1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Shared application/kernel submission and completion ring pairs, for
4  * supporting fast/efficient IO.
5  *
6  * A note on the read/write ordering memory barriers that are matched between
7  * the application and kernel side.
8  *
9  * After the application reads the CQ ring tail, it must use an
10  * appropriate smp_rmb() to pair with the smp_wmb() the kernel uses
11  * before writing the tail (using smp_load_acquire to read the tail will
12  * do). It also needs a smp_mb() before updating CQ head (ordering the
13  * entry load(s) with the head store), pairing with an implicit barrier
14  * through a control-dependency in io_get_cqe (smp_store_release to
15  * store head will do). Failure to do so could lead to reading invalid
16  * CQ entries.
17  *
18  * Likewise, the application must use an appropriate smp_wmb() before
19  * writing the SQ tail (ordering SQ entry stores with the tail store),
20  * which pairs with smp_load_acquire in io_get_sqring (smp_store_release
21  * to store the tail will do). And it needs a barrier ordering the SQ
22  * head load before writing new SQ entries (smp_load_acquire to read
23  * head will do).
24  *
25  * When using the SQ poll thread (IORING_SETUP_SQPOLL), the application
26  * needs to check the SQ flags for IORING_SQ_NEED_WAKEUP *after*
27  * updating the SQ tail; a full memory barrier smp_mb() is needed
28  * between.
29  *
30  * Also see the examples in the liburing library:
31  *
32  *	git://git.kernel.dk/liburing
33  *
34  * io_uring also uses READ/WRITE_ONCE() for _any_ store or load that happens
35  * from data shared between the kernel and application. This is done both
36  * for ordering purposes, but also to ensure that once a value is loaded from
37  * data that the application could potentially modify, it remains stable.
38  *
39  * Copyright (C) 2018-2019 Jens Axboe
40  * Copyright (c) 2018-2019 Christoph Hellwig
41  */
42 #include <linux/kernel.h>
43 #include <linux/init.h>
44 #include <linux/errno.h>
45 #include <linux/syscalls.h>
46 #include <linux/compat.h>
47 #include <net/compat.h>
48 #include <linux/refcount.h>
49 #include <linux/uio.h>
50 #include <linux/bits.h>
51 
52 #include <linux/sched/signal.h>
53 #include <linux/fs.h>
54 #include <linux/file.h>
55 #include <linux/fdtable.h>
56 #include <linux/mm.h>
57 #include <linux/mman.h>
58 #include <linux/percpu.h>
59 #include <linux/slab.h>
60 #include <linux/blkdev.h>
61 #include <linux/bvec.h>
62 #include <linux/net.h>
63 #include <net/sock.h>
64 #include <net/af_unix.h>
65 #include <net/scm.h>
66 #include <linux/anon_inodes.h>
67 #include <linux/sched/mm.h>
68 #include <linux/uaccess.h>
69 #include <linux/nospec.h>
70 #include <linux/sizes.h>
71 #include <linux/hugetlb.h>
72 #include <linux/highmem.h>
73 #include <linux/namei.h>
74 #include <linux/fsnotify.h>
75 #include <linux/fadvise.h>
76 #include <linux/eventpoll.h>
77 #include <linux/splice.h>
78 #include <linux/task_work.h>
79 #include <linux/pagemap.h>
80 #include <linux/io_uring.h>
81 #include <linux/tracehook.h>
82 
83 #define CREATE_TRACE_POINTS
84 #include <trace/events/io_uring.h>
85 
86 #include <uapi/linux/io_uring.h>
87 
88 #include "internal.h"
89 #include "io-wq.h"
90 
91 #define IORING_MAX_ENTRIES	32768
92 #define IORING_MAX_CQ_ENTRIES	(2 * IORING_MAX_ENTRIES)
93 #define IORING_SQPOLL_CAP_ENTRIES_VALUE 8
94 
95 /* only define max */
96 #define IORING_MAX_FIXED_FILES	(1U << 15)
97 #define IORING_MAX_RESTRICTIONS	(IORING_RESTRICTION_LAST + \
98 				 IORING_REGISTER_LAST + IORING_OP_LAST)
99 
100 #define IO_RSRC_TAG_TABLE_SHIFT	(PAGE_SHIFT - 3)
101 #define IO_RSRC_TAG_TABLE_MAX	(1U << IO_RSRC_TAG_TABLE_SHIFT)
102 #define IO_RSRC_TAG_TABLE_MASK	(IO_RSRC_TAG_TABLE_MAX - 1)
103 
104 #define IORING_MAX_REG_BUFFERS	(1U << 14)
105 
106 #define SQE_VALID_FLAGS	(IOSQE_FIXED_FILE|IOSQE_IO_DRAIN|IOSQE_IO_LINK|	\
107 				IOSQE_IO_HARDLINK | IOSQE_ASYNC | \
108 				IOSQE_BUFFER_SELECT)
109 #define IO_REQ_CLEAN_FLAGS (REQ_F_BUFFER_SELECTED | REQ_F_NEED_CLEANUP | \
110 				REQ_F_POLLED | REQ_F_INFLIGHT | REQ_F_CREDS)
111 
112 #define IO_TCTX_REFS_CACHE_NR	(1U << 10)
113 
114 struct io_uring {
115 	u32 head ____cacheline_aligned_in_smp;
116 	u32 tail ____cacheline_aligned_in_smp;
117 };
118 
119 /*
120  * This data is shared with the application through the mmap at offsets
121  * IORING_OFF_SQ_RING and IORING_OFF_CQ_RING.
122  *
123  * The offsets to the member fields are published through struct
124  * io_sqring_offsets when calling io_uring_setup.
125  */
126 struct io_rings {
127 	/*
128 	 * Head and tail offsets into the ring; the offsets need to be
129 	 * masked to get valid indices.
130 	 *
131 	 * The kernel controls head of the sq ring and the tail of the cq ring,
132 	 * and the application controls tail of the sq ring and the head of the
133 	 * cq ring.
134 	 */
135 	struct io_uring		sq, cq;
136 	/*
137 	 * Bitmasks to apply to head and tail offsets (constant, equals
138 	 * ring_entries - 1)
139 	 */
140 	u32			sq_ring_mask, cq_ring_mask;
141 	/* Ring sizes (constant, power of 2) */
142 	u32			sq_ring_entries, cq_ring_entries;
143 	/*
144 	 * Number of invalid entries dropped by the kernel due to
145 	 * invalid index stored in array
146 	 *
147 	 * Written by the kernel, shouldn't be modified by the
148 	 * application (i.e. get number of "new events" by comparing to
149 	 * cached value).
150 	 *
151 	 * After a new SQ head value was read by the application this
152 	 * counter includes all submissions that were dropped reaching
153 	 * the new SQ head (and possibly more).
154 	 */
155 	u32			sq_dropped;
156 	/*
157 	 * Runtime SQ flags
158 	 *
159 	 * Written by the kernel, shouldn't be modified by the
160 	 * application.
161 	 *
162 	 * The application needs a full memory barrier before checking
163 	 * for IORING_SQ_NEED_WAKEUP after updating the sq tail.
164 	 */
165 	u32			sq_flags;
166 	/*
167 	 * Runtime CQ flags
168 	 *
169 	 * Written by the application, shouldn't be modified by the
170 	 * kernel.
171 	 */
172 	u32			cq_flags;
173 	/*
174 	 * Number of completion events lost because the queue was full;
175 	 * this should be avoided by the application by making sure
176 	 * there are not more requests pending than there is space in
177 	 * the completion queue.
178 	 *
179 	 * Written by the kernel, shouldn't be modified by the
180 	 * application (i.e. get number of "new events" by comparing to
181 	 * cached value).
182 	 *
183 	 * As completion events come in out of order this counter is not
184 	 * ordered with any other data.
185 	 */
186 	u32			cq_overflow;
187 	/*
188 	 * Ring buffer of completion events.
189 	 *
190 	 * The kernel writes completion events fresh every time they are
191 	 * produced, so the application is allowed to modify pending
192 	 * entries.
193 	 */
194 	struct io_uring_cqe	cqes[] ____cacheline_aligned_in_smp;
195 };
196 
197 enum io_uring_cmd_flags {
198 	IO_URING_F_NONBLOCK		= 1,
199 	IO_URING_F_COMPLETE_DEFER	= 2,
200 };
201 
202 struct io_mapped_ubuf {
203 	u64		ubuf;
204 	u64		ubuf_end;
205 	unsigned int	nr_bvecs;
206 	unsigned long	acct_pages;
207 	struct bio_vec	bvec[];
208 };
209 
210 struct io_ring_ctx;
211 
212 struct io_overflow_cqe {
213 	struct io_uring_cqe cqe;
214 	struct list_head list;
215 };
216 
217 struct io_fixed_file {
218 	/* file * with additional FFS_* flags */
219 	unsigned long file_ptr;
220 };
221 
222 struct io_rsrc_put {
223 	struct list_head list;
224 	u64 tag;
225 	union {
226 		void *rsrc;
227 		struct file *file;
228 		struct io_mapped_ubuf *buf;
229 	};
230 };
231 
232 struct io_file_table {
233 	struct io_fixed_file *files;
234 };
235 
236 struct io_rsrc_node {
237 	struct percpu_ref		refs;
238 	struct list_head		node;
239 	struct list_head		rsrc_list;
240 	struct io_rsrc_data		*rsrc_data;
241 	struct llist_node		llist;
242 	bool				done;
243 };
244 
245 typedef void (rsrc_put_fn)(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc);
246 
247 struct io_rsrc_data {
248 	struct io_ring_ctx		*ctx;
249 
250 	u64				**tags;
251 	unsigned int			nr;
252 	rsrc_put_fn			*do_put;
253 	atomic_t			refs;
254 	struct completion		done;
255 	bool				quiesce;
256 };
257 
258 struct io_buffer {
259 	struct list_head list;
260 	__u64 addr;
261 	__u32 len;
262 	__u16 bid;
263 };
264 
265 struct io_restriction {
266 	DECLARE_BITMAP(register_op, IORING_REGISTER_LAST);
267 	DECLARE_BITMAP(sqe_op, IORING_OP_LAST);
268 	u8 sqe_flags_allowed;
269 	u8 sqe_flags_required;
270 	bool registered;
271 };
272 
273 enum {
274 	IO_SQ_THREAD_SHOULD_STOP = 0,
275 	IO_SQ_THREAD_SHOULD_PARK,
276 };
277 
278 struct io_sq_data {
279 	refcount_t		refs;
280 	atomic_t		park_pending;
281 	struct mutex		lock;
282 
283 	/* ctx's that are using this sqd */
284 	struct list_head	ctx_list;
285 
286 	struct task_struct	*thread;
287 	struct wait_queue_head	wait;
288 
289 	unsigned		sq_thread_idle;
290 	int			sq_cpu;
291 	pid_t			task_pid;
292 	pid_t			task_tgid;
293 
294 	unsigned long		state;
295 	struct completion	exited;
296 };
297 
298 #define IO_COMPL_BATCH			32
299 #define IO_REQ_CACHE_SIZE		32
300 #define IO_REQ_ALLOC_BATCH		8
301 
302 struct io_submit_link {
303 	struct io_kiocb		*head;
304 	struct io_kiocb		*last;
305 };
306 
307 struct io_submit_state {
308 	struct blk_plug		plug;
309 	struct io_submit_link	link;
310 
311 	/*
312 	 * io_kiocb alloc cache
313 	 */
314 	void			*reqs[IO_REQ_CACHE_SIZE];
315 	unsigned int		free_reqs;
316 
317 	bool			plug_started;
318 
319 	/*
320 	 * Batch completion logic
321 	 */
322 	struct io_kiocb		*compl_reqs[IO_COMPL_BATCH];
323 	unsigned int		compl_nr;
324 	/* inline/task_work completion list, under ->uring_lock */
325 	struct list_head	free_list;
326 
327 	unsigned int		ios_left;
328 };
329 
330 struct io_ring_ctx {
331 	/* const or read-mostly hot data */
332 	struct {
333 		struct percpu_ref	refs;
334 
335 		struct io_rings		*rings;
336 		unsigned int		flags;
337 		unsigned int		compat: 1;
338 		unsigned int		drain_next: 1;
339 		unsigned int		eventfd_async: 1;
340 		unsigned int		restricted: 1;
341 		unsigned int		off_timeout_used: 1;
342 		unsigned int		drain_active: 1;
343 	} ____cacheline_aligned_in_smp;
344 
345 	/* submission data */
346 	struct {
347 		struct mutex		uring_lock;
348 
349 		/*
350 		 * Ring buffer of indices into array of io_uring_sqe, which is
351 		 * mmapped by the application using the IORING_OFF_SQES offset.
352 		 *
353 		 * This indirection could e.g. be used to assign fixed
354 		 * io_uring_sqe entries to operations and only submit them to
355 		 * the queue when needed.
356 		 *
357 		 * The kernel modifies neither the indices array nor the entries
358 		 * array.
359 		 */
360 		u32			*sq_array;
361 		struct io_uring_sqe	*sq_sqes;
362 		unsigned		cached_sq_head;
363 		unsigned		sq_entries;
364 		struct list_head	defer_list;
365 
366 		/*
367 		 * Fixed resources fast path, should be accessed only under
368 		 * uring_lock, and updated through io_uring_register(2)
369 		 */
370 		struct io_rsrc_node	*rsrc_node;
371 		struct io_file_table	file_table;
372 		unsigned		nr_user_files;
373 		unsigned		nr_user_bufs;
374 		struct io_mapped_ubuf	**user_bufs;
375 
376 		struct io_submit_state	submit_state;
377 		struct list_head	timeout_list;
378 		struct list_head	ltimeout_list;
379 		struct list_head	cq_overflow_list;
380 		struct xarray		io_buffers;
381 		struct xarray		personalities;
382 		u32			pers_next;
383 		unsigned		sq_thread_idle;
384 	} ____cacheline_aligned_in_smp;
385 
386 	/* IRQ completion list, under ->completion_lock */
387 	struct list_head	locked_free_list;
388 	unsigned int		locked_free_nr;
389 
390 	const struct cred	*sq_creds;	/* cred used for __io_sq_thread() */
391 	struct io_sq_data	*sq_data;	/* if using sq thread polling */
392 
393 	struct wait_queue_head	sqo_sq_wait;
394 	struct list_head	sqd_list;
395 
396 	unsigned long		check_cq_overflow;
397 
398 	struct {
399 		unsigned		cached_cq_tail;
400 		unsigned		cq_entries;
401 		struct eventfd_ctx	*cq_ev_fd;
402 		struct wait_queue_head	poll_wait;
403 		struct wait_queue_head	cq_wait;
404 		unsigned		cq_extra;
405 		atomic_t		cq_timeouts;
406 		unsigned		cq_last_tm_flush;
407 	} ____cacheline_aligned_in_smp;
408 
409 	struct {
410 		spinlock_t		completion_lock;
411 
412 		spinlock_t		timeout_lock;
413 
414 		/*
415 		 * ->iopoll_list is protected by the ctx->uring_lock for
416 		 * io_uring instances that don't use IORING_SETUP_SQPOLL.
417 		 * For SQPOLL, only the single threaded io_sq_thread() will
418 		 * manipulate the list, hence no extra locking is needed there.
419 		 */
420 		struct list_head	iopoll_list;
421 		struct hlist_head	*cancel_hash;
422 		unsigned		cancel_hash_bits;
423 		bool			poll_multi_queue;
424 	} ____cacheline_aligned_in_smp;
425 
426 	struct io_restriction		restrictions;
427 
428 	/* slow path rsrc auxilary data, used by update/register */
429 	struct {
430 		struct io_rsrc_node		*rsrc_backup_node;
431 		struct io_mapped_ubuf		*dummy_ubuf;
432 		struct io_rsrc_data		*file_data;
433 		struct io_rsrc_data		*buf_data;
434 
435 		struct delayed_work		rsrc_put_work;
436 		struct llist_head		rsrc_put_llist;
437 		struct list_head		rsrc_ref_list;
438 		spinlock_t			rsrc_ref_lock;
439 	};
440 
441 	/* Keep this last, we don't need it for the fast path */
442 	struct {
443 		#if defined(CONFIG_UNIX)
444 			struct socket		*ring_sock;
445 		#endif
446 		/* hashed buffered write serialization */
447 		struct io_wq_hash		*hash_map;
448 
449 		/* Only used for accounting purposes */
450 		struct user_struct		*user;
451 		struct mm_struct		*mm_account;
452 
453 		/* ctx exit and cancelation */
454 		struct llist_head		fallback_llist;
455 		struct delayed_work		fallback_work;
456 		struct work_struct		exit_work;
457 		struct list_head		tctx_list;
458 		struct completion		ref_comp;
459 		u32				iowq_limits[2];
460 		bool				iowq_limits_set;
461 	};
462 };
463 
464 struct io_uring_task {
465 	/* submission side */
466 	int			cached_refs;
467 	struct xarray		xa;
468 	struct wait_queue_head	wait;
469 	const struct io_ring_ctx *last;
470 	struct io_wq		*io_wq;
471 	struct percpu_counter	inflight;
472 	atomic_t		inflight_tracked;
473 	atomic_t		in_idle;
474 
475 	spinlock_t		task_lock;
476 	struct io_wq_work_list	task_list;
477 	struct callback_head	task_work;
478 	bool			task_running;
479 };
480 
481 /*
482  * First field must be the file pointer in all the
483  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
484  */
485 struct io_poll_iocb {
486 	struct file			*file;
487 	struct wait_queue_head		*head;
488 	__poll_t			events;
489 	bool				done;
490 	bool				canceled;
491 	struct wait_queue_entry		wait;
492 };
493 
494 struct io_poll_update {
495 	struct file			*file;
496 	u64				old_user_data;
497 	u64				new_user_data;
498 	__poll_t			events;
499 	bool				update_events;
500 	bool				update_user_data;
501 };
502 
503 struct io_close {
504 	struct file			*file;
505 	int				fd;
506 	u32				file_slot;
507 };
508 
509 struct io_timeout_data {
510 	struct io_kiocb			*req;
511 	struct hrtimer			timer;
512 	struct timespec64		ts;
513 	enum hrtimer_mode		mode;
514 	u32				flags;
515 };
516 
517 struct io_accept {
518 	struct file			*file;
519 	struct sockaddr __user		*addr;
520 	int __user			*addr_len;
521 	int				flags;
522 	u32				file_slot;
523 	unsigned long			nofile;
524 };
525 
526 struct io_sync {
527 	struct file			*file;
528 	loff_t				len;
529 	loff_t				off;
530 	int				flags;
531 	int				mode;
532 };
533 
534 struct io_cancel {
535 	struct file			*file;
536 	u64				addr;
537 };
538 
539 struct io_timeout {
540 	struct file			*file;
541 	u32				off;
542 	u32				target_seq;
543 	struct list_head		list;
544 	/* head of the link, used by linked timeouts only */
545 	struct io_kiocb			*head;
546 	/* for linked completions */
547 	struct io_kiocb			*prev;
548 };
549 
550 struct io_timeout_rem {
551 	struct file			*file;
552 	u64				addr;
553 
554 	/* timeout update */
555 	struct timespec64		ts;
556 	u32				flags;
557 	bool				ltimeout;
558 };
559 
560 struct io_rw {
561 	/* NOTE: kiocb has the file as the first member, so don't do it here */
562 	struct kiocb			kiocb;
563 	u64				addr;
564 	u64				len;
565 };
566 
567 struct io_connect {
568 	struct file			*file;
569 	struct sockaddr __user		*addr;
570 	int				addr_len;
571 };
572 
573 struct io_sr_msg {
574 	struct file			*file;
575 	union {
576 		struct compat_msghdr __user	*umsg_compat;
577 		struct user_msghdr __user	*umsg;
578 		void __user			*buf;
579 	};
580 	int				msg_flags;
581 	int				bgid;
582 	size_t				len;
583 	struct io_buffer		*kbuf;
584 };
585 
586 struct io_open {
587 	struct file			*file;
588 	int				dfd;
589 	u32				file_slot;
590 	struct filename			*filename;
591 	struct open_how			how;
592 	unsigned long			nofile;
593 };
594 
595 struct io_rsrc_update {
596 	struct file			*file;
597 	u64				arg;
598 	u32				nr_args;
599 	u32				offset;
600 };
601 
602 struct io_fadvise {
603 	struct file			*file;
604 	u64				offset;
605 	u32				len;
606 	u32				advice;
607 };
608 
609 struct io_madvise {
610 	struct file			*file;
611 	u64				addr;
612 	u32				len;
613 	u32				advice;
614 };
615 
616 struct io_epoll {
617 	struct file			*file;
618 	int				epfd;
619 	int				op;
620 	int				fd;
621 	struct epoll_event		event;
622 };
623 
624 struct io_splice {
625 	struct file			*file_out;
626 	struct file			*file_in;
627 	loff_t				off_out;
628 	loff_t				off_in;
629 	u64				len;
630 	unsigned int			flags;
631 };
632 
633 struct io_provide_buf {
634 	struct file			*file;
635 	__u64				addr;
636 	__u32				len;
637 	__u32				bgid;
638 	__u16				nbufs;
639 	__u16				bid;
640 };
641 
642 struct io_statx {
643 	struct file			*file;
644 	int				dfd;
645 	unsigned int			mask;
646 	unsigned int			flags;
647 	const char __user		*filename;
648 	struct statx __user		*buffer;
649 };
650 
651 struct io_shutdown {
652 	struct file			*file;
653 	int				how;
654 };
655 
656 struct io_rename {
657 	struct file			*file;
658 	int				old_dfd;
659 	int				new_dfd;
660 	struct filename			*oldpath;
661 	struct filename			*newpath;
662 	int				flags;
663 };
664 
665 struct io_unlink {
666 	struct file			*file;
667 	int				dfd;
668 	int				flags;
669 	struct filename			*filename;
670 };
671 
672 struct io_mkdir {
673 	struct file			*file;
674 	int				dfd;
675 	umode_t				mode;
676 	struct filename			*filename;
677 };
678 
679 struct io_symlink {
680 	struct file			*file;
681 	int				new_dfd;
682 	struct filename			*oldpath;
683 	struct filename			*newpath;
684 };
685 
686 struct io_hardlink {
687 	struct file			*file;
688 	int				old_dfd;
689 	int				new_dfd;
690 	struct filename			*oldpath;
691 	struct filename			*newpath;
692 	int				flags;
693 };
694 
695 struct io_completion {
696 	struct file			*file;
697 	u32				cflags;
698 };
699 
700 struct io_async_connect {
701 	struct sockaddr_storage		address;
702 };
703 
704 struct io_async_msghdr {
705 	struct iovec			fast_iov[UIO_FASTIOV];
706 	/* points to an allocated iov, if NULL we use fast_iov instead */
707 	struct iovec			*free_iov;
708 	struct sockaddr __user		*uaddr;
709 	struct msghdr			msg;
710 	struct sockaddr_storage		addr;
711 };
712 
713 struct io_async_rw {
714 	struct iovec			fast_iov[UIO_FASTIOV];
715 	const struct iovec		*free_iovec;
716 	struct iov_iter			iter;
717 	struct iov_iter_state		iter_state;
718 	size_t				bytes_done;
719 	struct wait_page_queue		wpq;
720 };
721 
722 enum {
723 	REQ_F_FIXED_FILE_BIT	= IOSQE_FIXED_FILE_BIT,
724 	REQ_F_IO_DRAIN_BIT	= IOSQE_IO_DRAIN_BIT,
725 	REQ_F_LINK_BIT		= IOSQE_IO_LINK_BIT,
726 	REQ_F_HARDLINK_BIT	= IOSQE_IO_HARDLINK_BIT,
727 	REQ_F_FORCE_ASYNC_BIT	= IOSQE_ASYNC_BIT,
728 	REQ_F_BUFFER_SELECT_BIT	= IOSQE_BUFFER_SELECT_BIT,
729 
730 	/* first byte is taken by user flags, shift it to not overlap */
731 	REQ_F_FAIL_BIT		= 8,
732 	REQ_F_INFLIGHT_BIT,
733 	REQ_F_CUR_POS_BIT,
734 	REQ_F_NOWAIT_BIT,
735 	REQ_F_LINK_TIMEOUT_BIT,
736 	REQ_F_NEED_CLEANUP_BIT,
737 	REQ_F_POLLED_BIT,
738 	REQ_F_BUFFER_SELECTED_BIT,
739 	REQ_F_COMPLETE_INLINE_BIT,
740 	REQ_F_REISSUE_BIT,
741 	REQ_F_CREDS_BIT,
742 	REQ_F_REFCOUNT_BIT,
743 	REQ_F_ARM_LTIMEOUT_BIT,
744 	/* keep async read/write and isreg together and in order */
745 	REQ_F_NOWAIT_READ_BIT,
746 	REQ_F_NOWAIT_WRITE_BIT,
747 	REQ_F_ISREG_BIT,
748 
749 	/* not a real bit, just to check we're not overflowing the space */
750 	__REQ_F_LAST_BIT,
751 };
752 
753 enum {
754 	/* ctx owns file */
755 	REQ_F_FIXED_FILE	= BIT(REQ_F_FIXED_FILE_BIT),
756 	/* drain existing IO first */
757 	REQ_F_IO_DRAIN		= BIT(REQ_F_IO_DRAIN_BIT),
758 	/* linked sqes */
759 	REQ_F_LINK		= BIT(REQ_F_LINK_BIT),
760 	/* doesn't sever on completion < 0 */
761 	REQ_F_HARDLINK		= BIT(REQ_F_HARDLINK_BIT),
762 	/* IOSQE_ASYNC */
763 	REQ_F_FORCE_ASYNC	= BIT(REQ_F_FORCE_ASYNC_BIT),
764 	/* IOSQE_BUFFER_SELECT */
765 	REQ_F_BUFFER_SELECT	= BIT(REQ_F_BUFFER_SELECT_BIT),
766 
767 	/* fail rest of links */
768 	REQ_F_FAIL		= BIT(REQ_F_FAIL_BIT),
769 	/* on inflight list, should be cancelled and waited on exit reliably */
770 	REQ_F_INFLIGHT		= BIT(REQ_F_INFLIGHT_BIT),
771 	/* read/write uses file position */
772 	REQ_F_CUR_POS		= BIT(REQ_F_CUR_POS_BIT),
773 	/* must not punt to workers */
774 	REQ_F_NOWAIT		= BIT(REQ_F_NOWAIT_BIT),
775 	/* has or had linked timeout */
776 	REQ_F_LINK_TIMEOUT	= BIT(REQ_F_LINK_TIMEOUT_BIT),
777 	/* needs cleanup */
778 	REQ_F_NEED_CLEANUP	= BIT(REQ_F_NEED_CLEANUP_BIT),
779 	/* already went through poll handler */
780 	REQ_F_POLLED		= BIT(REQ_F_POLLED_BIT),
781 	/* buffer already selected */
782 	REQ_F_BUFFER_SELECTED	= BIT(REQ_F_BUFFER_SELECTED_BIT),
783 	/* completion is deferred through io_comp_state */
784 	REQ_F_COMPLETE_INLINE	= BIT(REQ_F_COMPLETE_INLINE_BIT),
785 	/* caller should reissue async */
786 	REQ_F_REISSUE		= BIT(REQ_F_REISSUE_BIT),
787 	/* supports async reads */
788 	REQ_F_NOWAIT_READ	= BIT(REQ_F_NOWAIT_READ_BIT),
789 	/* supports async writes */
790 	REQ_F_NOWAIT_WRITE	= BIT(REQ_F_NOWAIT_WRITE_BIT),
791 	/* regular file */
792 	REQ_F_ISREG		= BIT(REQ_F_ISREG_BIT),
793 	/* has creds assigned */
794 	REQ_F_CREDS		= BIT(REQ_F_CREDS_BIT),
795 	/* skip refcounting if not set */
796 	REQ_F_REFCOUNT		= BIT(REQ_F_REFCOUNT_BIT),
797 	/* there is a linked timeout that has to be armed */
798 	REQ_F_ARM_LTIMEOUT	= BIT(REQ_F_ARM_LTIMEOUT_BIT),
799 };
800 
801 struct async_poll {
802 	struct io_poll_iocb	poll;
803 	struct io_poll_iocb	*double_poll;
804 };
805 
806 typedef void (*io_req_tw_func_t)(struct io_kiocb *req, bool *locked);
807 
808 struct io_task_work {
809 	union {
810 		struct io_wq_work_node	node;
811 		struct llist_node	fallback_node;
812 	};
813 	io_req_tw_func_t		func;
814 };
815 
816 enum {
817 	IORING_RSRC_FILE		= 0,
818 	IORING_RSRC_BUFFER		= 1,
819 };
820 
821 /*
822  * NOTE! Each of the iocb union members has the file pointer
823  * as the first entry in their struct definition. So you can
824  * access the file pointer through any of the sub-structs,
825  * or directly as just 'ki_filp' in this struct.
826  */
827 struct io_kiocb {
828 	union {
829 		struct file		*file;
830 		struct io_rw		rw;
831 		struct io_poll_iocb	poll;
832 		struct io_poll_update	poll_update;
833 		struct io_accept	accept;
834 		struct io_sync		sync;
835 		struct io_cancel	cancel;
836 		struct io_timeout	timeout;
837 		struct io_timeout_rem	timeout_rem;
838 		struct io_connect	connect;
839 		struct io_sr_msg	sr_msg;
840 		struct io_open		open;
841 		struct io_close		close;
842 		struct io_rsrc_update	rsrc_update;
843 		struct io_fadvise	fadvise;
844 		struct io_madvise	madvise;
845 		struct io_epoll		epoll;
846 		struct io_splice	splice;
847 		struct io_provide_buf	pbuf;
848 		struct io_statx		statx;
849 		struct io_shutdown	shutdown;
850 		struct io_rename	rename;
851 		struct io_unlink	unlink;
852 		struct io_mkdir		mkdir;
853 		struct io_symlink	symlink;
854 		struct io_hardlink	hardlink;
855 		/* use only after cleaning per-op data, see io_clean_op() */
856 		struct io_completion	compl;
857 	};
858 
859 	/* opcode allocated if it needs to store data for async defer */
860 	void				*async_data;
861 	u8				opcode;
862 	/* polled IO has completed */
863 	u8				iopoll_completed;
864 
865 	u16				buf_index;
866 	u32				result;
867 
868 	struct io_ring_ctx		*ctx;
869 	unsigned int			flags;
870 	atomic_t			refs;
871 	struct task_struct		*task;
872 	u64				user_data;
873 
874 	struct io_kiocb			*link;
875 	struct percpu_ref		*fixed_rsrc_refs;
876 
877 	/* used with ctx->iopoll_list with reads/writes */
878 	struct list_head		inflight_entry;
879 	struct io_task_work		io_task_work;
880 	/* for polled requests, i.e. IORING_OP_POLL_ADD and async armed poll */
881 	struct hlist_node		hash_node;
882 	struct async_poll		*apoll;
883 	struct io_wq_work		work;
884 	const struct cred		*creds;
885 
886 	/* store used ubuf, so we can prevent reloading */
887 	struct io_mapped_ubuf		*imu;
888 };
889 
890 struct io_tctx_node {
891 	struct list_head	ctx_node;
892 	struct task_struct	*task;
893 	struct io_ring_ctx	*ctx;
894 };
895 
896 struct io_defer_entry {
897 	struct list_head	list;
898 	struct io_kiocb		*req;
899 	u32			seq;
900 };
901 
902 struct io_op_def {
903 	/* needs req->file assigned */
904 	unsigned		needs_file : 1;
905 	/* hash wq insertion if file is a regular file */
906 	unsigned		hash_reg_file : 1;
907 	/* unbound wq insertion if file is a non-regular file */
908 	unsigned		unbound_nonreg_file : 1;
909 	/* opcode is not supported by this kernel */
910 	unsigned		not_supported : 1;
911 	/* set if opcode supports polled "wait" */
912 	unsigned		pollin : 1;
913 	unsigned		pollout : 1;
914 	/* op supports buffer selection */
915 	unsigned		buffer_select : 1;
916 	/* do prep async if is going to be punted */
917 	unsigned		needs_async_setup : 1;
918 	/* should block plug */
919 	unsigned		plug : 1;
920 	/* size of async data needed, if any */
921 	unsigned short		async_size;
922 };
923 
924 static const struct io_op_def io_op_defs[] = {
925 	[IORING_OP_NOP] = {},
926 	[IORING_OP_READV] = {
927 		.needs_file		= 1,
928 		.unbound_nonreg_file	= 1,
929 		.pollin			= 1,
930 		.buffer_select		= 1,
931 		.needs_async_setup	= 1,
932 		.plug			= 1,
933 		.async_size		= sizeof(struct io_async_rw),
934 	},
935 	[IORING_OP_WRITEV] = {
936 		.needs_file		= 1,
937 		.hash_reg_file		= 1,
938 		.unbound_nonreg_file	= 1,
939 		.pollout		= 1,
940 		.needs_async_setup	= 1,
941 		.plug			= 1,
942 		.async_size		= sizeof(struct io_async_rw),
943 	},
944 	[IORING_OP_FSYNC] = {
945 		.needs_file		= 1,
946 	},
947 	[IORING_OP_READ_FIXED] = {
948 		.needs_file		= 1,
949 		.unbound_nonreg_file	= 1,
950 		.pollin			= 1,
951 		.plug			= 1,
952 		.async_size		= sizeof(struct io_async_rw),
953 	},
954 	[IORING_OP_WRITE_FIXED] = {
955 		.needs_file		= 1,
956 		.hash_reg_file		= 1,
957 		.unbound_nonreg_file	= 1,
958 		.pollout		= 1,
959 		.plug			= 1,
960 		.async_size		= sizeof(struct io_async_rw),
961 	},
962 	[IORING_OP_POLL_ADD] = {
963 		.needs_file		= 1,
964 		.unbound_nonreg_file	= 1,
965 	},
966 	[IORING_OP_POLL_REMOVE] = {},
967 	[IORING_OP_SYNC_FILE_RANGE] = {
968 		.needs_file		= 1,
969 	},
970 	[IORING_OP_SENDMSG] = {
971 		.needs_file		= 1,
972 		.unbound_nonreg_file	= 1,
973 		.pollout		= 1,
974 		.needs_async_setup	= 1,
975 		.async_size		= sizeof(struct io_async_msghdr),
976 	},
977 	[IORING_OP_RECVMSG] = {
978 		.needs_file		= 1,
979 		.unbound_nonreg_file	= 1,
980 		.pollin			= 1,
981 		.buffer_select		= 1,
982 		.needs_async_setup	= 1,
983 		.async_size		= sizeof(struct io_async_msghdr),
984 	},
985 	[IORING_OP_TIMEOUT] = {
986 		.async_size		= sizeof(struct io_timeout_data),
987 	},
988 	[IORING_OP_TIMEOUT_REMOVE] = {
989 		/* used by timeout updates' prep() */
990 	},
991 	[IORING_OP_ACCEPT] = {
992 		.needs_file		= 1,
993 		.unbound_nonreg_file	= 1,
994 		.pollin			= 1,
995 	},
996 	[IORING_OP_ASYNC_CANCEL] = {},
997 	[IORING_OP_LINK_TIMEOUT] = {
998 		.async_size		= sizeof(struct io_timeout_data),
999 	},
1000 	[IORING_OP_CONNECT] = {
1001 		.needs_file		= 1,
1002 		.unbound_nonreg_file	= 1,
1003 		.pollout		= 1,
1004 		.needs_async_setup	= 1,
1005 		.async_size		= sizeof(struct io_async_connect),
1006 	},
1007 	[IORING_OP_FALLOCATE] = {
1008 		.needs_file		= 1,
1009 	},
1010 	[IORING_OP_OPENAT] = {},
1011 	[IORING_OP_CLOSE] = {},
1012 	[IORING_OP_FILES_UPDATE] = {},
1013 	[IORING_OP_STATX] = {},
1014 	[IORING_OP_READ] = {
1015 		.needs_file		= 1,
1016 		.unbound_nonreg_file	= 1,
1017 		.pollin			= 1,
1018 		.buffer_select		= 1,
1019 		.plug			= 1,
1020 		.async_size		= sizeof(struct io_async_rw),
1021 	},
1022 	[IORING_OP_WRITE] = {
1023 		.needs_file		= 1,
1024 		.hash_reg_file		= 1,
1025 		.unbound_nonreg_file	= 1,
1026 		.pollout		= 1,
1027 		.plug			= 1,
1028 		.async_size		= sizeof(struct io_async_rw),
1029 	},
1030 	[IORING_OP_FADVISE] = {
1031 		.needs_file		= 1,
1032 	},
1033 	[IORING_OP_MADVISE] = {},
1034 	[IORING_OP_SEND] = {
1035 		.needs_file		= 1,
1036 		.unbound_nonreg_file	= 1,
1037 		.pollout		= 1,
1038 	},
1039 	[IORING_OP_RECV] = {
1040 		.needs_file		= 1,
1041 		.unbound_nonreg_file	= 1,
1042 		.pollin			= 1,
1043 		.buffer_select		= 1,
1044 	},
1045 	[IORING_OP_OPENAT2] = {
1046 	},
1047 	[IORING_OP_EPOLL_CTL] = {
1048 		.unbound_nonreg_file	= 1,
1049 	},
1050 	[IORING_OP_SPLICE] = {
1051 		.needs_file		= 1,
1052 		.hash_reg_file		= 1,
1053 		.unbound_nonreg_file	= 1,
1054 	},
1055 	[IORING_OP_PROVIDE_BUFFERS] = {},
1056 	[IORING_OP_REMOVE_BUFFERS] = {},
1057 	[IORING_OP_TEE] = {
1058 		.needs_file		= 1,
1059 		.hash_reg_file		= 1,
1060 		.unbound_nonreg_file	= 1,
1061 	},
1062 	[IORING_OP_SHUTDOWN] = {
1063 		.needs_file		= 1,
1064 	},
1065 	[IORING_OP_RENAMEAT] = {},
1066 	[IORING_OP_UNLINKAT] = {},
1067 	[IORING_OP_MKDIRAT] = {},
1068 	[IORING_OP_SYMLINKAT] = {},
1069 	[IORING_OP_LINKAT] = {},
1070 };
1071 
1072 /* requests with any of those set should undergo io_disarm_next() */
1073 #define IO_DISARM_MASK (REQ_F_ARM_LTIMEOUT | REQ_F_LINK_TIMEOUT | REQ_F_FAIL)
1074 
1075 static bool io_disarm_next(struct io_kiocb *req);
1076 static void io_uring_del_tctx_node(unsigned long index);
1077 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
1078 					 struct task_struct *task,
1079 					 bool cancel_all);
1080 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd);
1081 
1082 static bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1083 				 long res, unsigned int cflags);
1084 static void io_put_req(struct io_kiocb *req);
1085 static void io_put_req_deferred(struct io_kiocb *req);
1086 static void io_dismantle_req(struct io_kiocb *req);
1087 static void io_queue_linked_timeout(struct io_kiocb *req);
1088 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
1089 				     struct io_uring_rsrc_update2 *up,
1090 				     unsigned nr_args);
1091 static void io_clean_op(struct io_kiocb *req);
1092 static struct file *io_file_get(struct io_ring_ctx *ctx,
1093 				struct io_kiocb *req, int fd, bool fixed);
1094 static void __io_queue_sqe(struct io_kiocb *req);
1095 static void io_rsrc_put_work(struct work_struct *work);
1096 
1097 static void io_req_task_queue(struct io_kiocb *req);
1098 static void io_submit_flush_completions(struct io_ring_ctx *ctx);
1099 static int io_req_prep_async(struct io_kiocb *req);
1100 
1101 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
1102 				 unsigned int issue_flags, u32 slot_index);
1103 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags);
1104 
1105 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer);
1106 
1107 static struct kmem_cache *req_cachep;
1108 
1109 static const struct file_operations io_uring_fops;
1110 
io_uring_get_socket(struct file * file)1111 struct sock *io_uring_get_socket(struct file *file)
1112 {
1113 #if defined(CONFIG_UNIX)
1114 	if (file->f_op == &io_uring_fops) {
1115 		struct io_ring_ctx *ctx = file->private_data;
1116 
1117 		return ctx->ring_sock->sk;
1118 	}
1119 #endif
1120 	return NULL;
1121 }
1122 EXPORT_SYMBOL(io_uring_get_socket);
1123 
io_tw_lock(struct io_ring_ctx * ctx,bool * locked)1124 static inline void io_tw_lock(struct io_ring_ctx *ctx, bool *locked)
1125 {
1126 	if (!*locked) {
1127 		mutex_lock(&ctx->uring_lock);
1128 		*locked = true;
1129 	}
1130 }
1131 
1132 #define io_for_each_link(pos, head) \
1133 	for (pos = (head); pos; pos = pos->link)
1134 
1135 /*
1136  * Shamelessly stolen from the mm implementation of page reference checking,
1137  * see commit f958d7b528b1 for details.
1138  */
1139 #define req_ref_zero_or_close_to_overflow(req)	\
1140 	((unsigned int) atomic_read(&(req->refs)) + 127u <= 127u)
1141 
req_ref_inc_not_zero(struct io_kiocb * req)1142 static inline bool req_ref_inc_not_zero(struct io_kiocb *req)
1143 {
1144 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1145 	return atomic_inc_not_zero(&req->refs);
1146 }
1147 
req_ref_put_and_test(struct io_kiocb * req)1148 static inline bool req_ref_put_and_test(struct io_kiocb *req)
1149 {
1150 	if (likely(!(req->flags & REQ_F_REFCOUNT)))
1151 		return true;
1152 
1153 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1154 	return atomic_dec_and_test(&req->refs);
1155 }
1156 
req_ref_put(struct io_kiocb * req)1157 static inline void req_ref_put(struct io_kiocb *req)
1158 {
1159 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1160 	WARN_ON_ONCE(req_ref_put_and_test(req));
1161 }
1162 
req_ref_get(struct io_kiocb * req)1163 static inline void req_ref_get(struct io_kiocb *req)
1164 {
1165 	WARN_ON_ONCE(!(req->flags & REQ_F_REFCOUNT));
1166 	WARN_ON_ONCE(req_ref_zero_or_close_to_overflow(req));
1167 	atomic_inc(&req->refs);
1168 }
1169 
__io_req_set_refcount(struct io_kiocb * req,int nr)1170 static inline void __io_req_set_refcount(struct io_kiocb *req, int nr)
1171 {
1172 	if (!(req->flags & REQ_F_REFCOUNT)) {
1173 		req->flags |= REQ_F_REFCOUNT;
1174 		atomic_set(&req->refs, nr);
1175 	}
1176 }
1177 
io_req_set_refcount(struct io_kiocb * req)1178 static inline void io_req_set_refcount(struct io_kiocb *req)
1179 {
1180 	__io_req_set_refcount(req, 1);
1181 }
1182 
io_req_set_rsrc_node(struct io_kiocb * req)1183 static inline void io_req_set_rsrc_node(struct io_kiocb *req)
1184 {
1185 	struct io_ring_ctx *ctx = req->ctx;
1186 
1187 	if (!req->fixed_rsrc_refs) {
1188 		req->fixed_rsrc_refs = &ctx->rsrc_node->refs;
1189 		percpu_ref_get(req->fixed_rsrc_refs);
1190 	}
1191 }
1192 
io_refs_resurrect(struct percpu_ref * ref,struct completion * compl)1193 static void io_refs_resurrect(struct percpu_ref *ref, struct completion *compl)
1194 {
1195 	bool got = percpu_ref_tryget(ref);
1196 
1197 	/* already at zero, wait for ->release() */
1198 	if (!got)
1199 		wait_for_completion(compl);
1200 	percpu_ref_resurrect(ref);
1201 	if (got)
1202 		percpu_ref_put(ref);
1203 }
1204 
io_match_task(struct io_kiocb * head,struct task_struct * task,bool cancel_all)1205 static bool io_match_task(struct io_kiocb *head, struct task_struct *task,
1206 			  bool cancel_all)
1207 {
1208 	struct io_kiocb *req;
1209 
1210 	if (task && head->task != task)
1211 		return false;
1212 	if (cancel_all)
1213 		return true;
1214 
1215 	io_for_each_link(req, head) {
1216 		if (req->flags & REQ_F_INFLIGHT)
1217 			return true;
1218 	}
1219 	return false;
1220 }
1221 
req_set_fail(struct io_kiocb * req)1222 static inline void req_set_fail(struct io_kiocb *req)
1223 {
1224 	req->flags |= REQ_F_FAIL;
1225 }
1226 
req_fail_link_node(struct io_kiocb * req,int res)1227 static inline void req_fail_link_node(struct io_kiocb *req, int res)
1228 {
1229 	req_set_fail(req);
1230 	req->result = res;
1231 }
1232 
io_ring_ctx_ref_free(struct percpu_ref * ref)1233 static void io_ring_ctx_ref_free(struct percpu_ref *ref)
1234 {
1235 	struct io_ring_ctx *ctx = container_of(ref, struct io_ring_ctx, refs);
1236 
1237 	complete(&ctx->ref_comp);
1238 }
1239 
io_is_timeout_noseq(struct io_kiocb * req)1240 static inline bool io_is_timeout_noseq(struct io_kiocb *req)
1241 {
1242 	return !req->timeout.off;
1243 }
1244 
io_fallback_req_func(struct work_struct * work)1245 static void io_fallback_req_func(struct work_struct *work)
1246 {
1247 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx,
1248 						fallback_work.work);
1249 	struct llist_node *node = llist_del_all(&ctx->fallback_llist);
1250 	struct io_kiocb *req, *tmp;
1251 	bool locked = false;
1252 
1253 	percpu_ref_get(&ctx->refs);
1254 	llist_for_each_entry_safe(req, tmp, node, io_task_work.fallback_node)
1255 		req->io_task_work.func(req, &locked);
1256 
1257 	if (locked) {
1258 		if (ctx->submit_state.compl_nr)
1259 			io_submit_flush_completions(ctx);
1260 		mutex_unlock(&ctx->uring_lock);
1261 	}
1262 	percpu_ref_put(&ctx->refs);
1263 
1264 }
1265 
io_ring_ctx_alloc(struct io_uring_params * p)1266 static struct io_ring_ctx *io_ring_ctx_alloc(struct io_uring_params *p)
1267 {
1268 	struct io_ring_ctx *ctx;
1269 	int hash_bits;
1270 
1271 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
1272 	if (!ctx)
1273 		return NULL;
1274 
1275 	/*
1276 	 * Use 5 bits less than the max cq entries, that should give us around
1277 	 * 32 entries per hash list if totally full and uniformly spread.
1278 	 */
1279 	hash_bits = ilog2(p->cq_entries);
1280 	hash_bits -= 5;
1281 	if (hash_bits <= 0)
1282 		hash_bits = 1;
1283 	ctx->cancel_hash_bits = hash_bits;
1284 	ctx->cancel_hash = kmalloc((1U << hash_bits) * sizeof(struct hlist_head),
1285 					GFP_KERNEL);
1286 	if (!ctx->cancel_hash)
1287 		goto err;
1288 	__hash_init(ctx->cancel_hash, 1U << hash_bits);
1289 
1290 	ctx->dummy_ubuf = kzalloc(sizeof(*ctx->dummy_ubuf), GFP_KERNEL);
1291 	if (!ctx->dummy_ubuf)
1292 		goto err;
1293 	/* set invalid range, so io_import_fixed() fails meeting it */
1294 	ctx->dummy_ubuf->ubuf = -1UL;
1295 
1296 	if (percpu_ref_init(&ctx->refs, io_ring_ctx_ref_free,
1297 			    PERCPU_REF_ALLOW_REINIT, GFP_KERNEL))
1298 		goto err;
1299 
1300 	ctx->flags = p->flags;
1301 	init_waitqueue_head(&ctx->sqo_sq_wait);
1302 	INIT_LIST_HEAD(&ctx->sqd_list);
1303 	init_waitqueue_head(&ctx->poll_wait);
1304 	INIT_LIST_HEAD(&ctx->cq_overflow_list);
1305 	init_completion(&ctx->ref_comp);
1306 	xa_init_flags(&ctx->io_buffers, XA_FLAGS_ALLOC1);
1307 	xa_init_flags(&ctx->personalities, XA_FLAGS_ALLOC1);
1308 	mutex_init(&ctx->uring_lock);
1309 	init_waitqueue_head(&ctx->cq_wait);
1310 	spin_lock_init(&ctx->completion_lock);
1311 	spin_lock_init(&ctx->timeout_lock);
1312 	INIT_LIST_HEAD(&ctx->iopoll_list);
1313 	INIT_LIST_HEAD(&ctx->defer_list);
1314 	INIT_LIST_HEAD(&ctx->timeout_list);
1315 	INIT_LIST_HEAD(&ctx->ltimeout_list);
1316 	spin_lock_init(&ctx->rsrc_ref_lock);
1317 	INIT_LIST_HEAD(&ctx->rsrc_ref_list);
1318 	INIT_DELAYED_WORK(&ctx->rsrc_put_work, io_rsrc_put_work);
1319 	init_llist_head(&ctx->rsrc_put_llist);
1320 	INIT_LIST_HEAD(&ctx->tctx_list);
1321 	INIT_LIST_HEAD(&ctx->submit_state.free_list);
1322 	INIT_LIST_HEAD(&ctx->locked_free_list);
1323 	INIT_DELAYED_WORK(&ctx->fallback_work, io_fallback_req_func);
1324 	return ctx;
1325 err:
1326 	kfree(ctx->dummy_ubuf);
1327 	kfree(ctx->cancel_hash);
1328 	kfree(ctx);
1329 	return NULL;
1330 }
1331 
io_account_cq_overflow(struct io_ring_ctx * ctx)1332 static void io_account_cq_overflow(struct io_ring_ctx *ctx)
1333 {
1334 	struct io_rings *r = ctx->rings;
1335 
1336 	WRITE_ONCE(r->cq_overflow, READ_ONCE(r->cq_overflow) + 1);
1337 	ctx->cq_extra--;
1338 }
1339 
req_need_defer(struct io_kiocb * req,u32 seq)1340 static bool req_need_defer(struct io_kiocb *req, u32 seq)
1341 {
1342 	if (unlikely(req->flags & REQ_F_IO_DRAIN)) {
1343 		struct io_ring_ctx *ctx = req->ctx;
1344 
1345 		return seq + READ_ONCE(ctx->cq_extra) != ctx->cached_cq_tail;
1346 	}
1347 
1348 	return false;
1349 }
1350 
1351 #define FFS_ASYNC_READ		0x1UL
1352 #define FFS_ASYNC_WRITE		0x2UL
1353 #ifdef CONFIG_64BIT
1354 #define FFS_ISREG		0x4UL
1355 #else
1356 #define FFS_ISREG		0x0UL
1357 #endif
1358 #define FFS_MASK		~(FFS_ASYNC_READ|FFS_ASYNC_WRITE|FFS_ISREG)
1359 
io_req_ffs_set(struct io_kiocb * req)1360 static inline bool io_req_ffs_set(struct io_kiocb *req)
1361 {
1362 	return IS_ENABLED(CONFIG_64BIT) && (req->flags & REQ_F_FIXED_FILE);
1363 }
1364 
io_req_track_inflight(struct io_kiocb * req)1365 static void io_req_track_inflight(struct io_kiocb *req)
1366 {
1367 	if (!(req->flags & REQ_F_INFLIGHT)) {
1368 		req->flags |= REQ_F_INFLIGHT;
1369 		atomic_inc(&current->io_uring->inflight_tracked);
1370 	}
1371 }
1372 
__io_prep_linked_timeout(struct io_kiocb * req)1373 static struct io_kiocb *__io_prep_linked_timeout(struct io_kiocb *req)
1374 {
1375 	if (WARN_ON_ONCE(!req->link))
1376 		return NULL;
1377 
1378 	req->flags &= ~REQ_F_ARM_LTIMEOUT;
1379 	req->flags |= REQ_F_LINK_TIMEOUT;
1380 
1381 	/* linked timeouts should have two refs once prep'ed */
1382 	io_req_set_refcount(req);
1383 	__io_req_set_refcount(req->link, 2);
1384 	return req->link;
1385 }
1386 
io_prep_linked_timeout(struct io_kiocb * req)1387 static inline struct io_kiocb *io_prep_linked_timeout(struct io_kiocb *req)
1388 {
1389 	if (likely(!(req->flags & REQ_F_ARM_LTIMEOUT)))
1390 		return NULL;
1391 	return __io_prep_linked_timeout(req);
1392 }
1393 
io_prep_async_work(struct io_kiocb * req)1394 static void io_prep_async_work(struct io_kiocb *req)
1395 {
1396 	const struct io_op_def *def = &io_op_defs[req->opcode];
1397 	struct io_ring_ctx *ctx = req->ctx;
1398 
1399 	if (!(req->flags & REQ_F_CREDS)) {
1400 		req->flags |= REQ_F_CREDS;
1401 		req->creds = get_current_cred();
1402 	}
1403 
1404 	req->work.list.next = NULL;
1405 	req->work.flags = 0;
1406 	if (req->flags & REQ_F_FORCE_ASYNC)
1407 		req->work.flags |= IO_WQ_WORK_CONCURRENT;
1408 
1409 	if (req->flags & REQ_F_ISREG) {
1410 		if (def->hash_reg_file || (ctx->flags & IORING_SETUP_IOPOLL))
1411 			io_wq_hash_work(&req->work, file_inode(req->file));
1412 	} else if (!req->file || !S_ISBLK(file_inode(req->file)->i_mode)) {
1413 		if (def->unbound_nonreg_file)
1414 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1415 	}
1416 
1417 	switch (req->opcode) {
1418 	case IORING_OP_SPLICE:
1419 	case IORING_OP_TEE:
1420 		if (!S_ISREG(file_inode(req->splice.file_in)->i_mode))
1421 			req->work.flags |= IO_WQ_WORK_UNBOUND;
1422 		break;
1423 	}
1424 }
1425 
io_prep_async_link(struct io_kiocb * req)1426 static void io_prep_async_link(struct io_kiocb *req)
1427 {
1428 	struct io_kiocb *cur;
1429 
1430 	if (req->flags & REQ_F_LINK_TIMEOUT) {
1431 		struct io_ring_ctx *ctx = req->ctx;
1432 
1433 		spin_lock(&ctx->completion_lock);
1434 		io_for_each_link(cur, req)
1435 			io_prep_async_work(cur);
1436 		spin_unlock(&ctx->completion_lock);
1437 	} else {
1438 		io_for_each_link(cur, req)
1439 			io_prep_async_work(cur);
1440 	}
1441 }
1442 
io_queue_async_work(struct io_kiocb * req,bool * locked)1443 static void io_queue_async_work(struct io_kiocb *req, bool *locked)
1444 {
1445 	struct io_ring_ctx *ctx = req->ctx;
1446 	struct io_kiocb *link = io_prep_linked_timeout(req);
1447 	struct io_uring_task *tctx = req->task->io_uring;
1448 
1449 	/* must not take the lock, NULL it as a precaution */
1450 	locked = NULL;
1451 
1452 	BUG_ON(!tctx);
1453 	BUG_ON(!tctx->io_wq);
1454 
1455 	/* init ->work of the whole link before punting */
1456 	io_prep_async_link(req);
1457 
1458 	/*
1459 	 * Not expected to happen, but if we do have a bug where this _can_
1460 	 * happen, catch it here and ensure the request is marked as
1461 	 * canceled. That will make io-wq go through the usual work cancel
1462 	 * procedure rather than attempt to run this request (or create a new
1463 	 * worker for it).
