1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * (C) 1997 Linus Torvalds
4 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
5 */
6 #include <linux/export.h>
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/backing-dev.h>
10 #include <linux/hash.h>
11 #include <linux/swap.h>
12 #include <linux/security.h>
13 #include <linux/cdev.h>
14 #include <linux/memblock.h>
15 #include <linux/fsnotify.h>
16 #include <linux/mount.h>
17 #include <linux/posix_acl.h>
18 #include <linux/prefetch.h>
19 #include <linux/buffer_head.h> /* for inode_has_buffers */
20 #include <linux/ratelimit.h>
21 #include <linux/list_lru.h>
22 #include <linux/iversion.h>
23 #include <trace/events/writeback.h>
24 #include "internal.h"
25
26 /*
27 * Inode locking rules:
28 *
29 * inode->i_lock protects:
30 * inode->i_state, inode->i_hash, __iget()
31 * Inode LRU list locks protect:
32 * inode->i_sb->s_inode_lru, inode->i_lru
33 * inode->i_sb->s_inode_list_lock protects:
34 * inode->i_sb->s_inodes, inode->i_sb_list
35 * bdi->wb.list_lock protects:
36 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
37 * inode_hash_lock protects:
38 * inode_hashtable, inode->i_hash
39 *
40 * Lock ordering:
41 *
42 * inode->i_sb->s_inode_list_lock
43 * inode->i_lock
44 * Inode LRU list locks
45 *
46 * bdi->wb.list_lock
47 * inode->i_lock
48 *
49 * inode_hash_lock
50 * inode->i_sb->s_inode_list_lock
51 * inode->i_lock
52 *
53 * iunique_lock
54 * inode_hash_lock
55 */
56
57 static unsigned int i_hash_mask __read_mostly;
58 static unsigned int i_hash_shift __read_mostly;
59 static struct hlist_head *inode_hashtable __read_mostly;
60 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61
62 /*
63 * Empty aops. Can be used for the cases where the user does not
64 * define any of the address_space operations.
65 */
66 const struct address_space_operations empty_aops = {
67 };
68 EXPORT_SYMBOL(empty_aops);
69
70 /*
71 * Statistics gathering..
72 */
73 struct inodes_stat_t inodes_stat;
74
75 static DEFINE_PER_CPU(unsigned long, nr_inodes);
76 static DEFINE_PER_CPU(unsigned long, nr_unused);
77
78 static struct kmem_cache *inode_cachep __read_mostly;
79
get_nr_inodes(void)80 static long get_nr_inodes(void)
81 {
82 int i;
83 long sum = 0;
84 for_each_possible_cpu(i)
85 sum += per_cpu(nr_inodes, i);
86 return sum < 0 ? 0 : sum;
87 }
88
get_nr_inodes_unused(void)89 static inline long get_nr_inodes_unused(void)
90 {
91 int i;
92 long sum = 0;
93 for_each_possible_cpu(i)
94 sum += per_cpu(nr_unused, i);
95 return sum < 0 ? 0 : sum;
96 }
97
get_nr_dirty_inodes(void)98 long get_nr_dirty_inodes(void)
99 {
100 /* not actually dirty inodes, but a wild approximation */
101 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
102 return nr_dirty > 0 ? nr_dirty : 0;
103 }
104
105 /*
106 * Handle nr_inode sysctl
107 */
108 #ifdef CONFIG_SYSCTL
proc_nr_inodes(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)109 int proc_nr_inodes(struct ctl_table *table, int write,
110 void *buffer, size_t *lenp, loff_t *ppos)
111 {
112 inodes_stat.nr_inodes = get_nr_inodes();
113 inodes_stat.nr_unused = get_nr_inodes_unused();
114 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
115 }
116 #endif
117
no_open(struct inode * inode,struct file * file)118 static int no_open(struct inode *inode, struct file *file)
119 {
120 return -ENXIO;
121 }
122
123 /**
124 * inode_init_always - perform inode structure initialisation
125 * @sb: superblock inode belongs to
126 * @inode: inode to initialise
127 *
128 * These are initializations that need to be done on every inode
129 * allocation as the fields are not initialised by slab allocation.
130 */
inode_init_always(struct super_block * sb,struct inode * inode)131 int inode_init_always(struct super_block *sb, struct inode *inode)
132 {
133 static const struct inode_operations empty_iops;
134 static const struct file_operations no_open_fops = {.open = no_open};
135 struct address_space *const mapping = &inode->i_data;
136
137 inode->i_sb = sb;
138 inode->i_blkbits = sb->s_blocksize_bits;
139 inode->i_flags = 0;
140 atomic64_set(&inode->i_sequence, 0);
141 atomic_set(&inode->i_count, 1);
142 inode->i_op = &empty_iops;
143 inode->i_fop = &no_open_fops;
144 inode->i_ino = 0;
145 inode->__i_nlink = 1;
146 inode->i_opflags = 0;
147 if (sb->s_xattr)
148 inode->i_opflags |= IOP_XATTR;
149 i_uid_write(inode, 0);
150 i_gid_write(inode, 0);
151 atomic_set(&inode->i_writecount, 0);
152 inode->i_size = 0;
153 inode->i_write_hint = WRITE_LIFE_NOT_SET;
154 inode->i_blocks = 0;
155 inode->i_bytes = 0;
156 inode->i_generation = 0;
157 inode->i_pipe = NULL;
158 inode->i_cdev = NULL;
159 inode->i_link = NULL;
160 inode->i_dir_seq = 0;
161 inode->i_rdev = 0;
162 inode->dirtied_when = 0;
163
164 #ifdef CONFIG_CGROUP_WRITEBACK
165 inode->i_wb_frn_winner = 0;
166 inode->i_wb_frn_avg_time = 0;
167 inode->i_wb_frn_history = 0;
168 #endif
169
170 if (security_inode_alloc(inode))
171 goto out;
172 spin_lock_init(&inode->i_lock);
173 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
174
175 init_rwsem(&inode->i_rwsem);
176 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
177
178 atomic_set(&inode->i_dio_count, 0);
179
180 mapping->a_ops = &empty_aops;
181 mapping->host = inode;
182 mapping->flags = 0;
183 if (sb->s_type->fs_flags & FS_THP_SUPPORT)
184 __set_bit(AS_THP_SUPPORT, &mapping->flags);
185 mapping->wb_err = 0;
186 atomic_set(&mapping->i_mmap_writable, 0);
187 #ifdef CONFIG_READ_ONLY_THP_FOR_FS
188 atomic_set(&mapping->nr_thps, 0);
189 #endif
190 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
191 mapping->private_data = NULL;
192 mapping->writeback_index = 0;
193 init_rwsem(&mapping->invalidate_lock);
194 lockdep_set_class_and_name(&mapping->invalidate_lock,
195 &sb->s_type->invalidate_lock_key,
196 "mapping.invalidate_lock");
197 inode->i_private = NULL;
198 inode->i_mapping = mapping;
199 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
200 #ifdef CONFIG_FS_POSIX_ACL
201 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
202 #endif
203
204 #ifdef CONFIG_FSNOTIFY
205 inode->i_fsnotify_mask = 0;
206 #endif
207 inode->i_flctx = NULL;
208 this_cpu_inc(nr_inodes);
209
210 return 0;
211 out:
212 return -ENOMEM;
213 }
214 EXPORT_SYMBOL(inode_init_always);
215
free_inode_nonrcu(struct inode * inode)216 void free_inode_nonrcu(struct inode *inode)
217 {
218 kmem_cache_free(inode_cachep, inode);
219 }
220 EXPORT_SYMBOL(free_inode_nonrcu);
221
i_callback(struct rcu_head * head)222 static void i_callback(struct rcu_head *head)
223 {
224 struct inode *inode = container_of(head, struct inode, i_rcu);
225 if (inode->free_inode)
226 inode->free_inode(inode);
227 else
228 free_inode_nonrcu(inode);
229 }
230
alloc_inode(struct super_block * sb)231 static struct inode *alloc_inode(struct super_block *sb)
232 {
233 const struct super_operations *ops = sb->s_op;
234 struct inode *inode;
235
236 if (ops->alloc_inode)
237 inode = ops->alloc_inode(sb);
238 else
239 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
240
241 if (!inode)
242 return NULL;
243
244 if (unlikely(inode_init_always(sb, inode))) {
245 if (ops->destroy_inode) {
246 ops->destroy_inode(inode);
247 if (!ops->free_inode)
248 return NULL;
249 }
250 inode->free_inode = ops->free_inode;
251 i_callback(&inode->i_rcu);
252 return NULL;
253 }
254
255 return inode;
256 }
257
__destroy_inode(struct inode * inode)258 void __destroy_inode(struct inode *inode)
259 {
260 BUG_ON(inode_has_buffers(inode));
261 inode_detach_wb(inode);
262 security_inode_free(inode);
263 fsnotify_inode_delete(inode);
264 locks_free_lock_context(inode);
265 if (!inode->i_nlink) {
266 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
267 atomic_long_dec(&inode->i_sb->s_remove_count);
268 }
269
270 #ifdef CONFIG_FS_POSIX_ACL
271 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
272 posix_acl_release(inode->i_acl);
273 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
274 posix_acl_release(inode->i_default_acl);
275 #endif
276 this_cpu_dec(nr_inodes);
277 }
278 EXPORT_SYMBOL(__destroy_inode);
279
destroy_inode(struct inode * inode)280 static void destroy_inode(struct inode *inode)
281 {
282 const struct super_operations *ops = inode->i_sb->s_op;
283
284 BUG_ON(!list_empty(&inode->i_lru));
285 __destroy_inode(inode);
286 if (ops->destroy_inode) {
287 ops->destroy_inode(inode);
288 if (!ops->free_inode)
289 return;
290 }
291 inode->free_inode = ops->free_inode;
292 call_rcu(&inode->i_rcu, i_callback);
293 }
294
295 /**
296 * drop_nlink - directly drop an inode's link count
297 * @inode: inode
298 *
299 * This is a low-level filesystem helper to replace any
300 * direct filesystem manipulation of i_nlink. In cases
301 * where we are attempting to track writes to the
302 * filesystem, a decrement to zero means an imminent
303 * write when the file is truncated and actually unlinked
304 * on the filesystem.
