1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/libfs.c
4 * Library for filesystems writers.
5 */
6
7 #include <linux/blkdev.h>
8 #include <linux/export.h>
9 #include <linux/pagemap.h>
10 #include <linux/slab.h>
11 #include <linux/cred.h>
12 #include <linux/mount.h>
13 #include <linux/vfs.h>
14 #include <linux/quotaops.h>
15 #include <linux/mutex.h>
16 #include <linux/namei.h>
17 #include <linux/exportfs.h>
18 #include <linux/writeback.h>
19 #include <linux/buffer_head.h> /* sync_mapping_buffers */
20 #include <linux/fs_context.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/fsnotify.h>
23 #include <linux/unicode.h>
24 #include <linux/fscrypt.h>
25
26 #include <linux/uaccess.h>
27
28 #include "internal.h"
29
simple_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)30 int simple_getattr(struct user_namespace *mnt_userns, const struct path *path,
31 struct kstat *stat, u32 request_mask,
32 unsigned int query_flags)
33 {
34 struct inode *inode = d_inode(path->dentry);
35 generic_fillattr(&init_user_ns, inode, stat);
36 stat->blocks = inode->i_mapping->nrpages << (PAGE_SHIFT - 9);
37 return 0;
38 }
39 EXPORT_SYMBOL(simple_getattr);
40
simple_statfs(struct dentry * dentry,struct kstatfs * buf)41 int simple_statfs(struct dentry *dentry, struct kstatfs *buf)
42 {
43 buf->f_type = dentry->d_sb->s_magic;
44 buf->f_bsize = PAGE_SIZE;
45 buf->f_namelen = NAME_MAX;
46 return 0;
47 }
48 EXPORT_SYMBOL(simple_statfs);
49
50 /*
51 * Retaining negative dentries for an in-memory filesystem just wastes
52 * memory and lookup time: arrange for them to be deleted immediately.
53 */
always_delete_dentry(const struct dentry * dentry)54 int always_delete_dentry(const struct dentry *dentry)
55 {
56 return 1;
57 }
58 EXPORT_SYMBOL(always_delete_dentry);
59
60 const struct dentry_operations simple_dentry_operations = {
61 .d_delete = always_delete_dentry,
62 };
63 EXPORT_SYMBOL(simple_dentry_operations);
64
65 /*
66 * Lookup the data. This is trivial - if the dentry didn't already
67 * exist, we know it is negative. Set d_op to delete negative dentries.
68 */
simple_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)69 struct dentry *simple_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
70 {
71 if (dentry->d_name.len > NAME_MAX)
72 return ERR_PTR(-ENAMETOOLONG);
73 if (!dentry->d_sb->s_d_op)
74 d_set_d_op(dentry, &simple_dentry_operations);
75 d_add(dentry, NULL);
76 return NULL;
77 }
78 EXPORT_SYMBOL(simple_lookup);
79
dcache_dir_open(struct inode * inode,struct file * file)80 int dcache_dir_open(struct inode *inode, struct file *file)
81 {
82 file->private_data = d_alloc_cursor(file->f_path.dentry);
83
84 return file->private_data ? 0 : -ENOMEM;
85 }
86 EXPORT_SYMBOL(dcache_dir_open);
87
dcache_dir_close(struct inode * inode,struct file * file)88 int dcache_dir_close(struct inode *inode, struct file *file)
89 {
90 dput(file->private_data);
91 return 0;
92 }
93 EXPORT_SYMBOL(dcache_dir_close);
94
95 /* parent is locked at least shared */
96 /*
97 * Returns an element of siblings' list.
98 * We are looking for <count>th positive after <p>; if
99 * found, dentry is grabbed and returned to caller.
100 * If no such element exists, NULL is returned.
101 */
scan_positives(struct dentry * cursor,struct list_head * p,loff_t count,struct dentry * last)102 static struct dentry *scan_positives(struct dentry *cursor,
103 struct list_head *p,
104 loff_t count,
105 struct dentry *last)
106 {
107 struct dentry *dentry = cursor->d_parent, *found = NULL;
108
109 spin_lock(&dentry->d_lock);
110 while ((p = p->next) != &dentry->d_subdirs) {
111 struct dentry *d = list_entry(p, struct dentry, d_child);
112 // we must at least skip cursors, to avoid livelocks
113 if (d->d_flags & DCACHE_DENTRY_CURSOR)
114 continue;
115 if (simple_positive(d) && !--count) {
116 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
117 if (simple_positive(d))
118 found = dget_dlock(d);
119 spin_unlock(&d->d_lock);
120 if (likely(found))
121 break;
122 count = 1;
123 }
124 if (need_resched()) {
125 list_move(&cursor->d_child, p);
126 p = &cursor->d_child;
127 spin_unlock(&dentry->d_lock);
128 cond_resched();
129 spin_lock(&dentry->d_lock);
130 }
131 }
132 spin_unlock(&dentry->d_lock);
133 dput(last);
134 return found;
135 }
136
dcache_dir_lseek(struct file * file,loff_t offset,int whence)137 loff_t dcache_dir_lseek(struct file *file, loff_t offset, int whence)
138 {
139 struct dentry *dentry = file->f_path.dentry;
140 switch (whence) {
141 case 1:
142 offset += file->f_pos;
143 fallthrough;
144 case 0:
145 if (offset >= 0)
146 break;
147 fallthrough;
148 default:
149 return -EINVAL;
150 }
151 if (offset != file->f_pos) {
152 struct dentry *cursor = file->private_data;
153 struct dentry *to = NULL;
154
155 inode_lock_shared(dentry->d_inode);
156
157 if (offset > 2)
158 to = scan_positives(cursor, &dentry->d_subdirs,
159 offset - 2, NULL);
160 spin_lock(&dentry->d_lock);
161 if (to)
162 list_move(&cursor->d_child, &to->d_child);
163 else
164 list_del_init(&cursor->d_child);
165 spin_unlock(&dentry->d_lock);
166 dput(to);
167
168 file->f_pos = offset;
169
170 inode_unlock_shared(dentry->d_inode);
171 }
172 return offset;
173 }
174 EXPORT_SYMBOL(dcache_dir_lseek);
175
176 /* Relationship between i_mode and the DT_xxx types */
dt_type(struct inode * inode)177 static inline unsigned char dt_type(struct inode *inode)
178 {
179 return (inode->i_mode >> 12) & 15;
180 }
181
182 /*
183 * Directory is locked and all positive dentries in it are safe, since
184 * for ramfs-type trees they can't go away without unlink() or rmdir(),
185 * both impossible due to the lock on directory.
