1 /*
2 * super.c
3 *
4 * PURPOSE
5 * Super block routines for the OSTA-UDF(tm) filesystem.
6 *
7 * DESCRIPTION
8 * OSTA-UDF(tm) = Optical Storage Technology Association
9 * Universal Disk Format.
10 *
11 * This code is based on version 2.00 of the UDF specification,
12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13 * http://www.osta.org/
14 * https://www.ecma.ch/
15 * https://www.iso.org/
16 *
17 * COPYRIGHT
18 * This file is distributed under the terms of the GNU General Public
19 * License (GPL). Copies of the GPL can be obtained from:
20 * ftp://prep.ai.mit.edu/pub/gnu/GPL
21 * Each contributing author retains all rights to their own work.
22 *
23 * (C) 1998 Dave Boynton
24 * (C) 1998-2004 Ben Fennema
25 * (C) 2000 Stelias Computing Inc
26 *
27 * HISTORY
28 *
29 * 09/24/98 dgb changed to allow compiling outside of kernel, and
30 * added some debugging.
31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
32 * 10/16/98 attempting some multi-session support
33 * 10/17/98 added freespace count for "df"
34 * 11/11/98 gr added novrs option
35 * 11/26/98 dgb added fileset,anchor mount options
36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
37 * vol descs. rewrote option handling based on isofs
38 * 12/20/98 find the free space bitmap (if it exists)
39 */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 enum {
68 VDS_POS_PRIMARY_VOL_DESC,
69 VDS_POS_UNALLOC_SPACE_DESC,
70 VDS_POS_LOGICAL_VOL_DESC,
71 VDS_POS_IMP_USE_VOL_DESC,
72 VDS_POS_LENGTH
73 };
74
75 #define VSD_FIRST_SECTOR_OFFSET 32768
76 #define VSD_MAX_SECTOR_OFFSET 0x800000
77
78 /*
79 * Maximum number of Terminating Descriptor / Logical Volume Integrity
80 * Descriptor redirections. The chosen numbers are arbitrary - just that we
81 * hopefully don't limit any real use of rewritten inode on write-once media
82 * but avoid looping for too long on corrupted media.
83 */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86
87 enum { UDF_MAX_LINKS = 0xffff };
88
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100
udf_sb_lvidiu(struct super_block * sb)101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 struct logicalVolIntegrityDesc *lvid;
104 unsigned int partnum;
105 unsigned int offset;
106
107 if (!UDF_SB(sb)->s_lvid_bh)
108 return NULL;
109 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 partnum = le32_to_cpu(lvid->numOfPartitions);
111 /* The offset is to skip freeSpaceTable and sizeTable arrays */
112 offset = partnum * 2 * sizeof(uint32_t);
113 return (struct logicalVolIntegrityDescImpUse *)
114 (((uint8_t *)(lvid + 1)) + offset);
115 }
116
117 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119 int flags, const char *dev_name, void *data)
120 {
121 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123
124 static struct file_system_type udf_fstype = {
125 .owner = THIS_MODULE,
126 .name = "udf",
127 .mount = udf_mount,
128 .kill_sb = kill_block_super,
129 .fs_flags = FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132
133 static struct kmem_cache *udf_inode_cachep;
134
udf_alloc_inode(struct super_block * sb)135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137 struct udf_inode_info *ei;
138 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 if (!ei)
140 return NULL;
141
142 ei->i_unique = 0;
143 ei->i_lenExtents = 0;
144 ei->i_lenStreams = 0;
145 ei->i_next_alloc_block = 0;
146 ei->i_next_alloc_goal = 0;
147 ei->i_strat4096 = 0;
148 ei->i_streamdir = 0;
149 init_rwsem(&ei->i_data_sem);
150 ei->cached_extent.lstart = -1;
151 spin_lock_init(&ei->i_extent_cache_lock);
152
153 return &ei->vfs_inode;
154 }
155
udf_free_in_core_inode(struct inode * inode)156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158 kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160
init_once(void * foo)161 static void init_once(void *foo)
162 {
163 struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164
165 ei->i_data = NULL;
166 inode_init_once(&ei->vfs_inode);
167 }
168
init_inodecache(void)169 static int __init init_inodecache(void)
170 {
171 udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 sizeof(struct udf_inode_info),
173 0, (SLAB_RECLAIM_ACCOUNT |
174 SLAB_MEM_SPREAD |
175 SLAB_ACCOUNT),
176 init_once);
177 if (!udf_inode_cachep)
178 return -ENOMEM;
179 return 0;
180 }
181
destroy_inodecache(void)182 static void destroy_inodecache(void)
183 {
184 /*
185 * Make sure all delayed rcu free inodes are flushed before we
186 * destroy cache.
187 */
188 rcu_barrier();
189 kmem_cache_destroy(udf_inode_cachep);
190 }
191
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194 .alloc_inode = udf_alloc_inode,
195 .free_inode = udf_free_in_core_inode,
196 .write_inode = udf_write_inode,
197 .evict_inode = udf_evict_inode,
198 .put_super = udf_put_super,
199 .sync_fs = udf_sync_fs,
200 .statfs = udf_statfs,
201 .remount_fs = udf_remount_fs,
202 .show_options = udf_show_options,
203 };
204
205 struct udf_options {
206 unsigned char novrs;
207 unsigned int blocksize;
208 unsigned int session;
209 unsigned int lastblock;
210 unsigned int anchor;
211 unsigned int flags;
212 umode_t umask;
213 kgid_t gid;
214 kuid_t uid;
215 umode_t fmode;
216 umode_t dmode;
217 struct nls_table *nls_map;
218 };
219
init_udf_fs(void)220 static int __init init_udf_fs(void)
221 {
222 int err;
223
224 err = init_inodecache();
225 if (err)
226 goto out1;
227 err = register_filesystem(&udf_fstype);
228 if (err)
229 goto out;
230
231 return 0;
232
233 out:
234 destroy_inodecache();
235
236 out1:
237 return err;
238 }
239
exit_udf_fs(void)240 static void __exit exit_udf_fs(void)
241 {
242 unregister_filesystem(&udf_fstype);
243 destroy_inodecache();
244 }
245
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 struct udf_sb_info *sbi = UDF_SB(sb);
249
250 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 if (!sbi->s_partmaps) {
252 sbi->s_partitions = 0;
253 return -ENOMEM;
254 }
255
256 sbi->s_partitions = count;
257 return 0;
258 }
259
udf_sb_free_bitmap(struct udf_bitmap * bitmap)260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 int i;
263 int nr_groups = bitmap->s_nr_groups;
264
265 for (i = 0; i < nr_groups; i++)
266 brelse(bitmap->s_block_bitmap[i]);
267
268 kvfree(bitmap);
269 }
270
udf_free_partition(struct udf_part_map * map)271 static void udf_free_partition(struct udf_part_map *map)
272 {
273 int i;
274 struct udf_meta_data *mdata;
275
276 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 iput(map->s_uspace.s_table);
278 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 for (i = 0; i < 4; i++)
282 brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 mdata = &map->s_type_specific.s_metadata;
285 iput(mdata->s_metadata_fe);
286 mdata->s_metadata_fe = NULL;
287
288 iput(mdata->s_mirror_fe);
289 mdata->s_mirror_fe = NULL;
290
291 iput(mdata->s_bitmap_fe);
292 mdata->s_bitmap_fe = NULL;
293 }
294 }
295
udf_sb_free_partitions(struct super_block * sb)296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298 struct udf_sb_info *sbi = UDF_SB(sb);
299 int i;
300
301 if (!sbi->s_partmaps)
302 return;
303 for (i = 0; i < sbi->s_partitions; i++)
304 udf_free_partition(&sbi->s_partmaps[i]);
305 kfree(sbi->s_partmaps);
306 sbi->s_partmaps = NULL;
307 }
308
udf_show_options(struct seq_file * seq,struct dentry * root)309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311 struct super_block *sb = root->d_sb;
312 struct udf_sb_info *sbi = UDF_SB(sb);
313
314 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 seq_puts(seq, ",nostrict");
316 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 seq_puts(seq, ",unhide");
320 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 seq_puts(seq, ",undelete");
322 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 seq_puts(seq, ",noadinicb");
324 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 seq_puts(seq, ",shortad");
326 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 seq_puts(seq, ",uid=forget");
328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 seq_puts(seq, ",gid=forget");
330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 if (sbi->s_umask != 0)
335 seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 if (sbi->s_fmode != UDF_INVALID_MODE)
337 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 if (sbi->s_dmode != UDF_INVALID_MODE)
339 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 seq_printf(seq, ",session=%d", sbi->s_session);
342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 if (sbi->s_anchor != 0)
345 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 if (sbi->s_nls_map)
347 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 else
349 seq_puts(seq, ",iocharset=utf8");
350
351 return 0;
352 }
353
354 /*
355 * udf_parse_options
356 *
357 * PURPOSE
358 * Parse mount options.
359 *
360 * DESCRIPTION
361 * The following mount options are supported:
362 *
363 * gid= Set the default group.
364 * umask= Set the default umask.
365 * mode= Set the default file permissions.
366 * dmode= Set the default directory permissions.
367 * uid= Set the default user.
368 * bs= Set the block size.
369 * unhide Show otherwise hidden files.
370 * undelete Show deleted files in lists.