305 */
drop_nlink(struct inode * inode)306 void drop_nlink(struct inode *inode)
307 {
308 WARN_ON(inode->i_nlink == 0);
309 inode->__i_nlink--;
310 if (!inode->i_nlink)
311 atomic_long_inc(&inode->i_sb->s_remove_count);
312 }
313 EXPORT_SYMBOL(drop_nlink);
314
315 /**
316 * clear_nlink - directly zero an inode's link count
317 * @inode: inode
318 *
319 * This is a low-level filesystem helper to replace any
320 * direct filesystem manipulation of i_nlink. See
321 * drop_nlink() for why we care about i_nlink hitting zero.
322 */
clear_nlink(struct inode * inode)323 void clear_nlink(struct inode *inode)
324 {
325 if (inode->i_nlink) {
326 inode->__i_nlink = 0;
327 atomic_long_inc(&inode->i_sb->s_remove_count);
328 }
329 }
330 EXPORT_SYMBOL(clear_nlink);
331
332 /**
333 * set_nlink - directly set an inode's link count
334 * @inode: inode
335 * @nlink: new nlink (should be non-zero)
336 *
337 * This is a low-level filesystem helper to replace any
338 * direct filesystem manipulation of i_nlink.
339 */
set_nlink(struct inode * inode,unsigned int nlink)340 void set_nlink(struct inode *inode, unsigned int nlink)
341 {
342 if (!nlink) {
343 clear_nlink(inode);
344 } else {
345 /* Yes, some filesystems do change nlink from zero to one */
346 if (inode->i_nlink == 0)
347 atomic_long_dec(&inode->i_sb->s_remove_count);
348
349 inode->__i_nlink = nlink;
350 }
351 }
352 EXPORT_SYMBOL(set_nlink);
353
354 /**
355 * inc_nlink - directly increment an inode's link count
356 * @inode: inode
357 *
358 * This is a low-level filesystem helper to replace any
359 * direct filesystem manipulation of i_nlink. Currently,
360 * it is only here for parity with dec_nlink().
361 */
inc_nlink(struct inode * inode)362 void inc_nlink(struct inode *inode)
363 {
364 if (unlikely(inode->i_nlink == 0)) {
365 WARN_ON(!(inode->i_state & I_LINKABLE));
366 atomic_long_dec(&inode->i_sb->s_remove_count);
367 }
368
369 inode->__i_nlink++;
370 }
371 EXPORT_SYMBOL(inc_nlink);
372
__address_space_init_once(struct address_space * mapping)373 static void __address_space_init_once(struct address_space *mapping)
374 {
375 xa_init_flags(&mapping->i_pages, XA_FLAGS_LOCK_IRQ | XA_FLAGS_ACCOUNT);
376 init_rwsem(&mapping->i_mmap_rwsem);
377 INIT_LIST_HEAD(&mapping->private_list);
378 spin_lock_init(&mapping->private_lock);
379 mapping->i_mmap = RB_ROOT_CACHED;
380 }
381
address_space_init_once(struct address_space * mapping)382 void address_space_init_once(struct address_space *mapping)
383 {
384 memset(mapping, 0, sizeof(*mapping));
385 __address_space_init_once(mapping);
386 }
387 EXPORT_SYMBOL(address_space_init_once);
388
389 /*
390 * These are initializations that only need to be done
391 * once, because the fields are idempotent across use
392 * of the inode, so let the slab aware of that.
393 */
inode_init_once(struct inode * inode)394 void inode_init_once(struct inode *inode)
395 {
396 memset(inode, 0, sizeof(*inode));
397 INIT_HLIST_NODE(&inode->i_hash);
398 INIT_LIST_HEAD(&inode->i_devices);
399 INIT_LIST_HEAD(&inode->i_io_list);
400 INIT_LIST_HEAD(&inode->i_wb_list);
401 INIT_LIST_HEAD(&inode->i_lru);
402 __address_space_init_once(&inode->i_data);
403 i_size_ordered_init(inode);
404 }
405 EXPORT_SYMBOL(inode_init_once);
406
init_once(void * foo)407 static void init_once(void *foo)
408 {
409 struct inode *inode = (struct inode *) foo;
410
411 inode_init_once(inode);
412 }
413
414 /*
415 * inode->i_lock must be held
416 */
__iget(struct inode * inode)417 void __iget(struct inode *inode)
418 {
419 atomic_inc(&inode->i_count);
420 }
421
422 /*
423 * get additional reference to inode; caller must already hold one.
424 */
ihold(struct inode * inode)425 void ihold(struct inode *inode)
426 {
427 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
428 }
429 EXPORT_SYMBOL(ihold);
430
inode_lru_list_add(struct inode * inode)431 static void inode_lru_list_add(struct inode *inode)
432 {
433 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
434 this_cpu_inc(nr_unused);
435 else
436 inode->i_state |= I_REFERENCED;
437 }
438
439 /*
440 * Add inode to LRU if needed (inode is unused and clean).
441 *
442 * Needs inode->i_lock held.
443 */
inode_add_lru(struct inode * inode)444 void inode_add_lru(struct inode *inode)
445 {
446 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
447 I_FREEING | I_WILL_FREE)) &&
448 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & SB_ACTIVE)
449 inode_lru_list_add(inode);
450 }
451
452
inode_lru_list_del(struct inode * inode)453 static void inode_lru_list_del(struct inode *inode)
454 {
455
456 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
457 this_cpu_dec(nr_unused);
458 }
459
460 /**
461 * inode_sb_list_add - add inode to the superblock list of inodes
462 * @inode: inode to add
463 */
inode_sb_list_add(struct inode * inode)464 void inode_sb_list_add(struct inode *inode)
465 {
466 spin_lock(&inode->i_sb->s_inode_list_lock);
467 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
468 spin_unlock(&inode->i_sb->s_inode_list_lock);
469 }
470 EXPORT_SYMBOL_GPL(inode_sb_list_add);
471
inode_sb_list_del(struct inode * inode)472 static inline void inode_sb_list_del(struct inode *inode)
473 {
474 if (!list_empty(&inode->i_sb_list)) {
475 spin_lock(&inode->i_sb->s_inode_list_lock);
476 list_del_init(&inode->i_sb_list);
477 spin_unlock(&inode->i_sb->s_inode_list_lock);
478 }
479 }
480
hash(struct super_block * sb,unsigned long hashval)481 static unsigned long hash(struct super_block *sb, unsigned long hashval)
482 {
483 unsigned long tmp;
484
485 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
486 L1_CACHE_BYTES;
487 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
488 return tmp & i_hash_mask;
489 }
490
491 /**
492 * __insert_inode_hash - hash an inode
493 * @inode: unhashed inode
494 * @hashval: unsigned long value used to locate this object in the
495 * inode_hashtable.
496 *
497 * Add an inode to the inode hash for this superblock.
498 */
__insert_inode_hash(struct inode * inode,unsigned long hashval)499 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
500 {
501 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
502
503 spin_lock(&inode_hash_lock);
504 spin_lock(&inode->i_lock);
505 hlist_add_head_rcu(&inode->i_hash, b);
506 spin_unlock(&inode->i_lock);
507 spin_unlock(&inode_hash_lock);
508 }
509 EXPORT_SYMBOL(__insert_inode_hash);
510
511 /**
512 * __remove_inode_hash - remove an inode from the hash
513 * @inode: inode to unhash
514 *
515 * Remove an inode from the superblock.
516 */
__remove_inode_hash(struct inode * inode)517 void __remove_inode_hash(struct inode *inode)
518 {
519 spin_lock(&inode_hash_lock);
520 spin_lock(&inode->i_lock);
521 hlist_del_init_rcu(&inode->i_hash);
522 spin_unlock(&inode->i_lock);
523 spin_unlock(&inode_hash_lock);
524 }
525 EXPORT_SYMBOL(__remove_inode_hash);
526
clear_inode(struct inode * inode)527 void clear_inode(struct inode *inode)
528 {
529 /*
530 * We have to cycle the i_pages lock here because reclaim can be in the
531 * process of removing the last page (in __delete_from_page_cache())
532 * and we must not free the mapping under it.
533 */
534 xa_lock_irq(&inode->i_data.i_pages);
535 BUG_ON(inode->i_data.nrpages);
536 /*
537 * Almost always, mapping_empty(&inode->i_data) here; but there are
538 * two known and long-standing ways in which nodes may get left behind
539 * (when deep radix-tree node allocation failed partway; or when THP
540 * collapse_file() failed). Until those two known cases are cleaned up,
541 * or a cleanup function is called here, do not BUG_ON(!mapping_empty),
542 * nor even WARN_ON(!mapping_empty).
543 */
544 xa_unlock_irq(&inode->i_data.i_pages);
545 BUG_ON(!list_empty(&inode->i_data.private_list));
546 BUG_ON(!(inode->i_state & I_FREEING));
547 BUG_ON(inode->i_state & I_CLEAR);
548 BUG_ON(!list_empty(&inode->i_wb_list));
549 /* don't need i_lock here, no concurrent mods to i_state */
550 inode->i_state = I_FREEING | I_CLEAR;
551 }
552 EXPORT_SYMBOL(clear_inode);
553
554 /*
555 * Free the inode passed in, removing it from the lists it is still connected
556 * to. We remove any pages still attached to the inode and wait for any IO that
557 * is still in progress before finally destroying the inode.
558 *
559 * An inode must already be marked I_FREEING so that we avoid the inode being
560 * moved back onto lists if we race with other code that manipulates the lists
561 * (e.g. writeback_single_inode). The caller is responsible for setting this.
562 *
563 * An inode must already be removed from the LRU list before being evicted from
564 * the cache. This should occur atomically with setting the I_FREEING state
565 * flag, so no inodes here should ever be on the LRU when being evicted.
566 */
evict(struct inode * inode)567 static void evict(struct inode *inode)
568 {
569 const struct super_operations *op = inode->i_sb->s_op;
570
571 BUG_ON(!(inode->i_state & I_FREEING));
572 BUG_ON(!list_empty(&inode->i_lru));
573
574 if (!list_empty(&inode->i_io_list))
575 inode_io_list_del(inode);
576
577 inode_sb_list_del(inode);
578
579 /*
580 * Wait for flusher thread to be done with the inode so that filesystem
581 * does not start destroying it while writeback is still running. Since
582 * the inode has I_FREEING set, flusher thread won't start new work on
583 * the inode. We just have to wait for running writeback to finish.