186 */
187
dcache_readdir(struct file * file,struct dir_context * ctx)188 int dcache_readdir(struct file *file, struct dir_context *ctx)
189 {
190 struct dentry *dentry = file->f_path.dentry;
191 struct dentry *cursor = file->private_data;
192 struct list_head *anchor = &dentry->d_subdirs;
193 struct dentry *next = NULL;
194 struct list_head *p;
195
196 if (!dir_emit_dots(file, ctx))
197 return 0;
198
199 if (ctx->pos == 2)
200 p = anchor;
201 else if (!list_empty(&cursor->d_child))
202 p = &cursor->d_child;
203 else
204 return 0;
205
206 while ((next = scan_positives(cursor, p, 1, next)) != NULL) {
207 if (!dir_emit(ctx, next->d_name.name, next->d_name.len,
208 d_inode(next)->i_ino, dt_type(d_inode(next))))
209 break;
210 ctx->pos++;
211 p = &next->d_child;
212 }
213 spin_lock(&dentry->d_lock);
214 if (next)
215 list_move_tail(&cursor->d_child, &next->d_child);
216 else
217 list_del_init(&cursor->d_child);
218 spin_unlock(&dentry->d_lock);
219 dput(next);
220
221 return 0;
222 }
223 EXPORT_SYMBOL(dcache_readdir);
224
generic_read_dir(struct file * filp,char __user * buf,size_t siz,loff_t * ppos)225 ssize_t generic_read_dir(struct file *filp, char __user *buf, size_t siz, loff_t *ppos)
226 {
227 return -EISDIR;
228 }
229 EXPORT_SYMBOL(generic_read_dir);
230
231 const struct file_operations simple_dir_operations = {
232 .open = dcache_dir_open,
233 .release = dcache_dir_close,
234 .llseek = dcache_dir_lseek,
235 .read = generic_read_dir,
236 .iterate_shared = dcache_readdir,
237 .fsync = noop_fsync,
238 };
239 EXPORT_SYMBOL(simple_dir_operations);
240
241 const struct inode_operations simple_dir_inode_operations = {
242 .lookup = simple_lookup,
243 };
244 EXPORT_SYMBOL(simple_dir_inode_operations);
245
find_next_child(struct dentry * parent,struct dentry * prev)246 static struct dentry *find_next_child(struct dentry *parent, struct dentry *prev)
247 {
248 struct dentry *child = NULL;
249 struct list_head *p = prev ? &prev->d_child : &parent->d_subdirs;
250
251 spin_lock(&parent->d_lock);
252 while ((p = p->next) != &parent->d_subdirs) {
253 struct dentry *d = container_of(p, struct dentry, d_child);
254 if (simple_positive(d)) {
255 spin_lock_nested(&d->d_lock, DENTRY_D_LOCK_NESTED);
256 if (simple_positive(d))
257 child = dget_dlock(d);
258 spin_unlock(&d->d_lock);
259 if (likely(child))
260 break;
261 }
262 }
263 spin_unlock(&parent->d_lock);
264 dput(prev);
265 return child;
266 }
267
simple_recursive_removal(struct dentry * dentry,void (* callback)(struct dentry *))268 void simple_recursive_removal(struct dentry *dentry,
269 void (*callback)(struct dentry *))
270 {
271 struct dentry *this = dget(dentry);
272 while (true) {
273 struct dentry *victim = NULL, *child;
274 struct inode *inode = this->d_inode;
275
276 inode_lock(inode);
277 if (d_is_dir(this))
278 inode->i_flags |= S_DEAD;
279 while ((child = find_next_child(this, victim)) == NULL) {
280 // kill and ascend
281 // update metadata while it's still locked
282 inode->i_ctime = current_time(inode);
283 clear_nlink(inode);
284 inode_unlock(inode);
285 victim = this;
286 this = this->d_parent;
287 inode = this->d_inode;
288 inode_lock(inode);
289 if (simple_positive(victim)) {
290 d_invalidate(victim); // avoid lost mounts
291 if (d_is_dir(victim))
292 fsnotify_rmdir(inode, victim);
293 else
294 fsnotify_unlink(inode, victim);
295 if (callback)
296 callback(victim);
297 dput(victim); // unpin it
298 }
299 if (victim == dentry) {
300 inode->i_ctime = inode->i_mtime =
301 current_time(inode);
302 if (d_is_dir(dentry))
303 drop_nlink(inode);
304 inode_unlock(inode);
305 dput(dentry);
306 return;
307 }
308 }
309 inode_unlock(inode);
310 this = child;
311 }
312 }
313 EXPORT_SYMBOL(simple_recursive_removal);
314
315 static const struct super_operations simple_super_operations = {
316 .statfs = simple_statfs,
317 };
318
pseudo_fs_fill_super(struct super_block * s,struct fs_context * fc)319 static int pseudo_fs_fill_super(struct super_block *s, struct fs_context *fc)
320 {
321 struct pseudo_fs_context *ctx = fc->fs_private;
322 struct inode *root;
323
324 s->s_maxbytes = MAX_LFS_FILESIZE;
325 s->s_blocksize = PAGE_SIZE;
326 s->s_blocksize_bits = PAGE_SHIFT;
327 s->s_magic = ctx->magic;
328 s->s_op = ctx->ops ?: &simple_super_operations;
329 s->s_xattr = ctx->xattr;
330 s->s_time_gran = 1;
331 root = new_inode(s);
332 if (!root)
333 return -ENOMEM;
334
335 /*
336 * since this is the first inode, make it number 1. New inodes created
337 * after this must take care not to collide with it (by passing
338 * max_reserved of 1 to iunique).