371 * adinicb Embed data in the inode (default)
372 * noadinicb Don't embed data in the inode
373 * shortad Use short ad's
374 * longad Use long ad's (default)
375 * nostrict Unset strict conformance
376 * iocharset= Set the NLS character set
377 *
378 * The remaining are for debugging and disaster recovery:
379 *
380 * novrs Skip volume sequence recognition
381 *
382 * The following expect a offset from 0.
383 *
384 * session= Set the CDROM session (default= last session)
385 * anchor= Override standard anchor location. (default= 256)
386 * volume= Override the VolumeDesc location. (unused)
387 * partition= Override the PartitionDesc location. (unused)
388 * lastblock= Set the last block of the filesystem/
389 *
390 * The following expect a offset from the partition root.
391 *
392 * fileset= Override the fileset block location. (unused)
393 * rootdir= Override the root directory location. (unused)
394 * WARNING: overriding the rootdir to a non-directory may
395 * yield highly unpredictable results.
396 *
397 * PRE-CONDITIONS
398 * options Pointer to mount options string.
399 * uopts Pointer to mount options variable.
400 *
401 * POST-CONDITIONS
402 * <return> 1 Mount options parsed okay.
403 * <return> 0 Error parsing mount options.
404 *
405 * HISTORY
406 * July 1, 1997 - Andrew E. Mileski
407 * Written, tested, and released.
408 */
409
410 enum {
411 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 Opt_rootdir, Opt_utf8, Opt_iocharset,
416 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 Opt_fmode, Opt_dmode
418 };
419
420 static const match_table_t tokens = {
421 {Opt_novrs, "novrs"},
422 {Opt_nostrict, "nostrict"},
423 {Opt_bs, "bs=%u"},
424 {Opt_unhide, "unhide"},
425 {Opt_undelete, "undelete"},
426 {Opt_noadinicb, "noadinicb"},
427 {Opt_adinicb, "adinicb"},
428 {Opt_shortad, "shortad"},
429 {Opt_longad, "longad"},
430 {Opt_uforget, "uid=forget"},
431 {Opt_uignore, "uid=ignore"},
432 {Opt_gforget, "gid=forget"},
433 {Opt_gignore, "gid=ignore"},
434 {Opt_gid, "gid=%u"},
435 {Opt_uid, "uid=%u"},
436 {Opt_umask, "umask=%o"},
437 {Opt_session, "session=%u"},
438 {Opt_lastblock, "lastblock=%u"},
439 {Opt_anchor, "anchor=%u"},
440 {Opt_volume, "volume=%u"},
441 {Opt_partition, "partition=%u"},
442 {Opt_fileset, "fileset=%u"},
443 {Opt_rootdir, "rootdir=%u"},
444 {Opt_utf8, "utf8"},
445 {Opt_iocharset, "iocharset=%s"},
446 {Opt_fmode, "mode=%o"},
447 {Opt_dmode, "dmode=%o"},
448 {Opt_err, NULL}
449 };
450
udf_parse_options(char * options,struct udf_options * uopt,bool remount)451 static int udf_parse_options(char *options, struct udf_options *uopt,
452 bool remount)
453 {
454 char *p;
455 int option;
456 unsigned int uv;
457
458 uopt->novrs = 0;
459 uopt->session = 0xFFFFFFFF;
460 uopt->lastblock = 0;
461 uopt->anchor = 0;
462
463 if (!options)
464 return 1;
465
466 while ((p = strsep(&options, ",")) != NULL) {
467 substring_t args[MAX_OPT_ARGS];
468 int token;
469 unsigned n;
470 if (!*p)
471 continue;
472
473 token = match_token(p, tokens, args);
474 switch (token) {
475 case Opt_novrs:
476 uopt->novrs = 1;
477 break;
478 case Opt_bs:
479 if (match_int(&args[0], &option))
480 return 0;
481 n = option;
482 if (n != 512 && n != 1024 && n != 2048 && n != 4096)
483 return 0;
484 uopt->blocksize = n;
485 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
486 break;
487 case Opt_unhide:
488 uopt->flags |= (1 << UDF_FLAG_UNHIDE);
489 break;
490 case Opt_undelete:
491 uopt->flags |= (1 << UDF_FLAG_UNDELETE);
492 break;
493 case Opt_noadinicb:
494 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
495 break;
496 case Opt_adinicb:
497 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
498 break;
499 case Opt_shortad:
500 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
501 break;
502 case Opt_longad:
503 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
504 break;
505 case Opt_gid:
506 if (match_uint(args, &uv))
507 return 0;
508 uopt->gid = make_kgid(current_user_ns(), uv);
509 if (!gid_valid(uopt->gid))
510 return 0;
511 uopt->flags |= (1 << UDF_FLAG_GID_SET);
512 break;
513 case Opt_uid:
514 if (match_uint(args, &uv))
515 return 0;
516 uopt->uid = make_kuid(current_user_ns(), uv);
517 if (!uid_valid(uopt->uid))
518 return 0;
519 uopt->flags |= (1 << UDF_FLAG_UID_SET);
520 break;
521 case Opt_umask:
522 if (match_octal(args, &option))
523 return 0;
524 uopt->umask = option;
525 break;
526 case Opt_nostrict:
527 uopt->flags &= ~(1 << UDF_FLAG_STRICT);
528 break;
529 case Opt_session:
530 if (match_int(args, &option))
531 return 0;
532 uopt->session = option;
533 if (!remount)
534 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
535 break;
536 case Opt_lastblock:
537 if (match_int(args, &option))
538 return 0;
539 uopt->lastblock = option;
540 if (!remount)
541 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
542 break;
543 case Opt_anchor:
544 if (match_int(args, &option))
545 return 0;
546 uopt->anchor = option;
547 break;
548 case Opt_volume:
549 case Opt_partition:
550 case Opt_fileset:
551 case Opt_rootdir:
552 /* Ignored (never implemented properly) */
553 break;
554 case Opt_utf8:
555 if (!remount) {
556 unload_nls(uopt->nls_map);
557 uopt->nls_map = NULL;
558 }
559 break;
560 case Opt_iocharset:
561 if (!remount) {
562 unload_nls(uopt->nls_map);
563 uopt->nls_map = NULL;
564 }
565 /* When nls_map is not loaded then UTF-8 is used */
566 if (!remount && strcmp(args[0].from, "utf8") != 0) {
567 uopt->nls_map = load_nls(args[0].from);
568 if (!uopt->nls_map) {
569 pr_err("iocharset %s not found\n",
570 args[0].from);
571 return 0;
572 }
573 }
574 break;
575 case Opt_uforget:
576 uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 break;
578 case Opt_uignore:
579 case Opt_gignore:
580 /* These options are superseeded by uid=<number> */
581 break;
582 case Opt_gforget:
583 uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 break;
585 case Opt_fmode:
586 if (match_octal(args, &option))
587 return 0;
588 uopt->fmode = option & 0777;
589 break;
590 case Opt_dmode:
591 if (match_octal(args, &option))
592 return 0;
593 uopt->dmode = option & 0777;
594 break;
595 default:
596 pr_err("bad mount option \"%s\" or missing value\n", p);
597 return 0;
598 }
599 }
600 return 1;
601 }
602
udf_remount_fs(struct super_block * sb,int * flags,char * options)603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 struct udf_options uopt;
606 struct udf_sb_info *sbi = UDF_SB(sb);
607 int error = 0;
608
609 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 return -EACCES;
611
612 sync_filesystem(sb);
613
614 uopt.flags = sbi->s_flags;
615 uopt.uid = sbi->s_uid;
616 uopt.gid = sbi->s_gid;
617 uopt.umask = sbi->s_umask;
618 uopt.fmode = sbi->s_fmode;
619 uopt.dmode = sbi->s_dmode;
620 uopt.nls_map = NULL;
621
622 if (!udf_parse_options(options, &uopt, true))
623 return -EINVAL;
624
625 write_lock(&sbi->s_cred_lock);
626 sbi->s_flags = uopt.flags;
627 sbi->s_uid = uopt.uid;
628 sbi->s_gid = uopt.gid;
629 sbi->s_umask = uopt.umask;
630 sbi->s_fmode = uopt.fmode;
631 sbi->s_dmode = uopt.dmode;
632 write_unlock(&sbi->s_cred_lock);
633
634 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 goto out_unlock;
636
637 if (*flags & SB_RDONLY)
638 udf_close_lvid(sb);
639 else
640 udf_open_lvid(sb);
641
642 out_unlock:
643 return error;
644 }
645
646 /*
647 * Check VSD descriptor. Returns -1 in case we are at the end of volume
648 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649 * we found one of NSR descriptors we are looking for.
