1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
udf_sb_lvidiu(struct super_block * sb)101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
112 	offset = partnum * 2 * sizeof(uint32_t);
113 	return (struct logicalVolIntegrityDescImpUse *)
114 					(((uint8_t *)(lvid + 1)) + offset);
115 }
116 
117 /* UDF filesystem type */
udf_mount(struct file_system_type * fs_type,int flags,const char * dev_name,void * data)118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119 		      int flags, const char *dev_name, void *data)
120 {
121 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123 
124 static struct file_system_type udf_fstype = {
125 	.owner		= THIS_MODULE,
126 	.name		= "udf",
127 	.mount		= udf_mount,
128 	.kill_sb	= kill_block_super,
129 	.fs_flags	= FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132 
133 static struct kmem_cache *udf_inode_cachep;
134 
udf_alloc_inode(struct super_block * sb)135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137 	struct udf_inode_info *ei;
138 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 	if (!ei)
140 		return NULL;
141 
142 	ei->i_unique = 0;
143 	ei->i_lenExtents = 0;
144 	ei->i_lenStreams = 0;
145 	ei->i_next_alloc_block = 0;
146 	ei->i_next_alloc_goal = 0;
147 	ei->i_strat4096 = 0;
148 	ei->i_streamdir = 0;
149 	init_rwsem(&ei->i_data_sem);
150 	ei->cached_extent.lstart = -1;
151 	spin_lock_init(&ei->i_extent_cache_lock);
152 
153 	return &ei->vfs_inode;
154 }
155 
udf_free_in_core_inode(struct inode * inode)156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160 
init_once(void * foo)161 static void init_once(void *foo)
162 {
163 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164 
165 	ei->i_data = NULL;
166 	inode_init_once(&ei->vfs_inode);
167 }
168 
init_inodecache(void)169 static int __init init_inodecache(void)
170 {
171 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 					     sizeof(struct udf_inode_info),
173 					     0, (SLAB_RECLAIM_ACCOUNT |
174 						 SLAB_MEM_SPREAD |
175 						 SLAB_ACCOUNT),
176 					     init_once);
177 	if (!udf_inode_cachep)
178 		return -ENOMEM;
179 	return 0;
180 }
181 
destroy_inodecache(void)182 static void destroy_inodecache(void)
183 {
184 	/*
185 	 * Make sure all delayed rcu free inodes are flushed before we
186 	 * destroy cache.
187 	 */
188 	rcu_barrier();
189 	kmem_cache_destroy(udf_inode_cachep);
190 }
191 
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194 	.alloc_inode	= udf_alloc_inode,
195 	.free_inode	= udf_free_in_core_inode,
196 	.write_inode	= udf_write_inode,
197 	.evict_inode	= udf_evict_inode,
198 	.put_super	= udf_put_super,
199 	.sync_fs	= udf_sync_fs,
200 	.statfs		= udf_statfs,
201 	.remount_fs	= udf_remount_fs,
202 	.show_options	= udf_show_options,
203 };
204 
205 struct udf_options {
206 	unsigned char novrs;
207 	unsigned int blocksize;
208 	unsigned int session;
209 	unsigned int lastblock;
210 	unsigned int anchor;
211 	unsigned int flags;
212 	umode_t umask;
213 	kgid_t gid;
214 	kuid_t uid;
215 	umode_t fmode;
216 	umode_t dmode;
217 	struct nls_table *nls_map;
218 };
219 
init_udf_fs(void)220 static int __init init_udf_fs(void)
221 {
222 	int err;
223 
224 	err = init_inodecache();
225 	if (err)
226 		goto out1;
227 	err = register_filesystem(&udf_fstype);
228 	if (err)
229 		goto out;
230 
231 	return 0;
232 
233 out:
234 	destroy_inodecache();
235 
236 out1:
237 	return err;
238 }
239 
exit_udf_fs(void)240 static void __exit exit_udf_fs(void)
241 {
242 	unregister_filesystem(&udf_fstype);
243 	destroy_inodecache();
244 }
245 
udf_sb_alloc_partition_maps(struct super_block * sb,u32 count)246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 
250 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 	if (!sbi->s_partmaps) {
252 		sbi->s_partitions = 0;
253 		return -ENOMEM;
254 	}
255 
256 	sbi->s_partitions = count;
257 	return 0;
258 }
259 
udf_sb_free_bitmap(struct udf_bitmap * bitmap)260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 	int i;
263 	int nr_groups = bitmap->s_nr_groups;
264 
265 	for (i = 0; i < nr_groups; i++)
266 		brelse(bitmap->s_block_bitmap[i]);
267 
268 	kvfree(bitmap);
269 }
270 
udf_free_partition(struct udf_part_map * map)271 static void udf_free_partition(struct udf_part_map *map)
272 {
273 	int i;
274 	struct udf_meta_data *mdata;
275 
276 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 		iput(map->s_uspace.s_table);
278 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 		for (i = 0; i < 4; i++)
282 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 		mdata = &map->s_type_specific.s_metadata;
285 		iput(mdata->s_metadata_fe);
286 		mdata->s_metadata_fe = NULL;
287 
288 		iput(mdata->s_mirror_fe);
289 		mdata->s_mirror_fe = NULL;
290 
291 		iput(mdata->s_bitmap_fe);
292 		mdata->s_bitmap_fe = NULL;
293 	}
294 }
295 
udf_sb_free_partitions(struct super_block * sb)296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298 	struct udf_sb_info *sbi = UDF_SB(sb);
299 	int i;
300 
301 	if (!sbi->s_partmaps)
302 		return;
303 	for (i = 0; i < sbi->s_partitions; i++)
304 		udf_free_partition(&sbi->s_partmaps[i]);
305 	kfree(sbi->s_partmaps);
306 	sbi->s_partmaps = NULL;
307 }
308 
udf_show_options(struct seq_file * seq,struct dentry * root)309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311 	struct super_block *sb = root->d_sb;
312 	struct udf_sb_info *sbi = UDF_SB(sb);
313 
314 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 		seq_puts(seq, ",nostrict");
316 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 		seq_puts(seq, ",unhide");
320 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 		seq_puts(seq, ",undelete");
322 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 		seq_puts(seq, ",noadinicb");
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 		seq_puts(seq, ",shortad");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 		seq_puts(seq, ",uid=forget");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 		seq_puts(seq, ",gid=forget");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 	if (sbi->s_umask != 0)
335 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 	if (sbi->s_fmode != UDF_INVALID_MODE)
337 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 	if (sbi->s_dmode != UDF_INVALID_MODE)
339 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 		seq_printf(seq, ",session=%d", sbi->s_session);
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 	if (sbi->s_anchor != 0)
345 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 	if (sbi->s_nls_map)
347 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 	else
349 		seq_puts(seq, ",iocharset=utf8");
350 
351 	return 0;
352 }
353 
354 /*
355  * udf_parse_options
356  *
357  * PURPOSE
358  *	Parse mount options.
359  *
360  * DESCRIPTION
361  *	The following mount options are supported:
362  *
363  *	gid=		Set the default group.
364  *	umask=		Set the default umask.
365  *	mode=		Set the default file permissions.
366  *	dmode=		Set the default directory permissions.
367  *	uid=		Set the default user.
368  *	bs=		Set the block size.
369  *	unhide		Show otherwise hidden files.
370  *	undelete	Show deleted files in lists.
371  *	adinicb		Embed data in the inode (default)
372  *	noadinicb	Don't embed data in the inode
373  *	shortad		Use short ad's
374  *	longad		Use long ad's (default)
375  *	nostrict	Unset strict conformance
376  *	iocharset=	Set the NLS character set
377  *
378  *	The remaining are for debugging and disaster recovery:
379  *
380  *	novrs		Skip volume sequence recognition
381  *
382  *	The following expect a offset from 0.
383  *
384  *	session=	Set the CDROM session (default= last session)
385  *	anchor=		Override standard anchor location. (default= 256)
386  *	volume=		Override the VolumeDesc location. (unused)
387  *	partition=	Override the PartitionDesc location. (unused)
388  *	lastblock=	Set the last block of the filesystem/
389  *
390  *	The following expect a offset from the partition root.
391  *
392  *	fileset=	Override the fileset block location. (unused)
393  *	rootdir=	Override the root directory location. (unused)
394  *		WARNING: overriding the rootdir to a non-directory may
395  *		yield highly unpredictable results.
396  *
397  * PRE-CONDITIONS
398  *	options		Pointer to mount options string.
399  *	uopts		Pointer to mount options variable.
400  *
401  * POST-CONDITIONS
402  *	<return>	1	Mount options parsed okay.
403  *	<return>	0	Error parsing mount options.
404  *
405  * HISTORY
406  *	July 1, 1997 - Andrew E. Mileski
407  *	Written, tested, and released.
