1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 #ifndef _LINUX_MEMBLOCK_H
3 #define _LINUX_MEMBLOCK_H
4 #ifdef __KERNEL__
5 
6 /*
7  * Logical memory blocks.
8  *
9  * Copyright (C) 2001 Peter Bergner, IBM Corp.
10  */
11 
12 #include <linux/init.h>
13 #include <linux/mm.h>
14 #include <asm/dma.h>
15 
16 extern unsigned long max_low_pfn;
17 extern unsigned long min_low_pfn;
18 
19 /*
20  * highest page
21  */
22 extern unsigned long max_pfn;
23 /*
24  * highest possible page
25  */
26 extern unsigned long long max_possible_pfn;
27 
28 /**
29  * enum memblock_flags - definition of memory region attributes
30  * @MEMBLOCK_NONE: no special request
31  * @MEMBLOCK_HOTPLUG: hotpluggable region
32  * @MEMBLOCK_MIRROR: mirrored region
33  * @MEMBLOCK_NOMAP: don't add to kernel direct mapping and treat as
34  * reserved in the memory map; refer to memblock_mark_nomap() description
35  * for further details
36  */
37 enum memblock_flags {
38 	MEMBLOCK_NONE		= 0x0,	/* No special request */
39 	MEMBLOCK_HOTPLUG	= 0x1,	/* hotpluggable region */
40 	MEMBLOCK_MIRROR		= 0x2,	/* mirrored region */
41 	MEMBLOCK_NOMAP		= 0x4,	/* don't add to kernel direct mapping */
42 };
43 
44 /**
45  * struct memblock_region - represents a memory region
46  * @base: base address of the region
47  * @size: size of the region
48  * @flags: memory region attributes
49  * @nid: NUMA node id
50  */
51 struct memblock_region {
52 	phys_addr_t base;
53 	phys_addr_t size;
54 	enum memblock_flags flags;
55 #ifdef CONFIG_NUMA
56 	int nid;
57 #endif
58 };
59 
60 /**
61  * struct memblock_type - collection of memory regions of certain type
62  * @cnt: number of regions
63  * @max: size of the allocated array
64  * @total_size: size of all regions
65  * @regions: array of regions
66  * @name: the memory type symbolic name
67  */
68 struct memblock_type {
69 	unsigned long cnt;
70 	unsigned long max;
71 	phys_addr_t total_size;
72 	struct memblock_region *regions;
73 	char *name;
74 };
75 
76 /**
77  * struct memblock - memblock allocator metadata
78  * @bottom_up: is bottom up direction?
79  * @current_limit: physical address of the current allocation limit
80  * @memory: usable memory regions
81  * @reserved: reserved memory regions
82  */
83 struct memblock {
84 	bool bottom_up;  /* is bottom up direction? */
85 	phys_addr_t current_limit;
86 	struct memblock_type memory;
87 	struct memblock_type reserved;
88 };
89 
90 extern struct memblock memblock;
91 
92 #ifndef CONFIG_ARCH_KEEP_MEMBLOCK
93 #define __init_memblock __meminit
94 #define __initdata_memblock __meminitdata
95 void memblock_discard(void);
96 #else
97 #define __init_memblock
98 #define __initdata_memblock
memblock_discard(void)99 static inline void memblock_discard(void) {}
100 #endif
101 
102 void memblock_allow_resize(void);
103 int memblock_add_node(phys_addr_t base, phys_addr_t size, int nid);
104 int memblock_add(phys_addr_t base, phys_addr_t size);
105 int memblock_remove(phys_addr_t base, phys_addr_t size);
106 int memblock_free(phys_addr_t base, phys_addr_t size);
107 int memblock_reserve(phys_addr_t base, phys_addr_t size);
108 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
109 int memblock_physmem_add(phys_addr_t base, phys_addr_t size);
110 #endif
111 void memblock_trim_memory(phys_addr_t align);
112 bool memblock_overlaps_region(struct memblock_type *type,
113 			      phys_addr_t base, phys_addr_t size);
114 int memblock_mark_hotplug(phys_addr_t base, phys_addr_t size);
115 int memblock_clear_hotplug(phys_addr_t base, phys_addr_t size);
116 int memblock_mark_mirror(phys_addr_t base, phys_addr_t size);
117 int memblock_mark_nomap(phys_addr_t base, phys_addr_t size);
118 int memblock_clear_nomap(phys_addr_t base, phys_addr_t size);
119 
120 void memblock_free_all(void);
121 void memblock_free_ptr(void *ptr, size_t size);
