1 /*
2 * hugetlbpage-backed filesystem. Based on ramfs.
3 *
4 * Nadia Yvette Chambers, 2002
5 *
6 * Copyright (C) 2002 Linus Torvalds.
7 * License: GPL
8 */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h> /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/fs_parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41 #include <linux/sched/mm.h>
42
43 static const struct super_operations hugetlbfs_ops;
44 static const struct address_space_operations hugetlbfs_aops;
45 const struct file_operations hugetlbfs_file_operations;
46 static const struct inode_operations hugetlbfs_dir_inode_operations;
47 static const struct inode_operations hugetlbfs_inode_operations;
48
49 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
50
51 struct hugetlbfs_fs_context {
52 struct hstate *hstate;
53 unsigned long long max_size_opt;
54 unsigned long long min_size_opt;
55 long max_hpages;
56 long nr_inodes;
57 long min_hpages;
58 enum hugetlbfs_size_type max_val_type;
59 enum hugetlbfs_size_type min_val_type;
60 kuid_t uid;
61 kgid_t gid;
62 umode_t mode;
63 };
64
65 int sysctl_hugetlb_shm_group;
66
67 enum hugetlb_param {
68 Opt_gid,
69 Opt_min_size,
70 Opt_mode,
71 Opt_nr_inodes,
72 Opt_pagesize,
73 Opt_size,
74 Opt_uid,
75 };
76
77 static const struct fs_parameter_spec hugetlb_fs_parameters[] = {
78 fsparam_u32 ("gid", Opt_gid),
79 fsparam_string("min_size", Opt_min_size),
80 fsparam_u32oct("mode", Opt_mode),
81 fsparam_string("nr_inodes", Opt_nr_inodes),
82 fsparam_string("pagesize", Opt_pagesize),
83 fsparam_string("size", Opt_size),
84 fsparam_u32 ("uid", Opt_uid),
85 {}
86 };
87
88 #ifdef CONFIG_NUMA
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90 struct inode *inode, pgoff_t index)
91 {
92 vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93 index);
94 }
95
hugetlb_drop_vma_policy(struct vm_area_struct * vma)96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98 mpol_cond_put(vma->vm_policy);
99 }
100 #else
hugetlb_set_vma_policy(struct vm_area_struct * vma,struct inode * inode,pgoff_t index)101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102 struct inode *inode, pgoff_t index)
103 {
104 }
105
hugetlb_drop_vma_policy(struct vm_area_struct * vma)106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
huge_pagevec_release(struct pagevec * pvec)111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113 int i;
114
115 for (i = 0; i < pagevec_count(pvec); ++i)
116 put_page(pvec->pages[i]);
117
118 pagevec_reinit(pvec);
119 }
120
121 /*
122 * Mask used when checking the page offset value passed in via system
123 * calls. This value will be converted to a loff_t which is signed.
124 * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125 * value. The extra bit (- 1 in the shift value) is to take the sign
126 * bit into account.
127 */
128 #define PGOFF_LOFFT_MAX \
129 (((1UL << (PAGE_SHIFT + 1)) - 1) << (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
hugetlbfs_file_mmap(struct file * file,struct vm_area_struct * vma)131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133 struct inode *inode = file_inode(file);
134 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
135 loff_t len, vma_len;
136 int ret;
137 struct hstate *h = hstate_file(file);
138
139 /*
140 * vma address alignment (but not the pgoff alignment) has
141 * already been checked by prepare_hugepage_range. If you add
142 * any error returns here, do so after setting VM_HUGETLB, so
143 * is_vm_hugetlb_page tests below unmap_region go the right
144 * way when do_mmap unwinds (may be important on powerpc
145 * and ia64).
146 */
147 vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
148 vma->vm_ops = &hugetlb_vm_ops;
149
150 ret = seal_check_future_write(info->seals, vma);
151 if (ret)
152 return ret;
153
154 /*
155 * page based offset in vm_pgoff could be sufficiently large to
156 * overflow a loff_t when converted to byte offset. This can
157 * only happen on architectures where sizeof(loff_t) ==
158 * sizeof(unsigned long). So, only check in those instances.
159 */
160 if (sizeof(unsigned long) == sizeof(loff_t)) {
161 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
162 return -EINVAL;
163 }
164
165 /* must be huge page aligned */
166 if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
167 return -EINVAL;
168
169 vma_len = (loff_t)(vma->vm_end - vma->vm_start);
170 len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
171 /* check for overflow */
172 if (len < vma_len)
173 return -EINVAL;
174
175 inode_lock(inode);
176 file_accessed(file);
177
178 ret = -ENOMEM;
179 if (!hugetlb_reserve_pages(inode,
180 vma->vm_pgoff >> huge_page_order(h),
181 len >> huge_page_shift(h), vma,
182 vma->vm_flags))
183 goto out;
184
185 ret = 0;
186 if (vma->vm_flags & VM_WRITE && inode->i_size < len)
187 i_size_write(inode, len);
188 out:
189 inode_unlock(inode);
190
191 return ret;
192 }
193
194 /*
195 * Called under mmap_write_lock(mm).
196 */
197
198 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
199 static unsigned long
hugetlb_get_unmapped_area_bottomup(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)200 hugetlb_get_unmapped_area_bottomup(struct file *file, unsigned long addr,
201 unsigned long len, unsigned long pgoff, unsigned long flags)
202 {
203 struct hstate *h = hstate_file(file);
204 struct vm_unmapped_area_info info;
205
206 info.flags = 0;
207 info.length = len;
208 info.low_limit = current->mm->mmap_base;
209 info.high_limit = TASK_SIZE;
210 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
211 info.align_offset = 0;
212 return vm_unmapped_area(&info);
213 }
214
215 static unsigned long
hugetlb_get_unmapped_area_topdown(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)216 hugetlb_get_unmapped_area_topdown(struct file *file, unsigned long addr,
217 unsigned long len, unsigned long pgoff, unsigned long flags)
218 {
219 struct hstate *h = hstate_file(file);
220 struct vm_unmapped_area_info info;
221
222 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
223 info.length = len;
224 info.low_limit = max(PAGE_SIZE, mmap_min_addr);
225 info.high_limit = current->mm->mmap_base;
226 info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227 info.align_offset = 0;
228 addr = vm_unmapped_area(&info);
229
230 /*
231 * A failed mmap() very likely causes application failure,
232 * so fall back to the bottom-up function here. This scenario
233 * can happen with large stack limits and large mmap()
234 * allocations.
