1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51
52 #ifdef CONFIG_64BIT
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54 * structures are incorrect, as the timespec structure from userspace
55 * is 4 bytes too small. We define these alternatives here to teach
56 * the kernel about the 32-bit struct packing.
57 */
58 struct btrfs_ioctl_timespec_32 {
59 __u64 sec;
60 __u32 nsec;
61 } __attribute__ ((__packed__));
62
63 struct btrfs_ioctl_received_subvol_args_32 {
64 char uuid[BTRFS_UUID_SIZE]; /* in */
65 __u64 stransid; /* in */
66 __u64 rtransid; /* out */
67 struct btrfs_ioctl_timespec_32 stime; /* in */
68 struct btrfs_ioctl_timespec_32 rtime; /* out */
69 __u64 flags; /* in */
70 __u64 reserved[16]; /* in */
71 } __attribute__ ((__packed__));
72
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 struct btrfs_ioctl_received_subvol_args_32)
75 #endif
76
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 __s64 send_fd; /* in */
80 __u64 clone_sources_count; /* in */
81 compat_uptr_t clone_sources; /* in */
82 __u64 parent_root; /* in */
83 __u64 flags; /* in */
84 __u64 reserved[4]; /* in */
85 } __attribute__ ((__packed__));
86
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 struct btrfs_ioctl_send_args_32)
89 #endif
90
91 /* Mask out flags that are inappropriate for the given type of inode. */
btrfs_mask_fsflags_for_type(struct inode * inode,unsigned int flags)92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
93 unsigned int flags)
94 {
95 if (S_ISDIR(inode->i_mode))
96 return flags;
97 else if (S_ISREG(inode->i_mode))
98 return flags & ~FS_DIRSYNC_FL;
99 else
100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102
103 /*
104 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
105 * ioctl.
106 */
btrfs_inode_flags_to_fsflags(struct btrfs_inode * binode)107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
108 {
109 unsigned int iflags = 0;
110 u32 flags = binode->flags;
111 u32 ro_flags = binode->ro_flags;
112
113 if (flags & BTRFS_INODE_SYNC)
114 iflags |= FS_SYNC_FL;
115 if (flags & BTRFS_INODE_IMMUTABLE)
116 iflags |= FS_IMMUTABLE_FL;
117 if (flags & BTRFS_INODE_APPEND)
118 iflags |= FS_APPEND_FL;
119 if (flags & BTRFS_INODE_NODUMP)
120 iflags |= FS_NODUMP_FL;
121 if (flags & BTRFS_INODE_NOATIME)
122 iflags |= FS_NOATIME_FL;
123 if (flags & BTRFS_INODE_DIRSYNC)
124 iflags |= FS_DIRSYNC_FL;
125 if (flags & BTRFS_INODE_NODATACOW)
126 iflags |= FS_NOCOW_FL;
127 if (ro_flags & BTRFS_INODE_RO_VERITY)
128 iflags |= FS_VERITY_FL;
129
130 if (flags & BTRFS_INODE_NOCOMPRESS)
131 iflags |= FS_NOCOMP_FL;
132 else if (flags & BTRFS_INODE_COMPRESS)
133 iflags |= FS_COMPR_FL;
134
135 return iflags;
136 }
137
138 /*
139 * Update inode->i_flags based on the btrfs internal flags.
140 */
btrfs_sync_inode_flags_to_i_flags(struct inode * inode)141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
142 {
143 struct btrfs_inode *binode = BTRFS_I(inode);
144 unsigned int new_fl = 0;
145
146 if (binode->flags & BTRFS_INODE_SYNC)
147 new_fl |= S_SYNC;
148 if (binode->flags & BTRFS_INODE_IMMUTABLE)
149 new_fl |= S_IMMUTABLE;
150 if (binode->flags & BTRFS_INODE_APPEND)
151 new_fl |= S_APPEND;
152 if (binode->flags & BTRFS_INODE_NOATIME)
153 new_fl |= S_NOATIME;
154 if (binode->flags & BTRFS_INODE_DIRSYNC)
155 new_fl |= S_DIRSYNC;
156 if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
157 new_fl |= S_VERITY;
158
159 set_mask_bits(&inode->i_flags,
160 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
161 S_VERITY, new_fl);
162 }
163
164 /*
165 * Check if @flags are a supported and valid set of FS_*_FL flags and that
166 * the old and new flags are not conflicting
167 */
check_fsflags(unsigned int old_flags,unsigned int flags)168 static int check_fsflags(unsigned int old_flags, unsigned int flags)
169 {
170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 FS_NOATIME_FL | FS_NODUMP_FL | \
172 FS_SYNC_FL | FS_DIRSYNC_FL | \
173 FS_NOCOMP_FL | FS_COMPR_FL |
174 FS_NOCOW_FL))
175 return -EOPNOTSUPP;
176
177 /* COMPR and NOCOMP on new/old are valid */
178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 return -EINVAL;
180
181 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
182 return -EINVAL;
183
184 /* NOCOW and compression options are mutually exclusive */
185 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
186 return -EINVAL;
187 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 return -EINVAL;
189
190 return 0;
191 }
192
check_fsflags_compatible(struct btrfs_fs_info * fs_info,unsigned int flags)193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
194 unsigned int flags)
195 {
196 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
197 return -EPERM;
198
199 return 0;
200 }
201
202 /*
203 * Set flags/xflags from the internal inode flags. The remaining items of
204 * fsxattr are zeroed.
