1126 	if (!ctlr->max_message_size)
1127 		return SIZE_MAX;
1128 	return ctlr->max_message_size(spi);
1129 }
1130 
1131 static inline size_t
spi_max_transfer_size(struct spi_device * spi)1132 spi_max_transfer_size(struct spi_device *spi)
1133 {
1134 	struct spi_controller *ctlr = spi->controller;
1135 	size_t tr_max = SIZE_MAX;
1136 	size_t msg_max = spi_max_message_size(spi);
1137 
1138 	if (ctlr->max_transfer_size)
1139 		tr_max = ctlr->max_transfer_size(spi);
1140 
1141 	/* transfer size limit must not be greater than messsage size limit */
1142 	return min(tr_max, msg_max);
1143 }
1144 
1145 /**
1146  * spi_is_bpw_supported - Check if bits per word is supported
1147  * @spi: SPI device
1148  * @bpw: Bits per word
1149  *
1150  * This function checks to see if the SPI controller supports @bpw.
1151  *
1152  * Returns:
1153  * True if @bpw is supported, false otherwise.
1154  */
spi_is_bpw_supported(struct spi_device * spi,u32 bpw)1155 static inline bool spi_is_bpw_supported(struct spi_device *spi, u32 bpw)
1156 {
1157 	u32 bpw_mask = spi->master->bits_per_word_mask;
1158 
1159 	if (bpw == 8 || (bpw <= 32 && bpw_mask & SPI_BPW_MASK(bpw)))
1160 		return true;
1161 
1162 	return false;
1163 }
1164 
1165 /*---------------------------------------------------------------------------*/
1166 
1167 /* SPI transfer replacement methods which make use of spi_res */
1168 
1169 struct spi_replaced_transfers;
1170 typedef void (*spi_replaced_release_t)(struct spi_controller *ctlr,
1171 				       struct spi_message *msg,
1172 				       struct spi_replaced_transfers *res);
1173 /**
1174  * struct spi_replaced_transfers - structure describing the spi_transfer
1175  *                                 replacements that have occurred
1176  *                                 so that they can get reverted
1177  * @release:            some extra release code to get executed prior to
1178  *                      relasing this structure
1179  * @extradata:          pointer to some extra data if requested or NULL
1180  * @replaced_transfers: transfers that have been replaced and which need
1181  *                      to get restored
1182  * @replaced_after:     the transfer after which the @replaced_transfers
1183  *                      are to get re-inserted
1184  * @inserted:           number of transfers inserted
1185  * @inserted_transfers: array of spi_transfers of array-size @inserted,
1186  *                      that have been replacing replaced_transfers
1187  *
1188  * note: that @extradata will point to @inserted_transfers[@inserted]
1189  * if some extra allocation is requested, so alignment will be the same
1190  * as for spi_transfers
1191  */
1192 struct spi_replaced_transfers {
1193 	spi_replaced_release_t release;
1194 	void *extradata;
1195 	struct list_head replaced_transfers;
1196 	struct list_head *replaced_after;
1197 	size_t inserted;
1198 	struct spi_transfer inserted_transfers[];
1199 };
1200 
1201 extern struct spi_replaced_transfers *spi_replace_transfers(
1202 	struct spi_message *msg,
1203 	struct spi_transfer *xfer_first,
1204 	size_t remove,
1205 	size_t insert,
1206 	spi_replaced_release_t release,
1207 	size_t extradatasize,
1208 	gfp_t gfp);
1209 
1210 /*---------------------------------------------------------------------------*/
1211 
1212 /* SPI transfer transformation methods */
1213 
1214 extern int spi_split_transfers_maxsize(struct spi_controller *ctlr,
1215 				       struct spi_message *msg,
1216 				       size_t maxsize,
1217 				       gfp_t gfp);
1218 
1219 /*---------------------------------------------------------------------------*/
1220 
1221 /* All these synchronous SPI transfer routines are utilities layered
1222  * over the core async transfer primitive.  Here, "synchronous" means
1223  * they will sleep uninterruptibly until the async transfer completes.
1224  */
1225 
1226 extern int spi_sync(struct spi_device *spi, struct spi_message *message);
1227 extern int spi_sync_locked(struct spi_device *spi, struct spi_message *message);
1228 extern int spi_bus_lock(struct spi_controller *ctlr);
1229 extern int spi_bus_unlock(struct spi_controller *ctlr);
1230 
1231 /**
1232  * spi_sync_transfer - synchronous SPI data transfer
1233  * @spi: device with which data will be exchanged
1234  * @xfers: An array of spi_transfers
1235  * @num_xfers: Number of items in the xfer array
1236  * Context: can sleep
1237  *
1238  * Does a synchronous SPI data transfer of the given spi_transfer array.