339 */
340 root->i_ino = 1;
341 root->i_mode = S_IFDIR | S_IRUSR | S_IWUSR;
342 root->i_atime = root->i_mtime = root->i_ctime = current_time(root);
343 s->s_root = d_make_root(root);
344 if (!s->s_root)
345 return -ENOMEM;
346 s->s_d_op = ctx->dops;
347 return 0;
348 }
349
pseudo_fs_get_tree(struct fs_context * fc)350 static int pseudo_fs_get_tree(struct fs_context *fc)
351 {
352 return get_tree_nodev(fc, pseudo_fs_fill_super);
353 }
354
pseudo_fs_free(struct fs_context * fc)355 static void pseudo_fs_free(struct fs_context *fc)
356 {
357 kfree(fc->fs_private);
358 }
359
360 static const struct fs_context_operations pseudo_fs_context_ops = {
361 .free = pseudo_fs_free,
362 .get_tree = pseudo_fs_get_tree,
363 };
364
365 /*
366 * Common helper for pseudo-filesystems (sockfs, pipefs, bdev - stuff that
367 * will never be mountable)
368 */
init_pseudo(struct fs_context * fc,unsigned long magic)369 struct pseudo_fs_context *init_pseudo(struct fs_context *fc,
370 unsigned long magic)
371 {
372 struct pseudo_fs_context *ctx;
373
374 ctx = kzalloc(sizeof(struct pseudo_fs_context), GFP_KERNEL);
375 if (likely(ctx)) {
376 ctx->magic = magic;
377 fc->fs_private = ctx;
378 fc->ops = &pseudo_fs_context_ops;
379 fc->sb_flags |= SB_NOUSER;
380 fc->global = true;
381 }
382 return ctx;
383 }
384 EXPORT_SYMBOL(init_pseudo);
385
simple_open(struct inode * inode,struct file * file)386 int simple_open(struct inode *inode, struct file *file)
387 {
388 if (inode->i_private)
389 file->private_data = inode->i_private;
390 return 0;
391 }
392 EXPORT_SYMBOL(simple_open);
393
simple_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)394 int simple_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
395 {
396 struct inode *inode = d_inode(old_dentry);
397
398 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
399 inc_nlink(inode);
400 ihold(inode);
401 dget(dentry);
402 d_instantiate(dentry, inode);
403 return 0;
404 }
405 EXPORT_SYMBOL(simple_link);
406
simple_empty(struct dentry * dentry)407 int simple_empty(struct dentry *dentry)
408 {
409 struct dentry *child;
410 int ret = 0;
411
412 spin_lock(&dentry->d_lock);
413 list_for_each_entry(child, &dentry->d_subdirs, d_child) {
414 spin_lock_nested(&child->d_lock, DENTRY_D_LOCK_NESTED);
415 if (simple_positive(child)) {
416 spin_unlock(&child->d_lock);
417 goto out;
418 }
419 spin_unlock(&child->d_lock);
420 }
421 ret = 1;
422 out:
423 spin_unlock(&dentry->d_lock);
424 return ret;
425 }
426 EXPORT_SYMBOL(simple_empty);
427
simple_unlink(struct inode * dir,struct dentry * dentry)428 int simple_unlink(struct inode *dir, struct dentry *dentry)
429 {
430 struct inode *inode = d_inode(dentry);
431
432 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
433 drop_nlink(inode);
434 dput(dentry);
435 return 0;
436 }
437 EXPORT_SYMBOL(simple_unlink);
438
simple_rmdir(struct inode * dir,struct dentry * dentry)439 int simple_rmdir(struct inode *dir, struct dentry *dentry)
440 {
441 if (!simple_empty(dentry))
442 return -ENOTEMPTY;
443
444 drop_nlink(d_inode(dentry));
445 simple_unlink(dir, dentry);
446 drop_nlink(dir);
447 return 0;
448 }
449 EXPORT_SYMBOL(simple_rmdir);
450
simple_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)451 int simple_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
452 struct dentry *old_dentry, struct inode *new_dir,
453 struct dentry *new_dentry, unsigned int flags)
454 {
455 struct inode *inode = d_inode(old_dentry);
456 int they_are_dirs = d_is_dir(old_dentry);
457
458 if (flags & ~RENAME_NOREPLACE)
459 return -EINVAL;
460
461 if (!simple_empty(new_dentry))
462 return -ENOTEMPTY;
463
464 if (d_really_is_positive(new_dentry)) {
465 simple_unlink(new_dir, new_dentry);
466 if (they_are_dirs) {
467 drop_nlink(d_inode(new_dentry));
468 drop_nlink(old_dir);
469 }
470 } else if (they_are_dirs) {
471 drop_nlink(old_dir);
472 inc_nlink(new_dir);
473 }
474
475 old_dir->i_ctime = old_dir->i_mtime = new_dir->i_ctime =
476 new_dir->i_mtime = inode->i_ctime = current_time(old_dir);
477
478 return 0;
479 }
480 EXPORT_SYMBOL(simple_rename);
481
482 /**
483 * simple_setattr - setattr for simple filesystem
484 * @mnt_userns: user namespace of the target mount
485 * @dentry: dentry
486 * @iattr: iattr structure
487 *
488 * Returns 0 on success, -error on failure.
489 *
490 * simple_setattr is a simple ->setattr implementation without a proper
491 * implementation of size changes.
492 *
493 * It can either be used for in-memory filesystems or special files
494 * on simple regular filesystems. Anything that needs to change on-disk
495 * or wire state on size changes needs its own setattr method.
496 */
simple_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * iattr)497 int simple_setattr(struct user_namespace *mnt_userns, struct dentry *dentry,
498 struct iattr *iattr)
499 {
500 struct inode *inode = d_inode(dentry);
501 int error;
502
503 error = setattr_prepare(mnt_userns, dentry, iattr);
504 if (error)
505 return error;
506
507 if (iattr->ia_valid & ATTR_SIZE)
508 truncate_setsize(inode, iattr->ia_size);
509 setattr_copy(mnt_userns, inode, iattr);
510 mark_inode_dirty(inode);
511 return 0;
512 }
513 EXPORT_SYMBOL(simple_setattr);
514
simple_readpage(struct file * file,struct page * page)515 static int simple_readpage(struct file *file, struct page *page)
516 {
517 clear_highpage(page);
518 flush_dcache_page(page);
519 SetPageUptodate(page);
520 unlock_page(page);
521 return 0;
522 }
523
simple_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)524 int simple_write_begin(struct file *file, struct address_space *mapping,
525 loff_t pos, unsigned len, unsigned flags,
526 struct page **pagep, void **fsdata)
527 {
528 struct page *page;
529 pgoff_t index;
530
531 index = pos >> PAGE_SHIFT;
532
533 page = grab_cache_page_write_begin(mapping, index, flags);
534 if (!page)
535 return -ENOMEM;
536
537 *pagep = page;
538
539 if (!PageUptodate(page) && (len != PAGE_SIZE)) {
540 unsigned from = pos & (PAGE_SIZE - 1);
541
542 zero_user_segments(page, 0, from, from + len, PAGE_SIZE);
543 }
544 return 0;
545 }
546 EXPORT_SYMBOL(simple_write_begin);
547
548 /**
549 * simple_write_end - .write_end helper for non-block-device FSes
550 * @file: See .write_end of address_space_operations
551 * @mapping: "
552 * @pos: "
553 * @len: "
554 * @copied: "
555 * @page: "
556 * @fsdata: "
557 *
558 * simple_write_end does the minimum needed for updating a page after writing is
559 * done. It has the same API signature as the .write_end of
560 * address_space_operations vector. So it can just be set onto .write_end for
561 * FSes that don't need any other processing. i_mutex is assumed to be held.
562 * Block based filesystems should use generic_write_end().
563 * NOTE: Even though i_size might get updated by this function, mark_inode_dirty
564 * is not called, so a filesystem that actually does store data in .write_inode
565 * should extend on what's done here with a call to mark_inode_dirty() in the
566 * case that i_size has changed.
567 *
568 * Use *ONLY* with simple_readpage()
569 */
simple_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)570 static int simple_write_end(struct file *file, struct address_space *mapping,
571 loff_t pos, unsigned len, unsigned copied,
572 struct page *page, void *fsdata)
573 {
574 struct inode *inode = page->mapping->host;
575 loff_t last_pos = pos + copied;
576
577 /* zero the stale part of the page if we did a short copy */
578 if (!PageUptodate(page)) {
579 if (copied < len) {
580 unsigned from = pos & (PAGE_SIZE - 1);
581
582 zero_user(page, from + copied, len - copied);
583 }
584 SetPageUptodate(page);
585 }
586 /*
587 * No need to use i_size_read() here, the i_size
588 * cannot change under us because we hold the i_mutex.
589 */
590 if (last_pos > inode->i_size)
591 i_size_write(inode, last_pos);
592
593 set_page_dirty(page);
594 unlock_page(page);
595 put_page(page);
596
597 return copied;
598 }
599
600 /*
601 * Provides ramfs-style behavior: data in the pagecache, but no writeback.