584 */
585 inode_wait_for_writeback(inode);
586
587 if (op->evict_inode) {
588 op->evict_inode(inode);
589 } else {
590 truncate_inode_pages_final(&inode->i_data);
591 clear_inode(inode);
592 }
593 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
594 cd_forget(inode);
595
596 remove_inode_hash(inode);
597
598 spin_lock(&inode->i_lock);
599 wake_up_bit(&inode->i_state, __I_NEW);
600 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
601 spin_unlock(&inode->i_lock);
602
603 destroy_inode(inode);
604 }
605
606 /*
607 * dispose_list - dispose of the contents of a local list
608 * @head: the head of the list to free
609 *
610 * Dispose-list gets a local list with local inodes in it, so it doesn't
611 * need to worry about list corruption and SMP locks.
612 */
dispose_list(struct list_head * head)613 static void dispose_list(struct list_head *head)
614 {
615 while (!list_empty(head)) {
616 struct inode *inode;
617
618 inode = list_first_entry(head, struct inode, i_lru);
619 list_del_init(&inode->i_lru);
620
621 evict(inode);
622 cond_resched();
623 }
624 }
625
626 /**
627 * evict_inodes - evict all evictable inodes for a superblock
628 * @sb: superblock to operate on
629 *
630 * Make sure that no inodes with zero refcount are retained. This is
631 * called by superblock shutdown after having SB_ACTIVE flag removed,
632 * so any inode reaching zero refcount during or after that call will
633 * be immediately evicted.
634 */
evict_inodes(struct super_block * sb)635 void evict_inodes(struct super_block *sb)
636 {
637 struct inode *inode, *next;
638 LIST_HEAD(dispose);
639
640 again:
641 spin_lock(&sb->s_inode_list_lock);
642 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
643 if (atomic_read(&inode->i_count))
644 continue;
645
646 spin_lock(&inode->i_lock);
647 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
648 spin_unlock(&inode->i_lock);
649 continue;
650 }
651
652 inode->i_state |= I_FREEING;
653 inode_lru_list_del(inode);
654 spin_unlock(&inode->i_lock);
655 list_add(&inode->i_lru, &dispose);
656
657 /*
658 * We can have a ton of inodes to evict at unmount time given
659 * enough memory, check to see if we need to go to sleep for a
660 * bit so we don't livelock.
661 */
662 if (need_resched()) {
663 spin_unlock(&sb->s_inode_list_lock);
664 cond_resched();
665 dispose_list(&dispose);
666 goto again;
667 }
668 }
669 spin_unlock(&sb->s_inode_list_lock);
670
671 dispose_list(&dispose);
672 }
673 EXPORT_SYMBOL_GPL(evict_inodes);
674
675 /**
676 * invalidate_inodes - attempt to free all inodes on a superblock
677 * @sb: superblock to operate on
678 * @kill_dirty: flag to guide handling of dirty inodes
679 *
680 * Attempts to free all inodes for a given superblock. If there were any
681 * busy inodes return a non-zero value, else zero.
682 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
683 * them as busy.
684 */
invalidate_inodes(struct super_block * sb,bool kill_dirty)685 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
686 {
687 int busy = 0;
688 struct inode *inode, *next;
689 LIST_HEAD(dispose);
690
691 again:
692 spin_lock(&sb->s_inode_list_lock);
693 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
694 spin_lock(&inode->i_lock);
695 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
696 spin_unlock(&inode->i_lock);
697 continue;
698 }
699 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
700 spin_unlock(&inode->i_lock);
701 busy = 1;
702 continue;
703 }
704 if (atomic_read(&inode->i_count)) {
705 spin_unlock(&inode->i_lock);
706 busy = 1;
707 continue;
708 }
709
710 inode->i_state |= I_FREEING;
711 inode_lru_list_del(inode);
712 spin_unlock(&inode->i_lock);
713 list_add(&inode->i_lru, &dispose);
714 if (need_resched()) {
715 spin_unlock(&sb->s_inode_list_lock);
716 cond_resched();
717 dispose_list(&dispose);
718 goto again;
719 }
720 }
721 spin_unlock(&sb->s_inode_list_lock);
722
723 dispose_list(&dispose);
724
725 return busy;
726 }
727
728 /*
729 * Isolate the inode from the LRU in preparation for freeing it.
730 *
731 * Any inodes which are pinned purely because of attached pagecache have their
732 * pagecache removed. If the inode has metadata buffers attached to
733 * mapping->private_list then try to remove them.
734 *
735 * If the inode has the I_REFERENCED flag set, then it means that it has been
736 * used recently - the flag is set in iput_final(). When we encounter such an
737 * inode, clear the flag and move it to the back of the LRU so it gets another
738 * pass through the LRU before it gets reclaimed. This is necessary because of
739 * the fact we are doing lazy LRU updates to minimise lock contention so the
740 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
741 * with this flag set because they are the inodes that are out of order.
742 */
inode_lru_isolate(struct list_head * item,struct list_lru_one * lru,spinlock_t * lru_lock,void * arg)743 static enum lru_status inode_lru_isolate(struct list_head *item,
744 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
745 {
746 struct list_head *freeable = arg;
747 struct inode *inode = container_of(item, struct inode, i_lru);
748
749 /*
750 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
751 * If we fail to get the lock, just skip it.
752 */
753 if (!spin_trylock(&inode->i_lock))
754 return LRU_SKIP;
755
756 /*
757 * Referenced or dirty inodes are still in use. Give them another pass
758 * through the LRU as we canot reclaim them now.
759 */
760 if (atomic_read(&inode->i_count) ||
761 (inode->i_state & ~I_REFERENCED)) {
762 list_lru_isolate(lru, &inode->i_lru);
763 spin_unlock(&inode->i_lock);
764 this_cpu_dec(nr_unused);
765 return LRU_REMOVED;
766 }
767
768 /* recently referenced inodes get one more pass */
769 if (inode->i_state & I_REFERENCED) {
770 inode->i_state &= ~I_REFERENCED;
771 spin_unlock(&inode->i_lock);
772 return LRU_ROTATE;
773 }
774
775 if (inode_has_buffers(inode) || !mapping_empty(&inode->i_data)) {
776 __iget(inode);
777 spin_unlock(&inode->i_lock);
778 spin_unlock(lru_lock);
779 if (remove_inode_buffers(inode)) {
780 unsigned long reap;
781 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
782 if (current_is_kswapd())
783 __count_vm_events(KSWAPD_INODESTEAL, reap);
784 else
785 __count_vm_events(PGINODESTEAL, reap);
786 if (current->reclaim_state)
787 current->reclaim_state->reclaimed_slab += reap;
788 }
789 iput(inode);
790 spin_lock(lru_lock);
791 return LRU_RETRY;
792 }
793
794 WARN_ON(inode->i_state & I_NEW);
795 inode->i_state |= I_FREEING;
796 list_lru_isolate_move(lru, &inode->i_lru, freeable);
797 spin_unlock(&inode->i_lock);
798
799 this_cpu_dec(nr_unused);
800 return LRU_REMOVED;
801 }
802
803 /*
804 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
805 * This is called from the superblock shrinker function with a number of inodes
806 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
807 * then are freed outside inode_lock by dispose_list().
808 */
prune_icache_sb(struct super_block * sb,struct shrink_control * sc)809 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
810 {
811 LIST_HEAD(freeable);
812 long freed;
813
814 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
815 inode_lru_isolate, &freeable);
816 dispose_list(&freeable);
817 return freed;
818 }
819
820 static void __wait_on_freeing_inode(struct inode *inode);
821 /*
822 * Called with the inode lock held.
823 */
find_inode(struct super_block * sb,struct hlist_head * head,int (* test)(struct inode *,void *),void * data)824 static struct inode *find_inode(struct super_block *sb,
825 struct hlist_head *head,
826 int (*test)(struct inode *, void *),
827 void *data)
828 {
829 struct inode *inode = NULL;
830
831 repeat:
832 hlist_for_each_entry(inode, head, i_hash) {
833 if (inode->i_sb != sb)
834 continue;
835 if (!test(inode, data))
836 continue;
837 spin_lock(&inode->i_lock);
838 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
839 __wait_on_freeing_inode(inode);
840 goto repeat;
841 }
842 if (unlikely(inode->i_state & I_CREATING)) {
843 spin_unlock(&inode->i_lock);
844 return ERR_PTR(-ESTALE);
845 }
846 __iget(inode);
847 spin_unlock(&inode->i_lock);
848 return inode;
849 }
850 return NULL;
851 }
852
853 /*
854 * find_inode_fast is the fast path version of find_inode, see the comment at
855 * iget_locked for details.
856 */
find_inode_fast(struct super_block * sb,struct hlist_head * head,unsigned long ino)857 static struct inode *find_inode_fast(struct super_block *sb,
858 struct hlist_head *head, unsigned long ino)
859 {
860 struct inode *inode = NULL;
861
862 repeat:
863 hlist_for_each_entry(inode, head, i_hash) {
864 if (inode->i_ino != ino)
865 continue;
866 if (inode->i_sb != sb)
867 continue;
868 spin_lock(&inode->i_lock);
869 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
870 __wait_on_freeing_inode(inode);
871 goto repeat;
872 }
873 if (unlikely(inode->i_state & I_CREATING)) {
874 spin_unlock(&inode->i_lock);
875 return ERR_PTR(-ESTALE);
876 }
877 __iget(inode);
878 spin_unlock(&inode->i_lock);
879 return inode;
880 }
881 return NULL;
882 }
883
884 /*
885 * Each cpu owns a range of LAST_INO_BATCH numbers.
886 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
887 * to renew the exhausted range.
888 *
889 * This does not significantly increase overflow rate because every CPU can
890 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
891 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
892 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
893 * overflow rate by 2x, which does not seem too significant.
894 *
895 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
896 * error if st_ino won't fit in target struct field. Use 32bit counter
897 * here to attempt to avoid that.