235 */
236 if (unlikely(offset_in_page(addr))) {
237 VM_BUG_ON(addr != -ENOMEM);
238 info.flags = 0;
239 info.low_limit = current->mm->mmap_base;
240 info.high_limit = TASK_SIZE;
241 addr = vm_unmapped_area(&info);
242 }
243
244 return addr;
245 }
246
247 static unsigned long
hugetlb_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)248 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
249 unsigned long len, unsigned long pgoff, unsigned long flags)
250 {
251 struct mm_struct *mm = current->mm;
252 struct vm_area_struct *vma;
253 struct hstate *h = hstate_file(file);
254
255 if (len & ~huge_page_mask(h))
256 return -EINVAL;
257 if (len > TASK_SIZE)
258 return -ENOMEM;
259
260 if (flags & MAP_FIXED) {
261 if (prepare_hugepage_range(file, addr, len))
262 return -EINVAL;
263 return addr;
264 }
265
266 if (addr) {
267 addr = ALIGN(addr, huge_page_size(h));
268 vma = find_vma(mm, addr);
269 if (TASK_SIZE - len >= addr &&
270 (!vma || addr + len <= vm_start_gap(vma)))
271 return addr;
272 }
273
274 /*
275 * Use mm->get_unmapped_area value as a hint to use topdown routine.
276 * If architectures have special needs, they should define their own
277 * version of hugetlb_get_unmapped_area.
278 */
279 if (mm->get_unmapped_area == arch_get_unmapped_area_topdown)
280 return hugetlb_get_unmapped_area_topdown(file, addr, len,
281 pgoff, flags);
282 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
283 pgoff, flags);
284 }
285 #endif
286
287 static size_t
hugetlbfs_read_actor(struct page * page,unsigned long offset,struct iov_iter * to,unsigned long size)288 hugetlbfs_read_actor(struct page *page, unsigned long offset,
289 struct iov_iter *to, unsigned long size)
290 {
291 size_t copied = 0;
292 int i, chunksize;
293
294 /* Find which 4k chunk and offset with in that chunk */
295 i = offset >> PAGE_SHIFT;
296 offset = offset & ~PAGE_MASK;
297
298 while (size) {
299 size_t n;
300 chunksize = PAGE_SIZE;
301 if (offset)
302 chunksize -= offset;
303 if (chunksize > size)
304 chunksize = size;
305 n = copy_page_to_iter(&page[i], offset, chunksize, to);
306 copied += n;
307 if (n != chunksize)
308 return copied;
309 offset = 0;
310 size -= chunksize;
311 i++;
312 }
313 return copied;
314 }
315
316 /*
317 * Support for read() - Find the page attached to f_mapping and copy out the
318 * data. Its *very* similar to generic_file_buffered_read(), we can't use that
319 * since it has PAGE_SIZE assumptions.
320 */
hugetlbfs_read_iter(struct kiocb * iocb,struct iov_iter * to)321 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
322 {
323 struct file *file = iocb->ki_filp;
324 struct hstate *h = hstate_file(file);
325 struct address_space *mapping = file->f_mapping;
326 struct inode *inode = mapping->host;
327 unsigned long index = iocb->ki_pos >> huge_page_shift(h);
328 unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
329 unsigned long end_index;
330 loff_t isize;
331 ssize_t retval = 0;
332
333 while (iov_iter_count(to)) {
334 struct page *page;
335 size_t nr, copied;
336
337 /* nr is the maximum number of bytes to copy from this page */
338 nr = huge_page_size(h);
339 isize = i_size_read(inode);
340 if (!isize)
341 break;
342 end_index = (isize - 1) >> huge_page_shift(h);
343 if (index > end_index)
344 break;
345 if (index == end_index) {
346 nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
347 if (nr <= offset)
348 break;
349 }
350 nr = nr - offset;
351
352 /* Find the page */
353 page = find_lock_page(mapping, index);
354 if (unlikely(page == NULL)) {
355 /*
356 * We have a HOLE, zero out the user-buffer for the
357 * length of the hole or request.
358 */
359 copied = iov_iter_zero(nr, to);
360 } else {
361 unlock_page(page);
362
363 /*
364 * We have the page, copy it to user space buffer.
365 */
366 copied = hugetlbfs_read_actor(page, offset, to, nr);
367 put_page(page);
368 }
369 offset += copied;
370 retval += copied;
371 if (copied != nr && iov_iter_count(to)) {
372 if (!retval)
373 retval = -EFAULT;
374 break;
375 }
376 index += offset >> huge_page_shift(h);
377 offset &= ~huge_page_mask(h);
378 }
379 iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
380 return retval;
381 }
382
hugetlbfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)383 static int hugetlbfs_write_begin(struct file *file,
384 struct address_space *mapping,
385 loff_t pos, unsigned len, unsigned flags,
386 struct page **pagep, void **fsdata)
387 {
388 return -EINVAL;
389 }
390
hugetlbfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)391 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
392 loff_t pos, unsigned len, unsigned copied,
393 struct page *page, void *fsdata)
394 {
395 BUG();
396 return -EINVAL;
397 }
398
remove_huge_page(struct page * page)399 static void remove_huge_page(struct page *page)
400 {
401 ClearPageDirty(page);
402 ClearPageUptodate(page);
403 delete_from_page_cache(page);
404 }
405
406 static void
hugetlb_vmdelete_list(struct rb_root_cached * root,pgoff_t start,pgoff_t end)407 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
408 {
409 struct vm_area_struct *vma;
410
411 /*
412 * end == 0 indicates that the entire range after
413 * start should be unmapped.
414 */
415 vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
416 unsigned long v_offset;
417 unsigned long v_end;
418
419 /*
420 * Can the expression below overflow on 32-bit arches?
421 * No, because the interval tree returns us only those vmas
422 * which overlap the truncated area starting at pgoff,
423 * and no vma on a 32-bit arch can span beyond the 4GB.
424 */
425 if (vma->vm_pgoff < start)
426 v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
427 else
428 v_offset = 0;
429
430 if (!end)
431 v_end = vma->vm_end;
432 else {
433 v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
434 + vma->vm_start;
435 if (v_end > vma->vm_end)
436 v_end = vma->vm_end;
437 }
438
439 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
440 NULL);
441 }
442 }
443
444 /*
445 * remove_inode_hugepages handles two distinct cases: truncation and hole
446 * punch. There are subtle differences in operation for each case.
447 *
448 * truncation is indicated by end of range being LLONG_MAX
449 * In this case, we first scan the range and release found pages.
450 * After releasing pages, hugetlb_unreserve_pages cleans up region/reserve
451 * maps and global counts. Page faults can not race with truncation
452 * in this routine. hugetlb_no_page() holds i_mmap_rwsem and prevents
453 * page faults in the truncated range by checking i_size. i_size is
454 * modified while holding i_mmap_rwsem.