602 */
603 const struct address_space_operations ram_aops = {
604 .readpage = simple_readpage,
605 .write_begin = simple_write_begin,
606 .write_end = simple_write_end,
607 .set_page_dirty = __set_page_dirty_no_writeback,
608 };
609 EXPORT_SYMBOL(ram_aops);
610
611 /*
612 * the inodes created here are not hashed. If you use iunique to generate
613 * unique inode values later for this filesystem, then you must take care
614 * to pass it an appropriate max_reserved value to avoid collisions.
615 */
simple_fill_super(struct super_block * s,unsigned long magic,const struct tree_descr * files)616 int simple_fill_super(struct super_block *s, unsigned long magic,
617 const struct tree_descr *files)
618 {
619 struct inode *inode;
620 struct dentry *root;
621 struct dentry *dentry;
622 int i;
623
624 s->s_blocksize = PAGE_SIZE;
625 s->s_blocksize_bits = PAGE_SHIFT;
626 s->s_magic = magic;
627 s->s_op = &simple_super_operations;
628 s->s_time_gran = 1;
629
630 inode = new_inode(s);
631 if (!inode)
632 return -ENOMEM;
633 /*
634 * because the root inode is 1, the files array must not contain an
635 * entry at index 1
636 */
637 inode->i_ino = 1;
638 inode->i_mode = S_IFDIR | 0755;
639 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
640 inode->i_op = &simple_dir_inode_operations;
641 inode->i_fop = &simple_dir_operations;
642 set_nlink(inode, 2);
643 root = d_make_root(inode);
644 if (!root)
645 return -ENOMEM;
646 for (i = 0; !files->name || files->name[0]; i++, files++) {
647 if (!files->name)
648 continue;
649
650 /* warn if it tries to conflict with the root inode */
651 if (unlikely(i == 1))
652 printk(KERN_WARNING "%s: %s passed in a files array"
653 "with an index of 1!\n", __func__,
654 s->s_type->name);
655
656 dentry = d_alloc_name(root, files->name);
657 if (!dentry)
658 goto out;
659 inode = new_inode(s);
660 if (!inode) {
661 dput(dentry);
662 goto out;
663 }
664 inode->i_mode = S_IFREG | files->mode;
665 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
666 inode->i_fop = files->ops;
667 inode->i_ino = i;
668 d_add(dentry, inode);
669 }
670 s->s_root = root;
671 return 0;
672 out:
673 d_genocide(root);
674 shrink_dcache_parent(root);
675 dput(root);
676 return -ENOMEM;
677 }
678 EXPORT_SYMBOL(simple_fill_super);
679
680 static DEFINE_SPINLOCK(pin_fs_lock);
681
simple_pin_fs(struct file_system_type * type,struct vfsmount ** mount,int * count)682 int simple_pin_fs(struct file_system_type *type, struct vfsmount **mount, int *count)
683 {
684 struct vfsmount *mnt = NULL;
685 spin_lock(&pin_fs_lock);
686 if (unlikely(!*mount)) {
687 spin_unlock(&pin_fs_lock);
688 mnt = vfs_kern_mount(type, SB_KERNMOUNT, type->name, NULL);
689 if (IS_ERR(mnt))
690 return PTR_ERR(mnt);
691 spin_lock(&pin_fs_lock);
692 if (!*mount)
693 *mount = mnt;
694 }
695 mntget(*mount);
696 ++*count;
697 spin_unlock(&pin_fs_lock);
698 mntput(mnt);
699 return 0;
700 }
701 EXPORT_SYMBOL(simple_pin_fs);
702
simple_release_fs(struct vfsmount ** mount,int * count)703 void simple_release_fs(struct vfsmount **mount, int *count)
704 {
705 struct vfsmount *mnt;
706 spin_lock(&pin_fs_lock);
707 mnt = *mount;
708 if (!--*count)
709 *mount = NULL;
710 spin_unlock(&pin_fs_lock);
711 mntput(mnt);
712 }
713 EXPORT_SYMBOL(simple_release_fs);
714
715 /**
716 * simple_read_from_buffer - copy data from the buffer to user space
717 * @to: the user space buffer to read to
718 * @count: the maximum number of bytes to read
719 * @ppos: the current position in the buffer
720 * @from: the buffer to read from
721 * @available: the size of the buffer
722 *
723 * The simple_read_from_buffer() function reads up to @count bytes from the
724 * buffer @from at offset @ppos into the user space address starting at @to.
725 *
726 * On success, the number of bytes read is returned and the offset @ppos is
727 * advanced by this number, or negative value is returned on error.
728 **/
simple_read_from_buffer(void __user * to,size_t count,loff_t * ppos,const void * from,size_t available)729 ssize_t simple_read_from_buffer(void __user *to, size_t count, loff_t *ppos,
730 const void *from, size_t available)
731 {
732 loff_t pos = *ppos;
733 size_t ret;
734
735 if (pos < 0)
736 return -EINVAL;
737 if (pos >= available || !count)
738 return 0;
739 if (count > available - pos)
740 count = available - pos;
741 ret = copy_to_user(to, from + pos, count);
742 if (ret == count)
743 return -EFAULT;
744 count -= ret;
745 *ppos = pos + count;
746 return count;
747 }
748 EXPORT_SYMBOL(simple_read_from_buffer);
749
750 /**
751 * simple_write_to_buffer - copy data from user space to the buffer
752 * @to: the buffer to write to
753 * @available: the size of the buffer
754 * @ppos: the current position in the buffer
755 * @from: the user space buffer to read from
756 * @count: the maximum number of bytes to read
757 *
758 * The simple_write_to_buffer() function reads up to @count bytes from the user
759 * space address starting at @from into the buffer @to at offset @ppos.
760 *
761 * On success, the number of bytes written is returned and the offset @ppos is
762 * advanced by this number, or negative value is returned on error.
763 **/
simple_write_to_buffer(void * to,size_t available,loff_t * ppos,const void __user * from,size_t count)764 ssize_t simple_write_to_buffer(void *to, size_t available, loff_t *ppos,
765 const void __user *from, size_t count)
766 {
767 loff_t pos = *ppos;
768 size_t res;
769
770 if (pos < 0)
771 return -EINVAL;
772 if (pos >= available || !count)
773 return 0;
774 if (count > available - pos)
775 count = available - pos;
776 res = copy_from_user(to + pos, from, count);
777 if (res == count)
778 return -EFAULT;
779 count -= res;
780 *ppos = pos + count;
781 return count;
782 }
783 EXPORT_SYMBOL(simple_write_to_buffer);
784
785 /**
786 * memory_read_from_buffer - copy data from the buffer
787 * @to: the kernel space buffer to read to
788 * @count: the maximum number of bytes to read
789 * @ppos: the current position in the buffer
790 * @from: the buffer to read from
791 * @available: the size of the buffer
792 *
793 * The memory_read_from_buffer() function reads up to @count bytes from the
794 * buffer @from at offset @ppos into the kernel space address starting at @to.
795 *
796 * On success, the number of bytes read is returned and the offset @ppos is
797 * advanced by this number, or negative value is returned on error.