408  */
409 
410 enum {
411 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 	Opt_rootdir, Opt_utf8, Opt_iocharset,
416 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 	Opt_fmode, Opt_dmode
418 };
419 
420 static const match_table_t tokens = {
421 	{Opt_novrs,	"novrs"},
422 	{Opt_nostrict,	"nostrict"},
423 	{Opt_bs,	"bs=%u"},
424 	{Opt_unhide,	"unhide"},
425 	{Opt_undelete,	"undelete"},
426 	{Opt_noadinicb,	"noadinicb"},
427 	{Opt_adinicb,	"adinicb"},
428 	{Opt_shortad,	"shortad"},
429 	{Opt_longad,	"longad"},
430 	{Opt_uforget,	"uid=forget"},
431 	{Opt_uignore,	"uid=ignore"},
432 	{Opt_gforget,	"gid=forget"},
433 	{Opt_gignore,	"gid=ignore"},
434 	{Opt_gid,	"gid=%u"},
435 	{Opt_uid,	"uid=%u"},
436 	{Opt_umask,	"umask=%o"},
437 	{Opt_session,	"session=%u"},
438 	{Opt_lastblock,	"lastblock=%u"},
439 	{Opt_anchor,	"anchor=%u"},
440 	{Opt_volume,	"volume=%u"},
441 	{Opt_partition,	"partition=%u"},
442 	{Opt_fileset,	"fileset=%u"},
443 	{Opt_rootdir,	"rootdir=%u"},
444 	{Opt_utf8,	"utf8"},
445 	{Opt_iocharset,	"iocharset=%s"},
446 	{Opt_fmode,     "mode=%o"},
447 	{Opt_dmode,     "dmode=%o"},
448 	{Opt_err,	NULL}
449 };
450 
udf_parse_options(char * options,struct udf_options * uopt,bool remount)451 static int udf_parse_options(char *options, struct udf_options *uopt,
452 			     bool remount)
453 {
454 	char *p;
455 	int option;
456 	unsigned int uv;
457 
458 	uopt->novrs = 0;
459 	uopt->session = 0xFFFFFFFF;
460 	uopt->lastblock = 0;
461 	uopt->anchor = 0;
462 
463 	if (!options)
464 		return 1;
465 
466 	while ((p = strsep(&options, ",")) != NULL) {
467 		substring_t args[MAX_OPT_ARGS];
468 		int token;
469 		unsigned n;
470 		if (!*p)
471 			continue;
472 
473 		token = match_token(p, tokens, args);
474 		switch (token) {
475 		case Opt_novrs:
476 			uopt->novrs = 1;
477 			break;
478 		case Opt_bs:
479 			if (match_int(&args[0], &option))
480 				return 0;
481 			n = option;
482 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
483 				return 0;
484 			uopt->blocksize = n;
485 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
486 			break;
487 		case Opt_unhide:
488 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
489 			break;
490 		case Opt_undelete:
491 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
492 			break;
493 		case Opt_noadinicb:
494 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
495 			break;
496 		case Opt_adinicb:
497 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
498 			break;
499 		case Opt_shortad:
500 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
501 			break;
502 		case Opt_longad:
503 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
504 			break;
505 		case Opt_gid:
506 			if (match_uint(args, &uv))
507 				return 0;
508 			uopt->gid = make_kgid(current_user_ns(), uv);
509 			if (!gid_valid(uopt->gid))
510 				return 0;
511 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
512 			break;
513 		case Opt_uid:
514 			if (match_uint(args, &uv))
515 				return 0;
516 			uopt->uid = make_kuid(current_user_ns(), uv);
517 			if (!uid_valid(uopt->uid))
518 				return 0;
519 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
520 			break;
521 		case Opt_umask:
522 			if (match_octal(args, &option))
523 				return 0;
524 			uopt->umask = option;
525 			break;
526 		case Opt_nostrict:
527 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
528 			break;
529 		case Opt_session:
530 			if (match_int(args, &option))
531 				return 0;
532 			uopt->session = option;
533 			if (!remount)
534 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
535 			break;
536 		case Opt_lastblock:
537 			if (match_int(args, &option))
538 				return 0;
539 			uopt->lastblock = option;
540 			if (!remount)
541 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
542 			break;
543 		case Opt_anchor:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->anchor = option;
547 			break;
548 		case Opt_volume:
549 		case Opt_partition:
550 		case Opt_fileset:
551 		case Opt_rootdir:
552 			/* Ignored (never implemented properly) */
553 			break;
554 		case Opt_utf8:
555 			if (!remount) {
556 				unload_nls(uopt->nls_map);
557 				uopt->nls_map = NULL;
558 			}
559 			break;
560 		case Opt_iocharset:
561 			if (!remount) {
562 				unload_nls(uopt->nls_map);
563 				uopt->nls_map = NULL;
564 			}
565 			/* When nls_map is not loaded then UTF-8 is used */
566 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
567 				uopt->nls_map = load_nls(args[0].from);
568 				if (!uopt->nls_map) {
569 					pr_err("iocharset %s not found\n",
570 						args[0].from);
571 					return 0;
572 				}
573 			}
574 			break;
575 		case Opt_uforget:
576 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 			break;
578 		case Opt_uignore:
579 		case Opt_gignore:
580 			/* These options are superseeded by uid=<number> */
581 			break;
582 		case Opt_gforget:
583 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 			break;
585 		case Opt_fmode:
586 			if (match_octal(args, &option))
587 				return 0;
588 			uopt->fmode = option & 0777;
589 			break;
590 		case Opt_dmode:
591 			if (match_octal(args, &option))
592 				return 0;
593 			uopt->dmode = option & 0777;
594 			break;
595 		default:
596 			pr_err("bad mount option \"%s\" or missing value\n", p);
597 			return 0;
598 		}
599 	}
600 	return 1;
601 }
602 
udf_remount_fs(struct super_block * sb,int * flags,char * options)603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 	struct udf_options uopt;
606 	struct udf_sb_info *sbi = UDF_SB(sb);
607 	int error = 0;
608 
609 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 		return -EACCES;
611 
612 	sync_filesystem(sb);
613 
614 	uopt.flags = sbi->s_flags;
615 	uopt.uid   = sbi->s_uid;
616 	uopt.gid   = sbi->s_gid;
617 	uopt.umask = sbi->s_umask;
618 	uopt.fmode = sbi->s_fmode;
619 	uopt.dmode = sbi->s_dmode;
620 	uopt.nls_map = NULL;
621 
622 	if (!udf_parse_options(options, &uopt, true))
623 		return -EINVAL;
624 
625 	write_lock(&sbi->s_cred_lock);
626 	sbi->s_flags = uopt.flags;
627 	sbi->s_uid   = uopt.uid;
628 	sbi->s_gid   = uopt.gid;
629 	sbi->s_umask = uopt.umask;
630 	sbi->s_fmode = uopt.fmode;
631 	sbi->s_dmode = uopt.dmode;
632 	write_unlock(&sbi->s_cred_lock);
633 
634 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 		goto out_unlock;
636 
637 	if (*flags & SB_RDONLY)
638 		udf_close_lvid(sb);
639 	else
640 		udf_open_lvid(sb);
641 
642 out_unlock:
643 	return error;
644 }
645 
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
identify_vsd(const struct volStructDesc * vsd)651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 	int ret = 0;
654 
655 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 		switch (vsd->structType) {
657 		case 0:
658 			udf_debug("ISO9660 Boot Record found\n");
659 			break;
660 		case 1:
661 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 			break;
663 		case 2:
664 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 			break;
666 		case 3:
667 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 			break;
669 		case 255:
670 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 			break;
672 		default:
673 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 			break;
675 		}
676 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 		; /* ret = 0 */
678 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 		ret = 1;
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 		; /* ret = 0 */
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else {
687 		/* TEA01 or invalid id : end of volume recognition area */
688 		ret = -1;
689 	}
690 
691 	return ret;
692 }
693 
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *	    -1 if first sector read error, 0 otherwise
699  */
udf_check_vsd(struct super_block * sb)700 static int udf_check_vsd(struct super_block *sb)
701 {
702 	struct volStructDesc *vsd = NULL;
703 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 	int sectorsize;
705 	struct buffer_head *bh = NULL;
706 	int nsr = 0;
707 	struct udf_sb_info *sbi;
708 	loff_t session_offset;
709 
710 	sbi = UDF_SB(sb);
711 	if (sb->s_blocksize < sizeof(struct volStructDesc))
712 		sectorsize = sizeof(struct volStructDesc);
713 	else
714 		sectorsize = sb->s_blocksize;
715 
716 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717 	sector += session_offset;
718 
719 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
720 		  (unsigned int)(sector >> sb->s_blocksize_bits),
721 		  sb->s_blocksize);
722 	/* Process the sequence (if applicable). The hard limit on the sector
723 	 * offset is arbitrary, hopefully large enough so that all valid UDF
724 	 * filesystems will be recognised. There is no mention of an upper
725 	 * bound to the size of the volume recognition area in the standard.
726 	 *  The limit will prevent the code to read all the sectors of a
727 	 * specially crafted image (like a bluray disc full of CD001 sectors),
728 	 * potentially causing minutes or even hours of uninterruptible I/O
729 	 * activity. This actually happened with uninitialised SSD partitions
730 	 * (all 0xFF) before the check for the limit and all valid IDs were
731 	 * added */
732 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733 		/* Read a block */
734 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735 		if (!bh)
736 			break;
737 
738 		vsd = (struct volStructDesc *)(bh->b_data +
739 					      (sector & (sb->s_blocksize - 1)));
740 		nsr = identify_vsd(vsd);
741 		/* Found NSR or end? */
742 		if (nsr) {
743 			brelse(bh);
744 			break;
745 		}
746 		/*
747 		 * Special handling for improperly formatted VRS (e.g., Win10)
748 		 * where components are separated by 2048 bytes even though
749 		 * sectors are 4K
750 		 */
751 		if (sb->s_blocksize == 4096) {
752 			nsr = identify_vsd(vsd + 1);
753 			/* Ignore unknown IDs... */
754 			if (nsr < 0)
755 				nsr = 0;
756 		}
757 		brelse(bh);
758 	}
759 
760 	if (nsr > 0)
761 		return 1;
762 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763 		return -1;
764 	else
765 		return 0;
766 }
767 
udf_verify_domain_identifier(struct super_block * sb,struct regid * ident,char * dname)768 static int udf_verify_domain_identifier(struct super_block *sb,
769 					struct regid *ident, char *dname)
770 {
771 	struct domainIdentSuffix *suffix;
772 
773 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775 		goto force_ro;
776 	}
777 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779 			 dname);
780 		goto force_ro;
781 	}
782 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
783 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785 		if (!sb_rdonly(sb)) {
786 			udf_warn(sb, "Descriptor for %s marked write protected."