455 * hole punch is indicated if end is not LLONG_MAX
456 * In the hole punch case we scan the range and release found pages.
457 * Only when releasing a page is the associated region/reserve map
458 * deleted. The region/reserve map for ranges without associated
459 * pages are not modified. Page faults can race with hole punch.
460 * This is indicated if we find a mapped page.
461 * Note: If the passed end of range value is beyond the end of file, but
462 * not LLONG_MAX this routine still performs a hole punch operation.
463 */
remove_inode_hugepages(struct inode * inode,loff_t lstart,loff_t lend)464 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
465 loff_t lend)
466 {
467 struct hstate *h = hstate_inode(inode);
468 struct address_space *mapping = &inode->i_data;
469 const pgoff_t start = lstart >> huge_page_shift(h);
470 const pgoff_t end = lend >> huge_page_shift(h);
471 struct pagevec pvec;
472 pgoff_t next, index;
473 int i, freed = 0;
474 bool truncate_op = (lend == LLONG_MAX);
475
476 pagevec_init(&pvec);
477 next = start;
478 while (next < end) {
479 /*
480 * When no more pages are found, we are done.
481 */
482 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
483 break;
484
485 for (i = 0; i < pagevec_count(&pvec); ++i) {
486 struct page *page = pvec.pages[i];
487 u32 hash = 0;
488
489 index = page->index;
490 if (!truncate_op) {
491 /*
492 * Only need to hold the fault mutex in the
493 * hole punch case. This prevents races with
494 * page faults. Races are not possible in the
495 * case of truncation.
496 */
497 hash = hugetlb_fault_mutex_hash(mapping, index);
498 mutex_lock(&hugetlb_fault_mutex_table[hash]);
499 }
500
501 /*
502 * If page is mapped, it was faulted in after being
503 * unmapped in caller. Unmap (again) now after taking
504 * the fault mutex. The mutex will prevent faults
505 * until we finish removing the page.
506 *
507 * This race can only happen in the hole punch case.
508 * Getting here in a truncate operation is a bug.
509 */
510 if (unlikely(page_mapped(page))) {
511 BUG_ON(truncate_op);
512
513 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
514 i_mmap_lock_write(mapping);
515 mutex_lock(&hugetlb_fault_mutex_table[hash]);
516 hugetlb_vmdelete_list(&mapping->i_mmap,
517 index * pages_per_huge_page(h),
518 (index + 1) * pages_per_huge_page(h));
519 i_mmap_unlock_write(mapping);
520 }
521
522 lock_page(page);
523 /*
524 * We must free the huge page and remove from page
525 * cache (remove_huge_page) BEFORE removing the
526 * region/reserve map (hugetlb_unreserve_pages). In
527 * rare out of memory conditions, removal of the
528 * region/reserve map could fail. Correspondingly,
529 * the subpool and global reserve usage count can need
530 * to be adjusted.
531 */
532 VM_BUG_ON(HPageRestoreReserve(page));
533 remove_huge_page(page);
534 freed++;
535 if (!truncate_op) {
536 if (unlikely(hugetlb_unreserve_pages(inode,
537 index, index + 1, 1)))
538 hugetlb_fix_reserve_counts(inode);
539 }
540
541 unlock_page(page);
542 if (!truncate_op)
543 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
544 }
545 huge_pagevec_release(&pvec);
546 cond_resched();
547 }
548
549 if (truncate_op)
550 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
551 }
552
hugetlbfs_evict_inode(struct inode * inode)553 static void hugetlbfs_evict_inode(struct inode *inode)
554 {
555 struct resv_map *resv_map;
556
557 remove_inode_hugepages(inode, 0, LLONG_MAX);
558
559 /*
560 * Get the resv_map from the address space embedded in the inode.
561 * This is the address space which points to any resv_map allocated
562 * at inode creation time. If this is a device special inode,
563 * i_mapping may not point to the original address space.
564 */
565 resv_map = (struct resv_map *)(&inode->i_data)->private_data;
566 /* Only regular and link inodes have associated reserve maps */
567 if (resv_map)
568 resv_map_release(&resv_map->refs);
569 clear_inode(inode);
570 }
571
hugetlb_vmtruncate(struct inode * inode,loff_t offset)572 static void hugetlb_vmtruncate(struct inode *inode, loff_t offset)
573 {
574 pgoff_t pgoff;
575 struct address_space *mapping = inode->i_mapping;
576 struct hstate *h = hstate_inode(inode);
577
578 BUG_ON(offset & ~huge_page_mask(h));
579 pgoff = offset >> PAGE_SHIFT;
580
581 i_mmap_lock_write(mapping);
582 i_size_write(inode, offset);
583 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
584 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
585 i_mmap_unlock_write(mapping);
586 remove_inode_hugepages(inode, offset, LLONG_MAX);
587 }
588
hugetlbfs_punch_hole(struct inode * inode,loff_t offset,loff_t len)589 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
590 {
591 struct hstate *h = hstate_inode(inode);
592 loff_t hpage_size = huge_page_size(h);
593 loff_t hole_start, hole_end;
594
595 /*
596 * For hole punch round up the beginning offset of the hole and
597 * round down the end.
598 */
599 hole_start = round_up(offset, hpage_size);
600 hole_end = round_down(offset + len, hpage_size);
601
602 if (hole_end > hole_start) {
603 struct address_space *mapping = inode->i_mapping;
604 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
605
606 inode_lock(inode);
607
608 /* protected by i_rwsem */
609 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
610 inode_unlock(inode);
611 return -EPERM;
612 }
613
614 i_mmap_lock_write(mapping);
615 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
616 hugetlb_vmdelete_list(&mapping->i_mmap,
617 hole_start >> PAGE_SHIFT,
618 hole_end >> PAGE_SHIFT);
619 i_mmap_unlock_write(mapping);
620 remove_inode_hugepages(inode, hole_start, hole_end);
621 inode_unlock(inode);
622 }
623
624 return 0;
625 }
626
hugetlbfs_fallocate(struct file * file,int mode,loff_t offset,loff_t len)627 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
628 loff_t len)
629 {
630 struct inode *inode = file_inode(file);
631 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
632 struct address_space *mapping = inode->i_mapping;
633 struct hstate *h = hstate_inode(inode);
634 struct vm_area_struct pseudo_vma;
635 struct mm_struct *mm = current->mm;
636 loff_t hpage_size = huge_page_size(h);
637 unsigned long hpage_shift = huge_page_shift(h);
638 pgoff_t start, index, end;
639 int error;
640 u32 hash;
641
642 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
643 return -EOPNOTSUPP;
644
645 if (mode & FALLOC_FL_PUNCH_HOLE)
646 return hugetlbfs_punch_hole(inode, offset, len);
647
648 /*
649 * Default preallocate case.