798 **/
memory_read_from_buffer(void * to,size_t count,loff_t * ppos,const void * from,size_t available)799 ssize_t memory_read_from_buffer(void *to, size_t count, loff_t *ppos,
800 const void *from, size_t available)
801 {
802 loff_t pos = *ppos;
803
804 if (pos < 0)
805 return -EINVAL;
806 if (pos >= available)
807 return 0;
808 if (count > available - pos)
809 count = available - pos;
810 memcpy(to, from + pos, count);
811 *ppos = pos + count;
812
813 return count;
814 }
815 EXPORT_SYMBOL(memory_read_from_buffer);
816
817 /*
818 * Transaction based IO.
819 * The file expects a single write which triggers the transaction, and then
820 * possibly a read which collects the result - which is stored in a
821 * file-local buffer.
822 */
823
simple_transaction_set(struct file * file,size_t n)824 void simple_transaction_set(struct file *file, size_t n)
825 {
826 struct simple_transaction_argresp *ar = file->private_data;
827
828 BUG_ON(n > SIMPLE_TRANSACTION_LIMIT);
829
830 /*
831 * The barrier ensures that ar->size will really remain zero until
832 * ar->data is ready for reading.
833 */
834 smp_mb();
835 ar->size = n;
836 }
837 EXPORT_SYMBOL(simple_transaction_set);
838
simple_transaction_get(struct file * file,const char __user * buf,size_t size)839 char *simple_transaction_get(struct file *file, const char __user *buf, size_t size)
840 {
841 struct simple_transaction_argresp *ar;
842 static DEFINE_SPINLOCK(simple_transaction_lock);
843
844 if (size > SIMPLE_TRANSACTION_LIMIT - 1)
845 return ERR_PTR(-EFBIG);
846
847 ar = (struct simple_transaction_argresp *)get_zeroed_page(GFP_KERNEL);
848 if (!ar)
849 return ERR_PTR(-ENOMEM);
850
851 spin_lock(&simple_transaction_lock);
852
853 /* only one write allowed per open */
854 if (file->private_data) {
855 spin_unlock(&simple_transaction_lock);
856 free_page((unsigned long)ar);
857 return ERR_PTR(-EBUSY);
858 }
859
860 file->private_data = ar;
861
862 spin_unlock(&simple_transaction_lock);
863
864 if (copy_from_user(ar->data, buf, size))
865 return ERR_PTR(-EFAULT);
866
867 return ar->data;
868 }
869 EXPORT_SYMBOL(simple_transaction_get);
870
simple_transaction_read(struct file * file,char __user * buf,size_t size,loff_t * pos)871 ssize_t simple_transaction_read(struct file *file, char __user *buf, size_t size, loff_t *pos)
872 {
873 struct simple_transaction_argresp *ar = file->private_data;
874
875 if (!ar)
876 return 0;
877 return simple_read_from_buffer(buf, size, pos, ar->data, ar->size);
878 }
879 EXPORT_SYMBOL(simple_transaction_read);
880
simple_transaction_release(struct inode * inode,struct file * file)881 int simple_transaction_release(struct inode *inode, struct file *file)
882 {
883 free_page((unsigned long)file->private_data);
884 return 0;
885 }
886 EXPORT_SYMBOL(simple_transaction_release);
887
888 /* Simple attribute files */
889
890 struct simple_attr {
891 int (*get)(void *, u64 *);
892 int (*set)(void *, u64);
893 char get_buf[24]; /* enough to store a u64 and "\n\0" */
894 char set_buf[24];
895 void *data;
896 const char *fmt; /* format for read operation */
897 struct mutex mutex; /* protects access to these buffers */
898 };
899
900 /* simple_attr_open is called by an actual attribute open file operation
901 * to set the attribute specific access operations. */
simple_attr_open(struct inode * inode,struct file * file,int (* get)(void *,u64 *),int (* set)(void *,u64),const char * fmt)902 int simple_attr_open(struct inode *inode, struct file *file,
903 int (*get)(void *, u64 *), int (*set)(void *, u64),
904 const char *fmt)
905 {
906 struct simple_attr *attr;
907
908 attr = kzalloc(sizeof(*attr), GFP_KERNEL);
909 if (!attr)
910 return -ENOMEM;
911
912 attr->get = get;
913 attr->set = set;
914 attr->data = inode->i_private;
915 attr->fmt = fmt;
916 mutex_init(&attr->mutex);
917
918 file->private_data = attr;
919
920 return nonseekable_open(inode, file);
921 }
922 EXPORT_SYMBOL_GPL(simple_attr_open);
923
simple_attr_release(struct inode * inode,struct file * file)924 int simple_attr_release(struct inode *inode, struct file *file)
925 {
926 kfree(file->private_data);
927 return 0;
928 }
929 EXPORT_SYMBOL_GPL(simple_attr_release); /* GPL-only? This? Really? */
930
931 /* read from the buffer that is filled with the get function */
simple_attr_read(struct file * file,char __user * buf,size_t len,loff_t * ppos)932 ssize_t simple_attr_read(struct file *file, char __user *buf,
933 size_t len, loff_t *ppos)
934 {
935 struct simple_attr *attr;
936 size_t size;
937 ssize_t ret;
938
939 attr = file->private_data;
940
941 if (!attr->get)
942 return -EACCES;
943
944 ret = mutex_lock_interruptible(&attr->mutex);
945 if (ret)
946 return ret;
947
948 if (*ppos && attr->get_buf[0]) {
949 /* continued read */
950 size = strlen(attr->get_buf);
951 } else {
952 /* first read */
953 u64 val;
954 ret = attr->get(attr->data, &val);
955 if (ret)
956 goto out;
957
958 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
959 attr->fmt, (unsigned long long)val);
960 }
961
962 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
963 out:
964 mutex_unlock(&attr->mutex);
965 return ret;
966 }
967 EXPORT_SYMBOL_GPL(simple_attr_read);
968
969 /* interpret the buffer as a number to call the set function with */
simple_attr_write(struct file * file,const char __user * buf,size_t len,loff_t * ppos)970 ssize_t simple_attr_write(struct file *file, const char __user *buf,
971 size_t len, loff_t *ppos)
972 {
973 struct simple_attr *attr;
974 unsigned long long val;
975 size_t size;
976 ssize_t ret;
977
978 attr = file->private_data;
979 if (!attr->set)
980 return -EACCES;
981
982 ret = mutex_lock_interruptible(&attr->mutex);
983 if (ret)
984 return ret;
985
986 ret = -EFAULT;
987 size = min(sizeof(attr->set_buf) - 1, len);
988 if (copy_from_user(attr->set_buf, buf, size))
989 goto out;
990
991 attr->set_buf[size] = '\0';
992 ret = kstrtoull(attr->set_buf, 0, &val);
993 if (ret)
994 goto out;
995 ret = attr->set(attr->data, val);
996 if (ret == 0)
997 ret = len; /* on success, claim we got the whole input */
998 out:
999 mutex_unlock(&attr->mutex);
1000 return ret;
1001 }
1002 EXPORT_SYMBOL_GPL(simple_attr_write);
1003
1004 /**
1005 * generic_fh_to_dentry - generic helper for the fh_to_dentry export operation
1006 * @sb: filesystem to do the file handle conversion on
1007 * @fid: file handle to convert
1008 * @fh_len: length of the file handle in bytes
1009 * @fh_type: type of file handle
1010 * @get_inode: filesystem callback to retrieve inode
1011 *
1012 * This function decodes @fid as long as it has one of the well-known
1013 * Linux filehandle types and calls @get_inode on it to retrieve the
1014 * inode for the object specified in the file handle.