1239  *
1240  * For more specific semantics see spi_sync().
1241  *
1242  * Return: zero on success, else a negative error code.
1243  */
1244 static inline int
spi_sync_transfer(struct spi_device * spi,struct spi_transfer * xfers,unsigned int num_xfers)1245 spi_sync_transfer(struct spi_device *spi, struct spi_transfer *xfers,
1246 	unsigned int num_xfers)
1247 {
1248 	struct spi_message msg;
1249 
1250 	spi_message_init_with_transfers(&msg, xfers, num_xfers);
1251 
1252 	return spi_sync(spi, &msg);
1253 }
1254 
1255 /**
1256  * spi_write - SPI synchronous write
1257  * @spi: device to which data will be written
1258  * @buf: data buffer
1259  * @len: data buffer size
1260  * Context: can sleep
1261  *
1262  * This function writes the buffer @buf.
1263  * Callable only from contexts that can sleep.
1264  *
1265  * Return: zero on success, else a negative error code.
1266  */
1267 static inline int
spi_write(struct spi_device * spi,const void * buf,size_t len)1268 spi_write(struct spi_device *spi, const void *buf, size_t len)
1269 {
1270 	struct spi_transfer	t = {
1271 			.tx_buf		= buf,
1272 			.len		= len,
1273 		};
1274 
1275 	return spi_sync_transfer(spi, &t, 1);
1276 }
1277 
1278 /**
1279  * spi_read - SPI synchronous read
1280  * @spi: device from which data will be read
1281  * @buf: data buffer
1282  * @len: data buffer size
1283  * Context: can sleep
1284  *
1285  * This function reads the buffer @buf.
1286  * Callable only from contexts that can sleep.
1287  *
1288  * Return: zero on success, else a negative error code.
1289  */
1290 static inline int
spi_read(struct spi_device * spi,void * buf,size_t len)1291 spi_read(struct spi_device *spi, void *buf, size_t len)
1292 {
1293 	struct spi_transfer	t = {
1294 			.rx_buf		= buf,
1295 			.len		= len,
1296 		};
1297 
1298 	return spi_sync_transfer(spi, &t, 1);
1299 }
1300 
1301 /* this copies txbuf and rxbuf data; for small transfers only! */
1302 extern int spi_write_then_read(struct spi_device *spi,
1303 		const void *txbuf, unsigned n_tx,
1304 		void *rxbuf, unsigned n_rx);
1305 
1306 /**
1307  * spi_w8r8 - SPI synchronous 8 bit write followed by 8 bit read
1308  * @spi: device with which data will be exchanged
1309  * @cmd: command to be written before data is read back
1310  * Context: can sleep
1311  *
1312  * Callable only from contexts that can sleep.
1313  *
1314  * Return: the (unsigned) eight bit number returned by the
1315  * device, or else a negative error code.
1316  */
spi_w8r8(struct spi_device * spi,u8 cmd)1317 static inline ssize_t spi_w8r8(struct spi_device *spi, u8 cmd)
1318 {
1319 	ssize_t			status;
1320 	u8			result;
1321 
1322 	status = spi_write_then_read(spi, &cmd, 1, &result, 1);
1323 
1324 	/* return negative errno or unsigned value */
1325 	return (status < 0) ? status : result;
1326 }
1327 
1328 /**
1329  * spi_w8r16 - SPI synchronous 8 bit write followed by 16 bit read
1330  * @spi: device with which data will be exchanged
1331  * @cmd: command to be written before data is read back
1332  * Context: can sleep
1333  *
1334  * The number is returned in wire-order, which is at least sometimes
1335  * big-endian.
1336  *
1337  * Callable only from contexts that can sleep.
1338  *
1339  * Return: the (unsigned) sixteen bit number returned by the
1340  * device, or else a negative error code.
1341  */
spi_w8r16(struct spi_device * spi,u8 cmd)1342 static inline ssize_t spi_w8r16(struct spi_device *spi, u8 cmd)
1343 {
1344 	ssize_t			status;
1345 	u16			result;
1346 
1347 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1348 
1349 	/* return negative errno or unsigned value */
1350 	return (status < 0) ? status : result;
1351 }
1352 
1353 /**
1354  * spi_w8r16be - SPI synchronous 8 bit write followed by 16 bit big-endian read
1355  * @spi: device with which data will be exchanged
1356  * @cmd: command to be written before data is read back
1357  * Context: can sleep
1358  *
1359  * This function is similar to spi_w8r16, with the exception that it will
1360  * convert the read 16 bit data word from big-endian to native endianness.