650 * For this range, start is rounded down and end is rounded up
651 * as well as being converted to page offsets.
652 */
653 start = offset >> hpage_shift;
654 end = (offset + len + hpage_size - 1) >> hpage_shift;
655
656 inode_lock(inode);
657
658 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
659 error = inode_newsize_ok(inode, offset + len);
660 if (error)
661 goto out;
662
663 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
664 error = -EPERM;
665 goto out;
666 }
667
668 /*
669 * Initialize a pseudo vma as this is required by the huge page
670 * allocation routines. If NUMA is configured, use page index
671 * as input to create an allocation policy.
672 */
673 vma_init(&pseudo_vma, mm);
674 pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
675 pseudo_vma.vm_file = file;
676
677 for (index = start; index < end; index++) {
678 /*
679 * This is supposed to be the vaddr where the page is being
680 * faulted in, but we have no vaddr here.
681 */
682 struct page *page;
683 unsigned long addr;
684
685 cond_resched();
686
687 /*
688 * fallocate(2) manpage permits EINTR; we may have been
689 * interrupted because we are using up too much memory.
690 */
691 if (signal_pending(current)) {
692 error = -EINTR;
693 break;
694 }
695
696 /* Set numa allocation policy based on index */
697 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
698
699 /* addr is the offset within the file (zero based) */
700 addr = index * hpage_size;
701
702 /*
703 * fault mutex taken here, protects against fault path
704 * and hole punch. inode_lock previously taken protects
705 * against truncation.
706 */
707 hash = hugetlb_fault_mutex_hash(mapping, index);
708 mutex_lock(&hugetlb_fault_mutex_table[hash]);
709
710 /* See if already present in mapping to avoid alloc/free */
711 page = find_get_page(mapping, index);
712 if (page) {
713 put_page(page);
714 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
715 hugetlb_drop_vma_policy(&pseudo_vma);
716 continue;
717 }
718
719 /*
720 * Allocate page without setting the avoid_reserve argument.
721 * There certainly are no reserves associated with the
722 * pseudo_vma. However, there could be shared mappings with
723 * reserves for the file at the inode level. If we fallocate
724 * pages in these areas, we need to consume the reserves
725 * to keep reservation accounting consistent.
726 */
727 page = alloc_huge_page(&pseudo_vma, addr, 0);
728 hugetlb_drop_vma_policy(&pseudo_vma);
729 if (IS_ERR(page)) {
730 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
731 error = PTR_ERR(page);
732 goto out;
733 }
734 clear_huge_page(page, addr, pages_per_huge_page(h));
735 __SetPageUptodate(page);
736 error = huge_add_to_page_cache(page, mapping, index);
737 if (unlikely(error)) {
738 restore_reserve_on_error(h, &pseudo_vma, addr, page);
739 put_page(page);
740 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
741 goto out;
742 }
743
744 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
745
746 SetHPageMigratable(page);
747 /*
748 * unlock_page because locked by add_to_page_cache()
749 * put_page() due to reference from alloc_huge_page()
750 */
751 unlock_page(page);
752 put_page(page);
753 }
754
755 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
756 i_size_write(inode, offset + len);
757 inode->i_ctime = current_time(inode);
758 out:
759 inode_unlock(inode);
760 return error;
761 }
762
hugetlbfs_setattr(struct user_namespace * mnt_userns,struct dentry * dentry,struct iattr * attr)763 static int hugetlbfs_setattr(struct user_namespace *mnt_userns,
764 struct dentry *dentry, struct iattr *attr)
765 {
766 struct inode *inode = d_inode(dentry);
767 struct hstate *h = hstate_inode(inode);
768 int error;
769 unsigned int ia_valid = attr->ia_valid;
770 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
771
772 error = setattr_prepare(&init_user_ns, dentry, attr);
773 if (error)
774 return error;
775
776 if (ia_valid & ATTR_SIZE) {
777 loff_t oldsize = inode->i_size;
778 loff_t newsize = attr->ia_size;
779
780 if (newsize & ~huge_page_mask(h))
781 return -EINVAL;
782 /* protected by i_rwsem */
783 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
784 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
785 return -EPERM;
786 hugetlb_vmtruncate(inode, newsize);
787 }
788
789 setattr_copy(&init_user_ns, inode, attr);
790 mark_inode_dirty(inode);
791 return 0;
792 }
793
hugetlbfs_get_root(struct super_block * sb,struct hugetlbfs_fs_context * ctx)794 static struct inode *hugetlbfs_get_root(struct super_block *sb,
795 struct hugetlbfs_fs_context *ctx)
796 {
797 struct inode *inode;
798
799 inode = new_inode(sb);
800 if (inode) {
801 inode->i_ino = get_next_ino();
802 inode->i_mode = S_IFDIR | ctx->mode;
803 inode->i_uid = ctx->uid;
804 inode->i_gid = ctx->gid;
805 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
806 inode->i_op = &hugetlbfs_dir_inode_operations;
807 inode->i_fop = &simple_dir_operations;
808 /* directory inodes start off with i_nlink == 2 (for "." entry) */
809 inc_nlink(inode);
810 lockdep_annotate_inode_mutex_key(inode);
811 }
812 return inode;
813 }
814
815 /*
816 * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
817 * be taken from reclaim -- unlike regular filesystems. This needs an
818 * annotation because huge_pmd_share() does an allocation under hugetlb's
819 * i_mmap_rwsem.
820 */
821 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
822
hugetlbfs_get_inode(struct super_block * sb,struct inode * dir,umode_t mode,dev_t dev)823 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
824 struct inode *dir,
825 umode_t mode, dev_t dev)
826 {
827 struct inode *inode;
828 struct resv_map *resv_map = NULL;
829
830 /*
831 * Reserve maps are only needed for inodes that can have associated
832 * page allocations.