122 void reset_node_managed_pages(pg_data_t *pgdat);
123 void reset_all_zones_managed_pages(void);
124 
125 /* Low level functions */
126 void __next_mem_range(u64 *idx, int nid, enum memblock_flags flags,
127 		      struct memblock_type *type_a,
128 		      struct memblock_type *type_b, phys_addr_t *out_start,
129 		      phys_addr_t *out_end, int *out_nid);
130 
131 void __next_mem_range_rev(u64 *idx, int nid, enum memblock_flags flags,
132 			  struct memblock_type *type_a,
133 			  struct memblock_type *type_b, phys_addr_t *out_start,
134 			  phys_addr_t *out_end, int *out_nid);
135 
136 void __memblock_free_late(phys_addr_t base, phys_addr_t size);
137 
138 #ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
__next_physmem_range(u64 * idx,struct memblock_type * type,phys_addr_t * out_start,phys_addr_t * out_end)139 static inline void __next_physmem_range(u64 *idx, struct memblock_type *type,
140 					phys_addr_t *out_start,
141 					phys_addr_t *out_end)
142 {
143 	extern struct memblock_type physmem;
144 
145 	__next_mem_range(idx, NUMA_NO_NODE, MEMBLOCK_NONE, &physmem, type,
146 			 out_start, out_end, NULL);
147 }
148 
149 /**
150  * for_each_physmem_range - iterate through physmem areas not included in type.
151  * @i: u64 used as loop variable
152  * @type: ptr to memblock_type which excludes from the iteration, can be %NULL
153  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
154  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
155  */
156 #define for_each_physmem_range(i, type, p_start, p_end)			\
157 	for (i = 0, __next_physmem_range(&i, type, p_start, p_end);	\
158 	     i != (u64)ULLONG_MAX;					\
159 	     __next_physmem_range(&i, type, p_start, p_end))
160 #endif /* CONFIG_HAVE_MEMBLOCK_PHYS_MAP */
161 
162 /**
163  * __for_each_mem_range - iterate through memblock areas from type_a and not
164  * included in type_b. Or just type_a if type_b is NULL.
165  * @i: u64 used as loop variable
166  * @type_a: ptr to memblock_type to iterate
167  * @type_b: ptr to memblock_type which excludes from the iteration
168  * @nid: node selector, %NUMA_NO_NODE for all nodes
169  * @flags: pick from blocks based on memory attributes
170  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
171  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
172  * @p_nid: ptr to int for nid of the range, can be %NULL
173  */
174 #define __for_each_mem_range(i, type_a, type_b, nid, flags,		\
175 			   p_start, p_end, p_nid)			\
176 	for (i = 0, __next_mem_range(&i, nid, flags, type_a, type_b,	\
177 				     p_start, p_end, p_nid);		\
178 	     i != (u64)ULLONG_MAX;					\
179 	     __next_mem_range(&i, nid, flags, type_a, type_b,		\
180 			      p_start, p_end, p_nid))
181 
182 /**
183  * __for_each_mem_range_rev - reverse iterate through memblock areas from
184  * type_a and not included in type_b. Or just type_a if type_b is NULL.
185  * @i: u64 used as loop variable
186  * @type_a: ptr to memblock_type to iterate
187  * @type_b: ptr to memblock_type which excludes from the iteration
188  * @nid: node selector, %NUMA_NO_NODE for all nodes
189  * @flags: pick from blocks based on memory attributes
190  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
191  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
192  * @p_nid: ptr to int for nid of the range, can be %NULL
193  */
194 #define __for_each_mem_range_rev(i, type_a, type_b, nid, flags,		\
195 				 p_start, p_end, p_nid)			\
196 	for (i = (u64)ULLONG_MAX,					\
197 		     __next_mem_range_rev(&i, nid, flags, type_a, type_b, \
198 					  p_start, p_end, p_nid);	\
199 	     i != (u64)ULLONG_MAX;					\
200 	     __next_mem_range_rev(&i, nid, flags, type_a, type_b,	\
201 				  p_start, p_end, p_nid))
202 
203 /**
204  * for_each_mem_range - iterate through memory areas.