898 */
899 #define LAST_INO_BATCH 1024
900 static DEFINE_PER_CPU(unsigned int, last_ino);
901
get_next_ino(void)902 unsigned int get_next_ino(void)
903 {
904 unsigned int *p = &get_cpu_var(last_ino);
905 unsigned int res = *p;
906
907 #ifdef CONFIG_SMP
908 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
909 static atomic_t shared_last_ino;
910 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
911
912 res = next - LAST_INO_BATCH;
913 }
914 #endif
915
916 res++;
917 /* get_next_ino should not provide a 0 inode number */
918 if (unlikely(!res))
919 res++;
920 *p = res;
921 put_cpu_var(last_ino);
922 return res;
923 }
924 EXPORT_SYMBOL(get_next_ino);
925
926 /**
927 * new_inode_pseudo - obtain an inode
928 * @sb: superblock
929 *
930 * Allocates a new inode for given superblock.
931 * Inode wont be chained in superblock s_inodes list
932 * This means :
933 * - fs can't be unmount
934 * - quotas, fsnotify, writeback can't work
935 */
new_inode_pseudo(struct super_block * sb)936 struct inode *new_inode_pseudo(struct super_block *sb)
937 {
938 struct inode *inode = alloc_inode(sb);
939
940 if (inode) {
941 spin_lock(&inode->i_lock);
942 inode->i_state = 0;
943 spin_unlock(&inode->i_lock);
944 INIT_LIST_HEAD(&inode->i_sb_list);
945 }
946 return inode;
947 }
948
949 /**
950 * new_inode - obtain an inode
951 * @sb: superblock
952 *
953 * Allocates a new inode for given superblock. The default gfp_mask
954 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
955 * If HIGHMEM pages are unsuitable or it is known that pages allocated
956 * for the page cache are not reclaimable or migratable,
957 * mapping_set_gfp_mask() must be called with suitable flags on the
958 * newly created inode's mapping
959 *
960 */
new_inode(struct super_block * sb)961 struct inode *new_inode(struct super_block *sb)
962 {
963 struct inode *inode;
964
965 spin_lock_prefetch(&sb->s_inode_list_lock);
966
967 inode = new_inode_pseudo(sb);
968 if (inode)
969 inode_sb_list_add(inode);
970 return inode;
971 }
972 EXPORT_SYMBOL(new_inode);
973
974 #ifdef CONFIG_DEBUG_LOCK_ALLOC
lockdep_annotate_inode_mutex_key(struct inode * inode)975 void lockdep_annotate_inode_mutex_key(struct inode *inode)
976 {
977 if (S_ISDIR(inode->i_mode)) {
978 struct file_system_type *type = inode->i_sb->s_type;
979
980 /* Set new key only if filesystem hasn't already changed it */
981 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
982 /*
983 * ensure nobody is actually holding i_mutex
984 */
985 // mutex_destroy(&inode->i_mutex);
986 init_rwsem(&inode->i_rwsem);
987 lockdep_set_class(&inode->i_rwsem,
988 &type->i_mutex_dir_key);
989 }
990 }
991 }
992 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
993 #endif
994
995 /**
996 * unlock_new_inode - clear the I_NEW state and wake up any waiters
997 * @inode: new inode to unlock
998 *
999 * Called when the inode is fully initialised to clear the new state of the
1000 * inode and wake up anyone waiting for the inode to finish initialisation.
1001 */
unlock_new_inode(struct inode * inode)1002 void unlock_new_inode(struct inode *inode)
1003 {
1004 lockdep_annotate_inode_mutex_key(inode);
1005 spin_lock(&inode->i_lock);
1006 WARN_ON(!(inode->i_state & I_NEW));
1007 inode->i_state &= ~I_NEW & ~I_CREATING;
1008 smp_mb();
1009 wake_up_bit(&inode->i_state, __I_NEW);
1010 spin_unlock(&inode->i_lock);
1011 }
1012 EXPORT_SYMBOL(unlock_new_inode);
1013
discard_new_inode(struct inode * inode)1014 void discard_new_inode(struct inode *inode)
1015 {
1016 lockdep_annotate_inode_mutex_key(inode);
1017 spin_lock(&inode->i_lock);
1018 WARN_ON(!(inode->i_state & I_NEW));
1019 inode->i_state &= ~I_NEW;
1020 smp_mb();
1021 wake_up_bit(&inode->i_state, __I_NEW);
1022 spin_unlock(&inode->i_lock);
1023 iput(inode);
1024 }
1025 EXPORT_SYMBOL(discard_new_inode);
1026
1027 /**
1028 * lock_two_nondirectories - take two i_mutexes on non-directory objects
1029 *
1030 * Lock any non-NULL argument that is not a directory.
1031 * Zero, one or two objects may be locked by this function.
1032 *
1033 * @inode1: first inode to lock
1034 * @inode2: second inode to lock
1035 */
lock_two_nondirectories(struct inode * inode1,struct inode * inode2)1036 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1037 {
1038 if (inode1 > inode2)
1039 swap(inode1, inode2);
1040
1041 if (inode1 && !S_ISDIR(inode1->i_mode))
1042 inode_lock(inode1);
1043 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1044 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
1045 }
1046 EXPORT_SYMBOL(lock_two_nondirectories);
1047
1048 /**
1049 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
1050 * @inode1: first inode to unlock
1051 * @inode2: second inode to unlock
1052 */
unlock_two_nondirectories(struct inode * inode1,struct inode * inode2)1053 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
1054 {
1055 if (inode1 && !S_ISDIR(inode1->i_mode))
1056 inode_unlock(inode1);
1057 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
1058 inode_unlock(inode2);
1059 }
1060 EXPORT_SYMBOL(unlock_two_nondirectories);
1061
1062 /**
1063 * inode_insert5 - obtain an inode from a mounted file system
1064 * @inode: pre-allocated inode to use for insert to cache
1065 * @hashval: hash value (usually inode number) to get
1066 * @test: callback used for comparisons between inodes
1067 * @set: callback used to initialize a new struct inode
1068 * @data: opaque data pointer to pass to @test and @set
1069 *
1070 * Search for the inode specified by @hashval and @data in the inode cache,
1071 * and if present it is return it with an increased reference count. This is
1072 * a variant of iget5_locked() for callers that don't want to fail on memory
1073 * allocation of inode.
1074 *
1075 * If the inode is not in cache, insert the pre-allocated inode to cache and
1076 * return it locked, hashed, and with the I_NEW flag set. The file system gets
1077 * to fill it in before unlocking it via unlock_new_inode().
1078 *
1079 * Note both @test and @set are called with the inode_hash_lock held, so can't
1080 * sleep.
1081 */
inode_insert5(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1082 struct inode *inode_insert5(struct inode *inode, unsigned long hashval,
1083 int (*test)(struct inode *, void *),
1084 int (*set)(struct inode *, void *), void *data)
1085 {
1086 struct hlist_head *head = inode_hashtable + hash(inode->i_sb, hashval);
1087 struct inode *old;
1088 bool creating = inode->i_state & I_CREATING;
1089
1090 again:
1091 spin_lock(&inode_hash_lock);
1092 old = find_inode(inode->i_sb, head, test, data);
1093 if (unlikely(old)) {
1094 /*
1095 * Uhhuh, somebody else created the same inode under us.
1096 * Use the old inode instead of the preallocated one.
1097 */
1098 spin_unlock(&inode_hash_lock);
1099 if (IS_ERR(old))
1100 return NULL;
1101 wait_on_inode(old);
1102 if (unlikely(inode_unhashed(old))) {
1103 iput(old);
1104 goto again;
1105 }
1106 return old;
1107 }
1108
1109 if (set && unlikely(set(inode, data))) {
1110 inode = NULL;
1111 goto unlock;
1112 }
1113
1114 /*
1115 * Return the locked inode with I_NEW set, the
1116 * caller is responsible for filling in the contents
1117 */
1118 spin_lock(&inode->i_lock);
1119 inode->i_state |= I_NEW;
1120 hlist_add_head_rcu(&inode->i_hash, head);
1121 spin_unlock(&inode->i_lock);
1122 if (!creating)
1123 inode_sb_list_add(inode);
1124 unlock:
1125 spin_unlock(&inode_hash_lock);
1126
1127 return inode;
1128 }
1129 EXPORT_SYMBOL(inode_insert5);
1130
1131 /**
1132 * iget5_locked - obtain an inode from a mounted file system
1133 * @sb: super block of file system
1134 * @hashval: hash value (usually inode number) to get
1135 * @test: callback used for comparisons between inodes
1136 * @set: callback used to initialize a new struct inode
1137 * @data: opaque data pointer to pass to @test and @set
1138 *
1139 * Search for the inode specified by @hashval and @data in the inode cache,
1140 * and if present it is return it with an increased reference count. This is
1141 * a generalized version of iget_locked() for file systems where the inode
1142 * number is not sufficient for unique identification of an inode.
1143 *
1144 * If the inode is not in cache, allocate a new inode and return it locked,
1145 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1146 * before unlocking it via unlock_new_inode().
1147 *
1148 * Note both @test and @set are called with the inode_hash_lock held, so can't
1149 * sleep.
1150 */
iget5_locked(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),int (* set)(struct inode *,void *),void * data)1151 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1152 int (*test)(struct inode *, void *),
1153 int (*set)(struct inode *, void *), void *data)
1154 {
1155 struct inode *inode = ilookup5(sb, hashval, test, data);
1156
1157 if (!inode) {
1158 struct inode *new = alloc_inode(sb);
1159
1160 if (new) {
1161 new->i_state = 0;
1162 inode = inode_insert5(new, hashval, test, set, data);
1163 if (unlikely(inode != new))
1164 destroy_inode(new);
1165 }
1166 }
1167 return inode;
1168 }
1169 EXPORT_SYMBOL(iget5_locked);
1170
1171 /**
1172 * iget_locked - obtain an inode from a mounted file system
1173 * @sb: super block of file system
1174 * @ino: inode number to get
1175 *
1176 * Search for the inode specified by @ino in the inode cache and if present
1177 * return it with an increased reference count. This is for file systems
1178 * where the inode number is sufficient for unique identification of an inode.
1179 *
1180 * If the inode is not in cache, allocate a new inode and return it locked,
1181 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1182 * before unlocking it via unlock_new_inode().
