1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/fs-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 *
7 * Contains all the functions related to writing back and waiting
8 * upon dirty inodes against superblocks, and writing back dirty
9 * pages against inodes. ie: data writeback. Writeout of the
10 * inode itself is not handled here.
11 *
12 * 10Apr2002 Andrew Morton
13 * Split out of fs/inode.c
14 * Additions for address_space-based writeback
15 */
16
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/spinlock.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/fs.h>
23 #include <linux/mm.h>
24 #include <linux/pagemap.h>
25 #include <linux/kthread.h>
26 #include <linux/writeback.h>
27 #include <linux/blkdev.h>
28 #include <linux/backing-dev.h>
29 #include <linux/tracepoint.h>
30 #include <linux/device.h>
31 #include <linux/memcontrol.h>
32 #include "internal.h"
33
34 /*
35 * 4MB minimal write chunk size
36 */
37 #define MIN_WRITEBACK_PAGES (4096UL >> (PAGE_SHIFT - 10))
38
39 /*
40 * Passed into wb_writeback(), essentially a subset of writeback_control
41 */
42 struct wb_writeback_work {
43 long nr_pages;
44 struct super_block *sb;
45 enum writeback_sync_modes sync_mode;
46 unsigned int tagged_writepages:1;
47 unsigned int for_kupdate:1;
48 unsigned int range_cyclic:1;
49 unsigned int for_background:1;
50 unsigned int for_sync:1; /* sync(2) WB_SYNC_ALL writeback */
51 unsigned int auto_free:1; /* free on completion */
52 enum wb_reason reason; /* why was writeback initiated? */
53
54 struct list_head list; /* pending work list */
55 struct wb_completion *done; /* set if the caller waits */
56 };
57
58 /*
59 * If an inode is constantly having its pages dirtied, but then the
60 * updates stop dirtytime_expire_interval seconds in the past, it's
61 * possible for the worst case time between when an inode has its
62 * timestamps updated and when they finally get written out to be two
63 * dirtytime_expire_intervals. We set the default to 12 hours (in
64 * seconds), which means most of the time inodes will have their
65 * timestamps written to disk after 12 hours, but in the worst case a
66 * few inodes might not their timestamps updated for 24 hours.
67 */
68 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
69
wb_inode(struct list_head * head)70 static inline struct inode *wb_inode(struct list_head *head)
71 {
72 return list_entry(head, struct inode, i_io_list);
73 }
74
75 /*
76 * Include the creation of the trace points after defining the
77 * wb_writeback_work structure and inline functions so that the definition
78 * remains local to this file.
79 */
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/writeback.h>
82
83 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
84
wb_io_lists_populated(struct bdi_writeback * wb)85 static bool wb_io_lists_populated(struct bdi_writeback *wb)
86 {
87 if (wb_has_dirty_io(wb)) {
88 return false;
89 } else {
90 set_bit(WB_has_dirty_io, &wb->state);
91 WARN_ON_ONCE(!wb->avg_write_bandwidth);
92 atomic_long_add(wb->avg_write_bandwidth,
93 &wb->bdi->tot_write_bandwidth);
94 return true;
95 }
96 }
97
wb_io_lists_depopulated(struct bdi_writeback * wb)98 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
99 {
100 if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
101 list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
102 clear_bit(WB_has_dirty_io, &wb->state);
103 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
104 &wb->bdi->tot_write_bandwidth) < 0);
105 }
106 }
107
108 /**
109 * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
110 * @inode: inode to be moved
111 * @wb: target bdi_writeback
112 * @head: one of @wb->b_{dirty|io|more_io|dirty_time}
113 *
114 * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
115 * Returns %true if @inode is the first occupant of the !dirty_time IO
116 * lists; otherwise, %false.
117 */
inode_io_list_move_locked(struct inode * inode,struct bdi_writeback * wb,struct list_head * head)118 static bool inode_io_list_move_locked(struct inode *inode,
119 struct bdi_writeback *wb,
120 struct list_head *head)
121 {
122 assert_spin_locked(&wb->list_lock);
123
124 list_move(&inode->i_io_list, head);
125
126 /* dirty_time doesn't count as dirty_io until expiration */
127 if (head != &wb->b_dirty_time)
128 return wb_io_lists_populated(wb);
129
130 wb_io_lists_depopulated(wb);
131 return false;
132 }
133
wb_wakeup(struct bdi_writeback * wb)134 static void wb_wakeup(struct bdi_writeback *wb)
135 {
136 spin_lock_bh(&wb->work_lock);
137 if (test_bit(WB_registered, &wb->state))
138 mod_delayed_work(bdi_wq, &wb->dwork, 0);
139 spin_unlock_bh(&wb->work_lock);
140 }
141
finish_writeback_work(struct bdi_writeback * wb,struct wb_writeback_work * work)142 static void finish_writeback_work(struct bdi_writeback *wb,
143 struct wb_writeback_work *work)
144 {
145 struct wb_completion *done = work->done;
146
147 if (work->auto_free)
148 kfree(work);
149 if (done) {
150 wait_queue_head_t *waitq = done->waitq;
151
152 /* @done can't be accessed after the following dec */
153 if (atomic_dec_and_test(&done->cnt))
154 wake_up_all(waitq);
155 }
156 }
157
wb_queue_work(struct bdi_writeback * wb,struct wb_writeback_work * work)158 static void wb_queue_work(struct bdi_writeback *wb,
159 struct wb_writeback_work *work)
160 {
161 trace_writeback_queue(wb, work);
162
163 if (work->done)
164 atomic_inc(&work->done->cnt);
165
166 spin_lock_bh(&wb->work_lock);
167
168 if (test_bit(WB_registered, &wb->state)) {
169 list_add_tail(&work->list, &wb->work_list);
170 mod_delayed_work(bdi_wq, &wb->dwork, 0);
171 } else
172 finish_writeback_work(wb, work);
173
174 spin_unlock_bh(&wb->work_lock);
175 }
176
177 /**
178 * wb_wait_for_completion - wait for completion of bdi_writeback_works
179 * @done: target wb_completion
180 *
181 * Wait for one or more work items issued to @bdi with their ->done field
182 * set to @done, which should have been initialized with
183 * DEFINE_WB_COMPLETION(). This function returns after all such work items
184 * are completed. Work items which are waited upon aren't freed
185 * automatically on completion.
186 */
wb_wait_for_completion(struct wb_completion * done)187 void wb_wait_for_completion(struct wb_completion *done)
188 {
189 atomic_dec(&done->cnt); /* put down the initial count */
190 wait_event(*done->waitq, !atomic_read(&done->cnt));
191 }
192
193 #ifdef CONFIG_CGROUP_WRITEBACK
194
195 /*
196 * Parameters for foreign inode detection, see wbc_detach_inode() to see
197 * how they're used.
198 *
199 * These paramters are inherently heuristical as the detection target
200 * itself is fuzzy. All we want to do is detaching an inode from the
201 * current owner if it's being written to by some other cgroups too much.
202 *
203 * The current cgroup writeback is built on the assumption that multiple
204 * cgroups writing to the same inode concurrently is very rare and a mode
205 * of operation which isn't well supported. As such, the goal is not
206 * taking too long when a different cgroup takes over an inode while
207 * avoiding too aggressive flip-flops from occasional foreign writes.
208 *
209 * We record, very roughly, 2s worth of IO time history and if more than
210 * half of that is foreign, trigger the switch. The recording is quantized
211 * to 16 slots. To avoid tiny writes from swinging the decision too much,
212 * writes smaller than 1/8 of avg size are ignored.
213 */
214 #define WB_FRN_TIME_SHIFT 13 /* 1s = 2^13, upto 8 secs w/ 16bit */
215 #define WB_FRN_TIME_AVG_SHIFT 3 /* avg = avg * 7/8 + new * 1/8 */
216 #define WB_FRN_TIME_CUT_DIV 8 /* ignore rounds < avg / 8 */
217 #define WB_FRN_TIME_PERIOD (2 * (1 << WB_FRN_TIME_SHIFT)) /* 2s */
218
219 #define WB_FRN_HIST_SLOTS 16 /* inode->i_wb_frn_history is 16bit */
220 #define WB_FRN_HIST_UNIT (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
221 /* each slot's duration is 2s / 16 */
222 #define WB_FRN_HIST_THR_SLOTS (WB_FRN_HIST_SLOTS / 2)
223 /* if foreign slots >= 8, switch */
224 #define WB_FRN_HIST_MAX_SLOTS (WB_FRN_HIST_THR_SLOTS / 2 + 1)
225 /* one round can affect upto 5 slots */
226 #define WB_FRN_MAX_IN_FLIGHT 1024 /* don't queue too many concurrently */
227
228 /*
229 * Maximum inodes per isw. A specific value has been chosen to make
230 * struct inode_switch_wbs_context fit into 1024 bytes kmalloc.
231 */
232 #define WB_MAX_INODES_PER_ISW ((1024UL - sizeof(struct inode_switch_wbs_context)) \
233 / sizeof(struct inode *))
234
235 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
236 static struct workqueue_struct *isw_wq;
237
__inode_attach_wb(struct inode * inode,struct page * page)238 void __inode_attach_wb(struct inode *inode, struct page *page)
239 {
240 struct backing_dev_info *bdi = inode_to_bdi(inode);
241 struct bdi_writeback *wb = NULL;
242
243 if (inode_cgwb_enabled(inode)) {
244 struct cgroup_subsys_state *memcg_css;
245
246 if (page) {
247 memcg_css = mem_cgroup_css_from_page(page);
248 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
249 } else {
250 /* must pin memcg_css, see wb_get_create() */
251 memcg_css = task_get_css(current, memory_cgrp_id);
252 wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
253 css_put(memcg_css);
254 }
255 }
256
257 if (!wb)
258 wb = &bdi->wb;
259
260 /*
261 * There may be multiple instances of this function racing to
262 * update the same inode. Use cmpxchg() to tell the winner.
263 */
264 if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
265 wb_put(wb);
266 }
267 EXPORT_SYMBOL_GPL(__inode_attach_wb);
268
269 /**
270 * inode_cgwb_move_to_attached - put the inode onto wb->b_attached list
271 * @inode: inode of interest with i_lock held
272 * @wb: target bdi_writeback
273 *
274 * Remove the inode from wb's io lists and if necessarily put onto b_attached
275 * list. Only inodes attached to cgwb's are kept on this list.
276 */
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)277 static void inode_cgwb_move_to_attached(struct inode *inode,
278 struct bdi_writeback *wb)
279 {
280 assert_spin_locked(&wb->list_lock);
281 assert_spin_locked(&inode->i_lock);
282
283 inode->i_state &= ~I_SYNC_QUEUED;
284 if (wb != &wb->bdi->wb)
285 list_move(&inode->i_io_list, &wb->b_attached);
286 else
287 list_del_init(&inode->i_io_list);
288 wb_io_lists_depopulated(wb);
289 }
290
291 /**
292 * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
293 * @inode: inode of interest with i_lock held
294 *
295 * Returns @inode's wb with its list_lock held. @inode->i_lock must be
296 * held on entry and is released on return. The returned wb is guaranteed
297 * to stay @inode's associated wb until its list_lock is released.
298 */
299 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)300 locked_inode_to_wb_and_lock_list(struct inode *inode)
301 __releases(&inode->i_lock)
302 __acquires(&wb->list_lock)
303 {
304 while (true) {
305 struct bdi_writeback *wb = inode_to_wb(inode);
306
307 /*
308 * inode_to_wb() association is protected by both
309 * @inode->i_lock and @wb->list_lock but list_lock nests
310 * outside i_lock. Drop i_lock and verify that the
311 * association hasn't changed after acquiring list_lock.
312 */
313 wb_get(wb);
314 spin_unlock(&inode->i_lock);
315 spin_lock(&wb->list_lock);
316
317 /* i_wb may have changed inbetween, can't use inode_to_wb() */
318 if (likely(wb == inode->i_wb)) {
319 wb_put(wb); /* @inode already has ref */
320 return wb;
321 }
322
323 spin_unlock(&wb->list_lock);
324 wb_put(wb);
325 cpu_relax();
326 spin_lock(&inode->i_lock);
327 }
328 }
329
330 /**
331 * inode_to_wb_and_lock_list - determine an inode's wb and lock it
332 * @inode: inode of interest
333 *
334 * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
335 * on entry.