205  * @i: u64 used as loop variable
206  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
207  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
208  */
209 #define for_each_mem_range(i, p_start, p_end) \
210 	__for_each_mem_range(i, &memblock.memory, NULL, NUMA_NO_NODE,	\
211 			     MEMBLOCK_HOTPLUG, p_start, p_end, NULL)
212 
213 /**
214  * for_each_mem_range_rev - reverse iterate through memblock areas from
215  * type_a and not included in type_b. Or just type_a if type_b is NULL.
216  * @i: u64 used as loop variable
217  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
218  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
219  */
220 #define for_each_mem_range_rev(i, p_start, p_end)			\
221 	__for_each_mem_range_rev(i, &memblock.memory, NULL, NUMA_NO_NODE, \
222 				 MEMBLOCK_HOTPLUG, p_start, p_end, NULL)
223 
224 /**
225  * for_each_reserved_mem_range - iterate over all reserved memblock areas
226  * @i: u64 used as loop variable
227  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
228  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
229  *
230  * Walks over reserved areas of memblock. Available as soon as memblock
231  * is initialized.
232  */
233 #define for_each_reserved_mem_range(i, p_start, p_end)			\
234 	__for_each_mem_range(i, &memblock.reserved, NULL, NUMA_NO_NODE,	\
235 			     MEMBLOCK_NONE, p_start, p_end, NULL)
236 
memblock_is_hotpluggable(struct memblock_region * m)237 static inline bool memblock_is_hotpluggable(struct memblock_region *m)
238 {
239 	return m->flags & MEMBLOCK_HOTPLUG;
240 }
241 
memblock_is_mirror(struct memblock_region * m)242 static inline bool memblock_is_mirror(struct memblock_region *m)
243 {
244 	return m->flags & MEMBLOCK_MIRROR;
245 }
246 
memblock_is_nomap(struct memblock_region * m)247 static inline bool memblock_is_nomap(struct memblock_region *m)
248 {
249 	return m->flags & MEMBLOCK_NOMAP;
250 }
251 
252 int memblock_search_pfn_nid(unsigned long pfn, unsigned long *start_pfn,
253 			    unsigned long  *end_pfn);
254 void __next_mem_pfn_range(int *idx, int nid, unsigned long *out_start_pfn,
255 			  unsigned long *out_end_pfn, int *out_nid);
256 
257 /**
258  * for_each_mem_pfn_range - early memory pfn range iterator
259  * @i: an integer used as loop variable
260  * @nid: node selector, %MAX_NUMNODES for all nodes
261  * @p_start: ptr to ulong for start pfn of the range, can be %NULL
262  * @p_end: ptr to ulong for end pfn of the range, can be %NULL
263  * @p_nid: ptr to int for nid of the range, can be %NULL
264  *
265  * Walks over configured memory ranges.
266  */
267 #define for_each_mem_pfn_range(i, nid, p_start, p_end, p_nid)		\
268 	for (i = -1, __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid); \
269 	     i >= 0; __next_mem_pfn_range(&i, nid, p_start, p_end, p_nid))
270 
271 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
272 void __next_mem_pfn_range_in_zone(u64 *idx, struct zone *zone,
273 				  unsigned long *out_spfn,
274 				  unsigned long *out_epfn);
275 /**
276  * for_each_free_mem_pfn_range_in_zone - iterate through zone specific free
277  * memblock areas
278  * @i: u64 used as loop variable
279  * @zone: zone in which all of the memory blocks reside
280  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
281  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
282  *
283  * Walks over free (memory && !reserved) areas of memblock in a specific
284  * zone. Available once memblock and an empty zone is initialized. The main
285  * assumption is that the zone start, end, and pgdat have been associated.
286  * This way we can use the zone to determine NUMA node, and if a given part
287  * of the memblock is valid for the zone.
288  */
289 #define for_each_free_mem_pfn_range_in_zone(i, zone, p_start, p_end)	\
290 	for (i = 0,							\
291 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end);	\
292 	     i != U64_MAX;					\
293 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
294 
295 /**
296  * for_each_free_mem_pfn_range_in_zone_from - iterate through zone specific
297  * free memblock areas from a given point
298  * @i: u64 used as loop variable
299  * @zone: zone in which all of the memory blocks reside
300  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
301  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
302  *
303  * Walks over free (memory && !reserved) areas of memblock in a specific
304  * zone, continuing from current position. Available as soon as memblock is
305  * initialized.
