1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * fs/crypto/hooks.c
4 *
5 * Encryption hooks for higher-level filesystem operations.
6 */
7
8 #include <linux/key.h>
9
10 #include "fscrypt_private.h"
11
12 /**
13 * fscrypt_file_open() - prepare to open a possibly-encrypted regular file
14 * @inode: the inode being opened
15 * @filp: the struct file being set up
16 *
17 * Currently, an encrypted regular file can only be opened if its encryption key
18 * is available; access to the raw encrypted contents is not supported.
19 * Therefore, we first set up the inode's encryption key (if not already done)
20 * and return an error if it's unavailable.
21 *
22 * We also verify that if the parent directory (from the path via which the file
23 * is being opened) is encrypted, then the inode being opened uses the same
24 * encryption policy. This is needed as part of the enforcement that all files
25 * in an encrypted directory tree use the same encryption policy, as a
26 * protection against certain types of offline attacks. Note that this check is
27 * needed even when opening an *unencrypted* file, since it's forbidden to have
28 * an unencrypted file in an encrypted directory.
29 *
30 * Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
31 */
fscrypt_file_open(struct inode * inode,struct file * filp)32 int fscrypt_file_open(struct inode *inode, struct file *filp)
33 {
34 int err;
35 struct dentry *dir;
36
37 err = fscrypt_require_key(inode);
38 if (err)
39 return err;
40
41 dir = dget_parent(file_dentry(filp));
42 if (IS_ENCRYPTED(d_inode(dir)) &&
43 !fscrypt_has_permitted_context(d_inode(dir), inode)) {
44 fscrypt_warn(inode,
45 "Inconsistent encryption context (parent directory: %lu)",
46 d_inode(dir)->i_ino);
47 err = -EPERM;
48 }
49 dput(dir);
50 return err;
51 }
52 EXPORT_SYMBOL_GPL(fscrypt_file_open);
53
__fscrypt_prepare_link(struct inode * inode,struct inode * dir,struct dentry * dentry)54 int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
55 struct dentry *dentry)
56 {
57 if (fscrypt_is_nokey_name(dentry))
58 return -ENOKEY;
59 /*
60 * We don't need to separately check that the directory inode's key is
61 * available, as it's implied by the dentry not being a no-key name.
62 */
63
64 if (!fscrypt_has_permitted_context(dir, inode))
65 return -EXDEV;
66
67 return 0;
68 }
69 EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
70
__fscrypt_prepare_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)71 int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
72 struct inode *new_dir, struct dentry *new_dentry,
73 unsigned int flags)
74 {
75 if (fscrypt_is_nokey_name(old_dentry) ||
76 fscrypt_is_nokey_name(new_dentry))
77 return -ENOKEY;
78 /*
79 * We don't need to separately check that the directory inodes' keys are
80 * available, as it's implied by the dentries not being no-key names.
81 */
82
83 if (old_dir != new_dir) {
84 if (IS_ENCRYPTED(new_dir) &&
85 !fscrypt_has_permitted_context(new_dir,
86 d_inode(old_dentry)))
87 return -EXDEV;
88
89 if ((flags & RENAME_EXCHANGE) &&
90 IS_ENCRYPTED(old_dir) &&
91 !fscrypt_has_permitted_context(old_dir,
92 d_inode(new_dentry)))
93 return -EXDEV;
94 }
95 return 0;
96 }
97 EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
98
__fscrypt_prepare_lookup(struct inode * dir,struct dentry * dentry,struct fscrypt_name * fname)99 int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
100 struct fscrypt_name *fname)
101 {
102 int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
103
104 if (err && err != -ENOENT)
105 return err;
106
107 if (fname->is_nokey_name) {
108 spin_lock(&dentry->d_lock);
109 dentry->d_flags |= DCACHE_NOKEY_NAME;
110 spin_unlock(&dentry->d_lock);
111 }
112 return err;
113 }
114 EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
115
__fscrypt_prepare_readdir(struct inode * dir)116 int __fscrypt_prepare_readdir(struct inode *dir)
117 {
118 return fscrypt_get_encryption_info(dir, true);
119 }
120 EXPORT_SYMBOL_GPL(__fscrypt_prepare_readdir);
121
__fscrypt_prepare_setattr(struct dentry * dentry,struct iattr * attr)122 int __fscrypt_prepare_setattr(struct dentry *dentry, struct iattr *attr)
123 {
124 if (attr->ia_valid & ATTR_SIZE)
125 return fscrypt_require_key(d_inode(dentry));
126 return 0;
127 }
128 EXPORT_SYMBOL_GPL(__fscrypt_prepare_setattr);
129
130 /**
131 * fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
132 * @inode: the inode on which flags are being changed
133 * @oldflags: the old flags
134 * @flags: the new flags
135 *
136 * The caller should be holding i_rwsem for write.
137 *
138 * Return: 0 on success; -errno if the flags change isn't allowed or if
139 * another error occurs.