336 */
inode_to_wb_and_lock_list(struct inode * inode)337 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
338 __acquires(&wb->list_lock)
339 {
340 spin_lock(&inode->i_lock);
341 return locked_inode_to_wb_and_lock_list(inode);
342 }
343
344 struct inode_switch_wbs_context {
345 struct rcu_work work;
346
347 /*
348 * Multiple inodes can be switched at once. The switching procedure
349 * consists of two parts, separated by a RCU grace period. To make
350 * sure that the second part is executed for each inode gone through
351 * the first part, all inode pointers are placed into a NULL-terminated
352 * array embedded into struct inode_switch_wbs_context. Otherwise
353 * an inode could be left in a non-consistent state.
354 */
355 struct bdi_writeback *new_wb;
356 struct inode *inodes[];
357 };
358
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)359 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
360 {
361 down_write(&bdi->wb_switch_rwsem);
362 }
363
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)364 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
365 {
366 up_write(&bdi->wb_switch_rwsem);
367 }
368
inode_do_switch_wbs(struct inode * inode,struct bdi_writeback * old_wb,struct bdi_writeback * new_wb)369 static bool inode_do_switch_wbs(struct inode *inode,
370 struct bdi_writeback *old_wb,
371 struct bdi_writeback *new_wb)
372 {
373 struct address_space *mapping = inode->i_mapping;
374 XA_STATE(xas, &mapping->i_pages, 0);
375 struct page *page;
376 bool switched = false;
377
378 spin_lock(&inode->i_lock);
379 xa_lock_irq(&mapping->i_pages);
380
381 /*
382 * Once I_FREEING or I_WILL_FREE are visible under i_lock, the eviction
383 * path owns the inode and we shouldn't modify ->i_io_list.
384 */
385 if (unlikely(inode->i_state & (I_FREEING | I_WILL_FREE)))
386 goto skip_switch;
387
388 trace_inode_switch_wbs(inode, old_wb, new_wb);
389
390 /*
391 * Count and transfer stats. Note that PAGECACHE_TAG_DIRTY points
392 * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
393 * pages actually under writeback.
394 */
395 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_DIRTY) {
396 if (PageDirty(page)) {
397 dec_wb_stat(old_wb, WB_RECLAIMABLE);
398 inc_wb_stat(new_wb, WB_RECLAIMABLE);
399 }
400 }
401
402 xas_set(&xas, 0);
403 xas_for_each_marked(&xas, page, ULONG_MAX, PAGECACHE_TAG_WRITEBACK) {
404 WARN_ON_ONCE(!PageWriteback(page));
405 dec_wb_stat(old_wb, WB_WRITEBACK);
406 inc_wb_stat(new_wb, WB_WRITEBACK);
407 }
408
409 if (mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK)) {
410 atomic_dec(&old_wb->writeback_inodes);
411 atomic_inc(&new_wb->writeback_inodes);
412 }
413
414 wb_get(new_wb);
415
416 /*
417 * Transfer to @new_wb's IO list if necessary. If the @inode is dirty,
418 * the specific list @inode was on is ignored and the @inode is put on
419 * ->b_dirty which is always correct including from ->b_dirty_time.
420 * The transfer preserves @inode->dirtied_when ordering. If the @inode
421 * was clean, it means it was on the b_attached list, so move it onto
422 * the b_attached list of @new_wb.
423 */
424 if (!list_empty(&inode->i_io_list)) {
425 inode->i_wb = new_wb;
426
427 if (inode->i_state & I_DIRTY_ALL) {
428 struct inode *pos;
429
430 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
431 if (time_after_eq(inode->dirtied_when,
432 pos->dirtied_when))
433 break;
434 inode_io_list_move_locked(inode, new_wb,
435 pos->i_io_list.prev);
436 } else {
437 inode_cgwb_move_to_attached(inode, new_wb);
438 }
439 } else {
440 inode->i_wb = new_wb;
441 }
442
443 /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
444 inode->i_wb_frn_winner = 0;
445 inode->i_wb_frn_avg_time = 0;
446 inode->i_wb_frn_history = 0;
447 switched = true;
448 skip_switch:
449 /*
450 * Paired with load_acquire in unlocked_inode_to_wb_begin() and
451 * ensures that the new wb is visible if they see !I_WB_SWITCH.
452 */
453 smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
454
455 xa_unlock_irq(&mapping->i_pages);
456 spin_unlock(&inode->i_lock);
457
458 return switched;
459 }
460
inode_switch_wbs_work_fn(struct work_struct * work)461 static void inode_switch_wbs_work_fn(struct work_struct *work)
462 {
463 struct inode_switch_wbs_context *isw =
464 container_of(to_rcu_work(work), struct inode_switch_wbs_context, work);
465 struct backing_dev_info *bdi = inode_to_bdi(isw->inodes[0]);
466 struct bdi_writeback *old_wb = isw->inodes[0]->i_wb;
467 struct bdi_writeback *new_wb = isw->new_wb;
468 unsigned long nr_switched = 0;
469 struct inode **inodep;
470
471 /*
472 * If @inode switches cgwb membership while sync_inodes_sb() is
473 * being issued, sync_inodes_sb() might miss it. Synchronize.
474 */
475 down_read(&bdi->wb_switch_rwsem);
476
477 /*
478 * By the time control reaches here, RCU grace period has passed
479 * since I_WB_SWITCH assertion and all wb stat update transactions
480 * between unlocked_inode_to_wb_begin/end() are guaranteed to be
481 * synchronizing against the i_pages lock.
482 *
483 * Grabbing old_wb->list_lock, inode->i_lock and the i_pages lock
484 * gives us exclusion against all wb related operations on @inode
485 * including IO list manipulations and stat updates.
486 */
487 if (old_wb < new_wb) {
488 spin_lock(&old_wb->list_lock);
489 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
490 } else {
491 spin_lock(&new_wb->list_lock);
492 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
493 }
494
495 for (inodep = isw->inodes; *inodep; inodep++) {
496 WARN_ON_ONCE((*inodep)->i_wb != old_wb);
497 if (inode_do_switch_wbs(*inodep, old_wb, new_wb))
498 nr_switched++;
499 }
500
501 spin_unlock(&new_wb->list_lock);
502 spin_unlock(&old_wb->list_lock);
503
504 up_read(&bdi->wb_switch_rwsem);
505
506 if (nr_switched) {
507 wb_wakeup(new_wb);
508 wb_put_many(old_wb, nr_switched);
509 }
510
511 for (inodep = isw->inodes; *inodep; inodep++)
512 iput(*inodep);
513 wb_put(new_wb);
514 kfree(isw);
515 atomic_dec(&isw_nr_in_flight);
516 }
517
inode_prepare_wbs_switch(struct inode * inode,struct bdi_writeback * new_wb)518 static bool inode_prepare_wbs_switch(struct inode *inode,
519 struct bdi_writeback *new_wb)
520 {
521 /*
522 * Paired with smp_mb() in cgroup_writeback_umount().
523 * isw_nr_in_flight must be increased before checking SB_ACTIVE and
524 * grabbing an inode, otherwise isw_nr_in_flight can be observed as 0
525 * in cgroup_writeback_umount() and the isw_wq will be not flushed.
526 */
527 smp_mb();
528
529 if (IS_DAX(inode))
530 return false;
531
532 /* while holding I_WB_SWITCH, no one else can update the association */
533 spin_lock(&inode->i_lock);
534 if (!(inode->i_sb->s_flags & SB_ACTIVE) ||
535 inode->i_state & (I_WB_SWITCH | I_FREEING | I_WILL_FREE) ||
536 inode_to_wb(inode) == new_wb) {
537 spin_unlock(&inode->i_lock);
538 return false;
539 }
540 inode->i_state |= I_WB_SWITCH;
541 __iget(inode);
542 spin_unlock(&inode->i_lock);
543
544 return true;
545 }
546
547 /**
548 * inode_switch_wbs - change the wb association of an inode
549 * @inode: target inode
550 * @new_wb_id: ID of the new wb
551 *
552 * Switch @inode's wb association to the wb identified by @new_wb_id. The
553 * switching is performed asynchronously and may fail silently.
554 */
inode_switch_wbs(struct inode * inode,int new_wb_id)555 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
556 {
557 struct backing_dev_info *bdi = inode_to_bdi(inode);
558 struct cgroup_subsys_state *memcg_css;
559 struct inode_switch_wbs_context *isw;
560
561 /* noop if seems to be already in progress */
562 if (inode->i_state & I_WB_SWITCH)
563 return;
564
565 /* avoid queueing a new switch if too many are already in flight */
566 if (atomic_read(&isw_nr_in_flight) > WB_FRN_MAX_IN_FLIGHT)
567 return;
568
569 isw = kzalloc(sizeof(*isw) + 2 * sizeof(struct inode *), GFP_ATOMIC);
570 if (!isw)
571 return;
572
573 atomic_inc(&isw_nr_in_flight);
574
575 /* find and pin the new wb */
576 rcu_read_lock();
577 memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
578 if (memcg_css && !css_tryget(memcg_css))
579 memcg_css = NULL;
580 rcu_read_unlock();
581 if (!memcg_css)
582 goto out_free;
583
584 isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
585 css_put(memcg_css);
586 if (!isw->new_wb)
587 goto out_free;
588
589 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
590 goto out_free;
591
592 isw->inodes[0] = inode;
593
594 /*
595 * In addition to synchronizing among switchers, I_WB_SWITCH tells
596 * the RCU protected stat update paths to grab the i_page
597 * lock so that stat transfer can synchronize against them.
598 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
599 */
600 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
601 queue_rcu_work(isw_wq, &isw->work);
602 return;
603
604 out_free:
605 atomic_dec(&isw_nr_in_flight);
606 if (isw->new_wb)
607 wb_put(isw->new_wb);
608 kfree(isw);
609 }
610
611 /**
612 * cleanup_offline_cgwb - detach associated inodes
613 * @wb: target wb
614 *
615 * Switch all inodes attached to @wb to a nearest living ancestor's wb in order
616 * to eventually release the dying @wb. Returns %true if not all inodes were
617 * switched and the function has to be restarted.
618 */
cleanup_offline_cgwb(struct bdi_writeback * wb)619 bool cleanup_offline_cgwb(struct bdi_writeback *wb)
620 {
621 struct cgroup_subsys_state *memcg_css;
622 struct inode_switch_wbs_context *isw;
623 struct inode *inode;
624 int nr;
625 bool restart = false;
626
627 isw = kzalloc(sizeof(*isw) + WB_MAX_INODES_PER_ISW *
628 sizeof(struct inode *), GFP_KERNEL);
629 if (!isw)
630 return restart;
631
632 atomic_inc(&isw_nr_in_flight);
633
634 for (memcg_css = wb->memcg_css->parent; memcg_css;
635 memcg_css = memcg_css->parent) {
636 isw->new_wb = wb_get_create(wb->bdi, memcg_css, GFP_KERNEL);
637 if (isw->new_wb)
638 break;
639 }
640 if (unlikely(!isw->new_wb))
641 isw->new_wb = &wb->bdi->wb; /* wb_get() is noop for bdi's wb */
642
643 nr = 0;
644 spin_lock(&wb->list_lock);
645 list_for_each_entry(inode, &wb->b_attached, i_io_list) {
646 if (!inode_prepare_wbs_switch(inode, isw->new_wb))
647 continue;
648
649 isw->inodes[nr++] = inode;
650
651 if (nr >= WB_MAX_INODES_PER_ISW - 1) {
652 restart = true;
653 break;
654 }
655 }
656 spin_unlock(&wb->list_lock);
657
658 /* no attached inodes? bail out */
659 if (nr == 0) {
660 atomic_dec(&isw_nr_in_flight);
661 wb_put(isw->new_wb);
662 kfree(isw);
663 return restart;
664 }
665
666 /*
667 * In addition to synchronizing among switchers, I_WB_SWITCH tells
668 * the RCU protected stat update paths to grab the i_page
669 * lock so that stat transfer can synchronize against them.
670 * Let's continue after I_WB_SWITCH is guaranteed to be visible.
671 */
672 INIT_RCU_WORK(&isw->work, inode_switch_wbs_work_fn);
673 queue_rcu_work(isw_wq, &isw->work);
674
675 return restart;
676 }
677
678 /**
679 * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
680 * @wbc: writeback_control of interest
681 * @inode: target inode
682 *
683 * @inode is locked and about to be written back under the control of @wbc.
684 * Record @inode's writeback context into @wbc and unlock the i_lock. On
685 * writeback completion, wbc_detach_inode() should be called. This is used
686 * to track the cgroup writeback context.