306  */
307 #define for_each_free_mem_pfn_range_in_zone_from(i, zone, p_start, p_end) \
308 	for (; i != U64_MAX;					  \
309 	     __next_mem_pfn_range_in_zone(&i, zone, p_start, p_end))
310 
311 int __init deferred_page_init_max_threads(const struct cpumask *node_cpumask);
312 
313 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
314 
315 /**
316  * for_each_free_mem_range - iterate through free memblock areas
317  * @i: u64 used as loop variable
318  * @nid: node selector, %NUMA_NO_NODE for all nodes
319  * @flags: pick from blocks based on memory attributes
320  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
321  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
322  * @p_nid: ptr to int for nid of the range, can be %NULL
323  *
324  * Walks over free (memory && !reserved) areas of memblock.  Available as
325  * soon as memblock is initialized.
326  */
327 #define for_each_free_mem_range(i, nid, flags, p_start, p_end, p_nid)	\
328 	__for_each_mem_range(i, &memblock.memory, &memblock.reserved,	\
329 			     nid, flags, p_start, p_end, p_nid)
330 
331 /**
332  * for_each_free_mem_range_reverse - rev-iterate through free memblock areas
333  * @i: u64 used as loop variable
334  * @nid: node selector, %NUMA_NO_NODE for all nodes
335  * @flags: pick from blocks based on memory attributes
336  * @p_start: ptr to phys_addr_t for start address of the range, can be %NULL
337  * @p_end: ptr to phys_addr_t for end address of the range, can be %NULL
338  * @p_nid: ptr to int for nid of the range, can be %NULL
339  *
340  * Walks over free (memory && !reserved) areas of memblock in reverse
341  * order.  Available as soon as memblock is initialized.
342  */
343 #define for_each_free_mem_range_reverse(i, nid, flags, p_start, p_end,	\
344 					p_nid)				\
345 	__for_each_mem_range_rev(i, &memblock.memory, &memblock.reserved, \
346 				 nid, flags, p_start, p_end, p_nid)
347 
348 int memblock_set_node(phys_addr_t base, phys_addr_t size,
349 		      struct memblock_type *type, int nid);
350 
351 #ifdef CONFIG_NUMA
memblock_set_region_node(struct memblock_region * r,int nid)352 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
353 {
354 	r->nid = nid;
355 }
356 
memblock_get_region_node(const struct memblock_region * r)357 static inline int memblock_get_region_node(const struct memblock_region *r)
358 {
359 	return r->nid;
360 }
361 #else
memblock_set_region_node(struct memblock_region * r,int nid)362 static inline void memblock_set_region_node(struct memblock_region *r, int nid)
363 {
364 }
365 
memblock_get_region_node(const struct memblock_region * r)366 static inline int memblock_get_region_node(const struct memblock_region *r)
367 {
368 	return 0;
369 }
370 #endif /* CONFIG_NUMA */
371 
372 /* Flags for memblock allocation APIs */
373 #define MEMBLOCK_ALLOC_ANYWHERE	(~(phys_addr_t)0)
374 #define MEMBLOCK_ALLOC_ACCESSIBLE	0
375 #define MEMBLOCK_ALLOC_KASAN		1
376 
377 /* We are using top down, so it is safe to use 0 here */
378 #define MEMBLOCK_LOW_LIMIT 0
379 
380 #ifndef ARCH_LOW_ADDRESS_LIMIT
381 #define ARCH_LOW_ADDRESS_LIMIT  0xffffffffUL
382 #endif
383 
384 phys_addr_t memblock_phys_alloc_range(phys_addr_t size, phys_addr_t align,
385 				      phys_addr_t start, phys_addr_t end);
386 phys_addr_t memblock_alloc_range_nid(phys_addr_t size,
387 				      phys_addr_t align, phys_addr_t start,
388 				      phys_addr_t end, int nid, bool exact_nid);
389 phys_addr_t memblock_phys_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid);
390 
memblock_phys_alloc(phys_addr_t size,phys_addr_t align)391 static inline phys_addr_t memblock_phys_alloc(phys_addr_t size,
392 					      phys_addr_t align)
393 {
394 	return memblock_phys_alloc_range(size, align, 0,
395 					 MEMBLOCK_ALLOC_ACCESSIBLE);
396 }
397 
398 void *memblock_alloc_exact_nid_raw(phys_addr_t size, phys_addr_t align,
399 				 phys_addr_t min_addr, phys_addr_t max_addr,
400 				 int nid);
401 void *memblock_alloc_try_nid_raw(phys_addr_t size, phys_addr_t align,
402 				 phys_addr_t min_addr, phys_addr_t max_addr,
403 				 int nid);
404 void *memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align,