787 				 " Forcing read only mount.\n", dname);
788 		}
789 		goto force_ro;
790 	}
791 	return 0;
792 
793 force_ro:
794 	if (!sb_rdonly(sb))
795 		return -EACCES;
796 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797 	return 0;
798 }
799 
udf_load_fileset(struct super_block * sb,struct fileSetDesc * fset,struct kernel_lb_addr * root)800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801 			    struct kernel_lb_addr *root)
802 {
803 	int ret;
804 
805 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806 	if (ret < 0)
807 		return ret;
808 
809 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811 
812 	udf_debug("Rootdir at block=%u, partition=%u\n",
813 		  root->logicalBlockNum, root->partitionReferenceNum);
814 	return 0;
815 }
816 
udf_find_fileset(struct super_block * sb,struct kernel_lb_addr * fileset,struct kernel_lb_addr * root)817 static int udf_find_fileset(struct super_block *sb,
818 			    struct kernel_lb_addr *fileset,
819 			    struct kernel_lb_addr *root)
820 {
821 	struct buffer_head *bh = NULL;
822 	uint16_t ident;
823 	int ret;
824 
825 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826 	    fileset->partitionReferenceNum == 0xFFFF)
827 		return -EINVAL;
828 
829 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
830 	if (!bh)
831 		return -EIO;
832 	if (ident != TAG_IDENT_FSD) {
833 		brelse(bh);
834 		return -EINVAL;
835 	}
836 
837 	udf_debug("Fileset at block=%u, partition=%u\n",
838 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
839 
840 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842 	brelse(bh);
843 	return ret;
844 }
845 
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
udf_load_pvoldesc(struct super_block * sb,sector_t block)852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854 	struct primaryVolDesc *pvoldesc;
855 	uint8_t *outstr;
856 	struct buffer_head *bh;
857 	uint16_t ident;
858 	int ret;
859 	struct timestamp *ts;
860 
861 	outstr = kmalloc(128, GFP_NOFS);
862 	if (!outstr)
863 		return -ENOMEM;
864 
865 	bh = udf_read_tagged(sb, block, block, &ident);
866 	if (!bh) {
867 		ret = -EAGAIN;
868 		goto out2;
869 	}
870 
871 	if (ident != TAG_IDENT_PVD) {
872 		ret = -EIO;
873 		goto out_bh;
874 	}
875 
876 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
877 
878 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879 			      pvoldesc->recordingDateAndTime);
880 	ts = &pvoldesc->recordingDateAndTime;
881 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
884 
885 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886 	if (ret < 0) {
887 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888 		pr_warn("incorrect volume identification, setting to "
889 			"'InvalidName'\n");
890 	} else {
891 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892 	}
893 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894 
895 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896 	if (ret < 0) {
897 		ret = 0;
898 		goto out_bh;
899 	}
900 	outstr[ret] = 0;
901 	udf_debug("volSetIdent[] = '%s'\n", outstr);
902 
903 	ret = 0;
904 out_bh:
905 	brelse(bh);
906 out2:
907 	kfree(outstr);
908 	return ret;
909 }
910 
udf_find_metadata_inode_efe(struct super_block * sb,u32 meta_file_loc,u32 partition_ref)911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912 					u32 meta_file_loc, u32 partition_ref)
913 {
914 	struct kernel_lb_addr addr;
915 	struct inode *metadata_fe;
916 
917 	addr.logicalBlockNum = meta_file_loc;
918 	addr.partitionReferenceNum = partition_ref;
919 
920 	metadata_fe = udf_iget_special(sb, &addr);
921 
922 	if (IS_ERR(metadata_fe)) {
923 		udf_warn(sb, "metadata inode efe not found\n");
924 		return metadata_fe;
925 	}
926 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928 		iput(metadata_fe);
929 		return ERR_PTR(-EIO);
930 	}
931 
932 	return metadata_fe;
933 }
934 
udf_load_metadata_files(struct super_block * sb,int partition,int type1_index)935 static int udf_load_metadata_files(struct super_block *sb, int partition,
936 				   int type1_index)
937 {
938 	struct udf_sb_info *sbi = UDF_SB(sb);
939 	struct udf_part_map *map;
940 	struct udf_meta_data *mdata;
941 	struct kernel_lb_addr addr;
942 	struct inode *fe;
943 
944 	map = &sbi->s_partmaps[partition];
945 	mdata = &map->s_type_specific.s_metadata;
946 	mdata->s_phys_partition_ref = type1_index;
947 
948 	/* metadata address */
949 	udf_debug("Metadata file location: block = %u part = %u\n",
950 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951 
952 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953 					 mdata->s_phys_partition_ref);
954 	if (IS_ERR(fe)) {
955 		/* mirror file entry */
956 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
957 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958 
959 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960 						 mdata->s_phys_partition_ref);
961 
962 		if (IS_ERR(fe)) {
963 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964 			return PTR_ERR(fe);
965 		}
966 		mdata->s_mirror_fe = fe;
967 	} else
968 		mdata->s_metadata_fe = fe;
969 
970 
971 	/*
972 	 * bitmap file entry
973 	 * Note:
974 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 	*/
976 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979 
980 		udf_debug("Bitmap file location: block = %u part = %u\n",
981 			  addr.logicalBlockNum, addr.partitionReferenceNum);
982 
983 		fe = udf_iget_special(sb, &addr);
984 		if (IS_ERR(fe)) {
985 			if (sb_rdonly(sb))
986 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987 			else {
988 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989 				return PTR_ERR(fe);
990 			}
991 		} else
992 			mdata->s_bitmap_fe = fe;
993 	}
994 
995 	udf_debug("udf_load_metadata_files Ok\n");
996 	return 0;
997 }
998 
udf_compute_nr_groups(struct super_block * sb,u32 partition)999 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 {
1001 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002 	return DIV_ROUND_UP(map->s_partition_len +
1003 			    (sizeof(struct spaceBitmapDesc) << 3),
1004 			    sb->s_blocksize * 8);
1005 }
1006 
udf_sb_alloc_bitmap(struct super_block * sb,u32 index)1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 {
1009 	struct udf_bitmap *bitmap;
1010 	int nr_groups = udf_compute_nr_groups(sb, index);
1011 
1012 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013 			  GFP_KERNEL);
1014 	if (!bitmap)
1015 		return NULL;
1016 
1017 	bitmap->s_nr_groups = nr_groups;
1018 	return bitmap;
1019 }
1020 
check_partition_desc(struct super_block * sb,struct partitionDesc * p,struct udf_part_map * map)1021 static int check_partition_desc(struct super_block *sb,
1022 				struct partitionDesc *p,
1023 				struct udf_part_map *map)
1024 {
1025 	bool umap, utable, fmap, ftable;
1026 	struct partitionHeaderDesc *phd;
1027 
1028 	switch (le32_to_cpu(p->accessType)) {
1029 	case PD_ACCESS_TYPE_READ_ONLY:
1030 	case PD_ACCESS_TYPE_WRITE_ONCE:
1031 	case PD_ACCESS_TYPE_NONE:
1032 		goto force_ro;
1033 	}
1034 
1035 	/* No Partition Header Descriptor? */
1036 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038 		goto force_ro;
1039 
1040 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041 	utable = phd->unallocSpaceTable.extLength;
1042 	umap = phd->unallocSpaceBitmap.extLength;
1043 	ftable = phd->freedSpaceTable.extLength;
1044 	fmap = phd->freedSpaceBitmap.extLength;
1045 
1046 	/* No allocation info? */
1047 	if (!utable && !umap && !ftable && !fmap)
1048 		goto force_ro;
1049 
1050 	/* We don't support blocks that require erasing before overwrite */
1051 	if (ftable || fmap)
1052 		goto force_ro;
1053 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054 	if (utable && umap)
1055 		goto force_ro;
1056 
1057 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059 	    map->s_partition_type == UDF_METADATA_MAP25)
1060 		goto force_ro;
1061 
1062 	return 0;
1063 force_ro:
1064 	if (!sb_rdonly(sb))
1065 		return -EACCES;
1066 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067 	return 0;
1068 }
1069 
udf_fill_partdesc_info(struct super_block * sb,struct partitionDesc * p,int p_index)1070 static int udf_fill_partdesc_info(struct super_block *sb,
1071 		struct partitionDesc *p, int p_index)
1072 {
1073 	struct udf_part_map *map;
1074 	struct udf_sb_info *sbi = UDF_SB(sb);
1075 	struct partitionHeaderDesc *phd;
1076 	int err;
1077 
1078 	map = &sbi->s_partmaps[p_index];
1079 
1080 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082 
1083 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091 
1092 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093 		  p_index, map->s_partition_type,
1094 		  map->s_partition_root, map->s_partition_len);
1095 
1096 	err = check_partition_desc(sb, p, map);
1097 	if (err)
1098 		return err;
1099 
1100 	/*
1101 	 * Skip loading allocation info it we cannot ever write to the fs.
1102 	 * This is a correctness thing as we may have decided to force ro mount
1103 	 * to avoid allocation info we don't support.