1183 */
iget_locked(struct super_block * sb,unsigned long ino)1184 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1185 {
1186 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1187 struct inode *inode;
1188 again:
1189 spin_lock(&inode_hash_lock);
1190 inode = find_inode_fast(sb, head, ino);
1191 spin_unlock(&inode_hash_lock);
1192 if (inode) {
1193 if (IS_ERR(inode))
1194 return NULL;
1195 wait_on_inode(inode);
1196 if (unlikely(inode_unhashed(inode))) {
1197 iput(inode);
1198 goto again;
1199 }
1200 return inode;
1201 }
1202
1203 inode = alloc_inode(sb);
1204 if (inode) {
1205 struct inode *old;
1206
1207 spin_lock(&inode_hash_lock);
1208 /* We released the lock, so.. */
1209 old = find_inode_fast(sb, head, ino);
1210 if (!old) {
1211 inode->i_ino = ino;
1212 spin_lock(&inode->i_lock);
1213 inode->i_state = I_NEW;
1214 hlist_add_head_rcu(&inode->i_hash, head);
1215 spin_unlock(&inode->i_lock);
1216 inode_sb_list_add(inode);
1217 spin_unlock(&inode_hash_lock);
1218
1219 /* Return the locked inode with I_NEW set, the
1220 * caller is responsible for filling in the contents
1221 */
1222 return inode;
1223 }
1224
1225 /*
1226 * Uhhuh, somebody else created the same inode under
1227 * us. Use the old inode instead of the one we just
1228 * allocated.
1229 */
1230 spin_unlock(&inode_hash_lock);
1231 destroy_inode(inode);
1232 if (IS_ERR(old))
1233 return NULL;
1234 inode = old;
1235 wait_on_inode(inode);
1236 if (unlikely(inode_unhashed(inode))) {
1237 iput(inode);
1238 goto again;
1239 }
1240 }
1241 return inode;
1242 }
1243 EXPORT_SYMBOL(iget_locked);
1244
1245 /*
1246 * search the inode cache for a matching inode number.
1247 * If we find one, then the inode number we are trying to
1248 * allocate is not unique and so we should not use it.
1249 *
1250 * Returns 1 if the inode number is unique, 0 if it is not.
1251 */
test_inode_iunique(struct super_block * sb,unsigned long ino)1252 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1253 {
1254 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1255 struct inode *inode;
1256
1257 hlist_for_each_entry_rcu(inode, b, i_hash) {
1258 if (inode->i_ino == ino && inode->i_sb == sb)
1259 return 0;
1260 }
1261 return 1;
1262 }
1263
1264 /**
1265 * iunique - get a unique inode number
1266 * @sb: superblock
1267 * @max_reserved: highest reserved inode number
1268 *
1269 * Obtain an inode number that is unique on the system for a given
1270 * superblock. This is used by file systems that have no natural
1271 * permanent inode numbering system. An inode number is returned that
1272 * is higher than the reserved limit but unique.
1273 *
1274 * BUGS:
1275 * With a large number of inodes live on the file system this function
1276 * currently becomes quite slow.
1277 */
iunique(struct super_block * sb,ino_t max_reserved)1278 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1279 {
1280 /*
1281 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1282 * error if st_ino won't fit in target struct field. Use 32bit counter
1283 * here to attempt to avoid that.
1284 */
1285 static DEFINE_SPINLOCK(iunique_lock);
1286 static unsigned int counter;
1287 ino_t res;
1288
1289 rcu_read_lock();
1290 spin_lock(&iunique_lock);
1291 do {
1292 if (counter <= max_reserved)
1293 counter = max_reserved + 1;
1294 res = counter++;
1295 } while (!test_inode_iunique(sb, res));
1296 spin_unlock(&iunique_lock);
1297 rcu_read_unlock();
1298
1299 return res;
1300 }
1301 EXPORT_SYMBOL(iunique);
1302
igrab(struct inode * inode)1303 struct inode *igrab(struct inode *inode)
1304 {
1305 spin_lock(&inode->i_lock);
1306 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1307 __iget(inode);
1308 spin_unlock(&inode->i_lock);
1309 } else {
1310 spin_unlock(&inode->i_lock);
1311 /*
1312 * Handle the case where s_op->clear_inode is not been
1313 * called yet, and somebody is calling igrab
1314 * while the inode is getting freed.
1315 */
1316 inode = NULL;
1317 }
1318 return inode;
1319 }
1320 EXPORT_SYMBOL(igrab);
1321
1322 /**
1323 * ilookup5_nowait - search for an inode in the inode cache
1324 * @sb: super block of file system to search
1325 * @hashval: hash value (usually inode number) to search for
1326 * @test: callback used for comparisons between inodes
1327 * @data: opaque data pointer to pass to @test
1328 *
1329 * Search for the inode specified by @hashval and @data in the inode cache.
1330 * If the inode is in the cache, the inode is returned with an incremented
1331 * reference count.
1332 *
1333 * Note: I_NEW is not waited upon so you have to be very careful what you do
1334 * with the returned inode. You probably should be using ilookup5() instead.
1335 *
1336 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1337 */
ilookup5_nowait(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1338 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1339 int (*test)(struct inode *, void *), void *data)
1340 {
1341 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1342 struct inode *inode;
1343
1344 spin_lock(&inode_hash_lock);
1345 inode = find_inode(sb, head, test, data);
1346 spin_unlock(&inode_hash_lock);
1347
1348 return IS_ERR(inode) ? NULL : inode;
1349 }
1350 EXPORT_SYMBOL(ilookup5_nowait);
1351
1352 /**
1353 * ilookup5 - search for an inode in the inode cache
1354 * @sb: super block of file system to search
1355 * @hashval: hash value (usually inode number) to search for
1356 * @test: callback used for comparisons between inodes
1357 * @data: opaque data pointer to pass to @test
1358 *
1359 * Search for the inode specified by @hashval and @data in the inode cache,
1360 * and if the inode is in the cache, return the inode with an incremented
1361 * reference count. Waits on I_NEW before returning the inode.
1362 * returned with an incremented reference count.
1363 *
1364 * This is a generalized version of ilookup() for file systems where the
1365 * inode number is not sufficient for unique identification of an inode.
1366 *
1367 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1368 */
ilookup5(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1369 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1370 int (*test)(struct inode *, void *), void *data)
1371 {
1372 struct inode *inode;
1373 again:
1374 inode = ilookup5_nowait(sb, hashval, test, data);
1375 if (inode) {
1376 wait_on_inode(inode);
1377 if (unlikely(inode_unhashed(inode))) {
1378 iput(inode);
1379 goto again;
1380 }
1381 }
1382 return inode;
1383 }
1384 EXPORT_SYMBOL(ilookup5);
1385
1386 /**
1387 * ilookup - search for an inode in the inode cache
1388 * @sb: super block of file system to search
1389 * @ino: inode number to search for
1390 *
1391 * Search for the inode @ino in the inode cache, and if the inode is in the
1392 * cache, the inode is returned with an incremented reference count.
1393 */
ilookup(struct super_block * sb,unsigned long ino)1394 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1395 {
1396 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1397 struct inode *inode;
1398 again:
1399 spin_lock(&inode_hash_lock);
1400 inode = find_inode_fast(sb, head, ino);
1401 spin_unlock(&inode_hash_lock);
1402
1403 if (inode) {
1404 if (IS_ERR(inode))
1405 return NULL;
1406 wait_on_inode(inode);
1407 if (unlikely(inode_unhashed(inode))) {
1408 iput(inode);
1409 goto again;
1410 }
1411 }
1412 return inode;
1413 }
1414 EXPORT_SYMBOL(ilookup);
1415
1416 /**
1417 * find_inode_nowait - find an inode in the inode cache
1418 * @sb: super block of file system to search
1419 * @hashval: hash value (usually inode number) to search for
1420 * @match: callback used for comparisons between inodes
1421 * @data: opaque data pointer to pass to @match
1422 *
1423 * Search for the inode specified by @hashval and @data in the inode
1424 * cache, where the helper function @match will return 0 if the inode
1425 * does not match, 1 if the inode does match, and -1 if the search
1426 * should be stopped. The @match function must be responsible for
1427 * taking the i_lock spin_lock and checking i_state for an inode being
1428 * freed or being initialized, and incrementing the reference count
1429 * before returning 1. It also must not sleep, since it is called with
1430 * the inode_hash_lock spinlock held.
1431 *
1432 * This is a even more generalized version of ilookup5() when the
1433 * function must never block --- find_inode() can block in
1434 * __wait_on_freeing_inode() --- or when the caller can not increment
1435 * the reference count because the resulting iput() might cause an
1436 * inode eviction. The tradeoff is that the @match funtion must be
1437 * very carefully implemented.
1438 */
find_inode_nowait(struct super_block * sb,unsigned long hashval,int (* match)(struct inode *,unsigned long,void *),void * data)1439 struct inode *find_inode_nowait(struct super_block *sb,
1440 unsigned long hashval,
1441 int (*match)(struct inode *, unsigned long,
1442 void *),
1443 void *data)
1444 {
1445 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1446 struct inode *inode, *ret_inode = NULL;
1447 int mval;
1448
1449 spin_lock(&inode_hash_lock);
1450 hlist_for_each_entry(inode, head, i_hash) {
1451 if (inode->i_sb != sb)
1452 continue;
1453 mval = match(inode, hashval, data);
1454 if (mval == 0)
1455 continue;
1456 if (mval == 1)
1457 ret_inode = inode;
1458 goto out;
1459 }
1460 out:
1461 spin_unlock(&inode_hash_lock);
1462 return ret_inode;
1463 }
1464 EXPORT_SYMBOL(find_inode_nowait);
1465
1466 /**
1467 * find_inode_rcu - find an inode in the inode cache
1468 * @sb: Super block of file system to search
1469 * @hashval: Key to hash
1470 * @test: Function to test match on an inode
1471 * @data: Data for test function
1472 *
1473 * Search for the inode specified by @hashval and @data in the inode cache,
1474 * where the helper function @test will return 0 if the inode does not match
1475 * and 1 if it does. The @test function must be responsible for taking the
1476 * i_lock spin_lock and checking i_state for an inode being freed or being
1477 * initialized.