650 */
identify_vsd(const struct volStructDesc * vsd)651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 int ret = 0;
654
655 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 switch (vsd->structType) {
657 case 0:
658 udf_debug("ISO9660 Boot Record found\n");
659 break;
660 case 1:
661 udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 break;
663 case 2:
664 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 break;
666 case 3:
667 udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 break;
669 case 255:
670 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 break;
672 default:
673 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 break;
675 }
676 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 ; /* ret = 0 */
678 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 ret = 1;
680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 ret = 1;
682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 ; /* ret = 0 */
684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 ; /* ret = 0 */
686 else {
687 /* TEA01 or invalid id : end of volume recognition area */
688 ret = -1;
689 }
690
691 return ret;
692 }
693
694 /*
695 * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697 * @return 1 if NSR02 or NSR03 found,
698 * -1 if first sector read error, 0 otherwise
699 */
udf_check_vsd(struct super_block * sb)700 static int udf_check_vsd(struct super_block *sb)
701 {
702 struct volStructDesc *vsd = NULL;
703 loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 int sectorsize;
705 struct buffer_head *bh = NULL;
706 int nsr = 0;
707 struct udf_sb_info *sbi;
708 loff_t session_offset;
709
710 sbi = UDF_SB(sb);
711 if (sb->s_blocksize < sizeof(struct volStructDesc))
712 sectorsize = sizeof(struct volStructDesc);
713 else
714 sectorsize = sb->s_blocksize;
715
716 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717 sector += session_offset;
718
719 udf_debug("Starting at sector %u (%lu byte sectors)\n",
720 (unsigned int)(sector >> sb->s_blocksize_bits),
721 sb->s_blocksize);
722 /* Process the sequence (if applicable). The hard limit on the sector
723 * offset is arbitrary, hopefully large enough so that all valid UDF
724 * filesystems will be recognised. There is no mention of an upper
725 * bound to the size of the volume recognition area in the standard.
726 * The limit will prevent the code to read all the sectors of a
727 * specially crafted image (like a bluray disc full of CD001 sectors),
728 * potentially causing minutes or even hours of uninterruptible I/O
729 * activity. This actually happened with uninitialised SSD partitions
730 * (all 0xFF) before the check for the limit and all valid IDs were
731 * added */
732 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733 /* Read a block */
734 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735 if (!bh)
736 break;
737
738 vsd = (struct volStructDesc *)(bh->b_data +
739 (sector & (sb->s_blocksize - 1)));
740 nsr = identify_vsd(vsd);
741 /* Found NSR or end? */
742 if (nsr) {
743 brelse(bh);
744 break;
745 }
746 /*
747 * Special handling for improperly formatted VRS (e.g., Win10)
748 * where components are separated by 2048 bytes even though
749 * sectors are 4K
750 */
751 if (sb->s_blocksize == 4096) {
752 nsr = identify_vsd(vsd + 1);
753 /* Ignore unknown IDs... */
754 if (nsr < 0)
755 nsr = 0;
756 }
757 brelse(bh);
758 }
759
760 if (nsr > 0)
761 return 1;
762 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763 return -1;
764 else
765 return 0;
766 }
767
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)768 static int udf_verify_domain_identifier(struct super_block *sb,
769 struct regid *ident, char *dname)
770 {
771 struct domainIdentSuffix *suffix;
772
773 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775 goto force_ro;
776 }
777 if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779 dname);
780 goto force_ro;
781 }
782 suffix = (struct domainIdentSuffix *)ident->identSuffix;
783 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785 if (!sb_rdonly(sb)) {
786 udf_warn(sb, "Descriptor for %s marked write protected."
787 " Forcing read only mount.\n", dname);
788 }
789 goto force_ro;
790 }
791 return 0;
792
793 force_ro:
794 if (!sb_rdonly(sb))
795 return -EACCES;
796 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797 return 0;
798 }
799
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801 struct kernel_lb_addr *root)
802 {
803 int ret;
804
805 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806 if (ret < 0)
807 return ret;
808
809 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811
812 udf_debug("Rootdir at block=%u, partition=%u\n",
813 root->logicalBlockNum, root->partitionReferenceNum);
814 return 0;
815 }
816
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)817 static int udf_find_fileset(struct super_block *sb,
818 struct kernel_lb_addr *fileset,
819 struct kernel_lb_addr *root)
820 {
821 struct buffer_head *bh = NULL;
822 uint16_t ident;
823 int ret;
824
825 if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826 fileset->partitionReferenceNum == 0xFFFF)
827 return -EINVAL;
828
829 bh = udf_read_ptagged(sb, fileset, 0, &ident);
830 if (!bh)
831 return -EIO;
832 if (ident != TAG_IDENT_FSD) {
833 brelse(bh);
834 return -EINVAL;
835 }
836
837 udf_debug("Fileset at block=%u, partition=%u\n",
838 fileset->logicalBlockNum, fileset->partitionReferenceNum);
839
840 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842 brelse(bh);
843 return ret;
844 }
845
846 /*
847 * Load primary Volume Descriptor Sequence
848 *
849 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850 * should be tried.
851 */
udf_load_pvoldesc(struct super_block * sb,sector_t block)852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854 struct primaryVolDesc *pvoldesc;
855 uint8_t *outstr;
856 struct buffer_head *bh;
857 uint16_t ident;
858 int ret;
859 struct timestamp *ts;
860
861 outstr = kmalloc(128, GFP_NOFS);
862 if (!outstr)
863 return -ENOMEM;
864
865 bh = udf_read_tagged(sb, block, block, &ident);
866 if (!bh) {
867 ret = -EAGAIN;
868 goto out2;
869 }
870
871 if (ident != TAG_IDENT_PVD) {
872 ret = -EIO;
873 goto out_bh;
874 }
875
876 pvoldesc = (struct primaryVolDesc *)bh->b_data;
877
878 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879 pvoldesc->recordingDateAndTime);
880 ts = &pvoldesc->recordingDateAndTime;
881 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883 ts->minute, le16_to_cpu(ts->typeAndTimezone));
884
885 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886 if (ret < 0) {
887 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888 pr_warn("incorrect volume identification, setting to "
889 "'InvalidName'\n");
890 } else {
891 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892 }
893 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894
895 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896 if (ret < 0) {
897 ret = 0;
898 goto out_bh;
899 }
900 outstr[ret] = 0;
901 udf_debug("volSetIdent[] = '%s'\n", outstr);
902
903 ret = 0;
904 out_bh:
905 brelse(bh);
906 out2:
907 kfree(outstr);
908 return ret;
909 }
910
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912 u32 meta_file_loc, u32 partition_ref)
913 {
914 struct kernel_lb_addr addr;
915 struct inode *metadata_fe;
916
917 addr.logicalBlockNum = meta_file_loc;
918 addr.partitionReferenceNum = partition_ref;
919
920 metadata_fe = udf_iget_special(sb, &addr);
921
922 if (IS_ERR(metadata_fe)) {
923 udf_warn(sb, "metadata inode efe not found\n");
924 return metadata_fe;
925 }
926 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928 iput(metadata_fe);
929 return ERR_PTR(-EIO);
930 }
931
932 return metadata_fe;
933 }
934
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)935 static int udf_load_metadata_files(struct super_block *sb, int partition,
936 int type1_index)
937 {
938 struct udf_sb_info *sbi = UDF_SB(sb);
939 struct udf_part_map *map;
940 struct udf_meta_data *mdata;
941 struct kernel_lb_addr addr;
942 struct inode *fe;
943
944 map = &sbi->s_partmaps[partition];
945 mdata = &map->s_type_specific.s_metadata;
946 mdata->s_phys_partition_ref = type1_index;
947
948 /* metadata address */
949 udf_debug("Metadata file location: block = %u part = %u\n",
950 mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951
952 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953 mdata->s_phys_partition_ref);
954 if (IS_ERR(fe)) {
955 /* mirror file entry */
956 udf_debug("Mirror metadata file location: block = %u part = %u\n",
957 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958
959 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960 mdata->s_phys_partition_ref);
961
962 if (IS_ERR(fe)) {
963 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964 return PTR_ERR(fe);
965 }
966 mdata->s_mirror_fe = fe;
967 } else
968 mdata->s_metadata_fe = fe;
969
970
971 /*
972 * bitmap file entry
973 * Note:
974 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 */
976 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979
980 udf_debug("Bitmap file location: block = %u part = %u\n",
981 addr.logicalBlockNum, addr.partitionReferenceNum);
982
983 fe = udf_iget_special(sb, &addr);
984 if (IS_ERR(fe)) {
985 if (sb_rdonly(sb))
986 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987 else {
988 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989 return PTR_ERR(fe);
990 }
991 } else
992 mdata->s_bitmap_fe = fe;
993 }
994
995 udf_debug("udf_load_metadata_files Ok\n");
996 return 0;
997 }
998
udf_compute_nr_groups(struct super_block * sb,u32 partition)999 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 {
1001 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002 return DIV_ROUND_UP(map->s_partition_len +
1003 (sizeof(struct spaceBitmapDesc) << 3),
1004 sb->s_blocksize * 8);
1005 }
1006
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 {
1009 struct udf_bitmap *bitmap;
1010 int nr_groups = udf_compute_nr_groups(sb, index);
1011
1012 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013 GFP_KERNEL);
1014 if (!bitmap)
1015 return NULL;
1016
1017 bitmap->s_nr_groups = nr_groups;
1018 return bitmap;
1019 }
1020
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1021 static int check_partition_desc(struct super_block *sb,
1022 struct partitionDesc *p,
1023 struct udf_part_map *map)
1024 {
1025 bool umap, utable, fmap, ftable;
1026 struct partitionHeaderDesc *phd;
1027
1028 switch (le32_to_cpu(p->accessType)) {
1029 case PD_ACCESS_TYPE_READ_ONLY:
1030 case PD_ACCESS_TYPE_WRITE_ONCE:
1031 case PD_ACCESS_TYPE_NONE:
1032 goto force_ro;
1033 }
1034
1035 /* No Partition Header Descriptor? */
1036 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038 goto force_ro;
1039
1040 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041 utable = phd->unallocSpaceTable.extLength;
1042 umap = phd->unallocSpaceBitmap.extLength;
1043 ftable = phd->freedSpaceTable.extLength;
1044 fmap = phd->freedSpaceBitmap.extLength;
1045
1046 /* No allocation info? */
1047 if (!utable && !umap && !ftable && !fmap)
1048 goto force_ro;
1049
1050 /* We don't support blocks that require erasing before overwrite */
1051 if (ftable || fmap)
1052 goto force_ro;
1053 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054 if (utable && umap)
1055 goto force_ro;
1056
1057 if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059 map->s_partition_type == UDF_METADATA_MAP25)
1060 goto force_ro;
1061
1062 return 0;
1063 force_ro:
1064 if (!sb_rdonly(sb))
1065 return -EACCES;
1066 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067 return 0;
1068 }
1069
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1070 static int udf_fill_partdesc_info(struct super_block *sb,
1071 struct partitionDesc *p, int p_index)
1072 {
1073 struct udf_part_map *map;
1074 struct udf_sb_info *sbi = UDF_SB(sb);
1075 struct partitionHeaderDesc *phd;
1076 int err;
1077
1078 map = &sbi->s_partmaps[p_index];
1079
1080 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082
1083 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091
1092 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093 p_index, map->s_partition_type,
1094 map->s_partition_root, map->s_partition_len);
1095
1096 err = check_partition_desc(sb, p, map);
1097 if (err)
1098 return err;
1099
1100 /*
1101 * Skip loading allocation info it we cannot ever write to the fs.