405 			     phys_addr_t min_addr, phys_addr_t max_addr,
406 			     int nid);
407 
memblock_alloc(phys_addr_t size,phys_addr_t align)408 static __always_inline void *memblock_alloc(phys_addr_t size, phys_addr_t align)
409 {
410 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
411 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
412 }
413 
memblock_alloc_raw(phys_addr_t size,phys_addr_t align)414 static inline void *memblock_alloc_raw(phys_addr_t size,
415 					       phys_addr_t align)
416 {
417 	return memblock_alloc_try_nid_raw(size, align, MEMBLOCK_LOW_LIMIT,
418 					  MEMBLOCK_ALLOC_ACCESSIBLE,
419 					  NUMA_NO_NODE);
420 }
421 
memblock_alloc_from(phys_addr_t size,phys_addr_t align,phys_addr_t min_addr)422 static inline void *memblock_alloc_from(phys_addr_t size,
423 						phys_addr_t align,
424 						phys_addr_t min_addr)
425 {
426 	return memblock_alloc_try_nid(size, align, min_addr,
427 				      MEMBLOCK_ALLOC_ACCESSIBLE, NUMA_NO_NODE);
428 }
429 
memblock_alloc_low(phys_addr_t size,phys_addr_t align)430 static inline void *memblock_alloc_low(phys_addr_t size,
431 					       phys_addr_t align)
432 {
433 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
434 				      ARCH_LOW_ADDRESS_LIMIT, NUMA_NO_NODE);
435 }
436 
memblock_alloc_node(phys_addr_t size,phys_addr_t align,int nid)437 static inline void *memblock_alloc_node(phys_addr_t size,
438 						phys_addr_t align, int nid)
439 {
440 	return memblock_alloc_try_nid(size, align, MEMBLOCK_LOW_LIMIT,
441 				      MEMBLOCK_ALLOC_ACCESSIBLE, nid);
442 }
443 
memblock_free_early(phys_addr_t base,phys_addr_t size)444 static inline void memblock_free_early(phys_addr_t base,
445 					      phys_addr_t size)
446 {
447 	memblock_free(base, size);
448 }
449 
memblock_free_early_nid(phys_addr_t base,phys_addr_t size,int nid)450 static inline void memblock_free_early_nid(phys_addr_t base,
451 						  phys_addr_t size, int nid)
452 {
453 	memblock_free(base, size);
454 }
455 
memblock_free_late(phys_addr_t base,phys_addr_t size)456 static inline void memblock_free_late(phys_addr_t base, phys_addr_t size)
457 {
458 	__memblock_free_late(base, size);
459 }
460 
461 /*
462  * Set the allocation direction to bottom-up or top-down.
463  */
memblock_set_bottom_up(bool enable)464 static inline __init_memblock void memblock_set_bottom_up(bool enable)
465 {
466 	memblock.bottom_up = enable;
467 }
468 
469 /*
470  * Check if the allocation direction is bottom-up or not.
471  * if this is true, that said, memblock will allocate memory
472  * in bottom-up direction.
473  */
memblock_bottom_up(void)474 static inline __init_memblock bool memblock_bottom_up(void)
475 {
476 	return memblock.bottom_up;
477 }
478 
479 phys_addr_t memblock_phys_mem_size(void);
480 phys_addr_t memblock_reserved_size(void);
481 phys_addr_t memblock_start_of_DRAM(void);
482 phys_addr_t memblock_end_of_DRAM(void);
483 void memblock_enforce_memory_limit(phys_addr_t memory_limit);
484 void memblock_cap_memory_range(phys_addr_t base, phys_addr_t size);
485 void memblock_mem_limit_remove_map(phys_addr_t limit);
486 bool memblock_is_memory(phys_addr_t addr);
487 bool memblock_is_map_memory(phys_addr_t addr);
488 bool memblock_is_region_memory(phys_addr_t base, phys_addr_t size);
489 bool memblock_is_reserved(phys_addr_t addr);
490 bool memblock_is_region_reserved(phys_addr_t base, phys_addr_t size);
491 
492 void memblock_dump_all(void);
493 
494 /**
495  * memblock_set_current_limit - Set the current allocation limit to allow
496  *                         limiting allocations to what is currently
497  *                         accessible during boot
498  * @limit: New limit value (physical address)
499  */
500 void memblock_set_current_limit(phys_addr_t limit);
501 
502 
503 phys_addr_t memblock_get_current_limit(void);
504 
505 /*
506  * pfn conversion functions
507  *
508  * While the memory MEMBLOCKs should always be page aligned, the reserved
509  * MEMBLOCKs may not be. This accessor attempt to provide a very clear
510  * idea of what they return for such non aligned MEMBLOCKs.