1478 *
1479 * If successful, this will return the inode for which the @test function
1480 * returned 1 and NULL otherwise.
1481 *
1482 * The @test function is not permitted to take a ref on any inode presented.
1483 * It is also not permitted to sleep.
1484 *
1485 * The caller must hold the RCU read lock.
1486 */
find_inode_rcu(struct super_block * sb,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1487 struct inode *find_inode_rcu(struct super_block *sb, unsigned long hashval,
1488 int (*test)(struct inode *, void *), void *data)
1489 {
1490 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1491 struct inode *inode;
1492
1493 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1494 "suspicious find_inode_rcu() usage");
1495
1496 hlist_for_each_entry_rcu(inode, head, i_hash) {
1497 if (inode->i_sb == sb &&
1498 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)) &&
1499 test(inode, data))
1500 return inode;
1501 }
1502 return NULL;
1503 }
1504 EXPORT_SYMBOL(find_inode_rcu);
1505
1506 /**
1507 * find_inode_by_ino_rcu - Find an inode in the inode cache
1508 * @sb: Super block of file system to search
1509 * @ino: The inode number to match
1510 *
1511 * Search for the inode specified by @hashval and @data in the inode cache,
1512 * where the helper function @test will return 0 if the inode does not match
1513 * and 1 if it does. The @test function must be responsible for taking the
1514 * i_lock spin_lock and checking i_state for an inode being freed or being
1515 * initialized.
1516 *
1517 * If successful, this will return the inode for which the @test function
1518 * returned 1 and NULL otherwise.
1519 *
1520 * The @test function is not permitted to take a ref on any inode presented.
1521 * It is also not permitted to sleep.
1522 *
1523 * The caller must hold the RCU read lock.
1524 */
find_inode_by_ino_rcu(struct super_block * sb,unsigned long ino)1525 struct inode *find_inode_by_ino_rcu(struct super_block *sb,
1526 unsigned long ino)
1527 {
1528 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1529 struct inode *inode;
1530
1531 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
1532 "suspicious find_inode_by_ino_rcu() usage");
1533
1534 hlist_for_each_entry_rcu(inode, head, i_hash) {
1535 if (inode->i_ino == ino &&
1536 inode->i_sb == sb &&
1537 !(READ_ONCE(inode->i_state) & (I_FREEING | I_WILL_FREE)))
1538 return inode;
1539 }
1540 return NULL;
1541 }
1542 EXPORT_SYMBOL(find_inode_by_ino_rcu);
1543
insert_inode_locked(struct inode * inode)1544 int insert_inode_locked(struct inode *inode)
1545 {
1546 struct super_block *sb = inode->i_sb;
1547 ino_t ino = inode->i_ino;
1548 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1549
1550 while (1) {
1551 struct inode *old = NULL;
1552 spin_lock(&inode_hash_lock);
1553 hlist_for_each_entry(old, head, i_hash) {
1554 if (old->i_ino != ino)
1555 continue;
1556 if (old->i_sb != sb)
1557 continue;
1558 spin_lock(&old->i_lock);
1559 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1560 spin_unlock(&old->i_lock);
1561 continue;
1562 }
1563 break;
1564 }
1565 if (likely(!old)) {
1566 spin_lock(&inode->i_lock);
1567 inode->i_state |= I_NEW | I_CREATING;
1568 hlist_add_head_rcu(&inode->i_hash, head);
1569 spin_unlock(&inode->i_lock);
1570 spin_unlock(&inode_hash_lock);
1571 return 0;
1572 }
1573 if (unlikely(old->i_state & I_CREATING)) {
1574 spin_unlock(&old->i_lock);
1575 spin_unlock(&inode_hash_lock);
1576 return -EBUSY;
1577 }
1578 __iget(old);
1579 spin_unlock(&old->i_lock);
1580 spin_unlock(&inode_hash_lock);
1581 wait_on_inode(old);
1582 if (unlikely(!inode_unhashed(old))) {
1583 iput(old);
1584 return -EBUSY;
1585 }
1586 iput(old);
1587 }
1588 }
1589 EXPORT_SYMBOL(insert_inode_locked);
1590
insert_inode_locked4(struct inode * inode,unsigned long hashval,int (* test)(struct inode *,void *),void * data)1591 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1592 int (*test)(struct inode *, void *), void *data)
1593 {
1594 struct inode *old;
1595
1596 inode->i_state |= I_CREATING;
1597 old = inode_insert5(inode, hashval, test, NULL, data);
1598
1599 if (old != inode) {
1600 iput(old);
1601 return -EBUSY;
1602 }
1603 return 0;
1604 }
1605 EXPORT_SYMBOL(insert_inode_locked4);
1606
1607
generic_delete_inode(struct inode * inode)1608 int generic_delete_inode(struct inode *inode)
1609 {
1610 return 1;
1611 }
1612 EXPORT_SYMBOL(generic_delete_inode);
1613
1614 /*
1615 * Called when we're dropping the last reference
1616 * to an inode.
1617 *
1618 * Call the FS "drop_inode()" function, defaulting to
1619 * the legacy UNIX filesystem behaviour. If it tells
1620 * us to evict inode, do so. Otherwise, retain inode
1621 * in cache if fs is alive, sync and evict if fs is
1622 * shutting down.
1623 */
iput_final(struct inode * inode)1624 static void iput_final(struct inode *inode)
1625 {
1626 struct super_block *sb = inode->i_sb;
1627 const struct super_operations *op = inode->i_sb->s_op;
1628 unsigned long state;
1629 int drop;
1630
1631 WARN_ON(inode->i_state & I_NEW);
1632
1633 if (op->drop_inode)
1634 drop = op->drop_inode(inode);
1635 else
1636 drop = generic_drop_inode(inode);
1637
1638 if (!drop &&
1639 !(inode->i_state & I_DONTCACHE) &&
1640 (sb->s_flags & SB_ACTIVE)) {
1641 inode_add_lru(inode);
1642 spin_unlock(&inode->i_lock);
1643 return;
1644 }
1645
1646 state = inode->i_state;
1647 if (!drop) {
1648 WRITE_ONCE(inode->i_state, state | I_WILL_FREE);
1649 spin_unlock(&inode->i_lock);
1650
1651 write_inode_now(inode, 1);
1652
1653 spin_lock(&inode->i_lock);
1654 state = inode->i_state;
1655 WARN_ON(state & I_NEW);
1656 state &= ~I_WILL_FREE;
1657 }
1658
1659 WRITE_ONCE(inode->i_state, state | I_FREEING);
1660 if (!list_empty(&inode->i_lru))
1661 inode_lru_list_del(inode);
1662 spin_unlock(&inode->i_lock);
1663
1664 evict(inode);
1665 }
1666
1667 /**
1668 * iput - put an inode
1669 * @inode: inode to put
1670 *
1671 * Puts an inode, dropping its usage count. If the inode use count hits
1672 * zero, the inode is then freed and may also be destroyed.
1673 *
1674 * Consequently, iput() can sleep.
1675 */
iput(struct inode * inode)1676 void iput(struct inode *inode)
1677 {
1678 if (!inode)
1679 return;
1680 BUG_ON(inode->i_state & I_CLEAR);
1681 retry:
1682 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1683 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1684 atomic_inc(&inode->i_count);
1685 spin_unlock(&inode->i_lock);
1686 trace_writeback_lazytime_iput(inode);
1687 mark_inode_dirty_sync(inode);
1688 goto retry;
1689 }
1690 iput_final(inode);
1691 }
1692 }
1693 EXPORT_SYMBOL(iput);
1694
1695 #ifdef CONFIG_BLOCK
1696 /**
1697 * bmap - find a block number in a file
1698 * @inode: inode owning the block number being requested
1699 * @block: pointer containing the block to find
1700 *
1701 * Replaces the value in ``*block`` with the block number on the device holding
1702 * corresponding to the requested block number in the file.
1703 * That is, asked for block 4 of inode 1 the function will replace the
1704 * 4 in ``*block``, with disk block relative to the disk start that holds that
1705 * block of the file.
1706 *
1707 * Returns -EINVAL in case of error, 0 otherwise. If mapping falls into a
1708 * hole, returns 0 and ``*block`` is also set to 0.
1709 */
bmap(struct inode * inode,sector_t * block)1710 int bmap(struct inode *inode, sector_t *block)
1711 {
1712 if (!inode->i_mapping->a_ops->bmap)
1713 return -EINVAL;
1714
1715 *block = inode->i_mapping->a_ops->bmap(inode->i_mapping, *block);
1716 return 0;
1717 }
1718 EXPORT_SYMBOL(bmap);
1719 #endif
1720
1721 /*
1722 * With relative atime, only update atime if the previous atime is
1723 * earlier than either the ctime or mtime or if at least a day has
1724 * passed since the last atime update.
1725 */
relatime_need_update(struct vfsmount * mnt,struct inode * inode,struct timespec64 now)1726 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1727 struct timespec64 now)
1728 {
1729
1730 if (!(mnt->mnt_flags & MNT_RELATIME))
1731 return 1;
1732 /*
1733 * Is mtime younger than atime? If yes, update atime:
1734 */
1735 if (timespec64_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1736 return 1;
1737 /*
1738 * Is ctime younger than atime? If yes, update atime:
1739 */
1740 if (timespec64_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1741 return 1;
1742
1743 /*
1744 * Is the previous atime value older than a day? If yes,
1745 * update atime:
1746 */
1747 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1748 return 1;
1749 /*
1750 * Good, we can skip the atime update:
1751 */
1752 return 0;
1753 }
1754
generic_update_time(struct inode * inode,struct timespec64 * time,int flags)1755 int generic_update_time(struct inode *inode, struct timespec64 *time, int flags)
1756 {
1757 int dirty_flags = 0;
1758
1759 if (flags & (S_ATIME | S_CTIME | S_MTIME)) {
1760 if (flags & S_ATIME)
1761 inode->i_atime = *time;
1762 if (flags & S_CTIME)
1763 inode->i_ctime = *time;
1764 if (flags & S_MTIME)
1765 inode->i_mtime = *time;
1766
1767 if (inode->i_sb->s_flags & SB_LAZYTIME)
1768 dirty_flags |= I_DIRTY_TIME;
1769 else
1770 dirty_flags |= I_DIRTY_SYNC;
1771 }
1772
1773 if ((flags & S_VERSION) && inode_maybe_inc_iversion(inode, false))
1774 dirty_flags |= I_DIRTY_SYNC;
1775
1776 __mark_inode_dirty(inode, dirty_flags);
1777 return 0;
1778 }
1779 EXPORT_SYMBOL(generic_update_time);
1780
1781 /*
1782 * This does the actual work of updating an inodes time or version. Must have
1783 * had called mnt_want_write() before calling this.