1102 * This is a correctness thing as we may have decided to force ro mount
1103 * to avoid allocation info we don't support.
1104 */
1105 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106 return 0;
1107
1108 phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 if (phd->unallocSpaceTable.extLength) {
1110 struct kernel_lb_addr loc = {
1111 .logicalBlockNum = le32_to_cpu(
1112 phd->unallocSpaceTable.extPosition),
1113 .partitionReferenceNum = p_index,
1114 };
1115 struct inode *inode;
1116
1117 inode = udf_iget_special(sb, &loc);
1118 if (IS_ERR(inode)) {
1119 udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 p_index);
1121 return PTR_ERR(inode);
1122 }
1123 map->s_uspace.s_table = inode;
1124 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126 p_index, map->s_uspace.s_table->i_ino);
1127 }
1128
1129 if (phd->unallocSpaceBitmap.extLength) {
1130 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 if (!bitmap)
1132 return -ENOMEM;
1133 map->s_uspace.s_bitmap = bitmap;
1134 bitmap->s_extPosition = le32_to_cpu(
1135 phd->unallocSpaceBitmap.extPosition);
1136 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138 p_index, bitmap->s_extPosition);
1139 }
1140
1141 return 0;
1142 }
1143
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1144 static void udf_find_vat_block(struct super_block *sb, int p_index,
1145 int type1_index, sector_t start_block)
1146 {
1147 struct udf_sb_info *sbi = UDF_SB(sb);
1148 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149 sector_t vat_block;
1150 struct kernel_lb_addr ino;
1151 struct inode *inode;
1152
1153 /*
1154 * VAT file entry is in the last recorded block. Some broken disks have
1155 * it a few blocks before so try a bit harder...
1156 */
1157 ino.partitionReferenceNum = type1_index;
1158 for (vat_block = start_block;
1159 vat_block >= map->s_partition_root &&
1160 vat_block >= start_block - 3; vat_block--) {
1161 ino.logicalBlockNum = vat_block - map->s_partition_root;
1162 inode = udf_iget_special(sb, &ino);
1163 if (!IS_ERR(inode)) {
1164 sbi->s_vat_inode = inode;
1165 break;
1166 }
1167 }
1168 }
1169
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171 {
1172 struct udf_sb_info *sbi = UDF_SB(sb);
1173 struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174 struct buffer_head *bh = NULL;
1175 struct udf_inode_info *vati;
1176 uint32_t pos;
1177 struct virtualAllocationTable20 *vat20;
1178 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179 sb->s_blocksize_bits;
1180
1181 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182 if (!sbi->s_vat_inode &&
1183 sbi->s_last_block != blocks - 1) {
1184 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185 (unsigned long)sbi->s_last_block,
1186 (unsigned long)blocks - 1);
1187 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188 }
1189 if (!sbi->s_vat_inode)
1190 return -EIO;
1191
1192 if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193 map->s_type_specific.s_virtual.s_start_offset = 0;
1194 map->s_type_specific.s_virtual.s_num_entries =
1195 (sbi->s_vat_inode->i_size - 36) >> 2;
1196 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197 vati = UDF_I(sbi->s_vat_inode);
1198 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199 pos = udf_block_map(sbi->s_vat_inode, 0);
1200 bh = sb_bread(sb, pos);
1201 if (!bh)
1202 return -EIO;
1203 vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204 } else {
1205 vat20 = (struct virtualAllocationTable20 *)
1206 vati->i_data;
1207 }
1208
1209 map->s_type_specific.s_virtual.s_start_offset =
1210 le16_to_cpu(vat20->lengthHeader);
1211 map->s_type_specific.s_virtual.s_num_entries =
1212 (sbi->s_vat_inode->i_size -
1213 map->s_type_specific.s_virtual.
1214 s_start_offset) >> 2;
1215 brelse(bh);
1216 }
1217 return 0;
1218 }
1219
1220 /*
1221 * Load partition descriptor block
1222 *
1223 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224 * sequence.
1225 */
udf_load_partdesc(struct super_block * sb,sector_t block)1226 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227 {
1228 struct buffer_head *bh;
1229 struct partitionDesc *p;
1230 struct udf_part_map *map;
1231 struct udf_sb_info *sbi = UDF_SB(sb);
1232 int i, type1_idx;
1233 uint16_t partitionNumber;
1234 uint16_t ident;
1235 int ret;
1236
1237 bh = udf_read_tagged(sb, block, block, &ident);
1238 if (!bh)
1239 return -EAGAIN;
1240 if (ident != TAG_IDENT_PD) {
1241 ret = 0;
1242 goto out_bh;
1243 }
1244
1245 p = (struct partitionDesc *)bh->b_data;
1246 partitionNumber = le16_to_cpu(p->partitionNumber);
1247
1248 /* First scan for TYPE1 and SPARABLE partitions */
1249 for (i = 0; i < sbi->s_partitions; i++) {
1250 map = &sbi->s_partmaps[i];
1251 udf_debug("Searching map: (%u == %u)\n",
1252 map->s_partition_num, partitionNumber);
1253 if (map->s_partition_num == partitionNumber &&
1254 (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255 map->s_partition_type == UDF_SPARABLE_MAP15))
1256 break;
1257 }
1258
1259 if (i >= sbi->s_partitions) {
1260 udf_debug("Partition (%u) not found in partition map\n",
1261 partitionNumber);
1262 ret = 0;
1263 goto out_bh;
1264 }
1265
1266 ret = udf_fill_partdesc_info(sb, p, i);
1267 if (ret < 0)
1268 goto out_bh;
1269
1270 /*
1271 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272 * PHYSICAL partitions are already set up
1273 */
1274 type1_idx = i;
1275 map = NULL; /* supress 'maybe used uninitialized' warning */
1276 for (i = 0; i < sbi->s_partitions; i++) {
1277 map = &sbi->s_partmaps[i];
1278
1279 if (map->s_partition_num == partitionNumber &&
1280 (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281 map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282 map->s_partition_type == UDF_METADATA_MAP25))
1283 break;
1284 }
1285
1286 if (i >= sbi->s_partitions) {
1287 ret = 0;
1288 goto out_bh;
1289 }
1290
1291 ret = udf_fill_partdesc_info(sb, p, i);
1292 if (ret < 0)
1293 goto out_bh;
1294
1295 if (map->s_partition_type == UDF_METADATA_MAP25) {
1296 ret = udf_load_metadata_files(sb, i, type1_idx);
1297 if (ret < 0) {
1298 udf_err(sb, "error loading MetaData partition map %d\n",
1299 i);
1300 goto out_bh;
1301 }
1302 } else {
1303 /*
1304 * If we have a partition with virtual map, we don't handle
1305 * writing to it (we overwrite blocks instead of relocating
1306 * them).