1464 	 */
1465 	if (WARN_ON_ONCE(!same_thread_group(req->task, current)))
1466 		req->work.flags |= IO_WQ_WORK_CANCEL;
1467 
1468 	trace_io_uring_queue_async_work(ctx, io_wq_is_hashed(&req->work), req,
1469 					&req->work, req->flags);
1470 	io_wq_enqueue(tctx->io_wq, &req->work);
1471 	if (link)
1472 		io_queue_linked_timeout(link);
1473 }
1474 
io_kill_timeout(struct io_kiocb * req,int status)1475 static void io_kill_timeout(struct io_kiocb *req, int status)
1476 	__must_hold(&req->ctx->completion_lock)
1477 	__must_hold(&req->ctx->timeout_lock)
1478 {
1479 	struct io_timeout_data *io = req->async_data;
1480 
1481 	if (hrtimer_try_to_cancel(&io->timer) != -1) {
1482 		if (status)
1483 			req_set_fail(req);
1484 		atomic_set(&req->ctx->cq_timeouts,
1485 			atomic_read(&req->ctx->cq_timeouts) + 1);
1486 		list_del_init(&req->timeout.list);
1487 		io_cqring_fill_event(req->ctx, req->user_data, status, 0);
1488 		io_put_req_deferred(req);
1489 	}
1490 }
1491 
io_queue_deferred(struct io_ring_ctx * ctx)1492 static void io_queue_deferred(struct io_ring_ctx *ctx)
1493 {
1494 	while (!list_empty(&ctx->defer_list)) {
1495 		struct io_defer_entry *de = list_first_entry(&ctx->defer_list,
1496 						struct io_defer_entry, list);
1497 
1498 		if (req_need_defer(de->req, de->seq))
1499 			break;
1500 		list_del_init(&de->list);
1501 		io_req_task_queue(de->req);
1502 		kfree(de);
1503 	}
1504 }
1505 
io_flush_timeouts(struct io_ring_ctx * ctx)1506 static void io_flush_timeouts(struct io_ring_ctx *ctx)
1507 	__must_hold(&ctx->completion_lock)
1508 {
1509 	u32 seq = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
1510 
1511 	spin_lock_irq(&ctx->timeout_lock);
1512 	while (!list_empty(&ctx->timeout_list)) {
1513 		u32 events_needed, events_got;
1514 		struct io_kiocb *req = list_first_entry(&ctx->timeout_list,
1515 						struct io_kiocb, timeout.list);
1516 
1517 		if (io_is_timeout_noseq(req))
1518 			break;
1519 
1520 		/*
1521 		 * Since seq can easily wrap around over time, subtract
1522 		 * the last seq at which timeouts were flushed before comparing.
1523 		 * Assuming not more than 2^31-1 events have happened since,
1524 		 * these subtractions won't have wrapped, so we can check if
1525 		 * target is in [last_seq, current_seq] by comparing the two.
1526 		 */
1527 		events_needed = req->timeout.target_seq - ctx->cq_last_tm_flush;
1528 		events_got = seq - ctx->cq_last_tm_flush;
1529 		if (events_got < events_needed)
1530 			break;
1531 
1532 		list_del_init(&req->timeout.list);
1533 		io_kill_timeout(req, 0);
1534 	}
1535 	ctx->cq_last_tm_flush = seq;
1536 	spin_unlock_irq(&ctx->timeout_lock);
1537 }
1538 
__io_commit_cqring_flush(struct io_ring_ctx * ctx)1539 static void __io_commit_cqring_flush(struct io_ring_ctx *ctx)
1540 {
1541 	if (ctx->off_timeout_used)
1542 		io_flush_timeouts(ctx);
1543 	if (ctx->drain_active)
1544 		io_queue_deferred(ctx);
1545 }
1546 
io_commit_cqring(struct io_ring_ctx * ctx)1547 static inline void io_commit_cqring(struct io_ring_ctx *ctx)
1548 {
1549 	if (unlikely(ctx->off_timeout_used || ctx->drain_active))
1550 		__io_commit_cqring_flush(ctx);
1551 	/* order cqe stores with ring update */
1552 	smp_store_release(&ctx->rings->cq.tail, ctx->cached_cq_tail);
1553 }
1554 
io_sqring_full(struct io_ring_ctx * ctx)1555 static inline bool io_sqring_full(struct io_ring_ctx *ctx)
1556 {
1557 	struct io_rings *r = ctx->rings;
1558 
1559 	return READ_ONCE(r->sq.tail) - ctx->cached_sq_head == ctx->sq_entries;
1560 }
1561 
__io_cqring_events(struct io_ring_ctx * ctx)1562 static inline unsigned int __io_cqring_events(struct io_ring_ctx *ctx)
1563 {
1564 	return ctx->cached_cq_tail - READ_ONCE(ctx->rings->cq.head);
1565 }
1566 
io_get_cqe(struct io_ring_ctx * ctx)1567 static inline struct io_uring_cqe *io_get_cqe(struct io_ring_ctx *ctx)
1568 {
1569 	struct io_rings *rings = ctx->rings;
1570 	unsigned tail, mask = ctx->cq_entries - 1;
1571 
1572 	/*
1573 	 * writes to the cq entry need to come after reading head; the
1574 	 * control dependency is enough as we're using WRITE_ONCE to
1575 	 * fill the cq entry
1576 	 */
1577 	if (__io_cqring_events(ctx) == ctx->cq_entries)
1578 		return NULL;
1579 
1580 	tail = ctx->cached_cq_tail++;
1581 	return &rings->cqes[tail & mask];
1582 }
1583 
io_should_trigger_evfd(struct io_ring_ctx * ctx)1584 static inline bool io_should_trigger_evfd(struct io_ring_ctx *ctx)
1585 {
1586 	if (likely(!ctx->cq_ev_fd))
1587 		return false;
1588 	if (READ_ONCE(ctx->rings->cq_flags) & IORING_CQ_EVENTFD_DISABLED)
1589 		return false;
1590 	return !ctx->eventfd_async || io_wq_current_is_worker();
1591 }
1592 
1593 /*
1594  * This should only get called when at least one event has been posted.
1595  * Some applications rely on the eventfd notification count only changing
1596  * IFF a new CQE has been added to the CQ ring. There's no depedency on
1597  * 1:1 relationship between how many times this function is called (and
1598  * hence the eventfd count) and number of CQEs posted to the CQ ring.
1599  */
io_cqring_ev_posted(struct io_ring_ctx * ctx)1600 static void io_cqring_ev_posted(struct io_ring_ctx *ctx)
1601 {
1602 	/*
1603 	 * wake_up_all() may seem excessive, but io_wake_function() and
1604 	 * io_should_wake() handle the termination of the loop and only
1605 	 * wake as many waiters as we need to.
1606 	 */
1607 	if (wq_has_sleeper(&ctx->cq_wait))
1608 		wake_up_all(&ctx->cq_wait);
1609 	if (ctx->sq_data && waitqueue_active(&ctx->sq_data->wait))
1610 		wake_up(&ctx->sq_data->wait);
1611 	if (io_should_trigger_evfd(ctx))
1612 		eventfd_signal(ctx->cq_ev_fd, 1);
1613 	if (waitqueue_active(&ctx->poll_wait))
1614 		wake_up_interruptible(&ctx->poll_wait);
1615 }
1616 
io_cqring_ev_posted_iopoll(struct io_ring_ctx * ctx)1617 static void io_cqring_ev_posted_iopoll(struct io_ring_ctx *ctx)
1618 {
1619 	/* see waitqueue_active() comment */
1620 	smp_mb();
1621 
1622 	if (ctx->flags & IORING_SETUP_SQPOLL) {
1623 		if (waitqueue_active(&ctx->cq_wait))
1624 			wake_up_all(&ctx->cq_wait);
1625 	}
1626 	if (io_should_trigger_evfd(ctx))
1627 		eventfd_signal(ctx->cq_ev_fd, 1);
1628 	if (waitqueue_active(&ctx->poll_wait))
1629 		wake_up_interruptible(&ctx->poll_wait);
1630 }
1631 
1632 /* Returns true if there are no backlogged entries after the flush */
__io_cqring_overflow_flush(struct io_ring_ctx * ctx,bool force)1633 static bool __io_cqring_overflow_flush(struct io_ring_ctx *ctx, bool force)
1634 {
1635 	bool all_flushed, posted;
1636 
1637 	if (!force && __io_cqring_events(ctx) == ctx->cq_entries)
1638 		return false;
1639 
1640 	posted = false;
1641 	spin_lock(&ctx->completion_lock);
1642 	while (!list_empty(&ctx->cq_overflow_list)) {
1643 		struct io_uring_cqe *cqe = io_get_cqe(ctx);
1644 		struct io_overflow_cqe *ocqe;
1645 
1646 		if (!cqe && !force)
1647 			break;
1648 		ocqe = list_first_entry(&ctx->cq_overflow_list,
1649 					struct io_overflow_cqe, list);
1650 		if (cqe)
1651 			memcpy(cqe, &ocqe->cqe, sizeof(*cqe));
1652 		else
1653 			io_account_cq_overflow(ctx);
1654 
1655 		posted = true;
1656 		list_del(&ocqe->list);
1657 		kfree(ocqe);
1658 	}
1659 
1660 	all_flushed = list_empty(&ctx->cq_overflow_list);
1661 	if (all_flushed) {
1662 		clear_bit(0, &ctx->check_cq_overflow);
1663 		WRITE_ONCE(ctx->rings->sq_flags,
1664 			   ctx->rings->sq_flags & ~IORING_SQ_CQ_OVERFLOW);
1665 	}
1666 
1667 	if (posted)
1668 		io_commit_cqring(ctx);
1669 	spin_unlock(&ctx->completion_lock);
1670 	if (posted)
1671 		io_cqring_ev_posted(ctx);
1672 	return all_flushed;
1673 }
1674 
io_cqring_overflow_flush(struct io_ring_ctx * ctx)1675 static bool io_cqring_overflow_flush(struct io_ring_ctx *ctx)
1676 {
1677 	bool ret = true;
1678 
1679 	if (test_bit(0, &ctx->check_cq_overflow)) {
1680 		/* iopoll syncs against uring_lock, not completion_lock */
1681 		if (ctx->flags & IORING_SETUP_IOPOLL)
1682 			mutex_lock(&ctx->uring_lock);
1683 		ret = __io_cqring_overflow_flush(ctx, false);
1684 		if (ctx->flags & IORING_SETUP_IOPOLL)
1685 			mutex_unlock(&ctx->uring_lock);
1686 	}
1687 
1688 	return ret;
1689 }
1690 
1691 /* must to be called somewhat shortly after putting a request */
io_put_task(struct task_struct * task,int nr)1692 static inline void io_put_task(struct task_struct *task, int nr)
1693 {
1694 	struct io_uring_task *tctx = task->io_uring;
1695 
1696 	if (likely(task == current)) {
1697 		tctx->cached_refs += nr;
1698 	} else {
1699 		percpu_counter_sub(&tctx->inflight, nr);
1700 		if (unlikely(atomic_read(&tctx->in_idle)))
1701 			wake_up(&tctx->wait);
1702 		put_task_struct_many(task, nr);
1703 	}
1704 }
1705 
io_task_refs_refill(struct io_uring_task * tctx)1706 static void io_task_refs_refill(struct io_uring_task *tctx)
1707 {
1708 	unsigned int refill = -tctx->cached_refs + IO_TCTX_REFS_CACHE_NR;
1709 
1710 	percpu_counter_add(&tctx->inflight, refill);
1711 	refcount_add(refill, &current->usage);
1712 	tctx->cached_refs += refill;
1713 }
1714 
io_get_task_refs(int nr)1715 static inline void io_get_task_refs(int nr)
1716 {
1717 	struct io_uring_task *tctx = current->io_uring;
1718 
1719 	tctx->cached_refs -= nr;
1720 	if (unlikely(tctx->cached_refs < 0))
1721 		io_task_refs_refill(tctx);
1722 }
1723 
io_cqring_event_overflow(struct io_ring_ctx * ctx,u64 user_data,long res,unsigned int cflags)1724 static bool io_cqring_event_overflow(struct io_ring_ctx *ctx, u64 user_data,
1725 				     long res, unsigned int cflags)
1726 {
1727 	struct io_overflow_cqe *ocqe;
1728 
1729 	ocqe = kmalloc(sizeof(*ocqe), GFP_ATOMIC | __GFP_ACCOUNT);
1730 	if (!ocqe) {
1731 		/*
1732 		 * If we're in ring overflow flush mode, or in task cancel mode,
1733 		 * or cannot allocate an overflow entry, then we need to drop it
1734 		 * on the floor.
1735 		 */
1736 		io_account_cq_overflow(ctx);
1737 		return false;
1738 	}
1739 	if (list_empty(&ctx->cq_overflow_list)) {
1740 		set_bit(0, &ctx->check_cq_overflow);
1741 		WRITE_ONCE(ctx->rings->sq_flags,
1742 			   ctx->rings->sq_flags | IORING_SQ_CQ_OVERFLOW);
1743 
1744 	}
1745 	ocqe->cqe.user_data = user_data;
1746 	ocqe->cqe.res = res;
1747 	ocqe->cqe.flags = cflags;
1748 	list_add_tail(&ocqe->list, &ctx->cq_overflow_list);
1749 	return true;
1750 }
1751 
__io_cqring_fill_event(struct io_ring_ctx * ctx,u64 user_data,long res,unsigned int cflags)1752 static inline bool __io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1753 					  long res, unsigned int cflags)
1754 {
1755 	struct io_uring_cqe *cqe;
1756 
1757 	trace_io_uring_complete(ctx, user_data, res, cflags);
1758 
1759 	/*
1760 	 * If we can't get a cq entry, userspace overflowed the
1761 	 * submission (by quite a lot). Increment the overflow count in
1762 	 * the ring.
1763 	 */
1764 	cqe = io_get_cqe(ctx);
1765 	if (likely(cqe)) {
1766 		WRITE_ONCE(cqe->user_data, user_data);
1767 		WRITE_ONCE(cqe->res, res);
1768 		WRITE_ONCE(cqe->flags, cflags);
1769 		return true;
1770 	}
1771 	return io_cqring_event_overflow(ctx, user_data, res, cflags);
1772 }
1773 
1774 /* not as hot to bloat with inlining */
io_cqring_fill_event(struct io_ring_ctx * ctx,u64 user_data,long res,unsigned int cflags)1775 static noinline bool io_cqring_fill_event(struct io_ring_ctx *ctx, u64 user_data,
1776 					  long res, unsigned int cflags)
1777 {
1778 	return __io_cqring_fill_event(ctx, user_data, res, cflags);
1779 }
1780 
io_req_complete_post(struct io_kiocb * req,long res,unsigned int cflags)1781 static void io_req_complete_post(struct io_kiocb *req, long res,
1782 				 unsigned int cflags)
1783 {
1784 	struct io_ring_ctx *ctx = req->ctx;
1785 
1786 	spin_lock(&ctx->completion_lock);
1787 	__io_cqring_fill_event(ctx, req->user_data, res, cflags);
1788 	/*
1789 	 * If we're the last reference to this request, add to our locked
1790 	 * free_list cache.
1791 	 */
1792 	if (req_ref_put_and_test(req)) {
1793 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
1794 			if (req->flags & IO_DISARM_MASK)
1795 				io_disarm_next(req);
1796 			if (req->link) {
1797 				io_req_task_queue(req->link);
1798 				req->link = NULL;
1799 			}
1800 		}
1801 		io_dismantle_req(req);
1802 		io_put_task(req->task, 1);
1803 		list_add(&req->inflight_entry, &ctx->locked_free_list);
1804 		ctx->locked_free_nr++;
1805 	} else {
1806 		if (!percpu_ref_tryget(&ctx->refs))
1807 			req = NULL;
1808 	}
1809 	io_commit_cqring(ctx);
1810 	spin_unlock(&ctx->completion_lock);
1811 
1812 	if (req) {
1813 		io_cqring_ev_posted(ctx);
1814 		percpu_ref_put(&ctx->refs);
1815 	}
1816 }
1817 
io_req_needs_clean(struct io_kiocb * req)1818 static inline bool io_req_needs_clean(struct io_kiocb *req)
1819 {
1820 	return req->flags & IO_REQ_CLEAN_FLAGS;
1821 }
1822 
io_req_complete_state(struct io_kiocb * req,long res,unsigned int cflags)1823 static void io_req_complete_state(struct io_kiocb *req, long res,
1824 				  unsigned int cflags)
1825 {
1826 	if (io_req_needs_clean(req))
1827 		io_clean_op(req);
1828 	req->result = res;
1829 	req->compl.cflags = cflags;
1830 	req->flags |= REQ_F_COMPLETE_INLINE;
1831 }
1832 
__io_req_complete(struct io_kiocb * req,unsigned issue_flags,long res,unsigned cflags)1833 static inline void __io_req_complete(struct io_kiocb *req, unsigned issue_flags,
1834 				     long res, unsigned cflags)
1835 {
1836 	if (issue_flags & IO_URING_F_COMPLETE_DEFER)
1837 		io_req_complete_state(req, res, cflags);
1838 	else
1839 		io_req_complete_post(req, res, cflags);
1840 }
1841 
io_req_complete(struct io_kiocb * req,long res)1842 static inline void io_req_complete(struct io_kiocb *req, long res)
1843 {
1844 	__io_req_complete(req, 0, res, 0);
1845 }
1846 
io_req_complete_failed(struct io_kiocb * req,long res)1847 static void io_req_complete_failed(struct io_kiocb *req, long res)
1848 {
1849 	req_set_fail(req);
1850 	io_req_complete_post(req, res, 0);
1851 }
1852 
io_req_complete_fail_submit(struct io_kiocb * req)1853 static void io_req_complete_fail_submit(struct io_kiocb *req)
1854 {
1855 	/*
1856 	 * We don't submit, fail them all, for that replace hardlinks with
1857 	 * normal links. Extra REQ_F_LINK is tolerated.
1858 	 */
1859 	req->flags &= ~REQ_F_HARDLINK;
1860 	req->flags |= REQ_F_LINK;
1861 	io_req_complete_failed(req, req->result);
1862 }
1863 
1864 /*
1865  * Don't initialise the fields below on every allocation, but do that in
1866  * advance and keep them valid across allocations.
1867  */
io_preinit_req(struct io_kiocb * req,struct io_ring_ctx * ctx)1868 static void io_preinit_req(struct io_kiocb *req, struct io_ring_ctx *ctx)
1869 {
1870 	req->ctx = ctx;
1871 	req->link = NULL;
1872 	req->async_data = NULL;
1873 	/* not necessary, but safer to zero */
1874 	req->result = 0;
1875 }
1876 
io_flush_cached_locked_reqs(struct io_ring_ctx * ctx,struct io_submit_state * state)1877 static void io_flush_cached_locked_reqs(struct io_ring_ctx *ctx,
1878 					struct io_submit_state *state)
1879 {
1880 	spin_lock(&ctx->completion_lock);
1881 	list_splice_init(&ctx->locked_free_list, &state->free_list);
1882 	ctx->locked_free_nr = 0;
1883 	spin_unlock(&ctx->completion_lock);
1884 }
1885 
1886 /* Returns true IFF there are requests in the cache */
io_flush_cached_reqs(struct io_ring_ctx * ctx)1887 static bool io_flush_cached_reqs(struct io_ring_ctx *ctx)
1888 {
1889 	struct io_submit_state *state = &ctx->submit_state;
1890 	int nr;
1891 
1892 	/*
1893 	 * If we have more than a batch's worth of requests in our IRQ side
1894 	 * locked cache, grab the lock and move them over to our submission
1895 	 * side cache.
1896 	 */
1897 	if (READ_ONCE(ctx->locked_free_nr) > IO_COMPL_BATCH)
1898 		io_flush_cached_locked_reqs(ctx, state);
1899 
1900 	nr = state->free_reqs;
1901 	while (!list_empty(&state->free_list)) {
1902 		struct io_kiocb *req = list_first_entry(&state->free_list,
1903 					struct io_kiocb, inflight_entry);
1904 
1905 		list_del(&req->inflight_entry);
1906 		state->reqs[nr++] = req;
1907 		if (nr == ARRAY_SIZE(state->reqs))
1908 			break;
1909 	}
1910 
1911 	state->free_reqs = nr;
1912 	return nr != 0;
1913 }
1914 
1915 /*
1916  * A request might get retired back into the request caches even before opcode
1917  * handlers and io_issue_sqe() are done with it, e.g. inline completion path.
1918  * Because of that, io_alloc_req() should be called only under ->uring_lock
1919  * and with extra caution to not get a request that is still worked on.
1920  */
io_alloc_req(struct io_ring_ctx * ctx)1921 static struct io_kiocb *io_alloc_req(struct io_ring_ctx *ctx)
1922 	__must_hold(&ctx->uring_lock)
1923 {
1924 	struct io_submit_state *state = &ctx->submit_state;
1925 	gfp_t gfp = GFP_KERNEL | __GFP_NOWARN;
1926 	int ret, i;
1927 
1928 	BUILD_BUG_ON(ARRAY_SIZE(state->reqs) < IO_REQ_ALLOC_BATCH);
1929 
1930 	if (likely(state->free_reqs || io_flush_cached_reqs(ctx)))
1931 		goto got_req;
1932 
1933 	ret = kmem_cache_alloc_bulk(req_cachep, gfp, IO_REQ_ALLOC_BATCH,
1934 				    state->reqs);
1935 
1936 	/*
1937 	 * Bulk alloc is all-or-nothing. If we fail to get a batch,
1938 	 * retry single alloc to be on the safe side.
1939 	 */
1940 	if (unlikely(ret <= 0)) {
1941 		state->reqs[0] = kmem_cache_alloc(req_cachep, gfp);
1942 		if (!state->reqs[0])
1943 			return NULL;
1944 		ret = 1;
1945 	}
1946 
1947 	for (i = 0; i < ret; i++)
1948 		io_preinit_req(state->reqs[i], ctx);
1949 	state->free_reqs = ret;
1950 got_req:
1951 	state->free_reqs--;
1952 	return state->reqs[state->free_reqs];
1953 }
1954 
io_put_file(struct file * file)1955 static inline void io_put_file(struct file *file)
1956 {
1957 	if (file)
1958 		fput(file);
1959 }
1960 
io_dismantle_req(struct io_kiocb * req)1961 static void io_dismantle_req(struct io_kiocb *req)
1962 {
1963 	unsigned int flags = req->flags;
1964 
1965 	if (io_req_needs_clean(req))
1966 		io_clean_op(req);
1967 	if (!(flags & REQ_F_FIXED_FILE))
1968 		io_put_file(req->file);
1969 	if (req->fixed_rsrc_refs)
1970 		percpu_ref_put(req->fixed_rsrc_refs);
1971 	if (req->async_data) {
1972 		kfree(req->async_data);
1973 		req->async_data = NULL;
1974 	}
1975 }
1976 
__io_free_req(struct io_kiocb * req)1977 static void __io_free_req(struct io_kiocb *req)
1978 {
1979 	struct io_ring_ctx *ctx = req->ctx;
1980 
1981 	io_dismantle_req(req);
1982 	io_put_task(req->task, 1);
1983 
1984 	spin_lock(&ctx->completion_lock);
1985 	list_add(&req->inflight_entry, &ctx->locked_free_list);
1986 	ctx->locked_free_nr++;
1987 	spin_unlock(&ctx->completion_lock);
1988 
1989 	percpu_ref_put(&ctx->refs);
1990 }
1991 
io_remove_next_linked(struct io_kiocb * req)1992 static inline void io_remove_next_linked(struct io_kiocb *req)
1993 {
1994 	struct io_kiocb *nxt = req->link;
1995 
1996 	req->link = nxt->link;
1997 	nxt->link = NULL;
1998 }
1999 
io_kill_linked_timeout(struct io_kiocb * req)2000 static bool io_kill_linked_timeout(struct io_kiocb *req)
2001 	__must_hold(&req->ctx->completion_lock)
2002 	__must_hold(&req->ctx->timeout_lock)
2003 {
2004 	struct io_kiocb *link = req->link;
2005 
2006 	if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2007 		struct io_timeout_data *io = link->async_data;
2008 
2009 		io_remove_next_linked(req);
2010 		link->timeout.head = NULL;
2011 		if (hrtimer_try_to_cancel(&io->timer) != -1) {
2012 			list_del(&link->timeout.list);
2013 			io_cqring_fill_event(link->ctx, link->user_data,
2014 					     -ECANCELED, 0);
2015 			io_put_req_deferred(link);
2016 			return true;
2017 		}
2018 	}
2019 	return false;
2020 }
2021 
io_fail_links(struct io_kiocb * req)2022 static void io_fail_links(struct io_kiocb *req)
2023 	__must_hold(&req->ctx->completion_lock)
2024 {
2025 	struct io_kiocb *nxt, *link = req->link;
2026 
2027 	req->link = NULL;
2028 	while (link) {
2029 		long res = -ECANCELED;
2030 
2031 		if (link->flags & REQ_F_FAIL)
2032 			res = link->result;
2033 
2034 		nxt = link->link;
2035 		link->link = NULL;
2036 
2037 		trace_io_uring_fail_link(req, link);
2038 		io_cqring_fill_event(link->ctx, link->user_data, res, 0);
2039 		io_put_req_deferred(link);
2040 		link = nxt;
2041 	}
2042 }
2043 
io_disarm_next(struct io_kiocb * req)2044 static bool io_disarm_next(struct io_kiocb *req)
2045 	__must_hold(&req->ctx->completion_lock)
2046 {
2047 	bool posted = false;
2048 
2049 	if (req->flags & REQ_F_ARM_LTIMEOUT) {
2050 		struct io_kiocb *link = req->link;
2051 
2052 		req->flags &= ~REQ_F_ARM_LTIMEOUT;
2053 		if (link && link->opcode == IORING_OP_LINK_TIMEOUT) {
2054 			io_remove_next_linked(req);
2055 			io_cqring_fill_event(link->ctx, link->user_data,
2056 					     -ECANCELED, 0);
2057 			io_put_req_deferred(link);
2058 			posted = true;
2059 		}
2060 	} else if (req->flags & REQ_F_LINK_TIMEOUT) {
2061 		struct io_ring_ctx *ctx = req->ctx;
2062 
2063 		spin_lock_irq(&ctx->timeout_lock);
2064 		posted = io_kill_linked_timeout(req);
2065 		spin_unlock_irq(&ctx->timeout_lock);
2066 	}
2067 	if (unlikely((req->flags & REQ_F_FAIL) &&
2068 		     !(req->flags & REQ_F_HARDLINK))) {
2069 		posted |= (req->link != NULL);
2070 		io_fail_links(req);
2071 	}
2072 	return posted;
2073 }
2074 
__io_req_find_next(struct io_kiocb * req)2075 static struct io_kiocb *__io_req_find_next(struct io_kiocb *req)
2076 {
2077 	struct io_kiocb *nxt;
2078 
2079 	/*
2080 	 * If LINK is set, we have dependent requests in this chain. If we
2081 	 * didn't fail this request, queue the first one up, moving any other
2082 	 * dependencies to the next request. In case of failure, fail the rest
2083 	 * of the chain.
2084 	 */
2085 	if (req->flags & IO_DISARM_MASK) {
2086 		struct io_ring_ctx *ctx = req->ctx;
2087 		bool posted;
2088 
2089 		spin_lock(&ctx->completion_lock);
2090 		posted = io_disarm_next(req);
2091 		if (posted)
2092 			io_commit_cqring(req->ctx);
2093 		spin_unlock(&ctx->completion_lock);
2094 		if (posted)
2095 			io_cqring_ev_posted(ctx);
2096 	}
2097 	nxt = req->link;
2098 	req->link = NULL;
2099 	return nxt;
2100 }
2101 
io_req_find_next(struct io_kiocb * req)2102 static inline struct io_kiocb *io_req_find_next(struct io_kiocb *req)
2103 {
2104 	if (likely(!(req->flags & (REQ_F_LINK|REQ_F_HARDLINK))))
2105 		return NULL;
2106 	return __io_req_find_next(req);
2107 }
2108 
ctx_flush_and_put(struct io_ring_ctx * ctx,bool * locked)2109 static void ctx_flush_and_put(struct io_ring_ctx *ctx, bool *locked)
2110 {
2111 	if (!ctx)
2112 		return;
2113 	if (*locked) {
2114 		if (ctx->submit_state.compl_nr)
2115 			io_submit_flush_completions(ctx);
2116 		mutex_unlock(&ctx->uring_lock);
2117 		*locked = false;
2118 	}
2119 	percpu_ref_put(&ctx->refs);
2120 }
2121 
tctx_task_work(struct callback_head * cb)2122 static void tctx_task_work(struct callback_head *cb)
2123 {
2124 	bool locked = false;
2125 	struct io_ring_ctx *ctx = NULL;
2126 	struct io_uring_task *tctx = container_of(cb, struct io_uring_task,
2127 						  task_work);
2128 
2129 	while (1) {
2130 		struct io_wq_work_node *node;
2131 
2132 		if (!tctx->task_list.first && locked && ctx->submit_state.compl_nr)
2133 			io_submit_flush_completions(ctx);
2134 
2135 		spin_lock_irq(&tctx->task_lock);
2136 		node = tctx->task_list.first;
2137 		INIT_WQ_LIST(&tctx->task_list);
2138 		if (!node)
2139 			tctx->task_running = false;
2140 		spin_unlock_irq(&tctx->task_lock);
2141 		if (!node)
2142 			break;
2143 
2144 		do {
2145 			struct io_wq_work_node *next = node->next;
2146 			struct io_kiocb *req = container_of(node, struct io_kiocb,
2147 							    io_task_work.node);
2148 
2149 			if (req->ctx != ctx) {
2150 				ctx_flush_and_put(ctx, &locked);
2151 				ctx = req->ctx;
2152 				/* if not contended, grab and improve batching */
2153 				locked = mutex_trylock(&ctx->uring_lock);
2154 				percpu_ref_get(&ctx->refs);
2155 			}
2156 			req->io_task_work.func(req, &locked);
2157 			node = next;
2158 		} while (node);
2159 
2160 		cond_resched();
2161 	}
2162 
2163 	ctx_flush_and_put(ctx, &locked);
2164 }
2165 
io_req_task_work_add(struct io_kiocb * req)2166 static void io_req_task_work_add(struct io_kiocb *req)
2167 {
2168 	struct task_struct *tsk = req->task;
2169 	struct io_uring_task *tctx = tsk->io_uring;
2170 	enum task_work_notify_mode notify;
2171 	struct io_wq_work_node *node;
2172 	unsigned long flags;
2173 	bool running;
2174 
2175 	WARN_ON_ONCE(!tctx);
2176 
2177 	spin_lock_irqsave(&tctx->task_lock, flags);
2178 	wq_list_add_tail(&req->io_task_work.node, &tctx->task_list);
2179 	running = tctx->task_running;
2180 	if (!running)
2181 		tctx->task_running = true;
2182 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2183 
2184 	/* task_work already pending, we're done */
2185 	if (running)
2186 		return;
2187 
2188 	/*
2189 	 * SQPOLL kernel thread doesn't need notification, just a wakeup. For
2190 	 * all other cases, use TWA_SIGNAL unconditionally to ensure we're
2191 	 * processing task_work. There's no reliable way to tell if TWA_RESUME
2192 	 * will do the job.
2193 	 */
2194 	notify = (req->ctx->flags & IORING_SETUP_SQPOLL) ? TWA_NONE : TWA_SIGNAL;
2195 	if (!task_work_add(tsk, &tctx->task_work, notify)) {
2196 		wake_up_process(tsk);
2197 		return;
2198 	}
2199 
2200 	spin_lock_irqsave(&tctx->task_lock, flags);
2201 	tctx->task_running = false;
2202 	node = tctx->task_list.first;
2203 	INIT_WQ_LIST(&tctx->task_list);
2204 	spin_unlock_irqrestore(&tctx->task_lock, flags);
2205 
2206 	while (node) {
2207 		req = container_of(node, struct io_kiocb, io_task_work.node);
2208 		node = node->next;
2209 		if (llist_add(&req->io_task_work.fallback_node,
2210 			      &req->ctx->fallback_llist))
2211 			schedule_delayed_work(&req->ctx->fallback_work, 1);
2212 	}
2213 }
2214 
io_req_task_cancel(struct io_kiocb * req,bool * locked)2215 static void io_req_task_cancel(struct io_kiocb *req, bool *locked)
2216 {
2217 	struct io_ring_ctx *ctx = req->ctx;
2218 
2219 	/* not needed for normal modes, but SQPOLL depends on it */
2220 	io_tw_lock(ctx, locked);
2221 	io_req_complete_failed(req, req->result);
2222 }
2223 
io_req_task_submit(struct io_kiocb * req,bool * locked)2224 static void io_req_task_submit(struct io_kiocb *req, bool *locked)
2225 {
2226 	struct io_ring_ctx *ctx = req->ctx;
2227 
2228 	io_tw_lock(ctx, locked);
2229 	/* req->task == current here, checking PF_EXITING is safe */
2230 	if (likely(!(req->task->flags & PF_EXITING)))
2231 		__io_queue_sqe(req);
2232 	else
2233 		io_req_complete_failed(req, -EFAULT);
2234 }
2235 
io_req_task_queue_fail(struct io_kiocb * req,int ret)2236 static void io_req_task_queue_fail(struct io_kiocb *req, int ret)
2237 {
2238 	req->result = ret;
2239 	req->io_task_work.func = io_req_task_cancel;
2240 	io_req_task_work_add(req);
2241 }
2242 
io_req_task_queue(struct io_kiocb * req)2243 static void io_req_task_queue(struct io_kiocb *req)
2244 {
2245 	req->io_task_work.func = io_req_task_submit;
2246 	io_req_task_work_add(req);
2247 }
2248 
io_req_task_queue_reissue(struct io_kiocb * req)2249 static void io_req_task_queue_reissue(struct io_kiocb *req)
2250 {
2251 	req->io_task_work.func = io_queue_async_work;
2252 	io_req_task_work_add(req);
2253 }
2254 
io_queue_next(struct io_kiocb * req)2255 static inline void io_queue_next(struct io_kiocb *req)
2256 {
2257 	struct io_kiocb *nxt = io_req_find_next(req);
2258 
2259 	if (nxt)
2260 		io_req_task_queue(nxt);
2261 }
2262 
io_free_req(struct io_kiocb * req)2263 static void io_free_req(struct io_kiocb *req)
2264 {
2265 	io_queue_next(req);
2266 	__io_free_req(req);
2267 }
2268 
io_free_req_work(struct io_kiocb * req,bool * locked)2269 static void io_free_req_work(struct io_kiocb *req, bool *locked)
2270 {
2271 	io_free_req(req);
2272 }
2273 
2274 struct req_batch {
2275 	struct task_struct	*task;
2276 	int			task_refs;
2277 	int			ctx_refs;
2278 };
2279 
io_init_req_batch(struct req_batch * rb)2280 static inline void io_init_req_batch(struct req_batch *rb)
2281 {
2282 	rb->task_refs = 0;
2283 	rb->ctx_refs = 0;
2284 	rb->task = NULL;
2285 }
2286 
io_req_free_batch_finish(struct io_ring_ctx * ctx,struct req_batch * rb)2287 static void io_req_free_batch_finish(struct io_ring_ctx *ctx,
2288 				     struct req_batch *rb)
2289 {
2290 	if (rb->ctx_refs)
2291 		percpu_ref_put_many(&ctx->refs, rb->ctx_refs);
2292 	if (rb->task)
2293 		io_put_task(rb->task, rb->task_refs);
2294 }
2295 
io_req_free_batch(struct req_batch * rb,struct io_kiocb * req,struct io_submit_state * state)2296 static void io_req_free_batch(struct req_batch *rb, struct io_kiocb *req,
2297 			      struct io_submit_state *state)
2298 {
2299 	io_queue_next(req);
2300 	io_dismantle_req(req);
2301 
2302 	if (req->task != rb->task) {
2303 		if (rb->task)
2304 			io_put_task(rb->task, rb->task_refs);
2305 		rb->task = req->task;
2306 		rb->task_refs = 0;
2307 	}
2308 	rb->task_refs++;
2309 	rb->ctx_refs++;
2310 
2311 	if (state->free_reqs != ARRAY_SIZE(state->reqs))
2312 		state->reqs[state->free_reqs++] = req;
2313 	else
2314 		list_add(&req->inflight_entry, &state->free_list);
2315 }
2316 
io_submit_flush_completions(struct io_ring_ctx * ctx)2317 static void io_submit_flush_completions(struct io_ring_ctx *ctx)
2318 	__must_hold(&ctx->uring_lock)
2319 {
2320 	struct io_submit_state *state = &ctx->submit_state;
2321 	int i, nr = state->compl_nr;
2322 	struct req_batch rb;
2323 
2324 	spin_lock(&ctx->completion_lock);
2325 	for (i = 0; i < nr; i++) {
2326 		struct io_kiocb *req = state->compl_reqs[i];
2327 
2328 		__io_cqring_fill_event(ctx, req->user_data, req->result,
2329 					req->compl.cflags);
2330 	}
2331 	io_commit_cqring(ctx);
2332 	spin_unlock(&ctx->completion_lock);
2333 	io_cqring_ev_posted(ctx);
2334 
2335 	io_init_req_batch(&rb);
2336 	for (i = 0; i < nr; i++) {
2337 		struct io_kiocb *req = state->compl_reqs[i];
2338 
2339 		if (req_ref_put_and_test(req))
2340 			io_req_free_batch(&rb, req, &ctx->submit_state);
2341 	}
2342 
2343 	io_req_free_batch_finish(ctx, &rb);
2344 	state->compl_nr = 0;
2345 }
2346 
2347 /*
2348  * Drop reference to request, return next in chain (if there is one) if this
2349  * was the last reference to this request.
2350  */
io_put_req_find_next(struct io_kiocb * req)2351 static inline struct io_kiocb *io_put_req_find_next(struct io_kiocb *req)
2352 {
2353 	struct io_kiocb *nxt = NULL;
2354 
2355 	if (req_ref_put_and_test(req)) {
2356 		nxt = io_req_find_next(req);
2357 		__io_free_req(req);
2358 	}
2359 	return nxt;
2360 }
2361 
io_put_req(struct io_kiocb * req)2362 static inline void io_put_req(struct io_kiocb *req)
2363 {
2364 	if (req_ref_put_and_test(req))
2365 		io_free_req(req);
2366 }
2367 
io_put_req_deferred(struct io_kiocb * req)2368 static inline void io_put_req_deferred(struct io_kiocb *req)
2369 {
2370 	if (req_ref_put_and_test(req)) {
2371 		req->io_task_work.func = io_free_req_work;
2372 		io_req_task_work_add(req);
2373 	}
2374 }
2375 
io_cqring_events(struct io_ring_ctx * ctx)2376 static unsigned io_cqring_events(struct io_ring_ctx *ctx)
2377 {
2378 	/* See comment at the top of this file */
2379 	smp_rmb();
2380 	return __io_cqring_events(ctx);
2381 }
2382 
io_sqring_entries(struct io_ring_ctx * ctx)2383 static inline unsigned int io_sqring_entries(struct io_ring_ctx *ctx)
2384 {
2385 	struct io_rings *rings = ctx->rings;
2386 
2387 	/* make sure SQ entry isn't read before tail */
2388 	return smp_load_acquire(&rings->sq.tail) - ctx->cached_sq_head;
2389 }
2390 
io_put_kbuf(struct io_kiocb * req,struct io_buffer * kbuf)2391 static unsigned int io_put_kbuf(struct io_kiocb *req, struct io_buffer *kbuf)
2392 {
2393 	unsigned int cflags;
2394 
2395 	cflags = kbuf->bid << IORING_CQE_BUFFER_SHIFT;
2396 	cflags |= IORING_CQE_F_BUFFER;
2397 	req->flags &= ~REQ_F_BUFFER_SELECTED;
2398 	kfree(kbuf);
2399 	return cflags;
2400 }
2401 
io_put_rw_kbuf(struct io_kiocb * req)2402 static inline unsigned int io_put_rw_kbuf(struct io_kiocb *req)
2403 {
2404 	struct io_buffer *kbuf;
2405 
2406 	if (likely(!(req->flags & REQ_F_BUFFER_SELECTED)))
2407 		return 0;
2408 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
2409 	return io_put_kbuf(req, kbuf);
2410 }
2411 
io_run_task_work(void)2412 static inline bool io_run_task_work(void)
2413 {
2414 	if (test_thread_flag(TIF_NOTIFY_SIGNAL) || current->task_works) {
2415 		__set_current_state(TASK_RUNNING);
2416 		tracehook_notify_signal();
2417 		return true;
2418 	}
2419 
2420 	return false;
2421 }
2422 
2423 /*
2424  * Find and free completed poll iocbs
2425  */
io_iopoll_complete(struct io_ring_ctx * ctx,unsigned int * nr_events,struct list_head * done)2426 static void io_iopoll_complete(struct io_ring_ctx *ctx, unsigned int *nr_events,
2427 			       struct list_head *done)
2428 {
2429 	struct req_batch rb;
2430 	struct io_kiocb *req;
2431 
2432 	/* order with ->result store in io_complete_rw_iopoll() */
2433 	smp_rmb();
2434 
2435 	io_init_req_batch(&rb);
2436 	while (!list_empty(done)) {
2437 		req = list_first_entry(done, struct io_kiocb, inflight_entry);
2438 		list_del(&req->inflight_entry);
2439 
2440 		__io_cqring_fill_event(ctx, req->user_data, req->result,
2441 					io_put_rw_kbuf(req));
2442 		(*nr_events)++;
2443 
2444 		if (req_ref_put_and_test(req))
2445 			io_req_free_batch(&rb, req, &ctx->submit_state);
2446 	}
2447 
2448 	io_commit_cqring(ctx);
2449 	io_cqring_ev_posted_iopoll(ctx);
2450 	io_req_free_batch_finish(ctx, &rb);
2451 }
2452 
io_do_iopoll(struct io_ring_ctx * ctx,unsigned int * nr_events,long min)2453 static int io_do_iopoll(struct io_ring_ctx *ctx, unsigned int *nr_events,
2454 			long min)
2455 {
2456 	struct io_kiocb *req, *tmp;
2457 	LIST_HEAD(done);
2458 	bool spin;
2459 
2460 	/*
2461 	 * Only spin for completions if we don't have multiple devices hanging
2462 	 * off our complete list, and we're under the requested amount.
2463 	 */
2464 	spin = !ctx->poll_multi_queue && *nr_events < min;
2465 
2466 	list_for_each_entry_safe(req, tmp, &ctx->iopoll_list, inflight_entry) {
2467 		struct kiocb *kiocb = &req->rw.kiocb;
2468 		int ret;
2469 
2470 		/*
2471 		 * Move completed and retryable entries to our local lists.
2472 		 * If we find a request that requires polling, break out
2473 		 * and complete those lists first, if we have entries there.
2474 		 */
2475 		if (READ_ONCE(req->iopoll_completed)) {
2476 			list_move_tail(&req->inflight_entry, &done);
2477 			continue;
2478 		}
2479 		if (!list_empty(&done))
2480 			break;
2481 
2482 		ret = kiocb->ki_filp->f_op->iopoll(kiocb, spin);
2483 		if (unlikely(ret < 0))
2484 			return ret;
2485 		else if (ret)
2486 			spin = false;
2487 
2488 		/* iopoll may have completed current req */
2489 		if (READ_ONCE(req->iopoll_completed))
2490 			list_move_tail(&req->inflight_entry, &done);
2491 	}
2492 
2493 	if (!list_empty(&done))
2494 		io_iopoll_complete(ctx, nr_events, &done);
2495 
2496 	return 0;
2497 }
2498 
2499 /*
2500  * We can't just wait for polled events to come to us, we have to actively
2501  * find and complete them.
2502  */
io_iopoll_try_reap_events(struct io_ring_ctx * ctx)2503 static void io_iopoll_try_reap_events(struct io_ring_ctx *ctx)
2504 {
2505 	if (!(ctx->flags & IORING_SETUP_IOPOLL))
2506 		return;
2507 
2508 	mutex_lock(&ctx->uring_lock);
2509 	while (!list_empty(&ctx->iopoll_list)) {
2510 		unsigned int nr_events = 0;
2511 
2512 		io_do_iopoll(ctx, &nr_events, 0);
2513 
2514 		/* let it sleep and repeat later if can't complete a request */
2515 		if (nr_events == 0)
2516 			break;
2517 		/*
2518 		 * Ensure we allow local-to-the-cpu processing to take place,
2519 		 * in this case we need to ensure that we reap all events.
2520 		 * Also let task_work, etc. to progress by releasing the mutex
2521 		 */
2522 		if (need_resched()) {
2523 			mutex_unlock(&ctx->uring_lock);
2524 			cond_resched();
2525 			mutex_lock(&ctx->uring_lock);
2526 		}
2527 	}
2528 	mutex_unlock(&ctx->uring_lock);
2529 }
2530 
io_iopoll_check(struct io_ring_ctx * ctx,long min)2531 static int io_iopoll_check(struct io_ring_ctx *ctx, long min)
2532 {
2533 	unsigned int nr_events = 0;
2534 	int ret = 0;
2535 
2536 	/*
2537 	 * We disallow the app entering submit/complete with polling, but we
2538 	 * still need to lock the ring to prevent racing with polled issue
2539 	 * that got punted to a workqueue.
2540 	 */
2541 	mutex_lock(&ctx->uring_lock);
2542 	/*
2543 	 * Don't enter poll loop if we already have events pending.
2544 	 * If we do, we can potentially be spinning for commands that
2545 	 * already triggered a CQE (eg in error).
2546 	 */
2547 	if (test_bit(0, &ctx->check_cq_overflow))
2548 		__io_cqring_overflow_flush(ctx, false);
2549 	if (io_cqring_events(ctx))
2550 		goto out;
2551 	do {
2552 		/*
2553 		 * If a submit got punted to a workqueue, we can have the
2554 		 * application entering polling for a command before it gets
2555 		 * issued. That app will hold the uring_lock for the duration
2556 		 * of the poll right here, so we need to take a breather every
2557 		 * now and then to ensure that the issue has a chance to add
2558 		 * the poll to the issued list. Otherwise we can spin here
2559 		 * forever, while the workqueue is stuck trying to acquire the
2560 		 * very same mutex.
2561 		 */
2562 		if (list_empty(&ctx->iopoll_list)) {
2563 			u32 tail = ctx->cached_cq_tail;
2564 
2565 			mutex_unlock(&ctx->uring_lock);
2566 			io_run_task_work();
2567 			mutex_lock(&ctx->uring_lock);
2568 
2569 			/* some requests don't go through iopoll_list */
2570 			if (tail != ctx->cached_cq_tail ||
2571 			    list_empty(&ctx->iopoll_list))
2572 				break;
2573 		}
2574 		ret = io_do_iopoll(ctx, &nr_events, min);
2575 	} while (!ret && nr_events < min && !need_resched());
2576 out:
2577 	mutex_unlock(&ctx->uring_lock);
2578 	return ret;
2579 }
2580 
kiocb_end_write(struct io_kiocb * req)2581 static void kiocb_end_write(struct io_kiocb *req)
2582 {
2583 	/*
2584 	 * Tell lockdep we inherited freeze protection from submission
2585 	 * thread.
2586 	 */
2587 	if (req->flags & REQ_F_ISREG) {
2588 		struct super_block *sb = file_inode(req->file)->i_sb;
2589 
2590 		__sb_writers_acquired(sb, SB_FREEZE_WRITE);
2591 		sb_end_write(sb);
2592 	}
2593 }
2594 
2595 #ifdef CONFIG_BLOCK
io_resubmit_prep(struct io_kiocb * req)2596 static bool io_resubmit_prep(struct io_kiocb *req)
2597 {
2598 	struct io_async_rw *rw = req->async_data;
2599 
2600 	if (!rw)
2601 		return !io_req_prep_async(req);
2602 	iov_iter_restore(&rw->iter, &rw->iter_state);
2603 	return true;
2604 }
2605 
io_rw_should_reissue(struct io_kiocb * req)2606 static bool io_rw_should_reissue(struct io_kiocb *req)
2607 {
2608 	umode_t mode = file_inode(req->file)->i_mode;
2609 	struct io_ring_ctx *ctx = req->ctx;
2610 
2611 	if (!S_ISBLK(mode) && !S_ISREG(mode))
2612 		return false;
2613 	if ((req->flags & REQ_F_NOWAIT) || (io_wq_current_is_worker() &&
2614 	    !(ctx->flags & IORING_SETUP_IOPOLL)))
2615 		return false;
2616 	/*
2617 	 * If ref is dying, we might be running poll reap from the exit work.
2618 	 * Don't attempt to reissue from that path, just let it fail with
2619 	 * -EAGAIN.
2620 	 */
2621 	if (percpu_ref_is_dying(&ctx->refs))
2622 		return false;
2623 	/*
2624 	 * Play it safe and assume not safe to re-import and reissue if we're
2625 	 * not in the original thread group (or in task context).
2626 	 */
2627 	if (!same_thread_group(req->task, current) || !in_task())
2628 		return false;
2629 	return true;
2630 }
2631 #else
io_resubmit_prep(struct io_kiocb * req)2632 static bool io_resubmit_prep(struct io_kiocb *req)
2633 {
2634 	return false;
2635 }
io_rw_should_reissue(struct io_kiocb * req)2636 static bool io_rw_should_reissue(struct io_kiocb *req)
2637 {
2638 	return false;
2639 }
2640 #endif
2641 
__io_complete_rw_common(struct io_kiocb * req,long res)2642 static bool __io_complete_rw_common(struct io_kiocb *req, long res)
2643 {
2644 	if (req->rw.kiocb.ki_flags & IOCB_WRITE)
2645 		kiocb_end_write(req);
2646 	if (res != req->result) {
2647 		if ((res == -EAGAIN || res == -EOPNOTSUPP) &&
2648 		    io_rw_should_reissue(req)) {
2649 			req->flags |= REQ_F_REISSUE;
2650 			return true;
2651 		}
2652 		req_set_fail(req);
2653 		req->result = res;
2654 	}
2655 	return false;
2656 }
2657 
io_req_task_complete(struct io_kiocb * req,bool * locked)2658 static void io_req_task_complete(struct io_kiocb *req, bool *locked)
2659 {
2660 	unsigned int cflags = io_put_rw_kbuf(req);
2661 	long res = req->result;
2662 
2663 	if (*locked) {
2664 		struct io_ring_ctx *ctx = req->ctx;
2665 		struct io_submit_state *state = &ctx->submit_state;
2666 
2667 		io_req_complete_state(req, res, cflags);
2668 		state->compl_reqs[state->compl_nr++] = req;
2669 		if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
2670 			io_submit_flush_completions(ctx);
2671 	} else {
2672 		io_req_complete_post(req, res, cflags);
2673 	}
2674 }
2675 
__io_complete_rw(struct io_kiocb * req,long res,long res2,unsigned int issue_flags)2676 static void __io_complete_rw(struct io_kiocb *req, long res, long res2,
2677 			     unsigned int issue_flags)
2678 {
2679 	if (__io_complete_rw_common(req, res))
2680 		return;
2681 	__io_req_complete(req, issue_flags, req->result, io_put_rw_kbuf(req));
2682 }
2683 
io_complete_rw(struct kiocb * kiocb,long res,long res2)2684 static void io_complete_rw(struct kiocb *kiocb, long res, long res2)
2685 {
2686 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2687 
2688 	if (__io_complete_rw_common(req, res))
2689 		return;
2690 	req->result = res;
2691 	req->io_task_work.func = io_req_task_complete;
2692 	io_req_task_work_add(req);
2693 }
2694 
io_complete_rw_iopoll(struct kiocb * kiocb,long res,long res2)2695 static void io_complete_rw_iopoll(struct kiocb *kiocb, long res, long res2)
2696 {
2697 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2698 
2699 	if (kiocb->ki_flags & IOCB_WRITE)
2700 		kiocb_end_write(req);
2701 	if (unlikely(res != req->result)) {
2702 		if (res == -EAGAIN && io_rw_should_reissue(req)) {
2703 			req->flags |= REQ_F_REISSUE;
2704 			return;
2705 		}
2706 	}
2707 
2708 	WRITE_ONCE(req->result, res);
2709 	/* order with io_iopoll_complete() checking ->result */
2710 	smp_wmb();
2711 	WRITE_ONCE(req->iopoll_completed, 1);
2712 }
2713 
2714 /*
2715  * After the iocb has been issued, it's safe to be found on the poll list.
2716  * Adding the kiocb to the list AFTER submission ensures that we don't
2717  * find it from a io_do_iopoll() thread before the issuer is done
2718  * accessing the kiocb cookie.
2719  */
io_iopoll_req_issued(struct io_kiocb * req)2720 static void io_iopoll_req_issued(struct io_kiocb *req)
2721 {
2722 	struct io_ring_ctx *ctx = req->ctx;
2723 	const bool in_async = io_wq_current_is_worker();
2724 
2725 	/* workqueue context doesn't hold uring_lock, grab it now */
2726 	if (unlikely(in_async))
2727 		mutex_lock(&ctx->uring_lock);
2728 
2729 	/*
2730 	 * Track whether we have multiple files in our lists. This will impact
2731 	 * how we do polling eventually, not spinning if we're on potentially
2732 	 * different devices.
2733 	 */
2734 	if (list_empty(&ctx->iopoll_list)) {
2735 		ctx->poll_multi_queue = false;
2736 	} else if (!ctx->poll_multi_queue) {
2737 		struct io_kiocb *list_req;
2738 		unsigned int queue_num0, queue_num1;
2739 
2740 		list_req = list_first_entry(&ctx->iopoll_list, struct io_kiocb,
2741 						inflight_entry);
2742 
2743 		if (list_req->file != req->file) {
2744 			ctx->poll_multi_queue = true;
2745 		} else {
2746 			queue_num0 = blk_qc_t_to_queue_num(list_req->rw.kiocb.ki_cookie);
2747 			queue_num1 = blk_qc_t_to_queue_num(req->rw.kiocb.ki_cookie);
2748 			if (queue_num0 != queue_num1)
2749 				ctx->poll_multi_queue = true;
2750 		}
2751 	}
2752 
2753 	/*
2754 	 * For fast devices, IO may have already completed. If it has, add
2755 	 * it to the front so we find it first.
2756 	 */
2757 	if (READ_ONCE(req->iopoll_completed))
2758 		list_add(&req->inflight_entry, &ctx->iopoll_list);
2759 	else
2760 		list_add_tail(&req->inflight_entry, &ctx->iopoll_list);
2761 
2762 	if (unlikely(in_async)) {
2763 		/*
2764 		 * If IORING_SETUP_SQPOLL is enabled, sqes are either handle
2765 		 * in sq thread task context or in io worker task context. If
2766 		 * current task context is sq thread, we don't need to check
2767 		 * whether should wake up sq thread.
2768 		 */
2769 		if ((ctx->flags & IORING_SETUP_SQPOLL) &&
2770 		    wq_has_sleeper(&ctx->sq_data->wait))
2771 			wake_up(&ctx->sq_data->wait);
2772 
2773 		mutex_unlock(&ctx->uring_lock);
2774 	}
2775 }
2776 
io_bdev_nowait(struct block_device * bdev)2777 static bool io_bdev_nowait(struct block_device *bdev)
2778 {
2779 	return !bdev || blk_queue_nowait(bdev_get_queue(bdev));
2780 }
2781 
2782 /*
2783  * If we tracked the file through the SCM inflight mechanism, we could support
2784  * any file. For now, just ensure that anything potentially problematic is done
2785  * inline.
2786  */
__io_file_supports_nowait(struct file * file,int rw)2787 static bool __io_file_supports_nowait(struct file *file, int rw)
2788 {
2789 	umode_t mode = file_inode(file)->i_mode;
2790 
2791 	if (S_ISBLK(mode)) {
2792 		if (IS_ENABLED(CONFIG_BLOCK) &&
2793 		    io_bdev_nowait(I_BDEV(file->f_mapping->host)))
2794 			return true;
2795 		return false;
2796 	}
2797 	if (S_ISSOCK(mode))
2798 		return true;
2799 	if (S_ISREG(mode)) {
2800 		if (IS_ENABLED(CONFIG_BLOCK) &&
2801 		    io_bdev_nowait(file->f_inode->i_sb->s_bdev) &&
2802 		    file->f_op != &io_uring_fops)
2803 			return true;
2804 		return false;
2805 	}
2806 
2807 	/* any ->read/write should understand O_NONBLOCK */
2808 	if (file->f_flags & O_NONBLOCK)
2809 		return true;
2810 
2811 	if (!(file->f_mode & FMODE_NOWAIT))
2812 		return false;
2813 
2814 	if (rw == READ)
2815 		return file->f_op->read_iter != NULL;
2816 
2817 	return file->f_op->write_iter != NULL;
2818 }
2819 
io_file_supports_nowait(struct io_kiocb * req,int rw)2820 static bool io_file_supports_nowait(struct io_kiocb *req, int rw)
2821 {
2822 	if (rw == READ && (req->flags & REQ_F_NOWAIT_READ))
2823 		return true;
2824 	else if (rw == WRITE && (req->flags & REQ_F_NOWAIT_WRITE))
2825 		return true;
2826 
2827 	return __io_file_supports_nowait(req->file, rw);
2828 }
2829 
io_prep_rw(struct io_kiocb * req,const struct io_uring_sqe * sqe,int rw)2830 static int io_prep_rw(struct io_kiocb *req, const struct io_uring_sqe *sqe,
2831 		      int rw)
2832 {
2833 	struct io_ring_ctx *ctx = req->ctx;
2834 	struct kiocb *kiocb = &req->rw.kiocb;
2835 	struct file *file = req->file;
2836 	unsigned ioprio;
2837 	int ret;
2838 
2839 	if (!io_req_ffs_set(req) && S_ISREG(file_inode(file)->i_mode))
2840 		req->flags |= REQ_F_ISREG;
2841 
2842 	kiocb->ki_pos = READ_ONCE(sqe->off);
2843 	if (kiocb->ki_pos == -1 && !(file->f_mode & FMODE_STREAM)) {
2844 		req->flags |= REQ_F_CUR_POS;
2845 		kiocb->ki_pos = file->f_pos;
2846 	}
2847 	kiocb->ki_hint = ki_hint_validate(file_write_hint(kiocb->ki_filp));
2848 	kiocb->ki_flags = iocb_flags(kiocb->ki_filp);
2849 	ret = kiocb_set_rw_flags(kiocb, READ_ONCE(sqe->rw_flags));
2850 	if (unlikely(ret))
2851 		return ret;
2852 
2853 	/*
2854 	 * If the file is marked O_NONBLOCK, still allow retry for it if it
2855 	 * supports async. Otherwise it's impossible to use O_NONBLOCK files
2856 	 * reliably. If not, or it IOCB_NOWAIT is set, don't retry.