1104 	 */
1105 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106 		return 0;
1107 
1108 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 	if (phd->unallocSpaceTable.extLength) {
1110 		struct kernel_lb_addr loc = {
1111 			.logicalBlockNum = le32_to_cpu(
1112 				phd->unallocSpaceTable.extPosition),
1113 			.partitionReferenceNum = p_index,
1114 		};
1115 		struct inode *inode;
1116 
1117 		inode = udf_iget_special(sb, &loc);
1118 		if (IS_ERR(inode)) {
1119 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 				  p_index);
1121 			return PTR_ERR(inode);
1122 		}
1123 		map->s_uspace.s_table = inode;
1124 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126 			  p_index, map->s_uspace.s_table->i_ino);
1127 	}
1128 
1129 	if (phd->unallocSpaceBitmap.extLength) {
1130 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 		if (!bitmap)
1132 			return -ENOMEM;
1133 		map->s_uspace.s_bitmap = bitmap;
1134 		bitmap->s_extPosition = le32_to_cpu(
1135 				phd->unallocSpaceBitmap.extPosition);
1136 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138 			  p_index, bitmap->s_extPosition);
1139 	}
1140 
1141 	return 0;
1142 }
1143 
udf_find_vat_block(struct super_block * sb,int p_index,int type1_index,sector_t start_block)1144 static void udf_find_vat_block(struct super_block *sb, int p_index,
1145 			       int type1_index, sector_t start_block)
1146 {
1147 	struct udf_sb_info *sbi = UDF_SB(sb);
1148 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149 	sector_t vat_block;
1150 	struct kernel_lb_addr ino;
1151 	struct inode *inode;
1152 
1153 	/*
1154 	 * VAT file entry is in the last recorded block. Some broken disks have
1155 	 * it a few blocks before so try a bit harder...
1156 	 */
1157 	ino.partitionReferenceNum = type1_index;
1158 	for (vat_block = start_block;
1159 	     vat_block >= map->s_partition_root &&
1160 	     vat_block >= start_block - 3; vat_block--) {
1161 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1162 		inode = udf_iget_special(sb, &ino);
1163 		if (!IS_ERR(inode)) {
1164 			sbi->s_vat_inode = inode;
1165 			break;
1166 		}
1167 	}
1168 }
1169 
udf_load_vat(struct super_block * sb,int p_index,int type1_index)1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171 {
1172 	struct udf_sb_info *sbi = UDF_SB(sb);
1173 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174 	struct buffer_head *bh = NULL;
1175 	struct udf_inode_info *vati;
1176 	uint32_t pos;
1177 	struct virtualAllocationTable20 *vat20;
1178 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1179 			  sb->s_blocksize_bits;
1180 
1181 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1182 	if (!sbi->s_vat_inode &&
1183 	    sbi->s_last_block != blocks - 1) {
1184 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1185 			  (unsigned long)sbi->s_last_block,
1186 			  (unsigned long)blocks - 1);
1187 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1188 	}
1189 	if (!sbi->s_vat_inode)
1190 		return -EIO;
1191 
1192 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1193 		map->s_type_specific.s_virtual.s_start_offset = 0;
1194 		map->s_type_specific.s_virtual.s_num_entries =
1195 			(sbi->s_vat_inode->i_size - 36) >> 2;
1196 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1197 		vati = UDF_I(sbi->s_vat_inode);
1198 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1199 			pos = udf_block_map(sbi->s_vat_inode, 0);
1200 			bh = sb_bread(sb, pos);
1201 			if (!bh)
1202 				return -EIO;
1203 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1204 		} else {
1205 			vat20 = (struct virtualAllocationTable20 *)
1206 							vati->i_data;
1207 		}
1208 
1209 		map->s_type_specific.s_virtual.s_start_offset =
1210 			le16_to_cpu(vat20->lengthHeader);
1211 		map->s_type_specific.s_virtual.s_num_entries =
1212 			(sbi->s_vat_inode->i_size -
1213 				map->s_type_specific.s_virtual.
1214 					s_start_offset) >> 2;
1215 		brelse(bh);
1216 	}
1217 	return 0;
1218 }
1219 
1220 /*
1221  * Load partition descriptor block
1222  *
1223  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1224  * sequence.
1225  */
udf_load_partdesc(struct super_block * sb,sector_t block)1226 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1227 {
1228 	struct buffer_head *bh;
1229 	struct partitionDesc *p;
1230 	struct udf_part_map *map;
1231 	struct udf_sb_info *sbi = UDF_SB(sb);
1232 	int i, type1_idx;
1233 	uint16_t partitionNumber;
1234 	uint16_t ident;
1235 	int ret;
1236 
1237 	bh = udf_read_tagged(sb, block, block, &ident);
1238 	if (!bh)
1239 		return -EAGAIN;
1240 	if (ident != TAG_IDENT_PD) {
1241 		ret = 0;
1242 		goto out_bh;
1243 	}
1244 
1245 	p = (struct partitionDesc *)bh->b_data;
1246 	partitionNumber = le16_to_cpu(p->partitionNumber);
1247 
1248 	/* First scan for TYPE1 and SPARABLE partitions */
1249 	for (i = 0; i < sbi->s_partitions; i++) {
1250 		map = &sbi->s_partmaps[i];
1251 		udf_debug("Searching map: (%u == %u)\n",
1252 			  map->s_partition_num, partitionNumber);
1253 		if (map->s_partition_num == partitionNumber &&
1254 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1255 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1256 			break;
1257 	}
1258 
1259 	if (i >= sbi->s_partitions) {
1260 		udf_debug("Partition (%u) not found in partition map\n",
1261 			  partitionNumber);
1262 		ret = 0;
1263 		goto out_bh;
1264 	}
1265 
1266 	ret = udf_fill_partdesc_info(sb, p, i);
1267 	if (ret < 0)
1268 		goto out_bh;
1269 
1270 	/*
1271 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1272 	 * PHYSICAL partitions are already set up
1273 	 */
1274 	type1_idx = i;
1275 	map = NULL; /* supress 'maybe used uninitialized' warning */
1276 	for (i = 0; i < sbi->s_partitions; i++) {
1277 		map = &sbi->s_partmaps[i];
1278 
1279 		if (map->s_partition_num == partitionNumber &&
1280 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1281 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1282 		     map->s_partition_type == UDF_METADATA_MAP25))
1283 			break;
1284 	}
1285 
1286 	if (i >= sbi->s_partitions) {
1287 		ret = 0;
1288 		goto out_bh;
1289 	}
1290 
1291 	ret = udf_fill_partdesc_info(sb, p, i);
1292 	if (ret < 0)
1293 		goto out_bh;
1294 
1295 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1296 		ret = udf_load_metadata_files(sb, i, type1_idx);
1297 		if (ret < 0) {
1298 			udf_err(sb, "error loading MetaData partition map %d\n",
1299 				i);
1300 			goto out_bh;
1301 		}
1302 	} else {
1303 		/*
1304 		 * If we have a partition with virtual map, we don't handle
1305 		 * writing to it (we overwrite blocks instead of relocating
1306 		 * them).
1307 		 */
1308 		if (!sb_rdonly(sb)) {
1309 			ret = -EACCES;
1310 			goto out_bh;
1311 		}
1312 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1313 		ret = udf_load_vat(sb, i, type1_idx);
1314 		if (ret < 0)
1315 			goto out_bh;
1316 	}
1317 	ret = 0;
1318 out_bh:
1319 	/* In case loading failed, we handle cleanup in udf_fill_super */
1320 	brelse(bh);
1321 	return ret;
1322 }
1323 
udf_load_sparable_map(struct super_block * sb,struct udf_part_map * map,struct sparablePartitionMap * spm)1324 static int udf_load_sparable_map(struct super_block *sb,
1325 				 struct udf_part_map *map,
1326 				 struct sparablePartitionMap *spm)
1327 {
1328 	uint32_t loc;
1329 	uint16_t ident;
1330 	struct sparingTable *st;
1331 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1332 	int i;
1333 	struct buffer_head *bh;
1334 
1335 	map->s_partition_type = UDF_SPARABLE_MAP15;
1336 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1337 	if (!is_power_of_2(sdata->s_packet_len)) {
1338 		udf_err(sb, "error loading logical volume descriptor: "
1339 			"Invalid packet length %u\n",
1340 			(unsigned)sdata->s_packet_len);
1341 		return -EIO;
1342 	}
1343 	if (spm->numSparingTables > 4) {
1344 		udf_err(sb, "error loading logical volume descriptor: "
1345 			"Too many sparing tables (%d)\n",
1346 			(int)spm->numSparingTables);
1347 		return -EIO;
1348 	}
1349 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1350 		udf_err(sb, "error loading logical volume descriptor: "
1351 			"Too big sparing table size (%u)\n",
1352 			le32_to_cpu(spm->sizeSparingTable));
1353 		return -EIO;
1354 	}
1355 
1356 	for (i = 0; i < spm->numSparingTables; i++) {
1357 		loc = le32_to_cpu(spm->locSparingTable[i]);
1358 		bh = udf_read_tagged(sb, loc, loc, &ident);
1359 		if (!bh)
1360 			continue;
1361 
1362 		st = (struct sparingTable *)bh->b_data;
1363 		if (ident != 0 ||
1364 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1365 			    strlen(UDF_ID_SPARING)) ||
1366 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1367 							sb->s_blocksize) {
1368 			brelse(bh);
1369 			continue;
1370 		}
1371 
1372 		sdata->s_spar_map[i] = bh;
1373 	}
1374 	map->s_partition_func = udf_get_pblock_spar15;
1375 	return 0;
1376 }
1377 
udf_load_logicalvol(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1379 			       struct kernel_lb_addr *fileset)
1380 {
1381 	struct logicalVolDesc *lvd;
1382 	int i, offset;
1383 	uint8_t type;
1384 	struct udf_sb_info *sbi = UDF_SB(sb);
1385 	struct genericPartitionMap *gpm;
1386 	uint16_t ident;
1387 	struct buffer_head *bh;
1388 	unsigned int table_len;
1389 	int ret;
1390 
1391 	bh = udf_read_tagged(sb, block, block, &ident);
1392 	if (!bh)
1393 		return -EAGAIN;
1394 	BUG_ON(ident != TAG_IDENT_LVD);
1395 	lvd = (struct logicalVolDesc *)bh->b_data;
1396 	table_len = le32_to_cpu(lvd->mapTableLength);
1397 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1398 		udf_err(sb, "error loading logical volume descriptor: "
1399 			"Partition table too long (%u > %lu)\n", table_len,
1400 			sb->s_blocksize - sizeof(*lvd));
1401 		ret = -EIO;
1402 		goto out_bh;
1403 	}
1404 
1405 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1406 					   "logical volume");
1407 	if (ret)
1408 		goto out_bh;
1409 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1410 	if (ret)
1411 		goto out_bh;
1412 
1413 	for (i = 0, offset = 0;
1414 	     i < sbi->s_partitions && offset < table_len;
1415 	     i++, offset += gpm->partitionMapLength) {
1416 		struct udf_part_map *map = &sbi->s_partmaps[i];
1417 		gpm = (struct genericPartitionMap *)
1418 				&(lvd->partitionMaps[offset]);
1419 		type = gpm->partitionMapType;
1420 		if (type == 1) {
1421 			struct genericPartitionMap1 *gpm1 =
1422 				(struct genericPartitionMap1 *)gpm;
1423 			map->s_partition_type = UDF_TYPE1_MAP15;
1424 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1425 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1426 			map->s_partition_func = NULL;
1427 		} else if (type == 2) {
1428 			struct udfPartitionMap2 *upm2 =
1429 						(struct udfPartitionMap2 *)gpm;
1430 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1431 						strlen(UDF_ID_VIRTUAL))) {
1432 				u16 suf =
1433 					le16_to_cpu(((__le16 *)upm2->partIdent.