1015 */
generic_fh_to_dentry(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1016 struct dentry *generic_fh_to_dentry(struct super_block *sb, struct fid *fid,
1017 int fh_len, int fh_type, struct inode *(*get_inode)
1018 (struct super_block *sb, u64 ino, u32 gen))
1019 {
1020 struct inode *inode = NULL;
1021
1022 if (fh_len < 2)
1023 return NULL;
1024
1025 switch (fh_type) {
1026 case FILEID_INO32_GEN:
1027 case FILEID_INO32_GEN_PARENT:
1028 inode = get_inode(sb, fid->i32.ino, fid->i32.gen);
1029 break;
1030 }
1031
1032 return d_obtain_alias(inode);
1033 }
1034 EXPORT_SYMBOL_GPL(generic_fh_to_dentry);
1035
1036 /**
1037 * generic_fh_to_parent - generic helper for the fh_to_parent export operation
1038 * @sb: filesystem to do the file handle conversion on
1039 * @fid: file handle to convert
1040 * @fh_len: length of the file handle in bytes
1041 * @fh_type: type of file handle
1042 * @get_inode: filesystem callback to retrieve inode
1043 *
1044 * This function decodes @fid as long as it has one of the well-known
1045 * Linux filehandle types and calls @get_inode on it to retrieve the
1046 * inode for the _parent_ object specified in the file handle if it
1047 * is specified in the file handle, or NULL otherwise.
1048 */
generic_fh_to_parent(struct super_block * sb,struct fid * fid,int fh_len,int fh_type,struct inode * (* get_inode)(struct super_block * sb,u64 ino,u32 gen))1049 struct dentry *generic_fh_to_parent(struct super_block *sb, struct fid *fid,
1050 int fh_len, int fh_type, struct inode *(*get_inode)
1051 (struct super_block *sb, u64 ino, u32 gen))
1052 {
1053 struct inode *inode = NULL;
1054
1055 if (fh_len <= 2)
1056 return NULL;
1057
1058 switch (fh_type) {
1059 case FILEID_INO32_GEN_PARENT:
1060 inode = get_inode(sb, fid->i32.parent_ino,
1061 (fh_len > 3 ? fid->i32.parent_gen : 0));
1062 break;
1063 }
1064
1065 return d_obtain_alias(inode);
1066 }
1067 EXPORT_SYMBOL_GPL(generic_fh_to_parent);
1068
1069 /**
1070 * __generic_file_fsync - generic fsync implementation for simple filesystems
1071 *
1072 * @file: file to synchronize
1073 * @start: start offset in bytes
1074 * @end: end offset in bytes (inclusive)
1075 * @datasync: only synchronize essential metadata if true
1076 *
1077 * This is a generic implementation of the fsync method for simple
1078 * filesystems which track all non-inode metadata in the buffers list
1079 * hanging off the address_space structure.
1080 */
__generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1081 int __generic_file_fsync(struct file *file, loff_t start, loff_t end,
1082 int datasync)
1083 {
1084 struct inode *inode = file->f_mapping->host;
1085 int err;
1086 int ret;
1087
1088 err = file_write_and_wait_range(file, start, end);
1089 if (err)
1090 return err;
1091
1092 inode_lock(inode);
1093 ret = sync_mapping_buffers(inode->i_mapping);
1094 if (!(inode->i_state & I_DIRTY_ALL))
1095 goto out;
1096 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
1097 goto out;
1098
1099 err = sync_inode_metadata(inode, 1);
1100 if (ret == 0)
1101 ret = err;
1102
1103 out:
1104 inode_unlock(inode);
1105 /* check and advance again to catch errors after syncing out buffers */
1106 err = file_check_and_advance_wb_err(file);
1107 if (ret == 0)
1108 ret = err;
1109 return ret;
1110 }
1111 EXPORT_SYMBOL(__generic_file_fsync);
1112
1113 /**
1114 * generic_file_fsync - generic fsync implementation for simple filesystems
1115 * with flush
1116 * @file: file to synchronize
1117 * @start: start offset in bytes
1118 * @end: end offset in bytes (inclusive)
1119 * @datasync: only synchronize essential metadata if true
1120 *
1121 */
1122
generic_file_fsync(struct file * file,loff_t start,loff_t end,int datasync)1123 int generic_file_fsync(struct file *file, loff_t start, loff_t end,
1124 int datasync)
1125 {
1126 struct inode *inode = file->f_mapping->host;
1127 int err;
1128
1129 err = __generic_file_fsync(file, start, end, datasync);
1130 if (err)
1131 return err;
1132 return blkdev_issue_flush(inode->i_sb->s_bdev);
1133 }
1134 EXPORT_SYMBOL(generic_file_fsync);
1135
1136 /**
1137 * generic_check_addressable - Check addressability of file system
1138 * @blocksize_bits: log of file system block size
1139 * @num_blocks: number of blocks in file system
1140 *
1141 * Determine whether a file system with @num_blocks blocks (and a
1142 * block size of 2**@blocksize_bits) is addressable by the sector_t
1143 * and page cache of the system. Return 0 if so and -EFBIG otherwise.
1144 */
generic_check_addressable(unsigned blocksize_bits,u64 num_blocks)1145 int generic_check_addressable(unsigned blocksize_bits, u64 num_blocks)
1146 {
1147 u64 last_fs_block = num_blocks - 1;
1148 u64 last_fs_page =
1149 last_fs_block >> (PAGE_SHIFT - blocksize_bits);
1150
1151 if (unlikely(num_blocks == 0))
1152 return 0;
1153
1154 if ((blocksize_bits < 9) || (blocksize_bits > PAGE_SHIFT))
1155 return -EINVAL;
1156
1157 if ((last_fs_block > (sector_t)(~0ULL) >> (blocksize_bits - 9)) ||
1158 (last_fs_page > (pgoff_t)(~0ULL))) {
1159 return -EFBIG;
1160 }
1161 return 0;
1162 }
1163 EXPORT_SYMBOL(generic_check_addressable);
1164
1165 /*
1166 * No-op implementation of ->fsync for in-memory filesystems.
1167 */
noop_fsync(struct file * file,loff_t start,loff_t end,int datasync)1168 int noop_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1169 {
1170 return 0;
1171 }
1172 EXPORT_SYMBOL(noop_fsync);
1173
noop_invalidatepage(struct page * page,unsigned int offset,unsigned int length)1174 void noop_invalidatepage(struct page *page, unsigned int offset,
1175 unsigned int length)
1176 {
1177 /*
1178 * There is no page cache to invalidate in the dax case, however
1179 * we need this callback defined to prevent falling back to
1180 * block_invalidatepage() in do_invalidatepage().