2857 	 */
2858 	if ((kiocb->ki_flags & IOCB_NOWAIT) ||
2859 	    ((file->f_flags & O_NONBLOCK) && !io_file_supports_nowait(req, rw)))
2860 		req->flags |= REQ_F_NOWAIT;
2861 
2862 	ioprio = READ_ONCE(sqe->ioprio);
2863 	if (ioprio) {
2864 		ret = ioprio_check_cap(ioprio);
2865 		if (ret)
2866 			return ret;
2867 
2868 		kiocb->ki_ioprio = ioprio;
2869 	} else
2870 		kiocb->ki_ioprio = get_current_ioprio();
2871 
2872 	if (ctx->flags & IORING_SETUP_IOPOLL) {
2873 		if (!(kiocb->ki_flags & IOCB_DIRECT) ||
2874 		    !kiocb->ki_filp->f_op->iopoll)
2875 			return -EOPNOTSUPP;
2876 
2877 		kiocb->ki_flags |= IOCB_HIPRI | IOCB_ALLOC_CACHE;
2878 		kiocb->ki_complete = io_complete_rw_iopoll;
2879 		req->iopoll_completed = 0;
2880 	} else {
2881 		if (kiocb->ki_flags & IOCB_HIPRI)
2882 			return -EINVAL;
2883 		kiocb->ki_complete = io_complete_rw;
2884 	}
2885 
2886 	if (req->opcode == IORING_OP_READ_FIXED ||
2887 	    req->opcode == IORING_OP_WRITE_FIXED) {
2888 		req->imu = NULL;
2889 		io_req_set_rsrc_node(req);
2890 	}
2891 
2892 	req->rw.addr = READ_ONCE(sqe->addr);
2893 	req->rw.len = READ_ONCE(sqe->len);
2894 	req->buf_index = READ_ONCE(sqe->buf_index);
2895 	return 0;
2896 }
2897 
io_rw_done(struct kiocb * kiocb,ssize_t ret)2898 static inline void io_rw_done(struct kiocb *kiocb, ssize_t ret)
2899 {
2900 	switch (ret) {
2901 	case -EIOCBQUEUED:
2902 		break;
2903 	case -ERESTARTSYS:
2904 	case -ERESTARTNOINTR:
2905 	case -ERESTARTNOHAND:
2906 	case -ERESTART_RESTARTBLOCK:
2907 		/*
2908 		 * We can't just restart the syscall, since previously
2909 		 * submitted sqes may already be in progress. Just fail this
2910 		 * IO with EINTR.
2911 		 */
2912 		ret = -EINTR;
2913 		fallthrough;
2914 	default:
2915 		kiocb->ki_complete(kiocb, ret, 0);
2916 	}
2917 }
2918 
kiocb_done(struct kiocb * kiocb,ssize_t ret,unsigned int issue_flags)2919 static void kiocb_done(struct kiocb *kiocb, ssize_t ret,
2920 		       unsigned int issue_flags)
2921 {
2922 	struct io_kiocb *req = container_of(kiocb, struct io_kiocb, rw.kiocb);
2923 	struct io_async_rw *io = req->async_data;
2924 
2925 	/* add previously done IO, if any */
2926 	if (io && io->bytes_done > 0) {
2927 		if (ret < 0)
2928 			ret = io->bytes_done;
2929 		else
2930 			ret += io->bytes_done;
2931 	}
2932 
2933 	if (req->flags & REQ_F_CUR_POS)
2934 		req->file->f_pos = kiocb->ki_pos;
2935 	if (ret >= 0 && (kiocb->ki_complete == io_complete_rw))
2936 		__io_complete_rw(req, ret, 0, issue_flags);
2937 	else
2938 		io_rw_done(kiocb, ret);
2939 
2940 	if (req->flags & REQ_F_REISSUE) {
2941 		req->flags &= ~REQ_F_REISSUE;
2942 		if (io_resubmit_prep(req)) {
2943 			io_req_task_queue_reissue(req);
2944 		} else {
2945 			unsigned int cflags = io_put_rw_kbuf(req);
2946 			struct io_ring_ctx *ctx = req->ctx;
2947 
2948 			req_set_fail(req);
2949 			if (!(issue_flags & IO_URING_F_NONBLOCK)) {
2950 				mutex_lock(&ctx->uring_lock);
2951 				__io_req_complete(req, issue_flags, ret, cflags);
2952 				mutex_unlock(&ctx->uring_lock);
2953 			} else {
2954 				__io_req_complete(req, issue_flags, ret, cflags);
2955 			}
2956 		}
2957 	}
2958 }
2959 
__io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter,struct io_mapped_ubuf * imu)2960 static int __io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter,
2961 			     struct io_mapped_ubuf *imu)
2962 {
2963 	size_t len = req->rw.len;
2964 	u64 buf_end, buf_addr = req->rw.addr;
2965 	size_t offset;
2966 
2967 	if (unlikely(check_add_overflow(buf_addr, (u64)len, &buf_end)))
2968 		return -EFAULT;
2969 	/* not inside the mapped region */
2970 	if (unlikely(buf_addr < imu->ubuf || buf_end > imu->ubuf_end))
2971 		return -EFAULT;
2972 
2973 	/*
2974 	 * May not be a start of buffer, set size appropriately
2975 	 * and advance us to the beginning.
2976 	 */
2977 	offset = buf_addr - imu->ubuf;
2978 	iov_iter_bvec(iter, rw, imu->bvec, imu->nr_bvecs, offset + len);
2979 
2980 	if (offset) {
2981 		/*
2982 		 * Don't use iov_iter_advance() here, as it's really slow for
2983 		 * using the latter parts of a big fixed buffer - it iterates
2984 		 * over each segment manually. We can cheat a bit here, because
2985 		 * we know that:
2986 		 *
2987 		 * 1) it's a BVEC iter, we set it up
2988 		 * 2) all bvecs are PAGE_SIZE in size, except potentially the
2989 		 *    first and last bvec
2990 		 *
2991 		 * So just find our index, and adjust the iterator afterwards.
2992 		 * If the offset is within the first bvec (or the whole first
2993 		 * bvec, just use iov_iter_advance(). This makes it easier
2994 		 * since we can just skip the first segment, which may not
2995 		 * be PAGE_SIZE aligned.
2996 		 */
2997 		const struct bio_vec *bvec = imu->bvec;
2998 
2999 		if (offset <= bvec->bv_len) {
3000 			iov_iter_advance(iter, offset);
3001 		} else {
3002 			unsigned long seg_skip;
3003 
3004 			/* skip first vec */
3005 			offset -= bvec->bv_len;
3006 			seg_skip = 1 + (offset >> PAGE_SHIFT);
3007 
3008 			iter->bvec = bvec + seg_skip;
3009 			iter->nr_segs -= seg_skip;
3010 			iter->count -= bvec->bv_len + offset;
3011 			iter->iov_offset = offset & ~PAGE_MASK;
3012 		}
3013 	}
3014 
3015 	return 0;
3016 }
3017 
io_import_fixed(struct io_kiocb * req,int rw,struct iov_iter * iter)3018 static int io_import_fixed(struct io_kiocb *req, int rw, struct iov_iter *iter)
3019 {
3020 	struct io_ring_ctx *ctx = req->ctx;
3021 	struct io_mapped_ubuf *imu = req->imu;
3022 	u16 index, buf_index = req->buf_index;
3023 
3024 	if (likely(!imu)) {
3025 		if (unlikely(buf_index >= ctx->nr_user_bufs))
3026 			return -EFAULT;
3027 		index = array_index_nospec(buf_index, ctx->nr_user_bufs);
3028 		imu = READ_ONCE(ctx->user_bufs[index]);
3029 		req->imu = imu;
3030 	}
3031 	return __io_import_fixed(req, rw, iter, imu);
3032 }
3033 
io_ring_submit_unlock(struct io_ring_ctx * ctx,bool needs_lock)3034 static void io_ring_submit_unlock(struct io_ring_ctx *ctx, bool needs_lock)
3035 {
3036 	if (needs_lock)
3037 		mutex_unlock(&ctx->uring_lock);
3038 }
3039 
io_ring_submit_lock(struct io_ring_ctx * ctx,bool needs_lock)3040 static void io_ring_submit_lock(struct io_ring_ctx *ctx, bool needs_lock)
3041 {
3042 	/*
3043 	 * "Normal" inline submissions always hold the uring_lock, since we
3044 	 * grab it from the system call. Same is true for the SQPOLL offload.
3045 	 * The only exception is when we've detached the request and issue it
3046 	 * from an async worker thread, grab the lock for that case.
3047 	 */
3048 	if (needs_lock)
3049 		mutex_lock(&ctx->uring_lock);
3050 }
3051 
io_buffer_select(struct io_kiocb * req,size_t * len,int bgid,struct io_buffer * kbuf,bool needs_lock)3052 static struct io_buffer *io_buffer_select(struct io_kiocb *req, size_t *len,
3053 					  int bgid, struct io_buffer *kbuf,
3054 					  bool needs_lock)
3055 {
3056 	struct io_buffer *head;
3057 
3058 	if (req->flags & REQ_F_BUFFER_SELECTED)
3059 		return kbuf;
3060 
3061 	io_ring_submit_lock(req->ctx, needs_lock);
3062 
3063 	lockdep_assert_held(&req->ctx->uring_lock);
3064 
3065 	head = xa_load(&req->ctx->io_buffers, bgid);
3066 	if (head) {
3067 		if (!list_empty(&head->list)) {
3068 			kbuf = list_last_entry(&head->list, struct io_buffer,
3069 							list);
3070 			list_del(&kbuf->list);
3071 		} else {
3072 			kbuf = head;
3073 			xa_erase(&req->ctx->io_buffers, bgid);
3074 		}
3075 		if (*len > kbuf->len)
3076 			*len = kbuf->len;
3077 	} else {
3078 		kbuf = ERR_PTR(-ENOBUFS);
3079 	}
3080 
3081 	io_ring_submit_unlock(req->ctx, needs_lock);
3082 
3083 	return kbuf;
3084 }
3085 
io_rw_buffer_select(struct io_kiocb * req,size_t * len,bool needs_lock)3086 static void __user *io_rw_buffer_select(struct io_kiocb *req, size_t *len,
3087 					bool needs_lock)
3088 {
3089 	struct io_buffer *kbuf;
3090 	u16 bgid;
3091 
3092 	kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3093 	bgid = req->buf_index;
3094 	kbuf = io_buffer_select(req, len, bgid, kbuf, needs_lock);
3095 	if (IS_ERR(kbuf))
3096 		return kbuf;
3097 	req->rw.addr = (u64) (unsigned long) kbuf;
3098 	req->flags |= REQ_F_BUFFER_SELECTED;
3099 	return u64_to_user_ptr(kbuf->addr);
3100 }
3101 
3102 #ifdef CONFIG_COMPAT
io_compat_import(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3103 static ssize_t io_compat_import(struct io_kiocb *req, struct iovec *iov,
3104 				bool needs_lock)
3105 {
3106 	struct compat_iovec __user *uiov;
3107 	compat_ssize_t clen;
3108 	void __user *buf;
3109 	ssize_t len;
3110 
3111 	uiov = u64_to_user_ptr(req->rw.addr);
3112 	if (!access_ok(uiov, sizeof(*uiov)))
3113 		return -EFAULT;
3114 	if (__get_user(clen, &uiov->iov_len))
3115 		return -EFAULT;
3116 	if (clen < 0)
3117 		return -EINVAL;
3118 
3119 	len = clen;
3120 	buf = io_rw_buffer_select(req, &len, needs_lock);
3121 	if (IS_ERR(buf))
3122 		return PTR_ERR(buf);
3123 	iov[0].iov_base = buf;
3124 	iov[0].iov_len = (compat_size_t) len;
3125 	return 0;
3126 }
3127 #endif
3128 
__io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3129 static ssize_t __io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3130 				      bool needs_lock)
3131 {
3132 	struct iovec __user *uiov = u64_to_user_ptr(req->rw.addr);
3133 	void __user *buf;
3134 	ssize_t len;
3135 
3136 	if (copy_from_user(iov, uiov, sizeof(*uiov)))
3137 		return -EFAULT;
3138 
3139 	len = iov[0].iov_len;
3140 	if (len < 0)
3141 		return -EINVAL;
3142 	buf = io_rw_buffer_select(req, &len, needs_lock);
3143 	if (IS_ERR(buf))
3144 		return PTR_ERR(buf);
3145 	iov[0].iov_base = buf;
3146 	iov[0].iov_len = len;
3147 	return 0;
3148 }
3149 
io_iov_buffer_select(struct io_kiocb * req,struct iovec * iov,bool needs_lock)3150 static ssize_t io_iov_buffer_select(struct io_kiocb *req, struct iovec *iov,
3151 				    bool needs_lock)
3152 {
3153 	if (req->flags & REQ_F_BUFFER_SELECTED) {
3154 		struct io_buffer *kbuf;
3155 
3156 		kbuf = (struct io_buffer *) (unsigned long) req->rw.addr;
3157 		iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
3158 		iov[0].iov_len = kbuf->len;
3159 		return 0;
3160 	}
3161 	if (req->rw.len != 1)
3162 		return -EINVAL;
3163 
3164 #ifdef CONFIG_COMPAT
3165 	if (req->ctx->compat)
3166 		return io_compat_import(req, iov, needs_lock);
3167 #endif
3168 
3169 	return __io_iov_buffer_select(req, iov, needs_lock);
3170 }
3171 
io_import_iovec(int rw,struct io_kiocb * req,struct iovec ** iovec,struct iov_iter * iter,bool needs_lock)3172 static int io_import_iovec(int rw, struct io_kiocb *req, struct iovec **iovec,
3173 			   struct iov_iter *iter, bool needs_lock)
3174 {
3175 	void __user *buf = u64_to_user_ptr(req->rw.addr);
3176 	size_t sqe_len = req->rw.len;
3177 	u8 opcode = req->opcode;
3178 	ssize_t ret;
3179 
3180 	if (opcode == IORING_OP_READ_FIXED || opcode == IORING_OP_WRITE_FIXED) {
3181 		*iovec = NULL;
3182 		return io_import_fixed(req, rw, iter);
3183 	}
3184 
3185 	/* buffer index only valid with fixed read/write, or buffer select  */
3186 	if (req->buf_index && !(req->flags & REQ_F_BUFFER_SELECT))
3187 		return -EINVAL;
3188 
3189 	if (opcode == IORING_OP_READ || opcode == IORING_OP_WRITE) {
3190 		if (req->flags & REQ_F_BUFFER_SELECT) {
3191 			buf = io_rw_buffer_select(req, &sqe_len, needs_lock);
3192 			if (IS_ERR(buf))
3193 				return PTR_ERR(buf);
3194 			req->rw.len = sqe_len;
3195 		}
3196 
3197 		ret = import_single_range(rw, buf, sqe_len, *iovec, iter);
3198 		*iovec = NULL;
3199 		return ret;
3200 	}
3201 
3202 	if (req->flags & REQ_F_BUFFER_SELECT) {
3203 		ret = io_iov_buffer_select(req, *iovec, needs_lock);
3204 		if (!ret)
3205 			iov_iter_init(iter, rw, *iovec, 1, (*iovec)->iov_len);
3206 		*iovec = NULL;
3207 		return ret;
3208 	}
3209 
3210 	return __import_iovec(rw, buf, sqe_len, UIO_FASTIOV, iovec, iter,
3211 			      req->ctx->compat);
3212 }
3213 
io_kiocb_ppos(struct kiocb * kiocb)3214 static inline loff_t *io_kiocb_ppos(struct kiocb *kiocb)
3215 {
3216 	return (kiocb->ki_filp->f_mode & FMODE_STREAM) ? NULL : &kiocb->ki_pos;
3217 }
3218 
3219 /*
3220  * For files that don't have ->read_iter() and ->write_iter(), handle them
3221  * by looping over ->read() or ->write() manually.
3222  */
loop_rw_iter(int rw,struct io_kiocb * req,struct iov_iter * iter)3223 static ssize_t loop_rw_iter(int rw, struct io_kiocb *req, struct iov_iter *iter)
3224 {
3225 	struct kiocb *kiocb = &req->rw.kiocb;
3226 	struct file *file = req->file;
3227 	ssize_t ret = 0;
3228 
3229 	/*
3230 	 * Don't support polled IO through this interface, and we can't
3231 	 * support non-blocking either. For the latter, this just causes
3232 	 * the kiocb to be handled from an async context.
3233 	 */
3234 	if (kiocb->ki_flags & IOCB_HIPRI)
3235 		return -EOPNOTSUPP;
3236 	if (kiocb->ki_flags & IOCB_NOWAIT)
3237 		return -EAGAIN;
3238 
3239 	while (iov_iter_count(iter)) {
3240 		struct iovec iovec;
3241 		ssize_t nr;
3242 
3243 		if (!iov_iter_is_bvec(iter)) {
3244 			iovec = iov_iter_iovec(iter);
3245 		} else {
3246 			iovec.iov_base = u64_to_user_ptr(req->rw.addr);
3247 			iovec.iov_len = req->rw.len;
3248 		}
3249 
3250 		if (rw == READ) {
3251 			nr = file->f_op->read(file, iovec.iov_base,
3252 					      iovec.iov_len, io_kiocb_ppos(kiocb));
3253 		} else {
3254 			nr = file->f_op->write(file, iovec.iov_base,
3255 					       iovec.iov_len, io_kiocb_ppos(kiocb));
3256 		}
3257 
3258 		if (nr < 0) {
3259 			if (!ret)
3260 				ret = nr;
3261 			break;
3262 		}
3263 		if (!iov_iter_is_bvec(iter)) {
3264 			iov_iter_advance(iter, nr);
3265 		} else {
3266 			req->rw.len -= nr;
3267 			req->rw.addr += nr;
3268 		}
3269 		ret += nr;
3270 		if (nr != iovec.iov_len)
3271 			break;
3272 	}
3273 
3274 	return ret;
3275 }
3276 
io_req_map_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter)3277 static void io_req_map_rw(struct io_kiocb *req, const struct iovec *iovec,
3278 			  const struct iovec *fast_iov, struct iov_iter *iter)
3279 {
3280 	struct io_async_rw *rw = req->async_data;
3281 
3282 	memcpy(&rw->iter, iter, sizeof(*iter));
3283 	rw->free_iovec = iovec;
3284 	rw->bytes_done = 0;
3285 	/* can only be fixed buffers, no need to do anything */
3286 	if (iov_iter_is_bvec(iter))
3287 		return;
3288 	if (!iovec) {
3289 		unsigned iov_off = 0;
3290 
3291 		rw->iter.iov = rw->fast_iov;
3292 		if (iter->iov != fast_iov) {
3293 			iov_off = iter->iov - fast_iov;
3294 			rw->iter.iov += iov_off;
3295 		}
3296 		if (rw->fast_iov != fast_iov)
3297 			memcpy(rw->fast_iov + iov_off, fast_iov + iov_off,
3298 			       sizeof(struct iovec) * iter->nr_segs);
3299 	} else {
3300 		req->flags |= REQ_F_NEED_CLEANUP;
3301 	}
3302 }
3303 
io_alloc_async_data(struct io_kiocb * req)3304 static inline int io_alloc_async_data(struct io_kiocb *req)
3305 {
3306 	WARN_ON_ONCE(!io_op_defs[req->opcode].async_size);
3307 	req->async_data = kmalloc(io_op_defs[req->opcode].async_size, GFP_KERNEL);
3308 	return req->async_data == NULL;
3309 }
3310 
io_setup_async_rw(struct io_kiocb * req,const struct iovec * iovec,const struct iovec * fast_iov,struct iov_iter * iter,bool force)3311 static int io_setup_async_rw(struct io_kiocb *req, const struct iovec *iovec,
3312 			     const struct iovec *fast_iov,
3313 			     struct iov_iter *iter, bool force)
3314 {
3315 	if (!force && !io_op_defs[req->opcode].needs_async_setup)
3316 		return 0;
3317 	if (!req->async_data) {
3318 		struct io_async_rw *iorw;
3319 
3320 		if (io_alloc_async_data(req)) {
3321 			kfree(iovec);
3322 			return -ENOMEM;
3323 		}
3324 
3325 		io_req_map_rw(req, iovec, fast_iov, iter);
3326 		iorw = req->async_data;
3327 		/* we've copied and mapped the iter, ensure state is saved */
3328 		iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3329 	}
3330 	return 0;
3331 }
3332 
io_rw_prep_async(struct io_kiocb * req,int rw)3333 static inline int io_rw_prep_async(struct io_kiocb *req, int rw)
3334 {
3335 	struct io_async_rw *iorw = req->async_data;
3336 	struct iovec *iov = iorw->fast_iov;
3337 	int ret;
3338 
3339 	ret = io_import_iovec(rw, req, &iov, &iorw->iter, false);
3340 	if (unlikely(ret < 0))
3341 		return ret;
3342 
3343 	iorw->bytes_done = 0;
3344 	iorw->free_iovec = iov;
3345 	if (iov)
3346 		req->flags |= REQ_F_NEED_CLEANUP;
3347 	iov_iter_save_state(&iorw->iter, &iorw->iter_state);
3348 	return 0;
3349 }
3350 
io_read_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3351 static int io_read_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3352 {
3353 	if (unlikely(!(req->file->f_mode & FMODE_READ)))
3354 		return -EBADF;
3355 	return io_prep_rw(req, sqe, READ);
3356 }
3357 
3358 /*
3359  * This is our waitqueue callback handler, registered through lock_page_async()
3360  * when we initially tried to do the IO with the iocb armed our waitqueue.
3361  * This gets called when the page is unlocked, and we generally expect that to
3362  * happen when the page IO is completed and the page is now uptodate. This will
3363  * queue a task_work based retry of the operation, attempting to copy the data
3364  * again. If the latter fails because the page was NOT uptodate, then we will
3365  * do a thread based blocking retry of the operation. That's the unexpected
3366  * slow path.
3367  */
io_async_buf_func(struct wait_queue_entry * wait,unsigned mode,int sync,void * arg)3368 static int io_async_buf_func(struct wait_queue_entry *wait, unsigned mode,
3369 			     int sync, void *arg)
3370 {
3371 	struct wait_page_queue *wpq;
3372 	struct io_kiocb *req = wait->private;
3373 	struct wait_page_key *key = arg;
3374 
3375 	wpq = container_of(wait, struct wait_page_queue, wait);
3376 
3377 	if (!wake_page_match(wpq, key))
3378 		return 0;
3379 
3380 	req->rw.kiocb.ki_flags &= ~IOCB_WAITQ;
3381 	list_del_init(&wait->entry);
3382 	io_req_task_queue(req);
3383 	return 1;
3384 }
3385 
3386 /*
3387  * This controls whether a given IO request should be armed for async page
3388  * based retry. If we return false here, the request is handed to the async
3389  * worker threads for retry. If we're doing buffered reads on a regular file,
3390  * we prepare a private wait_page_queue entry and retry the operation. This
3391  * will either succeed because the page is now uptodate and unlocked, or it
3392  * will register a callback when the page is unlocked at IO completion. Through
3393  * that callback, io_uring uses task_work to setup a retry of the operation.
3394  * That retry will attempt the buffered read again. The retry will generally
3395  * succeed, or in rare cases where it fails, we then fall back to using the
3396  * async worker threads for a blocking retry.
3397  */
io_rw_should_retry(struct io_kiocb * req)3398 static bool io_rw_should_retry(struct io_kiocb *req)
3399 {
3400 	struct io_async_rw *rw = req->async_data;
3401 	struct wait_page_queue *wait = &rw->wpq;
3402 	struct kiocb *kiocb = &req->rw.kiocb;
3403 
3404 	/* never retry for NOWAIT, we just complete with -EAGAIN */
3405 	if (req->flags & REQ_F_NOWAIT)
3406 		return false;
3407 
3408 	/* Only for buffered IO */
3409 	if (kiocb->ki_flags & (IOCB_DIRECT | IOCB_HIPRI))
3410 		return false;
3411 
3412 	/*
3413 	 * just use poll if we can, and don't attempt if the fs doesn't
3414 	 * support callback based unlocks
3415 	 */
3416 	if (file_can_poll(req->file) || !(req->file->f_mode & FMODE_BUF_RASYNC))
3417 		return false;
3418 
3419 	wait->wait.func = io_async_buf_func;
3420 	wait->wait.private = req;
3421 	wait->wait.flags = 0;
3422 	INIT_LIST_HEAD(&wait->wait.entry);
3423 	kiocb->ki_flags |= IOCB_WAITQ;
3424 	kiocb->ki_flags &= ~IOCB_NOWAIT;
3425 	kiocb->ki_waitq = wait;
3426 	return true;
3427 }
3428 
io_iter_do_read(struct io_kiocb * req,struct iov_iter * iter)3429 static inline int io_iter_do_read(struct io_kiocb *req, struct iov_iter *iter)
3430 {
3431 	if (req->file->f_op->read_iter)
3432 		return call_read_iter(req->file, &req->rw.kiocb, iter);
3433 	else if (req->file->f_op->read)
3434 		return loop_rw_iter(READ, req, iter);
3435 	else
3436 		return -EINVAL;
3437 }
3438 
need_read_all(struct io_kiocb * req)3439 static bool need_read_all(struct io_kiocb *req)
3440 {
3441 	return req->flags & REQ_F_ISREG ||
3442 		S_ISBLK(file_inode(req->file)->i_mode);
3443 }
3444 
io_read(struct io_kiocb * req,unsigned int issue_flags)3445 static int io_read(struct io_kiocb *req, unsigned int issue_flags)
3446 {
3447 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3448 	struct kiocb *kiocb = &req->rw.kiocb;
3449 	struct iov_iter __iter, *iter = &__iter;
3450 	struct io_async_rw *rw = req->async_data;
3451 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3452 	struct iov_iter_state __state, *state;
3453 	ssize_t ret, ret2;
3454 
3455 	if (rw) {
3456 		iter = &rw->iter;
3457 		state = &rw->iter_state;
3458 		/*
3459 		 * We come here from an earlier attempt, restore our state to
3460 		 * match in case it doesn't. It's cheap enough that we don't
3461 		 * need to make this conditional.
3462 		 */
3463 		iov_iter_restore(iter, state);
3464 		iovec = NULL;
3465 	} else {
3466 		ret = io_import_iovec(READ, req, &iovec, iter, !force_nonblock);
3467 		if (ret < 0)
3468 			return ret;
3469 		state = &__state;
3470 		iov_iter_save_state(iter, state);
3471 	}
3472 	req->result = iov_iter_count(iter);
3473 
3474 	/* Ensure we clear previously set non-block flag */
3475 	if (!force_nonblock)
3476 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3477 	else
3478 		kiocb->ki_flags |= IOCB_NOWAIT;
3479 
3480 	/* If the file doesn't support async, just async punt */
3481 	if (force_nonblock && !io_file_supports_nowait(req, READ)) {
3482 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3483 		return ret ?: -EAGAIN;
3484 	}
3485 
3486 	ret = rw_verify_area(READ, req->file, io_kiocb_ppos(kiocb), req->result);
3487 	if (unlikely(ret)) {
3488 		kfree(iovec);
3489 		return ret;
3490 	}
3491 
3492 	ret = io_iter_do_read(req, iter);
3493 
3494 	if (ret == -EAGAIN || (req->flags & REQ_F_REISSUE)) {
3495 		req->flags &= ~REQ_F_REISSUE;
3496 		/* IOPOLL retry should happen for io-wq threads */
3497 		if (!force_nonblock && !(req->ctx->flags & IORING_SETUP_IOPOLL))
3498 			goto done;
3499 		/* no retry on NONBLOCK nor RWF_NOWAIT */
3500 		if (req->flags & REQ_F_NOWAIT)
3501 			goto done;
3502 		ret = 0;
3503 	} else if (ret == -EIOCBQUEUED) {
3504 		goto out_free;
3505 	} else if (ret <= 0 || ret == req->result || !force_nonblock ||
3506 		   (req->flags & REQ_F_NOWAIT) || !need_read_all(req)) {
3507 		/* read all, failed, already did sync or don't want to retry */
3508 		goto done;
3509 	}
3510 
3511 	/*
3512 	 * Don't depend on the iter state matching what was consumed, or being
3513 	 * untouched in case of error. Restore it and we'll advance it
3514 	 * manually if we need to.
3515 	 */
3516 	iov_iter_restore(iter, state);
3517 
3518 	ret2 = io_setup_async_rw(req, iovec, inline_vecs, iter, true);
3519 	if (ret2)
3520 		return ret2;
3521 
3522 	iovec = NULL;
3523 	rw = req->async_data;
3524 	/*
3525 	 * Now use our persistent iterator and state, if we aren't already.
3526 	 * We've restored and mapped the iter to match.
3527 	 */
3528 	if (iter != &rw->iter) {
3529 		iter = &rw->iter;
3530 		state = &rw->iter_state;
3531 	}
3532 
3533 	do {
3534 		/*
3535 		 * We end up here because of a partial read, either from
3536 		 * above or inside this loop. Advance the iter by the bytes
3537 		 * that were consumed.
3538 		 */
3539 		iov_iter_advance(iter, ret);
3540 		if (!iov_iter_count(iter))
3541 			break;
3542 		rw->bytes_done += ret;
3543 		iov_iter_save_state(iter, state);
3544 
3545 		/* if we can retry, do so with the callbacks armed */
3546 		if (!io_rw_should_retry(req)) {
3547 			kiocb->ki_flags &= ~IOCB_WAITQ;
3548 			return -EAGAIN;
3549 		}
3550 
3551 		/*
3552 		 * Now retry read with the IOCB_WAITQ parts set in the iocb. If
3553 		 * we get -EIOCBQUEUED, then we'll get a notification when the
3554 		 * desired page gets unlocked. We can also get a partial read
3555 		 * here, and if we do, then just retry at the new offset.
3556 		 */
3557 		ret = io_iter_do_read(req, iter);
3558 		if (ret == -EIOCBQUEUED)
3559 			return 0;
3560 		/* we got some bytes, but not all. retry. */
3561 		kiocb->ki_flags &= ~IOCB_WAITQ;
3562 		iov_iter_restore(iter, state);
3563 	} while (ret > 0);
3564 done:
3565 	kiocb_done(kiocb, ret, issue_flags);
3566 out_free:
3567 	/* it's faster to check here then delegate to kfree */
3568 	if (iovec)
3569 		kfree(iovec);
3570 	return 0;
3571 }
3572 
io_write_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3573 static int io_write_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
3574 {
3575 	if (unlikely(!(req->file->f_mode & FMODE_WRITE)))
3576 		return -EBADF;
3577 	return io_prep_rw(req, sqe, WRITE);
3578 }
3579 
io_write(struct io_kiocb * req,unsigned int issue_flags)3580 static int io_write(struct io_kiocb *req, unsigned int issue_flags)
3581 {
3582 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
3583 	struct kiocb *kiocb = &req->rw.kiocb;
3584 	struct iov_iter __iter, *iter = &__iter;
3585 	struct io_async_rw *rw = req->async_data;
3586 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
3587 	struct iov_iter_state __state, *state;
3588 	ssize_t ret, ret2;
3589 
3590 	if (rw) {
3591 		iter = &rw->iter;
3592 		state = &rw->iter_state;
3593 		iov_iter_restore(iter, state);
3594 		iovec = NULL;
3595 	} else {
3596 		ret = io_import_iovec(WRITE, req, &iovec, iter, !force_nonblock);
3597 		if (ret < 0)
3598 			return ret;
3599 		state = &__state;
3600 		iov_iter_save_state(iter, state);
3601 	}
3602 	req->result = iov_iter_count(iter);
3603 
3604 	/* Ensure we clear previously set non-block flag */
3605 	if (!force_nonblock)
3606 		kiocb->ki_flags &= ~IOCB_NOWAIT;
3607 	else
3608 		kiocb->ki_flags |= IOCB_NOWAIT;
3609 
3610 	/* If the file doesn't support async, just async punt */
3611 	if (force_nonblock && !io_file_supports_nowait(req, WRITE))
3612 		goto copy_iov;
3613 
3614 	/* file path doesn't support NOWAIT for non-direct_IO */
3615 	if (force_nonblock && !(kiocb->ki_flags & IOCB_DIRECT) &&
3616 	    (req->flags & REQ_F_ISREG))
3617 		goto copy_iov;
3618 
3619 	ret = rw_verify_area(WRITE, req->file, io_kiocb_ppos(kiocb), req->result);
3620 	if (unlikely(ret))
3621 		goto out_free;
3622 
3623 	/*
3624 	 * Open-code file_start_write here to grab freeze protection,
3625 	 * which will be released by another thread in
3626 	 * io_complete_rw().  Fool lockdep by telling it the lock got
3627 	 * released so that it doesn't complain about the held lock when
3628 	 * we return to userspace.
3629 	 */
3630 	if (req->flags & REQ_F_ISREG) {
3631 		sb_start_write(file_inode(req->file)->i_sb);
3632 		__sb_writers_release(file_inode(req->file)->i_sb,
3633 					SB_FREEZE_WRITE);
3634 	}
3635 	kiocb->ki_flags |= IOCB_WRITE;
3636 
3637 	if (req->file->f_op->write_iter)
3638 		ret2 = call_write_iter(req->file, kiocb, iter);
3639 	else if (req->file->f_op->write)
3640 		ret2 = loop_rw_iter(WRITE, req, iter);
3641 	else
3642 		ret2 = -EINVAL;
3643 
3644 	if (req->flags & REQ_F_REISSUE) {
3645 		req->flags &= ~REQ_F_REISSUE;
3646 		ret2 = -EAGAIN;
3647 	}
3648 
3649 	/*
3650 	 * Raw bdev writes will return -EOPNOTSUPP for IOCB_NOWAIT. Just
3651 	 * retry them without IOCB_NOWAIT.
3652 	 */
3653 	if (ret2 == -EOPNOTSUPP && (kiocb->ki_flags & IOCB_NOWAIT))
3654 		ret2 = -EAGAIN;
3655 	/* no retry on NONBLOCK nor RWF_NOWAIT */
3656 	if (ret2 == -EAGAIN && (req->flags & REQ_F_NOWAIT))
3657 		goto done;
3658 	if (!force_nonblock || ret2 != -EAGAIN) {
3659 		/* IOPOLL retry should happen for io-wq threads */
3660 		if ((req->ctx->flags & IORING_SETUP_IOPOLL) && ret2 == -EAGAIN)
3661 			goto copy_iov;
3662 done:
3663 		kiocb_done(kiocb, ret2, issue_flags);
3664 	} else {
3665 copy_iov:
3666 		iov_iter_restore(iter, state);
3667 		ret = io_setup_async_rw(req, iovec, inline_vecs, iter, false);
3668 		return ret ?: -EAGAIN;
3669 	}
3670 out_free:
3671 	/* it's reportedly faster than delegating the null check to kfree() */
3672 	if (iovec)
3673 		kfree(iovec);
3674 	return ret;
3675 }
3676 
io_renameat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3677 static int io_renameat_prep(struct io_kiocb *req,
3678 			    const struct io_uring_sqe *sqe)
3679 {
3680 	struct io_rename *ren = &req->rename;
3681 	const char __user *oldf, *newf;
3682 
3683 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3684 		return -EINVAL;
3685 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
3686 		return -EINVAL;
3687 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3688 		return -EBADF;
3689 
3690 	ren->old_dfd = READ_ONCE(sqe->fd);
3691 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3692 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3693 	ren->new_dfd = READ_ONCE(sqe->len);
3694 	ren->flags = READ_ONCE(sqe->rename_flags);
3695 
3696 	ren->oldpath = getname(oldf);
3697 	if (IS_ERR(ren->oldpath))
3698 		return PTR_ERR(ren->oldpath);
3699 
3700 	ren->newpath = getname(newf);
3701 	if (IS_ERR(ren->newpath)) {
3702 		putname(ren->oldpath);
3703 		return PTR_ERR(ren->newpath);
3704 	}
3705 
3706 	req->flags |= REQ_F_NEED_CLEANUP;
3707 	return 0;
3708 }
3709 
io_renameat(struct io_kiocb * req,unsigned int issue_flags)3710 static int io_renameat(struct io_kiocb *req, unsigned int issue_flags)
3711 {
3712 	struct io_rename *ren = &req->rename;
3713 	int ret;
3714 
3715 	if (issue_flags & IO_URING_F_NONBLOCK)
3716 		return -EAGAIN;
3717 
3718 	ret = do_renameat2(ren->old_dfd, ren->oldpath, ren->new_dfd,
3719 				ren->newpath, ren->flags);
3720 
3721 	req->flags &= ~REQ_F_NEED_CLEANUP;
3722 	if (ret < 0)
3723 		req_set_fail(req);
3724 	io_req_complete(req, ret);
3725 	return 0;
3726 }
3727 
io_unlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3728 static int io_unlinkat_prep(struct io_kiocb *req,
3729 			    const struct io_uring_sqe *sqe)
3730 {
3731 	struct io_unlink *un = &req->unlink;
3732 	const char __user *fname;
3733 
3734 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3735 		return -EINVAL;
3736 	if (sqe->ioprio || sqe->off || sqe->len || sqe->buf_index ||
3737 	    sqe->splice_fd_in)
3738 		return -EINVAL;
3739 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3740 		return -EBADF;
3741 
3742 	un->dfd = READ_ONCE(sqe->fd);
3743 
3744 	un->flags = READ_ONCE(sqe->unlink_flags);
3745 	if (un->flags & ~AT_REMOVEDIR)
3746 		return -EINVAL;
3747 
3748 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3749 	un->filename = getname(fname);
3750 	if (IS_ERR(un->filename))
3751 		return PTR_ERR(un->filename);
3752 
3753 	req->flags |= REQ_F_NEED_CLEANUP;
3754 	return 0;
3755 }
3756 
io_unlinkat(struct io_kiocb * req,unsigned int issue_flags)3757 static int io_unlinkat(struct io_kiocb *req, unsigned int issue_flags)
3758 {
3759 	struct io_unlink *un = &req->unlink;
3760 	int ret;
3761 
3762 	if (issue_flags & IO_URING_F_NONBLOCK)
3763 		return -EAGAIN;
3764 
3765 	if (un->flags & AT_REMOVEDIR)
3766 		ret = do_rmdir(un->dfd, un->filename);
3767 	else
3768 		ret = do_unlinkat(un->dfd, un->filename);
3769 
3770 	req->flags &= ~REQ_F_NEED_CLEANUP;
3771 	if (ret < 0)
3772 		req_set_fail(req);
3773 	io_req_complete(req, ret);
3774 	return 0;
3775 }
3776 
io_mkdirat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3777 static int io_mkdirat_prep(struct io_kiocb *req,
3778 			    const struct io_uring_sqe *sqe)
3779 {
3780 	struct io_mkdir *mkd = &req->mkdir;
3781 	const char __user *fname;
3782 
3783 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3784 		return -EINVAL;
3785 	if (sqe->ioprio || sqe->off || sqe->rw_flags || sqe->buf_index ||
3786 	    sqe->splice_fd_in)
3787 		return -EINVAL;
3788 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3789 		return -EBADF;
3790 
3791 	mkd->dfd = READ_ONCE(sqe->fd);
3792 	mkd->mode = READ_ONCE(sqe->len);
3793 
3794 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
3795 	mkd->filename = getname(fname);
3796 	if (IS_ERR(mkd->filename))
3797 		return PTR_ERR(mkd->filename);
3798 
3799 	req->flags |= REQ_F_NEED_CLEANUP;
3800 	return 0;
3801 }
3802 
io_mkdirat(struct io_kiocb * req,int issue_flags)3803 static int io_mkdirat(struct io_kiocb *req, int issue_flags)
3804 {
3805 	struct io_mkdir *mkd = &req->mkdir;
3806 	int ret;
3807 
3808 	if (issue_flags & IO_URING_F_NONBLOCK)
3809 		return -EAGAIN;
3810 
3811 	ret = do_mkdirat(mkd->dfd, mkd->filename, mkd->mode);
3812 
3813 	req->flags &= ~REQ_F_NEED_CLEANUP;
3814 	if (ret < 0)
3815 		req_set_fail(req);
3816 	io_req_complete(req, ret);
3817 	return 0;
3818 }
3819 
io_symlinkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3820 static int io_symlinkat_prep(struct io_kiocb *req,
3821 			    const struct io_uring_sqe *sqe)
3822 {
3823 	struct io_symlink *sl = &req->symlink;
3824 	const char __user *oldpath, *newpath;
3825 
3826 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3827 		return -EINVAL;
3828 	if (sqe->ioprio || sqe->len || sqe->rw_flags || sqe->buf_index ||
3829 	    sqe->splice_fd_in)
3830 		return -EINVAL;
3831 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3832 		return -EBADF;
3833 
3834 	sl->new_dfd = READ_ONCE(sqe->fd);
3835 	oldpath = u64_to_user_ptr(READ_ONCE(sqe->addr));
3836 	newpath = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3837 
3838 	sl->oldpath = getname(oldpath);
3839 	if (IS_ERR(sl->oldpath))
3840 		return PTR_ERR(sl->oldpath);
3841 
3842 	sl->newpath = getname(newpath);
3843 	if (IS_ERR(sl->newpath)) {
3844 		putname(sl->oldpath);
3845 		return PTR_ERR(sl->newpath);
3846 	}
3847 
3848 	req->flags |= REQ_F_NEED_CLEANUP;
3849 	return 0;
3850 }
3851 
io_symlinkat(struct io_kiocb * req,int issue_flags)3852 static int io_symlinkat(struct io_kiocb *req, int issue_flags)
3853 {
3854 	struct io_symlink *sl = &req->symlink;
3855 	int ret;
3856 
3857 	if (issue_flags & IO_URING_F_NONBLOCK)
3858 		return -EAGAIN;
3859 
3860 	ret = do_symlinkat(sl->oldpath, sl->new_dfd, sl->newpath);
3861 
3862 	req->flags &= ~REQ_F_NEED_CLEANUP;
3863 	if (ret < 0)
3864 		req_set_fail(req);
3865 	io_req_complete(req, ret);
3866 	return 0;
3867 }
3868 
io_linkat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3869 static int io_linkat_prep(struct io_kiocb *req,
3870 			    const struct io_uring_sqe *sqe)
3871 {
3872 	struct io_hardlink *lnk = &req->hardlink;
3873 	const char __user *oldf, *newf;
3874 
3875 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3876 		return -EINVAL;
3877 	if (sqe->ioprio || sqe->rw_flags || sqe->buf_index || sqe->splice_fd_in)
3878 		return -EINVAL;
3879 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
3880 		return -EBADF;
3881 
3882 	lnk->old_dfd = READ_ONCE(sqe->fd);
3883 	lnk->new_dfd = READ_ONCE(sqe->len);
3884 	oldf = u64_to_user_ptr(READ_ONCE(sqe->addr));
3885 	newf = u64_to_user_ptr(READ_ONCE(sqe->addr2));
3886 	lnk->flags = READ_ONCE(sqe->hardlink_flags);
3887 
3888 	lnk->oldpath = getname(oldf);
3889 	if (IS_ERR(lnk->oldpath))
3890 		return PTR_ERR(lnk->oldpath);
3891 
3892 	lnk->newpath = getname(newf);
3893 	if (IS_ERR(lnk->newpath)) {
3894 		putname(lnk->oldpath);
3895 		return PTR_ERR(lnk->newpath);
3896 	}
3897 
3898 	req->flags |= REQ_F_NEED_CLEANUP;
3899 	return 0;
3900 }
3901 
io_linkat(struct io_kiocb * req,int issue_flags)3902 static int io_linkat(struct io_kiocb *req, int issue_flags)
3903 {
3904 	struct io_hardlink *lnk = &req->hardlink;
3905 	int ret;
3906 
3907 	if (issue_flags & IO_URING_F_NONBLOCK)
3908 		return -EAGAIN;
3909 
3910 	ret = do_linkat(lnk->old_dfd, lnk->oldpath, lnk->new_dfd,
3911 				lnk->newpath, lnk->flags);
3912 
3913 	req->flags &= ~REQ_F_NEED_CLEANUP;
3914 	if (ret < 0)
3915 		req_set_fail(req);
3916 	io_req_complete(req, ret);
3917 	return 0;
3918 }
3919 
io_shutdown_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3920 static int io_shutdown_prep(struct io_kiocb *req,
3921 			    const struct io_uring_sqe *sqe)
3922 {
3923 #if defined(CONFIG_NET)
3924 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3925 		return -EINVAL;
3926 	if (unlikely(sqe->ioprio || sqe->off || sqe->addr || sqe->rw_flags ||
3927 		     sqe->buf_index || sqe->splice_fd_in))
3928 		return -EINVAL;
3929 
3930 	req->shutdown.how = READ_ONCE(sqe->len);
3931 	return 0;
3932 #else
3933 	return -EOPNOTSUPP;
3934 #endif
3935 }
3936 
io_shutdown(struct io_kiocb * req,unsigned int issue_flags)3937 static int io_shutdown(struct io_kiocb *req, unsigned int issue_flags)
3938 {
3939 #if defined(CONFIG_NET)
3940 	struct socket *sock;
3941 	int ret;
3942 
3943 	if (issue_flags & IO_URING_F_NONBLOCK)
3944 		return -EAGAIN;
3945 
3946 	sock = sock_from_file(req->file);
3947 	if (unlikely(!sock))
3948 		return -ENOTSOCK;
3949 
3950 	ret = __sys_shutdown_sock(sock, req->shutdown.how);
3951 	if (ret < 0)
3952 		req_set_fail(req);
3953 	io_req_complete(req, ret);
3954 	return 0;
3955 #else
3956 	return -EOPNOTSUPP;
3957 #endif
3958 }
3959 
__io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3960 static int __io_splice_prep(struct io_kiocb *req,
3961 			    const struct io_uring_sqe *sqe)
3962 {
3963 	struct io_splice *sp = &req->splice;
3964 	unsigned int valid_flags = SPLICE_F_FD_IN_FIXED | SPLICE_F_ALL;
3965 
3966 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
3967 		return -EINVAL;
3968 
3969 	sp->file_in = NULL;
3970 	sp->len = READ_ONCE(sqe->len);
3971 	sp->flags = READ_ONCE(sqe->splice_flags);
3972 
3973 	if (unlikely(sp->flags & ~valid_flags))
3974 		return -EINVAL;
3975 
3976 	sp->file_in = io_file_get(req->ctx, req, READ_ONCE(sqe->splice_fd_in),
3977 				  (sp->flags & SPLICE_F_FD_IN_FIXED));
3978 	if (!sp->file_in)
3979 		return -EBADF;
3980 	req->flags |= REQ_F_NEED_CLEANUP;
3981 	return 0;
3982 }
3983 
io_tee_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)3984 static int io_tee_prep(struct io_kiocb *req,
3985 		       const struct io_uring_sqe *sqe)
3986 {
3987 	if (READ_ONCE(sqe->splice_off_in) || READ_ONCE(sqe->off))
3988 		return -EINVAL;
3989 	return __io_splice_prep(req, sqe);
3990 }
3991 
io_tee(struct io_kiocb * req,unsigned int issue_flags)3992 static int io_tee(struct io_kiocb *req, unsigned int issue_flags)
3993 {
3994 	struct io_splice *sp = &req->splice;
3995 	struct file *in = sp->file_in;
3996 	struct file *out = sp->file_out;
3997 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
3998 	long ret = 0;
3999 
4000 	if (issue_flags & IO_URING_F_NONBLOCK)
4001 		return -EAGAIN;
4002 	if (sp->len)
4003 		ret = do_tee(in, out, sp->len, flags);
4004 
4005 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4006 		io_put_file(in);
4007 	req->flags &= ~REQ_F_NEED_CLEANUP;
4008 
4009 	if (ret != sp->len)
4010 		req_set_fail(req);
4011 	io_req_complete(req, ret);
4012 	return 0;
4013 }
4014 
io_splice_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4015 static int io_splice_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4016 {
4017 	struct io_splice *sp = &req->splice;
4018 
4019 	sp->off_in = READ_ONCE(sqe->splice_off_in);
4020 	sp->off_out = READ_ONCE(sqe->off);
4021 	return __io_splice_prep(req, sqe);
4022 }
4023 
io_splice(struct io_kiocb * req,unsigned int issue_flags)4024 static int io_splice(struct io_kiocb *req, unsigned int issue_flags)
4025 {
4026 	struct io_splice *sp = &req->splice;
4027 	struct file *in = sp->file_in;
4028 	struct file *out = sp->file_out;
4029 	unsigned int flags = sp->flags & ~SPLICE_F_FD_IN_FIXED;
4030 	loff_t *poff_in, *poff_out;
4031 	long ret = 0;
4032 
4033 	if (issue_flags & IO_URING_F_NONBLOCK)
4034 		return -EAGAIN;
4035 
4036 	poff_in = (sp->off_in == -1) ? NULL : &sp->off_in;
4037 	poff_out = (sp->off_out == -1) ? NULL : &sp->off_out;
4038 
4039 	if (sp->len)
4040 		ret = do_splice(in, poff_in, out, poff_out, sp->len, flags);
4041 
4042 	if (!(sp->flags & SPLICE_F_FD_IN_FIXED))
4043 		io_put_file(in);
4044 	req->flags &= ~REQ_F_NEED_CLEANUP;
4045 
4046 	if (ret != sp->len)
4047 		req_set_fail(req);
4048 	io_req_complete(req, ret);
4049 	return 0;
4050 }
4051 
4052 /*
4053  * IORING_OP_NOP just posts a completion event, nothing else.
4054  */
io_nop(struct io_kiocb * req,unsigned int issue_flags)4055 static int io_nop(struct io_kiocb *req, unsigned int issue_flags)
4056 {
4057 	struct io_ring_ctx *ctx = req->ctx;
4058 
4059 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4060 		return -EINVAL;
4061 
4062 	__io_req_complete(req, issue_flags, 0, 0);
4063 	return 0;
4064 }
4065 
io_fsync_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4066 static int io_fsync_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4067 {
4068 	struct io_ring_ctx *ctx = req->ctx;
4069 
4070 	if (!req->file)
4071 		return -EBADF;
4072 
4073 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4074 		return -EINVAL;
4075 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4076 		     sqe->splice_fd_in))
4077 		return -EINVAL;
4078 
4079 	req->sync.flags = READ_ONCE(sqe->fsync_flags);
4080 	if (unlikely(req->sync.flags & ~IORING_FSYNC_DATASYNC))
4081 		return -EINVAL;
4082 
4083 	req->sync.off = READ_ONCE(sqe->off);
4084 	req->sync.len = READ_ONCE(sqe->len);
4085 	return 0;
4086 }
4087 
io_fsync(struct io_kiocb * req,unsigned int issue_flags)4088 static int io_fsync(struct io_kiocb *req, unsigned int issue_flags)
4089 {
4090 	loff_t end = req->sync.off + req->sync.len;
4091 	int ret;
4092 
4093 	/* fsync always requires a blocking context */
4094 	if (issue_flags & IO_URING_F_NONBLOCK)
4095 		return -EAGAIN;
4096 
4097 	ret = vfs_fsync_range(req->file, req->sync.off,
4098 				end > 0 ? end : LLONG_MAX,
4099 				req->sync.flags & IORING_FSYNC_DATASYNC);
4100 	if (ret < 0)
4101 		req_set_fail(req);
4102 	io_req_complete(req, ret);
4103 	return 0;
4104 }
4105 
io_fallocate_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4106 static int io_fallocate_prep(struct io_kiocb *req,
4107 			     const struct io_uring_sqe *sqe)
4108 {
4109 	if (sqe->ioprio || sqe->buf_index || sqe->rw_flags ||
4110 	    sqe->splice_fd_in)
4111 		return -EINVAL;
4112 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4113 		return -EINVAL;
4114 
4115 	req->sync.off = READ_ONCE(sqe->off);
4116 	req->sync.len = READ_ONCE(sqe->addr);
4117 	req->sync.mode = READ_ONCE(sqe->len);
4118 	return 0;
4119 }
4120 
io_fallocate(struct io_kiocb * req,unsigned int issue_flags)4121 static int io_fallocate(struct io_kiocb *req, unsigned int issue_flags)
4122 {
4123 	int ret;
4124 
4125 	/* fallocate always requiring blocking context */
4126 	if (issue_flags & IO_URING_F_NONBLOCK)
4127 		return -EAGAIN;
4128 	ret = vfs_fallocate(req->file, req->sync.mode, req->sync.off,
4129 				req->sync.len);
4130 	if (ret < 0)
4131 		req_set_fail(req);
4132 	io_req_complete(req, ret);
4133 	return 0;
4134 }
4135 
__io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4136 static int __io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4137 {
4138 	const char __user *fname;
4139 	int ret;
4140 
4141 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4142 		return -EINVAL;
4143 	if (unlikely(sqe->ioprio || sqe->buf_index))
4144 		return -EINVAL;
4145 	if (unlikely(req->flags & REQ_F_FIXED_FILE))
4146 		return -EBADF;
4147 
4148 	/* open.how should be already initialised */
4149 	if (!(req->open.how.flags & O_PATH) && force_o_largefile())
4150 		req->open.how.flags |= O_LARGEFILE;
4151 
4152 	req->open.dfd = READ_ONCE(sqe->fd);
4153 	fname = u64_to_user_ptr(READ_ONCE(sqe->addr));
4154 	req->open.filename = getname(fname);
4155 	if (IS_ERR(req->open.filename)) {
4156 		ret = PTR_ERR(req->open.filename);
4157 		req->open.filename = NULL;
4158 		return ret;
4159 	}
4160 
4161 	req->open.file_slot = READ_ONCE(sqe->file_index);
4162 	if (req->open.file_slot && (req->open.how.flags & O_CLOEXEC))
4163 		return -EINVAL;
4164 
4165 	req->open.nofile = rlimit(RLIMIT_NOFILE);
4166 	req->flags |= REQ_F_NEED_CLEANUP;
4167 	return 0;
4168 }
4169 
io_openat_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4170 static int io_openat_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4171 {
4172 	u64 mode = READ_ONCE(sqe->len);
4173 	u64 flags = READ_ONCE(sqe->open_flags);
4174 
4175 	req->open.how = build_open_how(flags, mode);
4176 	return __io_openat_prep(req, sqe);
4177 }
4178 
io_openat2_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4179 static int io_openat2_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4180 {
4181 	struct open_how __user *how;
4182 	size_t len;
4183 	int ret;
4184 
4185 	how = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4186 	len = READ_ONCE(sqe->len);
4187 	if (len < OPEN_HOW_SIZE_VER0)
4188 		return -EINVAL;
4189 
4190 	ret = copy_struct_from_user(&req->open.how, sizeof(req->open.how), how,
4191 					len);
4192 	if (ret)
4193 		return ret;
4194 
4195 	return __io_openat_prep(req, sqe);
4196 }
4197 
io_openat2(struct io_kiocb * req,unsigned int issue_flags)4198 static int io_openat2(struct io_kiocb *req, unsigned int issue_flags)
4199 {
4200 	struct open_flags op;
4201 	struct file *file;
4202 	bool resolve_nonblock, nonblock_set;
4203 	bool fixed = !!req->open.file_slot;
4204 	int ret;
4205 
4206 	ret = build_open_flags(&req->open.how, &op);
4207 	if (ret)
4208 		goto err;
4209 	nonblock_set = op.open_flag & O_NONBLOCK;
4210 	resolve_nonblock = req->open.how.resolve & RESOLVE_CACHED;
4211 	if (issue_flags & IO_URING_F_NONBLOCK) {
4212 		/*
4213 		 * Don't bother trying for O_TRUNC, O_CREAT, or O_TMPFILE open,
4214 		 * it'll always -EAGAIN
4215 		 */
4216 		if (req->open.how.flags & (O_TRUNC | O_CREAT | O_TMPFILE))
4217 			return -EAGAIN;
4218 		op.lookup_flags |= LOOKUP_CACHED;
4219 		op.open_flag |= O_NONBLOCK;
4220 	}
4221 
4222 	if (!fixed) {
4223 		ret = __get_unused_fd_flags(req->open.how.flags, req->open.nofile);
4224 		if (ret < 0)
4225 			goto err;
4226 	}
4227 
4228 	file = do_filp_open(req->open.dfd, req->open.filename, &op);
4229 	if (IS_ERR(file)) {
4230 		/*
4231 		 * We could hang on to this 'fd' on retrying, but seems like
4232 		 * marginal gain for something that is now known to be a slower
4233 		 * path. So just put it, and we'll get a new one when we retry.