687 */
wbc_attach_and_unlock_inode(struct writeback_control * wbc,struct inode * inode)688 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
689 struct inode *inode)
690 {
691 if (!inode_cgwb_enabled(inode)) {
692 spin_unlock(&inode->i_lock);
693 return;
694 }
695
696 wbc->wb = inode_to_wb(inode);
697 wbc->inode = inode;
698
699 wbc->wb_id = wbc->wb->memcg_css->id;
700 wbc->wb_lcand_id = inode->i_wb_frn_winner;
701 wbc->wb_tcand_id = 0;
702 wbc->wb_bytes = 0;
703 wbc->wb_lcand_bytes = 0;
704 wbc->wb_tcand_bytes = 0;
705
706 wb_get(wbc->wb);
707 spin_unlock(&inode->i_lock);
708
709 /*
710 * A dying wb indicates that either the blkcg associated with the
711 * memcg changed or the associated memcg is dying. In the first
712 * case, a replacement wb should already be available and we should
713 * refresh the wb immediately. In the second case, trying to
714 * refresh will keep failing.
715 */
716 if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
717 inode_switch_wbs(inode, wbc->wb_id);
718 }
719 EXPORT_SYMBOL_GPL(wbc_attach_and_unlock_inode);
720
721 /**
722 * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
723 * @wbc: writeback_control of the just finished writeback
724 *
725 * To be called after a writeback attempt of an inode finishes and undoes
726 * wbc_attach_and_unlock_inode(). Can be called under any context.
727 *
728 * As concurrent write sharing of an inode is expected to be very rare and
729 * memcg only tracks page ownership on first-use basis severely confining
730 * the usefulness of such sharing, cgroup writeback tracks ownership
731 * per-inode. While the support for concurrent write sharing of an inode
732 * is deemed unnecessary, an inode being written to by different cgroups at
733 * different points in time is a lot more common, and, more importantly,
734 * charging only by first-use can too readily lead to grossly incorrect
735 * behaviors (single foreign page can lead to gigabytes of writeback to be
736 * incorrectly attributed).
737 *
738 * To resolve this issue, cgroup writeback detects the majority dirtier of
739 * an inode and transfers the ownership to it. To avoid unnnecessary
740 * oscillation, the detection mechanism keeps track of history and gives
741 * out the switch verdict only if the foreign usage pattern is stable over
742 * a certain amount of time and/or writeback attempts.
743 *
744 * On each writeback attempt, @wbc tries to detect the majority writer
745 * using Boyer-Moore majority vote algorithm. In addition to the byte
746 * count from the majority voting, it also counts the bytes written for the
747 * current wb and the last round's winner wb (max of last round's current
748 * wb, the winner from two rounds ago, and the last round's majority
749 * candidate). Keeping track of the historical winner helps the algorithm
750 * to semi-reliably detect the most active writer even when it's not the
751 * absolute majority.
752 *
753 * Once the winner of the round is determined, whether the winner is
754 * foreign or not and how much IO time the round consumed is recorded in
755 * inode->i_wb_frn_history. If the amount of recorded foreign IO time is
756 * over a certain threshold, the switch verdict is given.
757 */
wbc_detach_inode(struct writeback_control * wbc)758 void wbc_detach_inode(struct writeback_control *wbc)
759 {
760 struct bdi_writeback *wb = wbc->wb;
761 struct inode *inode = wbc->inode;
762 unsigned long avg_time, max_bytes, max_time;
763 u16 history;
764 int max_id;
765
766 if (!wb)
767 return;
768
769 history = inode->i_wb_frn_history;
770 avg_time = inode->i_wb_frn_avg_time;
771
772 /* pick the winner of this round */
773 if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
774 wbc->wb_bytes >= wbc->wb_tcand_bytes) {
775 max_id = wbc->wb_id;
776 max_bytes = wbc->wb_bytes;
777 } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
778 max_id = wbc->wb_lcand_id;
779 max_bytes = wbc->wb_lcand_bytes;
780 } else {
781 max_id = wbc->wb_tcand_id;
782 max_bytes = wbc->wb_tcand_bytes;
783 }
784
785 /*
786 * Calculate the amount of IO time the winner consumed and fold it
787 * into the running average kept per inode. If the consumed IO
788 * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
789 * deciding whether to switch or not. This is to prevent one-off
790 * small dirtiers from skewing the verdict.
791 */
792 max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
793 wb->avg_write_bandwidth);
794 if (avg_time)
795 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
796 (avg_time >> WB_FRN_TIME_AVG_SHIFT);
797 else
798 avg_time = max_time; /* immediate catch up on first run */
799
800 if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
801 int slots;
802
803 /*
804 * The switch verdict is reached if foreign wb's consume
805 * more than a certain proportion of IO time in a
806 * WB_FRN_TIME_PERIOD. This is loosely tracked by 16 slot
807 * history mask where each bit represents one sixteenth of
808 * the period. Determine the number of slots to shift into
809 * history from @max_time.
810 */
811 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
812 (unsigned long)WB_FRN_HIST_MAX_SLOTS);
813 history <<= slots;
814 if (wbc->wb_id != max_id)
815 history |= (1U << slots) - 1;
816
817 if (history)
818 trace_inode_foreign_history(inode, wbc, history);
819
820 /*
821 * Switch if the current wb isn't the consistent winner.
822 * If there are multiple closely competing dirtiers, the
823 * inode may switch across them repeatedly over time, which
824 * is okay. The main goal is avoiding keeping an inode on
825 * the wrong wb for an extended period of time.
826 */
827 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
828 inode_switch_wbs(inode, max_id);
829 }
830
831 /*
832 * Multiple instances of this function may race to update the
833 * following fields but we don't mind occassional inaccuracies.
834 */
835 inode->i_wb_frn_winner = max_id;
836 inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
837 inode->i_wb_frn_history = history;
838
839 wb_put(wbc->wb);
840 wbc->wb = NULL;
841 }
842 EXPORT_SYMBOL_GPL(wbc_detach_inode);
843
844 /**
845 * wbc_account_cgroup_owner - account writeback to update inode cgroup ownership
846 * @wbc: writeback_control of the writeback in progress
847 * @page: page being written out
848 * @bytes: number of bytes being written out
849 *
850 * @bytes from @page are about to written out during the writeback
851 * controlled by @wbc. Keep the book for foreign inode detection. See
852 * wbc_detach_inode().
853 */
wbc_account_cgroup_owner(struct writeback_control * wbc,struct page * page,size_t bytes)854 void wbc_account_cgroup_owner(struct writeback_control *wbc, struct page *page,
855 size_t bytes)
856 {
857 struct cgroup_subsys_state *css;
858 int id;
859
860 /*
861 * pageout() path doesn't attach @wbc to the inode being written
862 * out. This is intentional as we don't want the function to block
863 * behind a slow cgroup. Ultimately, we want pageout() to kick off
864 * regular writeback instead of writing things out itself.
865 */
866 if (!wbc->wb || wbc->no_cgroup_owner)
867 return;
868
869 css = mem_cgroup_css_from_page(page);
870 /* dead cgroups shouldn't contribute to inode ownership arbitration */
871 if (!(css->flags & CSS_ONLINE))
872 return;
873
874 id = css->id;
875
876 if (id == wbc->wb_id) {
877 wbc->wb_bytes += bytes;
878 return;
879 }
880
881 if (id == wbc->wb_lcand_id)
882 wbc->wb_lcand_bytes += bytes;
883
884 /* Boyer-Moore majority vote algorithm */
885 if (!wbc->wb_tcand_bytes)
886 wbc->wb_tcand_id = id;
887 if (id == wbc->wb_tcand_id)
888 wbc->wb_tcand_bytes += bytes;
889 else
890 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
891 }
892 EXPORT_SYMBOL_GPL(wbc_account_cgroup_owner);
893
894 /**
895 * inode_congested - test whether an inode is congested
896 * @inode: inode to test for congestion (may be NULL)
897 * @cong_bits: mask of WB_[a]sync_congested bits to test
898 *
899 * Tests whether @inode is congested. @cong_bits is the mask of congestion
900 * bits to test and the return value is the mask of set bits.
901 *
902 * If cgroup writeback is enabled for @inode, the congestion state is
903 * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
904 * associated with @inode is congested; otherwise, the root wb's congestion
905 * state is used.
906 *
907 * @inode is allowed to be NULL as this function is often called on
908 * mapping->host which is NULL for the swapper space.
909 */
inode_congested(struct inode * inode,int cong_bits)910 int inode_congested(struct inode *inode, int cong_bits)
911 {
912 /*
913 * Once set, ->i_wb never becomes NULL while the inode is alive.
914 * Start transaction iff ->i_wb is visible.
915 */
916 if (inode && inode_to_wb_is_valid(inode)) {
917 struct bdi_writeback *wb;
918 struct wb_lock_cookie lock_cookie = {};
919 bool congested;
920
921 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
922 congested = wb_congested(wb, cong_bits);
923 unlocked_inode_to_wb_end(inode, &lock_cookie);
924 return congested;
925 }
926
927 return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
928 }
929 EXPORT_SYMBOL_GPL(inode_congested);
930
931 /**
932 * wb_split_bdi_pages - split nr_pages to write according to bandwidth
933 * @wb: target bdi_writeback to split @nr_pages to
934 * @nr_pages: number of pages to write for the whole bdi
935 *
936 * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
937 * relation to the total write bandwidth of all wb's w/ dirty inodes on
938 * @wb->bdi.
939 */
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)940 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
941 {
942 unsigned long this_bw = wb->avg_write_bandwidth;
943 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
944
945 if (nr_pages == LONG_MAX)
946 return LONG_MAX;
947
948 /*
949 * This may be called on clean wb's and proportional distribution
950 * may not make sense, just use the original @nr_pages in those
951 * cases. In general, we wanna err on the side of writing more.
952 */
953 if (!tot_bw || this_bw >= tot_bw)
954 return nr_pages;
955 else
956 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
957 }
958
959 /**
960 * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
961 * @bdi: target backing_dev_info
962 * @base_work: wb_writeback_work to issue
963 * @skip_if_busy: skip wb's which already have writeback in progress
964 *
965 * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
966 * have dirty inodes. If @base_work->nr_page isn't %LONG_MAX, it's
967 * distributed to the busy wbs according to each wb's proportion in the
968 * total active write bandwidth of @bdi.
969 */
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)970 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
971 struct wb_writeback_work *base_work,
972 bool skip_if_busy)
973 {
974 struct bdi_writeback *last_wb = NULL;
975 struct bdi_writeback *wb = list_entry(&bdi->wb_list,
976 struct bdi_writeback, bdi_node);
977
978 might_sleep();
979 restart:
980 rcu_read_lock();
981 list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
982 DEFINE_WB_COMPLETION(fallback_work_done, bdi);
983 struct wb_writeback_work fallback_work;
984 struct wb_writeback_work *work;
985 long nr_pages;
986
987 if (last_wb) {
988 wb_put(last_wb);
989 last_wb = NULL;
990 }
991
992 /* SYNC_ALL writes out I_DIRTY_TIME too */
993 if (!wb_has_dirty_io(wb) &&
994 (base_work->sync_mode == WB_SYNC_NONE ||
995 list_empty(&wb->b_dirty_time)))
996 continue;
997 if (skip_if_busy && writeback_in_progress(wb))
998 continue;
999
1000 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
1001
1002 work = kmalloc(sizeof(*work), GFP_ATOMIC);
1003 if (work) {
1004 *work = *base_work;
1005 work->nr_pages = nr_pages;
1006 work->auto_free = 1;
1007 wb_queue_work(wb, work);
1008 continue;
1009 }
1010
1011 /* alloc failed, execute synchronously using on-stack fallback */
1012 work = &fallback_work;
1013 *work = *base_work;
1014 work->nr_pages = nr_pages;
1015 work->auto_free = 0;
1016 work->done = &fallback_work_done;
1017
1018 wb_queue_work(wb, work);
1019
1020 /*
1021 * Pin @wb so that it stays on @bdi->wb_list. This allows
1022 * continuing iteration from @wb after dropping and
1023 * regrabbing rcu read lock.
1024 */
1025 wb_get(wb);
1026 last_wb = wb;
1027
1028 rcu_read_unlock();
1029 wb_wait_for_completion(&fallback_work_done);
1030 goto restart;
1031 }
1032 rcu_read_unlock();
1033
1034 if (last_wb)
1035 wb_put(last_wb);
1036 }
1037
1038 /**
1039 * cgroup_writeback_by_id - initiate cgroup writeback from bdi and memcg IDs
1040 * @bdi_id: target bdi id
1041 * @memcg_id: target memcg css id
1042 * @reason: reason why some writeback work initiated
1043 * @done: target wb_completion
1044 *
1045 * Initiate flush of the bdi_writeback identified by @bdi_id and @memcg_id
1046 * with the specified parameters.