1361  *
1362  * Callable only from contexts that can sleep.
1363  *
1364  * Return: the (unsigned) sixteen bit number returned by the device in cpu
1365  * endianness, or else a negative error code.
1366  */
spi_w8r16be(struct spi_device * spi,u8 cmd)1367 static inline ssize_t spi_w8r16be(struct spi_device *spi, u8 cmd)
1368 
1369 {
1370 	ssize_t status;
1371 	__be16 result;
1372 
1373 	status = spi_write_then_read(spi, &cmd, 1, &result, 2);
1374 	if (status < 0)
1375 		return status;
1376 
1377 	return be16_to_cpu(result);
1378 }
1379 
1380 /*---------------------------------------------------------------------------*/
1381 
1382 /*
1383  * INTERFACE between board init code and SPI infrastructure.
1384  *
1385  * No SPI driver ever sees these SPI device table segments, but
1386  * it's how the SPI core (or adapters that get hotplugged) grows
1387  * the driver model tree.
1388  *
1389  * As a rule, SPI devices can't be probed.  Instead, board init code
1390  * provides a table listing the devices which are present, with enough
1391  * information to bind and set up the device's driver.  There's basic
1392  * support for nonstatic configurations too; enough to handle adding
1393  * parport adapters, or microcontrollers acting as USB-to-SPI bridges.
1394  */
1395 
1396 /**
1397  * struct spi_board_info - board-specific template for a SPI device
1398  * @modalias: Initializes spi_device.modalias; identifies the driver.
1399  * @platform_data: Initializes spi_device.platform_data; the particular
1400  *	data stored there is driver-specific.
1401  * @swnode: Software node for the device.
1402  * @controller_data: Initializes spi_device.controller_data; some
1403  *	controllers need hints about hardware setup, e.g. for DMA.
1404  * @irq: Initializes spi_device.irq; depends on how the board is wired.
1405  * @max_speed_hz: Initializes spi_device.max_speed_hz; based on limits
1406  *	from the chip datasheet and board-specific signal quality issues.
1407  * @bus_num: Identifies which spi_controller parents the spi_device; unused
1408  *	by spi_new_device(), and otherwise depends on board wiring.
1409  * @chip_select: Initializes spi_device.chip_select; depends on how
1410  *	the board is wired.
1411  * @mode: Initializes spi_device.mode; based on the chip datasheet, board
1412  *	wiring (some devices support both 3WIRE and standard modes), and
1413  *	possibly presence of an inverter in the chipselect path.
1414  *
1415  * When adding new SPI devices to the device tree, these structures serve
1416  * as a partial device template.  They hold information which can't always
1417  * be determined by drivers.  Information that probe() can establish (such
1418  * as the default transfer wordsize) is not included here.
1419  *
1420  * These structures are used in two places.  Their primary role is to
1421  * be stored in tables of board-specific device descriptors, which are
1422  * declared early in board initialization and then used (much later) to
1423  * populate a controller's device tree after the that controller's driver
1424  * initializes.  A secondary (and atypical) role is as a parameter to
1425  * spi_new_device() call, which happens after those controller drivers
1426  * are active in some dynamic board configuration models.
1427  */
1428 struct spi_board_info {
1429 	/* the device name and module name are coupled, like platform_bus;
1430 	 * "modalias" is normally the driver name.
1431 	 *
1432 	 * platform_data goes to spi_device.dev.platform_data,
1433 	 * controller_data goes to spi_device.controller_data,
1434 	 * irq is copied too
1435 	 */
1436 	char		modalias[SPI_NAME_SIZE];
1437 	const void	*platform_data;
1438 	const struct software_node *swnode;
1439 	void		*controller_data;
1440 	int		irq;
1441 
1442 	/* slower signaling on noisy or low voltage boards */
1443 	u32		max_speed_hz;
1444 
1445 
1446 	/* bus_num is board specific and matches the bus_num of some
1447 	 * spi_controller that will probably be registered later.
1448 	 *
1449 	 * chip_select reflects how this chip is wired to that master;
1450 	 * it's less than num_chipselect.