1307 */
1308 if (!sb_rdonly(sb)) {
1309 ret = -EACCES;
1310 goto out_bh;
1311 }
1312 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313 ret = udf_load_vat(sb, i, type1_idx);
1314 if (ret < 0)
1315 goto out_bh;
1316 }
1317 ret = 0;
1318 out_bh:
1319 /* In case loading failed, we handle cleanup in udf_fill_super */
1320 brelse(bh);
1321 return ret;
1322 }
1323
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1324 static int udf_load_sparable_map(struct super_block *sb,
1325 struct udf_part_map *map,
1326 struct sparablePartitionMap *spm)
1327 {
1328 uint32_t loc;
1329 uint16_t ident;
1330 struct sparingTable *st;
1331 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332 int i;
1333 struct buffer_head *bh;
1334
1335 map->s_partition_type = UDF_SPARABLE_MAP15;
1336 sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337 if (!is_power_of_2(sdata->s_packet_len)) {
1338 udf_err(sb, "error loading logical volume descriptor: "
1339 "Invalid packet length %u\n",
1340 (unsigned)sdata->s_packet_len);
1341 return -EIO;
1342 }
1343 if (spm->numSparingTables > 4) {
1344 udf_err(sb, "error loading logical volume descriptor: "
1345 "Too many sparing tables (%d)\n",
1346 (int)spm->numSparingTables);
1347 return -EIO;
1348 }
1349 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350 udf_err(sb, "error loading logical volume descriptor: "
1351 "Too big sparing table size (%u)\n",
1352 le32_to_cpu(spm->sizeSparingTable));
1353 return -EIO;
1354 }
1355
1356 for (i = 0; i < spm->numSparingTables; i++) {
1357 loc = le32_to_cpu(spm->locSparingTable[i]);
1358 bh = udf_read_tagged(sb, loc, loc, &ident);
1359 if (!bh)
1360 continue;
1361
1362 st = (struct sparingTable *)bh->b_data;
1363 if (ident != 0 ||
1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 strlen(UDF_ID_SPARING)) ||
1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 sb->s_blocksize) {
1368 brelse(bh);
1369 continue;
1370 }
1371
1372 sdata->s_spar_map[i] = bh;
1373 }
1374 map->s_partition_func = udf_get_pblock_spar15;
1375 return 0;
1376 }
1377
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 struct kernel_lb_addr *fileset)
1380 {
1381 struct logicalVolDesc *lvd;
1382 int i, offset;
1383 uint8_t type;
1384 struct udf_sb_info *sbi = UDF_SB(sb);
1385 struct genericPartitionMap *gpm;
1386 uint16_t ident;
1387 struct buffer_head *bh;
1388 unsigned int table_len;
1389 int ret;
1390
1391 bh = udf_read_tagged(sb, block, block, &ident);
1392 if (!bh)
1393 return -EAGAIN;
1394 BUG_ON(ident != TAG_IDENT_LVD);
1395 lvd = (struct logicalVolDesc *)bh->b_data;
1396 table_len = le32_to_cpu(lvd->mapTableLength);
1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 udf_err(sb, "error loading logical volume descriptor: "
1399 "Partition table too long (%u > %lu)\n", table_len,
1400 sb->s_blocksize - sizeof(*lvd));
1401 ret = -EIO;
1402 goto out_bh;
1403 }
1404
1405 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406 "logical volume");
1407 if (ret)
1408 goto out_bh;
1409 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410 if (ret)
1411 goto out_bh;
1412
1413 for (i = 0, offset = 0;
1414 i < sbi->s_partitions && offset < table_len;
1415 i++, offset += gpm->partitionMapLength) {
1416 struct udf_part_map *map = &sbi->s_partmaps[i];
1417 gpm = (struct genericPartitionMap *)
1418 &(lvd->partitionMaps[offset]);
1419 type = gpm->partitionMapType;
1420 if (type == 1) {
1421 struct genericPartitionMap1 *gpm1 =
1422 (struct genericPartitionMap1 *)gpm;
1423 map->s_partition_type = UDF_TYPE1_MAP15;
1424 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425 map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426 map->s_partition_func = NULL;
1427 } else if (type == 2) {
1428 struct udfPartitionMap2 *upm2 =
1429 (struct udfPartitionMap2 *)gpm;
1430 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431 strlen(UDF_ID_VIRTUAL))) {
1432 u16 suf =
1433 le16_to_cpu(((__le16 *)upm2->partIdent.
1434 identSuffix)[0]);
1435 if (suf < 0x0200) {
1436 map->s_partition_type =
1437 UDF_VIRTUAL_MAP15;
1438 map->s_partition_func =
1439 udf_get_pblock_virt15;
1440 } else {
1441 map->s_partition_type =
1442 UDF_VIRTUAL_MAP20;
1443 map->s_partition_func =
1444 udf_get_pblock_virt20;
1445 }
1446 } else if (!strncmp(upm2->partIdent.ident,
1447 UDF_ID_SPARABLE,
1448 strlen(UDF_ID_SPARABLE))) {
1449 ret = udf_load_sparable_map(sb, map,
1450 (struct sparablePartitionMap *)gpm);
1451 if (ret < 0)
1452 goto out_bh;
1453 } else if (!strncmp(upm2->partIdent.ident,
1454 UDF_ID_METADATA,
1455 strlen(UDF_ID_METADATA))) {
1456 struct udf_meta_data *mdata =
1457 &map->s_type_specific.s_metadata;
1458 struct metadataPartitionMap *mdm =
1459 (struct metadataPartitionMap *)
1460 &(lvd->partitionMaps[offset]);
1461 udf_debug("Parsing Logical vol part %d type %u id=%s\n",
1462 i, type, UDF_ID_METADATA);
1463
1464 map->s_partition_type = UDF_METADATA_MAP25;
1465 map->s_partition_func = udf_get_pblock_meta25;
1466
1467 mdata->s_meta_file_loc =
1468 le32_to_cpu(mdm->metadataFileLoc);
1469 mdata->s_mirror_file_loc =
1470 le32_to_cpu(mdm->metadataMirrorFileLoc);
1471 mdata->s_bitmap_file_loc =
1472 le32_to_cpu(mdm->metadataBitmapFileLoc);
1473 mdata->s_alloc_unit_size =
1474 le32_to_cpu(mdm->allocUnitSize);
1475 mdata->s_align_unit_size =
1476 le16_to_cpu(mdm->alignUnitSize);
1477 if (mdm->flags & 0x01)
1478 mdata->s_flags |= MF_DUPLICATE_MD;
1479
1480 udf_debug("Metadata Ident suffix=0x%x\n",
1481 le16_to_cpu(*(__le16 *)
1482 mdm->partIdent.identSuffix));
1483 udf_debug("Metadata part num=%u\n",
1484 le16_to_cpu(mdm->partitionNum));
1485 udf_debug("Metadata part alloc unit size=%u\n",
1486 le32_to_cpu(mdm->allocUnitSize));
1487 udf_debug("Metadata file loc=%u\n",
1488 le32_to_cpu(mdm->metadataFileLoc));
1489 udf_debug("Mirror file loc=%u\n",
1490 le32_to_cpu(mdm->metadataMirrorFileLoc));
1491 udf_debug("Bitmap file loc=%u\n",
1492 le32_to_cpu(mdm->metadataBitmapFileLoc));
1493 udf_debug("Flags: %d %u\n",
1494 mdata->s_flags, mdm->flags);
1495 } else {
1496 udf_debug("Unknown ident: %s\n",
1497 upm2->partIdent.ident);
1498 continue;
1499 }
1500 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501 map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502 }
1503 udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504 i, map->s_partition_num, type, map->s_volumeseqnum);
1505 }
1506
1507 if (fileset) {
1508 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509
1510 *fileset = lelb_to_cpu(la->extLocation);
1511 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512 fileset->logicalBlockNum,
1513 fileset->partitionReferenceNum);
1514 }
1515 if (lvd->integritySeqExt.extLength)
1516 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517 ret = 0;
1518
1519 if (!sbi->s_lvid_bh) {
1520 /* We can't generate unique IDs without a valid LVID */
1521 if (sb_rdonly(sb)) {
1522 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523 } else {
1524 udf_warn(sb, "Damaged or missing LVID, forcing "
1525 "readonly mount\n");
1526 ret = -EACCES;
1527 }
1528 }
1529 out_bh:
1530 brelse(bh);
1531 return ret;
1532 }
1533
1534 /*
1535 * Find the prevailing Logical Volume Integrity Descriptor.
1536 */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538 {
1539 struct buffer_head *bh, *final_bh;
1540 uint16_t ident;
1541 struct udf_sb_info *sbi = UDF_SB(sb);
1542 struct logicalVolIntegrityDesc *lvid;
1543 int indirections = 0;
1544 u32 parts, impuselen;
1545
1546 while (++indirections <= UDF_MAX_LVID_NESTING) {
1547 final_bh = NULL;
1548 while (loc.extLength > 0 &&
1549 (bh = udf_read_tagged(sb, loc.extLocation,
1550 loc.extLocation, &ident))) {
1551 if (ident != TAG_IDENT_LVID) {
1552 brelse(bh);
1553 break;
1554 }
1555
1556 brelse(final_bh);
1557 final_bh = bh;
1558
1559 loc.extLength -= sb->s_blocksize;
1560 loc.extLocation++;
1561 }
1562
1563 if (!final_bh)
1564 return;
1565
1566 brelse(sbi->s_lvid_bh);
1567 sbi->s_lvid_bh = final_bh;
1568
1569 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570 if (lvid->nextIntegrityExt.extLength == 0)
1571 goto check;
1572
1573 loc = leea_to_cpu(lvid->nextIntegrityExt);
1574 }
1575
1576 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577 UDF_MAX_LVID_NESTING);
1578 out_err:
1579 brelse(sbi->s_lvid_bh);
1580 sbi->s_lvid_bh = NULL;
1581 return;
1582 check:
1583 parts = le32_to_cpu(lvid->numOfPartitions);
1584 impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1585 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1586 sizeof(struct logicalVolIntegrityDesc) + impuselen +
1587 2 * parts * sizeof(u32) > sb->s_blocksize) {
1588 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1589 "ignoring.\n", parts, impuselen);
1590 goto out_err;
1591 }
1592 }
1593
1594 /*
1595 * Step for reallocation of table of partition descriptor sequence numbers.
1596 * Must be power of 2.