1047 */
cgroup_writeback_by_id(u64 bdi_id,int memcg_id,enum wb_reason reason,struct wb_completion * done)1048 int cgroup_writeback_by_id(u64 bdi_id, int memcg_id,
1049 enum wb_reason reason, struct wb_completion *done)
1050 {
1051 struct backing_dev_info *bdi;
1052 struct cgroup_subsys_state *memcg_css;
1053 struct bdi_writeback *wb;
1054 struct wb_writeback_work *work;
1055 unsigned long dirty;
1056 int ret;
1057
1058 /* lookup bdi and memcg */
1059 bdi = bdi_get_by_id(bdi_id);
1060 if (!bdi)
1061 return -ENOENT;
1062
1063 rcu_read_lock();
1064 memcg_css = css_from_id(memcg_id, &memory_cgrp_subsys);
1065 if (memcg_css && !css_tryget(memcg_css))
1066 memcg_css = NULL;
1067 rcu_read_unlock();
1068 if (!memcg_css) {
1069 ret = -ENOENT;
1070 goto out_bdi_put;
1071 }
1072
1073 /*
1074 * And find the associated wb. If the wb isn't there already
1075 * there's nothing to flush, don't create one.
1076 */
1077 wb = wb_get_lookup(bdi, memcg_css);
1078 if (!wb) {
1079 ret = -ENOENT;
1080 goto out_css_put;
1081 }
1082
1083 /*
1084 * The caller is attempting to write out most of
1085 * the currently dirty pages. Let's take the current dirty page
1086 * count and inflate it by 25% which should be large enough to
1087 * flush out most dirty pages while avoiding getting livelocked by
1088 * concurrent dirtiers.
1089 *
1090 * BTW the memcg stats are flushed periodically and this is best-effort
1091 * estimation, so some potential error is ok.
1092 */
1093 dirty = memcg_page_state(mem_cgroup_from_css(memcg_css), NR_FILE_DIRTY);
1094 dirty = dirty * 10 / 8;
1095
1096 /* issue the writeback work */
1097 work = kzalloc(sizeof(*work), GFP_NOWAIT | __GFP_NOWARN);
1098 if (work) {
1099 work->nr_pages = dirty;
1100 work->sync_mode = WB_SYNC_NONE;
1101 work->range_cyclic = 1;
1102 work->reason = reason;
1103 work->done = done;
1104 work->auto_free = 1;
1105 wb_queue_work(wb, work);
1106 ret = 0;
1107 } else {
1108 ret = -ENOMEM;
1109 }
1110
1111 wb_put(wb);
1112 out_css_put:
1113 css_put(memcg_css);
1114 out_bdi_put:
1115 bdi_put(bdi);
1116 return ret;
1117 }
1118
1119 /**
1120 * cgroup_writeback_umount - flush inode wb switches for umount
1121 *
1122 * This function is called when a super_block is about to be destroyed and
1123 * flushes in-flight inode wb switches. An inode wb switch goes through
1124 * RCU and then workqueue, so the two need to be flushed in order to ensure
1125 * that all previously scheduled switches are finished. As wb switches are
1126 * rare occurrences and synchronize_rcu() can take a while, perform
1127 * flushing iff wb switches are in flight.
1128 */
cgroup_writeback_umount(void)1129 void cgroup_writeback_umount(void)
1130 {
1131 /*
1132 * SB_ACTIVE should be reliably cleared before checking
1133 * isw_nr_in_flight, see generic_shutdown_super().
1134 */
1135 smp_mb();
1136
1137 if (atomic_read(&isw_nr_in_flight)) {
1138 /*
1139 * Use rcu_barrier() to wait for all pending callbacks to
1140 * ensure that all in-flight wb switches are in the workqueue.
1141 */
1142 rcu_barrier();
1143 flush_workqueue(isw_wq);
1144 }
1145 }
1146
cgroup_writeback_init(void)1147 static int __init cgroup_writeback_init(void)
1148 {
1149 isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
1150 if (!isw_wq)
1151 return -ENOMEM;
1152 return 0;
1153 }
1154 fs_initcall(cgroup_writeback_init);
1155
1156 #else /* CONFIG_CGROUP_WRITEBACK */
1157
bdi_down_write_wb_switch_rwsem(struct backing_dev_info * bdi)1158 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
bdi_up_write_wb_switch_rwsem(struct backing_dev_info * bdi)1159 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
1160
inode_cgwb_move_to_attached(struct inode * inode,struct bdi_writeback * wb)1161 static void inode_cgwb_move_to_attached(struct inode *inode,
1162 struct bdi_writeback *wb)
1163 {
1164 assert_spin_locked(&wb->list_lock);
1165 assert_spin_locked(&inode->i_lock);
1166
1167 inode->i_state &= ~I_SYNC_QUEUED;
1168 list_del_init(&inode->i_io_list);
1169 wb_io_lists_depopulated(wb);
1170 }
1171
1172 static struct bdi_writeback *
locked_inode_to_wb_and_lock_list(struct inode * inode)1173 locked_inode_to_wb_and_lock_list(struct inode *inode)
1174 __releases(&inode->i_lock)
1175 __acquires(&wb->list_lock)
1176 {
1177 struct bdi_writeback *wb = inode_to_wb(inode);
1178
1179 spin_unlock(&inode->i_lock);
1180 spin_lock(&wb->list_lock);
1181 return wb;
1182 }
1183
inode_to_wb_and_lock_list(struct inode * inode)1184 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
1185 __acquires(&wb->list_lock)
1186 {
1187 struct bdi_writeback *wb = inode_to_wb(inode);
1188
1189 spin_lock(&wb->list_lock);
1190 return wb;
1191 }
1192
wb_split_bdi_pages(struct bdi_writeback * wb,long nr_pages)1193 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
1194 {
1195 return nr_pages;
1196 }
1197
bdi_split_work_to_wbs(struct backing_dev_info * bdi,struct wb_writeback_work * base_work,bool skip_if_busy)1198 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
1199 struct wb_writeback_work *base_work,
1200 bool skip_if_busy)
1201 {
1202 might_sleep();
1203
1204 if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
1205 base_work->auto_free = 0;
1206 wb_queue_work(&bdi->wb, base_work);
1207 }
1208 }
1209
1210 #endif /* CONFIG_CGROUP_WRITEBACK */
1211
1212 /*
1213 * Add in the number of potentially dirty inodes, because each inode
1214 * write can dirty pagecache in the underlying blockdev.
1215 */
get_nr_dirty_pages(void)1216 static unsigned long get_nr_dirty_pages(void)
1217 {
1218 return global_node_page_state(NR_FILE_DIRTY) +
1219 get_nr_dirty_inodes();
1220 }
1221
wb_start_writeback(struct bdi_writeback * wb,enum wb_reason reason)1222 static void wb_start_writeback(struct bdi_writeback *wb, enum wb_reason reason)
1223 {
1224 if (!wb_has_dirty_io(wb))
1225 return;
1226
1227 /*
1228 * All callers of this function want to start writeback of all
1229 * dirty pages. Places like vmscan can call this at a very
1230 * high frequency, causing pointless allocations of tons of
1231 * work items and keeping the flusher threads busy retrieving
1232 * that work. Ensure that we only allow one of them pending and
1233 * inflight at the time.
1234 */
1235 if (test_bit(WB_start_all, &wb->state) ||
1236 test_and_set_bit(WB_start_all, &wb->state))
1237 return;
1238
1239 wb->start_all_reason = reason;
1240 wb_wakeup(wb);
1241 }
1242
1243 /**
1244 * wb_start_background_writeback - start background writeback
1245 * @wb: bdi_writback to write from
1246 *
1247 * Description:
1248 * This makes sure WB_SYNC_NONE background writeback happens. When
1249 * this function returns, it is only guaranteed that for given wb
1250 * some IO is happening if we are over background dirty threshold.
1251 * Caller need not hold sb s_umount semaphore.
1252 */
wb_start_background_writeback(struct bdi_writeback * wb)1253 void wb_start_background_writeback(struct bdi_writeback *wb)
1254 {
1255 /*
1256 * We just wake up the flusher thread. It will perform background
1257 * writeback as soon as there is no other work to do.
1258 */
1259 trace_writeback_wake_background(wb);
1260 wb_wakeup(wb);
1261 }
1262
1263 /*
1264 * Remove the inode from the writeback list it is on.
1265 */
inode_io_list_del(struct inode * inode)1266 void inode_io_list_del(struct inode *inode)
1267 {
1268 struct bdi_writeback *wb;
1269
1270 wb = inode_to_wb_and_lock_list(inode);
1271 spin_lock(&inode->i_lock);
1272
1273 inode->i_state &= ~I_SYNC_QUEUED;
1274 list_del_init(&inode->i_io_list);
1275 wb_io_lists_depopulated(wb);
1276
1277 spin_unlock(&inode->i_lock);
1278 spin_unlock(&wb->list_lock);
1279 }
1280 EXPORT_SYMBOL(inode_io_list_del);
1281
1282 /*
1283 * mark an inode as under writeback on the sb
1284 */
sb_mark_inode_writeback(struct inode * inode)1285 void sb_mark_inode_writeback(struct inode *inode)
1286 {
1287 struct super_block *sb = inode->i_sb;
1288 unsigned long flags;
1289
1290 if (list_empty(&inode->i_wb_list)) {
1291 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1292 if (list_empty(&inode->i_wb_list)) {
1293 list_add_tail(&inode->i_wb_list, &sb->s_inodes_wb);
1294 trace_sb_mark_inode_writeback(inode);
1295 }
1296 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1297 }
1298 }
1299
1300 /*
1301 * clear an inode as under writeback on the sb
1302 */
sb_clear_inode_writeback(struct inode * inode)1303 void sb_clear_inode_writeback(struct inode *inode)
1304 {
1305 struct super_block *sb = inode->i_sb;
1306 unsigned long flags;
1307
1308 if (!list_empty(&inode->i_wb_list)) {
1309 spin_lock_irqsave(&sb->s_inode_wblist_lock, flags);
1310 if (!list_empty(&inode->i_wb_list)) {
1311 list_del_init(&inode->i_wb_list);
1312 trace_sb_clear_inode_writeback(inode);
1313 }
1314 spin_unlock_irqrestore(&sb->s_inode_wblist_lock, flags);
1315 }
1316 }
1317
1318 /*
1319 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1320 * furthest end of its superblock's dirty-inode list.
1321 *
1322 * Before stamping the inode's ->dirtied_when, we check to see whether it is
1323 * already the most-recently-dirtied inode on the b_dirty list. If that is
1324 * the case then the inode must have been redirtied while it was being written
1325 * out and we don't reset its dirtied_when.
1326 */
redirty_tail_locked(struct inode * inode,struct bdi_writeback * wb)1327 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1328 {
1329 assert_spin_locked(&inode->i_lock);
1330
1331 if (!list_empty(&wb->b_dirty)) {
1332 struct inode *tail;
1333
1334 tail = wb_inode(wb->b_dirty.next);
1335 if (time_before(inode->dirtied_when, tail->dirtied_when))
1336 inode->dirtied_when = jiffies;
1337 }
1338 inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1339 inode->i_state &= ~I_SYNC_QUEUED;
1340 }
1341
redirty_tail(struct inode * inode,struct bdi_writeback * wb)1342 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1343 {
1344 spin_lock(&inode->i_lock);
1345 redirty_tail_locked(inode, wb);
1346 spin_unlock(&inode->i_lock);
1347 }
1348
1349 /*
1350 * requeue inode for re-scanning after bdi->b_io list is exhausted.
1351 */
requeue_io(struct inode * inode,struct bdi_writeback * wb)1352 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1353 {
1354 inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1355 }
1356
inode_sync_complete(struct inode * inode)1357 static void inode_sync_complete(struct inode *inode)
1358 {
1359 inode->i_state &= ~I_SYNC;
1360 /* If inode is clean an unused, put it into LRU now... */
1361 inode_add_lru(inode);
1362 /* Waiters must see I_SYNC cleared before being woken up */
1363 smp_mb();
1364 wake_up_bit(&inode->i_state, __I_SYNC);
1365 }
1366
inode_dirtied_after(struct inode * inode,unsigned long t)1367 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1368 {
1369 bool ret = time_after(inode->dirtied_when, t);
1370 #ifndef CONFIG_64BIT
1371 /*
1372 * For inodes being constantly redirtied, dirtied_when can get stuck.