4234 		 */
4235 		if (!fixed)
4236 			put_unused_fd(ret);
4237 
4238 		ret = PTR_ERR(file);
4239 		/* only retry if RESOLVE_CACHED wasn't already set by application */
4240 		if (ret == -EAGAIN &&
4241 		    (!resolve_nonblock && (issue_flags & IO_URING_F_NONBLOCK)))
4242 			return -EAGAIN;
4243 		goto err;
4244 	}
4245 
4246 	if ((issue_flags & IO_URING_F_NONBLOCK) && !nonblock_set)
4247 		file->f_flags &= ~O_NONBLOCK;
4248 	fsnotify_open(file);
4249 
4250 	if (!fixed)
4251 		fd_install(ret, file);
4252 	else
4253 		ret = io_install_fixed_file(req, file, issue_flags,
4254 					    req->open.file_slot - 1);
4255 err:
4256 	putname(req->open.filename);
4257 	req->flags &= ~REQ_F_NEED_CLEANUP;
4258 	if (ret < 0)
4259 		req_set_fail(req);
4260 	__io_req_complete(req, issue_flags, ret, 0);
4261 	return 0;
4262 }
4263 
io_openat(struct io_kiocb * req,unsigned int issue_flags)4264 static int io_openat(struct io_kiocb *req, unsigned int issue_flags)
4265 {
4266 	return io_openat2(req, issue_flags);
4267 }
4268 
io_remove_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4269 static int io_remove_buffers_prep(struct io_kiocb *req,
4270 				  const struct io_uring_sqe *sqe)
4271 {
4272 	struct io_provide_buf *p = &req->pbuf;
4273 	u64 tmp;
4274 
4275 	if (sqe->ioprio || sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
4276 	    sqe->splice_fd_in)
4277 		return -EINVAL;
4278 
4279 	tmp = READ_ONCE(sqe->fd);
4280 	if (!tmp || tmp > USHRT_MAX)
4281 		return -EINVAL;
4282 
4283 	memset(p, 0, sizeof(*p));
4284 	p->nbufs = tmp;
4285 	p->bgid = READ_ONCE(sqe->buf_group);
4286 	return 0;
4287 }
4288 
__io_remove_buffers(struct io_ring_ctx * ctx,struct io_buffer * buf,int bgid,unsigned nbufs)4289 static int __io_remove_buffers(struct io_ring_ctx *ctx, struct io_buffer *buf,
4290 			       int bgid, unsigned nbufs)
4291 {
4292 	unsigned i = 0;
4293 
4294 	/* shouldn't happen */
4295 	if (!nbufs)
4296 		return 0;
4297 
4298 	/* the head kbuf is the list itself */
4299 	while (!list_empty(&buf->list)) {
4300 		struct io_buffer *nxt;
4301 
4302 		nxt = list_first_entry(&buf->list, struct io_buffer, list);
4303 		list_del(&nxt->list);
4304 		kfree(nxt);
4305 		if (++i == nbufs)
4306 			return i;
4307 	}
4308 	i++;
4309 	kfree(buf);
4310 	xa_erase(&ctx->io_buffers, bgid);
4311 
4312 	return i;
4313 }
4314 
io_remove_buffers(struct io_kiocb * req,unsigned int issue_flags)4315 static int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
4316 {
4317 	struct io_provide_buf *p = &req->pbuf;
4318 	struct io_ring_ctx *ctx = req->ctx;
4319 	struct io_buffer *head;
4320 	int ret = 0;
4321 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4322 
4323 	io_ring_submit_lock(ctx, !force_nonblock);
4324 
4325 	lockdep_assert_held(&ctx->uring_lock);
4326 
4327 	ret = -ENOENT;
4328 	head = xa_load(&ctx->io_buffers, p->bgid);
4329 	if (head)
4330 		ret = __io_remove_buffers(ctx, head, p->bgid, p->nbufs);
4331 	if (ret < 0)
4332 		req_set_fail(req);
4333 
4334 	/* complete before unlock, IOPOLL may need the lock */
4335 	__io_req_complete(req, issue_flags, ret, 0);
4336 	io_ring_submit_unlock(ctx, !force_nonblock);
4337 	return 0;
4338 }
4339 
io_provide_buffers_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4340 static int io_provide_buffers_prep(struct io_kiocb *req,
4341 				   const struct io_uring_sqe *sqe)
4342 {
4343 	unsigned long size, tmp_check;
4344 	struct io_provide_buf *p = &req->pbuf;
4345 	u64 tmp;
4346 
4347 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
4348 		return -EINVAL;
4349 
4350 	tmp = READ_ONCE(sqe->fd);
4351 	if (!tmp || tmp > USHRT_MAX)
4352 		return -E2BIG;
4353 	p->nbufs = tmp;
4354 	p->addr = READ_ONCE(sqe->addr);
4355 	p->len = READ_ONCE(sqe->len);
4356 
4357 	if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
4358 				&size))
4359 		return -EOVERFLOW;
4360 	if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
4361 		return -EOVERFLOW;
4362 
4363 	size = (unsigned long)p->len * p->nbufs;
4364 	if (!access_ok(u64_to_user_ptr(p->addr), size))
4365 		return -EFAULT;
4366 
4367 	p->bgid = READ_ONCE(sqe->buf_group);
4368 	tmp = READ_ONCE(sqe->off);
4369 	if (tmp > USHRT_MAX)
4370 		return -E2BIG;
4371 	p->bid = tmp;
4372 	return 0;
4373 }
4374 
io_add_buffers(struct io_provide_buf * pbuf,struct io_buffer ** head)4375 static int io_add_buffers(struct io_provide_buf *pbuf, struct io_buffer **head)
4376 {
4377 	struct io_buffer *buf;
4378 	u64 addr = pbuf->addr;
4379 	int i, bid = pbuf->bid;
4380 
4381 	for (i = 0; i < pbuf->nbufs; i++) {
4382 		buf = kmalloc(sizeof(*buf), GFP_KERNEL_ACCOUNT);
4383 		if (!buf)
4384 			break;
4385 
4386 		buf->addr = addr;
4387 		buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
4388 		buf->bid = bid;
4389 		addr += pbuf->len;
4390 		bid++;
4391 		if (!*head) {
4392 			INIT_LIST_HEAD(&buf->list);
4393 			*head = buf;
4394 		} else {
4395 			list_add_tail(&buf->list, &(*head)->list);
4396 		}
4397 	}
4398 
4399 	return i ? i : -ENOMEM;
4400 }
4401 
io_provide_buffers(struct io_kiocb * req,unsigned int issue_flags)4402 static int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
4403 {
4404 	struct io_provide_buf *p = &req->pbuf;
4405 	struct io_ring_ctx *ctx = req->ctx;
4406 	struct io_buffer *head, *list;
4407 	int ret = 0;
4408 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4409 
4410 	io_ring_submit_lock(ctx, !force_nonblock);
4411 
4412 	lockdep_assert_held(&ctx->uring_lock);
4413 
4414 	list = head = xa_load(&ctx->io_buffers, p->bgid);
4415 
4416 	ret = io_add_buffers(p, &head);
4417 	if (ret >= 0 && !list) {
4418 		ret = xa_insert(&ctx->io_buffers, p->bgid, head, GFP_KERNEL);
4419 		if (ret < 0)
4420 			__io_remove_buffers(ctx, head, p->bgid, -1U);
4421 	}
4422 	if (ret < 0)
4423 		req_set_fail(req);
4424 	/* complete before unlock, IOPOLL may need the lock */
4425 	__io_req_complete(req, issue_flags, ret, 0);
4426 	io_ring_submit_unlock(ctx, !force_nonblock);
4427 	return 0;
4428 }
4429 
io_epoll_ctl_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4430 static int io_epoll_ctl_prep(struct io_kiocb *req,
4431 			     const struct io_uring_sqe *sqe)
4432 {
4433 #if defined(CONFIG_EPOLL)
4434 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4435 		return -EINVAL;
4436 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4437 		return -EINVAL;
4438 
4439 	req->epoll.epfd = READ_ONCE(sqe->fd);
4440 	req->epoll.op = READ_ONCE(sqe->len);
4441 	req->epoll.fd = READ_ONCE(sqe->off);
4442 
4443 	if (ep_op_has_event(req->epoll.op)) {
4444 		struct epoll_event __user *ev;
4445 
4446 		ev = u64_to_user_ptr(READ_ONCE(sqe->addr));
4447 		if (copy_from_user(&req->epoll.event, ev, sizeof(*ev)))
4448 			return -EFAULT;
4449 	}
4450 
4451 	return 0;
4452 #else
4453 	return -EOPNOTSUPP;
4454 #endif
4455 }
4456 
io_epoll_ctl(struct io_kiocb * req,unsigned int issue_flags)4457 static int io_epoll_ctl(struct io_kiocb *req, unsigned int issue_flags)
4458 {
4459 #if defined(CONFIG_EPOLL)
4460 	struct io_epoll *ie = &req->epoll;
4461 	int ret;
4462 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4463 
4464 	ret = do_epoll_ctl(ie->epfd, ie->op, ie->fd, &ie->event, force_nonblock);
4465 	if (force_nonblock && ret == -EAGAIN)
4466 		return -EAGAIN;
4467 
4468 	if (ret < 0)
4469 		req_set_fail(req);
4470 	__io_req_complete(req, issue_flags, ret, 0);
4471 	return 0;
4472 #else
4473 	return -EOPNOTSUPP;
4474 #endif
4475 }
4476 
io_madvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4477 static int io_madvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4478 {
4479 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4480 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->splice_fd_in)
4481 		return -EINVAL;
4482 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4483 		return -EINVAL;
4484 
4485 	req->madvise.addr = READ_ONCE(sqe->addr);
4486 	req->madvise.len = READ_ONCE(sqe->len);
4487 	req->madvise.advice = READ_ONCE(sqe->fadvise_advice);
4488 	return 0;
4489 #else
4490 	return -EOPNOTSUPP;
4491 #endif
4492 }
4493 
io_madvise(struct io_kiocb * req,unsigned int issue_flags)4494 static int io_madvise(struct io_kiocb *req, unsigned int issue_flags)
4495 {
4496 #if defined(CONFIG_ADVISE_SYSCALLS) && defined(CONFIG_MMU)
4497 	struct io_madvise *ma = &req->madvise;
4498 	int ret;
4499 
4500 	if (issue_flags & IO_URING_F_NONBLOCK)
4501 		return -EAGAIN;
4502 
4503 	ret = do_madvise(current->mm, ma->addr, ma->len, ma->advice);
4504 	if (ret < 0)
4505 		req_set_fail(req);
4506 	io_req_complete(req, ret);
4507 	return 0;
4508 #else
4509 	return -EOPNOTSUPP;
4510 #endif
4511 }
4512 
io_fadvise_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4513 static int io_fadvise_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4514 {
4515 	if (sqe->ioprio || sqe->buf_index || sqe->addr || sqe->splice_fd_in)
4516 		return -EINVAL;
4517 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4518 		return -EINVAL;
4519 
4520 	req->fadvise.offset = READ_ONCE(sqe->off);
4521 	req->fadvise.len = READ_ONCE(sqe->len);
4522 	req->fadvise.advice = READ_ONCE(sqe->fadvise_advice);
4523 	return 0;
4524 }
4525 
io_fadvise(struct io_kiocb * req,unsigned int issue_flags)4526 static int io_fadvise(struct io_kiocb *req, unsigned int issue_flags)
4527 {
4528 	struct io_fadvise *fa = &req->fadvise;
4529 	int ret;
4530 
4531 	if (issue_flags & IO_URING_F_NONBLOCK) {
4532 		switch (fa->advice) {
4533 		case POSIX_FADV_NORMAL:
4534 		case POSIX_FADV_RANDOM:
4535 		case POSIX_FADV_SEQUENTIAL:
4536 			break;
4537 		default:
4538 			return -EAGAIN;
4539 		}
4540 	}
4541 
4542 	ret = vfs_fadvise(req->file, fa->offset, fa->len, fa->advice);
4543 	if (ret < 0)
4544 		req_set_fail(req);
4545 	__io_req_complete(req, issue_flags, ret, 0);
4546 	return 0;
4547 }
4548 
io_statx_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4549 static int io_statx_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4550 {
4551 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4552 		return -EINVAL;
4553 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
4554 		return -EINVAL;
4555 	if (req->flags & REQ_F_FIXED_FILE)
4556 		return -EBADF;
4557 
4558 	req->statx.dfd = READ_ONCE(sqe->fd);
4559 	req->statx.mask = READ_ONCE(sqe->len);
4560 	req->statx.filename = u64_to_user_ptr(READ_ONCE(sqe->addr));
4561 	req->statx.buffer = u64_to_user_ptr(READ_ONCE(sqe->addr2));
4562 	req->statx.flags = READ_ONCE(sqe->statx_flags);
4563 
4564 	return 0;
4565 }
4566 
io_statx(struct io_kiocb * req,unsigned int issue_flags)4567 static int io_statx(struct io_kiocb *req, unsigned int issue_flags)
4568 {
4569 	struct io_statx *ctx = &req->statx;
4570 	int ret;
4571 
4572 	if (issue_flags & IO_URING_F_NONBLOCK)
4573 		return -EAGAIN;
4574 
4575 	ret = do_statx(ctx->dfd, ctx->filename, ctx->flags, ctx->mask,
4576 		       ctx->buffer);
4577 
4578 	if (ret < 0)
4579 		req_set_fail(req);
4580 	io_req_complete(req, ret);
4581 	return 0;
4582 }
4583 
io_close_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4584 static int io_close_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4585 {
4586 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4587 		return -EINVAL;
4588 	if (sqe->ioprio || sqe->off || sqe->addr || sqe->len ||
4589 	    sqe->rw_flags || sqe->buf_index)
4590 		return -EINVAL;
4591 	if (req->flags & REQ_F_FIXED_FILE)
4592 		return -EBADF;
4593 
4594 	req->close.fd = READ_ONCE(sqe->fd);
4595 	req->close.file_slot = READ_ONCE(sqe->file_index);
4596 	if (req->close.file_slot && req->close.fd)
4597 		return -EINVAL;
4598 
4599 	return 0;
4600 }
4601 
io_close(struct io_kiocb * req,unsigned int issue_flags)4602 static int io_close(struct io_kiocb *req, unsigned int issue_flags)
4603 {
4604 	struct files_struct *files = current->files;
4605 	struct io_close *close = &req->close;
4606 	struct fdtable *fdt;
4607 	struct file *file = NULL;
4608 	int ret = -EBADF;
4609 
4610 	if (req->close.file_slot) {
4611 		ret = io_close_fixed(req, issue_flags);
4612 		goto err;
4613 	}
4614 
4615 	spin_lock(&files->file_lock);
4616 	fdt = files_fdtable(files);
4617 	if (close->fd >= fdt->max_fds) {
4618 		spin_unlock(&files->file_lock);
4619 		goto err;
4620 	}
4621 	file = fdt->fd[close->fd];
4622 	if (!file || file->f_op == &io_uring_fops) {
4623 		spin_unlock(&files->file_lock);
4624 		file = NULL;
4625 		goto err;
4626 	}
4627 
4628 	/* if the file has a flush method, be safe and punt to async */
4629 	if (file->f_op->flush && (issue_flags & IO_URING_F_NONBLOCK)) {
4630 		spin_unlock(&files->file_lock);
4631 		return -EAGAIN;
4632 	}
4633 
4634 	ret = __close_fd_get_file(close->fd, &file);
4635 	spin_unlock(&files->file_lock);
4636 	if (ret < 0) {
4637 		if (ret == -ENOENT)
4638 			ret = -EBADF;
4639 		goto err;
4640 	}
4641 
4642 	/* No ->flush() or already async, safely close from here */
4643 	ret = filp_close(file, current->files);
4644 err:
4645 	if (ret < 0)
4646 		req_set_fail(req);
4647 	if (file)
4648 		fput(file);
4649 	__io_req_complete(req, issue_flags, ret, 0);
4650 	return 0;
4651 }
4652 
io_sfr_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4653 static int io_sfr_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4654 {
4655 	struct io_ring_ctx *ctx = req->ctx;
4656 
4657 	if (unlikely(ctx->flags & IORING_SETUP_IOPOLL))
4658 		return -EINVAL;
4659 	if (unlikely(sqe->addr || sqe->ioprio || sqe->buf_index ||
4660 		     sqe->splice_fd_in))
4661 		return -EINVAL;
4662 
4663 	req->sync.off = READ_ONCE(sqe->off);
4664 	req->sync.len = READ_ONCE(sqe->len);
4665 	req->sync.flags = READ_ONCE(sqe->sync_range_flags);
4666 	return 0;
4667 }
4668 
io_sync_file_range(struct io_kiocb * req,unsigned int issue_flags)4669 static int io_sync_file_range(struct io_kiocb *req, unsigned int issue_flags)
4670 {
4671 	int ret;
4672 
4673 	/* sync_file_range always requires a blocking context */
4674 	if (issue_flags & IO_URING_F_NONBLOCK)
4675 		return -EAGAIN;
4676 
4677 	ret = sync_file_range(req->file, req->sync.off, req->sync.len,
4678 				req->sync.flags);
4679 	if (ret < 0)
4680 		req_set_fail(req);
4681 	io_req_complete(req, ret);
4682 	return 0;
4683 }
4684 
4685 #if defined(CONFIG_NET)
io_setup_async_msg(struct io_kiocb * req,struct io_async_msghdr * kmsg)4686 static int io_setup_async_msg(struct io_kiocb *req,
4687 			      struct io_async_msghdr *kmsg)
4688 {
4689 	struct io_async_msghdr *async_msg = req->async_data;
4690 
4691 	if (async_msg)
4692 		return -EAGAIN;
4693 	if (io_alloc_async_data(req)) {
4694 		kfree(kmsg->free_iov);
4695 		return -ENOMEM;
4696 	}
4697 	async_msg = req->async_data;
4698 	req->flags |= REQ_F_NEED_CLEANUP;
4699 	memcpy(async_msg, kmsg, sizeof(*kmsg));
4700 	async_msg->msg.msg_name = &async_msg->addr;
4701 	/* if were using fast_iov, set it to the new one */
4702 	if (!async_msg->free_iov)
4703 		async_msg->msg.msg_iter.iov = async_msg->fast_iov;
4704 
4705 	return -EAGAIN;
4706 }
4707 
io_sendmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4708 static int io_sendmsg_copy_hdr(struct io_kiocb *req,
4709 			       struct io_async_msghdr *iomsg)
4710 {
4711 	iomsg->msg.msg_name = &iomsg->addr;
4712 	iomsg->free_iov = iomsg->fast_iov;
4713 	return sendmsg_copy_msghdr(&iomsg->msg, req->sr_msg.umsg,
4714 				   req->sr_msg.msg_flags, &iomsg->free_iov);
4715 }
4716 
io_sendmsg_prep_async(struct io_kiocb * req)4717 static int io_sendmsg_prep_async(struct io_kiocb *req)
4718 {
4719 	int ret;
4720 
4721 	ret = io_sendmsg_copy_hdr(req, req->async_data);
4722 	if (!ret)
4723 		req->flags |= REQ_F_NEED_CLEANUP;
4724 	return ret;
4725 }
4726 
io_sendmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4727 static int io_sendmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4728 {
4729 	struct io_sr_msg *sr = &req->sr_msg;
4730 
4731 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4732 		return -EINVAL;
4733 
4734 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4735 	sr->len = READ_ONCE(sqe->len);
4736 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4737 	if (sr->msg_flags & MSG_DONTWAIT)
4738 		req->flags |= REQ_F_NOWAIT;
4739 
4740 #ifdef CONFIG_COMPAT
4741 	if (req->ctx->compat)
4742 		sr->msg_flags |= MSG_CMSG_COMPAT;
4743 #endif
4744 	return 0;
4745 }
4746 
io_sendmsg(struct io_kiocb * req,unsigned int issue_flags)4747 static int io_sendmsg(struct io_kiocb *req, unsigned int issue_flags)
4748 {
4749 	struct io_async_msghdr iomsg, *kmsg;
4750 	struct socket *sock;
4751 	unsigned flags;
4752 	int min_ret = 0;
4753 	int ret;
4754 
4755 	sock = sock_from_file(req->file);
4756 	if (unlikely(!sock))
4757 		return -ENOTSOCK;
4758 
4759 	kmsg = req->async_data;
4760 	if (!kmsg) {
4761 		ret = io_sendmsg_copy_hdr(req, &iomsg);
4762 		if (ret)
4763 			return ret;
4764 		kmsg = &iomsg;
4765 	}
4766 
4767 	flags = req->sr_msg.msg_flags;
4768 	if (issue_flags & IO_URING_F_NONBLOCK)
4769 		flags |= MSG_DONTWAIT;
4770 	if (flags & MSG_WAITALL)
4771 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
4772 
4773 	ret = __sys_sendmsg_sock(sock, &kmsg->msg, flags);
4774 	if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4775 		return io_setup_async_msg(req, kmsg);
4776 	if (ret == -ERESTARTSYS)
4777 		ret = -EINTR;
4778 
4779 	/* fast path, check for non-NULL to avoid function call */
4780 	if (kmsg->free_iov)
4781 		kfree(kmsg->free_iov);
4782 	req->flags &= ~REQ_F_NEED_CLEANUP;
4783 	if (ret < min_ret)
4784 		req_set_fail(req);
4785 	__io_req_complete(req, issue_flags, ret, 0);
4786 	return 0;
4787 }
4788 
io_send(struct io_kiocb * req,unsigned int issue_flags)4789 static int io_send(struct io_kiocb *req, unsigned int issue_flags)
4790 {
4791 	struct io_sr_msg *sr = &req->sr_msg;
4792 	struct msghdr msg;
4793 	struct iovec iov;
4794 	struct socket *sock;
4795 	unsigned flags;
4796 	int min_ret = 0;
4797 	int ret;
4798 
4799 	sock = sock_from_file(req->file);
4800 	if (unlikely(!sock))
4801 		return -ENOTSOCK;
4802 
4803 	ret = import_single_range(WRITE, sr->buf, sr->len, &iov, &msg.msg_iter);
4804 	if (unlikely(ret))
4805 		return ret;
4806 
4807 	msg.msg_name = NULL;
4808 	msg.msg_control = NULL;
4809 	msg.msg_controllen = 0;
4810 	msg.msg_namelen = 0;
4811 
4812 	flags = req->sr_msg.msg_flags;
4813 	if (issue_flags & IO_URING_F_NONBLOCK)
4814 		flags |= MSG_DONTWAIT;
4815 	if (flags & MSG_WAITALL)
4816 		min_ret = iov_iter_count(&msg.msg_iter);
4817 
4818 	msg.msg_flags = flags;
4819 	ret = sock_sendmsg(sock, &msg);
4820 	if ((issue_flags & IO_URING_F_NONBLOCK) && ret == -EAGAIN)
4821 		return -EAGAIN;
4822 	if (ret == -ERESTARTSYS)
4823 		ret = -EINTR;
4824 
4825 	if (ret < min_ret)
4826 		req_set_fail(req);
4827 	__io_req_complete(req, issue_flags, ret, 0);
4828 	return 0;
4829 }
4830 
__io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4831 static int __io_recvmsg_copy_hdr(struct io_kiocb *req,
4832 				 struct io_async_msghdr *iomsg)
4833 {
4834 	struct io_sr_msg *sr = &req->sr_msg;
4835 	struct iovec __user *uiov;
4836 	size_t iov_len;
4837 	int ret;
4838 
4839 	ret = __copy_msghdr_from_user(&iomsg->msg, sr->umsg,
4840 					&iomsg->uaddr, &uiov, &iov_len);
4841 	if (ret)
4842 		return ret;
4843 
4844 	if (req->flags & REQ_F_BUFFER_SELECT) {
4845 		if (iov_len > 1)
4846 			return -EINVAL;
4847 		if (copy_from_user(iomsg->fast_iov, uiov, sizeof(*uiov)))
4848 			return -EFAULT;
4849 		sr->len = iomsg->fast_iov[0].iov_len;
4850 		iomsg->free_iov = NULL;
4851 	} else {
4852 		iomsg->free_iov = iomsg->fast_iov;
4853 		ret = __import_iovec(READ, uiov, iov_len, UIO_FASTIOV,
4854 				     &iomsg->free_iov, &iomsg->msg.msg_iter,
4855 				     false);
4856 		if (ret > 0)
4857 			ret = 0;
4858 	}
4859 
4860 	return ret;
4861 }
4862 
4863 #ifdef CONFIG_COMPAT
__io_compat_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4864 static int __io_compat_recvmsg_copy_hdr(struct io_kiocb *req,
4865 					struct io_async_msghdr *iomsg)
4866 {
4867 	struct io_sr_msg *sr = &req->sr_msg;
4868 	struct compat_iovec __user *uiov;
4869 	compat_uptr_t ptr;
4870 	compat_size_t len;
4871 	int ret;
4872 
4873 	ret = __get_compat_msghdr(&iomsg->msg, sr->umsg_compat, &iomsg->uaddr,
4874 				  &ptr, &len);
4875 	if (ret)
4876 		return ret;
4877 
4878 	uiov = compat_ptr(ptr);
4879 	if (req->flags & REQ_F_BUFFER_SELECT) {
4880 		compat_ssize_t clen;
4881 
4882 		if (len > 1)
4883 			return -EINVAL;
4884 		if (!access_ok(uiov, sizeof(*uiov)))
4885 			return -EFAULT;
4886 		if (__get_user(clen, &uiov->iov_len))
4887 			return -EFAULT;
4888 		if (clen < 0)
4889 			return -EINVAL;
4890 		sr->len = clen;
4891 		iomsg->free_iov = NULL;
4892 	} else {
4893 		iomsg->free_iov = iomsg->fast_iov;
4894 		ret = __import_iovec(READ, (struct iovec __user *)uiov, len,
4895 				   UIO_FASTIOV, &iomsg->free_iov,
4896 				   &iomsg->msg.msg_iter, true);
4897 		if (ret < 0)
4898 			return ret;
4899 	}
4900 
4901 	return 0;
4902 }
4903 #endif
4904 
io_recvmsg_copy_hdr(struct io_kiocb * req,struct io_async_msghdr * iomsg)4905 static int io_recvmsg_copy_hdr(struct io_kiocb *req,
4906 			       struct io_async_msghdr *iomsg)
4907 {
4908 	iomsg->msg.msg_name = &iomsg->addr;
4909 
4910 #ifdef CONFIG_COMPAT
4911 	if (req->ctx->compat)
4912 		return __io_compat_recvmsg_copy_hdr(req, iomsg);
4913 #endif
4914 
4915 	return __io_recvmsg_copy_hdr(req, iomsg);
4916 }
4917 
io_recv_buffer_select(struct io_kiocb * req,bool needs_lock)4918 static struct io_buffer *io_recv_buffer_select(struct io_kiocb *req,
4919 					       bool needs_lock)
4920 {
4921 	struct io_sr_msg *sr = &req->sr_msg;
4922 	struct io_buffer *kbuf;
4923 
4924 	kbuf = io_buffer_select(req, &sr->len, sr->bgid, sr->kbuf, needs_lock);
4925 	if (IS_ERR(kbuf))
4926 		return kbuf;
4927 
4928 	sr->kbuf = kbuf;
4929 	req->flags |= REQ_F_BUFFER_SELECTED;
4930 	return kbuf;
4931 }
4932 
io_put_recv_kbuf(struct io_kiocb * req)4933 static inline unsigned int io_put_recv_kbuf(struct io_kiocb *req)
4934 {
4935 	return io_put_kbuf(req, req->sr_msg.kbuf);
4936 }
4937 
io_recvmsg_prep_async(struct io_kiocb * req)4938 static int io_recvmsg_prep_async(struct io_kiocb *req)
4939 {
4940 	int ret;
4941 
4942 	ret = io_recvmsg_copy_hdr(req, req->async_data);
4943 	if (!ret)
4944 		req->flags |= REQ_F_NEED_CLEANUP;
4945 	return ret;
4946 }
4947 
io_recvmsg_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)4948 static int io_recvmsg_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
4949 {
4950 	struct io_sr_msg *sr = &req->sr_msg;
4951 
4952 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
4953 		return -EINVAL;
4954 
4955 	sr->umsg = u64_to_user_ptr(READ_ONCE(sqe->addr));
4956 	sr->len = READ_ONCE(sqe->len);
4957 	sr->bgid = READ_ONCE(sqe->buf_group);
4958 	sr->msg_flags = READ_ONCE(sqe->msg_flags) | MSG_NOSIGNAL;
4959 	if (sr->msg_flags & MSG_DONTWAIT)
4960 		req->flags |= REQ_F_NOWAIT;
4961 
4962 #ifdef CONFIG_COMPAT
4963 	if (req->ctx->compat)
4964 		sr->msg_flags |= MSG_CMSG_COMPAT;
4965 #endif
4966 	return 0;
4967 }
4968 
io_recvmsg(struct io_kiocb * req,unsigned int issue_flags)4969 static int io_recvmsg(struct io_kiocb *req, unsigned int issue_flags)
4970 {
4971 	struct io_async_msghdr iomsg, *kmsg;
4972 	struct socket *sock;
4973 	struct io_buffer *kbuf;
4974 	unsigned flags;
4975 	int min_ret = 0;
4976 	int ret, cflags = 0;
4977 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
4978 
4979 	sock = sock_from_file(req->file);
4980 	if (unlikely(!sock))
4981 		return -ENOTSOCK;
4982 
4983 	kmsg = req->async_data;
4984 	if (!kmsg) {
4985 		ret = io_recvmsg_copy_hdr(req, &iomsg);
4986 		if (ret)
4987 			return ret;
4988 		kmsg = &iomsg;
4989 	}
4990 
4991 	if (req->flags & REQ_F_BUFFER_SELECT) {
4992 		kbuf = io_recv_buffer_select(req, !force_nonblock);
4993 		if (IS_ERR(kbuf))
4994 			return PTR_ERR(kbuf);
4995 		kmsg->fast_iov[0].iov_base = u64_to_user_ptr(kbuf->addr);
4996 		kmsg->fast_iov[0].iov_len = req->sr_msg.len;
4997 		iov_iter_init(&kmsg->msg.msg_iter, READ, kmsg->fast_iov,
4998 				1, req->sr_msg.len);
4999 	}
5000 
5001 	flags = req->sr_msg.msg_flags;
5002 	if (force_nonblock)
5003 		flags |= MSG_DONTWAIT;
5004 	if (flags & MSG_WAITALL)
5005 		min_ret = iov_iter_count(&kmsg->msg.msg_iter);
5006 
5007 	ret = __sys_recvmsg_sock(sock, &kmsg->msg, req->sr_msg.umsg,
5008 					kmsg->uaddr, flags);
5009 	if (force_nonblock && ret == -EAGAIN)
5010 		return io_setup_async_msg(req, kmsg);
5011 	if (ret == -ERESTARTSYS)
5012 		ret = -EINTR;
5013 
5014 	if (req->flags & REQ_F_BUFFER_SELECTED)
5015 		cflags = io_put_recv_kbuf(req);
5016 	/* fast path, check for non-NULL to avoid function call */
5017 	if (kmsg->free_iov)
5018 		kfree(kmsg->free_iov);
5019 	req->flags &= ~REQ_F_NEED_CLEANUP;
5020 	if (ret < min_ret || ((flags & MSG_WAITALL) && (kmsg->msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5021 		req_set_fail(req);
5022 	__io_req_complete(req, issue_flags, ret, cflags);
5023 	return 0;
5024 }
5025 
io_recv(struct io_kiocb * req,unsigned int issue_flags)5026 static int io_recv(struct io_kiocb *req, unsigned int issue_flags)
5027 {
5028 	struct io_buffer *kbuf;
5029 	struct io_sr_msg *sr = &req->sr_msg;
5030 	struct msghdr msg;
5031 	void __user *buf = sr->buf;
5032 	struct socket *sock;
5033 	struct iovec iov;
5034 	unsigned flags;
5035 	int min_ret = 0;
5036 	int ret, cflags = 0;
5037 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5038 
5039 	sock = sock_from_file(req->file);
5040 	if (unlikely(!sock))
5041 		return -ENOTSOCK;
5042 
5043 	if (req->flags & REQ_F_BUFFER_SELECT) {
5044 		kbuf = io_recv_buffer_select(req, !force_nonblock);
5045 		if (IS_ERR(kbuf))
5046 			return PTR_ERR(kbuf);
5047 		buf = u64_to_user_ptr(kbuf->addr);
5048 	}
5049 
5050 	ret = import_single_range(READ, buf, sr->len, &iov, &msg.msg_iter);
5051 	if (unlikely(ret))
5052 		goto out_free;
5053 
5054 	msg.msg_name = NULL;
5055 	msg.msg_control = NULL;
5056 	msg.msg_controllen = 0;
5057 	msg.msg_namelen = 0;
5058 	msg.msg_iocb = NULL;
5059 	msg.msg_flags = 0;
5060 
5061 	flags = req->sr_msg.msg_flags;
5062 	if (force_nonblock)
5063 		flags |= MSG_DONTWAIT;
5064 	if (flags & MSG_WAITALL)
5065 		min_ret = iov_iter_count(&msg.msg_iter);
5066 
5067 	ret = sock_recvmsg(sock, &msg, flags);
5068 	if (force_nonblock && ret == -EAGAIN)
5069 		return -EAGAIN;
5070 	if (ret == -ERESTARTSYS)
5071 		ret = -EINTR;
5072 out_free:
5073 	if (req->flags & REQ_F_BUFFER_SELECTED)
5074 		cflags = io_put_recv_kbuf(req);
5075 	if (ret < min_ret || ((flags & MSG_WAITALL) && (msg.msg_flags & (MSG_TRUNC | MSG_CTRUNC))))
5076 		req_set_fail(req);
5077 	__io_req_complete(req, issue_flags, ret, cflags);
5078 	return 0;
5079 }
5080 
io_accept_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5081 static int io_accept_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5082 {
5083 	struct io_accept *accept = &req->accept;
5084 
5085 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5086 		return -EINVAL;
5087 	if (sqe->ioprio || sqe->len || sqe->buf_index)
5088 		return -EINVAL;
5089 
5090 	accept->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5091 	accept->addr_len = u64_to_user_ptr(READ_ONCE(sqe->addr2));
5092 	accept->flags = READ_ONCE(sqe->accept_flags);
5093 	accept->nofile = rlimit(RLIMIT_NOFILE);
5094 
5095 	accept->file_slot = READ_ONCE(sqe->file_index);
5096 	if (accept->file_slot && ((req->open.how.flags & O_CLOEXEC) ||
5097 				  (accept->flags & SOCK_CLOEXEC)))
5098 		return -EINVAL;
5099 	if (accept->flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
5100 		return -EINVAL;
5101 	if (SOCK_NONBLOCK != O_NONBLOCK && (accept->flags & SOCK_NONBLOCK))
5102 		accept->flags = (accept->flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
5103 	return 0;
5104 }
5105 
io_accept(struct io_kiocb * req,unsigned int issue_flags)5106 static int io_accept(struct io_kiocb *req, unsigned int issue_flags)
5107 {
5108 	struct io_accept *accept = &req->accept;
5109 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5110 	unsigned int file_flags = force_nonblock ? O_NONBLOCK : 0;
5111 	bool fixed = !!accept->file_slot;
5112 	struct file *file;
5113 	int ret, fd;
5114 
5115 	if (req->file->f_flags & O_NONBLOCK)
5116 		req->flags |= REQ_F_NOWAIT;
5117 
5118 	if (!fixed) {
5119 		fd = __get_unused_fd_flags(accept->flags, accept->nofile);
5120 		if (unlikely(fd < 0))
5121 			return fd;
5122 	}
5123 	file = do_accept(req->file, file_flags, accept->addr, accept->addr_len,
5124 			 accept->flags);
5125 	if (IS_ERR(file)) {
5126 		if (!fixed)
5127 			put_unused_fd(fd);
5128 		ret = PTR_ERR(file);
5129 		if (ret == -EAGAIN && force_nonblock)
5130 			return -EAGAIN;
5131 		if (ret == -ERESTARTSYS)
5132 			ret = -EINTR;
5133 		req_set_fail(req);
5134 	} else if (!fixed) {
5135 		fd_install(fd, file);
5136 		ret = fd;
5137 	} else {
5138 		ret = io_install_fixed_file(req, file, issue_flags,
5139 					    accept->file_slot - 1);
5140 	}
5141 	__io_req_complete(req, issue_flags, ret, 0);
5142 	return 0;
5143 }
5144 
io_connect_prep_async(struct io_kiocb * req)5145 static int io_connect_prep_async(struct io_kiocb *req)
5146 {
5147 	struct io_async_connect *io = req->async_data;
5148 	struct io_connect *conn = &req->connect;
5149 
5150 	return move_addr_to_kernel(conn->addr, conn->addr_len, &io->address);
5151 }
5152 
io_connect_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5153 static int io_connect_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5154 {
5155 	struct io_connect *conn = &req->connect;
5156 
5157 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5158 		return -EINVAL;
5159 	if (sqe->ioprio || sqe->len || sqe->buf_index || sqe->rw_flags ||
5160 	    sqe->splice_fd_in)
5161 		return -EINVAL;
5162 
5163 	conn->addr = u64_to_user_ptr(READ_ONCE(sqe->addr));
5164 	conn->addr_len =  READ_ONCE(sqe->addr2);
5165 	return 0;
5166 }
5167 
io_connect(struct io_kiocb * req,unsigned int issue_flags)5168 static int io_connect(struct io_kiocb *req, unsigned int issue_flags)
5169 {
5170 	struct io_async_connect __io, *io;
5171 	unsigned file_flags;
5172 	int ret;
5173 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
5174 
5175 	if (req->async_data) {
5176 		io = req->async_data;
5177 	} else {
5178 		ret = move_addr_to_kernel(req->connect.addr,
5179 						req->connect.addr_len,
5180 						&__io.address);
5181 		if (ret)
5182 			goto out;
5183 		io = &__io;
5184 	}
5185 
5186 	file_flags = force_nonblock ? O_NONBLOCK : 0;
5187 
5188 	ret = __sys_connect_file(req->file, &io->address,
5189 					req->connect.addr_len, file_flags);
5190 	if ((ret == -EAGAIN || ret == -EINPROGRESS) && force_nonblock) {
5191 		if (req->async_data)
5192 			return -EAGAIN;
5193 		if (io_alloc_async_data(req)) {
5194 			ret = -ENOMEM;
5195 			goto out;
5196 		}
5197 		memcpy(req->async_data, &__io, sizeof(__io));
5198 		return -EAGAIN;
5199 	}
5200 	if (ret == -ERESTARTSYS)
5201 		ret = -EINTR;
5202 out:
5203 	if (ret < 0)
5204 		req_set_fail(req);
5205 	__io_req_complete(req, issue_flags, ret, 0);
5206 	return 0;
5207 }
5208 #else /* !CONFIG_NET */
5209 #define IO_NETOP_FN(op)							\
5210 static int io_##op(struct io_kiocb *req, unsigned int issue_flags)	\
5211 {									\
5212 	return -EOPNOTSUPP;						\
5213 }
5214 
5215 #define IO_NETOP_PREP(op)						\
5216 IO_NETOP_FN(op)								\
5217 static int io_##op##_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe) \
5218 {									\
5219 	return -EOPNOTSUPP;						\
5220 }									\
5221 
5222 #define IO_NETOP_PREP_ASYNC(op)						\
5223 IO_NETOP_PREP(op)							\
5224 static int io_##op##_prep_async(struct io_kiocb *req)			\
5225 {									\
5226 	return -EOPNOTSUPP;						\
5227 }
5228 
5229 IO_NETOP_PREP_ASYNC(sendmsg);
5230 IO_NETOP_PREP_ASYNC(recvmsg);
5231 IO_NETOP_PREP_ASYNC(connect);
5232 IO_NETOP_PREP(accept);
5233 IO_NETOP_FN(send);
5234 IO_NETOP_FN(recv);
5235 #endif /* CONFIG_NET */
5236 
5237 struct io_poll_table {
5238 	struct poll_table_struct pt;
5239 	struct io_kiocb *req;
5240 	int nr_entries;
5241 	int error;
5242 };
5243 
__io_async_wake(struct io_kiocb * req,struct io_poll_iocb * poll,__poll_t mask,io_req_tw_func_t func)5244 static int __io_async_wake(struct io_kiocb *req, struct io_poll_iocb *poll,
5245 			   __poll_t mask, io_req_tw_func_t func)
5246 {
5247 	/* for instances that support it check for an event match first: */
5248 	if (mask && !(mask & poll->events))
5249 		return 0;
5250 
5251 	trace_io_uring_task_add(req->ctx, req->opcode, req->user_data, mask);
5252 
5253 	list_del_init(&poll->wait.entry);
5254 
5255 	req->result = mask;
5256 	req->io_task_work.func = func;
5257 
5258 	/*
5259 	 * If this fails, then the task is exiting. When a task exits, the
5260 	 * work gets canceled, so just cancel this request as well instead
5261 	 * of executing it. We can't safely execute it anyway, as we may not
5262 	 * have the needed state needed for it anyway.
5263 	 */
5264 	io_req_task_work_add(req);
5265 	return 1;
5266 }
5267 
io_poll_rewait(struct io_kiocb * req,struct io_poll_iocb * poll)5268 static bool io_poll_rewait(struct io_kiocb *req, struct io_poll_iocb *poll)
5269 	__acquires(&req->ctx->completion_lock)
5270 {
5271 	struct io_ring_ctx *ctx = req->ctx;
5272 
5273 	/* req->task == current here, checking PF_EXITING is safe */
5274 	if (unlikely(req->task->flags & PF_EXITING))
5275 		WRITE_ONCE(poll->canceled, true);
5276 
5277 	if (!req->result && !READ_ONCE(poll->canceled)) {
5278 		struct poll_table_struct pt = { ._key = poll->events };
5279 
5280 		req->result = vfs_poll(req->file, &pt) & poll->events;
5281 	}
5282 
5283 	spin_lock(&ctx->completion_lock);
5284 	if (!req->result && !READ_ONCE(poll->canceled)) {
5285 		add_wait_queue(poll->head, &poll->wait);
5286 		return true;
5287 	}
5288 
5289 	return false;
5290 }
5291 
io_poll_get_double(struct io_kiocb * req)5292 static struct io_poll_iocb *io_poll_get_double(struct io_kiocb *req)
5293 {
5294 	/* pure poll stashes this in ->async_data, poll driven retry elsewhere */
5295 	if (req->opcode == IORING_OP_POLL_ADD)
5296 		return req->async_data;
5297 	return req->apoll->double_poll;
5298 }
5299 
io_poll_get_single(struct io_kiocb * req)5300 static struct io_poll_iocb *io_poll_get_single(struct io_kiocb *req)
5301 {
5302 	if (req->opcode == IORING_OP_POLL_ADD)
5303 		return &req->poll;
5304 	return &req->apoll->poll;
5305 }
5306 
io_poll_remove_double(struct io_kiocb * req)5307 static void io_poll_remove_double(struct io_kiocb *req)
5308 	__must_hold(&req->ctx->completion_lock)
5309 {
5310 	struct io_poll_iocb *poll = io_poll_get_double(req);
5311 
5312 	lockdep_assert_held(&req->ctx->completion_lock);
5313 
5314 	if (poll && poll->head) {
5315 		struct wait_queue_head *head = poll->head;
5316 
5317 		spin_lock_irq(&head->lock);
5318 		list_del_init(&poll->wait.entry);
5319 		if (poll->wait.private)
5320 			req_ref_put(req);
5321 		poll->head = NULL;
5322 		spin_unlock_irq(&head->lock);
5323 	}
5324 }
5325 
__io_poll_complete(struct io_kiocb * req,__poll_t mask)5326 static bool __io_poll_complete(struct io_kiocb *req, __poll_t mask)
5327 	__must_hold(&req->ctx->completion_lock)
5328 {
5329 	struct io_ring_ctx *ctx = req->ctx;
5330 	unsigned flags = IORING_CQE_F_MORE;
5331 	int error;
5332 
5333 	if (READ_ONCE(req->poll.canceled)) {
5334 		error = -ECANCELED;
5335 		req->poll.events |= EPOLLONESHOT;
5336 	} else {
5337 		error = mangle_poll(mask);
5338 	}
5339 	if (req->poll.events & EPOLLONESHOT)
5340 		flags = 0;
5341 	if (!io_cqring_fill_event(ctx, req->user_data, error, flags)) {
5342 		req->poll.events |= EPOLLONESHOT;
5343 		flags = 0;
5344 	}
5345 	if (flags & IORING_CQE_F_MORE)
5346 		ctx->cq_extra++;
5347 
5348 	return !(flags & IORING_CQE_F_MORE);
5349 }
5350 
io_poll_complete(struct io_kiocb * req,__poll_t mask)5351 static inline bool io_poll_complete(struct io_kiocb *req, __poll_t mask)
5352 	__must_hold(&req->ctx->completion_lock)
5353 {
5354 	bool done;
5355 
5356 	done = __io_poll_complete(req, mask);
5357 	io_commit_cqring(req->ctx);
5358 	return done;
5359 }
5360 
io_poll_task_func(struct io_kiocb * req,bool * locked)5361 static void io_poll_task_func(struct io_kiocb *req, bool *locked)
5362 {
5363 	struct io_ring_ctx *ctx = req->ctx;
5364 	struct io_kiocb *nxt;
5365 
5366 	if (io_poll_rewait(req, &req->poll)) {
5367 		spin_unlock(&ctx->completion_lock);
5368 	} else {
5369 		bool done;
5370 
5371 		if (req->poll.done) {
5372 			spin_unlock(&ctx->completion_lock);
5373 			return;
5374 		}
5375 		done = __io_poll_complete(req, req->result);
5376 		if (done) {
5377 			io_poll_remove_double(req);
5378 			hash_del(&req->hash_node);
5379 			req->poll.done = true;
5380 		} else {
5381 			req->result = 0;
5382 			add_wait_queue(req->poll.head, &req->poll.wait);
5383 		}
5384 		io_commit_cqring(ctx);
5385 		spin_unlock(&ctx->completion_lock);
5386 		io_cqring_ev_posted(ctx);
5387 
5388 		if (done) {
5389 			nxt = io_put_req_find_next(req);
5390 			if (nxt)
5391 				io_req_task_submit(nxt, locked);
5392 		}
5393 	}
5394 }
5395 
io_poll_double_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5396 static int io_poll_double_wake(struct wait_queue_entry *wait, unsigned mode,
5397 			       int sync, void *key)
5398 {
5399 	struct io_kiocb *req = wait->private;
5400 	struct io_poll_iocb *poll = io_poll_get_single(req);
5401 	__poll_t mask = key_to_poll(key);
5402 	unsigned long flags;
5403 
5404 	/* for instances that support it check for an event match first: */
5405 	if (mask && !(mask & poll->events))
5406 		return 0;
5407 	if (!(poll->events & EPOLLONESHOT))
5408 		return poll->wait.func(&poll->wait, mode, sync, key);
5409 
5410 	list_del_init(&wait->entry);
5411 
5412 	if (poll->head) {
5413 		bool done;
5414 
5415 		spin_lock_irqsave(&poll->head->lock, flags);
5416 		done = list_empty(&poll->wait.entry);
5417 		if (!done)
5418 			list_del_init(&poll->wait.entry);
5419 		/* make sure double remove sees this as being gone */
5420 		wait->private = NULL;
5421 		spin_unlock_irqrestore(&poll->head->lock, flags);
5422 		if (!done) {
5423 			/* use wait func handler, so it matches the rq type */
5424 			poll->wait.func(&poll->wait, mode, sync, key);
5425 		}
5426 	}
5427 	req_ref_put(req);
5428 	return 1;
5429 }
5430 
io_init_poll_iocb(struct io_poll_iocb * poll,__poll_t events,wait_queue_func_t wake_func)5431 static void io_init_poll_iocb(struct io_poll_iocb *poll, __poll_t events,
5432 			      wait_queue_func_t wake_func)
5433 {
5434 	poll->head = NULL;
5435 	poll->done = false;
5436 	poll->canceled = false;
5437 #define IO_POLL_UNMASK	(EPOLLERR|EPOLLHUP|EPOLLNVAL|EPOLLRDHUP)
5438 	/* mask in events that we always want/need */
5439 	poll->events = events | IO_POLL_UNMASK;
5440 	INIT_LIST_HEAD(&poll->wait.entry);
5441 	init_waitqueue_func_entry(&poll->wait, wake_func);
5442 }
5443 
__io_queue_proc(struct io_poll_iocb * poll,struct io_poll_table * pt,struct wait_queue_head * head,struct io_poll_iocb ** poll_ptr)5444 static void __io_queue_proc(struct io_poll_iocb *poll, struct io_poll_table *pt,
5445 			    struct wait_queue_head *head,
5446 			    struct io_poll_iocb **poll_ptr)
5447 {
5448 	struct io_kiocb *req = pt->req;
5449 
5450 	/*
5451 	 * The file being polled uses multiple waitqueues for poll handling
5452 	 * (e.g. one for read, one for write). Setup a separate io_poll_iocb
5453 	 * if this happens.
5454 	 */
5455 	if (unlikely(pt->nr_entries)) {
5456 		struct io_poll_iocb *poll_one = poll;
5457 
5458 		/* double add on the same waitqueue head, ignore */
5459 		if (poll_one->head == head)
5460 			return;
5461 		/* already have a 2nd entry, fail a third attempt */
5462 		if (*poll_ptr) {
5463 			if ((*poll_ptr)->head == head)
5464 				return;
5465 			pt->error = -EINVAL;
5466 			return;
5467 		}
5468 		/*
5469 		 * Can't handle multishot for double wait for now, turn it
5470 		 * into one-shot mode.