140 */
fscrypt_prepare_setflags(struct inode * inode,unsigned int oldflags,unsigned int flags)141 int fscrypt_prepare_setflags(struct inode *inode,
142 unsigned int oldflags, unsigned int flags)
143 {
144 struct fscrypt_info *ci;
145 struct key *key;
146 struct fscrypt_master_key *mk;
147 int err;
148
149 /*
150 * When the CASEFOLD flag is set on an encrypted directory, we must
151 * derive the secret key needed for the dirhash. This is only possible
152 * if the directory uses a v2 encryption policy.
153 */
154 if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
155 err = fscrypt_require_key(inode);
156 if (err)
157 return err;
158 ci = inode->i_crypt_info;
159 if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
160 return -EINVAL;
161 key = ci->ci_master_key;
162 mk = key->payload.data[0];
163 down_read(&key->sem);
164 if (is_master_key_secret_present(&mk->mk_secret))
165 err = fscrypt_derive_dirhash_key(ci, mk);
166 else
167 err = -ENOKEY;
168 up_read(&key->sem);
169 return err;
170 }
171 return 0;
172 }
173
174 /**
175 * fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
176 * @dir: directory in which the symlink is being created
177 * @target: plaintext symlink target
178 * @len: length of @target excluding null terminator
179 * @max_len: space the filesystem has available to store the symlink target
180 * @disk_link: (out) the on-disk symlink target being prepared
181 *
182 * This function computes the size the symlink target will require on-disk,
183 * stores it in @disk_link->len, and validates it against @max_len. An
184 * encrypted symlink may be longer than the original.
185 *
186 * Additionally, @disk_link->name is set to @target if the symlink will be
187 * unencrypted, but left NULL if the symlink will be encrypted. For encrypted
188 * symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
189 * on-disk target later. (The reason for the two-step process is that some
190 * filesystems need to know the size of the symlink target before creating the
191 * inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
192 *
193 * Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
194 * -ENOKEY if the encryption key is missing, or another -errno code if a problem
195 * occurred while setting up the encryption key.
196 */
fscrypt_prepare_symlink(struct inode * dir,const char * target,unsigned int len,unsigned int max_len,struct fscrypt_str * disk_link)197 int fscrypt_prepare_symlink(struct inode *dir, const char *target,
198 unsigned int len, unsigned int max_len,
199 struct fscrypt_str *disk_link)
200 {
201 const union fscrypt_policy *policy;
202
203 /*
204 * To calculate the size of the encrypted symlink target we need to know
205 * the amount of NUL padding, which is determined by the flags set in
206 * the encryption policy which will be inherited from the directory.
207 */
208 policy = fscrypt_policy_to_inherit(dir);
209 if (policy == NULL) {
210 /* Not encrypted */
211 disk_link->name = (unsigned char *)target;
212 disk_link->len = len + 1;
213 if (disk_link->len > max_len)
214 return -ENAMETOOLONG;
215 return 0;
216 }
217 if (IS_ERR(policy))
218 return PTR_ERR(policy);
219
220 /*
221 * Calculate the size of the encrypted symlink and verify it won't
222 * exceed max_len. Note that for historical reasons, encrypted symlink
223 * targets are prefixed with the ciphertext length, despite this
224 * actually being redundant with i_size. This decreases by 2 bytes the
225 * longest symlink target we can accept.
226 *
227 * We could recover 1 byte by not counting a null terminator, but
228 * counting it (even though it is meaningless for ciphertext) is simpler
229 * for now since filesystems will assume it is there and subtract it.
230 */
231 if (!fscrypt_fname_encrypted_size(policy, len,
232 max_len - sizeof(struct fscrypt_symlink_data),
233 &disk_link->len))
234 return -ENAMETOOLONG;
235 disk_link->len += sizeof(struct fscrypt_symlink_data);
236
237 disk_link->name = NULL;
238 return 0;
239 }
240 EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
241
__fscrypt_encrypt_symlink(struct inode * inode,const char * target,unsigned int len,struct fscrypt_str * disk_link)242 int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
243 unsigned int len, struct fscrypt_str *disk_link)
244 {
245 int err;
246 struct qstr iname = QSTR_INIT(target, len);
247 struct fscrypt_symlink_data *sd;
248 unsigned int ciphertext_len;
249
250 /*
251 * fscrypt_prepare_new_inode() should have already set up the new
252 * symlink inode's encryption key. We don't wait until now to do it,
253 * since we may be in a filesystem transaction now.
254 */
255 if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
256 return -ENOKEY;
257
258 if (disk_link->name) {
259 /* filesystem-provided buffer */
260 sd = (struct fscrypt_symlink_data *)disk_link->name;
261 } else {
262 sd = kmalloc(disk_link->len, GFP_NOFS);
263 if (!sd)
264 return -ENOMEM;
265 }
266 ciphertext_len = disk_link->len - sizeof(*sd);
267 sd->len = cpu_to_le16(ciphertext_len);
268
269 err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
270 ciphertext_len);
271 if (err)
272 goto err_free_sd;
273
274 /*
275 * Null-terminating the ciphertext doesn't make sense, but we still
276 * count the null terminator in the length, so we might as well
277 * initialize it just in case the filesystem writes it out.