1373 * It _appears_ to be in the future, but is actually in distant past.
1374 * This test is necessary to prevent such wrapped-around relative times
1375 * from permanently stopping the whole bdi writeback.
1376 */
1377 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1378 #endif
1379 return ret;
1380 }
1381
1382 #define EXPIRE_DIRTY_ATIME 0x0001
1383
1384 /*
1385 * Move expired (dirtied before dirtied_before) dirty inodes from
1386 * @delaying_queue to @dispatch_queue.
1387 */
move_expired_inodes(struct list_head * delaying_queue,struct list_head * dispatch_queue,unsigned long dirtied_before)1388 static int move_expired_inodes(struct list_head *delaying_queue,
1389 struct list_head *dispatch_queue,
1390 unsigned long dirtied_before)
1391 {
1392 LIST_HEAD(tmp);
1393 struct list_head *pos, *node;
1394 struct super_block *sb = NULL;
1395 struct inode *inode;
1396 int do_sb_sort = 0;
1397 int moved = 0;
1398
1399 while (!list_empty(delaying_queue)) {
1400 inode = wb_inode(delaying_queue->prev);
1401 if (inode_dirtied_after(inode, dirtied_before))
1402 break;
1403 list_move(&inode->i_io_list, &tmp);
1404 moved++;
1405 spin_lock(&inode->i_lock);
1406 inode->i_state |= I_SYNC_QUEUED;
1407 spin_unlock(&inode->i_lock);
1408 if (sb_is_blkdev_sb(inode->i_sb))
1409 continue;
1410 if (sb && sb != inode->i_sb)
1411 do_sb_sort = 1;
1412 sb = inode->i_sb;
1413 }
1414
1415 /* just one sb in list, splice to dispatch_queue and we're done */
1416 if (!do_sb_sort) {
1417 list_splice(&tmp, dispatch_queue);
1418 goto out;
1419 }
1420
1421 /* Move inodes from one superblock together */
1422 while (!list_empty(&tmp)) {
1423 sb = wb_inode(tmp.prev)->i_sb;
1424 list_for_each_prev_safe(pos, node, &tmp) {
1425 inode = wb_inode(pos);
1426 if (inode->i_sb == sb)
1427 list_move(&inode->i_io_list, dispatch_queue);
1428 }
1429 }
1430 out:
1431 return moved;
1432 }
1433
1434 /*
1435 * Queue all expired dirty inodes for io, eldest first.
1436 * Before
1437 * newly dirtied b_dirty b_io b_more_io
1438 * =============> gf edc BA
1439 * After
1440 * newly dirtied b_dirty b_io b_more_io
1441 * =============> g fBAedc
1442 * |
1443 * +--> dequeue for IO
1444 */
queue_io(struct bdi_writeback * wb,struct wb_writeback_work * work,unsigned long dirtied_before)1445 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1446 unsigned long dirtied_before)
1447 {
1448 int moved;
1449 unsigned long time_expire_jif = dirtied_before;
1450
1451 assert_spin_locked(&wb->list_lock);
1452 list_splice_init(&wb->b_more_io, &wb->b_io);
1453 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, dirtied_before);
1454 if (!work->for_sync)
1455 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1456 moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1457 time_expire_jif);
1458 if (moved)
1459 wb_io_lists_populated(wb);
1460 trace_writeback_queue_io(wb, work, dirtied_before, moved);
1461 }
1462
write_inode(struct inode * inode,struct writeback_control * wbc)1463 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1464 {
1465 int ret;
1466
1467 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1468 trace_writeback_write_inode_start(inode, wbc);
1469 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1470 trace_writeback_write_inode(inode, wbc);
1471 return ret;
1472 }
1473 return 0;
1474 }
1475
1476 /*
1477 * Wait for writeback on an inode to complete. Called with i_lock held.
1478 * Caller must make sure inode cannot go away when we drop i_lock.
1479 */
__inode_wait_for_writeback(struct inode * inode)1480 static void __inode_wait_for_writeback(struct inode *inode)
1481 __releases(inode->i_lock)
1482 __acquires(inode->i_lock)
1483 {
1484 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1485 wait_queue_head_t *wqh;
1486
1487 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1488 while (inode->i_state & I_SYNC) {
1489 spin_unlock(&inode->i_lock);
1490 __wait_on_bit(wqh, &wq, bit_wait,
1491 TASK_UNINTERRUPTIBLE);
1492 spin_lock(&inode->i_lock);
1493 }
1494 }
1495
1496 /*
1497 * Wait for writeback on an inode to complete. Caller must have inode pinned.
1498 */
inode_wait_for_writeback(struct inode * inode)1499 void inode_wait_for_writeback(struct inode *inode)
1500 {
1501 spin_lock(&inode->i_lock);
1502 __inode_wait_for_writeback(inode);
1503 spin_unlock(&inode->i_lock);
1504 }
1505
1506 /*
1507 * Sleep until I_SYNC is cleared. This function must be called with i_lock
1508 * held and drops it. It is aimed for callers not holding any inode reference
1509 * so once i_lock is dropped, inode can go away.
1510 */
inode_sleep_on_writeback(struct inode * inode)1511 static void inode_sleep_on_writeback(struct inode *inode)
1512 __releases(inode->i_lock)
1513 {
1514 DEFINE_WAIT(wait);
1515 wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1516 int sleep;
1517
1518 prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1519 sleep = inode->i_state & I_SYNC;
1520 spin_unlock(&inode->i_lock);
1521 if (sleep)
1522 schedule();
1523 finish_wait(wqh, &wait);
1524 }
1525
1526 /*
1527 * Find proper writeback list for the inode depending on its current state and
1528 * possibly also change of its state while we were doing writeback. Here we
1529 * handle things such as livelock prevention or fairness of writeback among
1530 * inodes. This function can be called only by flusher thread - noone else
1531 * processes all inodes in writeback lists and requeueing inodes behind flusher
1532 * thread's back can have unexpected consequences.
1533 */
requeue_inode(struct inode * inode,struct bdi_writeback * wb,struct writeback_control * wbc)1534 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1535 struct writeback_control *wbc)
1536 {
1537 if (inode->i_state & I_FREEING)
1538 return;
1539
1540 /*
1541 * Sync livelock prevention. Each inode is tagged and synced in one
1542 * shot. If still dirty, it will be redirty_tail()'ed below. Update
1543 * the dirty time to prevent enqueue and sync it again.
1544 */
1545 if ((inode->i_state & I_DIRTY) &&
1546 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1547 inode->dirtied_when = jiffies;
1548
1549 if (wbc->pages_skipped) {
1550 /*
1551 * writeback is not making progress due to locked
1552 * buffers. Skip this inode for now.
1553 */
1554 redirty_tail_locked(inode, wb);
1555 return;
1556 }
1557
1558 if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1559 /*
1560 * We didn't write back all the pages. nfs_writepages()
1561 * sometimes bales out without doing anything.
1562 */
1563 if (wbc->nr_to_write <= 0) {
1564 /* Slice used up. Queue for next turn. */
1565 requeue_io(inode, wb);
1566 } else {
1567 /*
1568 * Writeback blocked by something other than
1569 * congestion. Delay the inode for some time to
1570 * avoid spinning on the CPU (100% iowait)
1571 * retrying writeback of the dirty page/inode
1572 * that cannot be performed immediately.
1573 */
1574 redirty_tail_locked(inode, wb);
1575 }
1576 } else if (inode->i_state & I_DIRTY) {
1577 /*
1578 * Filesystems can dirty the inode during writeback operations,
1579 * such as delayed allocation during submission or metadata
1580 * updates after data IO completion.
1581 */
1582 redirty_tail_locked(inode, wb);
1583 } else if (inode->i_state & I_DIRTY_TIME) {
1584 inode->dirtied_when = jiffies;
1585 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1586 inode->i_state &= ~I_SYNC_QUEUED;
1587 } else {
1588 /* The inode is clean. Remove from writeback lists. */
1589 inode_cgwb_move_to_attached(inode, wb);
1590 }
1591 }
1592
1593 /*
1594 * Write out an inode and its dirty pages (or some of its dirty pages, depending
1595 * on @wbc->nr_to_write), and clear the relevant dirty flags from i_state.
1596 *
1597 * This doesn't remove the inode from the writeback list it is on, except
1598 * potentially to move it from b_dirty_time to b_dirty due to timestamp
1599 * expiration. The caller is otherwise responsible for writeback list handling.
1600 *
1601 * The caller is also responsible for setting the I_SYNC flag beforehand and
1602 * calling inode_sync_complete() to clear it afterwards.
1603 */
1604 static int
__writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1605 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1606 {
1607 struct address_space *mapping = inode->i_mapping;
1608 long nr_to_write = wbc->nr_to_write;
1609 unsigned dirty;
1610 int ret;
1611
1612 WARN_ON(!(inode->i_state & I_SYNC));
1613
1614 trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1615
1616 ret = do_writepages(mapping, wbc);
1617
1618 /*
1619 * Make sure to wait on the data before writing out the metadata.
1620 * This is important for filesystems that modify metadata on data
1621 * I/O completion. We don't do it for sync(2) writeback because it has a
1622 * separate, external IO completion path and ->sync_fs for guaranteeing
1623 * inode metadata is written back correctly.
1624 */
1625 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1626 int err = filemap_fdatawait(mapping);
1627 if (ret == 0)
1628 ret = err;
1629 }
1630
1631 /*
1632 * If the inode has dirty timestamps and we need to write them, call
1633 * mark_inode_dirty_sync() to notify the filesystem about it and to
1634 * change I_DIRTY_TIME into I_DIRTY_SYNC.
1635 */
1636 if ((inode->i_state & I_DIRTY_TIME) &&
1637 (wbc->sync_mode == WB_SYNC_ALL ||
1638 time_after(jiffies, inode->dirtied_time_when +
1639 dirtytime_expire_interval * HZ))) {
1640 trace_writeback_lazytime(inode);
1641 mark_inode_dirty_sync(inode);
1642 }
1643
1644 /*
1645 * Get and clear the dirty flags from i_state. This needs to be done
1646 * after calling writepages because some filesystems may redirty the
1647 * inode during writepages due to delalloc. It also needs to be done
1648 * after handling timestamp expiration, as that may dirty the inode too.
1649 */
1650 spin_lock(&inode->i_lock);
1651 dirty = inode->i_state & I_DIRTY;
1652 inode->i_state &= ~dirty;
1653
1654 /*
1655 * Paired with smp_mb() in __mark_inode_dirty(). This allows
1656 * __mark_inode_dirty() to test i_state without grabbing i_lock -
1657 * either they see the I_DIRTY bits cleared or we see the dirtied
1658 * inode.
1659 *
1660 * I_DIRTY_PAGES is always cleared together above even if @mapping
1661 * still has dirty pages. The flag is reinstated after smp_mb() if
1662 * necessary. This guarantees that either __mark_inode_dirty()
1663 * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1664 */
1665 smp_mb();
1666
1667 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1668 inode->i_state |= I_DIRTY_PAGES;
1669
1670 spin_unlock(&inode->i_lock);
1671
1672 /* Don't write the inode if only I_DIRTY_PAGES was set */
1673 if (dirty & ~I_DIRTY_PAGES) {
1674 int err = write_inode(inode, wbc);
1675 if (ret == 0)
1676 ret = err;
1677 }
1678 trace_writeback_single_inode(inode, wbc, nr_to_write);
1679 return ret;
1680 }
1681
1682 /*
1683 * Write out an inode's dirty data and metadata on-demand, i.e. separately from
1684 * the regular batched writeback done by the flusher threads in
1685 * writeback_sb_inodes(). @wbc controls various aspects of the write, such as
1686 * whether it is a data-integrity sync (%WB_SYNC_ALL) or not (%WB_SYNC_NONE).
1687 *
1688 * To prevent the inode from going away, either the caller must have a reference
1689 * to the inode, or the inode must have I_WILL_FREE or I_FREEING set.
1690 */
writeback_single_inode(struct inode * inode,struct writeback_control * wbc)1691 static int writeback_single_inode(struct inode *inode,
1692 struct writeback_control *wbc)
1693 {
1694 struct bdi_writeback *wb;
1695 int ret = 0;
1696
1697 spin_lock(&inode->i_lock);
1698 if (!atomic_read(&inode->i_count))
1699 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1700 else
1701 WARN_ON(inode->i_state & I_WILL_FREE);
1702
1703 if (inode->i_state & I_SYNC) {
1704 /*
1705 * Writeback is already running on the inode. For WB_SYNC_NONE,
1706 * that's enough and we can just return. For WB_SYNC_ALL, we
1707 * must wait for the existing writeback to complete, then do
1708 * writeback again if there's anything left.