5471 		 */
5472 		if (!(poll_one->events & EPOLLONESHOT))
5473 			poll_one->events |= EPOLLONESHOT;
5474 		poll = kmalloc(sizeof(*poll), GFP_ATOMIC);
5475 		if (!poll) {
5476 			pt->error = -ENOMEM;
5477 			return;
5478 		}
5479 		io_init_poll_iocb(poll, poll_one->events, io_poll_double_wake);
5480 		req_ref_get(req);
5481 		poll->wait.private = req;
5482 		*poll_ptr = poll;
5483 	}
5484 
5485 	pt->nr_entries++;
5486 	poll->head = head;
5487 
5488 	if (poll->events & EPOLLEXCLUSIVE)
5489 		add_wait_queue_exclusive(head, &poll->wait);
5490 	else
5491 		add_wait_queue(head, &poll->wait);
5492 }
5493 
io_async_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5494 static void io_async_queue_proc(struct file *file, struct wait_queue_head *head,
5495 			       struct poll_table_struct *p)
5496 {
5497 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5498 	struct async_poll *apoll = pt->req->apoll;
5499 
5500 	__io_queue_proc(&apoll->poll, pt, head, &apoll->double_poll);
5501 }
5502 
io_async_task_func(struct io_kiocb * req,bool * locked)5503 static void io_async_task_func(struct io_kiocb *req, bool *locked)
5504 {
5505 	struct async_poll *apoll = req->apoll;
5506 	struct io_ring_ctx *ctx = req->ctx;
5507 
5508 	trace_io_uring_task_run(req->ctx, req, req->opcode, req->user_data);
5509 
5510 	if (io_poll_rewait(req, &apoll->poll)) {
5511 		spin_unlock(&ctx->completion_lock);
5512 		return;
5513 	}
5514 
5515 	hash_del(&req->hash_node);
5516 	io_poll_remove_double(req);
5517 	apoll->poll.done = true;
5518 	spin_unlock(&ctx->completion_lock);
5519 
5520 	if (!READ_ONCE(apoll->poll.canceled))
5521 		io_req_task_submit(req, locked);
5522 	else
5523 		io_req_complete_failed(req, -ECANCELED);
5524 }
5525 
io_async_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5526 static int io_async_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5527 			void *key)
5528 {
5529 	struct io_kiocb *req = wait->private;
5530 	struct io_poll_iocb *poll = &req->apoll->poll;
5531 
5532 	trace_io_uring_poll_wake(req->ctx, req->opcode, req->user_data,
5533 					key_to_poll(key));
5534 
5535 	return __io_async_wake(req, poll, key_to_poll(key), io_async_task_func);
5536 }
5537 
io_poll_req_insert(struct io_kiocb * req)5538 static void io_poll_req_insert(struct io_kiocb *req)
5539 {
5540 	struct io_ring_ctx *ctx = req->ctx;
5541 	struct hlist_head *list;
5542 
5543 	list = &ctx->cancel_hash[hash_long(req->user_data, ctx->cancel_hash_bits)];
5544 	hlist_add_head(&req->hash_node, list);
5545 }
5546 
__io_arm_poll_handler(struct io_kiocb * req,struct io_poll_iocb * poll,struct io_poll_table * ipt,__poll_t mask,wait_queue_func_t wake_func)5547 static __poll_t __io_arm_poll_handler(struct io_kiocb *req,
5548 				      struct io_poll_iocb *poll,
5549 				      struct io_poll_table *ipt, __poll_t mask,
5550 				      wait_queue_func_t wake_func)
5551 	__acquires(&ctx->completion_lock)
5552 {
5553 	struct io_ring_ctx *ctx = req->ctx;
5554 	bool cancel = false;
5555 
5556 	INIT_HLIST_NODE(&req->hash_node);
5557 	io_init_poll_iocb(poll, mask, wake_func);
5558 	poll->file = req->file;
5559 	poll->wait.private = req;
5560 
5561 	ipt->pt._key = mask;
5562 	ipt->req = req;
5563 	ipt->error = 0;
5564 	ipt->nr_entries = 0;
5565 
5566 	mask = vfs_poll(req->file, &ipt->pt) & poll->events;
5567 	if (unlikely(!ipt->nr_entries) && !ipt->error)
5568 		ipt->error = -EINVAL;
5569 
5570 	spin_lock(&ctx->completion_lock);
5571 	if (ipt->error || (mask && (poll->events & EPOLLONESHOT)))
5572 		io_poll_remove_double(req);
5573 	if (likely(poll->head)) {
5574 		spin_lock_irq(&poll->head->lock);
5575 		if (unlikely(list_empty(&poll->wait.entry))) {
5576 			if (ipt->error)
5577 				cancel = true;
5578 			ipt->error = 0;
5579 			mask = 0;
5580 		}
5581 		if ((mask && (poll->events & EPOLLONESHOT)) || ipt->error)
5582 			list_del_init(&poll->wait.entry);
5583 		else if (cancel)
5584 			WRITE_ONCE(poll->canceled, true);
5585 		else if (!poll->done) /* actually waiting for an event */
5586 			io_poll_req_insert(req);
5587 		spin_unlock_irq(&poll->head->lock);
5588 	}
5589 
5590 	return mask;
5591 }
5592 
5593 enum {
5594 	IO_APOLL_OK,
5595 	IO_APOLL_ABORTED,
5596 	IO_APOLL_READY
5597 };
5598 
io_arm_poll_handler(struct io_kiocb * req)5599 static int io_arm_poll_handler(struct io_kiocb *req)
5600 {
5601 	const struct io_op_def *def = &io_op_defs[req->opcode];
5602 	struct io_ring_ctx *ctx = req->ctx;
5603 	struct async_poll *apoll;
5604 	struct io_poll_table ipt;
5605 	__poll_t ret, mask = EPOLLONESHOT | POLLERR | POLLPRI;
5606 	int rw;
5607 
5608 	if (!req->file || !file_can_poll(req->file))
5609 		return IO_APOLL_ABORTED;
5610 	if (req->flags & REQ_F_POLLED)
5611 		return IO_APOLL_ABORTED;
5612 	if (!def->pollin && !def->pollout)
5613 		return IO_APOLL_ABORTED;
5614 
5615 	if (def->pollin) {
5616 		rw = READ;
5617 		mask |= POLLIN | POLLRDNORM;
5618 
5619 		/* If reading from MSG_ERRQUEUE using recvmsg, ignore POLLIN */
5620 		if ((req->opcode == IORING_OP_RECVMSG) &&
5621 		    (req->sr_msg.msg_flags & MSG_ERRQUEUE))
5622 			mask &= ~POLLIN;
5623 	} else {
5624 		rw = WRITE;
5625 		mask |= POLLOUT | POLLWRNORM;
5626 	}
5627 
5628 	/* if we can't nonblock try, then no point in arming a poll handler */
5629 	if (!io_file_supports_nowait(req, rw))
5630 		return IO_APOLL_ABORTED;
5631 
5632 	apoll = kmalloc(sizeof(*apoll), GFP_ATOMIC);
5633 	if (unlikely(!apoll))
5634 		return IO_APOLL_ABORTED;
5635 	apoll->double_poll = NULL;
5636 	req->apoll = apoll;
5637 	req->flags |= REQ_F_POLLED;
5638 	ipt.pt._qproc = io_async_queue_proc;
5639 	io_req_set_refcount(req);
5640 
5641 	ret = __io_arm_poll_handler(req, &apoll->poll, &ipt, mask,
5642 					io_async_wake);
5643 	spin_unlock(&ctx->completion_lock);
5644 	if (ret || ipt.error)
5645 		return ret ? IO_APOLL_READY : IO_APOLL_ABORTED;
5646 
5647 	trace_io_uring_poll_arm(ctx, req, req->opcode, req->user_data,
5648 				mask, apoll->poll.events);
5649 	return IO_APOLL_OK;
5650 }
5651 
__io_poll_remove_one(struct io_kiocb * req,struct io_poll_iocb * poll,bool do_cancel)5652 static bool __io_poll_remove_one(struct io_kiocb *req,
5653 				 struct io_poll_iocb *poll, bool do_cancel)
5654 	__must_hold(&req->ctx->completion_lock)
5655 {
5656 	bool do_complete = false;
5657 
5658 	if (!poll->head)
5659 		return false;
5660 	spin_lock_irq(&poll->head->lock);
5661 	if (do_cancel)
5662 		WRITE_ONCE(poll->canceled, true);
5663 	if (!list_empty(&poll->wait.entry)) {
5664 		list_del_init(&poll->wait.entry);
5665 		do_complete = true;
5666 	}
5667 	spin_unlock_irq(&poll->head->lock);
5668 	hash_del(&req->hash_node);
5669 	return do_complete;
5670 }
5671 
io_poll_remove_one(struct io_kiocb * req)5672 static bool io_poll_remove_one(struct io_kiocb *req)
5673 	__must_hold(&req->ctx->completion_lock)
5674 {
5675 	bool do_complete;
5676 
5677 	io_poll_remove_double(req);
5678 	do_complete = __io_poll_remove_one(req, io_poll_get_single(req), true);
5679 
5680 	if (do_complete) {
5681 		io_cqring_fill_event(req->ctx, req->user_data, -ECANCELED, 0);
5682 		io_commit_cqring(req->ctx);
5683 		req_set_fail(req);
5684 		io_put_req_deferred(req);
5685 	}
5686 	return do_complete;
5687 }
5688 
5689 /*
5690  * Returns true if we found and killed one or more poll requests
5691  */
io_poll_remove_all(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)5692 static bool io_poll_remove_all(struct io_ring_ctx *ctx, struct task_struct *tsk,
5693 			       bool cancel_all)
5694 {
5695 	struct hlist_node *tmp;
5696 	struct io_kiocb *req;
5697 	int posted = 0, i;
5698 
5699 	spin_lock(&ctx->completion_lock);
5700 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
5701 		struct hlist_head *list;
5702 
5703 		list = &ctx->cancel_hash[i];
5704 		hlist_for_each_entry_safe(req, tmp, list, hash_node) {
5705 			if (io_match_task(req, tsk, cancel_all))
5706 				posted += io_poll_remove_one(req);
5707 		}
5708 	}
5709 	spin_unlock(&ctx->completion_lock);
5710 
5711 	if (posted)
5712 		io_cqring_ev_posted(ctx);
5713 
5714 	return posted != 0;
5715 }
5716 
io_poll_find(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5717 static struct io_kiocb *io_poll_find(struct io_ring_ctx *ctx, __u64 sqe_addr,
5718 				     bool poll_only)
5719 	__must_hold(&ctx->completion_lock)
5720 {
5721 	struct hlist_head *list;
5722 	struct io_kiocb *req;
5723 
5724 	list = &ctx->cancel_hash[hash_long(sqe_addr, ctx->cancel_hash_bits)];
5725 	hlist_for_each_entry(req, list, hash_node) {
5726 		if (sqe_addr != req->user_data)
5727 			continue;
5728 		if (poll_only && req->opcode != IORING_OP_POLL_ADD)
5729 			continue;
5730 		return req;
5731 	}
5732 	return NULL;
5733 }
5734 
io_poll_cancel(struct io_ring_ctx * ctx,__u64 sqe_addr,bool poll_only)5735 static int io_poll_cancel(struct io_ring_ctx *ctx, __u64 sqe_addr,
5736 			  bool poll_only)
5737 	__must_hold(&ctx->completion_lock)
5738 {
5739 	struct io_kiocb *req;
5740 
5741 	req = io_poll_find(ctx, sqe_addr, poll_only);
5742 	if (!req)
5743 		return -ENOENT;
5744 	if (io_poll_remove_one(req))
5745 		return 0;
5746 
5747 	return -EALREADY;
5748 }
5749 
io_poll_parse_events(const struct io_uring_sqe * sqe,unsigned int flags)5750 static __poll_t io_poll_parse_events(const struct io_uring_sqe *sqe,
5751 				     unsigned int flags)
5752 {
5753 	u32 events;
5754 
5755 	events = READ_ONCE(sqe->poll32_events);
5756 #ifdef __BIG_ENDIAN
5757 	events = swahw32(events);
5758 #endif
5759 	if (!(flags & IORING_POLL_ADD_MULTI))
5760 		events |= EPOLLONESHOT;
5761 	return demangle_poll(events) | (events & (EPOLLEXCLUSIVE|EPOLLONESHOT));
5762 }
5763 
io_poll_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5764 static int io_poll_update_prep(struct io_kiocb *req,
5765 			       const struct io_uring_sqe *sqe)
5766 {
5767 	struct io_poll_update *upd = &req->poll_update;
5768 	u32 flags;
5769 
5770 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5771 		return -EINVAL;
5772 	if (sqe->ioprio || sqe->buf_index || sqe->splice_fd_in)
5773 		return -EINVAL;
5774 	flags = READ_ONCE(sqe->len);
5775 	if (flags & ~(IORING_POLL_UPDATE_EVENTS | IORING_POLL_UPDATE_USER_DATA |
5776 		      IORING_POLL_ADD_MULTI))
5777 		return -EINVAL;
5778 	/* meaningless without update */
5779 	if (flags == IORING_POLL_ADD_MULTI)
5780 		return -EINVAL;
5781 
5782 	upd->old_user_data = READ_ONCE(sqe->addr);
5783 	upd->update_events = flags & IORING_POLL_UPDATE_EVENTS;
5784 	upd->update_user_data = flags & IORING_POLL_UPDATE_USER_DATA;
5785 
5786 	upd->new_user_data = READ_ONCE(sqe->off);
5787 	if (!upd->update_user_data && upd->new_user_data)
5788 		return -EINVAL;
5789 	if (upd->update_events)
5790 		upd->events = io_poll_parse_events(sqe, flags);
5791 	else if (sqe->poll32_events)
5792 		return -EINVAL;
5793 
5794 	return 0;
5795 }
5796 
io_poll_wake(struct wait_queue_entry * wait,unsigned mode,int sync,void * key)5797 static int io_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
5798 			void *key)
5799 {
5800 	struct io_kiocb *req = wait->private;
5801 	struct io_poll_iocb *poll = &req->poll;
5802 
5803 	return __io_async_wake(req, poll, key_to_poll(key), io_poll_task_func);
5804 }
5805 
io_poll_queue_proc(struct file * file,struct wait_queue_head * head,struct poll_table_struct * p)5806 static void io_poll_queue_proc(struct file *file, struct wait_queue_head *head,
5807 			       struct poll_table_struct *p)
5808 {
5809 	struct io_poll_table *pt = container_of(p, struct io_poll_table, pt);
5810 
5811 	__io_queue_proc(&pt->req->poll, pt, head, (struct io_poll_iocb **) &pt->req->async_data);
5812 }
5813 
io_poll_add_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)5814 static int io_poll_add_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
5815 {
5816 	struct io_poll_iocb *poll = &req->poll;
5817 	u32 flags;
5818 
5819 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
5820 		return -EINVAL;
5821 	if (sqe->ioprio || sqe->buf_index || sqe->off || sqe->addr)
5822 		return -EINVAL;
5823 	flags = READ_ONCE(sqe->len);
5824 	if (flags & ~IORING_POLL_ADD_MULTI)
5825 		return -EINVAL;
5826 
5827 	io_req_set_refcount(req);
5828 	poll->events = io_poll_parse_events(sqe, flags);
5829 	return 0;
5830 }
5831 
io_poll_add(struct io_kiocb * req,unsigned int issue_flags)5832 static int io_poll_add(struct io_kiocb *req, unsigned int issue_flags)
5833 {
5834 	struct io_poll_iocb *poll = &req->poll;
5835 	struct io_ring_ctx *ctx = req->ctx;
5836 	struct io_poll_table ipt;
5837 	__poll_t mask;
5838 	bool done;
5839 
5840 	ipt.pt._qproc = io_poll_queue_proc;
5841 
5842 	mask = __io_arm_poll_handler(req, &req->poll, &ipt, poll->events,
5843 					io_poll_wake);
5844 
5845 	if (mask) { /* no async, we'd stolen it */
5846 		ipt.error = 0;
5847 		done = io_poll_complete(req, mask);
5848 	}
5849 	spin_unlock(&ctx->completion_lock);
5850 
5851 	if (mask) {
5852 		io_cqring_ev_posted(ctx);
5853 		if (done)
5854 			io_put_req(req);
5855 	}
5856 	return ipt.error;
5857 }
5858 
io_poll_update(struct io_kiocb * req,unsigned int issue_flags)5859 static int io_poll_update(struct io_kiocb *req, unsigned int issue_flags)
5860 {
5861 	struct io_ring_ctx *ctx = req->ctx;
5862 	struct io_kiocb *preq;
5863 	bool completing;
5864 	int ret;
5865 
5866 	spin_lock(&ctx->completion_lock);
5867 	preq = io_poll_find(ctx, req->poll_update.old_user_data, true);
5868 	if (!preq) {
5869 		ret = -ENOENT;
5870 		goto err;
5871 	}
5872 
5873 	if (!req->poll_update.update_events && !req->poll_update.update_user_data) {
5874 		completing = true;
5875 		ret = io_poll_remove_one(preq) ? 0 : -EALREADY;
5876 		goto err;
5877 	}
5878 
5879 	/*
5880 	 * Don't allow racy completion with singleshot, as we cannot safely
5881 	 * update those. For multishot, if we're racing with completion, just
5882 	 * let completion re-add it.
5883 	 */
5884 	completing = !__io_poll_remove_one(preq, &preq->poll, false);
5885 	if (completing && (preq->poll.events & EPOLLONESHOT)) {
5886 		ret = -EALREADY;
5887 		goto err;
5888 	}
5889 	/* we now have a detached poll request. reissue. */
5890 	ret = 0;
5891 err:
5892 	if (ret < 0) {
5893 		spin_unlock(&ctx->completion_lock);
5894 		req_set_fail(req);
5895 		io_req_complete(req, ret);
5896 		return 0;
5897 	}
5898 	/* only mask one event flags, keep behavior flags */
5899 	if (req->poll_update.update_events) {
5900 		preq->poll.events &= ~0xffff;
5901 		preq->poll.events |= req->poll_update.events & 0xffff;
5902 		preq->poll.events |= IO_POLL_UNMASK;
5903 	}
5904 	if (req->poll_update.update_user_data)
5905 		preq->user_data = req->poll_update.new_user_data;
5906 	spin_unlock(&ctx->completion_lock);
5907 
5908 	/* complete update request, we're done with it */
5909 	io_req_complete(req, ret);
5910 
5911 	if (!completing) {
5912 		ret = io_poll_add(preq, issue_flags);
5913 		if (ret < 0) {
5914 			req_set_fail(preq);
5915 			io_req_complete(preq, ret);
5916 		}
5917 	}
5918 	return 0;
5919 }
5920 
io_req_task_timeout(struct io_kiocb * req,bool * locked)5921 static void io_req_task_timeout(struct io_kiocb *req, bool *locked)
5922 {
5923 	req_set_fail(req);
5924 	io_req_complete_post(req, -ETIME, 0);
5925 }
5926 
io_timeout_fn(struct hrtimer * timer)5927 static enum hrtimer_restart io_timeout_fn(struct hrtimer *timer)
5928 {
5929 	struct io_timeout_data *data = container_of(timer,
5930 						struct io_timeout_data, timer);
5931 	struct io_kiocb *req = data->req;
5932 	struct io_ring_ctx *ctx = req->ctx;
5933 	unsigned long flags;
5934 
5935 	spin_lock_irqsave(&ctx->timeout_lock, flags);
5936 	list_del_init(&req->timeout.list);
5937 	atomic_set(&req->ctx->cq_timeouts,
5938 		atomic_read(&req->ctx->cq_timeouts) + 1);
5939 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
5940 
5941 	req->io_task_work.func = io_req_task_timeout;
5942 	io_req_task_work_add(req);
5943 	return HRTIMER_NORESTART;
5944 }
5945 
io_timeout_extract(struct io_ring_ctx * ctx,__u64 user_data)5946 static struct io_kiocb *io_timeout_extract(struct io_ring_ctx *ctx,
5947 					   __u64 user_data)
5948 	__must_hold(&ctx->timeout_lock)
5949 {
5950 	struct io_timeout_data *io;
5951 	struct io_kiocb *req;
5952 	bool found = false;
5953 
5954 	list_for_each_entry(req, &ctx->timeout_list, timeout.list) {
5955 		found = user_data == req->user_data;
5956 		if (found)
5957 			break;
5958 	}
5959 	if (!found)
5960 		return ERR_PTR(-ENOENT);
5961 
5962 	io = req->async_data;
5963 	if (hrtimer_try_to_cancel(&io->timer) == -1)
5964 		return ERR_PTR(-EALREADY);
5965 	list_del_init(&req->timeout.list);
5966 	return req;
5967 }
5968 
io_timeout_cancel(struct io_ring_ctx * ctx,__u64 user_data)5969 static int io_timeout_cancel(struct io_ring_ctx *ctx, __u64 user_data)
5970 	__must_hold(&ctx->completion_lock)
5971 	__must_hold(&ctx->timeout_lock)
5972 {
5973 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
5974 
5975 	if (IS_ERR(req))
5976 		return PTR_ERR(req);
5977 
5978 	req_set_fail(req);
5979 	io_cqring_fill_event(ctx, req->user_data, -ECANCELED, 0);
5980 	io_put_req_deferred(req);
5981 	return 0;
5982 }
5983 
io_timeout_get_clock(struct io_timeout_data * data)5984 static clockid_t io_timeout_get_clock(struct io_timeout_data *data)
5985 {
5986 	switch (data->flags & IORING_TIMEOUT_CLOCK_MASK) {
5987 	case IORING_TIMEOUT_BOOTTIME:
5988 		return CLOCK_BOOTTIME;
5989 	case IORING_TIMEOUT_REALTIME:
5990 		return CLOCK_REALTIME;
5991 	default:
5992 		/* can't happen, vetted at prep time */
5993 		WARN_ON_ONCE(1);
5994 		fallthrough;
5995 	case 0:
5996 		return CLOCK_MONOTONIC;
5997 	}
5998 }
5999 
io_linked_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6000 static int io_linked_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6001 				    struct timespec64 *ts, enum hrtimer_mode mode)
6002 	__must_hold(&ctx->timeout_lock)
6003 {
6004 	struct io_timeout_data *io;
6005 	struct io_kiocb *req;
6006 	bool found = false;
6007 
6008 	list_for_each_entry(req, &ctx->ltimeout_list, timeout.list) {
6009 		found = user_data == req->user_data;
6010 		if (found)
6011 			break;
6012 	}
6013 	if (!found)
6014 		return -ENOENT;
6015 
6016 	io = req->async_data;
6017 	if (hrtimer_try_to_cancel(&io->timer) == -1)
6018 		return -EALREADY;
6019 	hrtimer_init(&io->timer, io_timeout_get_clock(io), mode);
6020 	io->timer.function = io_link_timeout_fn;
6021 	hrtimer_start(&io->timer, timespec64_to_ktime(*ts), mode);
6022 	return 0;
6023 }
6024 
io_timeout_update(struct io_ring_ctx * ctx,__u64 user_data,struct timespec64 * ts,enum hrtimer_mode mode)6025 static int io_timeout_update(struct io_ring_ctx *ctx, __u64 user_data,
6026 			     struct timespec64 *ts, enum hrtimer_mode mode)
6027 	__must_hold(&ctx->timeout_lock)
6028 {
6029 	struct io_kiocb *req = io_timeout_extract(ctx, user_data);
6030 	struct io_timeout_data *data;
6031 
6032 	if (IS_ERR(req))
6033 		return PTR_ERR(req);
6034 
6035 	req->timeout.off = 0; /* noseq */
6036 	data = req->async_data;
6037 	list_add_tail(&req->timeout.list, &ctx->timeout_list);
6038 	hrtimer_init(&data->timer, io_timeout_get_clock(data), mode);
6039 	data->timer.function = io_timeout_fn;
6040 	hrtimer_start(&data->timer, timespec64_to_ktime(*ts), mode);
6041 	return 0;
6042 }
6043 
io_timeout_remove_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6044 static int io_timeout_remove_prep(struct io_kiocb *req,
6045 				  const struct io_uring_sqe *sqe)
6046 {
6047 	struct io_timeout_rem *tr = &req->timeout_rem;
6048 
6049 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6050 		return -EINVAL;
6051 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6052 		return -EINVAL;
6053 	if (sqe->ioprio || sqe->buf_index || sqe->len || sqe->splice_fd_in)
6054 		return -EINVAL;
6055 
6056 	tr->ltimeout = false;
6057 	tr->addr = READ_ONCE(sqe->addr);
6058 	tr->flags = READ_ONCE(sqe->timeout_flags);
6059 	if (tr->flags & IORING_TIMEOUT_UPDATE_MASK) {
6060 		if (hweight32(tr->flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6061 			return -EINVAL;
6062 		if (tr->flags & IORING_LINK_TIMEOUT_UPDATE)
6063 			tr->ltimeout = true;
6064 		if (tr->flags & ~(IORING_TIMEOUT_UPDATE_MASK|IORING_TIMEOUT_ABS))
6065 			return -EINVAL;
6066 		if (get_timespec64(&tr->ts, u64_to_user_ptr(sqe->addr2)))
6067 			return -EFAULT;
6068 	} else if (tr->flags) {
6069 		/* timeout removal doesn't support flags */
6070 		return -EINVAL;
6071 	}
6072 
6073 	return 0;
6074 }
6075 
io_translate_timeout_mode(unsigned int flags)6076 static inline enum hrtimer_mode io_translate_timeout_mode(unsigned int flags)
6077 {
6078 	return (flags & IORING_TIMEOUT_ABS) ? HRTIMER_MODE_ABS
6079 					    : HRTIMER_MODE_REL;
6080 }
6081 
6082 /*
6083  * Remove or update an existing timeout command
6084  */
io_timeout_remove(struct io_kiocb * req,unsigned int issue_flags)6085 static int io_timeout_remove(struct io_kiocb *req, unsigned int issue_flags)
6086 {
6087 	struct io_timeout_rem *tr = &req->timeout_rem;
6088 	struct io_ring_ctx *ctx = req->ctx;
6089 	int ret;
6090 
6091 	if (!(req->timeout_rem.flags & IORING_TIMEOUT_UPDATE)) {
6092 		spin_lock(&ctx->completion_lock);
6093 		spin_lock_irq(&ctx->timeout_lock);
6094 		ret = io_timeout_cancel(ctx, tr->addr);
6095 		spin_unlock_irq(&ctx->timeout_lock);
6096 		spin_unlock(&ctx->completion_lock);
6097 	} else {
6098 		enum hrtimer_mode mode = io_translate_timeout_mode(tr->flags);
6099 
6100 		spin_lock_irq(&ctx->timeout_lock);
6101 		if (tr->ltimeout)
6102 			ret = io_linked_timeout_update(ctx, tr->addr, &tr->ts, mode);
6103 		else
6104 			ret = io_timeout_update(ctx, tr->addr, &tr->ts, mode);
6105 		spin_unlock_irq(&ctx->timeout_lock);
6106 	}
6107 
6108 	if (ret < 0)
6109 		req_set_fail(req);
6110 	io_req_complete_post(req, ret, 0);
6111 	return 0;
6112 }
6113 
io_timeout_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe,bool is_timeout_link)6114 static int io_timeout_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe,
6115 			   bool is_timeout_link)
6116 {
6117 	struct io_timeout_data *data;
6118 	unsigned flags;
6119 	u32 off = READ_ONCE(sqe->off);
6120 
6121 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6122 		return -EINVAL;
6123 	if (sqe->ioprio || sqe->buf_index || sqe->len != 1 ||
6124 	    sqe->splice_fd_in)
6125 		return -EINVAL;
6126 	if (off && is_timeout_link)
6127 		return -EINVAL;
6128 	flags = READ_ONCE(sqe->timeout_flags);
6129 	if (flags & ~(IORING_TIMEOUT_ABS | IORING_TIMEOUT_CLOCK_MASK))
6130 		return -EINVAL;
6131 	/* more than one clock specified is invalid, obviously */
6132 	if (hweight32(flags & IORING_TIMEOUT_CLOCK_MASK) > 1)
6133 		return -EINVAL;
6134 
6135 	INIT_LIST_HEAD(&req->timeout.list);
6136 	req->timeout.off = off;
6137 	if (unlikely(off && !req->ctx->off_timeout_used))
6138 		req->ctx->off_timeout_used = true;
6139 
6140 	if (!req->async_data && io_alloc_async_data(req))
6141 		return -ENOMEM;
6142 
6143 	data = req->async_data;
6144 	data->req = req;
6145 	data->flags = flags;
6146 
6147 	if (get_timespec64(&data->ts, u64_to_user_ptr(sqe->addr)))
6148 		return -EFAULT;
6149 
6150 	data->mode = io_translate_timeout_mode(flags);
6151 	hrtimer_init(&data->timer, io_timeout_get_clock(data), data->mode);
6152 
6153 	if (is_timeout_link) {
6154 		struct io_submit_link *link = &req->ctx->submit_state.link;
6155 
6156 		if (!link->head)
6157 			return -EINVAL;
6158 		if (link->last->opcode == IORING_OP_LINK_TIMEOUT)
6159 			return -EINVAL;
6160 		req->timeout.head = link->last;
6161 		link->last->flags |= REQ_F_ARM_LTIMEOUT;
6162 	}
6163 	return 0;
6164 }
6165 
io_timeout(struct io_kiocb * req,unsigned int issue_flags)6166 static int io_timeout(struct io_kiocb *req, unsigned int issue_flags)
6167 {
6168 	struct io_ring_ctx *ctx = req->ctx;
6169 	struct io_timeout_data *data = req->async_data;
6170 	struct list_head *entry;
6171 	u32 tail, off = req->timeout.off;
6172 
6173 	spin_lock_irq(&ctx->timeout_lock);
6174 
6175 	/*
6176 	 * sqe->off holds how many events that need to occur for this
6177 	 * timeout event to be satisfied. If it isn't set, then this is
6178 	 * a pure timeout request, sequence isn't used.
6179 	 */
6180 	if (io_is_timeout_noseq(req)) {
6181 		entry = ctx->timeout_list.prev;
6182 		goto add;
6183 	}
6184 
6185 	tail = ctx->cached_cq_tail - atomic_read(&ctx->cq_timeouts);
6186 	req->timeout.target_seq = tail + off;
6187 
6188 	/* Update the last seq here in case io_flush_timeouts() hasn't.
6189 	 * This is safe because ->completion_lock is held, and submissions
6190 	 * and completions are never mixed in the same ->completion_lock section.
6191 	 */
6192 	ctx->cq_last_tm_flush = tail;
6193 
6194 	/*
6195 	 * Insertion sort, ensuring the first entry in the list is always
6196 	 * the one we need first.
6197 	 */
6198 	list_for_each_prev(entry, &ctx->timeout_list) {
6199 		struct io_kiocb *nxt = list_entry(entry, struct io_kiocb,
6200 						  timeout.list);
6201 
6202 		if (io_is_timeout_noseq(nxt))
6203 			continue;
6204 		/* nxt.seq is behind @tail, otherwise would've been completed */
6205 		if (off >= nxt->timeout.target_seq - tail)
6206 			break;
6207 	}
6208 add:
6209 	list_add(&req->timeout.list, entry);
6210 	data->timer.function = io_timeout_fn;
6211 	hrtimer_start(&data->timer, timespec64_to_ktime(data->ts), data->mode);
6212 	spin_unlock_irq(&ctx->timeout_lock);
6213 	return 0;
6214 }
6215 
6216 struct io_cancel_data {
6217 	struct io_ring_ctx *ctx;
6218 	u64 user_data;
6219 };
6220 
io_cancel_cb(struct io_wq_work * work,void * data)6221 static bool io_cancel_cb(struct io_wq_work *work, void *data)
6222 {
6223 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6224 	struct io_cancel_data *cd = data;
6225 
6226 	return req->ctx == cd->ctx && req->user_data == cd->user_data;
6227 }
6228 
io_async_cancel_one(struct io_uring_task * tctx,u64 user_data,struct io_ring_ctx * ctx)6229 static int io_async_cancel_one(struct io_uring_task *tctx, u64 user_data,
6230 			       struct io_ring_ctx *ctx)
6231 {
6232 	struct io_cancel_data data = { .ctx = ctx, .user_data = user_data, };
6233 	enum io_wq_cancel cancel_ret;
6234 	int ret = 0;
6235 
6236 	if (!tctx || !tctx->io_wq)
6237 		return -ENOENT;
6238 
6239 	cancel_ret = io_wq_cancel_cb(tctx->io_wq, io_cancel_cb, &data, false);
6240 	switch (cancel_ret) {
6241 	case IO_WQ_CANCEL_OK:
6242 		ret = 0;
6243 		break;
6244 	case IO_WQ_CANCEL_RUNNING:
6245 		ret = -EALREADY;
6246 		break;
6247 	case IO_WQ_CANCEL_NOTFOUND:
6248 		ret = -ENOENT;
6249 		break;
6250 	}
6251 
6252 	return ret;
6253 }
6254 
io_try_cancel_userdata(struct io_kiocb * req,u64 sqe_addr)6255 static int io_try_cancel_userdata(struct io_kiocb *req, u64 sqe_addr)
6256 {
6257 	struct io_ring_ctx *ctx = req->ctx;
6258 	int ret;
6259 
6260 	WARN_ON_ONCE(!io_wq_current_is_worker() && req->task != current);
6261 
6262 	ret = io_async_cancel_one(req->task->io_uring, sqe_addr, ctx);
6263 	if (ret != -ENOENT)
6264 		return ret;
6265 
6266 	spin_lock(&ctx->completion_lock);
6267 	spin_lock_irq(&ctx->timeout_lock);
6268 	ret = io_timeout_cancel(ctx, sqe_addr);
6269 	spin_unlock_irq(&ctx->timeout_lock);
6270 	if (ret != -ENOENT)
6271 		goto out;
6272 	ret = io_poll_cancel(ctx, sqe_addr, false);
6273 out:
6274 	spin_unlock(&ctx->completion_lock);
6275 	return ret;
6276 }
6277 
io_async_cancel_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6278 static int io_async_cancel_prep(struct io_kiocb *req,
6279 				const struct io_uring_sqe *sqe)
6280 {
6281 	if (unlikely(req->ctx->flags & IORING_SETUP_IOPOLL))
6282 		return -EINVAL;
6283 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6284 		return -EINVAL;
6285 	if (sqe->ioprio || sqe->off || sqe->len || sqe->cancel_flags ||
6286 	    sqe->splice_fd_in)
6287 		return -EINVAL;
6288 
6289 	req->cancel.addr = READ_ONCE(sqe->addr);
6290 	return 0;
6291 }
6292 
io_async_cancel(struct io_kiocb * req,unsigned int issue_flags)6293 static int io_async_cancel(struct io_kiocb *req, unsigned int issue_flags)
6294 {
6295 	struct io_ring_ctx *ctx = req->ctx;
6296 	u64 sqe_addr = req->cancel.addr;
6297 	struct io_tctx_node *node;
6298 	int ret;
6299 
6300 	ret = io_try_cancel_userdata(req, sqe_addr);
6301 	if (ret != -ENOENT)
6302 		goto done;
6303 
6304 	/* slow path, try all io-wq's */
6305 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6306 	ret = -ENOENT;
6307 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
6308 		struct io_uring_task *tctx = node->task->io_uring;
6309 
6310 		ret = io_async_cancel_one(tctx, req->cancel.addr, ctx);
6311 		if (ret != -ENOENT)
6312 			break;
6313 	}
6314 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6315 done:
6316 	if (ret < 0)
6317 		req_set_fail(req);
6318 	io_req_complete_post(req, ret, 0);
6319 	return 0;
6320 }
6321 
io_rsrc_update_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6322 static int io_rsrc_update_prep(struct io_kiocb *req,
6323 				const struct io_uring_sqe *sqe)
6324 {
6325 	if (unlikely(req->flags & (REQ_F_FIXED_FILE | REQ_F_BUFFER_SELECT)))
6326 		return -EINVAL;
6327 	if (sqe->ioprio || sqe->rw_flags || sqe->splice_fd_in)
6328 		return -EINVAL;
6329 
6330 	req->rsrc_update.offset = READ_ONCE(sqe->off);
6331 	req->rsrc_update.nr_args = READ_ONCE(sqe->len);
6332 	if (!req->rsrc_update.nr_args)
6333 		return -EINVAL;
6334 	req->rsrc_update.arg = READ_ONCE(sqe->addr);
6335 	return 0;
6336 }
6337 
io_files_update(struct io_kiocb * req,unsigned int issue_flags)6338 static int io_files_update(struct io_kiocb *req, unsigned int issue_flags)
6339 {
6340 	struct io_ring_ctx *ctx = req->ctx;
6341 	struct io_uring_rsrc_update2 up;
6342 	int ret;
6343 
6344 	up.offset = req->rsrc_update.offset;
6345 	up.data = req->rsrc_update.arg;
6346 	up.nr = 0;
6347 	up.tags = 0;
6348 	up.resv = 0;
6349 
6350 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6351 	ret = __io_register_rsrc_update(ctx, IORING_RSRC_FILE,
6352 					&up, req->rsrc_update.nr_args);
6353 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
6354 
6355 	if (ret < 0)
6356 		req_set_fail(req);
6357 	__io_req_complete(req, issue_flags, ret, 0);
6358 	return 0;
6359 }
6360 
io_req_prep(struct io_kiocb * req,const struct io_uring_sqe * sqe)6361 static int io_req_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
6362 {
6363 	switch (req->opcode) {
6364 	case IORING_OP_NOP:
6365 		return 0;
6366 	case IORING_OP_READV:
6367 	case IORING_OP_READ_FIXED:
6368 	case IORING_OP_READ:
6369 		return io_read_prep(req, sqe);
6370 	case IORING_OP_WRITEV:
6371 	case IORING_OP_WRITE_FIXED:
6372 	case IORING_OP_WRITE:
6373 		return io_write_prep(req, sqe);
6374 	case IORING_OP_POLL_ADD:
6375 		return io_poll_add_prep(req, sqe);
6376 	case IORING_OP_POLL_REMOVE:
6377 		return io_poll_update_prep(req, sqe);
6378 	case IORING_OP_FSYNC:
6379 		return io_fsync_prep(req, sqe);
6380 	case IORING_OP_SYNC_FILE_RANGE:
6381 		return io_sfr_prep(req, sqe);
6382 	case IORING_OP_SENDMSG:
6383 	case IORING_OP_SEND:
6384 		return io_sendmsg_prep(req, sqe);
6385 	case IORING_OP_RECVMSG:
6386 	case IORING_OP_RECV:
6387 		return io_recvmsg_prep(req, sqe);
6388 	case IORING_OP_CONNECT:
6389 		return io_connect_prep(req, sqe);
6390 	case IORING_OP_TIMEOUT:
6391 		return io_timeout_prep(req, sqe, false);
6392 	case IORING_OP_TIMEOUT_REMOVE:
6393 		return io_timeout_remove_prep(req, sqe);
6394 	case IORING_OP_ASYNC_CANCEL:
6395 		return io_async_cancel_prep(req, sqe);
6396 	case IORING_OP_LINK_TIMEOUT:
6397 		return io_timeout_prep(req, sqe, true);
6398 	case IORING_OP_ACCEPT:
6399 		return io_accept_prep(req, sqe);
6400 	case IORING_OP_FALLOCATE:
6401 		return io_fallocate_prep(req, sqe);
6402 	case IORING_OP_OPENAT:
6403 		return io_openat_prep(req, sqe);
6404 	case IORING_OP_CLOSE:
6405 		return io_close_prep(req, sqe);
6406 	case IORING_OP_FILES_UPDATE:
6407 		return io_rsrc_update_prep(req, sqe);
6408 	case IORING_OP_STATX:
6409 		return io_statx_prep(req, sqe);
6410 	case IORING_OP_FADVISE:
6411 		return io_fadvise_prep(req, sqe);
6412 	case IORING_OP_MADVISE:
6413 		return io_madvise_prep(req, sqe);
6414 	case IORING_OP_OPENAT2:
6415 		return io_openat2_prep(req, sqe);
6416 	case IORING_OP_EPOLL_CTL:
6417 		return io_epoll_ctl_prep(req, sqe);
6418 	case IORING_OP_SPLICE:
6419 		return io_splice_prep(req, sqe);
6420 	case IORING_OP_PROVIDE_BUFFERS:
6421 		return io_provide_buffers_prep(req, sqe);
6422 	case IORING_OP_REMOVE_BUFFERS:
6423 		return io_remove_buffers_prep(req, sqe);
6424 	case IORING_OP_TEE:
6425 		return io_tee_prep(req, sqe);
6426 	case IORING_OP_SHUTDOWN:
6427 		return io_shutdown_prep(req, sqe);
6428 	case IORING_OP_RENAMEAT:
6429 		return io_renameat_prep(req, sqe);
6430 	case IORING_OP_UNLINKAT:
6431 		return io_unlinkat_prep(req, sqe);
6432 	case IORING_OP_MKDIRAT:
6433 		return io_mkdirat_prep(req, sqe);
6434 	case IORING_OP_SYMLINKAT:
6435 		return io_symlinkat_prep(req, sqe);
6436 	case IORING_OP_LINKAT:
6437 		return io_linkat_prep(req, sqe);
6438 	}
6439 
6440 	printk_once(KERN_WARNING "io_uring: unhandled opcode %d\n",
6441 			req->opcode);
6442 	return -EINVAL;
6443 }
6444 
io_req_prep_async(struct io_kiocb * req)6445 static int io_req_prep_async(struct io_kiocb *req)
6446 {
6447 	if (!io_op_defs[req->opcode].needs_async_setup)
6448 		return 0;
6449 	if (WARN_ON_ONCE(req->async_data))
6450 		return -EFAULT;
6451 	if (io_alloc_async_data(req))
6452 		return -EAGAIN;
6453 
6454 	switch (req->opcode) {
6455 	case IORING_OP_READV:
6456 		return io_rw_prep_async(req, READ);
6457 	case IORING_OP_WRITEV:
6458 		return io_rw_prep_async(req, WRITE);
6459 	case IORING_OP_SENDMSG:
6460 		return io_sendmsg_prep_async(req);
6461 	case IORING_OP_RECVMSG:
6462 		return io_recvmsg_prep_async(req);
6463 	case IORING_OP_CONNECT:
6464 		return io_connect_prep_async(req);
6465 	}
6466 	printk_once(KERN_WARNING "io_uring: prep_async() bad opcode %d\n",
6467 		    req->opcode);
6468 	return -EFAULT;
6469 }
6470 
io_get_sequence(struct io_kiocb * req)6471 static u32 io_get_sequence(struct io_kiocb *req)
6472 {
6473 	u32 seq = req->ctx->cached_sq_head;
6474 
6475 	/* need original cached_sq_head, but it was increased for each req */
6476 	io_for_each_link(req, req)
6477 		seq--;
6478 	return seq;
6479 }
6480 
io_drain_req(struct io_kiocb * req)6481 static bool io_drain_req(struct io_kiocb *req)
6482 {
6483 	struct io_kiocb *pos;
6484 	struct io_ring_ctx *ctx = req->ctx;
6485 	struct io_defer_entry *de;
6486 	int ret;
6487 	u32 seq;
6488 
6489 	if (req->flags & REQ_F_FAIL) {
6490 		io_req_complete_fail_submit(req);
6491 		return true;
6492 	}
6493 
6494 	/*
6495 	 * If we need to drain a request in the middle of a link, drain the
6496 	 * head request and the next request/link after the current link.
6497 	 * Considering sequential execution of links, IOSQE_IO_DRAIN will be
6498 	 * maintained for every request of our link.
6499 	 */
6500 	if (ctx->drain_next) {
6501 		req->flags |= REQ_F_IO_DRAIN;
6502 		ctx->drain_next = false;
6503 	}
6504 	/* not interested in head, start from the first linked */
6505 	io_for_each_link(pos, req->link) {
6506 		if (pos->flags & REQ_F_IO_DRAIN) {
6507 			ctx->drain_next = true;
6508 			req->flags |= REQ_F_IO_DRAIN;
6509 			break;
6510 		}
6511 	}
6512 
6513 	/* Still need defer if there is pending req in defer list. */
6514 	if (likely(list_empty_careful(&ctx->defer_list) &&
6515 		!(req->flags & REQ_F_IO_DRAIN))) {
6516 		ctx->drain_active = false;
6517 		return false;
6518 	}
6519 
6520 	seq = io_get_sequence(req);
6521 	/* Still a chance to pass the sequence check */
6522 	if (!req_need_defer(req, seq) && list_empty_careful(&ctx->defer_list))
6523 		return false;
6524 
6525 	ret = io_req_prep_async(req);
6526 	if (ret)
6527 		goto fail;
6528 	io_prep_async_link(req);
6529 	de = kmalloc(sizeof(*de), GFP_KERNEL);
6530 	if (!de) {
6531 		ret = -ENOMEM;
6532 fail:
6533 		io_req_complete_failed(req, ret);
6534 		return true;
6535 	}
6536 
6537 	spin_lock(&ctx->completion_lock);
6538 	if (!req_need_defer(req, seq) && list_empty(&ctx->defer_list)) {
6539 		spin_unlock(&ctx->completion_lock);
6540 		kfree(de);
6541 		io_queue_async_work(req, NULL);
6542 		return true;
6543 	}
6544 
6545 	trace_io_uring_defer(ctx, req, req->user_data);
6546 	de->req = req;
6547 	de->seq = seq;
6548 	list_add_tail(&de->list, &ctx->defer_list);
6549 	spin_unlock(&ctx->completion_lock);
6550 	return true;
6551 }
6552 
io_clean_op(struct io_kiocb * req)6553 static void io_clean_op(struct io_kiocb *req)
6554 {
6555 	if (req->flags & REQ_F_BUFFER_SELECTED) {
6556 		switch (req->opcode) {
6557 		case IORING_OP_READV:
6558 		case IORING_OP_READ_FIXED:
6559 		case IORING_OP_READ:
6560 			kfree((void *)(unsigned long)req->rw.addr);
6561 			break;
6562 		case IORING_OP_RECVMSG:
6563 		case IORING_OP_RECV:
6564 			kfree(req->sr_msg.kbuf);
6565 			break;
6566 		}
6567 	}
6568 
6569 	if (req->flags & REQ_F_NEED_CLEANUP) {
6570 		switch (req->opcode) {
6571 		case IORING_OP_READV:
6572 		case IORING_OP_READ_FIXED:
6573 		case IORING_OP_READ:
6574 		case IORING_OP_WRITEV:
6575 		case IORING_OP_WRITE_FIXED:
6576 		case IORING_OP_WRITE: {
6577 			struct io_async_rw *io = req->async_data;
6578 
6579 			kfree(io->free_iovec);
6580 			break;
6581 			}
6582 		case IORING_OP_RECVMSG:
6583 		case IORING_OP_SENDMSG: {
6584 			struct io_async_msghdr *io = req->async_data;
6585 
6586 			kfree(io->free_iov);
6587 			break;
6588 			}
6589 		case IORING_OP_SPLICE:
6590 		case IORING_OP_TEE:
6591 			if (!(req->splice.flags & SPLICE_F_FD_IN_FIXED))
6592 				io_put_file(req->splice.file_in);
6593 			break;
6594 		case IORING_OP_OPENAT:
6595 		case IORING_OP_OPENAT2:
6596 			if (req->open.filename)
6597 				putname(req->open.filename);
6598 			break;
6599 		case IORING_OP_RENAMEAT:
6600 			putname(req->rename.oldpath);
6601 			putname(req->rename.newpath);
6602 			break;
6603 		case IORING_OP_UNLINKAT:
6604 			putname(req->unlink.filename);
6605 			break;
6606 		case IORING_OP_MKDIRAT:
6607 			putname(req->mkdir.filename);
6608 			break;
6609 		case IORING_OP_SYMLINKAT:
6610 			putname(req->symlink.oldpath);
6611 			putname(req->symlink.newpath);
6612 			break;
6613 		case IORING_OP_LINKAT:
6614 			putname(req->hardlink.oldpath);
6615 			putname(req->hardlink.newpath);
6616 			break;
6617 		}
6618 	}
6619 	if ((req->flags & REQ_F_POLLED) && req->apoll) {
6620 		kfree(req->apoll->double_poll);
6621 		kfree(req->apoll);
6622 		req->apoll = NULL;
6623 	}
6624 	if (req->flags & REQ_F_INFLIGHT) {
6625 		struct io_uring_task *tctx = req->task->io_uring;
6626 
6627 		atomic_dec(&tctx->inflight_tracked);
6628 	}
6629 	if (req->flags & REQ_F_CREDS)
6630 		put_cred(req->creds);
6631 
6632 	req->flags &= ~IO_REQ_CLEAN_FLAGS;
6633 }
6634 
io_issue_sqe(struct io_kiocb * req,unsigned int issue_flags)6635 static int io_issue_sqe(struct io_kiocb *req, unsigned int issue_flags)
6636 {
6637 	struct io_ring_ctx *ctx = req->ctx;
6638 	const struct cred *creds = NULL;
6639 	int ret;
6640 
6641 	if ((req->flags & REQ_F_CREDS) && req->creds != current_cred())
6642 		creds = override_creds(req->creds);
6643 
6644 	switch (req->opcode) {
6645 	case IORING_OP_NOP:
6646 		ret = io_nop(req, issue_flags);
6647 		break;
6648 	case IORING_OP_READV:
6649 	case IORING_OP_READ_FIXED:
6650 	case IORING_OP_READ:
6651 		ret = io_read(req, issue_flags);
6652 		break;
6653 	case IORING_OP_WRITEV:
6654 	case IORING_OP_WRITE_FIXED:
6655 	case IORING_OP_WRITE:
6656 		ret = io_write(req, issue_flags);
6657 		break;
6658 	case IORING_OP_FSYNC:
6659 		ret = io_fsync(req, issue_flags);
6660 		break;
6661 	case IORING_OP_POLL_ADD:
6662 		ret = io_poll_add(req, issue_flags);
6663 		break;
6664 	case IORING_OP_POLL_REMOVE:
6665 		ret = io_poll_update(req, issue_flags);
6666 		break;
6667 	case IORING_OP_SYNC_FILE_RANGE:
6668 		ret = io_sync_file_range(req, issue_flags);
6669 		break;
6670 	case IORING_OP_SENDMSG:
6671 		ret = io_sendmsg(req, issue_flags);
6672 		break;
6673 	case IORING_OP_SEND:
6674 		ret = io_send(req, issue_flags);
6675 		break;
6676 	case IORING_OP_RECVMSG:
6677 		ret = io_recvmsg(req, issue_flags);
6678 		break;
6679 	case IORING_OP_RECV:
6680 		ret = io_recv(req, issue_flags);
6681 		break;
6682 	case IORING_OP_TIMEOUT:
6683 		ret = io_timeout(req, issue_flags);
6684 		break;
6685 	case IORING_OP_TIMEOUT_REMOVE:
6686 		ret = io_timeout_remove(req, issue_flags);
6687 		break;
6688 	case IORING_OP_ACCEPT:
6689 		ret = io_accept(req, issue_flags);
6690 		break;
6691 	case IORING_OP_CONNECT:
6692 		ret = io_connect(req, issue_flags);
6693 		break;
6694 	case IORING_OP_ASYNC_CANCEL:
6695 		ret = io_async_cancel(req, issue_flags);
6696 		break;
6697 	case IORING_OP_FALLOCATE:
6698 		ret = io_fallocate(req, issue_flags);
6699 		break;
6700 	case IORING_OP_OPENAT:
6701 		ret = io_openat(req, issue_flags);
6702 		break;
6703 	case IORING_OP_CLOSE:
6704 		ret = io_close(req, issue_flags);
6705 		break;
6706 	case IORING_OP_FILES_UPDATE:
6707 		ret = io_files_update(req, issue_flags);
6708 		break;
6709 	case IORING_OP_STATX:
6710 		ret = io_statx(req, issue_flags);
6711 		break;
6712 	case IORING_OP_FADVISE:
6713 		ret = io_fadvise(req, issue_flags);
6714 		break;
6715 	case IORING_OP_MADVISE:
6716 		ret = io_madvise(req, issue_flags);
6717 		break;
6718 	case IORING_OP_OPENAT2:
6719 		ret = io_openat2(req, issue_flags);
6720 		break;
6721 	case IORING_OP_EPOLL_CTL:
6722 		ret = io_epoll_ctl(req, issue_flags);
6723 		break;
6724 	case IORING_OP_SPLICE:
6725 		ret = io_splice(req, issue_flags);
6726 		break;
6727 	case IORING_OP_PROVIDE_BUFFERS:
6728 		ret = io_provide_buffers(req, issue_flags);
6729 		break;
6730 	case IORING_OP_REMOVE_BUFFERS:
6731 		ret = io_remove_buffers(req, issue_flags);
6732 		break;
6733 	case IORING_OP_TEE:
6734 		ret = io_tee(req, issue_flags);
6735 		break;
6736 	case IORING_OP_SHUTDOWN:
6737 		ret = io_shutdown(req, issue_flags);
6738 		break;
6739 	case IORING_OP_RENAMEAT:
6740 		ret = io_renameat(req, issue_flags);
6741 		break;
6742 	case IORING_OP_UNLINKAT:
6743 		ret = io_unlinkat(req, issue_flags);
6744 		break;
6745 	case IORING_OP_MKDIRAT:
6746 		ret = io_mkdirat(req, issue_flags);
6747 		break;
6748 	case IORING_OP_SYMLINKAT:
6749 		ret = io_symlinkat(req, issue_flags);
6750 		break;
6751 	case IORING_OP_LINKAT:
6752 		ret = io_linkat(req, issue_flags);
6753 		break;
6754 	default:
6755 		ret = -EINVAL;
6756 		break;
6757 	}
6758 
6759 	if (creds)
6760 		revert_creds(creds);
6761 	if (ret)
6762 		return ret;
6763 	/* If the op doesn't have a file, we're not polling for it */
6764 	if ((ctx->flags & IORING_SETUP_IOPOLL) && req->file)
6765 		io_iopoll_req_issued(req);
6766 
6767 	return 0;
6768 }
6769 
io_wq_free_work(struct io_wq_work * work)6770 static struct io_wq_work *io_wq_free_work(struct io_wq_work *work)
6771 {
6772 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6773 
6774 	req = io_put_req_find_next(req);
6775 	return req ? &req->work : NULL;
6776 }
6777 
io_wq_submit_work(struct io_wq_work * work)6778 static void io_wq_submit_work(struct io_wq_work *work)
6779 {
6780 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
6781 	struct io_kiocb *timeout;
6782 	int ret = 0;
6783 
6784 	/* one will be dropped by ->io_free_work() after returning to io-wq */
6785 	if (!(req->flags & REQ_F_REFCOUNT))
6786 		__io_req_set_refcount(req, 2);
6787 	else
6788 		req_ref_get(req);
6789 
6790 	timeout = io_prep_linked_timeout(req);
6791 	if (timeout)
6792 		io_queue_linked_timeout(timeout);
6793 
6794 	/* either cancelled or io-wq is dying, so don't touch tctx->iowq */
6795 	if (work->flags & IO_WQ_WORK_CANCEL)
6796 		ret = -ECANCELED;
6797 
6798 	if (!ret) {
6799 		do {
6800 			ret = io_issue_sqe(req, 0);
6801 			/*
6802 			 * We can get EAGAIN for polled IO even though we're
6803 			 * forcing a sync submission from here, since we can't
6804 			 * wait for request slots on the block side.
6805 			 */
6806 			if (ret != -EAGAIN)
6807 				break;
6808 			cond_resched();
6809 		} while (1);
6810 	}
6811 
6812 	/* avoid locking problems by failing it from a clean context */
6813 	if (ret)
6814 		io_req_task_queue_fail(req, ret);
6815 }
6816 
io_fixed_file_slot(struct io_file_table * table,unsigned i)6817 static inline struct io_fixed_file *io_fixed_file_slot(struct io_file_table *table,
6818 						       unsigned i)
6819 {
6820 	return &table->files[i];
6821 }
6822 
io_file_from_index(struct io_ring_ctx * ctx,int index)6823 static inline struct file *io_file_from_index(struct io_ring_ctx *ctx,
6824 					      int index)
6825 {
6826 	struct io_fixed_file *slot = io_fixed_file_slot(&ctx->file_table, index);
6827 
6828 	return (struct file *) (slot->file_ptr & FFS_MASK);
6829 }
6830 
io_fixed_file_set(struct io_fixed_file * file_slot,struct file * file)6831 static void io_fixed_file_set(struct io_fixed_file *file_slot, struct file *file)
6832 {
6833 	unsigned long file_ptr = (unsigned long) file;
6834 
6835 	if (__io_file_supports_nowait(file, READ))
6836 		file_ptr |= FFS_ASYNC_READ;
6837 	if (__io_file_supports_nowait(file, WRITE))
6838 		file_ptr |= FFS_ASYNC_WRITE;
6839 	if (S_ISREG(file_inode(file)->i_mode))
6840 		file_ptr |= FFS_ISREG;
6841 	file_slot->file_ptr = file_ptr;
6842 }
6843 
io_file_get_fixed(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6844 static inline struct file *io_file_get_fixed(struct io_ring_ctx *ctx,
6845 					     struct io_kiocb *req, int fd)
6846 {
6847 	struct file *file;
6848 	unsigned long file_ptr;
6849 
6850 	if (unlikely((unsigned int)fd >= ctx->nr_user_files))
6851 		return NULL;
6852 	fd = array_index_nospec(fd, ctx->nr_user_files);
6853 	file_ptr = io_fixed_file_slot(&ctx->file_table, fd)->file_ptr;
6854 	file = (struct file *) (file_ptr & FFS_MASK);
6855 	file_ptr &= ~FFS_MASK;
6856 	/* mask in overlapping REQ_F and FFS bits */
6857 	req->flags |= (file_ptr << REQ_F_NOWAIT_READ_BIT);
6858 	io_req_set_rsrc_node(req);
6859 	return file;
6860 }
6861 
io_file_get_normal(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd)6862 static struct file *io_file_get_normal(struct io_ring_ctx *ctx,
6863 				       struct io_kiocb *req, int fd)
6864 {
6865 	struct file *file = fget(fd);
6866 
6867 	trace_io_uring_file_get(ctx, fd);
6868 
6869 	/* we don't allow fixed io_uring files */
6870 	if (file && unlikely(file->f_op == &io_uring_fops))
6871 		io_req_track_inflight(req);
6872 	return file;
6873 }
6874 
io_file_get(struct io_ring_ctx * ctx,struct io_kiocb * req,int fd,bool fixed)6875 static inline struct file *io_file_get(struct io_ring_ctx *ctx,
6876 				       struct io_kiocb *req, int fd, bool fixed)
6877 {
6878 	if (fixed)
6879 		return io_file_get_fixed(ctx, req, fd);
6880 	else
6881 		return io_file_get_normal(ctx, req, fd);
6882 }
6883 
io_req_task_link_timeout(struct io_kiocb * req,bool * locked)6884 static void io_req_task_link_timeout(struct io_kiocb *req, bool *locked)
6885 {
6886 	struct io_kiocb *prev = req->timeout.prev;
6887 	int ret;
6888 
6889 	if (prev) {
6890 		ret = io_try_cancel_userdata(req, prev->user_data);
6891 		io_req_complete_post(req, ret ?: -ETIME, 0);
6892 		io_put_req(prev);
6893 	} else {
6894 		io_req_complete_post(req, -ETIME, 0);
6895 	}
6896 }
6897 
io_link_timeout_fn(struct hrtimer * timer)6898 static enum hrtimer_restart io_link_timeout_fn(struct hrtimer *timer)
6899 {
6900 	struct io_timeout_data *data = container_of(timer,
6901 						struct io_timeout_data, timer);
6902 	struct io_kiocb *prev, *req = data->req;
6903 	struct io_ring_ctx *ctx = req->ctx;
6904 	unsigned long flags;
6905 
6906 	spin_lock_irqsave(&ctx->timeout_lock, flags);
6907 	prev = req->timeout.head;
6908 	req->timeout.head = NULL;
6909 
6910 	/*
6911 	 * We don't expect the list to be empty, that will only happen if we
6912 	 * race with the completion of the linked work.