1597 */
1598 #define PART_DESC_ALLOC_STEP 32
1599
1600 struct part_desc_seq_scan_data {
1601 struct udf_vds_record rec;
1602 u32 partnum;
1603 };
1604
1605 struct desc_seq_scan_data {
1606 struct udf_vds_record vds[VDS_POS_LENGTH];
1607 unsigned int size_part_descs;
1608 unsigned int num_part_descs;
1609 struct part_desc_seq_scan_data *part_descs_loc;
1610 };
1611
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1612 static struct udf_vds_record *handle_partition_descriptor(
1613 struct buffer_head *bh,
1614 struct desc_seq_scan_data *data)
1615 {
1616 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1617 int partnum;
1618 int i;
1619
1620 partnum = le16_to_cpu(desc->partitionNumber);
1621 for (i = 0; i < data->num_part_descs; i++)
1622 if (partnum == data->part_descs_loc[i].partnum)
1623 return &(data->part_descs_loc[i].rec);
1624 if (data->num_part_descs >= data->size_part_descs) {
1625 struct part_desc_seq_scan_data *new_loc;
1626 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1627
1628 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1629 if (!new_loc)
1630 return ERR_PTR(-ENOMEM);
1631 memcpy(new_loc, data->part_descs_loc,
1632 data->size_part_descs * sizeof(*new_loc));
1633 kfree(data->part_descs_loc);
1634 data->part_descs_loc = new_loc;
1635 data->size_part_descs = new_size;
1636 }
1637 return &(data->part_descs_loc[data->num_part_descs++].rec);
1638 }
1639
1640
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1641 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1642 struct buffer_head *bh, struct desc_seq_scan_data *data)
1643 {
1644 switch (ident) {
1645 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1647 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1648 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1649 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1651 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1653 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1654 return handle_partition_descriptor(bh, data);
1655 }
1656 return NULL;
1657 }
1658
1659 /*
1660 * Process a main/reserve volume descriptor sequence.
1661 * @block First block of first extent of the sequence.
1662 * @lastblock Lastblock of first extent of the sequence.
1663 * @fileset There we store extent containing root fileset
1664 *
1665 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1666 * sequence
1667 */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1668 static noinline int udf_process_sequence(
1669 struct super_block *sb,
1670 sector_t block, sector_t lastblock,
1671 struct kernel_lb_addr *fileset)
1672 {
1673 struct buffer_head *bh = NULL;
1674 struct udf_vds_record *curr;
1675 struct generic_desc *gd;
1676 struct volDescPtr *vdp;
1677 bool done = false;
1678 uint32_t vdsn;
1679 uint16_t ident;
1680 int ret;
1681 unsigned int indirections = 0;
1682 struct desc_seq_scan_data data;
1683 unsigned int i;
1684
1685 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1686 data.size_part_descs = PART_DESC_ALLOC_STEP;
1687 data.num_part_descs = 0;
1688 data.part_descs_loc = kcalloc(data.size_part_descs,
1689 sizeof(*data.part_descs_loc),
1690 GFP_KERNEL);
1691 if (!data.part_descs_loc)
1692 return -ENOMEM;
1693
1694 /*
1695 * Read the main descriptor sequence and find which descriptors
1696 * are in it.
1697 */
1698 for (; (!done && block <= lastblock); block++) {
1699 bh = udf_read_tagged(sb, block, block, &ident);
1700 if (!bh)
1701 break;
1702
1703 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1704 gd = (struct generic_desc *)bh->b_data;
1705 vdsn = le32_to_cpu(gd->volDescSeqNum);
1706 switch (ident) {
1707 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1708 if (++indirections > UDF_MAX_TD_NESTING) {
1709 udf_err(sb, "too many Volume Descriptor "
1710 "Pointers (max %u supported)\n",
1711 UDF_MAX_TD_NESTING);
1712 brelse(bh);
1713 ret = -EIO;
1714 goto out;
1715 }
1716
1717 vdp = (struct volDescPtr *)bh->b_data;
1718 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1719 lastblock = le32_to_cpu(
1720 vdp->nextVolDescSeqExt.extLength) >>
1721 sb->s_blocksize_bits;
1722 lastblock += block - 1;
1723 /* For loop is going to increment 'block' again */
1724 block--;
1725 break;
1726 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1727 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1728 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1729 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1730 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1731 curr = get_volume_descriptor_record(ident, bh, &data);
1732 if (IS_ERR(curr)) {
1733 brelse(bh);
1734 ret = PTR_ERR(curr);
1735 goto out;
1736 }
1737 /* Descriptor we don't care about? */
1738 if (!curr)
1739 break;
1740 if (vdsn >= curr->volDescSeqNum) {
1741 curr->volDescSeqNum = vdsn;
1742 curr->block = block;
1743 }
1744 break;
1745 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1746 done = true;
1747 break;
1748 }
1749 brelse(bh);
1750 }
1751 /*
1752 * Now read interesting descriptors again and process them
1753 * in a suitable order
1754 */
1755 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1756 udf_err(sb, "Primary Volume Descriptor not found!\n");
1757 ret = -EAGAIN;
1758 goto out;
1759 }
1760 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1761 if (ret < 0)
1762 goto out;
1763
1764 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1765 ret = udf_load_logicalvol(sb,
1766 data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1767 fileset);
1768 if (ret < 0)
1769 goto out;
1770 }
1771
1772 /* Now handle prevailing Partition Descriptors */
1773 for (i = 0; i < data.num_part_descs; i++) {
1774 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1775 if (ret < 0)
1776 goto out;
1777 }
1778 ret = 0;
1779 out:
1780 kfree(data.part_descs_loc);
1781 return ret;
1782 }
1783
1784 /*
1785 * Load Volume Descriptor Sequence described by anchor in bh
1786 *
1787 * Returns <0 on error, 0 on success
1788 */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1789 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1790 struct kernel_lb_addr *fileset)
1791 {
1792 struct anchorVolDescPtr *anchor;
1793 sector_t main_s, main_e, reserve_s, reserve_e;
1794 int ret;
1795
1796 anchor = (struct anchorVolDescPtr *)bh->b_data;
1797
1798 /* Locate the main sequence */
1799 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1800 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1801 main_e = main_e >> sb->s_blocksize_bits;
1802 main_e += main_s - 1;
1803
1804 /* Locate the reserve sequence */
1805 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1806 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1807 reserve_e = reserve_e >> sb->s_blocksize_bits;
1808 reserve_e += reserve_s - 1;
1809
1810 /* Process the main & reserve sequences */
1811 /* responsible for finding the PartitionDesc(s) */
1812 ret = udf_process_sequence(sb, main_s, main_e, fileset);
1813 if (ret != -EAGAIN)
1814 return ret;
1815 udf_sb_free_partitions(sb);
1816 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1817 if (ret < 0) {
1818 udf_sb_free_partitions(sb);
1819 /* No sequence was OK, return -EIO */
1820 if (ret == -EAGAIN)
1821 ret = -EIO;
1822 }
1823 return ret;
1824 }
1825
1826 /*
1827 * Check whether there is an anchor block in the given block and
1828 * load Volume Descriptor Sequence if so.
1829 *
1830 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1831 * block
1832 */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1833 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1834 struct kernel_lb_addr *fileset)
1835 {
1836 struct buffer_head *bh;
1837 uint16_t ident;
1838 int ret;
1839
1840 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1841 udf_fixed_to_variable(block) >=
1842 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1843 return -EAGAIN;
1844
1845 bh = udf_read_tagged(sb, block, block, &ident);
1846 if (!bh)
1847 return -EAGAIN;
1848 if (ident != TAG_IDENT_AVDP) {
1849 brelse(bh);
1850 return -EAGAIN;
1851 }
1852 ret = udf_load_sequence(sb, bh, fileset);
1853 brelse(bh);
1854 return ret;
1855 }
1856
1857 /*
1858 * Search for an anchor volume descriptor pointer.
1859 *
1860 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861 * of anchors.
1862 */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 struct kernel_lb_addr *fileset)
1865 {
1866 sector_t last[6];
1867 int i;
1868 struct udf_sb_info *sbi = UDF_SB(sb);
1869 int last_count = 0;
1870 int ret;
1871
1872 /* First try user provided anchor */
1873 if (sbi->s_anchor) {
1874 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875 if (ret != -EAGAIN)
1876 return ret;
1877 }
1878 /*
1879 * according to spec, anchor is in either:
1880 * block 256
1881 * lastblock-256
1882 * lastblock
1883 * however, if the disc isn't closed, it could be 512.
1884 */
1885 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886 if (ret != -EAGAIN)
1887 return ret;
1888 /*
1889 * The trouble is which block is the last one. Drives often misreport
1890 * this so we try various possibilities.
1891 */
1892 last[last_count++] = *lastblock;
1893 if (*lastblock >= 1)
1894 last[last_count++] = *lastblock - 1;
1895 last[last_count++] = *lastblock + 1;
1896 if (*lastblock >= 2)
1897 last[last_count++] = *lastblock - 2;
1898 if (*lastblock >= 150)
1899 last[last_count++] = *lastblock - 150;
1900 if (*lastblock >= 152)
1901 last[last_count++] = *lastblock - 152;
1902
1903 for (i = 0; i < last_count; i++) {
1904 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1905 sb->s_blocksize_bits)
1906 continue;
1907 ret = udf_check_anchor_block(sb, last[i], fileset);
1908 if (ret != -EAGAIN) {
1909 if (!ret)
1910 *lastblock = last[i];
1911 return ret;
1912 }
1913 if (last[i] < 256)
1914 continue;
1915 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 if (ret != -EAGAIN) {
1917 if (!ret)
1918 *lastblock = last[i];
1919 return ret;
1920 }
1921 }
1922
1923 /* Finally try block 512 in case media is open */
1924 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925 }
1926
1927 /*
1928 * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929 * area specified by it. The function expects sbi->s_lastblock to be the last
1930 * block on the media.