1709 */
1710 if (wbc->sync_mode != WB_SYNC_ALL)
1711 goto out;
1712 __inode_wait_for_writeback(inode);
1713 }
1714 WARN_ON(inode->i_state & I_SYNC);
1715 /*
1716 * If the inode is already fully clean, then there's nothing to do.
1717 *
1718 * For data-integrity syncs we also need to check whether any pages are
1719 * still under writeback, e.g. due to prior WB_SYNC_NONE writeback. If
1720 * there are any such pages, we'll need to wait for them.
1721 */
1722 if (!(inode->i_state & I_DIRTY_ALL) &&
1723 (wbc->sync_mode != WB_SYNC_ALL ||
1724 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1725 goto out;
1726 inode->i_state |= I_SYNC;
1727 wbc_attach_and_unlock_inode(wbc, inode);
1728
1729 ret = __writeback_single_inode(inode, wbc);
1730
1731 wbc_detach_inode(wbc);
1732
1733 wb = inode_to_wb_and_lock_list(inode);
1734 spin_lock(&inode->i_lock);
1735 /*
1736 * If the inode is now fully clean, then it can be safely removed from
1737 * its writeback list (if any). Otherwise the flusher threads are
1738 * responsible for the writeback lists.
1739 */
1740 if (!(inode->i_state & I_DIRTY_ALL))
1741 inode_cgwb_move_to_attached(inode, wb);
1742 spin_unlock(&wb->list_lock);
1743 inode_sync_complete(inode);
1744 out:
1745 spin_unlock(&inode->i_lock);
1746 return ret;
1747 }
1748
writeback_chunk_size(struct bdi_writeback * wb,struct wb_writeback_work * work)1749 static long writeback_chunk_size(struct bdi_writeback *wb,
1750 struct wb_writeback_work *work)
1751 {
1752 long pages;
1753
1754 /*
1755 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1756 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1757 * here avoids calling into writeback_inodes_wb() more than once.
1758 *
1759 * The intended call sequence for WB_SYNC_ALL writeback is:
1760 *
1761 * wb_writeback()
1762 * writeback_sb_inodes() <== called only once
1763 * write_cache_pages() <== called once for each inode
1764 * (quickly) tag currently dirty pages
1765 * (maybe slowly) sync all tagged pages
1766 */
1767 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1768 pages = LONG_MAX;
1769 else {
1770 pages = min(wb->avg_write_bandwidth / 2,
1771 global_wb_domain.dirty_limit / DIRTY_SCOPE);
1772 pages = min(pages, work->nr_pages);
1773 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1774 MIN_WRITEBACK_PAGES);
1775 }
1776
1777 return pages;
1778 }
1779
1780 /*
1781 * Write a portion of b_io inodes which belong to @sb.
1782 *
1783 * Return the number of pages and/or inodes written.
1784 *
1785 * NOTE! This is called with wb->list_lock held, and will
1786 * unlock and relock that for each inode it ends up doing
1787 * IO for.
1788 */
writeback_sb_inodes(struct super_block * sb,struct bdi_writeback * wb,struct wb_writeback_work * work)1789 static long writeback_sb_inodes(struct super_block *sb,
1790 struct bdi_writeback *wb,
1791 struct wb_writeback_work *work)
1792 {
1793 struct writeback_control wbc = {
1794 .sync_mode = work->sync_mode,
1795 .tagged_writepages = work->tagged_writepages,
1796 .for_kupdate = work->for_kupdate,
1797 .for_background = work->for_background,
1798 .for_sync = work->for_sync,
1799 .range_cyclic = work->range_cyclic,
1800 .range_start = 0,
1801 .range_end = LLONG_MAX,
1802 };
1803 unsigned long start_time = jiffies;
1804 long write_chunk;
1805 long wrote = 0; /* count both pages and inodes */
1806
1807 while (!list_empty(&wb->b_io)) {
1808 struct inode *inode = wb_inode(wb->b_io.prev);
1809 struct bdi_writeback *tmp_wb;
1810
1811 if (inode->i_sb != sb) {
1812 if (work->sb) {
1813 /*
1814 * We only want to write back data for this
1815 * superblock, move all inodes not belonging
1816 * to it back onto the dirty list.
1817 */
1818 redirty_tail(inode, wb);
1819 continue;
1820 }
1821
1822 /*
1823 * The inode belongs to a different superblock.
1824 * Bounce back to the caller to unpin this and
1825 * pin the next superblock.
1826 */
1827 break;
1828 }
1829
1830 /*
1831 * Don't bother with new inodes or inodes being freed, first
1832 * kind does not need periodic writeout yet, and for the latter
1833 * kind writeout is handled by the freer.
1834 */
1835 spin_lock(&inode->i_lock);
1836 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1837 redirty_tail_locked(inode, wb);
1838 spin_unlock(&inode->i_lock);
1839 continue;
1840 }
1841 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1842 /*
1843 * If this inode is locked for writeback and we are not
1844 * doing writeback-for-data-integrity, move it to
1845 * b_more_io so that writeback can proceed with the
1846 * other inodes on s_io.
1847 *
1848 * We'll have another go at writing back this inode
1849 * when we completed a full scan of b_io.
1850 */
1851 spin_unlock(&inode->i_lock);
1852 requeue_io(inode, wb);
1853 trace_writeback_sb_inodes_requeue(inode);
1854 continue;
1855 }
1856 spin_unlock(&wb->list_lock);
1857
1858 /*
1859 * We already requeued the inode if it had I_SYNC set and we
1860 * are doing WB_SYNC_NONE writeback. So this catches only the
1861 * WB_SYNC_ALL case.
1862 */
1863 if (inode->i_state & I_SYNC) {
1864 /* Wait for I_SYNC. This function drops i_lock... */
1865 inode_sleep_on_writeback(inode);
1866 /* Inode may be gone, start again */
1867 spin_lock(&wb->list_lock);
1868 continue;
1869 }
1870 inode->i_state |= I_SYNC;
1871 wbc_attach_and_unlock_inode(&wbc, inode);
1872
1873 write_chunk = writeback_chunk_size(wb, work);
1874 wbc.nr_to_write = write_chunk;
1875 wbc.pages_skipped = 0;
1876
1877 /*
1878 * We use I_SYNC to pin the inode in memory. While it is set
1879 * evict_inode() will wait so the inode cannot be freed.
1880 */
1881 __writeback_single_inode(inode, &wbc);
1882
1883 wbc_detach_inode(&wbc);
1884 work->nr_pages -= write_chunk - wbc.nr_to_write;
1885 wrote += write_chunk - wbc.nr_to_write;
1886
1887 if (need_resched()) {
1888 /*
1889 * We're trying to balance between building up a nice
1890 * long list of IOs to improve our merge rate, and
1891 * getting those IOs out quickly for anyone throttling
1892 * in balance_dirty_pages(). cond_resched() doesn't
1893 * unplug, so get our IOs out the door before we
1894 * give up the CPU.
1895 */
1896 blk_flush_plug(current);
1897 cond_resched();
1898 }
1899
1900 /*
1901 * Requeue @inode if still dirty. Be careful as @inode may
1902 * have been switched to another wb in the meantime.
1903 */
1904 tmp_wb = inode_to_wb_and_lock_list(inode);
1905 spin_lock(&inode->i_lock);
1906 if (!(inode->i_state & I_DIRTY_ALL))
1907 wrote++;
1908 requeue_inode(inode, tmp_wb, &wbc);
1909 inode_sync_complete(inode);
1910 spin_unlock(&inode->i_lock);
1911
1912 if (unlikely(tmp_wb != wb)) {
1913 spin_unlock(&tmp_wb->list_lock);
1914 spin_lock(&wb->list_lock);
1915 }
1916
1917 /*
1918 * bail out to wb_writeback() often enough to check
1919 * background threshold and other termination conditions.
1920 */
1921 if (wrote) {
1922 if (time_is_before_jiffies(start_time + HZ / 10UL))
1923 break;
1924 if (work->nr_pages <= 0)
1925 break;
1926 }
1927 }
1928 return wrote;
1929 }
1930
__writeback_inodes_wb(struct bdi_writeback * wb,struct wb_writeback_work * work)1931 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1932 struct wb_writeback_work *work)
1933 {
1934 unsigned long start_time = jiffies;
1935 long wrote = 0;
1936
1937 while (!list_empty(&wb->b_io)) {
1938 struct inode *inode = wb_inode(wb->b_io.prev);
1939 struct super_block *sb = inode->i_sb;
1940
1941 if (!trylock_super(sb)) {
1942 /*
1943 * trylock_super() may fail consistently due to
1944 * s_umount being grabbed by someone else. Don't use
1945 * requeue_io() to avoid busy retrying the inode/sb.
1946 */
1947 redirty_tail(inode, wb);
1948 continue;
1949 }
1950 wrote += writeback_sb_inodes(sb, wb, work);
1951 up_read(&sb->s_umount);
1952
1953 /* refer to the same tests at the end of writeback_sb_inodes */
1954 if (wrote) {
1955 if (time_is_before_jiffies(start_time + HZ / 10UL))
1956 break;
1957 if (work->nr_pages <= 0)
1958 break;
1959 }
1960 }
1961 /* Leave any unwritten inodes on b_io */
1962 return wrote;
1963 }
1964
writeback_inodes_wb(struct bdi_writeback * wb,long nr_pages,enum wb_reason reason)1965 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1966 enum wb_reason reason)
1967 {
1968 struct wb_writeback_work work = {
1969 .nr_pages = nr_pages,
1970 .sync_mode = WB_SYNC_NONE,
1971 .range_cyclic = 1,
1972 .reason = reason,
1973 };
1974 struct blk_plug plug;
1975
1976 blk_start_plug(&plug);
1977 spin_lock(&wb->list_lock);
1978 if (list_empty(&wb->b_io))
1979 queue_io(wb, &work, jiffies);
1980 __writeback_inodes_wb(wb, &work);
1981 spin_unlock(&wb->list_lock);
1982 blk_finish_plug(&plug);
1983
1984 return nr_pages - work.nr_pages;
1985 }
1986
1987 /*
1988 * Explicit flushing or periodic writeback of "old" data.
1989 *
1990 * Define "old": the first time one of an inode's pages is dirtied, we mark the
1991 * dirtying-time in the inode's address_space. So this periodic writeback code
1992 * just walks the superblock inode list, writing back any inodes which are
1993 * older than a specific point in time.
1994 *
1995 * Try to run once per dirty_writeback_interval. But if a writeback event
1996 * takes longer than a dirty_writeback_interval interval, then leave a
1997 * one-second gap.
1998 *
1999 * dirtied_before takes precedence over nr_to_write. So we'll only write back
2000 * all dirty pages if they are all attached to "old" mappings.
2001 */
wb_writeback(struct bdi_writeback * wb,struct wb_writeback_work * work)2002 static long wb_writeback(struct bdi_writeback *wb,
2003 struct wb_writeback_work *work)
2004 {
2005 long nr_pages = work->nr_pages;
2006 unsigned long dirtied_before = jiffies;
2007 struct inode *inode;
2008 long progress;
2009 struct blk_plug plug;
2010
2011 blk_start_plug(&plug);
2012 spin_lock(&wb->list_lock);
2013 for (;;) {
2014 /*
2015 * Stop writeback when nr_pages has been consumed
2016 */
2017 if (work->nr_pages <= 0)
2018 break;
2019
2020 /*
2021 * Background writeout and kupdate-style writeback may
2022 * run forever. Stop them if there is other work to do
2023 * so that e.g. sync can proceed. They'll be restarted
2024 * after the other works are all done.
2025 */
2026 if ((work->for_background || work->for_kupdate) &&
2027 !list_empty(&wb->work_list))
2028 break;
2029
2030 /*
2031 * For background writeout, stop when we are below the
2032 * background dirty threshold
2033 */
2034 if (work->for_background && !wb_over_bg_thresh(wb))
2035 break;
2036
2037 /*
2038 * Kupdate and background works are special and we want to
2039 * include all inodes that need writing. Livelock avoidance is
2040 * handled by these works yielding to any other work so we are
2041 * safe.