6913 	 */
6914 	if (prev) {
6915 		io_remove_next_linked(prev);
6916 		if (!req_ref_inc_not_zero(prev))
6917 			prev = NULL;
6918 	}
6919 	list_del(&req->timeout.list);
6920 	req->timeout.prev = prev;
6921 	spin_unlock_irqrestore(&ctx->timeout_lock, flags);
6922 
6923 	req->io_task_work.func = io_req_task_link_timeout;
6924 	io_req_task_work_add(req);
6925 	return HRTIMER_NORESTART;
6926 }
6927 
io_queue_linked_timeout(struct io_kiocb * req)6928 static void io_queue_linked_timeout(struct io_kiocb *req)
6929 {
6930 	struct io_ring_ctx *ctx = req->ctx;
6931 
6932 	spin_lock_irq(&ctx->timeout_lock);
6933 	/*
6934 	 * If the back reference is NULL, then our linked request finished
6935 	 * before we got a chance to setup the timer
6936 	 */
6937 	if (req->timeout.head) {
6938 		struct io_timeout_data *data = req->async_data;
6939 
6940 		data->timer.function = io_link_timeout_fn;
6941 		hrtimer_start(&data->timer, timespec64_to_ktime(data->ts),
6942 				data->mode);
6943 		list_add_tail(&req->timeout.list, &ctx->ltimeout_list);
6944 	}
6945 	spin_unlock_irq(&ctx->timeout_lock);
6946 	/* drop submission reference */
6947 	io_put_req(req);
6948 }
6949 
__io_queue_sqe(struct io_kiocb * req)6950 static void __io_queue_sqe(struct io_kiocb *req)
6951 	__must_hold(&req->ctx->uring_lock)
6952 {
6953 	struct io_kiocb *linked_timeout;
6954 	int ret;
6955 
6956 issue_sqe:
6957 	ret = io_issue_sqe(req, IO_URING_F_NONBLOCK|IO_URING_F_COMPLETE_DEFER);
6958 
6959 	/*
6960 	 * We async punt it if the file wasn't marked NOWAIT, or if the file
6961 	 * doesn't support non-blocking read/write attempts
6962 	 */
6963 	if (likely(!ret)) {
6964 		if (req->flags & REQ_F_COMPLETE_INLINE) {
6965 			struct io_ring_ctx *ctx = req->ctx;
6966 			struct io_submit_state *state = &ctx->submit_state;
6967 
6968 			state->compl_reqs[state->compl_nr++] = req;
6969 			if (state->compl_nr == ARRAY_SIZE(state->compl_reqs))
6970 				io_submit_flush_completions(ctx);
6971 			return;
6972 		}
6973 
6974 		linked_timeout = io_prep_linked_timeout(req);
6975 		if (linked_timeout)
6976 			io_queue_linked_timeout(linked_timeout);
6977 	} else if (ret == -EAGAIN && !(req->flags & REQ_F_NOWAIT)) {
6978 		linked_timeout = io_prep_linked_timeout(req);
6979 
6980 		switch (io_arm_poll_handler(req)) {
6981 		case IO_APOLL_READY:
6982 			if (linked_timeout)
6983 				io_queue_linked_timeout(linked_timeout);
6984 			goto issue_sqe;
6985 		case IO_APOLL_ABORTED:
6986 			/*
6987 			 * Queued up for async execution, worker will release
6988 			 * submit reference when the iocb is actually submitted.
6989 			 */
6990 			io_queue_async_work(req, NULL);
6991 			break;
6992 		}
6993 
6994 		if (linked_timeout)
6995 			io_queue_linked_timeout(linked_timeout);
6996 	} else {
6997 		io_req_complete_failed(req, ret);
6998 	}
6999 }
7000 
io_queue_sqe(struct io_kiocb * req)7001 static inline void io_queue_sqe(struct io_kiocb *req)
7002 	__must_hold(&req->ctx->uring_lock)
7003 {
7004 	if (unlikely(req->ctx->drain_active) && io_drain_req(req))
7005 		return;
7006 
7007 	if (likely(!(req->flags & (REQ_F_FORCE_ASYNC | REQ_F_FAIL)))) {
7008 		__io_queue_sqe(req);
7009 	} else if (req->flags & REQ_F_FAIL) {
7010 		io_req_complete_fail_submit(req);
7011 	} else {
7012 		int ret = io_req_prep_async(req);
7013 
7014 		if (unlikely(ret))
7015 			io_req_complete_failed(req, ret);
7016 		else
7017 			io_queue_async_work(req, NULL);
7018 	}
7019 }
7020 
7021 /*
7022  * Check SQE restrictions (opcode and flags).
7023  *
7024  * Returns 'true' if SQE is allowed, 'false' otherwise.
7025  */
io_check_restriction(struct io_ring_ctx * ctx,struct io_kiocb * req,unsigned int sqe_flags)7026 static inline bool io_check_restriction(struct io_ring_ctx *ctx,
7027 					struct io_kiocb *req,
7028 					unsigned int sqe_flags)
7029 {
7030 	if (likely(!ctx->restricted))
7031 		return true;
7032 
7033 	if (!test_bit(req->opcode, ctx->restrictions.sqe_op))
7034 		return false;
7035 
7036 	if ((sqe_flags & ctx->restrictions.sqe_flags_required) !=
7037 	    ctx->restrictions.sqe_flags_required)
7038 		return false;
7039 
7040 	if (sqe_flags & ~(ctx->restrictions.sqe_flags_allowed |
7041 			  ctx->restrictions.sqe_flags_required))
7042 		return false;
7043 
7044 	return true;
7045 }
7046 
io_init_req(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7047 static int io_init_req(struct io_ring_ctx *ctx, struct io_kiocb *req,
7048 		       const struct io_uring_sqe *sqe)
7049 	__must_hold(&ctx->uring_lock)
7050 {
7051 	struct io_submit_state *state;
7052 	unsigned int sqe_flags;
7053 	int personality, ret = 0;
7054 
7055 	/* req is partially pre-initialised, see io_preinit_req() */
7056 	req->opcode = READ_ONCE(sqe->opcode);
7057 	/* same numerical values with corresponding REQ_F_*, safe to copy */
7058 	req->flags = sqe_flags = READ_ONCE(sqe->flags);
7059 	req->user_data = READ_ONCE(sqe->user_data);
7060 	req->file = NULL;
7061 	req->fixed_rsrc_refs = NULL;
7062 	req->task = current;
7063 
7064 	/* enforce forwards compatibility on users */
7065 	if (unlikely(sqe_flags & ~SQE_VALID_FLAGS))
7066 		return -EINVAL;
7067 	if (unlikely(req->opcode >= IORING_OP_LAST))
7068 		return -EINVAL;
7069 	if (!io_check_restriction(ctx, req, sqe_flags))
7070 		return -EACCES;
7071 
7072 	if ((sqe_flags & IOSQE_BUFFER_SELECT) &&
7073 	    !io_op_defs[req->opcode].buffer_select)
7074 		return -EOPNOTSUPP;
7075 	if (unlikely(sqe_flags & IOSQE_IO_DRAIN))
7076 		ctx->drain_active = true;
7077 
7078 	personality = READ_ONCE(sqe->personality);
7079 	if (personality) {
7080 		req->creds = xa_load(&ctx->personalities, personality);
7081 		if (!req->creds)
7082 			return -EINVAL;
7083 		get_cred(req->creds);
7084 		req->flags |= REQ_F_CREDS;
7085 	}
7086 	state = &ctx->submit_state;
7087 
7088 	/*
7089 	 * Plug now if we have more than 1 IO left after this, and the target
7090 	 * is potentially a read/write to block based storage.
7091 	 */
7092 	if (!state->plug_started && state->ios_left > 1 &&
7093 	    io_op_defs[req->opcode].plug) {
7094 		blk_start_plug(&state->plug);
7095 		state->plug_started = true;
7096 	}
7097 
7098 	if (io_op_defs[req->opcode].needs_file) {
7099 		req->file = io_file_get(ctx, req, READ_ONCE(sqe->fd),
7100 					(sqe_flags & IOSQE_FIXED_FILE));
7101 		if (unlikely(!req->file))
7102 			ret = -EBADF;
7103 	}
7104 
7105 	state->ios_left--;
7106 	return ret;
7107 }
7108 
io_submit_sqe(struct io_ring_ctx * ctx,struct io_kiocb * req,const struct io_uring_sqe * sqe)7109 static int io_submit_sqe(struct io_ring_ctx *ctx, struct io_kiocb *req,
7110 			 const struct io_uring_sqe *sqe)
7111 	__must_hold(&ctx->uring_lock)
7112 {
7113 	struct io_submit_link *link = &ctx->submit_state.link;
7114 	int ret;
7115 
7116 	ret = io_init_req(ctx, req, sqe);
7117 	if (unlikely(ret)) {
7118 fail_req:
7119 		/* fail even hard links since we don't submit */
7120 		if (link->head) {
7121 			/*
7122 			 * we can judge a link req is failed or cancelled by if
7123 			 * REQ_F_FAIL is set, but the head is an exception since
7124 			 * it may be set REQ_F_FAIL because of other req's failure
7125 			 * so let's leverage req->result to distinguish if a head
7126 			 * is set REQ_F_FAIL because of its failure or other req's
7127 			 * failure so that we can set the correct ret code for it.
7128 			 * init result here to avoid affecting the normal path.
7129 			 */
7130 			if (!(link->head->flags & REQ_F_FAIL))
7131 				req_fail_link_node(link->head, -ECANCELED);
7132 		} else if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7133 			/*
7134 			 * the current req is a normal req, we should return
7135 			 * error and thus break the submittion loop.
7136 			 */
7137 			io_req_complete_failed(req, ret);
7138 			return ret;
7139 		}
7140 		req_fail_link_node(req, ret);
7141 	} else {
7142 		ret = io_req_prep(req, sqe);
7143 		if (unlikely(ret))
7144 			goto fail_req;
7145 	}
7146 
7147 	/* don't need @sqe from now on */
7148 	trace_io_uring_submit_sqe(ctx, req, req->opcode, req->user_data,
7149 				  req->flags, true,
7150 				  ctx->flags & IORING_SETUP_SQPOLL);
7151 
7152 	/*
7153 	 * If we already have a head request, queue this one for async
7154 	 * submittal once the head completes. If we don't have a head but
7155 	 * IOSQE_IO_LINK is set in the sqe, start a new head. This one will be
7156 	 * submitted sync once the chain is complete. If none of those
7157 	 * conditions are true (normal request), then just queue it.
7158 	 */
7159 	if (link->head) {
7160 		struct io_kiocb *head = link->head;
7161 
7162 		if (!(req->flags & REQ_F_FAIL)) {
7163 			ret = io_req_prep_async(req);
7164 			if (unlikely(ret)) {
7165 				req_fail_link_node(req, ret);
7166 				if (!(head->flags & REQ_F_FAIL))
7167 					req_fail_link_node(head, -ECANCELED);
7168 			}
7169 		}
7170 		trace_io_uring_link(ctx, req, head);
7171 		link->last->link = req;
7172 		link->last = req;
7173 
7174 		/* last request of a link, enqueue the link */
7175 		if (!(req->flags & (REQ_F_LINK | REQ_F_HARDLINK))) {
7176 			link->head = NULL;
7177 			io_queue_sqe(head);
7178 		}
7179 	} else {
7180 		if (req->flags & (REQ_F_LINK | REQ_F_HARDLINK)) {
7181 			link->head = req;
7182 			link->last = req;
7183 		} else {
7184 			io_queue_sqe(req);
7185 		}
7186 	}
7187 
7188 	return 0;
7189 }
7190 
7191 /*
7192  * Batched submission is done, ensure local IO is flushed out.
7193  */
io_submit_state_end(struct io_submit_state * state,struct io_ring_ctx * ctx)7194 static void io_submit_state_end(struct io_submit_state *state,
7195 				struct io_ring_ctx *ctx)
7196 {
7197 	if (state->link.head)
7198 		io_queue_sqe(state->link.head);
7199 	if (state->compl_nr)
7200 		io_submit_flush_completions(ctx);
7201 	if (state->plug_started)
7202 		blk_finish_plug(&state->plug);
7203 }
7204 
7205 /*
7206  * Start submission side cache.
7207  */
io_submit_state_start(struct io_submit_state * state,unsigned int max_ios)7208 static void io_submit_state_start(struct io_submit_state *state,
7209 				  unsigned int max_ios)
7210 {
7211 	state->plug_started = false;
7212 	state->ios_left = max_ios;
7213 	/* set only head, no need to init link_last in advance */
7214 	state->link.head = NULL;
7215 }
7216 
io_commit_sqring(struct io_ring_ctx * ctx)7217 static void io_commit_sqring(struct io_ring_ctx *ctx)
7218 {
7219 	struct io_rings *rings = ctx->rings;
7220 
7221 	/*
7222 	 * Ensure any loads from the SQEs are done at this point,
7223 	 * since once we write the new head, the application could
7224 	 * write new data to them.
7225 	 */
7226 	smp_store_release(&rings->sq.head, ctx->cached_sq_head);
7227 }
7228 
7229 /*
7230  * Fetch an sqe, if one is available. Note this returns a pointer to memory
7231  * that is mapped by userspace. This means that care needs to be taken to
7232  * ensure that reads are stable, as we cannot rely on userspace always
7233  * being a good citizen. If members of the sqe are validated and then later
7234  * used, it's important that those reads are done through READ_ONCE() to
7235  * prevent a re-load down the line.
7236  */
io_get_sqe(struct io_ring_ctx * ctx)7237 static const struct io_uring_sqe *io_get_sqe(struct io_ring_ctx *ctx)
7238 {
7239 	unsigned head, mask = ctx->sq_entries - 1;
7240 	unsigned sq_idx = ctx->cached_sq_head++ & mask;
7241 
7242 	/*
7243 	 * The cached sq head (or cq tail) serves two purposes:
7244 	 *
7245 	 * 1) allows us to batch the cost of updating the user visible
7246 	 *    head updates.
7247 	 * 2) allows the kernel side to track the head on its own, even
7248 	 *    though the application is the one updating it.
7249 	 */
7250 	head = READ_ONCE(ctx->sq_array[sq_idx]);
7251 	if (likely(head < ctx->sq_entries))
7252 		return &ctx->sq_sqes[head];
7253 
7254 	/* drop invalid entries */
7255 	ctx->cq_extra--;
7256 	WRITE_ONCE(ctx->rings->sq_dropped,
7257 		   READ_ONCE(ctx->rings->sq_dropped) + 1);
7258 	return NULL;
7259 }
7260 
io_submit_sqes(struct io_ring_ctx * ctx,unsigned int nr)7261 static int io_submit_sqes(struct io_ring_ctx *ctx, unsigned int nr)
7262 	__must_hold(&ctx->uring_lock)
7263 {
7264 	int submitted = 0;
7265 
7266 	/* make sure SQ entry isn't read before tail */
7267 	nr = min3(nr, ctx->sq_entries, io_sqring_entries(ctx));
7268 	if (!percpu_ref_tryget_many(&ctx->refs, nr))
7269 		return -EAGAIN;
7270 	io_get_task_refs(nr);
7271 
7272 	io_submit_state_start(&ctx->submit_state, nr);
7273 	while (submitted < nr) {
7274 		const struct io_uring_sqe *sqe;
7275 		struct io_kiocb *req;
7276 
7277 		req = io_alloc_req(ctx);
7278 		if (unlikely(!req)) {
7279 			if (!submitted)
7280 				submitted = -EAGAIN;
7281 			break;
7282 		}
7283 		sqe = io_get_sqe(ctx);
7284 		if (unlikely(!sqe)) {
7285 			list_add(&req->inflight_entry, &ctx->submit_state.free_list);
7286 			break;
7287 		}
7288 		/* will complete beyond this point, count as submitted */
7289 		submitted++;
7290 		if (io_submit_sqe(ctx, req, sqe))
7291 			break;
7292 	}
7293 
7294 	if (unlikely(submitted != nr)) {
7295 		int ref_used = (submitted == -EAGAIN) ? 0 : submitted;
7296 		int unused = nr - ref_used;
7297 
7298 		current->io_uring->cached_refs += unused;
7299 		percpu_ref_put_many(&ctx->refs, unused);
7300 	}
7301 
7302 	io_submit_state_end(&ctx->submit_state, ctx);
7303 	 /* Commit SQ ring head once we've consumed and submitted all SQEs */
7304 	io_commit_sqring(ctx);
7305 
7306 	return submitted;
7307 }
7308 
io_sqd_events_pending(struct io_sq_data * sqd)7309 static inline bool io_sqd_events_pending(struct io_sq_data *sqd)
7310 {
7311 	return READ_ONCE(sqd->state);
7312 }
7313 
io_ring_set_wakeup_flag(struct io_ring_ctx * ctx)7314 static inline void io_ring_set_wakeup_flag(struct io_ring_ctx *ctx)
7315 {
7316 	/* Tell userspace we may need a wakeup call */
7317 	spin_lock(&ctx->completion_lock);
7318 	WRITE_ONCE(ctx->rings->sq_flags,
7319 		   ctx->rings->sq_flags | IORING_SQ_NEED_WAKEUP);
7320 	spin_unlock(&ctx->completion_lock);
7321 }
7322 
io_ring_clear_wakeup_flag(struct io_ring_ctx * ctx)7323 static inline void io_ring_clear_wakeup_flag(struct io_ring_ctx *ctx)
7324 {
7325 	spin_lock(&ctx->completion_lock);
7326 	WRITE_ONCE(ctx->rings->sq_flags,
7327 		   ctx->rings->sq_flags & ~IORING_SQ_NEED_WAKEUP);
7328 	spin_unlock(&ctx->completion_lock);
7329 }
7330 
__io_sq_thread(struct io_ring_ctx * ctx,bool cap_entries)7331 static int __io_sq_thread(struct io_ring_ctx *ctx, bool cap_entries)
7332 {
7333 	unsigned int to_submit;
7334 	int ret = 0;
7335 
7336 	to_submit = io_sqring_entries(ctx);
7337 	/* if we're handling multiple rings, cap submit size for fairness */
7338 	if (cap_entries && to_submit > IORING_SQPOLL_CAP_ENTRIES_VALUE)
7339 		to_submit = IORING_SQPOLL_CAP_ENTRIES_VALUE;
7340 
7341 	if (!list_empty(&ctx->iopoll_list) || to_submit) {
7342 		unsigned nr_events = 0;
7343 		const struct cred *creds = NULL;
7344 
7345 		if (ctx->sq_creds != current_cred())
7346 			creds = override_creds(ctx->sq_creds);
7347 
7348 		mutex_lock(&ctx->uring_lock);
7349 		if (!list_empty(&ctx->iopoll_list))
7350 			io_do_iopoll(ctx, &nr_events, 0);
7351 
7352 		/*
7353 		 * Don't submit if refs are dying, good for io_uring_register(),
7354 		 * but also it is relied upon by io_ring_exit_work()
7355 		 */
7356 		if (to_submit && likely(!percpu_ref_is_dying(&ctx->refs)) &&
7357 		    !(ctx->flags & IORING_SETUP_R_DISABLED))
7358 			ret = io_submit_sqes(ctx, to_submit);
7359 		mutex_unlock(&ctx->uring_lock);
7360 
7361 		if (to_submit && wq_has_sleeper(&ctx->sqo_sq_wait))
7362 			wake_up(&ctx->sqo_sq_wait);
7363 		if (creds)
7364 			revert_creds(creds);
7365 	}
7366 
7367 	return ret;
7368 }
7369 
io_sqd_update_thread_idle(struct io_sq_data * sqd)7370 static void io_sqd_update_thread_idle(struct io_sq_data *sqd)
7371 {
7372 	struct io_ring_ctx *ctx;
7373 	unsigned sq_thread_idle = 0;
7374 
7375 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7376 		sq_thread_idle = max(sq_thread_idle, ctx->sq_thread_idle);
7377 	sqd->sq_thread_idle = sq_thread_idle;
7378 }
7379 
io_sqd_handle_event(struct io_sq_data * sqd)7380 static bool io_sqd_handle_event(struct io_sq_data *sqd)
7381 {
7382 	bool did_sig = false;
7383 	struct ksignal ksig;
7384 
7385 	if (test_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state) ||
7386 	    signal_pending(current)) {
7387 		mutex_unlock(&sqd->lock);
7388 		if (signal_pending(current))
7389 			did_sig = get_signal(&ksig);
7390 		cond_resched();
7391 		mutex_lock(&sqd->lock);
7392 	}
7393 	return did_sig || test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7394 }
7395 
io_sq_thread(void * data)7396 static int io_sq_thread(void *data)
7397 {
7398 	struct io_sq_data *sqd = data;
7399 	struct io_ring_ctx *ctx;
7400 	unsigned long timeout = 0;
7401 	char buf[TASK_COMM_LEN];
7402 	DEFINE_WAIT(wait);
7403 
7404 	snprintf(buf, sizeof(buf), "iou-sqp-%d", sqd->task_pid);
7405 	set_task_comm(current, buf);
7406 
7407 	if (sqd->sq_cpu != -1)
7408 		set_cpus_allowed_ptr(current, cpumask_of(sqd->sq_cpu));
7409 	else
7410 		set_cpus_allowed_ptr(current, cpu_online_mask);
7411 	current->flags |= PF_NO_SETAFFINITY;
7412 
7413 	mutex_lock(&sqd->lock);
7414 	while (1) {
7415 		bool cap_entries, sqt_spin = false;
7416 
7417 		if (io_sqd_events_pending(sqd) || signal_pending(current)) {
7418 			if (io_sqd_handle_event(sqd))
7419 				break;
7420 			timeout = jiffies + sqd->sq_thread_idle;
7421 		}
7422 
7423 		cap_entries = !list_is_singular(&sqd->ctx_list);
7424 		list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7425 			int ret = __io_sq_thread(ctx, cap_entries);
7426 
7427 			if (!sqt_spin && (ret > 0 || !list_empty(&ctx->iopoll_list)))
7428 				sqt_spin = true;
7429 		}
7430 		if (io_run_task_work())
7431 			sqt_spin = true;
7432 
7433 		if (sqt_spin || !time_after(jiffies, timeout)) {
7434 			cond_resched();
7435 			if (sqt_spin)
7436 				timeout = jiffies + sqd->sq_thread_idle;
7437 			continue;
7438 		}
7439 
7440 		prepare_to_wait(&sqd->wait, &wait, TASK_INTERRUPTIBLE);
7441 		if (!io_sqd_events_pending(sqd) && !current->task_works) {
7442 			bool needs_sched = true;
7443 
7444 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list) {
7445 				io_ring_set_wakeup_flag(ctx);
7446 
7447 				if ((ctx->flags & IORING_SETUP_IOPOLL) &&
7448 				    !list_empty_careful(&ctx->iopoll_list)) {
7449 					needs_sched = false;
7450 					break;
7451 				}
7452 				if (io_sqring_entries(ctx)) {
7453 					needs_sched = false;
7454 					break;
7455 				}
7456 			}
7457 
7458 			if (needs_sched) {
7459 				mutex_unlock(&sqd->lock);
7460 				schedule();
7461 				mutex_lock(&sqd->lock);
7462 			}
7463 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7464 				io_ring_clear_wakeup_flag(ctx);
7465 		}
7466 
7467 		finish_wait(&sqd->wait, &wait);
7468 		timeout = jiffies + sqd->sq_thread_idle;
7469 	}
7470 
7471 	io_uring_cancel_generic(true, sqd);
7472 	sqd->thread = NULL;
7473 	list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
7474 		io_ring_set_wakeup_flag(ctx);
7475 	io_run_task_work();
7476 	mutex_unlock(&sqd->lock);
7477 
7478 	complete(&sqd->exited);
7479 	do_exit(0);
7480 }
7481 
7482 struct io_wait_queue {
7483 	struct wait_queue_entry wq;
7484 	struct io_ring_ctx *ctx;
7485 	unsigned cq_tail;
7486 	unsigned nr_timeouts;
7487 };
7488 
io_should_wake(struct io_wait_queue * iowq)7489 static inline bool io_should_wake(struct io_wait_queue *iowq)
7490 {
7491 	struct io_ring_ctx *ctx = iowq->ctx;
7492 	int dist = ctx->cached_cq_tail - (int) iowq->cq_tail;
7493 
7494 	/*
7495 	 * Wake up if we have enough events, or if a timeout occurred since we
7496 	 * started waiting. For timeouts, we always want to return to userspace,
7497 	 * regardless of event count.
7498 	 */
7499 	return dist >= 0 || atomic_read(&ctx->cq_timeouts) != iowq->nr_timeouts;
7500 }
7501 
io_wake_function(struct wait_queue_entry * curr,unsigned int mode,int wake_flags,void * key)7502 static int io_wake_function(struct wait_queue_entry *curr, unsigned int mode,
7503 			    int wake_flags, void *key)
7504 {
7505 	struct io_wait_queue *iowq = container_of(curr, struct io_wait_queue,
7506 							wq);
7507 
7508 	/*
7509 	 * Cannot safely flush overflowed CQEs from here, ensure we wake up
7510 	 * the task, and the next invocation will do it.
7511 	 */
7512 	if (io_should_wake(iowq) || test_bit(0, &iowq->ctx->check_cq_overflow))
7513 		return autoremove_wake_function(curr, mode, wake_flags, key);
7514 	return -1;
7515 }
7516 
io_run_task_work_sig(void)7517 static int io_run_task_work_sig(void)
7518 {
7519 	if (io_run_task_work())
7520 		return 1;
7521 	if (!signal_pending(current))
7522 		return 0;
7523 	if (test_thread_flag(TIF_NOTIFY_SIGNAL))
7524 		return -ERESTARTSYS;
7525 	return -EINTR;
7526 }
7527 
7528 /* when returns >0, the caller should retry */
io_cqring_wait_schedule(struct io_ring_ctx * ctx,struct io_wait_queue * iowq,signed long * timeout)7529 static inline int io_cqring_wait_schedule(struct io_ring_ctx *ctx,
7530 					  struct io_wait_queue *iowq,
7531 					  signed long *timeout)
7532 {
7533 	int ret;
7534 
7535 	/* make sure we run task_work before checking for signals */
7536 	ret = io_run_task_work_sig();
7537 	if (ret || io_should_wake(iowq))
7538 		return ret;
7539 	/* let the caller flush overflows, retry */
7540 	if (test_bit(0, &ctx->check_cq_overflow))
7541 		return 1;
7542 
7543 	*timeout = schedule_timeout(*timeout);
7544 	return !*timeout ? -ETIME : 1;
7545 }
7546 
7547 /*
7548  * Wait until events become available, if we don't already have some. The
7549  * application must reap them itself, as they reside on the shared cq ring.
7550  */
io_cqring_wait(struct io_ring_ctx * ctx,int min_events,const sigset_t __user * sig,size_t sigsz,struct __kernel_timespec __user * uts)7551 static int io_cqring_wait(struct io_ring_ctx *ctx, int min_events,
7552 			  const sigset_t __user *sig, size_t sigsz,
7553 			  struct __kernel_timespec __user *uts)
7554 {
7555 	struct io_wait_queue iowq;
7556 	struct io_rings *rings = ctx->rings;
7557 	signed long timeout = MAX_SCHEDULE_TIMEOUT;
7558 	int ret;
7559 
7560 	do {
7561 		io_cqring_overflow_flush(ctx);
7562 		if (io_cqring_events(ctx) >= min_events)
7563 			return 0;
7564 		if (!io_run_task_work())
7565 			break;
7566 	} while (1);
7567 
7568 	if (uts) {
7569 		struct timespec64 ts;
7570 
7571 		if (get_timespec64(&ts, uts))
7572 			return -EFAULT;
7573 		timeout = timespec64_to_jiffies(&ts);
7574 	}
7575 
7576 	if (sig) {
7577 #ifdef CONFIG_COMPAT
7578 		if (in_compat_syscall())
7579 			ret = set_compat_user_sigmask((const compat_sigset_t __user *)sig,
7580 						      sigsz);
7581 		else
7582 #endif
7583 			ret = set_user_sigmask(sig, sigsz);
7584 
7585 		if (ret)
7586 			return ret;
7587 	}
7588 
7589 	init_waitqueue_func_entry(&iowq.wq, io_wake_function);
7590 	iowq.wq.private = current;
7591 	INIT_LIST_HEAD(&iowq.wq.entry);
7592 	iowq.ctx = ctx;
7593 	iowq.nr_timeouts = atomic_read(&ctx->cq_timeouts);
7594 	iowq.cq_tail = READ_ONCE(ctx->rings->cq.head) + min_events;
7595 
7596 	trace_io_uring_cqring_wait(ctx, min_events);
7597 	do {
7598 		/* if we can't even flush overflow, don't wait for more */
7599 		if (!io_cqring_overflow_flush(ctx)) {
7600 			ret = -EBUSY;
7601 			break;
7602 		}
7603 		prepare_to_wait_exclusive(&ctx->cq_wait, &iowq.wq,
7604 						TASK_INTERRUPTIBLE);
7605 		ret = io_cqring_wait_schedule(ctx, &iowq, &timeout);
7606 		finish_wait(&ctx->cq_wait, &iowq.wq);
7607 		cond_resched();
7608 	} while (ret > 0);
7609 
7610 	restore_saved_sigmask_unless(ret == -EINTR);
7611 
7612 	return READ_ONCE(rings->cq.head) == READ_ONCE(rings->cq.tail) ? ret : 0;
7613 }
7614 
io_free_page_table(void ** table,size_t size)7615 static void io_free_page_table(void **table, size_t size)
7616 {
7617 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7618 
7619 	for (i = 0; i < nr_tables; i++)
7620 		kfree(table[i]);
7621 	kfree(table);
7622 }
7623 
io_alloc_page_table(size_t size)7624 static void **io_alloc_page_table(size_t size)
7625 {
7626 	unsigned i, nr_tables = DIV_ROUND_UP(size, PAGE_SIZE);
7627 	size_t init_size = size;
7628 	void **table;
7629 
7630 	table = kcalloc(nr_tables, sizeof(*table), GFP_KERNEL_ACCOUNT);
7631 	if (!table)
7632 		return NULL;
7633 
7634 	for (i = 0; i < nr_tables; i++) {
7635 		unsigned int this_size = min_t(size_t, size, PAGE_SIZE);
7636 
7637 		table[i] = kzalloc(this_size, GFP_KERNEL_ACCOUNT);
7638 		if (!table[i]) {
7639 			io_free_page_table(table, init_size);
7640 			return NULL;
7641 		}
7642 		size -= this_size;
7643 	}
7644 	return table;
7645 }
7646 
io_rsrc_node_destroy(struct io_rsrc_node * ref_node)7647 static void io_rsrc_node_destroy(struct io_rsrc_node *ref_node)
7648 {
7649 	percpu_ref_exit(&ref_node->refs);
7650 	kfree(ref_node);
7651 }
7652 
io_rsrc_node_ref_zero(struct percpu_ref * ref)7653 static void io_rsrc_node_ref_zero(struct percpu_ref *ref)
7654 {
7655 	struct io_rsrc_node *node = container_of(ref, struct io_rsrc_node, refs);
7656 	struct io_ring_ctx *ctx = node->rsrc_data->ctx;
7657 	unsigned long flags;
7658 	bool first_add = false;
7659 
7660 	spin_lock_irqsave(&ctx->rsrc_ref_lock, flags);
7661 	node->done = true;
7662 
7663 	while (!list_empty(&ctx->rsrc_ref_list)) {
7664 		node = list_first_entry(&ctx->rsrc_ref_list,
7665 					    struct io_rsrc_node, node);
7666 		/* recycle ref nodes in order */
7667 		if (!node->done)
7668 			break;
7669 		list_del(&node->node);
7670 		first_add |= llist_add(&node->llist, &ctx->rsrc_put_llist);
7671 	}
7672 	spin_unlock_irqrestore(&ctx->rsrc_ref_lock, flags);
7673 
7674 	if (first_add)
7675 		mod_delayed_work(system_wq, &ctx->rsrc_put_work, HZ);
7676 }
7677 
io_rsrc_node_alloc(struct io_ring_ctx * ctx)7678 static struct io_rsrc_node *io_rsrc_node_alloc(struct io_ring_ctx *ctx)
7679 {
7680 	struct io_rsrc_node *ref_node;
7681 
7682 	ref_node = kzalloc(sizeof(*ref_node), GFP_KERNEL);
7683 	if (!ref_node)
7684 		return NULL;
7685 
7686 	if (percpu_ref_init(&ref_node->refs, io_rsrc_node_ref_zero,
7687 			    0, GFP_KERNEL)) {
7688 		kfree(ref_node);
7689 		return NULL;
7690 	}
7691 	INIT_LIST_HEAD(&ref_node->node);
7692 	INIT_LIST_HEAD(&ref_node->rsrc_list);
7693 	ref_node->done = false;
7694 	return ref_node;
7695 }
7696 
io_rsrc_node_switch(struct io_ring_ctx * ctx,struct io_rsrc_data * data_to_kill)7697 static void io_rsrc_node_switch(struct io_ring_ctx *ctx,
7698 				struct io_rsrc_data *data_to_kill)
7699 {
7700 	WARN_ON_ONCE(!ctx->rsrc_backup_node);
7701 	WARN_ON_ONCE(data_to_kill && !ctx->rsrc_node);
7702 
7703 	if (data_to_kill) {
7704 		struct io_rsrc_node *rsrc_node = ctx->rsrc_node;
7705 
7706 		rsrc_node->rsrc_data = data_to_kill;
7707 		spin_lock_irq(&ctx->rsrc_ref_lock);
7708 		list_add_tail(&rsrc_node->node, &ctx->rsrc_ref_list);
7709 		spin_unlock_irq(&ctx->rsrc_ref_lock);
7710 
7711 		atomic_inc(&data_to_kill->refs);
7712 		percpu_ref_kill(&rsrc_node->refs);
7713 		ctx->rsrc_node = NULL;
7714 	}
7715 
7716 	if (!ctx->rsrc_node) {
7717 		ctx->rsrc_node = ctx->rsrc_backup_node;
7718 		ctx->rsrc_backup_node = NULL;
7719 	}
7720 }
7721 
io_rsrc_node_switch_start(struct io_ring_ctx * ctx)7722 static int io_rsrc_node_switch_start(struct io_ring_ctx *ctx)
7723 {
7724 	if (ctx->rsrc_backup_node)
7725 		return 0;
7726 	ctx->rsrc_backup_node = io_rsrc_node_alloc(ctx);
7727 	return ctx->rsrc_backup_node ? 0 : -ENOMEM;
7728 }
7729 
io_rsrc_ref_quiesce(struct io_rsrc_data * data,struct io_ring_ctx * ctx)7730 static int io_rsrc_ref_quiesce(struct io_rsrc_data *data, struct io_ring_ctx *ctx)
7731 {
7732 	int ret;
7733 
7734 	/* As we may drop ->uring_lock, other task may have started quiesce */
7735 	if (data->quiesce)
7736 		return -ENXIO;
7737 
7738 	data->quiesce = true;
7739 	do {
7740 		ret = io_rsrc_node_switch_start(ctx);
7741 		if (ret)
7742 			break;
7743 		io_rsrc_node_switch(ctx, data);
7744 
7745 		/* kill initial ref, already quiesced if zero */
7746 		if (atomic_dec_and_test(&data->refs))
7747 			break;
7748 		mutex_unlock(&ctx->uring_lock);
7749 		flush_delayed_work(&ctx->rsrc_put_work);
7750 		ret = wait_for_completion_interruptible(&data->done);
7751 		if (!ret) {
7752 			mutex_lock(&ctx->uring_lock);
7753 			break;
7754 		}
7755 
7756 		atomic_inc(&data->refs);
7757 		/* wait for all works potentially completing data->done */
7758 		flush_delayed_work(&ctx->rsrc_put_work);
7759 		reinit_completion(&data->done);
7760 
7761 		ret = io_run_task_work_sig();
7762 		mutex_lock(&ctx->uring_lock);
7763 	} while (ret >= 0);
7764 	data->quiesce = false;
7765 
7766 	return ret;
7767 }
7768 
io_get_tag_slot(struct io_rsrc_data * data,unsigned int idx)7769 static u64 *io_get_tag_slot(struct io_rsrc_data *data, unsigned int idx)
7770 {
7771 	unsigned int off = idx & IO_RSRC_TAG_TABLE_MASK;
7772 	unsigned int table_idx = idx >> IO_RSRC_TAG_TABLE_SHIFT;
7773 
7774 	return &data->tags[table_idx][off];
7775 }
7776 
io_rsrc_data_free(struct io_rsrc_data * data)7777 static void io_rsrc_data_free(struct io_rsrc_data *data)
7778 {
7779 	size_t size = data->nr * sizeof(data->tags[0][0]);
7780 
7781 	if (data->tags)
7782 		io_free_page_table((void **)data->tags, size);
7783 	kfree(data);
7784 }
7785 
io_rsrc_data_alloc(struct io_ring_ctx * ctx,rsrc_put_fn * do_put,u64 __user * utags,unsigned nr,struct io_rsrc_data ** pdata)7786 static int io_rsrc_data_alloc(struct io_ring_ctx *ctx, rsrc_put_fn *do_put,
7787 			      u64 __user *utags, unsigned nr,
7788 			      struct io_rsrc_data **pdata)
7789 {
7790 	struct io_rsrc_data *data;
7791 	int ret = -ENOMEM;
7792 	unsigned i;
7793 
7794 	data = kzalloc(sizeof(*data), GFP_KERNEL);
7795 	if (!data)
7796 		return -ENOMEM;
7797 	data->tags = (u64 **)io_alloc_page_table(nr * sizeof(data->tags[0][0]));
7798 	if (!data->tags) {
7799 		kfree(data);
7800 		return -ENOMEM;
7801 	}
7802 
7803 	data->nr = nr;
7804 	data->ctx = ctx;
7805 	data->do_put = do_put;
7806 	if (utags) {
7807 		ret = -EFAULT;
7808 		for (i = 0; i < nr; i++) {
7809 			u64 *tag_slot = io_get_tag_slot(data, i);
7810 
7811 			if (copy_from_user(tag_slot, &utags[i],
7812 					   sizeof(*tag_slot)))
7813 				goto fail;
7814 		}
7815 	}
7816 
7817 	atomic_set(&data->refs, 1);
7818 	init_completion(&data->done);
7819 	*pdata = data;
7820 	return 0;
7821 fail:
7822 	io_rsrc_data_free(data);
7823 	return ret;
7824 }
7825 
io_alloc_file_tables(struct io_file_table * table,unsigned nr_files)7826 static bool io_alloc_file_tables(struct io_file_table *table, unsigned nr_files)
7827 {
7828 	table->files = kvcalloc(nr_files, sizeof(table->files[0]),
7829 				GFP_KERNEL_ACCOUNT);
7830 	return !!table->files;
7831 }
7832 
io_free_file_tables(struct io_file_table * table)7833 static void io_free_file_tables(struct io_file_table *table)
7834 {
7835 	kvfree(table->files);
7836 	table->files = NULL;
7837 }
7838 
__io_sqe_files_unregister(struct io_ring_ctx * ctx)7839 static void __io_sqe_files_unregister(struct io_ring_ctx *ctx)
7840 {
7841 #if defined(CONFIG_UNIX)
7842 	if (ctx->ring_sock) {
7843 		struct sock *sock = ctx->ring_sock->sk;
7844 		struct sk_buff *skb;
7845 
7846 		while ((skb = skb_dequeue(&sock->sk_receive_queue)) != NULL)
7847 			kfree_skb(skb);
7848 	}
7849 #else
7850 	int i;
7851 
7852 	for (i = 0; i < ctx->nr_user_files; i++) {
7853 		struct file *file;
7854 
7855 		file = io_file_from_index(ctx, i);
7856 		if (file)
7857 			fput(file);
7858 	}
7859 #endif
7860 	io_free_file_tables(&ctx->file_table);
7861 	io_rsrc_data_free(ctx->file_data);
7862 	ctx->file_data = NULL;
7863 	ctx->nr_user_files = 0;
7864 }
7865 
io_sqe_files_unregister(struct io_ring_ctx * ctx)7866 static int io_sqe_files_unregister(struct io_ring_ctx *ctx)
7867 {
7868 	int ret;
7869 
7870 	if (!ctx->file_data)
7871 		return -ENXIO;
7872 	ret = io_rsrc_ref_quiesce(ctx->file_data, ctx);
7873 	if (!ret)
7874 		__io_sqe_files_unregister(ctx);
7875 	return ret;
7876 }
7877 
io_sq_thread_unpark(struct io_sq_data * sqd)7878 static void io_sq_thread_unpark(struct io_sq_data *sqd)
7879 	__releases(&sqd->lock)
7880 {
7881 	WARN_ON_ONCE(sqd->thread == current);
7882 
7883 	/*
7884 	 * Do the dance but not conditional clear_bit() because it'd race with
7885 	 * other threads incrementing park_pending and setting the bit.
7886 	 */
7887 	clear_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7888 	if (atomic_dec_return(&sqd->park_pending))
7889 		set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7890 	mutex_unlock(&sqd->lock);
7891 }
7892 
io_sq_thread_park(struct io_sq_data * sqd)7893 static void io_sq_thread_park(struct io_sq_data *sqd)
7894 	__acquires(&sqd->lock)
7895 {
7896 	WARN_ON_ONCE(sqd->thread == current);
7897 
7898 	atomic_inc(&sqd->park_pending);
7899 	set_bit(IO_SQ_THREAD_SHOULD_PARK, &sqd->state);
7900 	mutex_lock(&sqd->lock);
7901 	if (sqd->thread)
7902 		wake_up_process(sqd->thread);
7903 }
7904 
io_sq_thread_stop(struct io_sq_data * sqd)7905 static void io_sq_thread_stop(struct io_sq_data *sqd)
7906 {
7907 	WARN_ON_ONCE(sqd->thread == current);
7908 	WARN_ON_ONCE(test_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state));
7909 
7910 	set_bit(IO_SQ_THREAD_SHOULD_STOP, &sqd->state);
7911 	mutex_lock(&sqd->lock);
7912 	if (sqd->thread)
7913 		wake_up_process(sqd->thread);
7914 	mutex_unlock(&sqd->lock);
7915 	wait_for_completion(&sqd->exited);
7916 }
7917 
io_put_sq_data(struct io_sq_data * sqd)7918 static void io_put_sq_data(struct io_sq_data *sqd)
7919 {
7920 	if (refcount_dec_and_test(&sqd->refs)) {
7921 		WARN_ON_ONCE(atomic_read(&sqd->park_pending));
7922 
7923 		io_sq_thread_stop(sqd);
7924 		kfree(sqd);
7925 	}
7926 }
7927 
io_sq_thread_finish(struct io_ring_ctx * ctx)7928 static void io_sq_thread_finish(struct io_ring_ctx *ctx)
7929 {
7930 	struct io_sq_data *sqd = ctx->sq_data;
7931 
7932 	if (sqd) {
7933 		io_sq_thread_park(sqd);
7934 		list_del_init(&ctx->sqd_list);
7935 		io_sqd_update_thread_idle(sqd);
7936 		io_sq_thread_unpark(sqd);
7937 
7938 		io_put_sq_data(sqd);
7939 		ctx->sq_data = NULL;
7940 	}
7941 }
7942 
io_attach_sq_data(struct io_uring_params * p)7943 static struct io_sq_data *io_attach_sq_data(struct io_uring_params *p)
7944 {
7945 	struct io_ring_ctx *ctx_attach;
7946 	struct io_sq_data *sqd;
7947 	struct fd f;
7948 
7949 	f = fdget(p->wq_fd);
7950 	if (!f.file)
7951 		return ERR_PTR(-ENXIO);
7952 	if (f.file->f_op != &io_uring_fops) {
7953 		fdput(f);
7954 		return ERR_PTR(-EINVAL);
7955 	}
7956 
7957 	ctx_attach = f.file->private_data;
7958 	sqd = ctx_attach->sq_data;
7959 	if (!sqd) {
7960 		fdput(f);
7961 		return ERR_PTR(-EINVAL);
7962 	}
7963 	if (sqd->task_tgid != current->tgid) {
7964 		fdput(f);
7965 		return ERR_PTR(-EPERM);
7966 	}
7967 
7968 	refcount_inc(&sqd->refs);
7969 	fdput(f);
7970 	return sqd;
7971 }
7972 
io_get_sq_data(struct io_uring_params * p,bool * attached)7973 static struct io_sq_data *io_get_sq_data(struct io_uring_params *p,
7974 					 bool *attached)
7975 {
7976 	struct io_sq_data *sqd;
7977 
7978 	*attached = false;
7979 	if (p->flags & IORING_SETUP_ATTACH_WQ) {
7980 		sqd = io_attach_sq_data(p);
7981 		if (!IS_ERR(sqd)) {
7982 			*attached = true;
7983 			return sqd;
7984 		}
7985 		/* fall through for EPERM case, setup new sqd/task */
7986 		if (PTR_ERR(sqd) != -EPERM)
7987 			return sqd;
7988 	}
7989 
7990 	sqd = kzalloc(sizeof(*sqd), GFP_KERNEL);
7991 	if (!sqd)
7992 		return ERR_PTR(-ENOMEM);
7993 
7994 	atomic_set(&sqd->park_pending, 0);
7995 	refcount_set(&sqd->refs, 1);
7996 	INIT_LIST_HEAD(&sqd->ctx_list);
7997 	mutex_init(&sqd->lock);
7998 	init_waitqueue_head(&sqd->wait);
7999 	init_completion(&sqd->exited);
8000 	return sqd;
8001 }
8002 
8003 #if defined(CONFIG_UNIX)
8004 /*
8005  * Ensure the UNIX gc is aware of our file set, so we are certain that
8006  * the io_uring can be safely unregistered on process exit, even if we have
8007  * loops in the file referencing.
8008  */
__io_sqe_files_scm(struct io_ring_ctx * ctx,int nr,int offset)8009 static int __io_sqe_files_scm(struct io_ring_ctx *ctx, int nr, int offset)
8010 {
8011 	struct sock *sk = ctx->ring_sock->sk;
8012 	struct scm_fp_list *fpl;
8013 	struct sk_buff *skb;
8014 	int i, nr_files;
8015 
8016 	fpl = kzalloc(sizeof(*fpl), GFP_KERNEL);
8017 	if (!fpl)
8018 		return -ENOMEM;
8019 
8020 	skb = alloc_skb(0, GFP_KERNEL);
8021 	if (!skb) {
8022 		kfree(fpl);
8023 		return -ENOMEM;
8024 	}
8025 
8026 	skb->sk = sk;
8027 
8028 	nr_files = 0;
8029 	fpl->user = get_uid(current_user());
8030 	for (i = 0; i < nr; i++) {
8031 		struct file *file = io_file_from_index(ctx, i + offset);
8032 
8033 		if (!file)
8034 			continue;
8035 		fpl->fp[nr_files] = get_file(file);
8036 		unix_inflight(fpl->user, fpl->fp[nr_files]);
8037 		nr_files++;
8038 	}
8039 
8040 	if (nr_files) {
8041 		fpl->max = SCM_MAX_FD;
8042 		fpl->count = nr_files;
8043 		UNIXCB(skb).fp = fpl;
8044 		skb->destructor = unix_destruct_scm;
8045 		refcount_add(skb->truesize, &sk->sk_wmem_alloc);
8046 		skb_queue_head(&sk->sk_receive_queue, skb);
8047 
8048 		for (i = 0; i < nr_files; i++)
8049 			fput(fpl->fp[i]);
8050 	} else {
8051 		kfree_skb(skb);
8052 		kfree(fpl);
8053 	}
8054 
8055 	return 0;
8056 }
8057 
8058 /*
8059  * If UNIX sockets are enabled, fd passing can cause a reference cycle which
8060  * causes regular reference counting to break down. We rely on the UNIX
8061  * garbage collection to take care of this problem for us.
8062  */
io_sqe_files_scm(struct io_ring_ctx * ctx)8063 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8064 {
8065 	unsigned left, total;
8066 	int ret = 0;
8067 
8068 	total = 0;
8069 	left = ctx->nr_user_files;
8070 	while (left) {
8071 		unsigned this_files = min_t(unsigned, left, SCM_MAX_FD);
8072 
8073 		ret = __io_sqe_files_scm(ctx, this_files, total);
8074 		if (ret)
8075 			break;
8076 		left -= this_files;
8077 		total += this_files;
8078 	}
8079 
8080 	if (!ret)
8081 		return 0;
8082 
8083 	while (total < ctx->nr_user_files) {
8084 		struct file *file = io_file_from_index(ctx, total);
8085 
8086 		if (file)
8087 			fput(file);
8088 		total++;
8089 	}
8090 
8091 	return ret;
8092 }
8093 #else
io_sqe_files_scm(struct io_ring_ctx * ctx)8094 static int io_sqe_files_scm(struct io_ring_ctx *ctx)
8095 {
8096 	return 0;
8097 }
8098 #endif
8099 
io_rsrc_file_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8100 static void io_rsrc_file_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8101 {
8102 	struct file *file = prsrc->file;
8103 #if defined(CONFIG_UNIX)
8104 	struct sock *sock = ctx->ring_sock->sk;
8105 	struct sk_buff_head list, *head = &sock->sk_receive_queue;
8106 	struct sk_buff *skb;
8107 	int i;
8108 
8109 	__skb_queue_head_init(&list);
8110 
8111 	/*
8112 	 * Find the skb that holds this file in its SCM_RIGHTS. When found,
8113 	 * remove this entry and rearrange the file array.
8114 	 */
8115 	skb = skb_dequeue(head);
8116 	while (skb) {
8117 		struct scm_fp_list *fp;
8118 
8119 		fp = UNIXCB(skb).fp;
8120 		for (i = 0; i < fp->count; i++) {
8121 			int left;
8122 
8123 			if (fp->fp[i] != file)
8124 				continue;
8125 
8126 			unix_notinflight(fp->user, fp->fp[i]);
8127 			left = fp->count - 1 - i;
8128 			if (left) {
8129 				memmove(&fp->fp[i], &fp->fp[i + 1],
8130 						left * sizeof(struct file *));
8131 			}
8132 			fp->count--;
8133 			if (!fp->count) {
8134 				kfree_skb(skb);
8135 				skb = NULL;
8136 			} else {
8137 				__skb_queue_tail(&list, skb);
8138 			}
8139 			fput(file);
8140 			file = NULL;
8141 			break;
8142 		}
8143 
8144 		if (!file)
8145 			break;
8146 
8147 		__skb_queue_tail(&list, skb);
8148 
8149 		skb = skb_dequeue(head);
8150 	}
8151 
8152 	if (skb_peek(&list)) {
8153 		spin_lock_irq(&head->lock);
8154 		while ((skb = __skb_dequeue(&list)) != NULL)
8155 			__skb_queue_tail(head, skb);
8156 		spin_unlock_irq(&head->lock);
8157 	}
8158 #else
8159 	fput(file);
8160 #endif
8161 }
8162 
__io_rsrc_put_work(struct io_rsrc_node * ref_node)8163 static void __io_rsrc_put_work(struct io_rsrc_node *ref_node)
8164 {
8165 	struct io_rsrc_data *rsrc_data = ref_node->rsrc_data;
8166 	struct io_ring_ctx *ctx = rsrc_data->ctx;
8167 	struct io_rsrc_put *prsrc, *tmp;
8168 
8169 	list_for_each_entry_safe(prsrc, tmp, &ref_node->rsrc_list, list) {
8170 		list_del(&prsrc->list);
8171 
8172 		if (prsrc->tag) {
8173 			bool lock_ring = ctx->flags & IORING_SETUP_IOPOLL;
8174 
8175 			io_ring_submit_lock(ctx, lock_ring);
8176 			spin_lock(&ctx->completion_lock);
8177 			io_cqring_fill_event(ctx, prsrc->tag, 0, 0);
8178 			ctx->cq_extra++;
8179 			io_commit_cqring(ctx);
8180 			spin_unlock(&ctx->completion_lock);
8181 			io_cqring_ev_posted(ctx);
8182 			io_ring_submit_unlock(ctx, lock_ring);
8183 		}
8184 
8185 		rsrc_data->do_put(ctx, prsrc);
8186 		kfree(prsrc);
8187 	}
8188 
8189 	io_rsrc_node_destroy(ref_node);
8190 	if (atomic_dec_and_test(&rsrc_data->refs))
8191 		complete(&rsrc_data->done);
8192 }
8193 
io_rsrc_put_work(struct work_struct * work)8194 static void io_rsrc_put_work(struct work_struct *work)
8195 {
8196 	struct io_ring_ctx *ctx;
8197 	struct llist_node *node;
8198 
8199 	ctx = container_of(work, struct io_ring_ctx, rsrc_put_work.work);
8200 	node = llist_del_all(&ctx->rsrc_put_llist);
8201 
8202 	while (node) {
8203 		struct io_rsrc_node *ref_node;
8204 		struct llist_node *next = node->next;
8205 
8206 		ref_node = llist_entry(node, struct io_rsrc_node, llist);
8207 		__io_rsrc_put_work(ref_node);
8208 		node = next;
8209 	}
8210 }
8211 
io_sqe_files_register(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args,u64 __user * tags)8212 static int io_sqe_files_register(struct io_ring_ctx *ctx, void __user *arg,
8213 				 unsigned nr_args, u64 __user *tags)
8214 {
8215 	__s32 __user *fds = (__s32 __user *) arg;
8216 	struct file *file;
8217 	int fd, ret;
8218 	unsigned i;
8219 
8220 	if (ctx->file_data)
8221 		return -EBUSY;
8222 	if (!nr_args)
8223 		return -EINVAL;
8224 	if (nr_args > IORING_MAX_FIXED_FILES)
8225 		return -EMFILE;
8226 	if (nr_args > rlimit(RLIMIT_NOFILE))
8227 		return -EMFILE;
8228 	ret = io_rsrc_node_switch_start(ctx);
8229 	if (ret)
8230 		return ret;
8231 	ret = io_rsrc_data_alloc(ctx, io_rsrc_file_put, tags, nr_args,
8232 				 &ctx->file_data);
8233 	if (ret)
8234 		return ret;
8235 
8236 	ret = -ENOMEM;
8237 	if (!io_alloc_file_tables(&ctx->file_table, nr_args))
8238 		goto out_free;
8239 
8240 	for (i = 0; i < nr_args; i++, ctx->nr_user_files++) {
8241 		if (copy_from_user(&fd, &fds[i], sizeof(fd))) {
8242 			ret = -EFAULT;
8243 			goto out_fput;
8244 		}
8245 		/* allow sparse sets */
8246 		if (fd == -1) {
8247 			ret = -EINVAL;
8248 			if (unlikely(*io_get_tag_slot(ctx->file_data, i)))
8249 				goto out_fput;
8250 			continue;
8251 		}
8252 
8253 		file = fget(fd);
8254 		ret = -EBADF;
8255 		if (unlikely(!file))
8256 			goto out_fput;
8257 
8258 		/*
8259 		 * Don't allow io_uring instances to be registered. If UNIX
8260 		 * isn't enabled, then this causes a reference cycle and this
8261 		 * instance can never get freed. If UNIX is enabled we'll
8262 		 * handle it just fine, but there's still no point in allowing
8263 		 * a ring fd as it doesn't support regular read/write anyway.
8264 		 */
8265 		if (file->f_op == &io_uring_fops) {
8266 			fput(file);
8267 			goto out_fput;
8268 		}
8269 		io_fixed_file_set(io_fixed_file_slot(&ctx->file_table, i), file);
8270 	}
8271 
8272 	ret = io_sqe_files_scm(ctx);
8273 	if (ret) {
8274 		__io_sqe_files_unregister(ctx);
8275 		return ret;
8276 	}
8277 
8278 	io_rsrc_node_switch(ctx, NULL);
8279 	return ret;
8280 out_fput:
8281 	for (i = 0; i < ctx->nr_user_files; i++) {
8282 		file = io_file_from_index(ctx, i);
8283 		if (file)
8284 			fput(file);
8285 	}
8286 	io_free_file_tables(&ctx->file_table);
8287 	ctx->nr_user_files = 0;
8288 out_free:
8289 	io_rsrc_data_free(ctx->file_data);
8290 	ctx->file_data = NULL;
8291 	return ret;
8292 }
8293 
io_sqe_file_register(struct io_ring_ctx * ctx,struct file * file,int index)8294 static int io_sqe_file_register(struct io_ring_ctx *ctx, struct file *file,
8295 				int index)
8296 {
8297 #if defined(CONFIG_UNIX)
8298 	struct sock *sock = ctx->ring_sock->sk;
8299 	struct sk_buff_head *head = &sock->sk_receive_queue;
8300 	struct sk_buff *skb;
8301 
8302 	/*
8303 	 * See if we can merge this file into an existing skb SCM_RIGHTS
8304 	 * file set. If there's no room, fall back to allocating a new skb
8305 	 * and filling it in.