1434 							identSuffix)[0]);
1435 				if (suf < 0x0200) {
1436 					map->s_partition_type =
1437 							UDF_VIRTUAL_MAP15;
1438 					map->s_partition_func =
1439 							udf_get_pblock_virt15;
1440 				} else {
1441 					map->s_partition_type =
1442 							UDF_VIRTUAL_MAP20;
1443 					map->s_partition_func =
1444 							udf_get_pblock_virt20;
1445 				}
1446 			} else if (!strncmp(upm2->partIdent.ident,
1447 						UDF_ID_SPARABLE,
1448 						strlen(UDF_ID_SPARABLE))) {
1449 				ret = udf_load_sparable_map(sb, map,
1450 					(struct sparablePartitionMap *)gpm);
1451 				if (ret < 0)
1452 					goto out_bh;
1453 			} else if (!strncmp(upm2->partIdent.ident,
1454 						UDF_ID_METADATA,
1455 						strlen(UDF_ID_METADATA))) {
1456 				struct udf_meta_data *mdata =
1457 					&map->s_type_specific.s_metadata;
1458 				struct metadataPartitionMap *mdm =
1459 						(struct metadataPartitionMap *)
1460 						&(lvd->partitionMaps[offset]);
1461 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1462 					  i, type, UDF_ID_METADATA);
1463 
1464 				map->s_partition_type = UDF_METADATA_MAP25;
1465 				map->s_partition_func = udf_get_pblock_meta25;
1466 
1467 				mdata->s_meta_file_loc   =
1468 					le32_to_cpu(mdm->metadataFileLoc);
1469 				mdata->s_mirror_file_loc =
1470 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1471 				mdata->s_bitmap_file_loc =
1472 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1473 				mdata->s_alloc_unit_size =
1474 					le32_to_cpu(mdm->allocUnitSize);
1475 				mdata->s_align_unit_size =
1476 					le16_to_cpu(mdm->alignUnitSize);
1477 				if (mdm->flags & 0x01)
1478 					mdata->s_flags |= MF_DUPLICATE_MD;
1479 
1480 				udf_debug("Metadata Ident suffix=0x%x\n",
1481 					  le16_to_cpu(*(__le16 *)
1482 						      mdm->partIdent.identSuffix));
1483 				udf_debug("Metadata part num=%u\n",
1484 					  le16_to_cpu(mdm->partitionNum));
1485 				udf_debug("Metadata part alloc unit size=%u\n",
1486 					  le32_to_cpu(mdm->allocUnitSize));
1487 				udf_debug("Metadata file loc=%u\n",
1488 					  le32_to_cpu(mdm->metadataFileLoc));
1489 				udf_debug("Mirror file loc=%u\n",
1490 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1491 				udf_debug("Bitmap file loc=%u\n",
1492 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1493 				udf_debug("Flags: %d %u\n",
1494 					  mdata->s_flags, mdm->flags);
1495 			} else {
1496 				udf_debug("Unknown ident: %s\n",
1497 					  upm2->partIdent.ident);
1498 				continue;
1499 			}
1500 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1501 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1502 		}
1503 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1504 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1505 	}
1506 
1507 	if (fileset) {
1508 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1509 
1510 		*fileset = lelb_to_cpu(la->extLocation);
1511 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1512 			  fileset->logicalBlockNum,
1513 			  fileset->partitionReferenceNum);
1514 	}
1515 	if (lvd->integritySeqExt.extLength)
1516 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1517 	ret = 0;
1518 
1519 	if (!sbi->s_lvid_bh) {
1520 		/* We can't generate unique IDs without a valid LVID */
1521 		if (sb_rdonly(sb)) {
1522 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1523 		} else {
1524 			udf_warn(sb, "Damaged or missing LVID, forcing "
1525 				     "readonly mount\n");
1526 			ret = -EACCES;
1527 		}
1528 	}
1529 out_bh:
1530 	brelse(bh);
1531 	return ret;
1532 }
1533 
1534 /*
1535  * Find the prevailing Logical Volume Integrity Descriptor.
1536  */
udf_load_logicalvolint(struct super_block * sb,struct kernel_extent_ad loc)1537 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1538 {
1539 	struct buffer_head *bh, *final_bh;
1540 	uint16_t ident;
1541 	struct udf_sb_info *sbi = UDF_SB(sb);
1542 	struct logicalVolIntegrityDesc *lvid;
1543 	int indirections = 0;
1544 	u32 parts, impuselen;
1545 
1546 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1547 		final_bh = NULL;
1548 		while (loc.extLength > 0 &&
1549 			(bh = udf_read_tagged(sb, loc.extLocation,
1550 					loc.extLocation, &ident))) {
1551 			if (ident != TAG_IDENT_LVID) {
1552 				brelse(bh);
1553 				break;
1554 			}
1555 
1556 			brelse(final_bh);
1557 			final_bh = bh;
1558 
1559 			loc.extLength -= sb->s_blocksize;
1560 			loc.extLocation++;
1561 		}
1562 
1563 		if (!final_bh)
1564 			return;
1565 
1566 		brelse(sbi->s_lvid_bh);
1567 		sbi->s_lvid_bh = final_bh;
1568 
1569 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570 		if (lvid->nextIntegrityExt.extLength == 0)
1571 			goto check;
1572 
1573 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1574 	}
1575 
1576 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577 		UDF_MAX_LVID_NESTING);
1578 out_err:
1579 	brelse(sbi->s_lvid_bh);
1580 	sbi->s_lvid_bh = NULL;
1581 	return;
1582 check:
1583 	parts = le32_to_cpu(lvid->numOfPartitions);
1584 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1585 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1586 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1587 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1588 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1589 			 "ignoring.\n", parts, impuselen);
1590 		goto out_err;
1591 	}
1592 }
1593 
1594 /*
1595  * Step for reallocation of table of partition descriptor sequence numbers.
1596  * Must be power of 2.
1597  */
1598 #define PART_DESC_ALLOC_STEP 32
1599 
1600 struct part_desc_seq_scan_data {
1601 	struct udf_vds_record rec;
1602 	u32 partnum;
1603 };
1604 
1605 struct desc_seq_scan_data {
1606 	struct udf_vds_record vds[VDS_POS_LENGTH];
1607 	unsigned int size_part_descs;
1608 	unsigned int num_part_descs;
1609 	struct part_desc_seq_scan_data *part_descs_loc;
1610 };
1611 
handle_partition_descriptor(struct buffer_head * bh,struct desc_seq_scan_data * data)1612 static struct udf_vds_record *handle_partition_descriptor(
1613 				struct buffer_head *bh,
1614 				struct desc_seq_scan_data *data)
1615 {
1616 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1617 	int partnum;
1618 	int i;
1619 
1620 	partnum = le16_to_cpu(desc->partitionNumber);
1621 	for (i = 0; i < data->num_part_descs; i++)
1622 		if (partnum == data->part_descs_loc[i].partnum)
1623 			return &(data->part_descs_loc[i].rec);
1624 	if (data->num_part_descs >= data->size_part_descs) {
1625 		struct part_desc_seq_scan_data *new_loc;
1626 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1627 
1628 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1629 		if (!new_loc)
1630 			return ERR_PTR(-ENOMEM);
1631 		memcpy(new_loc, data->part_descs_loc,
1632 		       data->size_part_descs * sizeof(*new_loc));
1633 		kfree(data->part_descs_loc);
1634 		data->part_descs_loc = new_loc;
1635 		data->size_part_descs = new_size;
1636 	}
1637 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1638 }
1639 
1640 
get_volume_descriptor_record(uint16_t ident,struct buffer_head * bh,struct desc_seq_scan_data * data)1641 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1642 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1643 {
1644 	switch (ident) {
1645 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1646 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1647 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1648 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1649 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1650 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1651 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1652 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1653 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1654 		return handle_partition_descriptor(bh, data);
1655 	}
1656 	return NULL;
1657 }
1658 
1659 /*
1660  * Process a main/reserve volume descriptor sequence.
1661  *   @block		First block of first extent of the sequence.
1662  *   @lastblock		Lastblock of first extent of the sequence.