2042 */
2043 if (work->for_kupdate) {
2044 dirtied_before = jiffies -
2045 msecs_to_jiffies(dirty_expire_interval * 10);
2046 } else if (work->for_background)
2047 dirtied_before = jiffies;
2048
2049 trace_writeback_start(wb, work);
2050 if (list_empty(&wb->b_io))
2051 queue_io(wb, work, dirtied_before);
2052 if (work->sb)
2053 progress = writeback_sb_inodes(work->sb, wb, work);
2054 else
2055 progress = __writeback_inodes_wb(wb, work);
2056 trace_writeback_written(wb, work);
2057
2058 /*
2059 * Did we write something? Try for more
2060 *
2061 * Dirty inodes are moved to b_io for writeback in batches.
2062 * The completion of the current batch does not necessarily
2063 * mean the overall work is done. So we keep looping as long
2064 * as made some progress on cleaning pages or inodes.
2065 */
2066 if (progress)
2067 continue;
2068 /*
2069 * No more inodes for IO, bail
2070 */
2071 if (list_empty(&wb->b_more_io))
2072 break;
2073 /*
2074 * Nothing written. Wait for some inode to
2075 * become available for writeback. Otherwise
2076 * we'll just busyloop.
2077 */
2078 trace_writeback_wait(wb, work);
2079 inode = wb_inode(wb->b_more_io.prev);
2080 spin_lock(&inode->i_lock);
2081 spin_unlock(&wb->list_lock);
2082 /* This function drops i_lock... */
2083 inode_sleep_on_writeback(inode);
2084 spin_lock(&wb->list_lock);
2085 }
2086 spin_unlock(&wb->list_lock);
2087 blk_finish_plug(&plug);
2088
2089 return nr_pages - work->nr_pages;
2090 }
2091
2092 /*
2093 * Return the next wb_writeback_work struct that hasn't been processed yet.
2094 */
get_next_work_item(struct bdi_writeback * wb)2095 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
2096 {
2097 struct wb_writeback_work *work = NULL;
2098
2099 spin_lock_bh(&wb->work_lock);
2100 if (!list_empty(&wb->work_list)) {
2101 work = list_entry(wb->work_list.next,
2102 struct wb_writeback_work, list);
2103 list_del_init(&work->list);
2104 }
2105 spin_unlock_bh(&wb->work_lock);
2106 return work;
2107 }
2108
wb_check_background_flush(struct bdi_writeback * wb)2109 static long wb_check_background_flush(struct bdi_writeback *wb)
2110 {
2111 if (wb_over_bg_thresh(wb)) {
2112
2113 struct wb_writeback_work work = {
2114 .nr_pages = LONG_MAX,
2115 .sync_mode = WB_SYNC_NONE,
2116 .for_background = 1,
2117 .range_cyclic = 1,
2118 .reason = WB_REASON_BACKGROUND,
2119 };
2120
2121 return wb_writeback(wb, &work);
2122 }
2123
2124 return 0;
2125 }
2126
wb_check_old_data_flush(struct bdi_writeback * wb)2127 static long wb_check_old_data_flush(struct bdi_writeback *wb)
2128 {
2129 unsigned long expired;
2130 long nr_pages;
2131
2132 /*
2133 * When set to zero, disable periodic writeback
2134 */
2135 if (!dirty_writeback_interval)
2136 return 0;
2137
2138 expired = wb->last_old_flush +
2139 msecs_to_jiffies(dirty_writeback_interval * 10);
2140 if (time_before(jiffies, expired))
2141 return 0;
2142
2143 wb->last_old_flush = jiffies;
2144 nr_pages = get_nr_dirty_pages();
2145
2146 if (nr_pages) {
2147 struct wb_writeback_work work = {
2148 .nr_pages = nr_pages,
2149 .sync_mode = WB_SYNC_NONE,
2150 .for_kupdate = 1,
2151 .range_cyclic = 1,
2152 .reason = WB_REASON_PERIODIC,
2153 };
2154
2155 return wb_writeback(wb, &work);
2156 }
2157
2158 return 0;
2159 }
2160
wb_check_start_all(struct bdi_writeback * wb)2161 static long wb_check_start_all(struct bdi_writeback *wb)
2162 {
2163 long nr_pages;
2164
2165 if (!test_bit(WB_start_all, &wb->state))
2166 return 0;
2167
2168 nr_pages = get_nr_dirty_pages();
2169 if (nr_pages) {
2170 struct wb_writeback_work work = {
2171 .nr_pages = wb_split_bdi_pages(wb, nr_pages),
2172 .sync_mode = WB_SYNC_NONE,
2173 .range_cyclic = 1,
2174 .reason = wb->start_all_reason,
2175 };
2176
2177 nr_pages = wb_writeback(wb, &work);
2178 }
2179
2180 clear_bit(WB_start_all, &wb->state);
2181 return nr_pages;
2182 }
2183
2184
2185 /*
2186 * Retrieve work items and do the writeback they describe
2187 */
wb_do_writeback(struct bdi_writeback * wb)2188 static long wb_do_writeback(struct bdi_writeback *wb)
2189 {
2190 struct wb_writeback_work *work;
2191 long wrote = 0;
2192
2193 set_bit(WB_writeback_running, &wb->state);
2194 while ((work = get_next_work_item(wb)) != NULL) {
2195 trace_writeback_exec(wb, work);
2196 wrote += wb_writeback(wb, work);
2197 finish_writeback_work(wb, work);
2198 }
2199
2200 /*
2201 * Check for a flush-everything request
2202 */
2203 wrote += wb_check_start_all(wb);
2204
2205 /*
2206 * Check for periodic writeback, kupdated() style
2207 */
2208 wrote += wb_check_old_data_flush(wb);
2209 wrote += wb_check_background_flush(wb);
2210 clear_bit(WB_writeback_running, &wb->state);
2211
2212 return wrote;
2213 }
2214
2215 /*
2216 * Handle writeback of dirty data for the device backed by this bdi. Also
2217 * reschedules periodically and does kupdated style flushing.
2218 */
wb_workfn(struct work_struct * work)2219 void wb_workfn(struct work_struct *work)
2220 {
2221 struct bdi_writeback *wb = container_of(to_delayed_work(work),
2222 struct bdi_writeback, dwork);
2223 long pages_written;
2224
2225 set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
2226 current->flags |= PF_SWAPWRITE;
2227
2228 if (likely(!current_is_workqueue_rescuer() ||
2229 !test_bit(WB_registered, &wb->state))) {
2230 /*
2231 * The normal path. Keep writing back @wb until its
2232 * work_list is empty. Note that this path is also taken
2233 * if @wb is shutting down even when we're running off the
2234 * rescuer as work_list needs to be drained.
2235 */
2236 do {
2237 pages_written = wb_do_writeback(wb);
2238 trace_writeback_pages_written(pages_written);
2239 } while (!list_empty(&wb->work_list));
2240 } else {
2241 /*
2242 * bdi_wq can't get enough workers and we're running off
2243 * the emergency worker. Don't hog it. Hopefully, 1024 is
2244 * enough for efficient IO.
2245 */
2246 pages_written = writeback_inodes_wb(wb, 1024,
2247 WB_REASON_FORKER_THREAD);
2248 trace_writeback_pages_written(pages_written);
2249 }
2250
2251 if (!list_empty(&wb->work_list))
2252 wb_wakeup(wb);
2253 else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
2254 wb_wakeup_delayed(wb);
2255
2256 current->flags &= ~PF_SWAPWRITE;
2257 }
2258
2259 /*
2260 * Start writeback of `nr_pages' pages on this bdi. If `nr_pages' is zero,
2261 * write back the whole world.
2262 */
__wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2263 static void __wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2264 enum wb_reason reason)
2265 {
2266 struct bdi_writeback *wb;
2267
2268 if (!bdi_has_dirty_io(bdi))
2269 return;
2270
2271 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2272 wb_start_writeback(wb, reason);
2273 }
2274
wakeup_flusher_threads_bdi(struct backing_dev_info * bdi,enum wb_reason reason)2275 void wakeup_flusher_threads_bdi(struct backing_dev_info *bdi,
2276 enum wb_reason reason)
2277 {
2278 rcu_read_lock();
2279 __wakeup_flusher_threads_bdi(bdi, reason);
2280 rcu_read_unlock();
2281 }
2282
2283 /*
2284 * Wakeup the flusher threads to start writeback of all currently dirty pages
2285 */
wakeup_flusher_threads(enum wb_reason reason)2286 void wakeup_flusher_threads(enum wb_reason reason)
2287 {
2288 struct backing_dev_info *bdi;
2289
2290 /*
2291 * If we are expecting writeback progress we must submit plugged IO.
2292 */
2293 if (blk_needs_flush_plug(current))
2294 blk_schedule_flush_plug(current);
2295
2296 rcu_read_lock();
2297 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2298 __wakeup_flusher_threads_bdi(bdi, reason);
2299 rcu_read_unlock();
2300 }
2301
2302 /*
2303 * Wake up bdi's periodically to make sure dirtytime inodes gets
2304 * written back periodically. We deliberately do *not* check the
2305 * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2306 * kernel to be constantly waking up once there are any dirtytime
2307 * inodes on the system. So instead we define a separate delayed work
2308 * function which gets called much more rarely. (By default, only
2309 * once every 12 hours.)
2310 *
2311 * If there is any other write activity going on in the file system,
2312 * this function won't be necessary. But if the only thing that has
2313 * happened on the file system is a dirtytime inode caused by an atime
2314 * update, we need this infrastructure below to make sure that inode
2315 * eventually gets pushed out to disk.
2316 */
2317 static void wakeup_dirtytime_writeback(struct work_struct *w);
2318 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2319
wakeup_dirtytime_writeback(struct work_struct * w)2320 static void wakeup_dirtytime_writeback(struct work_struct *w)
2321 {
2322 struct backing_dev_info *bdi;
2323
2324 rcu_read_lock();
2325 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2326 struct bdi_writeback *wb;
2327
2328 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2329 if (!list_empty(&wb->b_dirty_time))
2330 wb_wakeup(wb);
2331 }
2332 rcu_read_unlock();
2333 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2334 }
2335
start_dirtytime_writeback(void)2336 static int __init start_dirtytime_writeback(void)
2337 {
2338 schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2339 return 0;
2340 }
2341 __initcall(start_dirtytime_writeback);
2342
dirtytime_interval_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)2343 int dirtytime_interval_handler(struct ctl_table *table, int write,
2344 void *buffer, size_t *lenp, loff_t *ppos)
2345 {
2346 int ret;
2347
2348 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2349 if (ret == 0 && write)
2350 mod_delayed_work(system_wq, &dirtytime_work, 0);
2351 return ret;
2352 }
2353
2354 /**
2355 * __mark_inode_dirty - internal function to mark an inode dirty
2356 *
2357 * @inode: inode to mark
2358 * @flags: what kind of dirty, e.g. I_DIRTY_SYNC. This can be a combination of
2359 * multiple I_DIRTY_* flags, except that I_DIRTY_TIME can't be combined
2360 * with I_DIRTY_PAGES.
2361 *
2362 * Mark an inode as dirty. We notify the filesystem, then update the inode's
2363 * dirty flags. Then, if needed we add the inode to the appropriate dirty list.
2364 *
2365 * Most callers should use mark_inode_dirty() or mark_inode_dirty_sync()
2366 * instead of calling this directly.
2367 *
2368 * CAREFUL! We only add the inode to the dirty list if it is hashed or if it
2369 * refers to a blockdev. Unhashed inodes will never be added to the dirty list
2370 * even if they are later hashed, as they will have been marked dirty already.
2371 *
2372 * In short, ensure you hash any inodes _before_ you start marking them dirty.
2373 *
2374 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2375 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
2376 * the kernel-internal blockdev inode represents the dirtying time of the
2377 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
2378 * page->mapping->host, so the page-dirtying time is recorded in the internal
2379 * blockdev inode.
2380 */
__mark_inode_dirty(struct inode * inode,int flags)2381 void __mark_inode_dirty(struct inode *inode, int flags)
2382 {
2383 struct super_block *sb = inode->i_sb;
2384 int dirtytime = 0;
2385
2386 trace_writeback_mark_inode_dirty(inode, flags);
2387
2388 if (flags & I_DIRTY_INODE) {
2389 /*
2390 * Notify the filesystem about the inode being dirtied, so that
2391 * (if needed) it can update on-disk fields and journal the
2392 * inode. This is only needed when the inode itself is being
2393 * dirtied now. I.e. it's only needed for I_DIRTY_INODE, not
2394 * for just I_DIRTY_PAGES or I_DIRTY_TIME.
2395 */
2396 trace_writeback_dirty_inode_start(inode, flags);
2397 if (sb->s_op->dirty_inode)
2398 sb->s_op->dirty_inode(inode, flags & I_DIRTY_INODE);
2399 trace_writeback_dirty_inode(inode, flags);
2400
2401 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2402 flags &= ~I_DIRTY_TIME;
2403 } else {
2404 /*
2405 * Else it's either I_DIRTY_PAGES, I_DIRTY_TIME, or nothing.