833 */
834 if (S_ISREG(mode) || S_ISLNK(mode)) {
835 resv_map = resv_map_alloc();
836 if (!resv_map)
837 return NULL;
838 }
839
840 inode = new_inode(sb);
841 if (inode) {
842 struct hugetlbfs_inode_info *info = HUGETLBFS_I(inode);
843
844 inode->i_ino = get_next_ino();
845 inode_init_owner(&init_user_ns, inode, dir, mode);
846 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
847 &hugetlbfs_i_mmap_rwsem_key);
848 inode->i_mapping->a_ops = &hugetlbfs_aops;
849 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
850 inode->i_mapping->private_data = resv_map;
851 info->seals = F_SEAL_SEAL;
852 switch (mode & S_IFMT) {
853 default:
854 init_special_inode(inode, mode, dev);
855 break;
856 case S_IFREG:
857 inode->i_op = &hugetlbfs_inode_operations;
858 inode->i_fop = &hugetlbfs_file_operations;
859 break;
860 case S_IFDIR:
861 inode->i_op = &hugetlbfs_dir_inode_operations;
862 inode->i_fop = &simple_dir_operations;
863
864 /* directory inodes start off with i_nlink == 2 (for "." entry) */
865 inc_nlink(inode);
866 break;
867 case S_IFLNK:
868 inode->i_op = &page_symlink_inode_operations;
869 inode_nohighmem(inode);
870 break;
871 }
872 lockdep_annotate_inode_mutex_key(inode);
873 } else {
874 if (resv_map)
875 kref_put(&resv_map->refs, resv_map_release);
876 }
877
878 return inode;
879 }
880
881 /*
882 * File creation. Allocate an inode, and we're done..
883 */
do_hugetlbfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev,bool tmpfile)884 static int do_hugetlbfs_mknod(struct inode *dir,
885 struct dentry *dentry,
886 umode_t mode,
887 dev_t dev,
888 bool tmpfile)
889 {
890 struct inode *inode;
891 int error = -ENOSPC;
892
893 inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
894 if (inode) {
895 dir->i_ctime = dir->i_mtime = current_time(dir);
896 if (tmpfile) {
897 d_tmpfile(dentry, inode);
898 } else {
899 d_instantiate(dentry, inode);
900 dget(dentry);/* Extra count - pin the dentry in core */
901 }
902 error = 0;
903 }
904 return error;
905 }
906
hugetlbfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t dev)907 static int hugetlbfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
908 struct dentry *dentry, umode_t mode, dev_t dev)
909 {
910 return do_hugetlbfs_mknod(dir, dentry, mode, dev, false);
911 }
912
hugetlbfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)913 static int hugetlbfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
914 struct dentry *dentry, umode_t mode)
915 {
916 int retval = hugetlbfs_mknod(&init_user_ns, dir, dentry,
917 mode | S_IFDIR, 0);
918 if (!retval)
919 inc_nlink(dir);
920 return retval;
921 }
922
hugetlbfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)923 static int hugetlbfs_create(struct user_namespace *mnt_userns,
924 struct inode *dir, struct dentry *dentry,
925 umode_t mode, bool excl)
926 {
927 return hugetlbfs_mknod(&init_user_ns, dir, dentry, mode | S_IFREG, 0);
928 }
929
hugetlbfs_tmpfile(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)930 static int hugetlbfs_tmpfile(struct user_namespace *mnt_userns,
931 struct inode *dir, struct dentry *dentry,
932 umode_t mode)
933 {
934 return do_hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0, true);
935 }
936
hugetlbfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)937 static int hugetlbfs_symlink(struct user_namespace *mnt_userns,
938 struct inode *dir, struct dentry *dentry,
939 const char *symname)
940 {
941 struct inode *inode;
942 int error = -ENOSPC;
943
944 inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
945 if (inode) {
946 int l = strlen(symname)+1;
947 error = page_symlink(inode, symname, l);
948 if (!error) {
949 d_instantiate(dentry, inode);
950 dget(dentry);
951 } else
952 iput(inode);
953 }
954 dir->i_ctime = dir->i_mtime = current_time(dir);
955
956 return error;
957 }
958
hugetlbfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)959 static int hugetlbfs_migrate_page(struct address_space *mapping,
960 struct page *newpage, struct page *page,
961 enum migrate_mode mode)
962 {
963 int rc;
964
965 rc = migrate_huge_page_move_mapping(mapping, newpage, page);
966 if (rc != MIGRATEPAGE_SUCCESS)
967 return rc;
968
969 if (hugetlb_page_subpool(page)) {
970 hugetlb_set_page_subpool(newpage, hugetlb_page_subpool(page));
971 hugetlb_set_page_subpool(page, NULL);
972 }
973
974 if (mode != MIGRATE_SYNC_NO_COPY)
975 migrate_page_copy(newpage, page);
976 else
977 migrate_page_states(newpage, page);
978
979 return MIGRATEPAGE_SUCCESS;
980 }
981
hugetlbfs_error_remove_page(struct address_space * mapping,struct page * page)982 static int hugetlbfs_error_remove_page(struct address_space *mapping,
983 struct page *page)
984 {
985 struct inode *inode = mapping->host;
986 pgoff_t index = page->index;
987
988 remove_huge_page(page);
989 if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
990 hugetlb_fix_reserve_counts(inode);
991
992 return 0;
993 }
994
995 /*
996 * Display the mount options in /proc/mounts.