1784 */
update_time(struct inode * inode,struct timespec64 * time,int flags)1785 static int update_time(struct inode *inode, struct timespec64 *time, int flags)
1786 {
1787 if (inode->i_op->update_time)
1788 return inode->i_op->update_time(inode, time, flags);
1789 return generic_update_time(inode, time, flags);
1790 }
1791
1792 /**
1793 * atime_needs_update - update the access time
1794 * @path: the &struct path to update
1795 * @inode: inode to update
1796 *
1797 * Update the accessed time on an inode and mark it for writeback.
1798 * This function automatically handles read only file systems and media,
1799 * as well as the "noatime" flag and inode specific "noatime" markers.
1800 */
atime_needs_update(const struct path * path,struct inode * inode)1801 bool atime_needs_update(const struct path *path, struct inode *inode)
1802 {
1803 struct vfsmount *mnt = path->mnt;
1804 struct timespec64 now;
1805
1806 if (inode->i_flags & S_NOATIME)
1807 return false;
1808
1809 /* Atime updates will likely cause i_uid and i_gid to be written
1810 * back improprely if their true value is unknown to the vfs.
1811 */
1812 if (HAS_UNMAPPED_ID(mnt_user_ns(mnt), inode))
1813 return false;
1814
1815 if (IS_NOATIME(inode))
1816 return false;
1817 if ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))
1818 return false;
1819
1820 if (mnt->mnt_flags & MNT_NOATIME)
1821 return false;
1822 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1823 return false;
1824
1825 now = current_time(inode);
1826
1827 if (!relatime_need_update(mnt, inode, now))
1828 return false;
1829
1830 if (timespec64_equal(&inode->i_atime, &now))
1831 return false;
1832
1833 return true;
1834 }
1835
touch_atime(const struct path * path)1836 void touch_atime(const struct path *path)
1837 {
1838 struct vfsmount *mnt = path->mnt;
1839 struct inode *inode = d_inode(path->dentry);
1840 struct timespec64 now;
1841
1842 if (!atime_needs_update(path, inode))
1843 return;
1844
1845 if (!sb_start_write_trylock(inode->i_sb))
1846 return;
1847
1848 if (__mnt_want_write(mnt) != 0)
1849 goto skip_update;
1850 /*
1851 * File systems can error out when updating inodes if they need to
1852 * allocate new space to modify an inode (such is the case for
1853 * Btrfs), but since we touch atime while walking down the path we
1854 * really don't care if we failed to update the atime of the file,
1855 * so just ignore the return value.
1856 * We may also fail on filesystems that have the ability to make parts
1857 * of the fs read only, e.g. subvolumes in Btrfs.
1858 */
1859 now = current_time(inode);
1860 update_time(inode, &now, S_ATIME);
1861 __mnt_drop_write(mnt);
1862 skip_update:
1863 sb_end_write(inode->i_sb);
1864 }
1865 EXPORT_SYMBOL(touch_atime);
1866
1867 /*
1868 * The logic we want is
1869 *
1870 * if suid or (sgid and xgrp)
1871 * remove privs
1872 */
should_remove_suid(struct dentry * dentry)1873 int should_remove_suid(struct dentry *dentry)
1874 {
1875 umode_t mode = d_inode(dentry)->i_mode;
1876 int kill = 0;
1877
1878 /* suid always must be killed */
1879 if (unlikely(mode & S_ISUID))
1880 kill = ATTR_KILL_SUID;
1881
1882 /*
1883 * sgid without any exec bits is just a mandatory locking mark; leave
1884 * it alone. If some exec bits are set, it's a real sgid; kill it.
1885 */
1886 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1887 kill |= ATTR_KILL_SGID;
1888
1889 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1890 return kill;
1891
1892 return 0;
1893 }
1894 EXPORT_SYMBOL(should_remove_suid);
1895
1896 /*
1897 * Return mask of changes for notify_change() that need to be done as a
1898 * response to write or truncate. Return 0 if nothing has to be changed.
1899 * Negative value on error (change should be denied).
1900 */
dentry_needs_remove_privs(struct dentry * dentry)1901 int dentry_needs_remove_privs(struct dentry *dentry)
1902 {
1903 struct inode *inode = d_inode(dentry);
1904 int mask = 0;
1905 int ret;
1906
1907 if (IS_NOSEC(inode))
1908 return 0;
1909
1910 mask = should_remove_suid(dentry);
1911 ret = security_inode_need_killpriv(dentry);
1912 if (ret < 0)
1913 return ret;
1914 if (ret)
1915 mask |= ATTR_KILL_PRIV;
1916 return mask;
1917 }
1918
__remove_privs(struct user_namespace * mnt_userns,struct dentry * dentry,int kill)1919 static int __remove_privs(struct user_namespace *mnt_userns,
1920 struct dentry *dentry, int kill)
1921 {
1922 struct iattr newattrs;
1923
1924 newattrs.ia_valid = ATTR_FORCE | kill;
1925 /*
1926 * Note we call this on write, so notify_change will not
1927 * encounter any conflicting delegations:
1928 */
1929 return notify_change(mnt_userns, dentry, &newattrs, NULL);
1930 }
1931
1932 /*
1933 * Remove special file priviledges (suid, capabilities) when file is written
1934 * to or truncated.
1935 */
file_remove_privs(struct file * file)1936 int file_remove_privs(struct file *file)
1937 {
1938 struct dentry *dentry = file_dentry(file);
1939 struct inode *inode = file_inode(file);
1940 int kill;
1941 int error = 0;
1942
1943 /*
1944 * Fast path for nothing security related.
1945 * As well for non-regular files, e.g. blkdev inodes.
1946 * For example, blkdev_write_iter() might get here
1947 * trying to remove privs which it is not allowed to.
1948 */
1949 if (IS_NOSEC(inode) || !S_ISREG(inode->i_mode))
1950 return 0;
1951
1952 kill = dentry_needs_remove_privs(dentry);
1953 if (kill < 0)
1954 return kill;
1955 if (kill)
1956 error = __remove_privs(file_mnt_user_ns(file), dentry, kill);
1957 if (!error)
1958 inode_has_no_xattr(inode);
1959
1960 return error;
1961 }
1962 EXPORT_SYMBOL(file_remove_privs);
1963
1964 /**
1965 * file_update_time - update mtime and ctime time
1966 * @file: file accessed
1967 *
1968 * Update the mtime and ctime members of an inode and mark the inode
1969 * for writeback. Note that this function is meant exclusively for
1970 * usage in the file write path of filesystems, and filesystems may
1971 * choose to explicitly ignore update via this function with the
1972 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1973 * timestamps are handled by the server. This can return an error for
1974 * file systems who need to allocate space in order to update an inode.
1975 */
1976
file_update_time(struct file * file)1977 int file_update_time(struct file *file)
1978 {
1979 struct inode *inode = file_inode(file);
1980 struct timespec64 now;
1981 int sync_it = 0;
1982 int ret;
1983
1984 /* First try to exhaust all avenues to not sync */
1985 if (IS_NOCMTIME(inode))
1986 return 0;
1987
1988 now = current_time(inode);
1989 if (!timespec64_equal(&inode->i_mtime, &now))
1990 sync_it = S_MTIME;
1991
1992 if (!timespec64_equal(&inode->i_ctime, &now))
1993 sync_it |= S_CTIME;
1994
1995 if (IS_I_VERSION(inode) && inode_iversion_need_inc(inode))
1996 sync_it |= S_VERSION;
1997
1998 if (!sync_it)
1999 return 0;
2000
2001 /* Finally allowed to write? Takes lock. */
2002 if (__mnt_want_write_file(file))
2003 return 0;
2004
2005 ret = update_time(inode, &now, sync_it);
2006 __mnt_drop_write_file(file);
2007
2008 return ret;
2009 }
2010 EXPORT_SYMBOL(file_update_time);
2011
2012 /* Caller must hold the file's inode lock */
file_modified(struct file * file)2013 int file_modified(struct file *file)
2014 {
2015 int err;
2016
2017 /*
2018 * Clear the security bits if the process is not being run by root.
2019 * This keeps people from modifying setuid and setgid binaries.
2020 */
2021 err = file_remove_privs(file);
2022 if (err)
2023 return err;
2024
2025 if (unlikely(file->f_mode & FMODE_NOCMTIME))
2026 return 0;
2027
2028 return file_update_time(file);
2029 }
2030 EXPORT_SYMBOL(file_modified);
2031
inode_needs_sync(struct inode * inode)2032 int inode_needs_sync(struct inode *inode)
2033 {
2034 if (IS_SYNC(inode))
2035 return 1;
2036 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
2037 return 1;
2038 return 0;
2039 }
2040 EXPORT_SYMBOL(inode_needs_sync);
2041
2042 /*
2043 * If we try to find an inode in the inode hash while it is being
2044 * deleted, we have to wait until the filesystem completes its
2045 * deletion before reporting that it isn't found. This function waits
2046 * until the deletion _might_ have completed. Callers are responsible
2047 * to recheck inode state.
2048 *
2049 * It doesn't matter if I_NEW is not set initially, a call to
2050 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
2051 * will DTRT.
2052 */
__wait_on_freeing_inode(struct inode * inode)2053 static void __wait_on_freeing_inode(struct inode *inode)
2054 {
2055 wait_queue_head_t *wq;
2056 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
2057 wq = bit_waitqueue(&inode->i_state, __I_NEW);
2058 prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
2059 spin_unlock(&inode->i_lock);
2060 spin_unlock(&inode_hash_lock);
2061 schedule();
2062 finish_wait(wq, &wait.wq_entry);
2063 spin_lock(&inode_hash_lock);
2064 }
2065
2066 static __initdata unsigned long ihash_entries;
set_ihash_entries(char * str)2067 static int __init set_ihash_entries(char *str)
2068 {
2069 if (!str)
2070 return 0;
2071 ihash_entries = simple_strtoul(str, &str, 0);
2072 return 1;
2073 }
2074 __setup("ihash_entries=", set_ihash_entries);
2075
2076 /*
2077 * Initialize the waitqueues and inode hash table.