8306 	 */
8307 	spin_lock_irq(&head->lock);
8308 	skb = skb_peek(head);
8309 	if (skb) {
8310 		struct scm_fp_list *fpl = UNIXCB(skb).fp;
8311 
8312 		if (fpl->count < SCM_MAX_FD) {
8313 			__skb_unlink(skb, head);
8314 			spin_unlock_irq(&head->lock);
8315 			fpl->fp[fpl->count] = get_file(file);
8316 			unix_inflight(fpl->user, fpl->fp[fpl->count]);
8317 			fpl->count++;
8318 			spin_lock_irq(&head->lock);
8319 			__skb_queue_head(head, skb);
8320 		} else {
8321 			skb = NULL;
8322 		}
8323 	}
8324 	spin_unlock_irq(&head->lock);
8325 
8326 	if (skb) {
8327 		fput(file);
8328 		return 0;
8329 	}
8330 
8331 	return __io_sqe_files_scm(ctx, 1, index);
8332 #else
8333 	return 0;
8334 #endif
8335 }
8336 
io_queue_rsrc_removal(struct io_rsrc_data * data,unsigned idx,struct io_rsrc_node * node,void * rsrc)8337 static int io_queue_rsrc_removal(struct io_rsrc_data *data, unsigned idx,
8338 				 struct io_rsrc_node *node, void *rsrc)
8339 {
8340 	struct io_rsrc_put *prsrc;
8341 
8342 	prsrc = kzalloc(sizeof(*prsrc), GFP_KERNEL);
8343 	if (!prsrc)
8344 		return -ENOMEM;
8345 
8346 	prsrc->tag = *io_get_tag_slot(data, idx);
8347 	prsrc->rsrc = rsrc;
8348 	list_add(&prsrc->list, &node->rsrc_list);
8349 	return 0;
8350 }
8351 
io_install_fixed_file(struct io_kiocb * req,struct file * file,unsigned int issue_flags,u32 slot_index)8352 static int io_install_fixed_file(struct io_kiocb *req, struct file *file,
8353 				 unsigned int issue_flags, u32 slot_index)
8354 {
8355 	struct io_ring_ctx *ctx = req->ctx;
8356 	bool force_nonblock = issue_flags & IO_URING_F_NONBLOCK;
8357 	bool needs_switch = false;
8358 	struct io_fixed_file *file_slot;
8359 	int ret = -EBADF;
8360 
8361 	io_ring_submit_lock(ctx, !force_nonblock);
8362 	if (file->f_op == &io_uring_fops)
8363 		goto err;
8364 	ret = -ENXIO;
8365 	if (!ctx->file_data)
8366 		goto err;
8367 	ret = -EINVAL;
8368 	if (slot_index >= ctx->nr_user_files)
8369 		goto err;
8370 
8371 	slot_index = array_index_nospec(slot_index, ctx->nr_user_files);
8372 	file_slot = io_fixed_file_slot(&ctx->file_table, slot_index);
8373 
8374 	if (file_slot->file_ptr) {
8375 		struct file *old_file;
8376 
8377 		ret = io_rsrc_node_switch_start(ctx);
8378 		if (ret)
8379 			goto err;
8380 
8381 		old_file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8382 		ret = io_queue_rsrc_removal(ctx->file_data, slot_index,
8383 					    ctx->rsrc_node, old_file);
8384 		if (ret)
8385 			goto err;
8386 		file_slot->file_ptr = 0;
8387 		needs_switch = true;
8388 	}
8389 
8390 	*io_get_tag_slot(ctx->file_data, slot_index) = 0;
8391 	io_fixed_file_set(file_slot, file);
8392 	ret = io_sqe_file_register(ctx, file, slot_index);
8393 	if (ret) {
8394 		file_slot->file_ptr = 0;
8395 		goto err;
8396 	}
8397 
8398 	ret = 0;
8399 err:
8400 	if (needs_switch)
8401 		io_rsrc_node_switch(ctx, ctx->file_data);
8402 	io_ring_submit_unlock(ctx, !force_nonblock);
8403 	if (ret)
8404 		fput(file);
8405 	return ret;
8406 }
8407 
io_close_fixed(struct io_kiocb * req,unsigned int issue_flags)8408 static int io_close_fixed(struct io_kiocb *req, unsigned int issue_flags)
8409 {
8410 	unsigned int offset = req->close.file_slot - 1;
8411 	struct io_ring_ctx *ctx = req->ctx;
8412 	struct io_fixed_file *file_slot;
8413 	struct file *file;
8414 	int ret, i;
8415 
8416 	io_ring_submit_lock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8417 	ret = -ENXIO;
8418 	if (unlikely(!ctx->file_data))
8419 		goto out;
8420 	ret = -EINVAL;
8421 	if (offset >= ctx->nr_user_files)
8422 		goto out;
8423 	ret = io_rsrc_node_switch_start(ctx);
8424 	if (ret)
8425 		goto out;
8426 
8427 	i = array_index_nospec(offset, ctx->nr_user_files);
8428 	file_slot = io_fixed_file_slot(&ctx->file_table, i);
8429 	ret = -EBADF;
8430 	if (!file_slot->file_ptr)
8431 		goto out;
8432 
8433 	file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8434 	ret = io_queue_rsrc_removal(ctx->file_data, offset, ctx->rsrc_node, file);
8435 	if (ret)
8436 		goto out;
8437 
8438 	file_slot->file_ptr = 0;
8439 	io_rsrc_node_switch(ctx, ctx->file_data);
8440 	ret = 0;
8441 out:
8442 	io_ring_submit_unlock(ctx, !(issue_flags & IO_URING_F_NONBLOCK));
8443 	return ret;
8444 }
8445 
__io_sqe_files_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned nr_args)8446 static int __io_sqe_files_update(struct io_ring_ctx *ctx,
8447 				 struct io_uring_rsrc_update2 *up,
8448 				 unsigned nr_args)
8449 {
8450 	u64 __user *tags = u64_to_user_ptr(up->tags);
8451 	__s32 __user *fds = u64_to_user_ptr(up->data);
8452 	struct io_rsrc_data *data = ctx->file_data;
8453 	struct io_fixed_file *file_slot;
8454 	struct file *file;
8455 	int fd, i, err = 0;
8456 	unsigned int done;
8457 	bool needs_switch = false;
8458 
8459 	if (!ctx->file_data)
8460 		return -ENXIO;
8461 	if (up->offset + nr_args > ctx->nr_user_files)
8462 		return -EINVAL;
8463 
8464 	for (done = 0; done < nr_args; done++) {
8465 		u64 tag = 0;
8466 
8467 		if ((tags && copy_from_user(&tag, &tags[done], sizeof(tag))) ||
8468 		    copy_from_user(&fd, &fds[done], sizeof(fd))) {
8469 			err = -EFAULT;
8470 			break;
8471 		}
8472 		if ((fd == IORING_REGISTER_FILES_SKIP || fd == -1) && tag) {
8473 			err = -EINVAL;
8474 			break;
8475 		}
8476 		if (fd == IORING_REGISTER_FILES_SKIP)
8477 			continue;
8478 
8479 		i = array_index_nospec(up->offset + done, ctx->nr_user_files);
8480 		file_slot = io_fixed_file_slot(&ctx->file_table, i);
8481 
8482 		if (file_slot->file_ptr) {
8483 			file = (struct file *)(file_slot->file_ptr & FFS_MASK);
8484 			err = io_queue_rsrc_removal(data, up->offset + done,
8485 						    ctx->rsrc_node, file);
8486 			if (err)
8487 				break;
8488 			file_slot->file_ptr = 0;
8489 			needs_switch = true;
8490 		}
8491 		if (fd != -1) {
8492 			file = fget(fd);
8493 			if (!file) {
8494 				err = -EBADF;
8495 				break;
8496 			}
8497 			/*
8498 			 * Don't allow io_uring instances to be registered. If
8499 			 * UNIX isn't enabled, then this causes a reference
8500 			 * cycle and this instance can never get freed. If UNIX
8501 			 * is enabled we'll handle it just fine, but there's
8502 			 * still no point in allowing a ring fd as it doesn't
8503 			 * support regular read/write anyway.
8504 			 */
8505 			if (file->f_op == &io_uring_fops) {
8506 				fput(file);
8507 				err = -EBADF;
8508 				break;
8509 			}
8510 			*io_get_tag_slot(data, up->offset + done) = tag;
8511 			io_fixed_file_set(file_slot, file);
8512 			err = io_sqe_file_register(ctx, file, i);
8513 			if (err) {
8514 				file_slot->file_ptr = 0;
8515 				fput(file);
8516 				break;
8517 			}
8518 		}
8519 	}
8520 
8521 	if (needs_switch)
8522 		io_rsrc_node_switch(ctx, data);
8523 	return done ? done : err;
8524 }
8525 
io_init_wq_offload(struct io_ring_ctx * ctx,struct task_struct * task)8526 static struct io_wq *io_init_wq_offload(struct io_ring_ctx *ctx,
8527 					struct task_struct *task)
8528 {
8529 	struct io_wq_hash *hash;
8530 	struct io_wq_data data;
8531 	unsigned int concurrency;
8532 
8533 	mutex_lock(&ctx->uring_lock);
8534 	hash = ctx->hash_map;
8535 	if (!hash) {
8536 		hash = kzalloc(sizeof(*hash), GFP_KERNEL);
8537 		if (!hash) {
8538 			mutex_unlock(&ctx->uring_lock);
8539 			return ERR_PTR(-ENOMEM);
8540 		}
8541 		refcount_set(&hash->refs, 1);
8542 		init_waitqueue_head(&hash->wait);
8543 		ctx->hash_map = hash;
8544 	}
8545 	mutex_unlock(&ctx->uring_lock);
8546 
8547 	data.hash = hash;
8548 	data.task = task;
8549 	data.free_work = io_wq_free_work;
8550 	data.do_work = io_wq_submit_work;
8551 
8552 	/* Do QD, or 4 * CPUS, whatever is smallest */
8553 	concurrency = min(ctx->sq_entries, 4 * num_online_cpus());
8554 
8555 	return io_wq_create(concurrency, &data);
8556 }
8557 
io_uring_alloc_task_context(struct task_struct * task,struct io_ring_ctx * ctx)8558 static int io_uring_alloc_task_context(struct task_struct *task,
8559 				       struct io_ring_ctx *ctx)
8560 {
8561 	struct io_uring_task *tctx;
8562 	int ret;
8563 
8564 	tctx = kzalloc(sizeof(*tctx), GFP_KERNEL);
8565 	if (unlikely(!tctx))
8566 		return -ENOMEM;
8567 
8568 	ret = percpu_counter_init(&tctx->inflight, 0, GFP_KERNEL);
8569 	if (unlikely(ret)) {
8570 		kfree(tctx);
8571 		return ret;
8572 	}
8573 
8574 	tctx->io_wq = io_init_wq_offload(ctx, task);
8575 	if (IS_ERR(tctx->io_wq)) {
8576 		ret = PTR_ERR(tctx->io_wq);
8577 		percpu_counter_destroy(&tctx->inflight);
8578 		kfree(tctx);
8579 		return ret;
8580 	}
8581 
8582 	xa_init(&tctx->xa);
8583 	init_waitqueue_head(&tctx->wait);
8584 	atomic_set(&tctx->in_idle, 0);
8585 	atomic_set(&tctx->inflight_tracked, 0);
8586 	task->io_uring = tctx;
8587 	spin_lock_init(&tctx->task_lock);
8588 	INIT_WQ_LIST(&tctx->task_list);
8589 	init_task_work(&tctx->task_work, tctx_task_work);
8590 	return 0;
8591 }
8592 
__io_uring_free(struct task_struct * tsk)8593 void __io_uring_free(struct task_struct *tsk)
8594 {
8595 	struct io_uring_task *tctx = tsk->io_uring;
8596 
8597 	WARN_ON_ONCE(!xa_empty(&tctx->xa));
8598 	WARN_ON_ONCE(tctx->io_wq);
8599 	WARN_ON_ONCE(tctx->cached_refs);
8600 
8601 	percpu_counter_destroy(&tctx->inflight);
8602 	kfree(tctx);
8603 	tsk->io_uring = NULL;
8604 }
8605 
io_sq_offload_create(struct io_ring_ctx * ctx,struct io_uring_params * p)8606 static int io_sq_offload_create(struct io_ring_ctx *ctx,
8607 				struct io_uring_params *p)
8608 {
8609 	int ret;
8610 
8611 	/* Retain compatibility with failing for an invalid attach attempt */
8612 	if ((ctx->flags & (IORING_SETUP_ATTACH_WQ | IORING_SETUP_SQPOLL)) ==
8613 				IORING_SETUP_ATTACH_WQ) {
8614 		struct fd f;
8615 
8616 		f = fdget(p->wq_fd);
8617 		if (!f.file)
8618 			return -ENXIO;
8619 		if (f.file->f_op != &io_uring_fops) {
8620 			fdput(f);
8621 			return -EINVAL;
8622 		}
8623 		fdput(f);
8624 	}
8625 	if (ctx->flags & IORING_SETUP_SQPOLL) {
8626 		struct task_struct *tsk;
8627 		struct io_sq_data *sqd;
8628 		bool attached;
8629 
8630 		sqd = io_get_sq_data(p, &attached);
8631 		if (IS_ERR(sqd)) {
8632 			ret = PTR_ERR(sqd);
8633 			goto err;
8634 		}
8635 
8636 		ctx->sq_creds = get_current_cred();
8637 		ctx->sq_data = sqd;
8638 		ctx->sq_thread_idle = msecs_to_jiffies(p->sq_thread_idle);
8639 		if (!ctx->sq_thread_idle)
8640 			ctx->sq_thread_idle = HZ;
8641 
8642 		io_sq_thread_park(sqd);
8643 		list_add(&ctx->sqd_list, &sqd->ctx_list);
8644 		io_sqd_update_thread_idle(sqd);
8645 		/* don't attach to a dying SQPOLL thread, would be racy */
8646 		ret = (attached && !sqd->thread) ? -ENXIO : 0;
8647 		io_sq_thread_unpark(sqd);
8648 
8649 		if (ret < 0)
8650 			goto err;
8651 		if (attached)
8652 			return 0;
8653 
8654 		if (p->flags & IORING_SETUP_SQ_AFF) {
8655 			int cpu = p->sq_thread_cpu;
8656 
8657 			ret = -EINVAL;
8658 			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
8659 				goto err_sqpoll;
8660 			sqd->sq_cpu = cpu;
8661 		} else {
8662 			sqd->sq_cpu = -1;
8663 		}
8664 
8665 		sqd->task_pid = current->pid;
8666 		sqd->task_tgid = current->tgid;
8667 		tsk = create_io_thread(io_sq_thread, sqd, NUMA_NO_NODE);
8668 		if (IS_ERR(tsk)) {
8669 			ret = PTR_ERR(tsk);
8670 			goto err_sqpoll;
8671 		}
8672 
8673 		sqd->thread = tsk;
8674 		ret = io_uring_alloc_task_context(tsk, ctx);
8675 		wake_up_new_task(tsk);
8676 		if (ret)
8677 			goto err;
8678 	} else if (p->flags & IORING_SETUP_SQ_AFF) {
8679 		/* Can't have SQ_AFF without SQPOLL */
8680 		ret = -EINVAL;
8681 		goto err;
8682 	}
8683 
8684 	return 0;
8685 err_sqpoll:
8686 	complete(&ctx->sq_data->exited);
8687 err:
8688 	io_sq_thread_finish(ctx);
8689 	return ret;
8690 }
8691 
__io_unaccount_mem(struct user_struct * user,unsigned long nr_pages)8692 static inline void __io_unaccount_mem(struct user_struct *user,
8693 				      unsigned long nr_pages)
8694 {
8695 	atomic_long_sub(nr_pages, &user->locked_vm);
8696 }
8697 
__io_account_mem(struct user_struct * user,unsigned long nr_pages)8698 static inline int __io_account_mem(struct user_struct *user,
8699 				   unsigned long nr_pages)
8700 {
8701 	unsigned long page_limit, cur_pages, new_pages;
8702 
8703 	/* Don't allow more pages than we can safely lock */
8704 	page_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
8705 
8706 	do {
8707 		cur_pages = atomic_long_read(&user->locked_vm);
8708 		new_pages = cur_pages + nr_pages;
8709 		if (new_pages > page_limit)
8710 			return -ENOMEM;
8711 	} while (atomic_long_cmpxchg(&user->locked_vm, cur_pages,
8712 					new_pages) != cur_pages);
8713 
8714 	return 0;
8715 }
8716 
io_unaccount_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8717 static void io_unaccount_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8718 {
8719 	if (ctx->user)
8720 		__io_unaccount_mem(ctx->user, nr_pages);
8721 
8722 	if (ctx->mm_account)
8723 		atomic64_sub(nr_pages, &ctx->mm_account->pinned_vm);
8724 }
8725 
io_account_mem(struct io_ring_ctx * ctx,unsigned long nr_pages)8726 static int io_account_mem(struct io_ring_ctx *ctx, unsigned long nr_pages)
8727 {
8728 	int ret;
8729 
8730 	if (ctx->user) {
8731 		ret = __io_account_mem(ctx->user, nr_pages);
8732 		if (ret)
8733 			return ret;
8734 	}
8735 
8736 	if (ctx->mm_account)
8737 		atomic64_add(nr_pages, &ctx->mm_account->pinned_vm);
8738 
8739 	return 0;
8740 }
8741 
io_mem_free(void * ptr)8742 static void io_mem_free(void *ptr)
8743 {
8744 	struct page *page;
8745 
8746 	if (!ptr)
8747 		return;
8748 
8749 	page = virt_to_head_page(ptr);
8750 	if (put_page_testzero(page))
8751 		free_compound_page(page);
8752 }
8753 
io_mem_alloc(size_t size)8754 static void *io_mem_alloc(size_t size)
8755 {
8756 	gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN | __GFP_COMP |
8757 				__GFP_NORETRY | __GFP_ACCOUNT;
8758 
8759 	return (void *) __get_free_pages(gfp_flags, get_order(size));
8760 }
8761 
rings_size(unsigned sq_entries,unsigned cq_entries,size_t * sq_offset)8762 static unsigned long rings_size(unsigned sq_entries, unsigned cq_entries,
8763 				size_t *sq_offset)
8764 {
8765 	struct io_rings *rings;
8766 	size_t off, sq_array_size;
8767 
8768 	off = struct_size(rings, cqes, cq_entries);
8769 	if (off == SIZE_MAX)
8770 		return SIZE_MAX;
8771 
8772 #ifdef CONFIG_SMP
8773 	off = ALIGN(off, SMP_CACHE_BYTES);
8774 	if (off == 0)
8775 		return SIZE_MAX;
8776 #endif
8777 
8778 	if (sq_offset)
8779 		*sq_offset = off;
8780 
8781 	sq_array_size = array_size(sizeof(u32), sq_entries);
8782 	if (sq_array_size == SIZE_MAX)
8783 		return SIZE_MAX;
8784 
8785 	if (check_add_overflow(off, sq_array_size, &off))
8786 		return SIZE_MAX;
8787 
8788 	return off;
8789 }
8790 
io_buffer_unmap(struct io_ring_ctx * ctx,struct io_mapped_ubuf ** slot)8791 static void io_buffer_unmap(struct io_ring_ctx *ctx, struct io_mapped_ubuf **slot)
8792 {
8793 	struct io_mapped_ubuf *imu = *slot;
8794 	unsigned int i;
8795 
8796 	if (imu != ctx->dummy_ubuf) {
8797 		for (i = 0; i < imu->nr_bvecs; i++)
8798 			unpin_user_page(imu->bvec[i].bv_page);
8799 		if (imu->acct_pages)
8800 			io_unaccount_mem(ctx, imu->acct_pages);
8801 		kvfree(imu);
8802 	}
8803 	*slot = NULL;
8804 }
8805 
io_rsrc_buf_put(struct io_ring_ctx * ctx,struct io_rsrc_put * prsrc)8806 static void io_rsrc_buf_put(struct io_ring_ctx *ctx, struct io_rsrc_put *prsrc)
8807 {
8808 	io_buffer_unmap(ctx, &prsrc->buf);
8809 	prsrc->buf = NULL;
8810 }
8811 
__io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8812 static void __io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8813 {
8814 	unsigned int i;
8815 
8816 	for (i = 0; i < ctx->nr_user_bufs; i++)
8817 		io_buffer_unmap(ctx, &ctx->user_bufs[i]);
8818 	kfree(ctx->user_bufs);
8819 	io_rsrc_data_free(ctx->buf_data);
8820 	ctx->user_bufs = NULL;
8821 	ctx->buf_data = NULL;
8822 	ctx->nr_user_bufs = 0;
8823 }
8824 
io_sqe_buffers_unregister(struct io_ring_ctx * ctx)8825 static int io_sqe_buffers_unregister(struct io_ring_ctx *ctx)
8826 {
8827 	int ret;
8828 
8829 	if (!ctx->buf_data)
8830 		return -ENXIO;
8831 
8832 	ret = io_rsrc_ref_quiesce(ctx->buf_data, ctx);
8833 	if (!ret)
8834 		__io_sqe_buffers_unregister(ctx);
8835 	return ret;
8836 }
8837 
io_copy_iov(struct io_ring_ctx * ctx,struct iovec * dst,void __user * arg,unsigned index)8838 static int io_copy_iov(struct io_ring_ctx *ctx, struct iovec *dst,
8839 		       void __user *arg, unsigned index)
8840 {
8841 	struct iovec __user *src;
8842 
8843 #ifdef CONFIG_COMPAT
8844 	if (ctx->compat) {
8845 		struct compat_iovec __user *ciovs;
8846 		struct compat_iovec ciov;
8847 
8848 		ciovs = (struct compat_iovec __user *) arg;
8849 		if (copy_from_user(&ciov, &ciovs[index], sizeof(ciov)))
8850 			return -EFAULT;
8851 
8852 		dst->iov_base = u64_to_user_ptr((u64)ciov.iov_base);
8853 		dst->iov_len = ciov.iov_len;
8854 		return 0;
8855 	}
8856 #endif
8857 	src = (struct iovec __user *) arg;
8858 	if (copy_from_user(dst, &src[index], sizeof(*dst)))
8859 		return -EFAULT;
8860 	return 0;
8861 }
8862 
8863 /*
8864  * Not super efficient, but this is just a registration time. And we do cache
8865  * the last compound head, so generally we'll only do a full search if we don't
8866  * match that one.
8867  *
8868  * We check if the given compound head page has already been accounted, to
8869  * avoid double accounting it. This allows us to account the full size of the
8870  * page, not just the constituent pages of a huge page.
8871  */
headpage_already_acct(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct page * hpage)8872 static bool headpage_already_acct(struct io_ring_ctx *ctx, struct page **pages,
8873 				  int nr_pages, struct page *hpage)
8874 {
8875 	int i, j;
8876 
8877 	/* check current page array */
8878 	for (i = 0; i < nr_pages; i++) {
8879 		if (!PageCompound(pages[i]))
8880 			continue;
8881 		if (compound_head(pages[i]) == hpage)
8882 			return true;
8883 	}
8884 
8885 	/* check previously registered pages */
8886 	for (i = 0; i < ctx->nr_user_bufs; i++) {
8887 		struct io_mapped_ubuf *imu = ctx->user_bufs[i];
8888 
8889 		for (j = 0; j < imu->nr_bvecs; j++) {
8890 			if (!PageCompound(imu->bvec[j].bv_page))
8891 				continue;
8892 			if (compound_head(imu->bvec[j].bv_page) == hpage)
8893 				return true;
8894 		}
8895 	}
8896 
8897 	return false;
8898 }
8899 
io_buffer_account_pin(struct io_ring_ctx * ctx,struct page ** pages,int nr_pages,struct io_mapped_ubuf * imu,struct page ** last_hpage)8900 static int io_buffer_account_pin(struct io_ring_ctx *ctx, struct page **pages,
8901 				 int nr_pages, struct io_mapped_ubuf *imu,
8902 				 struct page **last_hpage)
8903 {
8904 	int i, ret;
8905 
8906 	imu->acct_pages = 0;
8907 	for (i = 0; i < nr_pages; i++) {
8908 		if (!PageCompound(pages[i])) {
8909 			imu->acct_pages++;
8910 		} else {
8911 			struct page *hpage;
8912 
8913 			hpage = compound_head(pages[i]);
8914 			if (hpage == *last_hpage)
8915 				continue;
8916 			*last_hpage = hpage;
8917 			if (headpage_already_acct(ctx, pages, i, hpage))
8918 				continue;
8919 			imu->acct_pages += page_size(hpage) >> PAGE_SHIFT;
8920 		}
8921 	}
8922 
8923 	if (!imu->acct_pages)
8924 		return 0;
8925 
8926 	ret = io_account_mem(ctx, imu->acct_pages);
8927 	if (ret)
8928 		imu->acct_pages = 0;
8929 	return ret;
8930 }
8931 
io_sqe_buffer_register(struct io_ring_ctx * ctx,struct iovec * iov,struct io_mapped_ubuf ** pimu,struct page ** last_hpage)8932 static int io_sqe_buffer_register(struct io_ring_ctx *ctx, struct iovec *iov,
8933 				  struct io_mapped_ubuf **pimu,
8934 				  struct page **last_hpage)
8935 {
8936 	struct io_mapped_ubuf *imu = NULL;
8937 	struct vm_area_struct **vmas = NULL;
8938 	struct page **pages = NULL;
8939 	unsigned long off, start, end, ubuf;
8940 	size_t size;
8941 	int ret, pret, nr_pages, i;
8942 
8943 	if (!iov->iov_base) {
8944 		*pimu = ctx->dummy_ubuf;
8945 		return 0;
8946 	}
8947 
8948 	ubuf = (unsigned long) iov->iov_base;
8949 	end = (ubuf + iov->iov_len + PAGE_SIZE - 1) >> PAGE_SHIFT;
8950 	start = ubuf >> PAGE_SHIFT;
8951 	nr_pages = end - start;
8952 
8953 	*pimu = NULL;
8954 	ret = -ENOMEM;
8955 
8956 	pages = kvmalloc_array(nr_pages, sizeof(struct page *), GFP_KERNEL);
8957 	if (!pages)
8958 		goto done;
8959 
8960 	vmas = kvmalloc_array(nr_pages, sizeof(struct vm_area_struct *),
8961 			      GFP_KERNEL);
8962 	if (!vmas)
8963 		goto done;
8964 
8965 	imu = kvmalloc(struct_size(imu, bvec, nr_pages), GFP_KERNEL);
8966 	if (!imu)
8967 		goto done;
8968 
8969 	ret = 0;
8970 	mmap_read_lock(current->mm);
8971 	pret = pin_user_pages(ubuf, nr_pages, FOLL_WRITE | FOLL_LONGTERM,
8972 			      pages, vmas);
8973 	if (pret == nr_pages) {
8974 		/* don't support file backed memory */
8975 		for (i = 0; i < nr_pages; i++) {
8976 			struct vm_area_struct *vma = vmas[i];
8977 
8978 			if (vma_is_shmem(vma))
8979 				continue;
8980 			if (vma->vm_file &&
8981 			    !is_file_hugepages(vma->vm_file)) {
8982 				ret = -EOPNOTSUPP;
8983 				break;
8984 			}
8985 		}
8986 	} else {
8987 		ret = pret < 0 ? pret : -EFAULT;
8988 	}
8989 	mmap_read_unlock(current->mm);
8990 	if (ret) {
8991 		/*
8992 		 * if we did partial map, or found file backed vmas,
8993 		 * release any pages we did get
8994 		 */
8995 		if (pret > 0)
8996 			unpin_user_pages(pages, pret);
8997 		goto done;
8998 	}
8999 
9000 	ret = io_buffer_account_pin(ctx, pages, pret, imu, last_hpage);
9001 	if (ret) {
9002 		unpin_user_pages(pages, pret);
9003 		goto done;
9004 	}
9005 
9006 	off = ubuf & ~PAGE_MASK;
9007 	size = iov->iov_len;
9008 	for (i = 0; i < nr_pages; i++) {
9009 		size_t vec_len;
9010 
9011 		vec_len = min_t(size_t, size, PAGE_SIZE - off);
9012 		imu->bvec[i].bv_page = pages[i];
9013 		imu->bvec[i].bv_len = vec_len;
9014 		imu->bvec[i].bv_offset = off;
9015 		off = 0;
9016 		size -= vec_len;
9017 	}
9018 	/* store original address for later verification */
9019 	imu->ubuf = ubuf;
9020 	imu->ubuf_end = ubuf + iov->iov_len;
9021 	imu->nr_bvecs = nr_pages;
9022 	*pimu = imu;
9023 	ret = 0;
9024 done:
9025 	if (ret)
9026 		kvfree(imu);
9027 	kvfree(pages);
9028 	kvfree(vmas);
9029 	return ret;
9030 }
9031 
io_buffers_map_alloc(struct io_ring_ctx * ctx,unsigned int nr_args)9032 static int io_buffers_map_alloc(struct io_ring_ctx *ctx, unsigned int nr_args)
9033 {
9034 	ctx->user_bufs = kcalloc(nr_args, sizeof(*ctx->user_bufs), GFP_KERNEL);
9035 	return ctx->user_bufs ? 0 : -ENOMEM;
9036 }
9037 
io_buffer_validate(struct iovec * iov)9038 static int io_buffer_validate(struct iovec *iov)
9039 {
9040 	unsigned long tmp, acct_len = iov->iov_len + (PAGE_SIZE - 1);
9041 
9042 	/*
9043 	 * Don't impose further limits on the size and buffer
9044 	 * constraints here, we'll -EINVAL later when IO is
9045 	 * submitted if they are wrong.
9046 	 */
9047 	if (!iov->iov_base)
9048 		return iov->iov_len ? -EFAULT : 0;
9049 	if (!iov->iov_len)
9050 		return -EFAULT;
9051 
9052 	/* arbitrary limit, but we need something */
9053 	if (iov->iov_len > SZ_1G)
9054 		return -EFAULT;
9055 
9056 	if (check_add_overflow((unsigned long)iov->iov_base, acct_len, &tmp))
9057 		return -EOVERFLOW;
9058 
9059 	return 0;
9060 }
9061 
io_sqe_buffers_register(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args,u64 __user * tags)9062 static int io_sqe_buffers_register(struct io_ring_ctx *ctx, void __user *arg,
9063 				   unsigned int nr_args, u64 __user *tags)
9064 {
9065 	struct page *last_hpage = NULL;
9066 	struct io_rsrc_data *data;
9067 	int i, ret;
9068 	struct iovec iov;
9069 
9070 	if (ctx->user_bufs)
9071 		return -EBUSY;
9072 	if (!nr_args || nr_args > IORING_MAX_REG_BUFFERS)
9073 		return -EINVAL;
9074 	ret = io_rsrc_node_switch_start(ctx);
9075 	if (ret)
9076 		return ret;
9077 	ret = io_rsrc_data_alloc(ctx, io_rsrc_buf_put, tags, nr_args, &data);
9078 	if (ret)
9079 		return ret;
9080 	ret = io_buffers_map_alloc(ctx, nr_args);
9081 	if (ret) {
9082 		io_rsrc_data_free(data);
9083 		return ret;
9084 	}
9085 
9086 	for (i = 0; i < nr_args; i++, ctx->nr_user_bufs++) {
9087 		ret = io_copy_iov(ctx, &iov, arg, i);
9088 		if (ret)
9089 			break;
9090 		ret = io_buffer_validate(&iov);
9091 		if (ret)
9092 			break;
9093 		if (!iov.iov_base && *io_get_tag_slot(data, i)) {
9094 			ret = -EINVAL;
9095 			break;
9096 		}
9097 
9098 		ret = io_sqe_buffer_register(ctx, &iov, &ctx->user_bufs[i],
9099 					     &last_hpage);
9100 		if (ret)
9101 			break;
9102 	}
9103 
9104 	WARN_ON_ONCE(ctx->buf_data);
9105 
9106 	ctx->buf_data = data;
9107 	if (ret)
9108 		__io_sqe_buffers_unregister(ctx);
9109 	else
9110 		io_rsrc_node_switch(ctx, NULL);
9111 	return ret;
9112 }
9113 
__io_sqe_buffers_update(struct io_ring_ctx * ctx,struct io_uring_rsrc_update2 * up,unsigned int nr_args)9114 static int __io_sqe_buffers_update(struct io_ring_ctx *ctx,
9115 				   struct io_uring_rsrc_update2 *up,
9116 				   unsigned int nr_args)
9117 {
9118 	u64 __user *tags = u64_to_user_ptr(up->tags);
9119 	struct iovec iov, __user *iovs = u64_to_user_ptr(up->data);
9120 	struct page *last_hpage = NULL;
9121 	bool needs_switch = false;
9122 	__u32 done;
9123 	int i, err;
9124 
9125 	if (!ctx->buf_data)
9126 		return -ENXIO;
9127 	if (up->offset + nr_args > ctx->nr_user_bufs)
9128 		return -EINVAL;
9129 
9130 	for (done = 0; done < nr_args; done++) {
9131 		struct io_mapped_ubuf *imu;
9132 		int offset = up->offset + done;
9133 		u64 tag = 0;
9134 
9135 		err = io_copy_iov(ctx, &iov, iovs, done);
9136 		if (err)
9137 			break;
9138 		if (tags && copy_from_user(&tag, &tags[done], sizeof(tag))) {
9139 			err = -EFAULT;
9140 			break;
9141 		}
9142 		err = io_buffer_validate(&iov);
9143 		if (err)
9144 			break;
9145 		if (!iov.iov_base && tag) {
9146 			err = -EINVAL;
9147 			break;
9148 		}
9149 		err = io_sqe_buffer_register(ctx, &iov, &imu, &last_hpage);
9150 		if (err)
9151 			break;
9152 
9153 		i = array_index_nospec(offset, ctx->nr_user_bufs);
9154 		if (ctx->user_bufs[i] != ctx->dummy_ubuf) {
9155 			err = io_queue_rsrc_removal(ctx->buf_data, offset,
9156 						    ctx->rsrc_node, ctx->user_bufs[i]);
9157 			if (unlikely(err)) {
9158 				io_buffer_unmap(ctx, &imu);
9159 				break;
9160 			}
9161 			ctx->user_bufs[i] = NULL;
9162 			needs_switch = true;
9163 		}
9164 
9165 		ctx->user_bufs[i] = imu;
9166 		*io_get_tag_slot(ctx->buf_data, offset) = tag;
9167 	}
9168 
9169 	if (needs_switch)
9170 		io_rsrc_node_switch(ctx, ctx->buf_data);
9171 	return done ? done : err;
9172 }
9173 
io_eventfd_register(struct io_ring_ctx * ctx,void __user * arg)9174 static int io_eventfd_register(struct io_ring_ctx *ctx, void __user *arg)
9175 {
9176 	__s32 __user *fds = arg;
9177 	int fd;
9178 
9179 	if (ctx->cq_ev_fd)
9180 		return -EBUSY;
9181 
9182 	if (copy_from_user(&fd, fds, sizeof(*fds)))
9183 		return -EFAULT;
9184 
9185 	ctx->cq_ev_fd = eventfd_ctx_fdget(fd);
9186 	if (IS_ERR(ctx->cq_ev_fd)) {
9187 		int ret = PTR_ERR(ctx->cq_ev_fd);
9188 
9189 		ctx->cq_ev_fd = NULL;
9190 		return ret;
9191 	}
9192 
9193 	return 0;
9194 }
9195 
io_eventfd_unregister(struct io_ring_ctx * ctx)9196 static int io_eventfd_unregister(struct io_ring_ctx *ctx)
9197 {
9198 	if (ctx->cq_ev_fd) {
9199 		eventfd_ctx_put(ctx->cq_ev_fd);
9200 		ctx->cq_ev_fd = NULL;
9201 		return 0;
9202 	}
9203 
9204 	return -ENXIO;
9205 }
9206 
io_destroy_buffers(struct io_ring_ctx * ctx)9207 static void io_destroy_buffers(struct io_ring_ctx *ctx)
9208 {
9209 	struct io_buffer *buf;
9210 	unsigned long index;
9211 
9212 	xa_for_each(&ctx->io_buffers, index, buf) {
9213 		__io_remove_buffers(ctx, buf, index, -1U);
9214 		cond_resched();
9215 	}
9216 }
9217 
io_req_cache_free(struct list_head * list)9218 static void io_req_cache_free(struct list_head *list)
9219 {
9220 	struct io_kiocb *req, *nxt;
9221 
9222 	list_for_each_entry_safe(req, nxt, list, inflight_entry) {
9223 		list_del(&req->inflight_entry);
9224 		kmem_cache_free(req_cachep, req);
9225 	}
9226 }
9227 
io_req_caches_free(struct io_ring_ctx * ctx)9228 static void io_req_caches_free(struct io_ring_ctx *ctx)
9229 {
9230 	struct io_submit_state *state = &ctx->submit_state;
9231 
9232 	mutex_lock(&ctx->uring_lock);
9233 
9234 	if (state->free_reqs) {
9235 		kmem_cache_free_bulk(req_cachep, state->free_reqs, state->reqs);
9236 		state->free_reqs = 0;
9237 	}
9238 
9239 	io_flush_cached_locked_reqs(ctx, state);
9240 	io_req_cache_free(&state->free_list);
9241 	mutex_unlock(&ctx->uring_lock);
9242 }
9243 
io_wait_rsrc_data(struct io_rsrc_data * data)9244 static void io_wait_rsrc_data(struct io_rsrc_data *data)
9245 {
9246 	if (data && !atomic_dec_and_test(&data->refs))
9247 		wait_for_completion(&data->done);
9248 }
9249 
io_ring_ctx_free(struct io_ring_ctx * ctx)9250 static void io_ring_ctx_free(struct io_ring_ctx *ctx)
9251 {
9252 	io_sq_thread_finish(ctx);
9253 
9254 	if (ctx->mm_account) {
9255 		mmdrop(ctx->mm_account);
9256 		ctx->mm_account = NULL;
9257 	}
9258 
9259 	/* __io_rsrc_put_work() may need uring_lock to progress, wait w/o it */
9260 	io_wait_rsrc_data(ctx->buf_data);
9261 	io_wait_rsrc_data(ctx->file_data);
9262 
9263 	mutex_lock(&ctx->uring_lock);
9264 	if (ctx->buf_data)
9265 		__io_sqe_buffers_unregister(ctx);
9266 	if (ctx->file_data)
9267 		__io_sqe_files_unregister(ctx);
9268 	if (ctx->rings)
9269 		__io_cqring_overflow_flush(ctx, true);
9270 	mutex_unlock(&ctx->uring_lock);
9271 	io_eventfd_unregister(ctx);
9272 	io_destroy_buffers(ctx);
9273 	if (ctx->sq_creds)
9274 		put_cred(ctx->sq_creds);
9275 
9276 	/* there are no registered resources left, nobody uses it */
9277 	if (ctx->rsrc_node)
9278 		io_rsrc_node_destroy(ctx->rsrc_node);
9279 	if (ctx->rsrc_backup_node)
9280 		io_rsrc_node_destroy(ctx->rsrc_backup_node);
9281 	flush_delayed_work(&ctx->rsrc_put_work);
9282 
9283 	WARN_ON_ONCE(!list_empty(&ctx->rsrc_ref_list));
9284 	WARN_ON_ONCE(!llist_empty(&ctx->rsrc_put_llist));
9285 
9286 #if defined(CONFIG_UNIX)
9287 	if (ctx->ring_sock) {
9288 		ctx->ring_sock->file = NULL; /* so that iput() is called */
9289 		sock_release(ctx->ring_sock);
9290 	}
9291 #endif
9292 	WARN_ON_ONCE(!list_empty(&ctx->ltimeout_list));
9293 
9294 	io_mem_free(ctx->rings);
9295 	io_mem_free(ctx->sq_sqes);
9296 
9297 	percpu_ref_exit(&ctx->refs);
9298 	free_uid(ctx->user);
9299 	io_req_caches_free(ctx);
9300 	if (ctx->hash_map)
9301 		io_wq_put_hash(ctx->hash_map);
9302 	kfree(ctx->cancel_hash);
9303 	kfree(ctx->dummy_ubuf);
9304 	kfree(ctx);
9305 }
9306 
io_uring_poll(struct file * file,poll_table * wait)9307 static __poll_t io_uring_poll(struct file *file, poll_table *wait)
9308 {
9309 	struct io_ring_ctx *ctx = file->private_data;
9310 	__poll_t mask = 0;
9311 
9312 	poll_wait(file, &ctx->poll_wait, wait);
9313 	/*
9314 	 * synchronizes with barrier from wq_has_sleeper call in
9315 	 * io_commit_cqring
9316 	 */
9317 	smp_rmb();
9318 	if (!io_sqring_full(ctx))
9319 		mask |= EPOLLOUT | EPOLLWRNORM;
9320 
9321 	/*
9322 	 * Don't flush cqring overflow list here, just do a simple check.
9323 	 * Otherwise there could possible be ABBA deadlock:
9324 	 *      CPU0                    CPU1
9325 	 *      ----                    ----
9326 	 * lock(&ctx->uring_lock);
9327 	 *                              lock(&ep->mtx);
9328 	 *                              lock(&ctx->uring_lock);
9329 	 * lock(&ep->mtx);
9330 	 *
9331 	 * Users may get EPOLLIN meanwhile seeing nothing in cqring, this
9332 	 * pushs them to do the flush.
9333 	 */
9334 	if (io_cqring_events(ctx) || test_bit(0, &ctx->check_cq_overflow))
9335 		mask |= EPOLLIN | EPOLLRDNORM;
9336 
9337 	return mask;
9338 }
9339 
io_unregister_personality(struct io_ring_ctx * ctx,unsigned id)9340 static int io_unregister_personality(struct io_ring_ctx *ctx, unsigned id)
9341 {
9342 	const struct cred *creds;
9343 
9344 	creds = xa_erase(&ctx->personalities, id);
9345 	if (creds) {
9346 		put_cred(creds);
9347 		return 0;
9348 	}
9349 
9350 	return -EINVAL;
9351 }
9352 
9353 struct io_tctx_exit {
9354 	struct callback_head		task_work;
9355 	struct completion		completion;
9356 	struct io_ring_ctx		*ctx;
9357 };
9358 
io_tctx_exit_cb(struct callback_head * cb)9359 static void io_tctx_exit_cb(struct callback_head *cb)
9360 {
9361 	struct io_uring_task *tctx = current->io_uring;
9362 	struct io_tctx_exit *work;
9363 
9364 	work = container_of(cb, struct io_tctx_exit, task_work);
9365 	/*
9366 	 * When @in_idle, we're in cancellation and it's racy to remove the
9367 	 * node. It'll be removed by the end of cancellation, just ignore it.
9368 	 */
9369 	if (!atomic_read(&tctx->in_idle))
9370 		io_uring_del_tctx_node((unsigned long)work->ctx);
9371 	complete(&work->completion);
9372 }
9373 
io_cancel_ctx_cb(struct io_wq_work * work,void * data)9374 static bool io_cancel_ctx_cb(struct io_wq_work *work, void *data)
9375 {
9376 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9377 
9378 	return req->ctx == data;
9379 }
9380 
io_ring_exit_work(struct work_struct * work)9381 static void io_ring_exit_work(struct work_struct *work)
9382 {
9383 	struct io_ring_ctx *ctx = container_of(work, struct io_ring_ctx, exit_work);
9384 	unsigned long timeout = jiffies + HZ * 60 * 5;
9385 	unsigned long interval = HZ / 20;
9386 	struct io_tctx_exit exit;
9387 	struct io_tctx_node *node;
9388 	int ret;
9389 
9390 	/*
9391 	 * If we're doing polled IO and end up having requests being
9392 	 * submitted async (out-of-line), then completions can come in while
9393 	 * we're waiting for refs to drop. We need to reap these manually,
9394 	 * as nobody else will be looking for them.
9395 	 */
9396 	do {
9397 		io_uring_try_cancel_requests(ctx, NULL, true);
9398 		if (ctx->sq_data) {
9399 			struct io_sq_data *sqd = ctx->sq_data;
9400 			struct task_struct *tsk;
9401 
9402 			io_sq_thread_park(sqd);
9403 			tsk = sqd->thread;
9404 			if (tsk && tsk->io_uring && tsk->io_uring->io_wq)
9405 				io_wq_cancel_cb(tsk->io_uring->io_wq,
9406 						io_cancel_ctx_cb, ctx, true);
9407 			io_sq_thread_unpark(sqd);
9408 		}
9409 
9410 		if (WARN_ON_ONCE(time_after(jiffies, timeout))) {
9411 			/* there is little hope left, don't run it too often */
9412 			interval = HZ * 60;
9413 		}
9414 	} while (!wait_for_completion_timeout(&ctx->ref_comp, interval));
9415 
9416 	init_completion(&exit.completion);
9417 	init_task_work(&exit.task_work, io_tctx_exit_cb);
9418 	exit.ctx = ctx;
9419 	/*
9420 	 * Some may use context even when all refs and requests have been put,
9421 	 * and they are free to do so while still holding uring_lock or
9422 	 * completion_lock, see io_req_task_submit(). Apart from other work,
9423 	 * this lock/unlock section also waits them to finish.
9424 	 */
9425 	mutex_lock(&ctx->uring_lock);
9426 	while (!list_empty(&ctx->tctx_list)) {
9427 		WARN_ON_ONCE(time_after(jiffies, timeout));
9428 
9429 		node = list_first_entry(&ctx->tctx_list, struct io_tctx_node,
9430 					ctx_node);
9431 		/* don't spin on a single task if cancellation failed */
9432 		list_rotate_left(&ctx->tctx_list);
9433 		ret = task_work_add(node->task, &exit.task_work, TWA_SIGNAL);
9434 		if (WARN_ON_ONCE(ret))
9435 			continue;
9436 		wake_up_process(node->task);
9437 
9438 		mutex_unlock(&ctx->uring_lock);
9439 		wait_for_completion(&exit.completion);
9440 		mutex_lock(&ctx->uring_lock);
9441 	}
9442 	mutex_unlock(&ctx->uring_lock);
9443 	spin_lock(&ctx->completion_lock);
9444 	spin_unlock(&ctx->completion_lock);
9445 
9446 	io_ring_ctx_free(ctx);
9447 }
9448 
9449 /* Returns true if we found and killed one or more timeouts */
io_kill_timeouts(struct io_ring_ctx * ctx,struct task_struct * tsk,bool cancel_all)9450 static bool io_kill_timeouts(struct io_ring_ctx *ctx, struct task_struct *tsk,
9451 			     bool cancel_all)
9452 {
9453 	struct io_kiocb *req, *tmp;
9454 	int canceled = 0;
9455 
9456 	spin_lock(&ctx->completion_lock);
9457 	spin_lock_irq(&ctx->timeout_lock);
9458 	list_for_each_entry_safe(req, tmp, &ctx->timeout_list, timeout.list) {
9459 		if (io_match_task(req, tsk, cancel_all)) {
9460 			io_kill_timeout(req, -ECANCELED);
9461 			canceled++;
9462 		}
9463 	}
9464 	spin_unlock_irq(&ctx->timeout_lock);
9465 	if (canceled != 0)
9466 		io_commit_cqring(ctx);
9467 	spin_unlock(&ctx->completion_lock);
9468 	if (canceled != 0)
9469 		io_cqring_ev_posted(ctx);
9470 	return canceled != 0;
9471 }
9472 
io_ring_ctx_wait_and_kill(struct io_ring_ctx * ctx)9473 static void io_ring_ctx_wait_and_kill(struct io_ring_ctx *ctx)
9474 {
9475 	unsigned long index;
9476 	struct creds *creds;
9477 
9478 	mutex_lock(&ctx->uring_lock);
9479 	percpu_ref_kill(&ctx->refs);
9480 	if (ctx->rings)
9481 		__io_cqring_overflow_flush(ctx, true);
9482 	xa_for_each(&ctx->personalities, index, creds)
9483 		io_unregister_personality(ctx, index);
9484 	mutex_unlock(&ctx->uring_lock);
9485 
9486 	io_kill_timeouts(ctx, NULL, true);
9487 	io_poll_remove_all(ctx, NULL, true);
9488 
9489 	/* if we failed setting up the ctx, we might not have any rings */
9490 	io_iopoll_try_reap_events(ctx);
9491 
9492 	INIT_WORK(&ctx->exit_work, io_ring_exit_work);
9493 	/*
9494 	 * Use system_unbound_wq to avoid spawning tons of event kworkers
9495 	 * if we're exiting a ton of rings at the same time. It just adds
9496 	 * noise and overhead, there's no discernable change in runtime
9497 	 * over using system_wq.
9498 	 */
9499 	queue_work(system_unbound_wq, &ctx->exit_work);
9500 }
9501 
io_uring_release(struct inode * inode,struct file * file)9502 static int io_uring_release(struct inode *inode, struct file *file)
9503 {
9504 	struct io_ring_ctx *ctx = file->private_data;
9505 
9506 	file->private_data = NULL;
9507 	io_ring_ctx_wait_and_kill(ctx);
9508 	return 0;
9509 }
9510 
9511 struct io_task_cancel {
9512 	struct task_struct *task;
9513 	bool all;
9514 };
9515 
io_cancel_task_cb(struct io_wq_work * work,void * data)9516 static bool io_cancel_task_cb(struct io_wq_work *work, void *data)
9517 {
9518 	struct io_kiocb *req = container_of(work, struct io_kiocb, work);
9519 	struct io_task_cancel *cancel = data;
9520 	bool ret;
9521 
9522 	if (!cancel->all && (req->flags & REQ_F_LINK_TIMEOUT)) {
9523 		struct io_ring_ctx *ctx = req->ctx;
9524 
9525 		/* protect against races with linked timeouts */
9526 		spin_lock(&ctx->completion_lock);
9527 		ret = io_match_task(req, cancel->task, cancel->all);
9528 		spin_unlock(&ctx->completion_lock);
9529 	} else {
9530 		ret = io_match_task(req, cancel->task, cancel->all);
9531 	}
9532 	return ret;
9533 }
9534 
io_cancel_defer_files(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9535 static bool io_cancel_defer_files(struct io_ring_ctx *ctx,
9536 				  struct task_struct *task, bool cancel_all)
9537 {
9538 	struct io_defer_entry *de;
9539 	LIST_HEAD(list);
9540 
9541 	spin_lock(&ctx->completion_lock);
9542 	list_for_each_entry_reverse(de, &ctx->defer_list, list) {
9543 		if (io_match_task(de->req, task, cancel_all)) {
9544 			list_cut_position(&list, &ctx->defer_list, &de->list);
9545 			break;
9546 		}
9547 	}
9548 	spin_unlock(&ctx->completion_lock);
9549 	if (list_empty(&list))
9550 		return false;
9551 
9552 	while (!list_empty(&list)) {
9553 		de = list_first_entry(&list, struct io_defer_entry, list);
9554 		list_del_init(&de->list);
9555 		io_req_complete_failed(de->req, -ECANCELED);
9556 		kfree(de);
9557 	}
9558 	return true;
9559 }
9560 
io_uring_try_cancel_iowq(struct io_ring_ctx * ctx)9561 static bool io_uring_try_cancel_iowq(struct io_ring_ctx *ctx)
9562 {
9563 	struct io_tctx_node *node;
9564 	enum io_wq_cancel cret;
9565 	bool ret = false;
9566 
9567 	mutex_lock(&ctx->uring_lock);
9568 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
9569 		struct io_uring_task *tctx = node->task->io_uring;
9570 
9571 		/*
9572 		 * io_wq will stay alive while we hold uring_lock, because it's
9573 		 * killed after ctx nodes, which requires to take the lock.
9574 		 */
9575 		if (!tctx || !tctx->io_wq)
9576 			continue;
9577 		cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_ctx_cb, ctx, true);
9578 		ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9579 	}
9580 	mutex_unlock(&ctx->uring_lock);
9581 
9582 	return ret;
9583 }
9584 
io_uring_try_cancel_requests(struct io_ring_ctx * ctx,struct task_struct * task,bool cancel_all)9585 static void io_uring_try_cancel_requests(struct io_ring_ctx *ctx,
9586 					 struct task_struct *task,
9587 					 bool cancel_all)
9588 {
9589 	struct io_task_cancel cancel = { .task = task, .all = cancel_all, };
9590 	struct io_uring_task *tctx = task ? task->io_uring : NULL;
9591 
9592 	while (1) {
9593 		enum io_wq_cancel cret;
9594 		bool ret = false;
9595 
9596 		if (!task) {
9597 			ret |= io_uring_try_cancel_iowq(ctx);
9598 		} else if (tctx && tctx->io_wq) {
9599 			/*
9600 			 * Cancels requests of all rings, not only @ctx, but
9601 			 * it's fine as the task is in exit/exec.
9602 			 */
9603 			cret = io_wq_cancel_cb(tctx->io_wq, io_cancel_task_cb,
9604 					       &cancel, true);
9605 			ret |= (cret != IO_WQ_CANCEL_NOTFOUND);
9606 		}
9607 
9608 		/* SQPOLL thread does its own polling */
9609 		if ((!(ctx->flags & IORING_SETUP_SQPOLL) && cancel_all) ||
9610 		    (ctx->sq_data && ctx->sq_data->thread == current)) {
9611 			while (!list_empty_careful(&ctx->iopoll_list)) {
9612 				io_iopoll_try_reap_events(ctx);
9613 				ret = true;
9614 			}
9615 		}
9616 
9617 		ret |= io_cancel_defer_files(ctx, task, cancel_all);
9618 		ret |= io_poll_remove_all(ctx, task, cancel_all);
9619 		ret |= io_kill_timeouts(ctx, task, cancel_all);
9620 		if (task)
9621 			ret |= io_run_task_work();
9622 		if (!ret)
9623 			break;
9624 		cond_resched();
9625 	}
9626 }
9627 
__io_uring_add_tctx_node(struct io_ring_ctx * ctx)9628 static int __io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9629 {
9630 	struct io_uring_task *tctx = current->io_uring;
9631 	struct io_tctx_node *node;
9632 	int ret;
9633 
9634 	if (unlikely(!tctx)) {
9635 		ret = io_uring_alloc_task_context(current, ctx);
9636 		if (unlikely(ret))
9637 			return ret;
9638 
9639 		tctx = current->io_uring;
9640 		if (ctx->iowq_limits_set) {
9641 			unsigned int limits[2] = { ctx->iowq_limits[0],
9642 						   ctx->iowq_limits[1], };
9643 
9644 			ret = io_wq_max_workers(tctx->io_wq, limits);
9645 			if (ret)
9646 				return ret;
9647 		}
9648 	}
9649 	if (!xa_load(&tctx->xa, (unsigned long)ctx)) {
9650 		node = kmalloc(sizeof(*node), GFP_KERNEL);
9651 		if (!node)
9652 			return -ENOMEM;
9653 		node->ctx = ctx;
9654 		node->task = current;
9655 
9656 		ret = xa_err(xa_store(&tctx->xa, (unsigned long)ctx,
9657 					node, GFP_KERNEL));
9658 		if (ret) {
9659 			kfree(node);
9660 			return ret;
9661 		}
9662 
9663 		mutex_lock(&ctx->uring_lock);
9664 		list_add(&node->ctx_node, &ctx->tctx_list);
9665 		mutex_unlock(&ctx->uring_lock);
9666 	}
9667 	tctx->last = ctx;
9668 	return 0;
9669 }
9670 
9671 /*
9672  * Note that this task has used io_uring. We use it for cancelation purposes.
9673  */
io_uring_add_tctx_node(struct io_ring_ctx * ctx)9674 static inline int io_uring_add_tctx_node(struct io_ring_ctx *ctx)
9675 {
9676 	struct io_uring_task *tctx = current->io_uring;
9677 
9678 	if (likely(tctx && tctx->last == ctx))
9679 		return 0;
9680 	return __io_uring_add_tctx_node(ctx);
9681 }
9682 
9683 /*
9684  * Remove this io_uring_file -> task mapping.
9685  */
io_uring_del_tctx_node(unsigned long index)9686 static void io_uring_del_tctx_node(unsigned long index)
9687 {
9688 	struct io_uring_task *tctx = current->io_uring;
9689 	struct io_tctx_node *node;
9690 
9691 	if (!tctx)
9692 		return;
9693 	node = xa_erase(&tctx->xa, index);
9694 	if (!node)
9695 		return;
9696 
9697 	WARN_ON_ONCE(current != node->task);
9698 	WARN_ON_ONCE(list_empty(&node->ctx_node));
9699 
9700 	mutex_lock(&node->ctx->uring_lock);
9701 	list_del(&node->ctx_node);
9702 	mutex_unlock(&node->ctx->uring_lock);
9703 
9704 	if (tctx->last == node->ctx)
9705 		tctx->last = NULL;
9706 	kfree(node);
9707 }
9708 
io_uring_clean_tctx(struct io_uring_task * tctx)9709 static void io_uring_clean_tctx(struct io_uring_task *tctx)
9710 {
9711 	struct io_wq *wq = tctx->io_wq;
9712 	struct io_tctx_node *node;
9713 	unsigned long index;
9714 
9715 	xa_for_each(&tctx->xa, index, node) {
9716 		io_uring_del_tctx_node(index);
9717 		cond_resched();
9718 	}
9719 	if (wq) {
9720 		/*
9721 		 * Must be after io_uring_del_task_file() (removes nodes under
9722 		 * uring_lock) to avoid race with io_uring_try_cancel_iowq().