997 */
hugetlbfs_show_options(struct seq_file * m,struct dentry * root)998 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
999 {
1000 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
1001 struct hugepage_subpool *spool = sbinfo->spool;
1002 unsigned long hpage_size = huge_page_size(sbinfo->hstate);
1003 unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
1004 char mod;
1005
1006 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
1007 seq_printf(m, ",uid=%u",
1008 from_kuid_munged(&init_user_ns, sbinfo->uid));
1009 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
1010 seq_printf(m, ",gid=%u",
1011 from_kgid_munged(&init_user_ns, sbinfo->gid));
1012 if (sbinfo->mode != 0755)
1013 seq_printf(m, ",mode=%o", sbinfo->mode);
1014 if (sbinfo->max_inodes != -1)
1015 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
1016
1017 hpage_size /= 1024;
1018 mod = 'K';
1019 if (hpage_size >= 1024) {
1020 hpage_size /= 1024;
1021 mod = 'M';
1022 }
1023 seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
1024 if (spool) {
1025 if (spool->max_hpages != -1)
1026 seq_printf(m, ",size=%llu",
1027 (unsigned long long)spool->max_hpages << hpage_shift);
1028 if (spool->min_hpages != -1)
1029 seq_printf(m, ",min_size=%llu",
1030 (unsigned long long)spool->min_hpages << hpage_shift);
1031 }
1032 return 0;
1033 }
1034
hugetlbfs_statfs(struct dentry * dentry,struct kstatfs * buf)1035 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1036 {
1037 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
1038 struct hstate *h = hstate_inode(d_inode(dentry));
1039
1040 buf->f_type = HUGETLBFS_MAGIC;
1041 buf->f_bsize = huge_page_size(h);
1042 if (sbinfo) {
1043 spin_lock(&sbinfo->stat_lock);
1044 /* If no limits set, just report 0 for max/free/used
1045 * blocks, like simple_statfs() */
1046 if (sbinfo->spool) {
1047 long free_pages;
1048
1049 spin_lock(&sbinfo->spool->lock);
1050 buf->f_blocks = sbinfo->spool->max_hpages;
1051 free_pages = sbinfo->spool->max_hpages
1052 - sbinfo->spool->used_hpages;
1053 buf->f_bavail = buf->f_bfree = free_pages;
1054 spin_unlock(&sbinfo->spool->lock);
1055 buf->f_files = sbinfo->max_inodes;
1056 buf->f_ffree = sbinfo->free_inodes;
1057 }
1058 spin_unlock(&sbinfo->stat_lock);
1059 }
1060 buf->f_namelen = NAME_MAX;
1061 return 0;
1062 }
1063
hugetlbfs_put_super(struct super_block * sb)1064 static void hugetlbfs_put_super(struct super_block *sb)
1065 {
1066 struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
1067
1068 if (sbi) {
1069 sb->s_fs_info = NULL;
1070
1071 if (sbi->spool)
1072 hugepage_put_subpool(sbi->spool);
1073
1074 kfree(sbi);
1075 }
1076 }
1077
hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info * sbinfo)1078 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1079 {
1080 if (sbinfo->free_inodes >= 0) {
1081 spin_lock(&sbinfo->stat_lock);
1082 if (unlikely(!sbinfo->free_inodes)) {
1083 spin_unlock(&sbinfo->stat_lock);
1084 return 0;
1085 }
1086 sbinfo->free_inodes--;
1087 spin_unlock(&sbinfo->stat_lock);
1088 }
1089
1090 return 1;
1091 }
1092
hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info * sbinfo)1093 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
1094 {
1095 if (sbinfo->free_inodes >= 0) {
1096 spin_lock(&sbinfo->stat_lock);
1097 sbinfo->free_inodes++;
1098 spin_unlock(&sbinfo->stat_lock);
1099 }
1100 }
1101
1102
1103 static struct kmem_cache *hugetlbfs_inode_cachep;
1104
hugetlbfs_alloc_inode(struct super_block * sb)1105 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
1106 {
1107 struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
1108 struct hugetlbfs_inode_info *p;
1109
1110 if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1111 return NULL;
1112 p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1113 if (unlikely(!p)) {
1114 hugetlbfs_inc_free_inodes(sbinfo);
1115 return NULL;
1116 }
1117
1118 /*
1119 * Any time after allocation, hugetlbfs_destroy_inode can be called
1120 * for the inode. mpol_free_shared_policy is unconditionally called
1121 * as part of hugetlbfs_destroy_inode. So, initialize policy here
1122 * in case of a quick call to destroy.
1123 *
1124 * Note that the policy is initialized even if we are creating a
1125 * private inode. This simplifies hugetlbfs_destroy_inode.
1126 */
1127 mpol_shared_policy_init(&p->policy, NULL);
1128
1129 return &p->vfs_inode;
1130 }
1131
hugetlbfs_free_inode(struct inode * inode)1132 static void hugetlbfs_free_inode(struct inode *inode)
1133 {
1134 kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1135 }
1136
hugetlbfs_destroy_inode(struct inode * inode)1137 static void hugetlbfs_destroy_inode(struct inode *inode)
1138 {
1139 hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1140 mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1141 }
1142
1143 static const struct address_space_operations hugetlbfs_aops = {
1144 .write_begin = hugetlbfs_write_begin,
1145 .write_end = hugetlbfs_write_end,
1146 .set_page_dirty = __set_page_dirty_no_writeback,
1147 .migratepage = hugetlbfs_migrate_page,
1148 .error_remove_page = hugetlbfs_error_remove_page,
1149 };
1150
1151
init_once(void * foo)1152 static void init_once(void *foo)
1153 {
1154 struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1155
1156 inode_init_once(&ei->vfs_inode);
1157 }
1158
1159 const struct file_operations hugetlbfs_file_operations = {
1160 .read_iter = hugetlbfs_read_iter,
1161 .mmap = hugetlbfs_file_mmap,
1162 .fsync = noop_fsync,
1163 .get_unmapped_area = hugetlb_get_unmapped_area,
1164 .llseek = default_llseek,
1165 .fallocate = hugetlbfs_fallocate,
1166 };
1167
1168 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1169 .create = hugetlbfs_create,
1170 .lookup = simple_lookup,
1171 .link = simple_link,
1172 .unlink = simple_unlink,
1173 .symlink = hugetlbfs_symlink,
1174 .mkdir = hugetlbfs_mkdir,
1175 .rmdir = simple_rmdir,
1176 .mknod = hugetlbfs_mknod,
1177 .rename = simple_rename,
1178 .setattr = hugetlbfs_setattr,
1179 .tmpfile = hugetlbfs_tmpfile,
1180 };
1181
1182 static const struct inode_operations hugetlbfs_inode_operations = {
1183 .setattr = hugetlbfs_setattr,
1184 };
1185
1186 static const struct super_operations hugetlbfs_ops = {
1187 .alloc_inode = hugetlbfs_alloc_inode,
1188 .free_inode = hugetlbfs_free_inode,
1189 .destroy_inode = hugetlbfs_destroy_inode,
1190 .evict_inode = hugetlbfs_evict_inode,
1191 .statfs = hugetlbfs_statfs,
1192 .put_super = hugetlbfs_put_super,
1193 .show_options = hugetlbfs_show_options,
1194 };
1195
1196 /*
1197 * Convert size option passed from command line to number of huge pages
1198 * in the pool specified by hstate. Size option could be in bytes
1199 * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1200 */
1201 static long
hugetlbfs_size_to_hpages(struct hstate * h,unsigned long long size_opt,enum hugetlbfs_size_type val_type)1202 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1203 enum hugetlbfs_size_type val_type)
1204 {
1205 if (val_type == NO_SIZE)
1206 return -1;
1207
1208 if (val_type == SIZE_PERCENT) {
1209 size_opt <<= huge_page_shift(h);
1210 size_opt *= h->max_huge_pages;
1211 do_div(size_opt, 100);
1212 }
1213
1214 size_opt >>= huge_page_shift(h);
1215 return size_opt;
1216 }
1217
1218 /*
1219 * Parse one mount parameter.