1181 */
1182 }
1183 EXPORT_SYMBOL_GPL(noop_invalidatepage);
1184
noop_direct_IO(struct kiocb * iocb,struct iov_iter * iter)1185 ssize_t noop_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
1186 {
1187 /*
1188 * iomap based filesystems support direct I/O without need for
1189 * this callback. However, it still needs to be set in
1190 * inode->a_ops so that open/fcntl know that direct I/O is
1191 * generally supported.
1192 */
1193 return -EINVAL;
1194 }
1195 EXPORT_SYMBOL_GPL(noop_direct_IO);
1196
1197 /* Because kfree isn't assignment-compatible with void(void*) ;-/ */
kfree_link(void * p)1198 void kfree_link(void *p)
1199 {
1200 kfree(p);
1201 }
1202 EXPORT_SYMBOL(kfree_link);
1203
alloc_anon_inode(struct super_block * s)1204 struct inode *alloc_anon_inode(struct super_block *s)
1205 {
1206 static const struct address_space_operations anon_aops = {
1207 .set_page_dirty = __set_page_dirty_no_writeback,
1208 };
1209 struct inode *inode = new_inode_pseudo(s);
1210
1211 if (!inode)
1212 return ERR_PTR(-ENOMEM);
1213
1214 inode->i_ino = get_next_ino();
1215 inode->i_mapping->a_ops = &anon_aops;
1216
1217 /*
1218 * Mark the inode dirty from the very beginning,
1219 * that way it will never be moved to the dirty
1220 * list because mark_inode_dirty() will think
1221 * that it already _is_ on the dirty list.
1222 */
1223 inode->i_state = I_DIRTY;
1224 inode->i_mode = S_IRUSR | S_IWUSR;
1225 inode->i_uid = current_fsuid();
1226 inode->i_gid = current_fsgid();
1227 inode->i_flags |= S_PRIVATE;
1228 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
1229 return inode;
1230 }
1231 EXPORT_SYMBOL(alloc_anon_inode);
1232
1233 /**
1234 * simple_nosetlease - generic helper for prohibiting leases
1235 * @filp: file pointer
1236 * @arg: type of lease to obtain
1237 * @flp: new lease supplied for insertion
1238 * @priv: private data for lm_setup operation
1239 *
1240 * Generic helper for filesystems that do not wish to allow leases to be set.
1241 * All arguments are ignored and it just returns -EINVAL.
1242 */
1243 int
simple_nosetlease(struct file * filp,long arg,struct file_lock ** flp,void ** priv)1244 simple_nosetlease(struct file *filp, long arg, struct file_lock **flp,
1245 void **priv)
1246 {
1247 return -EINVAL;
1248 }
1249 EXPORT_SYMBOL(simple_nosetlease);
1250
1251 /**
1252 * simple_get_link - generic helper to get the target of "fast" symlinks
1253 * @dentry: not used here
1254 * @inode: the symlink inode
1255 * @done: not used here
1256 *
1257 * Generic helper for filesystems to use for symlink inodes where a pointer to
1258 * the symlink target is stored in ->i_link. NOTE: this isn't normally called,
1259 * since as an optimization the path lookup code uses any non-NULL ->i_link
1260 * directly, without calling ->get_link(). But ->get_link() still must be set,
1261 * to mark the inode_operations as being for a symlink.
1262 *
1263 * Return: the symlink target
1264 */
simple_get_link(struct dentry * dentry,struct inode * inode,struct delayed_call * done)1265 const char *simple_get_link(struct dentry *dentry, struct inode *inode,
1266 struct delayed_call *done)
1267 {
1268 return inode->i_link;
1269 }
1270 EXPORT_SYMBOL(simple_get_link);
1271
1272 const struct inode_operations simple_symlink_inode_operations = {
1273 .get_link = simple_get_link,
1274 };
1275 EXPORT_SYMBOL(simple_symlink_inode_operations);
1276
1277 /*
1278 * Operations for a permanently empty directory.
1279 */
empty_dir_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1280 static struct dentry *empty_dir_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags)
1281 {
1282 return ERR_PTR(-ENOENT);
1283 }
1284
empty_dir_getattr(struct user_namespace * mnt_userns,const struct path * path,struct kstat * stat,u32 request_mask,unsigned int query_flags)1285 static int empty_dir_getattr(struct user_namespace *mnt_userns,
1286 const struct path *path, struct kstat *stat,
1287 u32 request_mask, unsigned int query_flags)
1288 {
1289 struct inode *inode = d_inode(path->dentry);
1290 generic_fillattr(&init_user_ns, inode, stat);
1291 return 0;
1292 }
1293
empty_dir_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)1294 static int empty_dir_setattr(struct user_namespace *mnt_userns,
1295 struct dentry *dentry, struct iattr *attr)
1296 {
1297 return -EPERM;
1298 }
1299
empty_dir_listxattr(struct dentry * dentry,char * list,size_t size)1300 static ssize_t empty_dir_listxattr(struct dentry *dentry, char *list, size_t size)
1301 {
1302 return -EOPNOTSUPP;
1303 }
1304
1305 static const struct inode_operations empty_dir_inode_operations = {
1306 .lookup = empty_dir_lookup,
1307 .permission = generic_permission,
1308 .setattr = empty_dir_setattr,
1309 .getattr = empty_dir_getattr,
1310 .listxattr = empty_dir_listxattr,
1311 };
1312
empty_dir_llseek(struct file * file,loff_t offset,int whence)1313 static loff_t empty_dir_llseek(struct file *file, loff_t offset, int whence)
1314 {
1315 /* An empty directory has two entries . and .. at offsets 0 and 1 */
1316 return generic_file_llseek_size(file, offset, whence, 2, 2);
1317 }
1318
empty_dir_readdir(struct file * file,struct dir_context * ctx)1319 static int empty_dir_readdir(struct file *file, struct dir_context *ctx)
1320 {
1321 dir_emit_dots(file, ctx);
1322 return 0;
1323 }
1324
1325 static const struct file_operations empty_dir_operations = {
1326 .llseek = empty_dir_llseek,
1327 .read = generic_read_dir,
1328 .iterate_shared = empty_dir_readdir,
1329 .fsync = noop_fsync,
1330 };
1331
1332
make_empty_dir_inode(struct inode * inode)1333 void make_empty_dir_inode(struct inode *inode)
1334 {
1335 set_nlink(inode, 2);
1336 inode->i_mode = S_IFDIR | S_IRUGO | S_IXUGO;
1337 inode->i_uid = GLOBAL_ROOT_UID;
1338 inode->i_gid = GLOBAL_ROOT_GID;
1339 inode->i_rdev = 0;
1340 inode->i_size = 0;
1341 inode->i_blkbits = PAGE_SHIFT;
1342 inode->i_blocks = 0;
1343
1344 inode->i_op = &empty_dir_inode_operations;
1345 inode->i_opflags &= ~IOP_XATTR;
1346 inode->i_fop = &empty_dir_operations;
1347 }
1348
is_empty_dir_inode(struct inode * inode)1349 bool is_empty_dir_inode(struct inode *inode)
1350 {
1351 return (inode->i_fop == &empty_dir_operations) &&
1352 (inode->i_op == &empty_dir_inode_operations);
1353 }
1354
1355 #ifdef CONFIG_UNICODE
1356 /*
1357 * Determine if the name of a dentry should be casefolded.