1451 	 */
1452 	u16		bus_num;
1453 	u16		chip_select;
1454 
1455 	/* mode becomes spi_device.mode, and is essential for chips
1456 	 * where the default of SPI_CS_HIGH = 0 is wrong.
1457 	 */
1458 	u32		mode;
1459 
1460 	/* ... may need additional spi_device chip config data here.
1461 	 * avoid stuff protocol drivers can set; but include stuff
1462 	 * needed to behave without being bound to a driver:
1463 	 *  - quirks like clock rate mattering when not selected
1464 	 */
1465 };
1466 
1467 #ifdef	CONFIG_SPI
1468 extern int
1469 spi_register_board_info(struct spi_board_info const *info, unsigned n);
1470 #else
1471 /* board init code may ignore whether SPI is configured or not */
1472 static inline int
spi_register_board_info(struct spi_board_info const * info,unsigned n)1473 spi_register_board_info(struct spi_board_info const *info, unsigned n)
1474 	{ return 0; }
1475 #endif
1476 
1477 /* If you're hotplugging an adapter with devices (parport, usb, etc)
1478  * use spi_new_device() to describe each device.  You can also call
1479  * spi_unregister_device() to start making that device vanish, but
1480  * normally that would be handled by spi_unregister_controller().
1481  *
1482  * You can also use spi_alloc_device() and spi_add_device() to use a two
1483  * stage registration sequence for each spi_device.  This gives the caller
1484  * some more control over the spi_device structure before it is registered,
1485  * but requires that caller to initialize fields that would otherwise
1486  * be defined using the board info.
1487  */
1488 extern struct spi_device *
1489 spi_alloc_device(struct spi_controller *ctlr);
1490 
1491 extern int
1492 spi_add_device(struct spi_device *spi);
1493 
1494 extern struct spi_device *
1495 spi_new_device(struct spi_controller *, struct spi_board_info *);
1496 
1497 extern void spi_unregister_device(struct spi_device *spi);
1498 
1499 extern const struct spi_device_id *
1500 spi_get_device_id(const struct spi_device *sdev);
1501 
1502 static inline bool
spi_transfer_is_last(struct spi_controller * ctlr,struct spi_transfer * xfer)1503 spi_transfer_is_last(struct spi_controller *ctlr, struct spi_transfer *xfer)
1504 {
1505 	return list_is_last(&xfer->transfer_list, &ctlr->cur_msg->transfers);
1506 }
1507 
1508 /* OF support code */
1509 #if IS_ENABLED(CONFIG_OF)
1510 
1511 /* must call put_device() when done with returned spi_device device */
1512 extern struct spi_device *
1513 of_find_spi_device_by_node(struct device_node *node);
1514 
1515 #else
1516 
1517 static inline struct spi_device *
of_find_spi_device_by_node(struct device_node * node)1518 of_find_spi_device_by_node(struct device_node *node)
1519 {
1520 	return NULL;
1521 }
1522 
1523 #endif /* IS_ENABLED(CONFIG_OF) */
1524 
1525 /* Compatibility layer */
1526 #define spi_master			spi_controller
1527 
1528 #define SPI_MASTER_HALF_DUPLEX		SPI_CONTROLLER_HALF_DUPLEX
1529 #define SPI_MASTER_NO_RX		SPI_CONTROLLER_NO_RX
1530 #define SPI_MASTER_NO_TX		SPI_CONTROLLER_NO_TX
1531 #define SPI_MASTER_MUST_RX		SPI_CONTROLLER_MUST_RX
1532 #define SPI_MASTER_MUST_TX		SPI_CONTROLLER_MUST_TX
1533 
1534 #define spi_master_get_devdata(_ctlr)	spi_controller_get_devdata(_ctlr)
1535 #define spi_master_set_devdata(_ctlr, _data)	\
1536 	spi_controller_set_devdata(_ctlr, _data)
1537 #define spi_master_get(_ctlr)		spi_controller_get(_ctlr)
1538 #define spi_master_put(_ctlr)		spi_controller_put(_ctlr)
1539 #define spi_master_suspend(_ctlr)	spi_controller_suspend(_ctlr)
1540 #define spi_master_resume(_ctlr)	spi_controller_resume(_ctlr)
1541 
1542 #define spi_register_master(_ctlr)	spi_register_controller(_ctlr)
1543 #define devm_spi_register_master(_dev, _ctlr) \
1544 	devm_spi_register_controller(_dev, _ctlr)
1545 #define spi_unregister_master(_ctlr)	spi_unregister_controller(_ctlr)
1546 
1547 #endif /* __LINUX_SPI_H */
1548