1931 *
1932 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933 * was not found.
1934 */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1935 static int udf_find_anchor(struct super_block *sb,
1936 struct kernel_lb_addr *fileset)
1937 {
1938 struct udf_sb_info *sbi = UDF_SB(sb);
1939 sector_t lastblock = sbi->s_last_block;
1940 int ret;
1941
1942 ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 if (ret != -EAGAIN)
1944 goto out;
1945
1946 /* No anchor found? Try VARCONV conversion of block numbers */
1947 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 /* Firstly, we try to not convert number of the last block */
1950 ret = udf_scan_anchors(sb, &lastblock, fileset);
1951 if (ret != -EAGAIN)
1952 goto out;
1953
1954 lastblock = sbi->s_last_block;
1955 /* Secondly, we try with converted number of the last block */
1956 ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 if (ret < 0) {
1958 /* VARCONV didn't help. Clear it. */
1959 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960 }
1961 out:
1962 if (ret == 0)
1963 sbi->s_last_block = lastblock;
1964 return ret;
1965 }
1966
1967 /*
1968 * Check Volume Structure Descriptor, find Anchor block and load Volume
1969 * Descriptor Sequence.
1970 *
1971 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972 * block was not found.
1973 */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 int silent, struct kernel_lb_addr *fileset)
1976 {
1977 struct udf_sb_info *sbi = UDF_SB(sb);
1978 int nsr = 0;
1979 int ret;
1980
1981 if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 if (!silent)
1983 udf_warn(sb, "Bad block size\n");
1984 return -EINVAL;
1985 }
1986 sbi->s_last_block = uopt->lastblock;
1987 if (!uopt->novrs) {
1988 /* Check that it is NSR02 compliant */
1989 nsr = udf_check_vsd(sb);
1990 if (!nsr) {
1991 if (!silent)
1992 udf_warn(sb, "No VRS found\n");
1993 return -EINVAL;
1994 }
1995 if (nsr == -1)
1996 udf_debug("Failed to read sector at offset %d. "
1997 "Assuming open disc. Skipping validity "
1998 "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 if (!sbi->s_last_block)
2000 sbi->s_last_block = udf_get_last_block(sb);
2001 } else {
2002 udf_debug("Validity check skipped because of novrs option\n");
2003 }
2004
2005 /* Look for anchor block and load Volume Descriptor Sequence */
2006 sbi->s_anchor = uopt->anchor;
2007 ret = udf_find_anchor(sb, fileset);
2008 if (ret < 0) {
2009 if (!silent && ret == -EAGAIN)
2010 udf_warn(sb, "No anchor found\n");
2011 return ret;
2012 }
2013 return 0;
2014 }
2015
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 {
2018 struct timespec64 ts;
2019
2020 ktime_get_real_ts64(&ts);
2021 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 lvid->descTag.descCRC = cpu_to_le16(
2023 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 le16_to_cpu(lvid->descTag.descCRCLength)));
2025 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 }
2027
udf_open_lvid(struct super_block * sb)2028 static void udf_open_lvid(struct super_block *sb)
2029 {
2030 struct udf_sb_info *sbi = UDF_SB(sb);
2031 struct buffer_head *bh = sbi->s_lvid_bh;
2032 struct logicalVolIntegrityDesc *lvid;
2033 struct logicalVolIntegrityDescImpUse *lvidiu;
2034
2035 if (!bh)
2036 return;
2037 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 lvidiu = udf_sb_lvidiu(sb);
2039 if (!lvidiu)
2040 return;
2041
2042 mutex_lock(&sbi->s_alloc_mutex);
2043 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 else
2048 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049
2050 udf_finalize_lvid(lvid);
2051 mark_buffer_dirty(bh);
2052 sbi->s_lvid_dirty = 0;
2053 mutex_unlock(&sbi->s_alloc_mutex);
2054 /* Make opening of filesystem visible on the media immediately */
2055 sync_dirty_buffer(bh);
2056 }
2057
udf_close_lvid(struct super_block * sb)2058 static void udf_close_lvid(struct super_block *sb)
2059 {
2060 struct udf_sb_info *sbi = UDF_SB(sb);
2061 struct buffer_head *bh = sbi->s_lvid_bh;
2062 struct logicalVolIntegrityDesc *lvid;
2063 struct logicalVolIntegrityDescImpUse *lvidiu;
2064
2065 if (!bh)
2066 return;
2067 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 lvidiu = udf_sb_lvidiu(sb);
2069 if (!lvidiu)
2070 return;
2071
2072 mutex_lock(&sbi->s_alloc_mutex);
2073 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083
2084 /*
2085 * We set buffer uptodate unconditionally here to avoid spurious
2086 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 * the buffer as !uptodate
2088 */
2089 set_buffer_uptodate(bh);
2090 udf_finalize_lvid(lvid);
2091 mark_buffer_dirty(bh);
2092 sbi->s_lvid_dirty = 0;
2093 mutex_unlock(&sbi->s_alloc_mutex);
2094 /* Make closing of filesystem visible on the media immediately */
2095 sync_dirty_buffer(bh);
2096 }
2097
lvid_get_unique_id(struct super_block * sb)2098 u64 lvid_get_unique_id(struct super_block *sb)
2099 {
2100 struct buffer_head *bh;
2101 struct udf_sb_info *sbi = UDF_SB(sb);
2102 struct logicalVolIntegrityDesc *lvid;
2103 struct logicalVolHeaderDesc *lvhd;
2104 u64 uniqueID;
2105 u64 ret;
2106
2107 bh = sbi->s_lvid_bh;
2108 if (!bh)
2109 return 0;
2110
2111 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113
2114 mutex_lock(&sbi->s_alloc_mutex);
2115 ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 if (!(++uniqueID & 0xFFFFFFFF))
2117 uniqueID += 16;
2118 lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 udf_updated_lvid(sb);
2120 mutex_unlock(&sbi->s_alloc_mutex);
2121
2122 return ret;
2123 }
2124
udf_fill_super(struct super_block * sb,void * options,int silent)2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126 {
2127 int ret = -EINVAL;
2128 struct inode *inode = NULL;
2129 struct udf_options uopt;
2130 struct kernel_lb_addr rootdir, fileset;
2131 struct udf_sb_info *sbi;
2132 bool lvid_open = false;
2133
2134 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 uopt.umask = 0;
2139 uopt.fmode = UDF_INVALID_MODE;
2140 uopt.dmode = UDF_INVALID_MODE;
2141 uopt.nls_map = NULL;
2142
2143 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144 if (!sbi)
2145 return -ENOMEM;
2146
2147 sb->s_fs_info = sbi;
2148
2149 mutex_init(&sbi->s_alloc_mutex);
2150
2151 if (!udf_parse_options((char *)options, &uopt, false))
2152 goto parse_options_failure;
2153
2154 fileset.logicalBlockNum = 0xFFFFFFFF;
2155 fileset.partitionReferenceNum = 0xFFFF;
2156
2157 sbi->s_flags = uopt.flags;
2158 sbi->s_uid = uopt.uid;
2159 sbi->s_gid = uopt.gid;
2160 sbi->s_umask = uopt.umask;
2161 sbi->s_fmode = uopt.fmode;
2162 sbi->s_dmode = uopt.dmode;
2163 sbi->s_nls_map = uopt.nls_map;
2164 rwlock_init(&sbi->s_cred_lock);
2165
2166 if (uopt.session == 0xFFFFFFFF)
2167 sbi->s_session = udf_get_last_session(sb);
2168 else
2169 sbi->s_session = uopt.session;
2170
2171 udf_debug("Multi-session=%d\n", sbi->s_session);
2172
2173 /* Fill in the rest of the superblock */
2174 sb->s_op = &udf_sb_ops;
2175 sb->s_export_op = &udf_export_ops;
2176
2177 sb->s_magic = UDF_SUPER_MAGIC;
2178 sb->s_time_gran = 1000;
2179
2180 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 } else {
2183 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 while (uopt.blocksize <= 4096) {
2185 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 if (ret < 0) {
2187 if (!silent && ret != -EACCES) {
2188 pr_notice("Scanning with blocksize %u failed\n",
2189 uopt.blocksize);
2190 }
2191 brelse(sbi->s_lvid_bh);
2192 sbi->s_lvid_bh = NULL;
2193 /*
2194 * EACCES is special - we want to propagate to
2195 * upper layers that we cannot handle RW mount.