1358 *
1359 * Return: if names will need casefolding
1360 */
needs_casefold(const struct inode * dir)1361 static bool needs_casefold(const struct inode *dir)
1362 {
1363 return IS_CASEFOLDED(dir) && dir->i_sb->s_encoding;
1364 }
1365
1366 /**
1367 * generic_ci_d_compare - generic d_compare implementation for casefolding filesystems
1368 * @dentry: dentry whose name we are checking against
1369 * @len: len of name of dentry
1370 * @str: str pointer to name of dentry
1371 * @name: Name to compare against
1372 *
1373 * Return: 0 if names match, 1 if mismatch, or -ERRNO
1374 */
generic_ci_d_compare(const struct dentry * dentry,unsigned int len,const char * str,const struct qstr * name)1375 static int generic_ci_d_compare(const struct dentry *dentry, unsigned int len,
1376 const char *str, const struct qstr *name)
1377 {
1378 const struct dentry *parent = READ_ONCE(dentry->d_parent);
1379 const struct inode *dir = READ_ONCE(parent->d_inode);
1380 const struct super_block *sb = dentry->d_sb;
1381 const struct unicode_map *um = sb->s_encoding;
1382 struct qstr qstr = QSTR_INIT(str, len);
1383 char strbuf[DNAME_INLINE_LEN];
1384 int ret;
1385
1386 if (!dir || !needs_casefold(dir))
1387 goto fallback;
1388 /*
1389 * If the dentry name is stored in-line, then it may be concurrently
1390 * modified by a rename. If this happens, the VFS will eventually retry
1391 * the lookup, so it doesn't matter what ->d_compare() returns.
1392 * However, it's unsafe to call utf8_strncasecmp() with an unstable
1393 * string. Therefore, we have to copy the name into a temporary buffer.
1394 */
1395 if (len <= DNAME_INLINE_LEN - 1) {
1396 memcpy(strbuf, str, len);
1397 strbuf[len] = 0;
1398 qstr.name = strbuf;
1399 /* prevent compiler from optimizing out the temporary buffer */
1400 barrier();
1401 }
1402 ret = utf8_strncasecmp(um, name, &qstr);
1403 if (ret >= 0)
1404 return ret;
1405
1406 if (sb_has_strict_encoding(sb))
1407 return -EINVAL;
1408 fallback:
1409 if (len != name->len)
1410 return 1;
1411 return !!memcmp(str, name->name, len);
1412 }
1413
1414 /**
1415 * generic_ci_d_hash - generic d_hash implementation for casefolding filesystems
1416 * @dentry: dentry of the parent directory
1417 * @str: qstr of name whose hash we should fill in
1418 *
1419 * Return: 0 if hash was successful or unchanged, and -EINVAL on error
1420 */
generic_ci_d_hash(const struct dentry * dentry,struct qstr * str)1421 static int generic_ci_d_hash(const struct dentry *dentry, struct qstr *str)
1422 {
1423 const struct inode *dir = READ_ONCE(dentry->d_inode);
1424 struct super_block *sb = dentry->d_sb;
1425 const struct unicode_map *um = sb->s_encoding;
1426 int ret = 0;
1427
1428 if (!dir || !needs_casefold(dir))
1429 return 0;
1430
1431 ret = utf8_casefold_hash(um, dentry, str);
1432 if (ret < 0 && sb_has_strict_encoding(sb))
1433 return -EINVAL;
1434 return 0;
1435 }
1436
1437 static const struct dentry_operations generic_ci_dentry_ops = {
1438 .d_hash = generic_ci_d_hash,
1439 .d_compare = generic_ci_d_compare,
1440 };
1441 #endif
1442
1443 #ifdef CONFIG_FS_ENCRYPTION
1444 static const struct dentry_operations generic_encrypted_dentry_ops = {
1445 .d_revalidate = fscrypt_d_revalidate,
1446 };
1447 #endif
1448
1449 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1450 static const struct dentry_operations generic_encrypted_ci_dentry_ops = {
1451 .d_hash = generic_ci_d_hash,
1452 .d_compare = generic_ci_d_compare,
1453 .d_revalidate = fscrypt_d_revalidate,
1454 };
1455 #endif
1456
1457 /**
1458 * generic_set_encrypted_ci_d_ops - helper for setting d_ops for given dentry
1459 * @dentry: dentry to set ops on
1460 *
1461 * Casefolded directories need d_hash and d_compare set, so that the dentries
1462 * contained in them are handled case-insensitively. Note that these operations
1463 * are needed on the parent directory rather than on the dentries in it, and
1464 * while the casefolding flag can be toggled on and off on an empty directory,
1465 * dentry_operations can't be changed later. As a result, if the filesystem has
1466 * casefolding support enabled at all, we have to give all dentries the
1467 * casefolding operations even if their inode doesn't have the casefolding flag
1468 * currently (and thus the casefolding ops would be no-ops for now).
1469 *
1470 * Encryption works differently in that the only dentry operation it needs is
1471 * d_revalidate, which it only needs on dentries that have the no-key name flag.
1472 * The no-key flag can't be set "later", so we don't have to worry about that.
1473 *
1474 * Finally, to maximize compatibility with overlayfs (which isn't compatible
1475 * with certain dentry operations) and to avoid taking an unnecessary
1476 * performance hit, we use custom dentry_operations for each possible
1477 * combination rather than always installing all operations.
1478 */
generic_set_encrypted_ci_d_ops(struct dentry * dentry)1479 void generic_set_encrypted_ci_d_ops(struct dentry *dentry)
1480 {
1481 #ifdef CONFIG_FS_ENCRYPTION
1482 bool needs_encrypt_ops = dentry->d_flags & DCACHE_NOKEY_NAME;
1483 #endif
1484 #ifdef CONFIG_UNICODE
1485 bool needs_ci_ops = dentry->d_sb->s_encoding;
1486 #endif
1487 #if defined(CONFIG_FS_ENCRYPTION) && defined(CONFIG_UNICODE)
1488 if (needs_encrypt_ops && needs_ci_ops) {
1489 d_set_d_op(dentry, &generic_encrypted_ci_dentry_ops);
1490 return;
1491 }
1492 #endif
1493 #ifdef CONFIG_FS_ENCRYPTION
1494 if (needs_encrypt_ops) {
1495 d_set_d_op(dentry, &generic_encrypted_dentry_ops);
1496 return;
1497 }
1498 #endif
1499 #ifdef CONFIG_UNICODE
1500 if (needs_ci_ops) {
1501 d_set_d_op(dentry, &generic_ci_dentry_ops);
1502 return;
1503 }
1504 #endif
1505 }
1506 EXPORT_SYMBOL(generic_set_encrypted_ci_d_ops);
1507