1663  *   @fileset		There we store extent containing root fileset
1664  *
1665  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1666  * sequence
1667  */
udf_process_sequence(struct super_block * sb,sector_t block,sector_t lastblock,struct kernel_lb_addr * fileset)1668 static noinline int udf_process_sequence(
1669 		struct super_block *sb,
1670 		sector_t block, sector_t lastblock,
1671 		struct kernel_lb_addr *fileset)
1672 {
1673 	struct buffer_head *bh = NULL;
1674 	struct udf_vds_record *curr;
1675 	struct generic_desc *gd;
1676 	struct volDescPtr *vdp;
1677 	bool done = false;
1678 	uint32_t vdsn;
1679 	uint16_t ident;
1680 	int ret;
1681 	unsigned int indirections = 0;
1682 	struct desc_seq_scan_data data;
1683 	unsigned int i;
1684 
1685 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1686 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1687 	data.num_part_descs = 0;
1688 	data.part_descs_loc = kcalloc(data.size_part_descs,
1689 				      sizeof(*data.part_descs_loc),
1690 				      GFP_KERNEL);
1691 	if (!data.part_descs_loc)
1692 		return -ENOMEM;
1693 
1694 	/*
1695 	 * Read the main descriptor sequence and find which descriptors
1696 	 * are in it.
1697 	 */
1698 	for (; (!done && block <= lastblock); block++) {
1699 		bh = udf_read_tagged(sb, block, block, &ident);
1700 		if (!bh)
1701 			break;
1702 
1703 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1704 		gd = (struct generic_desc *)bh->b_data;
1705 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1706 		switch (ident) {
1707 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1708 			if (++indirections > UDF_MAX_TD_NESTING) {
1709 				udf_err(sb, "too many Volume Descriptor "
1710 					"Pointers (max %u supported)\n",
1711 					UDF_MAX_TD_NESTING);
1712 				brelse(bh);
1713 				ret = -EIO;
1714 				goto out;
1715 			}
1716 
1717 			vdp = (struct volDescPtr *)bh->b_data;
1718 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1719 			lastblock = le32_to_cpu(
1720 				vdp->nextVolDescSeqExt.extLength) >>
1721 				sb->s_blocksize_bits;
1722 			lastblock += block - 1;
1723 			/* For loop is going to increment 'block' again */
1724 			block--;
1725 			break;
1726 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1727 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1728 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1729 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1730 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1731 			curr = get_volume_descriptor_record(ident, bh, &data);
1732 			if (IS_ERR(curr)) {
1733 				brelse(bh);
1734 				ret = PTR_ERR(curr);
1735 				goto out;
1736 			}
1737 			/* Descriptor we don't care about? */
1738 			if (!curr)
1739 				break;
1740 			if (vdsn >= curr->volDescSeqNum) {
1741 				curr->volDescSeqNum = vdsn;
1742 				curr->block = block;
1743 			}
1744 			break;
1745 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1746 			done = true;
1747 			break;
1748 		}
1749 		brelse(bh);
1750 	}
1751 	/*
1752 	 * Now read interesting descriptors again and process them
1753 	 * in a suitable order
1754 	 */
1755 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1756 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1757 		ret = -EAGAIN;
1758 		goto out;
1759 	}
1760 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1761 	if (ret < 0)
1762 		goto out;
1763 
1764 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1765 		ret = udf_load_logicalvol(sb,
1766 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1767 				fileset);
1768 		if (ret < 0)
1769 			goto out;
1770 	}
1771 
1772 	/* Now handle prevailing Partition Descriptors */
1773 	for (i = 0; i < data.num_part_descs; i++) {
1774 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1775 		if (ret < 0)
1776 			goto out;
1777 	}
1778 	ret = 0;
1779 out:
1780 	kfree(data.part_descs_loc);
1781 	return ret;
1782 }
1783 
1784 /*
1785  * Load Volume Descriptor Sequence described by anchor in bh
1786  *
1787  * Returns <0 on error, 0 on success
1788  */
udf_load_sequence(struct super_block * sb,struct buffer_head * bh,struct kernel_lb_addr * fileset)1789 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1790 			     struct kernel_lb_addr *fileset)
1791 {
1792 	struct anchorVolDescPtr *anchor;
1793 	sector_t main_s, main_e, reserve_s, reserve_e;
1794 	int ret;
1795 
1796 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1797 
1798 	/* Locate the main sequence */
1799 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1800 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1801 	main_e = main_e >> sb->s_blocksize_bits;
1802 	main_e += main_s - 1;
1803 
1804 	/* Locate the reserve sequence */
1805 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1806 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1807 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1808 	reserve_e += reserve_s - 1;
1809 
1810 	/* Process the main & reserve sequences */
1811 	/* responsible for finding the PartitionDesc(s) */
1812 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1813 	if (ret != -EAGAIN)
1814 		return ret;
1815 	udf_sb_free_partitions(sb);
1816 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1817 	if (ret < 0) {
1818 		udf_sb_free_partitions(sb);
1819 		/* No sequence was OK, return -EIO */
1820 		if (ret == -EAGAIN)
1821 			ret = -EIO;
1822 	}
1823 	return ret;
1824 }
1825 
1826 /*
1827  * Check whether there is an anchor block in the given block and
1828  * load Volume Descriptor Sequence if so.
1829  *
1830  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1831  * block
1832  */
udf_check_anchor_block(struct super_block * sb,sector_t block,struct kernel_lb_addr * fileset)1833 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1834 				  struct kernel_lb_addr *fileset)
1835 {
1836 	struct buffer_head *bh;
1837 	uint16_t ident;
1838 	int ret;
1839 
1840 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1841 	    udf_fixed_to_variable(block) >=
1842 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1843 		return -EAGAIN;
1844 
1845 	bh = udf_read_tagged(sb, block, block, &ident);
1846 	if (!bh)
1847 		return -EAGAIN;
1848 	if (ident != TAG_IDENT_AVDP) {
1849 		brelse(bh);
1850 		return -EAGAIN;
1851 	}
1852 	ret = udf_load_sequence(sb, bh, fileset);
1853 	brelse(bh);
1854 	return ret;
1855 }
1856 
1857 /*
1858  * Search for an anchor volume descriptor pointer.
1859  *
1860  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1861  * of anchors.
1862  */
udf_scan_anchors(struct super_block * sb,sector_t * lastblock,struct kernel_lb_addr * fileset)1863 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1864 			    struct kernel_lb_addr *fileset)
1865 {
1866 	sector_t last[6];
1867 	int i;
1868 	struct udf_sb_info *sbi = UDF_SB(sb);
1869 	int last_count = 0;
1870 	int ret;
1871 
1872 	/* First try user provided anchor */
1873 	if (sbi->s_anchor) {
1874 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1875 		if (ret != -EAGAIN)
1876 			return ret;
1877 	}
1878 	/*
1879 	 * according to spec, anchor is in either:
1880 	 *     block 256
1881 	 *     lastblock-256
1882 	 *     lastblock
1883 	 *  however, if the disc isn't closed, it could be 512.
1884 	 */
1885 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1886 	if (ret != -EAGAIN)
1887 		return ret;
1888 	/*
1889 	 * The trouble is which block is the last one. Drives often misreport
1890 	 * this so we try various possibilities.
1891 	 */
1892 	last[last_count++] = *lastblock;
1893 	if (*lastblock >= 1)
1894 		last[last_count++] = *lastblock - 1;
1895 	last[last_count++] = *lastblock + 1;
1896 	if (*lastblock >= 2)
1897 		last[last_count++] = *lastblock - 2;
1898 	if (*lastblock >= 150)
1899 		last[last_count++] = *lastblock - 150;
1900 	if (*lastblock >= 152)
1901 		last[last_count++] = *lastblock - 152;
1902 
1903 	for (i = 0; i < last_count; i++) {
1904 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1905 				sb->s_blocksize_bits)
1906 			continue;
1907 		ret = udf_check_anchor_block(sb, last[i], fileset);
1908 		if (ret != -EAGAIN) {
1909 			if (!ret)
1910 				*lastblock = last[i];
1911 			return ret;
1912 		}
1913 		if (last[i] < 256)
1914 			continue;
1915 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1916 		if (ret != -EAGAIN) {
1917 			if (!ret)
1918 				*lastblock = last[i];
1919 			return ret;
1920 		}
1921 	}
1922 
1923 	/* Finally try block 512 in case media is open */
1924 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1925 }
1926 
1927 /*
1928  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1929  * area specified by it. The function expects sbi->s_lastblock to be the last
1930  * block on the media.
1931  *
1932  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1933  * was not found.
1934  */
udf_find_anchor(struct super_block * sb,struct kernel_lb_addr * fileset)1935 static int udf_find_anchor(struct super_block *sb,
1936 			   struct kernel_lb_addr *fileset)
1937 {
1938 	struct udf_sb_info *sbi = UDF_SB(sb);
1939 	sector_t lastblock = sbi->s_last_block;
1940 	int ret;
1941 
1942 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1943 	if (ret != -EAGAIN)
1944 		goto out;
1945 
1946 	/* No anchor found? Try VARCONV conversion of block numbers */
1947 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1948 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1949 	/* Firstly, we try to not convert number of the last block */
1950 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1951 	if (ret != -EAGAIN)
1952 		goto out;
1953 
1954 	lastblock = sbi->s_last_block;
1955 	/* Secondly, we try with converted number of the last block */
1956 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1957 	if (ret < 0) {
1958 		/* VARCONV didn't help. Clear it. */
1959 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1960 	}
1961 out:
1962 	if (ret == 0)
1963 		sbi->s_last_block = lastblock;
1964 	return ret;
1965 }
1966 
1967 /*
1968  * Check Volume Structure Descriptor, find Anchor block and load Volume
1969  * Descriptor Sequence.
1970  *
1971  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1972  * block was not found.