2406 * (We don't support setting both I_DIRTY_PAGES and I_DIRTY_TIME
2407 * in one call to __mark_inode_dirty().)
2408 */
2409 dirtytime = flags & I_DIRTY_TIME;
2410 WARN_ON_ONCE(dirtytime && flags != I_DIRTY_TIME);
2411 }
2412
2413 /*
2414 * Paired with smp_mb() in __writeback_single_inode() for the
2415 * following lockless i_state test. See there for details.
2416 */
2417 smp_mb();
2418
2419 if (((inode->i_state & flags) == flags) ||
2420 (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2421 return;
2422
2423 spin_lock(&inode->i_lock);
2424 if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2425 goto out_unlock_inode;
2426 if ((inode->i_state & flags) != flags) {
2427 const int was_dirty = inode->i_state & I_DIRTY;
2428
2429 inode_attach_wb(inode, NULL);
2430
2431 /* I_DIRTY_INODE supersedes I_DIRTY_TIME. */
2432 if (flags & I_DIRTY_INODE)
2433 inode->i_state &= ~I_DIRTY_TIME;
2434 inode->i_state |= flags;
2435
2436 /*
2437 * If the inode is queued for writeback by flush worker, just
2438 * update its dirty state. Once the flush worker is done with
2439 * the inode it will place it on the appropriate superblock
2440 * list, based upon its state.
2441 */
2442 if (inode->i_state & I_SYNC_QUEUED)
2443 goto out_unlock_inode;
2444
2445 /*
2446 * Only add valid (hashed) inodes to the superblock's
2447 * dirty list. Add blockdev inodes as well.
2448 */
2449 if (!S_ISBLK(inode->i_mode)) {
2450 if (inode_unhashed(inode))
2451 goto out_unlock_inode;
2452 }
2453 if (inode->i_state & I_FREEING)
2454 goto out_unlock_inode;
2455
2456 /*
2457 * If the inode was already on b_dirty/b_io/b_more_io, don't
2458 * reposition it (that would break b_dirty time-ordering).
2459 */
2460 if (!was_dirty) {
2461 struct bdi_writeback *wb;
2462 struct list_head *dirty_list;
2463 bool wakeup_bdi = false;
2464
2465 wb = locked_inode_to_wb_and_lock_list(inode);
2466
2467 inode->dirtied_when = jiffies;
2468 if (dirtytime)
2469 inode->dirtied_time_when = jiffies;
2470
2471 if (inode->i_state & I_DIRTY)
2472 dirty_list = &wb->b_dirty;
2473 else
2474 dirty_list = &wb->b_dirty_time;
2475
2476 wakeup_bdi = inode_io_list_move_locked(inode, wb,
2477 dirty_list);
2478
2479 spin_unlock(&wb->list_lock);
2480 trace_writeback_dirty_inode_enqueue(inode);
2481
2482 /*
2483 * If this is the first dirty inode for this bdi,
2484 * we have to wake-up the corresponding bdi thread
2485 * to make sure background write-back happens
2486 * later.
2487 */
2488 if (wakeup_bdi &&
2489 (wb->bdi->capabilities & BDI_CAP_WRITEBACK))
2490 wb_wakeup_delayed(wb);
2491 return;
2492 }
2493 }
2494 out_unlock_inode:
2495 spin_unlock(&inode->i_lock);
2496 }
2497 EXPORT_SYMBOL(__mark_inode_dirty);
2498
2499 /*
2500 * The @s_sync_lock is used to serialise concurrent sync operations
2501 * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2502 * Concurrent callers will block on the s_sync_lock rather than doing contending
2503 * walks. The queueing maintains sync(2) required behaviour as all the IO that
2504 * has been issued up to the time this function is enter is guaranteed to be
2505 * completed by the time we have gained the lock and waited for all IO that is
2506 * in progress regardless of the order callers are granted the lock.
2507 */
wait_sb_inodes(struct super_block * sb)2508 static void wait_sb_inodes(struct super_block *sb)
2509 {
2510 LIST_HEAD(sync_list);
2511
2512 /*
2513 * We need to be protected against the filesystem going from
2514 * r/o to r/w or vice versa.
2515 */
2516 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2517
2518 mutex_lock(&sb->s_sync_lock);
2519
2520 /*
2521 * Splice the writeback list onto a temporary list to avoid waiting on
2522 * inodes that have started writeback after this point.
2523 *
2524 * Use rcu_read_lock() to keep the inodes around until we have a
2525 * reference. s_inode_wblist_lock protects sb->s_inodes_wb as well as
2526 * the local list because inodes can be dropped from either by writeback
2527 * completion.
2528 */
2529 rcu_read_lock();
2530 spin_lock_irq(&sb->s_inode_wblist_lock);
2531 list_splice_init(&sb->s_inodes_wb, &sync_list);
2532
2533 /*
2534 * Data integrity sync. Must wait for all pages under writeback, because
2535 * there may have been pages dirtied before our sync call, but which had
2536 * writeout started before we write it out. In which case, the inode
2537 * may not be on the dirty list, but we still have to wait for that
2538 * writeout.
2539 */
2540 while (!list_empty(&sync_list)) {
2541 struct inode *inode = list_first_entry(&sync_list, struct inode,
2542 i_wb_list);
2543 struct address_space *mapping = inode->i_mapping;
2544
2545 /*
2546 * Move each inode back to the wb list before we drop the lock
2547 * to preserve consistency between i_wb_list and the mapping
2548 * writeback tag. Writeback completion is responsible to remove
2549 * the inode from either list once the writeback tag is cleared.
2550 */
2551 list_move_tail(&inode->i_wb_list, &sb->s_inodes_wb);
2552
2553 /*
2554 * The mapping can appear untagged while still on-list since we
2555 * do not have the mapping lock. Skip it here, wb completion
2556 * will remove it.
2557 */
2558 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
2559 continue;
2560
2561 spin_unlock_irq(&sb->s_inode_wblist_lock);
2562
2563 spin_lock(&inode->i_lock);
2564 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) {
2565 spin_unlock(&inode->i_lock);
2566
2567 spin_lock_irq(&sb->s_inode_wblist_lock);
2568 continue;
2569 }
2570 __iget(inode);
2571 spin_unlock(&inode->i_lock);
2572 rcu_read_unlock();
2573
2574 /*
2575 * We keep the error status of individual mapping so that
2576 * applications can catch the writeback error using fsync(2).
2577 * See filemap_fdatawait_keep_errors() for details.
2578 */
2579 filemap_fdatawait_keep_errors(mapping);
2580
2581 cond_resched();
2582
2583 iput(inode);
2584
2585 rcu_read_lock();
2586 spin_lock_irq(&sb->s_inode_wblist_lock);
2587 }
2588 spin_unlock_irq(&sb->s_inode_wblist_lock);
2589 rcu_read_unlock();
2590 mutex_unlock(&sb->s_sync_lock);
2591 }
2592
__writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason,bool skip_if_busy)2593 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2594 enum wb_reason reason, bool skip_if_busy)
2595 {
2596 struct backing_dev_info *bdi = sb->s_bdi;
2597 DEFINE_WB_COMPLETION(done, bdi);
2598 struct wb_writeback_work work = {
2599 .sb = sb,
2600 .sync_mode = WB_SYNC_NONE,
2601 .tagged_writepages = 1,
2602 .done = &done,
2603 .nr_pages = nr,
2604 .reason = reason,
2605 };
2606
2607 if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2608 return;
2609 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2610
2611 bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2612 wb_wait_for_completion(&done);
2613 }
2614
2615 /**
2616 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
2617 * @sb: the superblock
2618 * @nr: the number of pages to write
2619 * @reason: reason why some writeback work initiated
2620 *
2621 * Start writeback on some inodes on this super_block. No guarantees are made
2622 * on how many (if any) will be written, and this function does not wait
2623 * for IO completion of submitted IO.
2624 */
writeback_inodes_sb_nr(struct super_block * sb,unsigned long nr,enum wb_reason reason)2625 void writeback_inodes_sb_nr(struct super_block *sb,
2626 unsigned long nr,
2627 enum wb_reason reason)
2628 {
2629 __writeback_inodes_sb_nr(sb, nr, reason, false);
2630 }
2631 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2632
2633 /**
2634 * writeback_inodes_sb - writeback dirty inodes from given super_block
2635 * @sb: the superblock
2636 * @reason: reason why some writeback work was initiated
2637 *
2638 * Start writeback on some inodes on this super_block. No guarantees are made
2639 * on how many (if any) will be written, and this function does not wait
2640 * for IO completion of submitted IO.
2641 */
writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2642 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2643 {
2644 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2645 }
2646 EXPORT_SYMBOL(writeback_inodes_sb);
2647
2648 /**
2649 * try_to_writeback_inodes_sb - try to start writeback if none underway
2650 * @sb: the superblock
2651 * @reason: reason why some writeback work was initiated
2652 *
2653 * Invoke __writeback_inodes_sb_nr if no writeback is currently underway.
2654 */
try_to_writeback_inodes_sb(struct super_block * sb,enum wb_reason reason)2655 void try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2656 {
2657 if (!down_read_trylock(&sb->s_umount))
2658 return;
2659
2660 __writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason, true);
2661 up_read(&sb->s_umount);
2662 }
2663 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2664
2665 /**
2666 * sync_inodes_sb - sync sb inode pages
2667 * @sb: the superblock
2668 *
2669 * This function writes and waits on any dirty inode belonging to this
2670 * super_block.
2671 */
sync_inodes_sb(struct super_block * sb)2672 void sync_inodes_sb(struct super_block *sb)
2673 {
2674 struct backing_dev_info *bdi = sb->s_bdi;
2675 DEFINE_WB_COMPLETION(done, bdi);
2676 struct wb_writeback_work work = {
2677 .sb = sb,
2678 .sync_mode = WB_SYNC_ALL,
2679 .nr_pages = LONG_MAX,
2680 .range_cyclic = 0,
2681 .done = &done,
2682 .reason = WB_REASON_SYNC,
2683 .for_sync = 1,
2684 };
2685
2686 /*
2687 * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2688 * inodes under writeback and I_DIRTY_TIME inodes ignored by
2689 * bdi_has_dirty() need to be written out too.
2690 */
2691 if (bdi == &noop_backing_dev_info)
2692 return;
2693 WARN_ON(!rwsem_is_locked(&sb->s_umount));
2694
2695 /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2696 bdi_down_write_wb_switch_rwsem(bdi);
2697 bdi_split_work_to_wbs(bdi, &work, false);
2698 wb_wait_for_completion(&done);
2699 bdi_up_write_wb_switch_rwsem(bdi);
2700
2701 wait_sb_inodes(sb);
2702 }
2703 EXPORT_SYMBOL(sync_inodes_sb);
2704
2705 /**
2706 * write_inode_now - write an inode to disk
2707 * @inode: inode to write to disk
2708 * @sync: whether the write should be synchronous or not
2709 *
2710 * This function commits an inode to disk immediately if it is dirty. This is
2711 * primarily needed by knfsd.
2712 *
2713 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2714 */
write_inode_now(struct inode * inode,int sync)2715 int write_inode_now(struct inode *inode, int sync)
2716 {
2717 struct writeback_control wbc = {
2718 .nr_to_write = LONG_MAX,
2719 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2720 .range_start = 0,
2721 .range_end = LLONG_MAX,
2722 };
2723
2724 if (!mapping_can_writeback(inode->i_mapping))
2725 wbc.nr_to_write = 0;
2726
2727 might_sleep();
2728 return writeback_single_inode(inode, &wbc);
2729 }
2730 EXPORT_SYMBOL(write_inode_now);
2731
2732 /**
2733 * sync_inode_metadata - write an inode to disk
2734 * @inode: the inode to sync
2735 * @wait: wait for I/O to complete.
2736 *
2737 * Write an inode to disk and adjust its dirty state after completion.
2738 *
2739 * Note: only writes the actual inode, no associated data or other metadata.
2740 */
sync_inode_metadata(struct inode * inode,int wait)2741 int sync_inode_metadata(struct inode *inode, int wait)
2742 {
2743 struct writeback_control wbc = {
2744 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2745 .nr_to_write = 0, /* metadata-only */
2746 };
2747
2748 return writeback_single_inode(inode, &wbc);
2749 }
2750 EXPORT_SYMBOL(sync_inode_metadata);
2751