1220 */
hugetlbfs_parse_param(struct fs_context * fc,struct fs_parameter * param)1221 static int hugetlbfs_parse_param(struct fs_context *fc, struct fs_parameter *param)
1222 {
1223 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1224 struct fs_parse_result result;
1225 char *rest;
1226 unsigned long ps;
1227 int opt;
1228
1229 opt = fs_parse(fc, hugetlb_fs_parameters, param, &result);
1230 if (opt < 0)
1231 return opt;
1232
1233 switch (opt) {
1234 case Opt_uid:
1235 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
1236 if (!uid_valid(ctx->uid))
1237 goto bad_val;
1238 return 0;
1239
1240 case Opt_gid:
1241 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
1242 if (!gid_valid(ctx->gid))
1243 goto bad_val;
1244 return 0;
1245
1246 case Opt_mode:
1247 ctx->mode = result.uint_32 & 01777U;
1248 return 0;
1249
1250 case Opt_size:
1251 /* memparse() will accept a K/M/G without a digit */
1252 if (!isdigit(param->string[0]))
1253 goto bad_val;
1254 ctx->max_size_opt = memparse(param->string, &rest);
1255 ctx->max_val_type = SIZE_STD;
1256 if (*rest == '%')
1257 ctx->max_val_type = SIZE_PERCENT;
1258 return 0;
1259
1260 case Opt_nr_inodes:
1261 /* memparse() will accept a K/M/G without a digit */
1262 if (!isdigit(param->string[0]))
1263 goto bad_val;
1264 ctx->nr_inodes = memparse(param->string, &rest);
1265 return 0;
1266
1267 case Opt_pagesize:
1268 ps = memparse(param->string, &rest);
1269 ctx->hstate = size_to_hstate(ps);
1270 if (!ctx->hstate) {
1271 pr_err("Unsupported page size %lu MB\n", ps >> 20);
1272 return -EINVAL;
1273 }
1274 return 0;
1275
1276 case Opt_min_size:
1277 /* memparse() will accept a K/M/G without a digit */
1278 if (!isdigit(param->string[0]))
1279 goto bad_val;
1280 ctx->min_size_opt = memparse(param->string, &rest);
1281 ctx->min_val_type = SIZE_STD;
1282 if (*rest == '%')
1283 ctx->min_val_type = SIZE_PERCENT;
1284 return 0;
1285
1286 default:
1287 return -EINVAL;
1288 }
1289
1290 bad_val:
1291 return invalfc(fc, "Bad value '%s' for mount option '%s'\n",
1292 param->string, param->key);
1293 }
1294
1295 /*
1296 * Validate the parsed options.
1297 */
hugetlbfs_validate(struct fs_context * fc)1298 static int hugetlbfs_validate(struct fs_context *fc)
1299 {
1300 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1301
1302 /*
1303 * Use huge page pool size (in hstate) to convert the size
1304 * options to number of huge pages. If NO_SIZE, -1 is returned.
1305 */
1306 ctx->max_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1307 ctx->max_size_opt,
1308 ctx->max_val_type);
1309 ctx->min_hpages = hugetlbfs_size_to_hpages(ctx->hstate,
1310 ctx->min_size_opt,
1311 ctx->min_val_type);
1312
1313 /*
1314 * If max_size was specified, then min_size must be smaller
1315 */
1316 if (ctx->max_val_type > NO_SIZE &&
1317 ctx->min_hpages > ctx->max_hpages) {
1318 pr_err("Minimum size can not be greater than maximum size\n");
1319 return -EINVAL;
1320 }
1321
1322 return 0;
1323 }
1324
1325 static int
hugetlbfs_fill_super(struct super_block * sb,struct fs_context * fc)1326 hugetlbfs_fill_super(struct super_block *sb, struct fs_context *fc)
1327 {
1328 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1329 struct hugetlbfs_sb_info *sbinfo;
1330
1331 sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1332 if (!sbinfo)
1333 return -ENOMEM;
1334 sb->s_fs_info = sbinfo;
1335 spin_lock_init(&sbinfo->stat_lock);
1336 sbinfo->hstate = ctx->hstate;
1337 sbinfo->max_inodes = ctx->nr_inodes;
1338 sbinfo->free_inodes = ctx->nr_inodes;
1339 sbinfo->spool = NULL;
1340 sbinfo->uid = ctx->uid;
1341 sbinfo->gid = ctx->gid;
1342 sbinfo->mode = ctx->mode;
1343
1344 /*
1345 * Allocate and initialize subpool if maximum or minimum size is
1346 * specified. Any needed reservations (for minimum size) are taken
1347 * taken when the subpool is created.
1348 */
1349 if (ctx->max_hpages != -1 || ctx->min_hpages != -1) {
1350 sbinfo->spool = hugepage_new_subpool(ctx->hstate,
1351 ctx->max_hpages,
1352 ctx->min_hpages);
1353 if (!sbinfo->spool)
1354 goto out_free;
1355 }
1356 sb->s_maxbytes = MAX_LFS_FILESIZE;
1357 sb->s_blocksize = huge_page_size(ctx->hstate);
1358 sb->s_blocksize_bits = huge_page_shift(ctx->hstate);
1359 sb->s_magic = HUGETLBFS_MAGIC;
1360 sb->s_op = &hugetlbfs_ops;
1361 sb->s_time_gran = 1;
1362
1363 /*
1364 * Due to the special and limited functionality of hugetlbfs, it does
1365 * not work well as a stacking filesystem.