1973  */
udf_load_vrs(struct super_block * sb,struct udf_options * uopt,int silent,struct kernel_lb_addr * fileset)1974 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1975 			int silent, struct kernel_lb_addr *fileset)
1976 {
1977 	struct udf_sb_info *sbi = UDF_SB(sb);
1978 	int nsr = 0;
1979 	int ret;
1980 
1981 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1982 		if (!silent)
1983 			udf_warn(sb, "Bad block size\n");
1984 		return -EINVAL;
1985 	}
1986 	sbi->s_last_block = uopt->lastblock;
1987 	if (!uopt->novrs) {
1988 		/* Check that it is NSR02 compliant */
1989 		nsr = udf_check_vsd(sb);
1990 		if (!nsr) {
1991 			if (!silent)
1992 				udf_warn(sb, "No VRS found\n");
1993 			return -EINVAL;
1994 		}
1995 		if (nsr == -1)
1996 			udf_debug("Failed to read sector at offset %d. "
1997 				  "Assuming open disc. Skipping validity "
1998 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1999 		if (!sbi->s_last_block)
2000 			sbi->s_last_block = udf_get_last_block(sb);
2001 	} else {
2002 		udf_debug("Validity check skipped because of novrs option\n");
2003 	}
2004 
2005 	/* Look for anchor block and load Volume Descriptor Sequence */
2006 	sbi->s_anchor = uopt->anchor;
2007 	ret = udf_find_anchor(sb, fileset);
2008 	if (ret < 0) {
2009 		if (!silent && ret == -EAGAIN)
2010 			udf_warn(sb, "No anchor found\n");
2011 		return ret;
2012 	}
2013 	return 0;
2014 }
2015 
udf_finalize_lvid(struct logicalVolIntegrityDesc * lvid)2016 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2017 {
2018 	struct timespec64 ts;
2019 
2020 	ktime_get_real_ts64(&ts);
2021 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2022 	lvid->descTag.descCRC = cpu_to_le16(
2023 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2024 			le16_to_cpu(lvid->descTag.descCRCLength)));
2025 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026 }
2027 
udf_open_lvid(struct super_block * sb)2028 static void udf_open_lvid(struct super_block *sb)
2029 {
2030 	struct udf_sb_info *sbi = UDF_SB(sb);
2031 	struct buffer_head *bh = sbi->s_lvid_bh;
2032 	struct logicalVolIntegrityDesc *lvid;
2033 	struct logicalVolIntegrityDescImpUse *lvidiu;
2034 
2035 	if (!bh)
2036 		return;
2037 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2038 	lvidiu = udf_sb_lvidiu(sb);
2039 	if (!lvidiu)
2040 		return;
2041 
2042 	mutex_lock(&sbi->s_alloc_mutex);
2043 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2044 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2045 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2046 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2047 	else
2048 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2049 
2050 	udf_finalize_lvid(lvid);
2051 	mark_buffer_dirty(bh);
2052 	sbi->s_lvid_dirty = 0;
2053 	mutex_unlock(&sbi->s_alloc_mutex);
2054 	/* Make opening of filesystem visible on the media immediately */
2055 	sync_dirty_buffer(bh);
2056 }
2057 
udf_close_lvid(struct super_block * sb)2058 static void udf_close_lvid(struct super_block *sb)
2059 {
2060 	struct udf_sb_info *sbi = UDF_SB(sb);
2061 	struct buffer_head *bh = sbi->s_lvid_bh;
2062 	struct logicalVolIntegrityDesc *lvid;
2063 	struct logicalVolIntegrityDescImpUse *lvidiu;
2064 
2065 	if (!bh)
2066 		return;
2067 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2068 	lvidiu = udf_sb_lvidiu(sb);
2069 	if (!lvidiu)
2070 		return;
2071 
2072 	mutex_lock(&sbi->s_alloc_mutex);
2073 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2074 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2075 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2076 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2077 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2078 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2079 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2080 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2081 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2082 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2083 
2084 	/*
2085 	 * We set buffer uptodate unconditionally here to avoid spurious
2086 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2087 	 * the buffer as !uptodate
2088 	 */
2089 	set_buffer_uptodate(bh);
2090 	udf_finalize_lvid(lvid);
2091 	mark_buffer_dirty(bh);
2092 	sbi->s_lvid_dirty = 0;
2093 	mutex_unlock(&sbi->s_alloc_mutex);
2094 	/* Make closing of filesystem visible on the media immediately */
2095 	sync_dirty_buffer(bh);
2096 }
2097 
lvid_get_unique_id(struct super_block * sb)2098 u64 lvid_get_unique_id(struct super_block *sb)
2099 {
2100 	struct buffer_head *bh;
2101 	struct udf_sb_info *sbi = UDF_SB(sb);
2102 	struct logicalVolIntegrityDesc *lvid;
2103 	struct logicalVolHeaderDesc *lvhd;
2104 	u64 uniqueID;
2105 	u64 ret;
2106 
2107 	bh = sbi->s_lvid_bh;
2108 	if (!bh)
2109 		return 0;
2110 
2111 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2112 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2113 
2114 	mutex_lock(&sbi->s_alloc_mutex);
2115 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2116 	if (!(++uniqueID & 0xFFFFFFFF))
2117 		uniqueID += 16;
2118 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2119 	udf_updated_lvid(sb);
2120 	mutex_unlock(&sbi->s_alloc_mutex);
2121 
2122 	return ret;
2123 }
2124 
udf_fill_super(struct super_block * sb,void * options,int silent)2125 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2126 {
2127 	int ret = -EINVAL;
2128 	struct inode *inode = NULL;
2129 	struct udf_options uopt;
2130 	struct kernel_lb_addr rootdir, fileset;
2131 	struct udf_sb_info *sbi;
2132 	bool lvid_open = false;
2133 
2134 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2135 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2136 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2137 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2138 	uopt.umask = 0;
2139 	uopt.fmode = UDF_INVALID_MODE;
2140 	uopt.dmode = UDF_INVALID_MODE;
2141 	uopt.nls_map = NULL;
2142 
2143 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2144 	if (!sbi)
2145 		return -ENOMEM;
2146 
2147 	sb->s_fs_info = sbi;
2148 
2149 	mutex_init(&sbi->s_alloc_mutex);
2150 
2151 	if (!udf_parse_options((char *)options, &uopt, false))
2152 		goto parse_options_failure;
2153 
2154 	fileset.logicalBlockNum = 0xFFFFFFFF;
2155 	fileset.partitionReferenceNum = 0xFFFF;
2156 
2157 	sbi->s_flags = uopt.flags;
2158 	sbi->s_uid = uopt.uid;
2159 	sbi->s_gid = uopt.gid;
2160 	sbi->s_umask = uopt.umask;
2161 	sbi->s_fmode = uopt.fmode;
2162 	sbi->s_dmode = uopt.dmode;
2163 	sbi->s_nls_map = uopt.nls_map;
2164 	rwlock_init(&sbi->s_cred_lock);
2165 
2166 	if (uopt.session == 0xFFFFFFFF)
2167 		sbi->s_session = udf_get_last_session(sb);
2168 	else
2169 		sbi->s_session = uopt.session;
2170 
2171 	udf_debug("Multi-session=%d\n", sbi->s_session);
2172 
2173 	/* Fill in the rest of the superblock */
2174 	sb->s_op = &udf_sb_ops;
2175 	sb->s_export_op = &udf_export_ops;
2176 
2177 	sb->s_magic = UDF_SUPER_MAGIC;
2178 	sb->s_time_gran = 1000;
2179 
2180 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2181 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2182 	} else {
2183 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2184 		while (uopt.blocksize <= 4096) {
2185 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2186 			if (ret < 0) {
2187 				if (!silent && ret != -EACCES) {
2188 					pr_notice("Scanning with blocksize %u failed\n",
2189 						  uopt.blocksize);
2190 				}
2191 				brelse(sbi->s_lvid_bh);
2192 				sbi->s_lvid_bh = NULL;
2193 				/*
2194 				 * EACCES is special - we want to propagate to
2195 				 * upper layers that we cannot handle RW mount.