9723 		 */
9724 		io_wq_put_and_exit(wq);
9725 		tctx->io_wq = NULL;
9726 	}
9727 }
9728 
tctx_inflight(struct io_uring_task * tctx,bool tracked)9729 static s64 tctx_inflight(struct io_uring_task *tctx, bool tracked)
9730 {
9731 	if (tracked)
9732 		return atomic_read(&tctx->inflight_tracked);
9733 	return percpu_counter_sum(&tctx->inflight);
9734 }
9735 
io_uring_drop_tctx_refs(struct task_struct * task)9736 static void io_uring_drop_tctx_refs(struct task_struct *task)
9737 {
9738 	struct io_uring_task *tctx = task->io_uring;
9739 	unsigned int refs = tctx->cached_refs;
9740 
9741 	if (refs) {
9742 		tctx->cached_refs = 0;
9743 		percpu_counter_sub(&tctx->inflight, refs);
9744 		put_task_struct_many(task, refs);
9745 	}
9746 }
9747 
9748 /*
9749  * Find any io_uring ctx that this task has registered or done IO on, and cancel
9750  * requests. @sqd should be not-null IIF it's an SQPOLL thread cancellation.
9751  */
io_uring_cancel_generic(bool cancel_all,struct io_sq_data * sqd)9752 static void io_uring_cancel_generic(bool cancel_all, struct io_sq_data *sqd)
9753 {
9754 	struct io_uring_task *tctx = current->io_uring;
9755 	struct io_ring_ctx *ctx;
9756 	s64 inflight;
9757 	DEFINE_WAIT(wait);
9758 
9759 	WARN_ON_ONCE(sqd && sqd->thread != current);
9760 
9761 	if (!current->io_uring)
9762 		return;
9763 	if (tctx->io_wq)
9764 		io_wq_exit_start(tctx->io_wq);
9765 
9766 	atomic_inc(&tctx->in_idle);
9767 	do {
9768 		io_uring_drop_tctx_refs(current);
9769 		/* read completions before cancelations */
9770 		inflight = tctx_inflight(tctx, !cancel_all);
9771 		if (!inflight)
9772 			break;
9773 
9774 		if (!sqd) {
9775 			struct io_tctx_node *node;
9776 			unsigned long index;
9777 
9778 			xa_for_each(&tctx->xa, index, node) {
9779 				/* sqpoll task will cancel all its requests */
9780 				if (node->ctx->sq_data)
9781 					continue;
9782 				io_uring_try_cancel_requests(node->ctx, current,
9783 							     cancel_all);
9784 			}
9785 		} else {
9786 			list_for_each_entry(ctx, &sqd->ctx_list, sqd_list)
9787 				io_uring_try_cancel_requests(ctx, current,
9788 							     cancel_all);
9789 		}
9790 
9791 		prepare_to_wait(&tctx->wait, &wait, TASK_UNINTERRUPTIBLE);
9792 		io_uring_drop_tctx_refs(current);
9793 		/*
9794 		 * If we've seen completions, retry without waiting. This
9795 		 * avoids a race where a completion comes in before we did
9796 		 * prepare_to_wait().
9797 		 */
9798 		if (inflight == tctx_inflight(tctx, !cancel_all))
9799 			schedule();
9800 		finish_wait(&tctx->wait, &wait);
9801 	} while (1);
9802 	atomic_dec(&tctx->in_idle);
9803 
9804 	io_uring_clean_tctx(tctx);
9805 	if (cancel_all) {
9806 		/* for exec all current's requests should be gone, kill tctx */
9807 		__io_uring_free(current);
9808 	}
9809 }
9810 
__io_uring_cancel(bool cancel_all)9811 void __io_uring_cancel(bool cancel_all)
9812 {
9813 	io_uring_cancel_generic(cancel_all, NULL);
9814 }
9815 
io_uring_validate_mmap_request(struct file * file,loff_t pgoff,size_t sz)9816 static void *io_uring_validate_mmap_request(struct file *file,
9817 					    loff_t pgoff, size_t sz)
9818 {
9819 	struct io_ring_ctx *ctx = file->private_data;
9820 	loff_t offset = pgoff << PAGE_SHIFT;
9821 	struct page *page;
9822 	void *ptr;
9823 
9824 	switch (offset) {
9825 	case IORING_OFF_SQ_RING:
9826 	case IORING_OFF_CQ_RING:
9827 		ptr = ctx->rings;
9828 		break;
9829 	case IORING_OFF_SQES:
9830 		ptr = ctx->sq_sqes;
9831 		break;
9832 	default:
9833 		return ERR_PTR(-EINVAL);
9834 	}
9835 
9836 	page = virt_to_head_page(ptr);
9837 	if (sz > page_size(page))
9838 		return ERR_PTR(-EINVAL);
9839 
9840 	return ptr;
9841 }
9842 
9843 #ifdef CONFIG_MMU
9844 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9845 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9846 {
9847 	size_t sz = vma->vm_end - vma->vm_start;
9848 	unsigned long pfn;
9849 	void *ptr;
9850 
9851 	ptr = io_uring_validate_mmap_request(file, vma->vm_pgoff, sz);
9852 	if (IS_ERR(ptr))
9853 		return PTR_ERR(ptr);
9854 
9855 	pfn = virt_to_phys(ptr) >> PAGE_SHIFT;
9856 	return remap_pfn_range(vma, vma->vm_start, pfn, sz, vma->vm_page_prot);
9857 }
9858 
9859 #else /* !CONFIG_MMU */
9860 
io_uring_mmap(struct file * file,struct vm_area_struct * vma)9861 static int io_uring_mmap(struct file *file, struct vm_area_struct *vma)
9862 {
9863 	return vma->vm_flags & (VM_SHARED | VM_MAYSHARE) ? 0 : -EINVAL;
9864 }
9865 
io_uring_nommu_mmap_capabilities(struct file * file)9866 static unsigned int io_uring_nommu_mmap_capabilities(struct file *file)
9867 {
9868 	return NOMMU_MAP_DIRECT | NOMMU_MAP_READ | NOMMU_MAP_WRITE;
9869 }
9870 
io_uring_nommu_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)9871 static unsigned long io_uring_nommu_get_unmapped_area(struct file *file,
9872 	unsigned long addr, unsigned long len,
9873 	unsigned long pgoff, unsigned long flags)
9874 {
9875 	void *ptr;
9876 
9877 	ptr = io_uring_validate_mmap_request(file, pgoff, len);
9878 	if (IS_ERR(ptr))
9879 		return PTR_ERR(ptr);
9880 
9881 	return (unsigned long) ptr;
9882 }
9883 
9884 #endif /* !CONFIG_MMU */
9885 
io_sqpoll_wait_sq(struct io_ring_ctx * ctx)9886 static int io_sqpoll_wait_sq(struct io_ring_ctx *ctx)
9887 {
9888 	DEFINE_WAIT(wait);
9889 
9890 	do {
9891 		if (!io_sqring_full(ctx))
9892 			break;
9893 		prepare_to_wait(&ctx->sqo_sq_wait, &wait, TASK_INTERRUPTIBLE);
9894 
9895 		if (!io_sqring_full(ctx))
9896 			break;
9897 		schedule();
9898 	} while (!signal_pending(current));
9899 
9900 	finish_wait(&ctx->sqo_sq_wait, &wait);
9901 	return 0;
9902 }
9903 
io_get_ext_arg(unsigned flags,const void __user * argp,size_t * argsz,struct __kernel_timespec __user ** ts,const sigset_t __user ** sig)9904 static int io_get_ext_arg(unsigned flags, const void __user *argp, size_t *argsz,
9905 			  struct __kernel_timespec __user **ts,
9906 			  const sigset_t __user **sig)
9907 {
9908 	struct io_uring_getevents_arg arg;
9909 
9910 	/*
9911 	 * If EXT_ARG isn't set, then we have no timespec and the argp pointer
9912 	 * is just a pointer to the sigset_t.
9913 	 */
9914 	if (!(flags & IORING_ENTER_EXT_ARG)) {
9915 		*sig = (const sigset_t __user *) argp;
9916 		*ts = NULL;
9917 		return 0;
9918 	}
9919 
9920 	/*
9921 	 * EXT_ARG is set - ensure we agree on the size of it and copy in our
9922 	 * timespec and sigset_t pointers if good.
9923 	 */
9924 	if (*argsz != sizeof(arg))
9925 		return -EINVAL;
9926 	if (copy_from_user(&arg, argp, sizeof(arg)))
9927 		return -EFAULT;
9928 	*sig = u64_to_user_ptr(arg.sigmask);
9929 	*argsz = arg.sigmask_sz;
9930 	*ts = u64_to_user_ptr(arg.ts);
9931 	return 0;
9932 }
9933 
SYSCALL_DEFINE6(io_uring_enter,unsigned int,fd,u32,to_submit,u32,min_complete,u32,flags,const void __user *,argp,size_t,argsz)9934 SYSCALL_DEFINE6(io_uring_enter, unsigned int, fd, u32, to_submit,
9935 		u32, min_complete, u32, flags, const void __user *, argp,
9936 		size_t, argsz)
9937 {
9938 	struct io_ring_ctx *ctx;
9939 	int submitted = 0;
9940 	struct fd f;
9941 	long ret;
9942 
9943 	io_run_task_work();
9944 
9945 	if (unlikely(flags & ~(IORING_ENTER_GETEVENTS | IORING_ENTER_SQ_WAKEUP |
9946 			       IORING_ENTER_SQ_WAIT | IORING_ENTER_EXT_ARG)))
9947 		return -EINVAL;
9948 
9949 	f = fdget(fd);
9950 	if (unlikely(!f.file))
9951 		return -EBADF;
9952 
9953 	ret = -EOPNOTSUPP;
9954 	if (unlikely(f.file->f_op != &io_uring_fops))
9955 		goto out_fput;
9956 
9957 	ret = -ENXIO;
9958 	ctx = f.file->private_data;
9959 	if (unlikely(!percpu_ref_tryget(&ctx->refs)))
9960 		goto out_fput;
9961 
9962 	ret = -EBADFD;
9963 	if (unlikely(ctx->flags & IORING_SETUP_R_DISABLED))
9964 		goto out;
9965 
9966 	/*
9967 	 * For SQ polling, the thread will do all submissions and completions.
9968 	 * Just return the requested submit count, and wake the thread if
9969 	 * we were asked to.
9970 	 */
9971 	ret = 0;
9972 	if (ctx->flags & IORING_SETUP_SQPOLL) {
9973 		io_cqring_overflow_flush(ctx);
9974 
9975 		if (unlikely(ctx->sq_data->thread == NULL)) {
9976 			ret = -EOWNERDEAD;
9977 			goto out;
9978 		}
9979 		if (flags & IORING_ENTER_SQ_WAKEUP)
9980 			wake_up(&ctx->sq_data->wait);
9981 		if (flags & IORING_ENTER_SQ_WAIT) {
9982 			ret = io_sqpoll_wait_sq(ctx);
9983 			if (ret)
9984 				goto out;
9985 		}
9986 		submitted = to_submit;
9987 	} else if (to_submit) {
9988 		ret = io_uring_add_tctx_node(ctx);
9989 		if (unlikely(ret))
9990 			goto out;
9991 		mutex_lock(&ctx->uring_lock);
9992 		submitted = io_submit_sqes(ctx, to_submit);
9993 		mutex_unlock(&ctx->uring_lock);
9994 
9995 		if (submitted != to_submit)
9996 			goto out;
9997 	}
9998 	if (flags & IORING_ENTER_GETEVENTS) {
9999 		const sigset_t __user *sig;
10000 		struct __kernel_timespec __user *ts;
10001 
10002 		ret = io_get_ext_arg(flags, argp, &argsz, &ts, &sig);
10003 		if (unlikely(ret))
10004 			goto out;
10005 
10006 		min_complete = min(min_complete, ctx->cq_entries);
10007 
10008 		/*
10009 		 * When SETUP_IOPOLL and SETUP_SQPOLL are both enabled, user
10010 		 * space applications don't need to do io completion events
10011 		 * polling again, they can rely on io_sq_thread to do polling
10012 		 * work, which can reduce cpu usage and uring_lock contention.
10013 		 */
10014 		if (ctx->flags & IORING_SETUP_IOPOLL &&
10015 		    !(ctx->flags & IORING_SETUP_SQPOLL)) {
10016 			ret = io_iopoll_check(ctx, min_complete);
10017 		} else {
10018 			ret = io_cqring_wait(ctx, min_complete, sig, argsz, ts);
10019 		}
10020 	}
10021 
10022 out:
10023 	percpu_ref_put(&ctx->refs);
10024 out_fput:
10025 	fdput(f);
10026 	return submitted ? submitted : ret;
10027 }
10028 
10029 #ifdef CONFIG_PROC_FS
io_uring_show_cred(struct seq_file * m,unsigned int id,const struct cred * cred)10030 static int io_uring_show_cred(struct seq_file *m, unsigned int id,
10031 		const struct cred *cred)
10032 {
10033 	struct user_namespace *uns = seq_user_ns(m);
10034 	struct group_info *gi;
10035 	kernel_cap_t cap;
10036 	unsigned __capi;
10037 	int g;
10038 
10039 	seq_printf(m, "%5d\n", id);
10040 	seq_put_decimal_ull(m, "\tUid:\t", from_kuid_munged(uns, cred->uid));
10041 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->euid));
10042 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->suid));
10043 	seq_put_decimal_ull(m, "\t\t", from_kuid_munged(uns, cred->fsuid));
10044 	seq_put_decimal_ull(m, "\n\tGid:\t", from_kgid_munged(uns, cred->gid));
10045 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->egid));
10046 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->sgid));
10047 	seq_put_decimal_ull(m, "\t\t", from_kgid_munged(uns, cred->fsgid));
10048 	seq_puts(m, "\n\tGroups:\t");
10049 	gi = cred->group_info;
10050 	for (g = 0; g < gi->ngroups; g++) {
10051 		seq_put_decimal_ull(m, g ? " " : "",
10052 					from_kgid_munged(uns, gi->gid[g]));
10053 	}
10054 	seq_puts(m, "\n\tCapEff:\t");
10055 	cap = cred->cap_effective;
10056 	CAP_FOR_EACH_U32(__capi)
10057 		seq_put_hex_ll(m, NULL, cap.cap[CAP_LAST_U32 - __capi], 8);
10058 	seq_putc(m, '\n');
10059 	return 0;
10060 }
10061 
__io_uring_show_fdinfo(struct io_ring_ctx * ctx,struct seq_file * m)10062 static void __io_uring_show_fdinfo(struct io_ring_ctx *ctx, struct seq_file *m)
10063 {
10064 	struct io_sq_data *sq = NULL;
10065 	bool has_lock;
10066 	int i;
10067 
10068 	/*
10069 	 * Avoid ABBA deadlock between the seq lock and the io_uring mutex,
10070 	 * since fdinfo case grabs it in the opposite direction of normal use
10071 	 * cases. If we fail to get the lock, we just don't iterate any
10072 	 * structures that could be going away outside the io_uring mutex.
10073 	 */
10074 	has_lock = mutex_trylock(&ctx->uring_lock);
10075 
10076 	if (has_lock && (ctx->flags & IORING_SETUP_SQPOLL)) {
10077 		sq = ctx->sq_data;
10078 		if (!sq->thread)
10079 			sq = NULL;
10080 	}
10081 
10082 	seq_printf(m, "SqThread:\t%d\n", sq ? task_pid_nr(sq->thread) : -1);
10083 	seq_printf(m, "SqThreadCpu:\t%d\n", sq ? task_cpu(sq->thread) : -1);
10084 	seq_printf(m, "UserFiles:\t%u\n", ctx->nr_user_files);
10085 	for (i = 0; has_lock && i < ctx->nr_user_files; i++) {
10086 		struct file *f = io_file_from_index(ctx, i);
10087 
10088 		if (f)
10089 			seq_printf(m, "%5u: %s\n", i, file_dentry(f)->d_iname);
10090 		else
10091 			seq_printf(m, "%5u: <none>\n", i);
10092 	}
10093 	seq_printf(m, "UserBufs:\t%u\n", ctx->nr_user_bufs);
10094 	for (i = 0; has_lock && i < ctx->nr_user_bufs; i++) {
10095 		struct io_mapped_ubuf *buf = ctx->user_bufs[i];
10096 		unsigned int len = buf->ubuf_end - buf->ubuf;
10097 
10098 		seq_printf(m, "%5u: 0x%llx/%u\n", i, buf->ubuf, len);
10099 	}
10100 	if (has_lock && !xa_empty(&ctx->personalities)) {
10101 		unsigned long index;
10102 		const struct cred *cred;
10103 
10104 		seq_printf(m, "Personalities:\n");
10105 		xa_for_each(&ctx->personalities, index, cred)
10106 			io_uring_show_cred(m, index, cred);
10107 	}
10108 	seq_printf(m, "PollList:\n");
10109 	spin_lock(&ctx->completion_lock);
10110 	for (i = 0; i < (1U << ctx->cancel_hash_bits); i++) {
10111 		struct hlist_head *list = &ctx->cancel_hash[i];
10112 		struct io_kiocb *req;
10113 
10114 		hlist_for_each_entry(req, list, hash_node)
10115 			seq_printf(m, "  op=%d, task_works=%d\n", req->opcode,
10116 					req->task->task_works != NULL);
10117 	}
10118 	spin_unlock(&ctx->completion_lock);
10119 	if (has_lock)
10120 		mutex_unlock(&ctx->uring_lock);
10121 }
10122 
io_uring_show_fdinfo(struct seq_file * m,struct file * f)10123 static void io_uring_show_fdinfo(struct seq_file *m, struct file *f)
10124 {
10125 	struct io_ring_ctx *ctx = f->private_data;
10126 
10127 	if (percpu_ref_tryget(&ctx->refs)) {
10128 		__io_uring_show_fdinfo(ctx, m);
10129 		percpu_ref_put(&ctx->refs);
10130 	}
10131 }
10132 #endif
10133 
10134 static const struct file_operations io_uring_fops = {
10135 	.release	= io_uring_release,
10136 	.mmap		= io_uring_mmap,
10137 #ifndef CONFIG_MMU
10138 	.get_unmapped_area = io_uring_nommu_get_unmapped_area,
10139 	.mmap_capabilities = io_uring_nommu_mmap_capabilities,
10140 #endif
10141 	.poll		= io_uring_poll,
10142 #ifdef CONFIG_PROC_FS
10143 	.show_fdinfo	= io_uring_show_fdinfo,
10144 #endif
10145 };
10146 
io_allocate_scq_urings(struct io_ring_ctx * ctx,struct io_uring_params * p)10147 static int io_allocate_scq_urings(struct io_ring_ctx *ctx,
10148 				  struct io_uring_params *p)
10149 {
10150 	struct io_rings *rings;
10151 	size_t size, sq_array_offset;
10152 
10153 	/* make sure these are sane, as we already accounted them */
10154 	ctx->sq_entries = p->sq_entries;
10155 	ctx->cq_entries = p->cq_entries;
10156 
10157 	size = rings_size(p->sq_entries, p->cq_entries, &sq_array_offset);
10158 	if (size == SIZE_MAX)
10159 		return -EOVERFLOW;
10160 
10161 	rings = io_mem_alloc(size);
10162 	if (!rings)
10163 		return -ENOMEM;
10164 
10165 	ctx->rings = rings;
10166 	ctx->sq_array = (u32 *)((char *)rings + sq_array_offset);
10167 	rings->sq_ring_mask = p->sq_entries - 1;
10168 	rings->cq_ring_mask = p->cq_entries - 1;
10169 	rings->sq_ring_entries = p->sq_entries;
10170 	rings->cq_ring_entries = p->cq_entries;
10171 
10172 	size = array_size(sizeof(struct io_uring_sqe), p->sq_entries);
10173 	if (size == SIZE_MAX) {
10174 		io_mem_free(ctx->rings);
10175 		ctx->rings = NULL;
10176 		return -EOVERFLOW;
10177 	}
10178 
10179 	ctx->sq_sqes = io_mem_alloc(size);
10180 	if (!ctx->sq_sqes) {
10181 		io_mem_free(ctx->rings);
10182 		ctx->rings = NULL;
10183 		return -ENOMEM;
10184 	}
10185 
10186 	return 0;
10187 }
10188 
io_uring_install_fd(struct io_ring_ctx * ctx,struct file * file)10189 static int io_uring_install_fd(struct io_ring_ctx *ctx, struct file *file)
10190 {
10191 	int ret, fd;
10192 
10193 	fd = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
10194 	if (fd < 0)
10195 		return fd;
10196 
10197 	ret = io_uring_add_tctx_node(ctx);
10198 	if (ret) {
10199 		put_unused_fd(fd);
10200 		return ret;
10201 	}
10202 	fd_install(fd, file);
10203 	return fd;
10204 }
10205 
10206 /*
10207  * Allocate an anonymous fd, this is what constitutes the application
10208  * visible backing of an io_uring instance. The application mmaps this
10209  * fd to gain access to the SQ/CQ ring details. If UNIX sockets are enabled,
10210  * we have to tie this fd to a socket for file garbage collection purposes.
10211  */
io_uring_get_file(struct io_ring_ctx * ctx)10212 static struct file *io_uring_get_file(struct io_ring_ctx *ctx)
10213 {
10214 	struct file *file;
10215 #if defined(CONFIG_UNIX)
10216 	int ret;
10217 
10218 	ret = sock_create_kern(&init_net, PF_UNIX, SOCK_RAW, IPPROTO_IP,
10219 				&ctx->ring_sock);
10220 	if (ret)
10221 		return ERR_PTR(ret);
10222 #endif
10223 
10224 	file = anon_inode_getfile("[io_uring]", &io_uring_fops, ctx,
10225 					O_RDWR | O_CLOEXEC);
10226 #if defined(CONFIG_UNIX)
10227 	if (IS_ERR(file)) {
10228 		sock_release(ctx->ring_sock);
10229 		ctx->ring_sock = NULL;
10230 	} else {
10231 		ctx->ring_sock->file = file;
10232 	}
10233 #endif
10234 	return file;
10235 }
10236 
io_uring_create(unsigned entries,struct io_uring_params * p,struct io_uring_params __user * params)10237 static int io_uring_create(unsigned entries, struct io_uring_params *p,
10238 			   struct io_uring_params __user *params)
10239 {
10240 	struct io_ring_ctx *ctx;
10241 	struct file *file;
10242 	int ret;
10243 
10244 	if (!entries)
10245 		return -EINVAL;
10246 	if (entries > IORING_MAX_ENTRIES) {
10247 		if (!(p->flags & IORING_SETUP_CLAMP))
10248 			return -EINVAL;
10249 		entries = IORING_MAX_ENTRIES;
10250 	}
10251 
10252 	/*
10253 	 * Use twice as many entries for the CQ ring. It's possible for the
10254 	 * application to drive a higher depth than the size of the SQ ring,
10255 	 * since the sqes are only used at submission time. This allows for
10256 	 * some flexibility in overcommitting a bit. If the application has
10257 	 * set IORING_SETUP_CQSIZE, it will have passed in the desired number
10258 	 * of CQ ring entries manually.
10259 	 */
10260 	p->sq_entries = roundup_pow_of_two(entries);
10261 	if (p->flags & IORING_SETUP_CQSIZE) {
10262 		/*
10263 		 * If IORING_SETUP_CQSIZE is set, we do the same roundup
10264 		 * to a power-of-two, if it isn't already. We do NOT impose
10265 		 * any cq vs sq ring sizing.
10266 		 */
10267 		if (!p->cq_entries)
10268 			return -EINVAL;
10269 		if (p->cq_entries > IORING_MAX_CQ_ENTRIES) {
10270 			if (!(p->flags & IORING_SETUP_CLAMP))
10271 				return -EINVAL;
10272 			p->cq_entries = IORING_MAX_CQ_ENTRIES;
10273 		}
10274 		p->cq_entries = roundup_pow_of_two(p->cq_entries);
10275 		if (p->cq_entries < p->sq_entries)
10276 			return -EINVAL;
10277 	} else {
10278 		p->cq_entries = 2 * p->sq_entries;
10279 	}
10280 
10281 	ctx = io_ring_ctx_alloc(p);
10282 	if (!ctx)
10283 		return -ENOMEM;
10284 	ctx->compat = in_compat_syscall();
10285 	if (!capable(CAP_IPC_LOCK))
10286 		ctx->user = get_uid(current_user());
10287 
10288 	/*
10289 	 * This is just grabbed for accounting purposes. When a process exits,
10290 	 * the mm is exited and dropped before the files, hence we need to hang
10291 	 * on to this mm purely for the purposes of being able to unaccount
10292 	 * memory (locked/pinned vm). It's not used for anything else.
10293 	 */
10294 	mmgrab(current->mm);
10295 	ctx->mm_account = current->mm;
10296 
10297 	ret = io_allocate_scq_urings(ctx, p);
10298 	if (ret)
10299 		goto err;
10300 
10301 	ret = io_sq_offload_create(ctx, p);
10302 	if (ret)
10303 		goto err;
10304 	/* always set a rsrc node */
10305 	ret = io_rsrc_node_switch_start(ctx);
10306 	if (ret)
10307 		goto err;
10308 	io_rsrc_node_switch(ctx, NULL);
10309 
10310 	memset(&p->sq_off, 0, sizeof(p->sq_off));
10311 	p->sq_off.head = offsetof(struct io_rings, sq.head);
10312 	p->sq_off.tail = offsetof(struct io_rings, sq.tail);
10313 	p->sq_off.ring_mask = offsetof(struct io_rings, sq_ring_mask);
10314 	p->sq_off.ring_entries = offsetof(struct io_rings, sq_ring_entries);
10315 	p->sq_off.flags = offsetof(struct io_rings, sq_flags);
10316 	p->sq_off.dropped = offsetof(struct io_rings, sq_dropped);
10317 	p->sq_off.array = (char *)ctx->sq_array - (char *)ctx->rings;
10318 
10319 	memset(&p->cq_off, 0, sizeof(p->cq_off));
10320 	p->cq_off.head = offsetof(struct io_rings, cq.head);
10321 	p->cq_off.tail = offsetof(struct io_rings, cq.tail);
10322 	p->cq_off.ring_mask = offsetof(struct io_rings, cq_ring_mask);
10323 	p->cq_off.ring_entries = offsetof(struct io_rings, cq_ring_entries);
10324 	p->cq_off.overflow = offsetof(struct io_rings, cq_overflow);
10325 	p->cq_off.cqes = offsetof(struct io_rings, cqes);
10326 	p->cq_off.flags = offsetof(struct io_rings, cq_flags);
10327 
10328 	p->features = IORING_FEAT_SINGLE_MMAP | IORING_FEAT_NODROP |
10329 			IORING_FEAT_SUBMIT_STABLE | IORING_FEAT_RW_CUR_POS |
10330 			IORING_FEAT_CUR_PERSONALITY | IORING_FEAT_FAST_POLL |
10331 			IORING_FEAT_POLL_32BITS | IORING_FEAT_SQPOLL_NONFIXED |
10332 			IORING_FEAT_EXT_ARG | IORING_FEAT_NATIVE_WORKERS |
10333 			IORING_FEAT_RSRC_TAGS;
10334 
10335 	if (copy_to_user(params, p, sizeof(*p))) {
10336 		ret = -EFAULT;
10337 		goto err;
10338 	}
10339 
10340 	file = io_uring_get_file(ctx);
10341 	if (IS_ERR(file)) {
10342 		ret = PTR_ERR(file);
10343 		goto err;
10344 	}
10345 
10346 	/*
10347 	 * Install ring fd as the very last thing, so we don't risk someone
10348 	 * having closed it before we finish setup
10349 	 */
10350 	ret = io_uring_install_fd(ctx, file);
10351 	if (ret < 0) {
10352 		/* fput will clean it up */
10353 		fput(file);
10354 		return ret;
10355 	}
10356 
10357 	trace_io_uring_create(ret, ctx, p->sq_entries, p->cq_entries, p->flags);
10358 	return ret;
10359 err:
10360 	io_ring_ctx_wait_and_kill(ctx);
10361 	return ret;
10362 }
10363 
10364 /*
10365  * Sets up an aio uring context, and returns the fd. Applications asks for a
10366  * ring size, we return the actual sq/cq ring sizes (among other things) in the
10367  * params structure passed in.
10368  */
io_uring_setup(u32 entries,struct io_uring_params __user * params)10369 static long io_uring_setup(u32 entries, struct io_uring_params __user *params)
10370 {
10371 	struct io_uring_params p;
10372 	int i;
10373 
10374 	if (copy_from_user(&p, params, sizeof(p)))
10375 		return -EFAULT;
10376 	for (i = 0; i < ARRAY_SIZE(p.resv); i++) {
10377 		if (p.resv[i])
10378 			return -EINVAL;
10379 	}
10380 
10381 	if (p.flags & ~(IORING_SETUP_IOPOLL | IORING_SETUP_SQPOLL |
10382 			IORING_SETUP_SQ_AFF | IORING_SETUP_CQSIZE |
10383 			IORING_SETUP_CLAMP | IORING_SETUP_ATTACH_WQ |
10384 			IORING_SETUP_R_DISABLED))
10385 		return -EINVAL;
10386 
10387 	return  io_uring_create(entries, &p, params);
10388 }
10389 
SYSCALL_DEFINE2(io_uring_setup,u32,entries,struct io_uring_params __user *,params)10390 SYSCALL_DEFINE2(io_uring_setup, u32, entries,
10391 		struct io_uring_params __user *, params)
10392 {
10393 	return io_uring_setup(entries, params);
10394 }
10395 
io_probe(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10396 static int io_probe(struct io_ring_ctx *ctx, void __user *arg, unsigned nr_args)
10397 {
10398 	struct io_uring_probe *p;
10399 	size_t size;
10400 	int i, ret;
10401 
10402 	size = struct_size(p, ops, nr_args);
10403 	if (size == SIZE_MAX)
10404 		return -EOVERFLOW;
10405 	p = kzalloc(size, GFP_KERNEL);
10406 	if (!p)
10407 		return -ENOMEM;
10408 
10409 	ret = -EFAULT;
10410 	if (copy_from_user(p, arg, size))
10411 		goto out;
10412 	ret = -EINVAL;
10413 	if (memchr_inv(p, 0, size))
10414 		goto out;
10415 
10416 	p->last_op = IORING_OP_LAST - 1;
10417 	if (nr_args > IORING_OP_LAST)
10418 		nr_args = IORING_OP_LAST;
10419 
10420 	for (i = 0; i < nr_args; i++) {
10421 		p->ops[i].op = i;
10422 		if (!io_op_defs[i].not_supported)
10423 			p->ops[i].flags = IO_URING_OP_SUPPORTED;
10424 	}
10425 	p->ops_len = i;
10426 
10427 	ret = 0;
10428 	if (copy_to_user(arg, p, size))
10429 		ret = -EFAULT;
10430 out:
10431 	kfree(p);
10432 	return ret;
10433 }
10434 
io_register_personality(struct io_ring_ctx * ctx)10435 static int io_register_personality(struct io_ring_ctx *ctx)
10436 {
10437 	const struct cred *creds;
10438 	u32 id;
10439 	int ret;
10440 
10441 	creds = get_current_cred();
10442 
10443 	ret = xa_alloc_cyclic(&ctx->personalities, &id, (void *)creds,
10444 			XA_LIMIT(0, USHRT_MAX), &ctx->pers_next, GFP_KERNEL);
10445 	if (ret < 0) {
10446 		put_cred(creds);
10447 		return ret;
10448 	}
10449 	return id;
10450 }
10451 
io_register_restrictions(struct io_ring_ctx * ctx,void __user * arg,unsigned int nr_args)10452 static int io_register_restrictions(struct io_ring_ctx *ctx, void __user *arg,
10453 				    unsigned int nr_args)
10454 {
10455 	struct io_uring_restriction *res;
10456 	size_t size;
10457 	int i, ret;
10458 
10459 	/* Restrictions allowed only if rings started disabled */
10460 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10461 		return -EBADFD;
10462 
10463 	/* We allow only a single restrictions registration */
10464 	if (ctx->restrictions.registered)
10465 		return -EBUSY;
10466 
10467 	if (!arg || nr_args > IORING_MAX_RESTRICTIONS)
10468 		return -EINVAL;
10469 
10470 	size = array_size(nr_args, sizeof(*res));
10471 	if (size == SIZE_MAX)
10472 		return -EOVERFLOW;
10473 
10474 	res = memdup_user(arg, size);
10475 	if (IS_ERR(res))
10476 		return PTR_ERR(res);
10477 
10478 	ret = 0;
10479 
10480 	for (i = 0; i < nr_args; i++) {
10481 		switch (res[i].opcode) {
10482 		case IORING_RESTRICTION_REGISTER_OP:
10483 			if (res[i].register_op >= IORING_REGISTER_LAST) {
10484 				ret = -EINVAL;
10485 				goto out;
10486 			}
10487 
10488 			__set_bit(res[i].register_op,
10489 				  ctx->restrictions.register_op);
10490 			break;
10491 		case IORING_RESTRICTION_SQE_OP:
10492 			if (res[i].sqe_op >= IORING_OP_LAST) {
10493 				ret = -EINVAL;
10494 				goto out;
10495 			}
10496 
10497 			__set_bit(res[i].sqe_op, ctx->restrictions.sqe_op);
10498 			break;
10499 		case IORING_RESTRICTION_SQE_FLAGS_ALLOWED:
10500 			ctx->restrictions.sqe_flags_allowed = res[i].sqe_flags;
10501 			break;
10502 		case IORING_RESTRICTION_SQE_FLAGS_REQUIRED:
10503 			ctx->restrictions.sqe_flags_required = res[i].sqe_flags;
10504 			break;
10505 		default:
10506 			ret = -EINVAL;
10507 			goto out;
10508 		}
10509 	}
10510 
10511 out:
10512 	/* Reset all restrictions if an error happened */
10513 	if (ret != 0)
10514 		memset(&ctx->restrictions, 0, sizeof(ctx->restrictions));
10515 	else
10516 		ctx->restrictions.registered = true;
10517 
10518 	kfree(res);
10519 	return ret;
10520 }
10521 
io_register_enable_rings(struct io_ring_ctx * ctx)10522 static int io_register_enable_rings(struct io_ring_ctx *ctx)
10523 {
10524 	if (!(ctx->flags & IORING_SETUP_R_DISABLED))
10525 		return -EBADFD;
10526 
10527 	if (ctx->restrictions.registered)
10528 		ctx->restricted = 1;
10529 
10530 	ctx->flags &= ~IORING_SETUP_R_DISABLED;
10531 	if (ctx->sq_data && wq_has_sleeper(&ctx->sq_data->wait))
10532 		wake_up(&ctx->sq_data->wait);
10533 	return 0;
10534 }
10535 
__io_register_rsrc_update(struct io_ring_ctx * ctx,unsigned type,struct io_uring_rsrc_update2 * up,unsigned nr_args)10536 static int __io_register_rsrc_update(struct io_ring_ctx *ctx, unsigned type,
10537 				     struct io_uring_rsrc_update2 *up,
10538 				     unsigned nr_args)
10539 {
10540 	__u32 tmp;
10541 	int err;
10542 
10543 	if (up->resv)
10544 		return -EINVAL;
10545 	if (check_add_overflow(up->offset, nr_args, &tmp))
10546 		return -EOVERFLOW;
10547 	err = io_rsrc_node_switch_start(ctx);
10548 	if (err)
10549 		return err;
10550 
10551 	switch (type) {
10552 	case IORING_RSRC_FILE:
10553 		return __io_sqe_files_update(ctx, up, nr_args);
10554 	case IORING_RSRC_BUFFER:
10555 		return __io_sqe_buffers_update(ctx, up, nr_args);
10556 	}
10557 	return -EINVAL;
10558 }
10559 
io_register_files_update(struct io_ring_ctx * ctx,void __user * arg,unsigned nr_args)10560 static int io_register_files_update(struct io_ring_ctx *ctx, void __user *arg,
10561 				    unsigned nr_args)
10562 {
10563 	struct io_uring_rsrc_update2 up;
10564 
10565 	if (!nr_args)
10566 		return -EINVAL;
10567 	memset(&up, 0, sizeof(up));
10568 	if (copy_from_user(&up, arg, sizeof(struct io_uring_rsrc_update)))
10569 		return -EFAULT;
10570 	return __io_register_rsrc_update(ctx, IORING_RSRC_FILE, &up, nr_args);
10571 }
10572 
io_register_rsrc_update(struct io_ring_ctx * ctx,void __user * arg,unsigned size,unsigned type)10573 static int io_register_rsrc_update(struct io_ring_ctx *ctx, void __user *arg,
10574 				   unsigned size, unsigned type)
10575 {
10576 	struct io_uring_rsrc_update2 up;
10577 
10578 	if (size != sizeof(up))
10579 		return -EINVAL;
10580 	if (copy_from_user(&up, arg, sizeof(up)))
10581 		return -EFAULT;
10582 	if (!up.nr || up.resv)
10583 		return -EINVAL;
10584 	return __io_register_rsrc_update(ctx, type, &up, up.nr);
10585 }
10586 
io_register_rsrc(struct io_ring_ctx * ctx,void __user * arg,unsigned int size,unsigned int type)10587 static int io_register_rsrc(struct io_ring_ctx *ctx, void __user *arg,
10588 			    unsigned int size, unsigned int type)
10589 {
10590 	struct io_uring_rsrc_register rr;
10591 
10592 	/* keep it extendible */
10593 	if (size != sizeof(rr))
10594 		return -EINVAL;
10595 
10596 	memset(&rr, 0, sizeof(rr));
10597 	if (copy_from_user(&rr, arg, size))
10598 		return -EFAULT;
10599 	if (!rr.nr || rr.resv || rr.resv2)
10600 		return -EINVAL;
10601 
10602 	switch (type) {
10603 	case IORING_RSRC_FILE:
10604 		return io_sqe_files_register(ctx, u64_to_user_ptr(rr.data),
10605 					     rr.nr, u64_to_user_ptr(rr.tags));
10606 	case IORING_RSRC_BUFFER:
10607 		return io_sqe_buffers_register(ctx, u64_to_user_ptr(rr.data),
10608 					       rr.nr, u64_to_user_ptr(rr.tags));
10609 	}
10610 	return -EINVAL;
10611 }
10612 
io_register_iowq_aff(struct io_ring_ctx * ctx,void __user * arg,unsigned len)10613 static int io_register_iowq_aff(struct io_ring_ctx *ctx, void __user *arg,
10614 				unsigned len)
10615 {
10616 	struct io_uring_task *tctx = current->io_uring;
10617 	cpumask_var_t new_mask;
10618 	int ret;
10619 
10620 	if (!tctx || !tctx->io_wq)
10621 		return -EINVAL;
10622 
10623 	if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
10624 		return -ENOMEM;
10625 
10626 	cpumask_clear(new_mask);
10627 	if (len > cpumask_size())
10628 		len = cpumask_size();
10629 
10630 	if (copy_from_user(new_mask, arg, len)) {
10631 		free_cpumask_var(new_mask);
10632 		return -EFAULT;
10633 	}
10634 
10635 	ret = io_wq_cpu_affinity(tctx->io_wq, new_mask);
10636 	free_cpumask_var(new_mask);
10637 	return ret;
10638 }
10639 
io_unregister_iowq_aff(struct io_ring_ctx * ctx)10640 static int io_unregister_iowq_aff(struct io_ring_ctx *ctx)
10641 {
10642 	struct io_uring_task *tctx = current->io_uring;
10643 
10644 	if (!tctx || !tctx->io_wq)
10645 		return -EINVAL;
10646 
10647 	return io_wq_cpu_affinity(tctx->io_wq, NULL);
10648 }
10649 
io_register_iowq_max_workers(struct io_ring_ctx * ctx,void __user * arg)10650 static int io_register_iowq_max_workers(struct io_ring_ctx *ctx,
10651 					void __user *arg)
10652 	__must_hold(&ctx->uring_lock)
10653 {
10654 	struct io_tctx_node *node;
10655 	struct io_uring_task *tctx = NULL;
10656 	struct io_sq_data *sqd = NULL;
10657 	__u32 new_count[2];
10658 	int i, ret;
10659 
10660 	if (copy_from_user(new_count, arg, sizeof(new_count)))
10661 		return -EFAULT;
10662 	for (i = 0; i < ARRAY_SIZE(new_count); i++)
10663 		if (new_count[i] > INT_MAX)
10664 			return -EINVAL;
10665 
10666 	if (ctx->flags & IORING_SETUP_SQPOLL) {
10667 		sqd = ctx->sq_data;
10668 		if (sqd) {
10669 			/*
10670 			 * Observe the correct sqd->lock -> ctx->uring_lock
10671 			 * ordering. Fine to drop uring_lock here, we hold
10672 			 * a ref to the ctx.
10673 			 */
10674 			refcount_inc(&sqd->refs);
10675 			mutex_unlock(&ctx->uring_lock);
10676 			mutex_lock(&sqd->lock);
10677 			mutex_lock(&ctx->uring_lock);
10678 			if (sqd->thread)
10679 				tctx = sqd->thread->io_uring;
10680 		}
10681 	} else {
10682 		tctx = current->io_uring;
10683 	}
10684 
10685 	BUILD_BUG_ON(sizeof(new_count) != sizeof(ctx->iowq_limits));
10686 
10687 	memcpy(ctx->iowq_limits, new_count, sizeof(new_count));
10688 	ctx->iowq_limits_set = true;
10689 
10690 	ret = -EINVAL;
10691 	if (tctx && tctx->io_wq) {
10692 		ret = io_wq_max_workers(tctx->io_wq, new_count);
10693 		if (ret)
10694 			goto err;
10695 	} else {
10696 		memset(new_count, 0, sizeof(new_count));
10697 	}
10698 
10699 	if (sqd) {
10700 		mutex_unlock(&sqd->lock);
10701 		io_put_sq_data(sqd);
10702 	}
10703 
10704 	if (copy_to_user(arg, new_count, sizeof(new_count)))
10705 		return -EFAULT;
10706 
10707 	/* that's it for SQPOLL, only the SQPOLL task creates requests */
10708 	if (sqd)
10709 		return 0;
10710 
10711 	/* now propagate the restriction to all registered users */
10712 	list_for_each_entry(node, &ctx->tctx_list, ctx_node) {
10713 		struct io_uring_task *tctx = node->task->io_uring;
10714 
10715 		if (WARN_ON_ONCE(!tctx->io_wq))
10716 			continue;
10717 
10718 		for (i = 0; i < ARRAY_SIZE(new_count); i++)
10719 			new_count[i] = ctx->iowq_limits[i];
10720 		/* ignore errors, it always returns zero anyway */
10721 		(void)io_wq_max_workers(tctx->io_wq, new_count);
10722 	}
10723 	return 0;
10724 err:
10725 	if (sqd) {
10726 		mutex_unlock(&sqd->lock);
10727 		io_put_sq_data(sqd);
10728 	}
10729 	return ret;
10730 }
10731 
io_register_op_must_quiesce(int op)10732 static bool io_register_op_must_quiesce(int op)
10733 {
10734 	switch (op) {
10735 	case IORING_REGISTER_BUFFERS:
10736 	case IORING_UNREGISTER_BUFFERS:
10737 	case IORING_REGISTER_FILES:
10738 	case IORING_UNREGISTER_FILES:
10739 	case IORING_REGISTER_FILES_UPDATE:
10740 	case IORING_REGISTER_PROBE:
10741 	case IORING_REGISTER_PERSONALITY:
10742 	case IORING_UNREGISTER_PERSONALITY:
10743 	case IORING_REGISTER_FILES2:
10744 	case IORING_REGISTER_FILES_UPDATE2:
10745 	case IORING_REGISTER_BUFFERS2:
10746 	case IORING_REGISTER_BUFFERS_UPDATE:
10747 	case IORING_REGISTER_IOWQ_AFF:
10748 	case IORING_UNREGISTER_IOWQ_AFF:
10749 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
10750 		return false;
10751 	default:
10752 		return true;
10753 	}
10754 }
10755 
io_ctx_quiesce(struct io_ring_ctx * ctx)10756 static int io_ctx_quiesce(struct io_ring_ctx *ctx)
10757 {
10758 	long ret;
10759 
10760 	percpu_ref_kill(&ctx->refs);
10761 
10762 	/*
10763 	 * Drop uring mutex before waiting for references to exit. If another
10764 	 * thread is currently inside io_uring_enter() it might need to grab the
10765 	 * uring_lock to make progress. If we hold it here across the drain
10766 	 * wait, then we can deadlock. It's safe to drop the mutex here, since
10767 	 * no new references will come in after we've killed the percpu ref.
10768 	 */
10769 	mutex_unlock(&ctx->uring_lock);
10770 	do {
10771 		ret = wait_for_completion_interruptible(&ctx->ref_comp);
10772 		if (!ret)
10773 			break;
10774 		ret = io_run_task_work_sig();
10775 	} while (ret >= 0);
10776 	mutex_lock(&ctx->uring_lock);
10777 
10778 	if (ret)
10779 		io_refs_resurrect(&ctx->refs, &ctx->ref_comp);
10780 	return ret;
10781 }
10782 
__io_uring_register(struct io_ring_ctx * ctx,unsigned opcode,void __user * arg,unsigned nr_args)10783 static int __io_uring_register(struct io_ring_ctx *ctx, unsigned opcode,
10784 			       void __user *arg, unsigned nr_args)
10785 	__releases(ctx->uring_lock)
10786 	__acquires(ctx->uring_lock)
10787 {
10788 	int ret;
10789 
10790 	/*
10791 	 * We're inside the ring mutex, if the ref is already dying, then
10792 	 * someone else killed the ctx or is already going through
10793 	 * io_uring_register().
10794 	 */
10795 	if (percpu_ref_is_dying(&ctx->refs))
10796 		return -ENXIO;
10797 
10798 	if (ctx->restricted) {
10799 		if (opcode >= IORING_REGISTER_LAST)
10800 			return -EINVAL;
10801 		opcode = array_index_nospec(opcode, IORING_REGISTER_LAST);
10802 		if (!test_bit(opcode, ctx->restrictions.register_op))
10803 			return -EACCES;
10804 	}
10805 
10806 	if (io_register_op_must_quiesce(opcode)) {
10807 		ret = io_ctx_quiesce(ctx);
10808 		if (ret)
10809 			return ret;
10810 	}
10811 
10812 	switch (opcode) {
10813 	case IORING_REGISTER_BUFFERS:
10814 		ret = io_sqe_buffers_register(ctx, arg, nr_args, NULL);
10815 		break;
10816 	case IORING_UNREGISTER_BUFFERS:
10817 		ret = -EINVAL;
10818 		if (arg || nr_args)
10819 			break;
10820 		ret = io_sqe_buffers_unregister(ctx);
10821 		break;
10822 	case IORING_REGISTER_FILES:
10823 		ret = io_sqe_files_register(ctx, arg, nr_args, NULL);
10824 		break;
10825 	case IORING_UNREGISTER_FILES:
10826 		ret = -EINVAL;
10827 		if (arg || nr_args)
10828 			break;
10829 		ret = io_sqe_files_unregister(ctx);
10830 		break;
10831 	case IORING_REGISTER_FILES_UPDATE:
10832 		ret = io_register_files_update(ctx, arg, nr_args);
10833 		break;
10834 	case IORING_REGISTER_EVENTFD:
10835 	case IORING_REGISTER_EVENTFD_ASYNC:
10836 		ret = -EINVAL;
10837 		if (nr_args != 1)
10838 			break;
10839 		ret = io_eventfd_register(ctx, arg);
10840 		if (ret)
10841 			break;
10842 		if (opcode == IORING_REGISTER_EVENTFD_ASYNC)
10843 			ctx->eventfd_async = 1;
10844 		else
10845 			ctx->eventfd_async = 0;
10846 		break;
10847 	case IORING_UNREGISTER_EVENTFD:
10848 		ret = -EINVAL;
10849 		if (arg || nr_args)
10850 			break;
10851 		ret = io_eventfd_unregister(ctx);
10852 		break;
10853 	case IORING_REGISTER_PROBE:
10854 		ret = -EINVAL;
10855 		if (!arg || nr_args > 256)
10856 			break;
10857 		ret = io_probe(ctx, arg, nr_args);
10858 		break;
10859 	case IORING_REGISTER_PERSONALITY:
10860 		ret = -EINVAL;
10861 		if (arg || nr_args)
10862 			break;
10863 		ret = io_register_personality(ctx);
10864 		break;
10865 	case IORING_UNREGISTER_PERSONALITY:
10866 		ret = -EINVAL;
10867 		if (arg)
10868 			break;
10869 		ret = io_unregister_personality(ctx, nr_args);
10870 		break;
10871 	case IORING_REGISTER_ENABLE_RINGS:
10872 		ret = -EINVAL;
10873 		if (arg || nr_args)
10874 			break;
10875 		ret = io_register_enable_rings(ctx);
10876 		break;
10877 	case IORING_REGISTER_RESTRICTIONS:
10878 		ret = io_register_restrictions(ctx, arg, nr_args);
10879 		break;
10880 	case IORING_REGISTER_FILES2:
10881 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_FILE);
10882 		break;
10883 	case IORING_REGISTER_FILES_UPDATE2:
10884 		ret = io_register_rsrc_update(ctx, arg, nr_args,
10885 					      IORING_RSRC_FILE);
10886 		break;
10887 	case IORING_REGISTER_BUFFERS2:
10888 		ret = io_register_rsrc(ctx, arg, nr_args, IORING_RSRC_BUFFER);
10889 		break;
10890 	case IORING_REGISTER_BUFFERS_UPDATE:
10891 		ret = io_register_rsrc_update(ctx, arg, nr_args,
10892 					      IORING_RSRC_BUFFER);
10893 		break;
10894 	case IORING_REGISTER_IOWQ_AFF:
10895 		ret = -EINVAL;
10896 		if (!arg || !nr_args)
10897 			break;
10898 		ret = io_register_iowq_aff(ctx, arg, nr_args);
10899 		break;
10900 	case IORING_UNREGISTER_IOWQ_AFF:
10901 		ret = -EINVAL;
10902 		if (arg || nr_args)
10903 			break;
10904 		ret = io_unregister_iowq_aff(ctx);
10905 		break;
10906 	case IORING_REGISTER_IOWQ_MAX_WORKERS:
10907 		ret = -EINVAL;
10908 		if (!arg || nr_args != 2)
10909 			break;
10910 		ret = io_register_iowq_max_workers(ctx, arg);
10911 		break;
10912 	default:
10913 		ret = -EINVAL;
10914 		break;
10915 	}
10916 
10917 	if (io_register_op_must_quiesce(opcode)) {
10918 		/* bring the ctx back to life */
10919 		percpu_ref_reinit(&ctx->refs);
10920 		reinit_completion(&ctx->ref_comp);
10921 	}
10922 	return ret;
10923 }
10924 
SYSCALL_DEFINE4(io_uring_register,unsigned int,fd,unsigned int,opcode,void __user *,arg,unsigned int,nr_args)10925 SYSCALL_DEFINE4(io_uring_register, unsigned int, fd, unsigned int, opcode,
10926 		void __user *, arg, unsigned int, nr_args)
10927 {
10928 	struct io_ring_ctx *ctx;
10929 	long ret = -EBADF;
10930 	struct fd f;
10931 
10932 	f = fdget(fd);
10933 	if (!f.file)
10934 		return -EBADF;
10935 
10936 	ret = -EOPNOTSUPP;
10937 	if (f.file->f_op != &io_uring_fops)
10938 		goto out_fput;
10939 
10940 	ctx = f.file->private_data;
10941 
10942 	io_run_task_work();
10943 
10944 	mutex_lock(&ctx->uring_lock);
10945 	ret = __io_uring_register(ctx, opcode, arg, nr_args);
10946 	mutex_unlock(&ctx->uring_lock);
10947 	trace_io_uring_register(ctx, opcode, ctx->nr_user_files, ctx->nr_user_bufs,
10948 							ctx->cq_ev_fd != NULL, ret);
10949 out_fput:
10950 	fdput(f);
10951 	return ret;
10952 }
10953 
io_uring_init(void)10954 static int __init io_uring_init(void)
10955 {
10956 #define __BUILD_BUG_VERIFY_ELEMENT(stype, eoffset, etype, ename) do { \
10957 	BUILD_BUG_ON(offsetof(stype, ename) != eoffset); \
10958 	BUILD_BUG_ON(sizeof(etype) != sizeof_field(stype, ename)); \
10959 } while (0)
10960 
10961 #define BUILD_BUG_SQE_ELEM(eoffset, etype, ename) \
10962 	__BUILD_BUG_VERIFY_ELEMENT(struct io_uring_sqe, eoffset, etype, ename)
10963 	BUILD_BUG_ON(sizeof(struct io_uring_sqe) != 64);
10964 	BUILD_BUG_SQE_ELEM(0,  __u8,   opcode);
10965 	BUILD_BUG_SQE_ELEM(1,  __u8,   flags);
10966 	BUILD_BUG_SQE_ELEM(2,  __u16,  ioprio);
10967 	BUILD_BUG_SQE_ELEM(4,  __s32,  fd);
10968 	BUILD_BUG_SQE_ELEM(8,  __u64,  off);
10969 	BUILD_BUG_SQE_ELEM(8,  __u64,  addr2);
10970 	BUILD_BUG_SQE_ELEM(16, __u64,  addr);
10971 	BUILD_BUG_SQE_ELEM(16, __u64,  splice_off_in);
10972 	BUILD_BUG_SQE_ELEM(24, __u32,  len);
10973 	BUILD_BUG_SQE_ELEM(28,     __kernel_rwf_t, rw_flags);
10974 	BUILD_BUG_SQE_ELEM(28, /* compat */   int, rw_flags);
10975 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u32, rw_flags);
10976 	BUILD_BUG_SQE_ELEM(28, __u32,  fsync_flags);
10977 	BUILD_BUG_SQE_ELEM(28, /* compat */ __u16,  poll_events);
10978 	BUILD_BUG_SQE_ELEM(28, __u32,  poll32_events);
10979 	BUILD_BUG_SQE_ELEM(28, __u32,  sync_range_flags);
10980 	BUILD_BUG_SQE_ELEM(28, __u32,  msg_flags);
10981 	BUILD_BUG_SQE_ELEM(28, __u32,  timeout_flags);
10982 	BUILD_BUG_SQE_ELEM(28, __u32,  accept_flags);
10983 	BUILD_BUG_SQE_ELEM(28, __u32,  cancel_flags);
10984 	BUILD_BUG_SQE_ELEM(28, __u32,  open_flags);
10985 	BUILD_BUG_SQE_ELEM(28, __u32,  statx_flags);
10986 	BUILD_BUG_SQE_ELEM(28, __u32,  fadvise_advice);
10987 	BUILD_BUG_SQE_ELEM(28, __u32,  splice_flags);
10988 	BUILD_BUG_SQE_ELEM(32, __u64,  user_data);
10989 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_index);
10990 	BUILD_BUG_SQE_ELEM(40, __u16,  buf_group);
10991 	BUILD_BUG_SQE_ELEM(42, __u16,  personality);
10992 	BUILD_BUG_SQE_ELEM(44, __s32,  splice_fd_in);
10993 	BUILD_BUG_SQE_ELEM(44, __u32,  file_index);
10994 
10995 	BUILD_BUG_ON(sizeof(struct io_uring_files_update) !=
10996 		     sizeof(struct io_uring_rsrc_update));
10997 	BUILD_BUG_ON(sizeof(struct io_uring_rsrc_update) >
10998 		     sizeof(struct io_uring_rsrc_update2));
10999 
11000 	/* ->buf_index is u16 */
11001 	BUILD_BUG_ON(IORING_MAX_REG_BUFFERS >= (1u << 16));
11002 
11003 	/* should fit into one byte */
11004 	BUILD_BUG_ON(SQE_VALID_FLAGS >= (1 << 8));
11005 
11006 	BUILD_BUG_ON(ARRAY_SIZE(io_op_defs) != IORING_OP_LAST);
11007 	BUILD_BUG_ON(__REQ_F_LAST_BIT > 8 * sizeof(int));
11008 
11009 	req_cachep = KMEM_CACHE(io_kiocb, SLAB_HWCACHE_ALIGN | SLAB_PANIC |
11010 				SLAB_ACCOUNT);
11011 	return 0;
11012 };
11013 __initcall(io_uring_init);
11014