2196 */
2197 if (ret == -EACCES)
2198 break;
2199 } else
2200 break;
2201
2202 uopt.blocksize <<= 1;
2203 }
2204 }
2205 if (ret < 0) {
2206 if (ret == -EAGAIN) {
2207 udf_warn(sb, "No partition found (1)\n");
2208 ret = -EINVAL;
2209 }
2210 goto error_out;
2211 }
2212
2213 udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214
2215 if (sbi->s_lvid_bh) {
2216 struct logicalVolIntegrityDescImpUse *lvidiu =
2217 udf_sb_lvidiu(sb);
2218 uint16_t minUDFReadRev;
2219 uint16_t minUDFWriteRev;
2220
2221 if (!lvidiu) {
2222 ret = -EINVAL;
2223 goto error_out;
2224 }
2225 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 minUDFReadRev,
2230 UDF_MAX_READ_VERSION);
2231 ret = -EINVAL;
2232 goto error_out;
2233 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 if (!sb_rdonly(sb)) {
2235 ret = -EACCES;
2236 goto error_out;
2237 }
2238 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 }
2240
2241 sbi->s_udfrev = minUDFWriteRev;
2242
2243 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247 }
2248
2249 if (!sbi->s_partitions) {
2250 udf_warn(sb, "No partition found (2)\n");
2251 ret = -EINVAL;
2252 goto error_out;
2253 }
2254
2255 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 UDF_PART_FLAG_READ_ONLY) {
2257 if (!sb_rdonly(sb)) {
2258 ret = -EACCES;
2259 goto error_out;
2260 }
2261 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262 }
2263
2264 ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 if (ret < 0) {
2266 udf_warn(sb, "No fileset found\n");
2267 goto error_out;
2268 }
2269
2270 if (!silent) {
2271 struct timestamp ts;
2272 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 sbi->s_volume_ident,
2275 le16_to_cpu(ts.year), ts.month, ts.day,
2276 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 }
2278 if (!sb_rdonly(sb)) {
2279 udf_open_lvid(sb);
2280 lvid_open = true;
2281 }
2282
2283 /* Assign the root inode */
2284 /* assign inodes by physical block number */
2285 /* perhaps it's not extensible enough, but for now ... */
2286 inode = udf_iget(sb, &rootdir);
2287 if (IS_ERR(inode)) {
2288 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 ret = PTR_ERR(inode);
2291 goto error_out;
2292 }
2293
2294 /* Allocate a dentry for the root inode */
2295 sb->s_root = d_make_root(inode);
2296 if (!sb->s_root) {
2297 udf_err(sb, "Couldn't allocate root dentry\n");
2298 ret = -ENOMEM;
2299 goto error_out;
2300 }
2301 sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 sb->s_max_links = UDF_MAX_LINKS;
2303 return 0;
2304
2305 error_out:
2306 iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308 unload_nls(uopt.nls_map);
2309 if (lvid_open)
2310 udf_close_lvid(sb);
2311 brelse(sbi->s_lvid_bh);
2312 udf_sb_free_partitions(sb);
2313 kfree(sbi);
2314 sb->s_fs_info = NULL;
2315
2316 return ret;
2317 }
2318
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2319 void _udf_err(struct super_block *sb, const char *function,
2320 const char *fmt, ...)
2321 {
2322 struct va_format vaf;
2323 va_list args;
2324
2325 va_start(args, fmt);
2326
2327 vaf.fmt = fmt;
2328 vaf.va = &args;
2329
2330 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332 va_end(args);
2333 }
2334
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2335 void _udf_warn(struct super_block *sb, const char *function,
2336 const char *fmt, ...)
2337 {
2338 struct va_format vaf;
2339 va_list args;
2340
2341 va_start(args, fmt);
2342
2343 vaf.fmt = fmt;
2344 vaf.va = &args;
2345
2346 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347
2348 va_end(args);
2349 }
2350
udf_put_super(struct super_block * sb)2351 static void udf_put_super(struct super_block *sb)
2352 {
2353 struct udf_sb_info *sbi;
2354
2355 sbi = UDF_SB(sb);
2356
2357 iput(sbi->s_vat_inode);
2358 unload_nls(sbi->s_nls_map);
2359 if (!sb_rdonly(sb))
2360 udf_close_lvid(sb);
2361 brelse(sbi->s_lvid_bh);
2362 udf_sb_free_partitions(sb);
2363 mutex_destroy(&sbi->s_alloc_mutex);
2364 kfree(sb->s_fs_info);
2365 sb->s_fs_info = NULL;
2366 }
2367
udf_sync_fs(struct super_block * sb,int wait)2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370 struct udf_sb_info *sbi = UDF_SB(sb);
2371
2372 mutex_lock(&sbi->s_alloc_mutex);
2373 if (sbi->s_lvid_dirty) {
2374 struct buffer_head *bh = sbi->s_lvid_bh;
2375 struct logicalVolIntegrityDesc *lvid;
2376
2377 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 udf_finalize_lvid(lvid);
2379
2380 /*
2381 * Blockdevice will be synced later so we don't have to submit
2382 * the buffer for IO
2383 */
2384 mark_buffer_dirty(bh);
2385 sbi->s_lvid_dirty = 0;
2386 }
2387 mutex_unlock(&sbi->s_alloc_mutex);
2388
2389 return 0;
2390 }
2391
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394 struct super_block *sb = dentry->d_sb;
2395 struct udf_sb_info *sbi = UDF_SB(sb);
2396 struct logicalVolIntegrityDescImpUse *lvidiu;
2397 u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398
2399 lvidiu = udf_sb_lvidiu(sb);
2400 buf->f_type = UDF_SUPER_MAGIC;
2401 buf->f_bsize = sb->s_blocksize;
2402 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 buf->f_bfree = udf_count_free(sb);
2404 buf->f_bavail = buf->f_bfree;
2405 /*
2406 * Let's pretend each free block is also a free 'inode' since UDF does
2407 * not have separate preallocated table of inodes.
2408 */
2409 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 le32_to_cpu(lvidiu->numDirs)) : 0)
2411 + buf->f_bfree;
2412 buf->f_ffree = buf->f_bfree;
2413 buf->f_namelen = UDF_NAME_LEN;
2414 buf->f_fsid = u64_to_fsid(id);
2415
2416 return 0;
2417 }
2418
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 struct udf_bitmap *bitmap)
2421 {
2422 struct buffer_head *bh = NULL;
2423 unsigned int accum = 0;
2424 int index;
2425 udf_pblk_t block = 0, newblock;
2426 struct kernel_lb_addr loc;
2427 uint32_t bytes;
2428 uint8_t *ptr;
2429 uint16_t ident;
2430 struct spaceBitmapDesc *bm;
2431
2432 loc.logicalBlockNum = bitmap->s_extPosition;
2433 loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435
2436 if (!bh) {
2437 udf_err(sb, "udf_count_free failed\n");
2438 goto out;
2439 } else if (ident != TAG_IDENT_SBD) {
2440 brelse(bh);
2441 udf_err(sb, "udf_count_free failed\n");
2442 goto out;
2443 }
2444
2445 bm = (struct spaceBitmapDesc *)bh->b_data;
2446 bytes = le32_to_cpu(bm->numOfBytes);
2447 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 ptr = (uint8_t *)bh->b_data;
2449
2450 while (bytes > 0) {
2451 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 accum += bitmap_weight((const unsigned long *)(ptr + index),
2453 cur_bytes * 8);
2454 bytes -= cur_bytes;
2455 if (bytes) {
2456 brelse(bh);
2457 newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 bh = udf_tread(sb, newblock);
2459 if (!bh) {
2460 udf_debug("read failed\n");
2461 goto out;
2462 }
2463 index = 0;
2464 ptr = (uint8_t *)bh->b_data;
2465 }
2466 }
2467 brelse(bh);
2468 out:
2469 return accum;
2470 }
2471
udf_count_free_table(struct super_block * sb,struct inode * table)2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473 struct inode *table)
2474 {
2475 unsigned int accum = 0;
2476 uint32_t elen;
2477 struct kernel_lb_addr eloc;
2478 int8_t etype;
2479 struct extent_position epos;
2480
2481 mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2482 epos.block = UDF_I(table)->i_location;
2483 epos.offset = sizeof(struct unallocSpaceEntry);
2484 epos.bh = NULL;
2485
2486 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2487 accum += (elen >> table->i_sb->s_blocksize_bits);
2488
2489 brelse(epos.bh);
2490 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2491
2492 return accum;
2493 }
2494
udf_count_free(struct super_block * sb)2495 static unsigned int udf_count_free(struct super_block *sb)
2496 {
2497 unsigned int accum = 0;
2498 struct udf_sb_info *sbi = UDF_SB(sb);
2499 struct udf_part_map *map;
2500 unsigned int part = sbi->s_partition;
2501 int ptype = sbi->s_partmaps[part].s_partition_type;
2502
2503 if (ptype == UDF_METADATA_MAP25) {
2504 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2505 s_phys_partition_ref;
2506 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507 /*
2508 * Filesystems with VAT are append-only and we cannot write to
2509 * them. Let's just report 0 here.
2510 */
2511 return 0;
2512 }
2513
2514 if (sbi->s_lvid_bh) {
2515 struct logicalVolIntegrityDesc *lvid =
2516 (struct logicalVolIntegrityDesc *)
2517 sbi->s_lvid_bh->b_data;
2518 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2519 accum = le32_to_cpu(
2520 lvid->freeSpaceTable[part]);
2521 if (accum == 0xFFFFFFFF)
2522 accum = 0;
2523 }
2524 }
2525
2526 if (accum)
2527 return accum;
2528
2529 map = &sbi->s_partmaps[part];
2530 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2531 accum += udf_count_free_bitmap(sb,
2532 map->s_uspace.s_bitmap);
2533 }
2534 if (accum)
2535 return accum;
2536
2537 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2538 accum += udf_count_free_table(sb,
2539 map->s_uspace.s_table);
2540 }
2541 return accum;
2542 }
2543
2544 MODULE_AUTHOR("Ben Fennema");
2545 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2546 MODULE_LICENSE("GPL");
2547 module_init(init_udf_fs)
2548 module_exit(exit_udf_fs)
2549