2196 				 */
2197 				if (ret == -EACCES)
2198 					break;
2199 			} else
2200 				break;
2201 
2202 			uopt.blocksize <<= 1;
2203 		}
2204 	}
2205 	if (ret < 0) {
2206 		if (ret == -EAGAIN) {
2207 			udf_warn(sb, "No partition found (1)\n");
2208 			ret = -EINVAL;
2209 		}
2210 		goto error_out;
2211 	}
2212 
2213 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2214 
2215 	if (sbi->s_lvid_bh) {
2216 		struct logicalVolIntegrityDescImpUse *lvidiu =
2217 							udf_sb_lvidiu(sb);
2218 		uint16_t minUDFReadRev;
2219 		uint16_t minUDFWriteRev;
2220 
2221 		if (!lvidiu) {
2222 			ret = -EINVAL;
2223 			goto error_out;
2224 		}
2225 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2226 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2227 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2228 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2229 				minUDFReadRev,
2230 				UDF_MAX_READ_VERSION);
2231 			ret = -EINVAL;
2232 			goto error_out;
2233 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2234 			if (!sb_rdonly(sb)) {
2235 				ret = -EACCES;
2236 				goto error_out;
2237 			}
2238 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2239 		}
2240 
2241 		sbi->s_udfrev = minUDFWriteRev;
2242 
2243 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2244 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2245 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2246 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2247 	}
2248 
2249 	if (!sbi->s_partitions) {
2250 		udf_warn(sb, "No partition found (2)\n");
2251 		ret = -EINVAL;
2252 		goto error_out;
2253 	}
2254 
2255 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2256 			UDF_PART_FLAG_READ_ONLY) {
2257 		if (!sb_rdonly(sb)) {
2258 			ret = -EACCES;
2259 			goto error_out;
2260 		}
2261 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2262 	}
2263 
2264 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2265 	if (ret < 0) {
2266 		udf_warn(sb, "No fileset found\n");
2267 		goto error_out;
2268 	}
2269 
2270 	if (!silent) {
2271 		struct timestamp ts;
2272 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2273 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2274 			 sbi->s_volume_ident,
2275 			 le16_to_cpu(ts.year), ts.month, ts.day,
2276 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2277 	}
2278 	if (!sb_rdonly(sb)) {
2279 		udf_open_lvid(sb);
2280 		lvid_open = true;
2281 	}
2282 
2283 	/* Assign the root inode */
2284 	/* assign inodes by physical block number */
2285 	/* perhaps it's not extensible enough, but for now ... */
2286 	inode = udf_iget(sb, &rootdir);
2287 	if (IS_ERR(inode)) {
2288 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2289 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2290 		ret = PTR_ERR(inode);
2291 		goto error_out;
2292 	}
2293 
2294 	/* Allocate a dentry for the root inode */
2295 	sb->s_root = d_make_root(inode);
2296 	if (!sb->s_root) {
2297 		udf_err(sb, "Couldn't allocate root dentry\n");
2298 		ret = -ENOMEM;
2299 		goto error_out;
2300 	}
2301 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2302 	sb->s_max_links = UDF_MAX_LINKS;
2303 	return 0;
2304 
2305 error_out:
2306 	iput(sbi->s_vat_inode);
2307 parse_options_failure:
2308 	unload_nls(uopt.nls_map);
2309 	if (lvid_open)
2310 		udf_close_lvid(sb);
2311 	brelse(sbi->s_lvid_bh);
2312 	udf_sb_free_partitions(sb);
2313 	kfree(sbi);
2314 	sb->s_fs_info = NULL;
2315 
2316 	return ret;
2317 }
2318 
_udf_err(struct super_block * sb,const char * function,const char * fmt,...)2319 void _udf_err(struct super_block *sb, const char *function,
2320 	      const char *fmt, ...)
2321 {
2322 	struct va_format vaf;
2323 	va_list args;
2324 
2325 	va_start(args, fmt);
2326 
2327 	vaf.fmt = fmt;
2328 	vaf.va = &args;
2329 
2330 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2331 
2332 	va_end(args);
2333 }
2334 
_udf_warn(struct super_block * sb,const char * function,const char * fmt,...)2335 void _udf_warn(struct super_block *sb, const char *function,
2336 	       const char *fmt, ...)
2337 {
2338 	struct va_format vaf;
2339 	va_list args;
2340 
2341 	va_start(args, fmt);
2342 
2343 	vaf.fmt = fmt;
2344 	vaf.va = &args;
2345 
2346 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2347 
2348 	va_end(args);
2349 }
2350 
udf_put_super(struct super_block * sb)2351 static void udf_put_super(struct super_block *sb)
2352 {
2353 	struct udf_sb_info *sbi;
2354 
2355 	sbi = UDF_SB(sb);
2356 
2357 	iput(sbi->s_vat_inode);
2358 	unload_nls(sbi->s_nls_map);
2359 	if (!sb_rdonly(sb))
2360 		udf_close_lvid(sb);
2361 	brelse(sbi->s_lvid_bh);
2362 	udf_sb_free_partitions(sb);
2363 	mutex_destroy(&sbi->s_alloc_mutex);
2364 	kfree(sb->s_fs_info);
2365 	sb->s_fs_info = NULL;
2366 }
2367 
udf_sync_fs(struct super_block * sb,int wait)2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370 	struct udf_sb_info *sbi = UDF_SB(sb);
2371 
2372 	mutex_lock(&sbi->s_alloc_mutex);
2373 	if (sbi->s_lvid_dirty) {
2374 		struct buffer_head *bh = sbi->s_lvid_bh;
2375 		struct logicalVolIntegrityDesc *lvid;
2376 
2377 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 		udf_finalize_lvid(lvid);
2379 
2380 		/*
2381 		 * Blockdevice will be synced later so we don't have to submit
2382 		 * the buffer for IO
2383 		 */
2384 		mark_buffer_dirty(bh);
2385 		sbi->s_lvid_dirty = 0;
2386 	}
2387 	mutex_unlock(&sbi->s_alloc_mutex);
2388 
2389 	return 0;
2390 }
2391 
udf_statfs(struct dentry * dentry,struct kstatfs * buf)2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394 	struct super_block *sb = dentry->d_sb;
2395 	struct udf_sb_info *sbi = UDF_SB(sb);
2396 	struct logicalVolIntegrityDescImpUse *lvidiu;
2397 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398 
2399 	lvidiu = udf_sb_lvidiu(sb);
2400 	buf->f_type = UDF_SUPER_MAGIC;
2401 	buf->f_bsize = sb->s_blocksize;
2402 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 	buf->f_bfree = udf_count_free(sb);
2404 	buf->f_bavail = buf->f_bfree;
2405 	/*
2406 	 * Let's pretend each free block is also a free 'inode' since UDF does
2407 	 * not have separate preallocated table of inodes.
2408 	 */
2409 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2411 			+ buf->f_bfree;
2412 	buf->f_ffree = buf->f_bfree;
2413 	buf->f_namelen = UDF_NAME_LEN;
2414 	buf->f_fsid = u64_to_fsid(id);
2415 
2416 	return 0;
2417 }
2418 
udf_count_free_bitmap(struct super_block * sb,struct udf_bitmap * bitmap)2419 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2420 					  struct udf_bitmap *bitmap)
2421 {
2422 	struct buffer_head *bh = NULL;
2423 	unsigned int accum = 0;
2424 	int index;
2425 	udf_pblk_t block = 0, newblock;
2426 	struct kernel_lb_addr loc;
2427 	uint32_t bytes;
2428 	uint8_t *ptr;
2429 	uint16_t ident;
2430 	struct spaceBitmapDesc *bm;
2431 
2432 	loc.logicalBlockNum = bitmap->s_extPosition;
2433 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2434 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2435 
2436 	if (!bh) {
2437 		udf_err(sb, "udf_count_free failed\n");
2438 		goto out;
2439 	} else if (ident != TAG_IDENT_SBD) {
2440 		brelse(bh);
2441 		udf_err(sb, "udf_count_free failed\n");
2442 		goto out;
2443 	}
2444 
2445 	bm = (struct spaceBitmapDesc *)bh->b_data;
2446 	bytes = le32_to_cpu(bm->numOfBytes);
2447 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2448 	ptr = (uint8_t *)bh->b_data;
2449 
2450 	while (bytes > 0) {
2451 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2452 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2453 					cur_bytes * 8);
2454 		bytes -= cur_bytes;
2455 		if (bytes) {
2456 			brelse(bh);
2457 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2458 			bh = udf_tread(sb, newblock);
2459 			if (!bh) {
2460 				udf_debug("read failed\n");
2461 				goto out;
2462 			}
2463 			index = 0;
2464 			ptr = (uint8_t *)bh->b_data;
2465 		}
2466 	}
2467 	brelse(bh);
2468 out:
2469 	return accum;
2470 }
2471 
udf_count_free_table(struct super_block * sb,struct inode * table)2472 static unsigned int udf_count_free_table(struct super_block *sb,
2473 					 struct inode *table)
2474 {
2475 	unsigned int accum = 0;
2476 	uint32_t elen;
2477 	struct kernel_lb_addr eloc;
2478 	int8_t etype;
2479 	struct extent_position epos;
2480 
2481 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2482 	epos.block = UDF_I(table)->i_location;
2483 	epos.offset = sizeof(struct unallocSpaceEntry);
2484 	epos.bh = NULL;
2485 
2486 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2487 		accum += (elen >> table->i_sb->s_blocksize_bits);
2488 
2489 	brelse(epos.bh);
2490 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2491 
2492 	return accum;
2493 }
2494 
udf_count_free(struct super_block * sb)2495 static unsigned int udf_count_free(struct super_block *sb)
2496 {
2497 	unsigned int accum = 0;
2498 	struct udf_sb_info *sbi = UDF_SB(sb);
2499 	struct udf_part_map *map;
2500 	unsigned int part = sbi->s_partition;
2501 	int ptype = sbi->s_partmaps[part].s_partition_type;
2502 
2503 	if (ptype == UDF_METADATA_MAP25) {
2504 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2505 							s_phys_partition_ref;
2506 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2507 		/*
2508 		 * Filesystems with VAT are append-only and we cannot write to
2509  		 * them. Let's just report 0 here.
2510 		 */
2511 		return 0;
2512 	}
2513 
2514 	if (sbi->s_lvid_bh) {
2515 		struct logicalVolIntegrityDesc *lvid =
2516 			(struct logicalVolIntegrityDesc *)
2517 			sbi->s_lvid_bh->b_data;
2518 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2519 			accum = le32_to_cpu(
2520 					lvid->freeSpaceTable[part]);
2521 			if (accum == 0xFFFFFFFF)
2522 				accum = 0;
2523 		}
2524 	}
2525 
2526 	if (accum)
2527 		return accum;
2528 
2529 	map = &sbi->s_partmaps[part];
2530 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2531 		accum += udf_count_free_bitmap(sb,
2532 					       map->s_uspace.s_bitmap);
2533 	}
2534 	if (accum)
2535 		return accum;
2536 
2537 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2538 		accum += udf_count_free_table(sb,
2539 					      map->s_uspace.s_table);
2540 	}
2541 	return accum;
2542 }
2543 
2544 MODULE_AUTHOR("Ben Fennema");
2545 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2546 MODULE_LICENSE("GPL");
2547 module_init(init_udf_fs)
2548 module_exit(exit_udf_fs)
2549