1366 */
1367 sb->s_stack_depth = FILESYSTEM_MAX_STACK_DEPTH;
1368 sb->s_root = d_make_root(hugetlbfs_get_root(sb, ctx));
1369 if (!sb->s_root)
1370 goto out_free;
1371 return 0;
1372 out_free:
1373 kfree(sbinfo->spool);
1374 kfree(sbinfo);
1375 return -ENOMEM;
1376 }
1377
hugetlbfs_get_tree(struct fs_context * fc)1378 static int hugetlbfs_get_tree(struct fs_context *fc)
1379 {
1380 int err = hugetlbfs_validate(fc);
1381 if (err)
1382 return err;
1383 return get_tree_nodev(fc, hugetlbfs_fill_super);
1384 }
1385
hugetlbfs_fs_context_free(struct fs_context * fc)1386 static void hugetlbfs_fs_context_free(struct fs_context *fc)
1387 {
1388 kfree(fc->fs_private);
1389 }
1390
1391 static const struct fs_context_operations hugetlbfs_fs_context_ops = {
1392 .free = hugetlbfs_fs_context_free,
1393 .parse_param = hugetlbfs_parse_param,
1394 .get_tree = hugetlbfs_get_tree,
1395 };
1396
hugetlbfs_init_fs_context(struct fs_context * fc)1397 static int hugetlbfs_init_fs_context(struct fs_context *fc)
1398 {
1399 struct hugetlbfs_fs_context *ctx;
1400
1401 ctx = kzalloc(sizeof(struct hugetlbfs_fs_context), GFP_KERNEL);
1402 if (!ctx)
1403 return -ENOMEM;
1404
1405 ctx->max_hpages = -1; /* No limit on size by default */
1406 ctx->nr_inodes = -1; /* No limit on number of inodes by default */
1407 ctx->uid = current_fsuid();
1408 ctx->gid = current_fsgid();
1409 ctx->mode = 0755;
1410 ctx->hstate = &default_hstate;
1411 ctx->min_hpages = -1; /* No default minimum size */
1412 ctx->max_val_type = NO_SIZE;
1413 ctx->min_val_type = NO_SIZE;
1414 fc->fs_private = ctx;
1415 fc->ops = &hugetlbfs_fs_context_ops;
1416 return 0;
1417 }
1418
1419 static struct file_system_type hugetlbfs_fs_type = {
1420 .name = "hugetlbfs",
1421 .init_fs_context = hugetlbfs_init_fs_context,
1422 .parameters = hugetlb_fs_parameters,
1423 .kill_sb = kill_litter_super,
1424 };
1425
1426 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1427
can_do_hugetlb_shm(void)1428 static int can_do_hugetlb_shm(void)
1429 {
1430 kgid_t shm_group;
1431 shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1432 return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1433 }
1434
get_hstate_idx(int page_size_log)1435 static int get_hstate_idx(int page_size_log)
1436 {
1437 struct hstate *h = hstate_sizelog(page_size_log);
1438
1439 if (!h)
1440 return -1;
1441 return hstate_index(h);
1442 }
1443
1444 /*
1445 * Note that size should be aligned to proper hugepage size in caller side,
1446 * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1447 */
hugetlb_file_setup(const char * name,size_t size,vm_flags_t acctflag,struct ucounts ** ucounts,int creat_flags,int page_size_log)1448 struct file *hugetlb_file_setup(const char *name, size_t size,
1449 vm_flags_t acctflag, struct ucounts **ucounts,
1450 int creat_flags, int page_size_log)
1451 {
1452 struct inode *inode;
1453 struct vfsmount *mnt;
1454 int hstate_idx;
1455 struct file *file;
1456
1457 hstate_idx = get_hstate_idx(page_size_log);
1458 if (hstate_idx < 0)
1459 return ERR_PTR(-ENODEV);
1460
1461 *ucounts = NULL;
1462 mnt = hugetlbfs_vfsmount[hstate_idx];
1463 if (!mnt)
1464 return ERR_PTR(-ENOENT);
1465
1466 if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1467 *ucounts = current_ucounts();
1468 if (user_shm_lock(size, *ucounts)) {
1469 task_lock(current);
1470 pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1471 current->comm, current->pid);
1472 task_unlock(current);
1473 } else {
1474 *ucounts = NULL;
1475 return ERR_PTR(-EPERM);
1476 }
1477 }
1478
1479 file = ERR_PTR(-ENOSPC);
1480 inode = hugetlbfs_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0);
1481 if (!inode)
1482 goto out;
1483 if (creat_flags == HUGETLB_SHMFS_INODE)
1484 inode->i_flags |= S_PRIVATE;
1485
1486 inode->i_size = size;
1487 clear_nlink(inode);
1488
1489 if (!hugetlb_reserve_pages(inode, 0,
1490 size >> huge_page_shift(hstate_inode(inode)), NULL,
1491 acctflag))
1492 file = ERR_PTR(-ENOMEM);
1493 else
1494 file = alloc_file_pseudo(inode, mnt, name, O_RDWR,
1495 &hugetlbfs_file_operations);
1496 if (!IS_ERR(file))
1497 return file;
1498
1499 iput(inode);
1500 out:
1501 if (*ucounts) {
1502 user_shm_unlock(size, *ucounts);
1503 *ucounts = NULL;
1504 }
1505 return file;
1506 }
1507
mount_one_hugetlbfs(struct hstate * h)1508 static struct vfsmount *__init mount_one_hugetlbfs(struct hstate *h)
1509 {
1510 struct fs_context *fc;
1511 struct vfsmount *mnt;
1512
1513 fc = fs_context_for_mount(&hugetlbfs_fs_type, SB_KERNMOUNT);
1514 if (IS_ERR(fc)) {
1515 mnt = ERR_CAST(fc);
1516 } else {
1517 struct hugetlbfs_fs_context *ctx = fc->fs_private;
1518 ctx->hstate = h;
1519 mnt = fc_mount(fc);
1520 put_fs_context(fc);
1521 }
1522 if (IS_ERR(mnt))
1523 pr_err("Cannot mount internal hugetlbfs for page size %luK",
1524 huge_page_size(h) >> 10);
1525 return mnt;
1526 }
1527
init_hugetlbfs_fs(void)1528 static int __init init_hugetlbfs_fs(void)
1529 {
1530 struct vfsmount *mnt;
1531 struct hstate *h;
1532 int error;
1533 int i;
1534
1535 if (!hugepages_supported()) {
1536 pr_info("disabling because there are no supported hugepage sizes\n");
1537 return -ENOTSUPP;
1538 }
1539
1540 error = -ENOMEM;
1541 hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1542 sizeof(struct hugetlbfs_inode_info),
1543 0, SLAB_ACCOUNT, init_once);
1544 if (hugetlbfs_inode_cachep == NULL)
1545 goto out;
1546
1547 error = register_filesystem(&hugetlbfs_fs_type);
1548 if (error)
1549 goto out_free;
1550
1551 /* default hstate mount is required */
1552 mnt = mount_one_hugetlbfs(&default_hstate);
1553 if (IS_ERR(mnt)) {
1554 error = PTR_ERR(mnt);
1555 goto out_unreg;
1556 }
1557 hugetlbfs_vfsmount[default_hstate_idx] = mnt;
1558
1559 /* other hstates are optional */
1560 i = 0;
1561 for_each_hstate(h) {
1562 if (i == default_hstate_idx) {
1563 i++;
1564 continue;
1565 }
1566
1567 mnt = mount_one_hugetlbfs(h);
1568 if (IS_ERR(mnt))
1569 hugetlbfs_vfsmount[i] = NULL;
1570 else
1571 hugetlbfs_vfsmount[i] = mnt;
1572 i++;
1573 }
1574
1575 return 0;
1576
1577 out_unreg:
1578 (void)unregister_filesystem(&hugetlbfs_fs_type);
1579 out_free:
1580 kmem_cache_destroy(hugetlbfs_inode_cachep);
1581 out:
1582 return error;
1583 }
1584 fs_initcall(init_hugetlbfs_fs)
1585