2078 */
inode_init_early(void)2079 void __init inode_init_early(void)
2080 {
2081 /* If hashes are distributed across NUMA nodes, defer
2082 * hash allocation until vmalloc space is available.
2083 */
2084 if (hashdist)
2085 return;
2086
2087 inode_hashtable =
2088 alloc_large_system_hash("Inode-cache",
2089 sizeof(struct hlist_head),
2090 ihash_entries,
2091 14,
2092 HASH_EARLY | HASH_ZERO,
2093 &i_hash_shift,
2094 &i_hash_mask,
2095 0,
2096 0);
2097 }
2098
inode_init(void)2099 void __init inode_init(void)
2100 {
2101 /* inode slab cache */
2102 inode_cachep = kmem_cache_create("inode_cache",
2103 sizeof(struct inode),
2104 0,
2105 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
2106 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
2107 init_once);
2108
2109 /* Hash may have been set up in inode_init_early */
2110 if (!hashdist)
2111 return;
2112
2113 inode_hashtable =
2114 alloc_large_system_hash("Inode-cache",
2115 sizeof(struct hlist_head),
2116 ihash_entries,
2117 14,
2118 HASH_ZERO,
2119 &i_hash_shift,
2120 &i_hash_mask,
2121 0,
2122 0);
2123 }
2124
init_special_inode(struct inode * inode,umode_t mode,dev_t rdev)2125 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
2126 {
2127 inode->i_mode = mode;
2128 if (S_ISCHR(mode)) {
2129 inode->i_fop = &def_chr_fops;
2130 inode->i_rdev = rdev;
2131 } else if (S_ISBLK(mode)) {
2132 inode->i_fop = &def_blk_fops;
2133 inode->i_rdev = rdev;
2134 } else if (S_ISFIFO(mode))
2135 inode->i_fop = &pipefifo_fops;
2136 else if (S_ISSOCK(mode))
2137 ; /* leave it no_open_fops */
2138 else
2139 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
2140 " inode %s:%lu\n", mode, inode->i_sb->s_id,
2141 inode->i_ino);
2142 }
2143 EXPORT_SYMBOL(init_special_inode);
2144
2145 /**
2146 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
2147 * @mnt_userns: User namespace of the mount the inode was created from
2148 * @inode: New inode
2149 * @dir: Directory inode
2150 * @mode: mode of the new inode
2151 *
2152 * If the inode has been created through an idmapped mount the user namespace of
2153 * the vfsmount must be passed through @mnt_userns. This function will then take
2154 * care to map the inode according to @mnt_userns before checking permissions
2155 * and initializing i_uid and i_gid. On non-idmapped mounts or if permission
2156 * checking is to be performed on the raw inode simply passs init_user_ns.
2157 */
inode_init_owner(struct user_namespace * mnt_userns,struct inode * inode,const struct inode * dir,umode_t mode)2158 void inode_init_owner(struct user_namespace *mnt_userns, struct inode *inode,
2159 const struct inode *dir, umode_t mode)
2160 {
2161 inode_fsuid_set(inode, mnt_userns);
2162 if (dir && dir->i_mode & S_ISGID) {
2163 inode->i_gid = dir->i_gid;
2164
2165 /* Directories are special, and always inherit S_ISGID */
2166 if (S_ISDIR(mode))
2167 mode |= S_ISGID;
2168 else if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP) &&
2169 !in_group_p(i_gid_into_mnt(mnt_userns, dir)) &&
2170 !capable_wrt_inode_uidgid(mnt_userns, dir, CAP_FSETID))
2171 mode &= ~S_ISGID;
2172 } else
2173 inode_fsgid_set(inode, mnt_userns);
2174 inode->i_mode = mode;
2175 }
2176 EXPORT_SYMBOL(inode_init_owner);
2177
2178 /**
2179 * inode_owner_or_capable - check current task permissions to inode
2180 * @mnt_userns: user namespace of the mount the inode was found from
2181 * @inode: inode being checked
2182 *
2183 * Return true if current either has CAP_FOWNER in a namespace with the
2184 * inode owner uid mapped, or owns the file.
2185 *
2186 * If the inode has been found through an idmapped mount the user namespace of
2187 * the vfsmount must be passed through @mnt_userns. This function will then take
2188 * care to map the inode according to @mnt_userns before checking permissions.
2189 * On non-idmapped mounts or if permission checking is to be performed on the
2190 * raw inode simply passs init_user_ns.
2191 */
inode_owner_or_capable(struct user_namespace * mnt_userns,const struct inode * inode)2192 bool inode_owner_or_capable(struct user_namespace *mnt_userns,
2193 const struct inode *inode)
2194 {
2195 kuid_t i_uid;
2196 struct user_namespace *ns;
2197
2198 i_uid = i_uid_into_mnt(mnt_userns, inode);
2199 if (uid_eq(current_fsuid(), i_uid))
2200 return true;
2201
2202 ns = current_user_ns();
2203 if (kuid_has_mapping(ns, i_uid) && ns_capable(ns, CAP_FOWNER))
2204 return true;
2205 return false;
2206 }
2207 EXPORT_SYMBOL(inode_owner_or_capable);
2208
2209 /*
2210 * Direct i/o helper functions
2211 */
__inode_dio_wait(struct inode * inode)2212 static void __inode_dio_wait(struct inode *inode)
2213 {
2214 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2215 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2216
2217 do {
2218 prepare_to_wait(wq, &q.wq_entry, TASK_UNINTERRUPTIBLE);
2219 if (atomic_read(&inode->i_dio_count))
2220 schedule();
2221 } while (atomic_read(&inode->i_dio_count));
2222 finish_wait(wq, &q.wq_entry);
2223 }
2224
2225 /**
2226 * inode_dio_wait - wait for outstanding DIO requests to finish
2227 * @inode: inode to wait for
2228 *
2229 * Waits for all pending direct I/O requests to finish so that we can
2230 * proceed with a truncate or equivalent operation.
2231 *
2232 * Must be called under a lock that serializes taking new references
2233 * to i_dio_count, usually by inode->i_mutex.
2234 */
inode_dio_wait(struct inode * inode)2235 void inode_dio_wait(struct inode *inode)
2236 {
2237 if (atomic_read(&inode->i_dio_count))
2238 __inode_dio_wait(inode);
2239 }
2240 EXPORT_SYMBOL(inode_dio_wait);
2241
2242 /*
2243 * inode_set_flags - atomically set some inode flags
2244 *
2245 * Note: the caller should be holding i_mutex, or else be sure that
2246 * they have exclusive access to the inode structure (i.e., while the
2247 * inode is being instantiated). The reason for the cmpxchg() loop
2248 * --- which wouldn't be necessary if all code paths which modify
2249 * i_flags actually followed this rule, is that there is at least one
2250 * code path which doesn't today so we use cmpxchg() out of an abundance
2251 * of caution.
2252 *
2253 * In the long run, i_mutex is overkill, and we should probably look
2254 * at using the i_lock spinlock to protect i_flags, and then make sure
2255 * it is so documented in include/linux/fs.h and that all code follows
2256 * the locking convention!!
2257 */
inode_set_flags(struct inode * inode,unsigned int flags,unsigned int mask)2258 void inode_set_flags(struct inode *inode, unsigned int flags,
2259 unsigned int mask)
2260 {
2261 WARN_ON_ONCE(flags & ~mask);
2262 set_mask_bits(&inode->i_flags, mask, flags);
2263 }
2264 EXPORT_SYMBOL(inode_set_flags);
2265
inode_nohighmem(struct inode * inode)2266 void inode_nohighmem(struct inode *inode)
2267 {
2268 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2269 }
2270 EXPORT_SYMBOL(inode_nohighmem);
2271
2272 /**
2273 * timestamp_truncate - Truncate timespec to a granularity
2274 * @t: Timespec
2275 * @inode: inode being updated
2276 *
2277 * Truncate a timespec to the granularity supported by the fs
2278 * containing the inode. Always rounds down. gran must
2279 * not be 0 nor greater than a second (NSEC_PER_SEC, or 10^9 ns).
2280 */
timestamp_truncate(struct timespec64 t,struct inode * inode)2281 struct timespec64 timestamp_truncate(struct timespec64 t, struct inode *inode)
2282 {
2283 struct super_block *sb = inode->i_sb;
2284 unsigned int gran = sb->s_time_gran;
2285
2286 t.tv_sec = clamp(t.tv_sec, sb->s_time_min, sb->s_time_max);
2287 if (unlikely(t.tv_sec == sb->s_time_max || t.tv_sec == sb->s_time_min))
2288 t.tv_nsec = 0;
2289
2290 /* Avoid division in the common cases 1 ns and 1 s. */
2291 if (gran == 1)
2292 ; /* nothing */
2293 else if (gran == NSEC_PER_SEC)
2294 t.tv_nsec = 0;
2295 else if (gran > 1 && gran < NSEC_PER_SEC)
2296 t.tv_nsec -= t.tv_nsec % gran;
2297 else
2298 WARN(1, "invalid file time granularity: %u", gran);
2299 return t;
2300 }
2301 EXPORT_SYMBOL(timestamp_truncate);
2302
2303 /**
2304 * current_time - Return FS time
2305 * @inode: inode.
2306 *
2307 * Return the current time truncated to the time granularity supported by
2308 * the fs.
2309 *
2310 * Note that inode and inode->sb cannot be NULL.
2311 * Otherwise, the function warns and returns time without truncation.
2312 */
current_time(struct inode * inode)2313 struct timespec64 current_time(struct inode *inode)
2314 {
2315 struct timespec64 now;
2316
2317 ktime_get_coarse_real_ts64(&now);
2318
2319 if (unlikely(!inode->i_sb)) {
2320 WARN(1, "current_time() called with uninitialized super_block in the inode");
2321 return now;
2322 }
2323
2324 return timestamp_truncate(now, inode);
2325 }
2326 EXPORT_SYMBOL(current_time);
2327