278 */
279 sd->encrypted_path[ciphertext_len] = '\0';
280
281 /* Cache the plaintext symlink target for later use by get_link() */
282 err = -ENOMEM;
283 inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
284 if (!inode->i_link)
285 goto err_free_sd;
286
287 if (!disk_link->name)
288 disk_link->name = (unsigned char *)sd;
289 return 0;
290
291 err_free_sd:
292 if (!disk_link->name)
293 kfree(sd);
294 return err;
295 }
296 EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
297
298 /**
299 * fscrypt_get_symlink() - get the target of an encrypted symlink
300 * @inode: the symlink inode
301 * @caddr: the on-disk contents of the symlink
302 * @max_size: size of @caddr buffer
303 * @done: if successful, will be set up to free the returned target if needed
304 *
305 * If the symlink's encryption key is available, we decrypt its target.
306 * Otherwise, we encode its target for presentation.
307 *
308 * This may sleep, so the filesystem must have dropped out of RCU mode already.
309 *
310 * Return: the presentable symlink target or an ERR_PTR()
311 */
fscrypt_get_symlink(struct inode * inode,const void * caddr,unsigned int max_size,struct delayed_call * done)312 const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
313 unsigned int max_size,
314 struct delayed_call *done)
315 {
316 const struct fscrypt_symlink_data *sd;
317 struct fscrypt_str cstr, pstr;
318 bool has_key;
319 int err;
320
321 /* This is for encrypted symlinks only */
322 if (WARN_ON(!IS_ENCRYPTED(inode)))
323 return ERR_PTR(-EINVAL);
324
325 /* If the decrypted target is already cached, just return it. */
326 pstr.name = READ_ONCE(inode->i_link);
327 if (pstr.name)
328 return pstr.name;
329
330 /*
331 * Try to set up the symlink's encryption key, but we can continue
332 * regardless of whether the key is available or not.
333 */
334 err = fscrypt_get_encryption_info(inode, false);
335 if (err)
336 return ERR_PTR(err);
337 has_key = fscrypt_has_encryption_key(inode);
338
339 /*
340 * For historical reasons, encrypted symlink targets are prefixed with
341 * the ciphertext length, even though this is redundant with i_size.
342 */
343
344 if (max_size < sizeof(*sd))
345 return ERR_PTR(-EUCLEAN);
346 sd = caddr;
347 cstr.name = (unsigned char *)sd->encrypted_path;
348 cstr.len = le16_to_cpu(sd->len);
349
350 if (cstr.len == 0)
351 return ERR_PTR(-EUCLEAN);
352
353 if (cstr.len + sizeof(*sd) - 1 > max_size)
354 return ERR_PTR(-EUCLEAN);
355
356 err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
357 if (err)
358 return ERR_PTR(err);
359
360 err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
361 if (err)
362 goto err_kfree;
363
364 err = -EUCLEAN;
365 if (pstr.name[0] == '\0')
366 goto err_kfree;
367
368 pstr.name[pstr.len] = '\0';
369
370 /*
371 * Cache decrypted symlink targets in i_link for later use. Don't cache
372 * symlink targets encoded without the key, since those become outdated
373 * once the key is added. This pairs with the READ_ONCE() above and in
374 * the VFS path lookup code.
375 */
376 if (!has_key ||
377 cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
378 set_delayed_call(done, kfree_link, pstr.name);
379
380 return pstr.name;
381
382 err_kfree:
383 kfree(pstr.name);
384 return ERR_PTR(err);
385 }
386 EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
387
388 /**
389 * fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
390 * @path: the path for the encrypted symlink being queried
391 * @stat: the struct being filled with the symlink's attributes
392 *
393 * Override st_size of encrypted symlinks to be the length of the decrypted
394 * symlink target (or the no-key encoded symlink target, if the key is
395 * unavailable) rather than the length of the encrypted symlink target. This is
396 * necessary for st_size to match the symlink target that userspace actually
397 * sees. POSIX requires this, and some userspace programs depend on it.
398 *
399 * This requires reading the symlink target from disk if needed, setting up the
400 * inode's encryption key if possible, and then decrypting or encoding the
401 * symlink target. This makes lstat() more heavyweight than is normally the
402 * case. However, decrypted symlink targets will be cached in ->i_link, so
403 * usually the symlink won't have to be read and decrypted again later if/when
404 * it is actually followed, readlink() is called, or lstat() is called again.
405 *
406 * Return: 0 on success, -errno on failure
407 */
fscrypt_symlink_getattr(const struct path * path,struct kstat * stat)408 int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
409 {
410 struct dentry *dentry = path->dentry;
411 struct inode *inode = d_inode(dentry);
412 const char *link;
413 DEFINE_DELAYED_CALL(done);
414
415 /*
416 * To get the symlink target that userspace will see (whether it's the
417 * decrypted target or the no-key encoded target), we can just get it in
418 * the same way the VFS does during path resolution and readlink().
419 */
420 link = READ_ONCE(inode->i_link);
421 if (!link) {
422 link = inode->i_op->get_link(dentry, inode, &done);
423 if (IS_ERR(link))
424 return PTR_ERR(link);
425 }
426 stat->size = strlen(link);
427 do_delayed_call(&done);
428 return 0;
429 }
430 EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
431