511  */
512 
513 /**
514  * memblock_region_memory_base_pfn - get the lowest pfn of the memory region
515  * @reg: memblock_region structure
516  *
517  * Return: the lowest pfn intersecting with the memory region
518  */
memblock_region_memory_base_pfn(const struct memblock_region * reg)519 static inline unsigned long memblock_region_memory_base_pfn(const struct memblock_region *reg)
520 {
521 	return PFN_UP(reg->base);
522 }
523 
524 /**
525  * memblock_region_memory_end_pfn - get the end pfn of the memory region
526  * @reg: memblock_region structure
527  *
528  * Return: the end_pfn of the reserved region
529  */
memblock_region_memory_end_pfn(const struct memblock_region * reg)530 static inline unsigned long memblock_region_memory_end_pfn(const struct memblock_region *reg)
531 {
532 	return PFN_DOWN(reg->base + reg->size);
533 }
534 
535 /**
536  * memblock_region_reserved_base_pfn - get the lowest pfn of the reserved region
537  * @reg: memblock_region structure
538  *
539  * Return: the lowest pfn intersecting with the reserved region
540  */
memblock_region_reserved_base_pfn(const struct memblock_region * reg)541 static inline unsigned long memblock_region_reserved_base_pfn(const struct memblock_region *reg)
542 {
543 	return PFN_DOWN(reg->base);
544 }
545 
546 /**
547  * memblock_region_reserved_end_pfn - get the end pfn of the reserved region
548  * @reg: memblock_region structure
549  *
550  * Return: the end_pfn of the reserved region
551  */
memblock_region_reserved_end_pfn(const struct memblock_region * reg)552 static inline unsigned long memblock_region_reserved_end_pfn(const struct memblock_region *reg)
553 {
554 	return PFN_UP(reg->base + reg->size);
555 }
556 
557 /**
558  * for_each_mem_region - itereate over memory regions
559  * @region: loop variable
560  */
561 #define for_each_mem_region(region)					\
562 	for (region = memblock.memory.regions;				\
563 	     region < (memblock.memory.regions + memblock.memory.cnt);	\
564 	     region++)
565 
566 /**
567  * for_each_reserved_mem_region - itereate over reserved memory regions
568  * @region: loop variable
569  */
570 #define for_each_reserved_mem_region(region)				\
571 	for (region = memblock.reserved.regions;			\
572 	     region < (memblock.reserved.regions + memblock.reserved.cnt); \
573 	     region++)
574 
575 extern void *alloc_large_system_hash(const char *tablename,
576 				     unsigned long bucketsize,
577 				     unsigned long numentries,
578 				     int scale,
579 				     int flags,
580 				     unsigned int *_hash_shift,
581 				     unsigned int *_hash_mask,
582 				     unsigned long low_limit,
583 				     unsigned long high_limit);
584 
585 #define HASH_EARLY	0x00000001	/* Allocating during early boot? */
586 #define HASH_SMALL	0x00000002	/* sub-page allocation allowed, min
587 					 * shift passed via *_hash_shift */
588 #define HASH_ZERO	0x00000004	/* Zero allocated hash table */
589 
590 /* Only NUMA needs hash distribution. 64bit NUMA architectures have
591  * sufficient vmalloc space.
592  */
593 #ifdef CONFIG_NUMA
594 #define HASHDIST_DEFAULT IS_ENABLED(CONFIG_64BIT)
595 extern int hashdist;		/* Distribute hashes across NUMA nodes? */
596 #else
597 #define hashdist (0)
598 #endif
599 
600 #ifdef CONFIG_MEMTEST
601 extern void early_memtest(phys_addr_t start, phys_addr_t end);
602 #else
early_memtest(phys_addr_t start,phys_addr_t end)603 static inline void early_memtest(phys_addr_t start, phys_addr_t end)
604 {
605 }
606 #endif
607 
608 #endif /* __KERNEL__ */
609 
610 #endif /* _LINUX_MEMBLOCK_H */
611