205 */
btrfs_fileattr_get(struct dentry * dentry,struct fileattr * fa)206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
207 {
208 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
209
210 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
211 return 0;
212 }
213
btrfs_fileattr_set(struct user_namespace * mnt_userns,struct dentry * dentry,struct fileattr * fa)214 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
215 struct dentry *dentry, struct fileattr *fa)
216 {
217 struct inode *inode = d_inode(dentry);
218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 struct btrfs_inode *binode = BTRFS_I(inode);
220 struct btrfs_root *root = binode->root;
221 struct btrfs_trans_handle *trans;
222 unsigned int fsflags, old_fsflags;
223 int ret;
224 const char *comp = NULL;
225 u32 binode_flags;
226
227 if (btrfs_root_readonly(root))
228 return -EROFS;
229
230 if (fileattr_has_fsx(fa))
231 return -EOPNOTSUPP;
232
233 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
234 old_fsflags = btrfs_inode_flags_to_fsflags(binode);
235 ret = check_fsflags(old_fsflags, fsflags);
236 if (ret)
237 return ret;
238
239 ret = check_fsflags_compatible(fs_info, fsflags);
240 if (ret)
241 return ret;
242
243 binode_flags = binode->flags;
244 if (fsflags & FS_SYNC_FL)
245 binode_flags |= BTRFS_INODE_SYNC;
246 else
247 binode_flags &= ~BTRFS_INODE_SYNC;
248 if (fsflags & FS_IMMUTABLE_FL)
249 binode_flags |= BTRFS_INODE_IMMUTABLE;
250 else
251 binode_flags &= ~BTRFS_INODE_IMMUTABLE;
252 if (fsflags & FS_APPEND_FL)
253 binode_flags |= BTRFS_INODE_APPEND;
254 else
255 binode_flags &= ~BTRFS_INODE_APPEND;
256 if (fsflags & FS_NODUMP_FL)
257 binode_flags |= BTRFS_INODE_NODUMP;
258 else
259 binode_flags &= ~BTRFS_INODE_NODUMP;
260 if (fsflags & FS_NOATIME_FL)
261 binode_flags |= BTRFS_INODE_NOATIME;
262 else
263 binode_flags &= ~BTRFS_INODE_NOATIME;
264
265 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
266 if (!fa->flags_valid) {
267 /* 1 item for the inode */
268 trans = btrfs_start_transaction(root, 1);
269 if (IS_ERR(trans))
270 return PTR_ERR(trans);
271 goto update_flags;
272 }
273
274 if (fsflags & FS_DIRSYNC_FL)
275 binode_flags |= BTRFS_INODE_DIRSYNC;
276 else
277 binode_flags &= ~BTRFS_INODE_DIRSYNC;
278 if (fsflags & FS_NOCOW_FL) {
279 if (S_ISREG(inode->i_mode)) {
280 /*
281 * It's safe to turn csums off here, no extents exist.
282 * Otherwise we want the flag to reflect the real COW
283 * status of the file and will not set it.
284 */
285 if (inode->i_size == 0)
286 binode_flags |= BTRFS_INODE_NODATACOW |
287 BTRFS_INODE_NODATASUM;
288 } else {
289 binode_flags |= BTRFS_INODE_NODATACOW;
290 }
291 } else {
292 /*
293 * Revert back under same assumptions as above
294 */
295 if (S_ISREG(inode->i_mode)) {
296 if (inode->i_size == 0)
297 binode_flags &= ~(BTRFS_INODE_NODATACOW |
298 BTRFS_INODE_NODATASUM);
299 } else {
300 binode_flags &= ~BTRFS_INODE_NODATACOW;
301 }
302 }
303
304 /*
305 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
306 * flag may be changed automatically if compression code won't make
307 * things smaller.
308 */
309 if (fsflags & FS_NOCOMP_FL) {
310 binode_flags &= ~BTRFS_INODE_COMPRESS;
311 binode_flags |= BTRFS_INODE_NOCOMPRESS;
312 } else if (fsflags & FS_COMPR_FL) {
313
314 if (IS_SWAPFILE(inode))
315 return -ETXTBSY;
316
317 binode_flags |= BTRFS_INODE_COMPRESS;
318 binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
319
320 comp = btrfs_compress_type2str(fs_info->compress_type);
321 if (!comp || comp[0] == 0)
322 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
323 } else {
324 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 }
326
327 /*
328 * 1 for inode item
329 * 2 for properties
330 */
331 trans = btrfs_start_transaction(root, 3);
332 if (IS_ERR(trans))
333 return PTR_ERR(trans);
334
335 if (comp) {
336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
337 strlen(comp), 0);
338 if (ret) {
339 btrfs_abort_transaction(trans, ret);
340 goto out_end_trans;
341 }
342 } else {
343 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
344 0, 0);
345 if (ret && ret != -ENODATA) {
346 btrfs_abort_transaction(trans, ret);
347 goto out_end_trans;
348 }
349 }
350
351 update_flags:
352 binode->flags = binode_flags;
353 btrfs_sync_inode_flags_to_i_flags(inode);
354 inode_inc_iversion(inode);
355 inode->i_ctime = current_time(inode);
356 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
357
358 out_end_trans:
359 btrfs_end_transaction(trans);
360 return ret;
361 }
362
363 /*
364 * Start exclusive operation @type, return true on success
365 */
btrfs_exclop_start(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
367 enum btrfs_exclusive_operation type)
368 {
369 bool ret = false;
370
371 spin_lock(&fs_info->super_lock);
372 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
373 fs_info->exclusive_operation = type;
374 ret = true;
375 }
376 spin_unlock(&fs_info->super_lock);
377
378 return ret;
379 }
380
381 /*
382 * Conditionally allow to enter the exclusive operation in case it's compatible
383 * with the running one. This must be paired with btrfs_exclop_start_unlock and
384 * btrfs_exclop_finish.
385 *
386 * Compatibility:
387 * - the same type is already running
388 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
389 * must check the condition first that would allow none -> @type
390 */
btrfs_exclop_start_try_lock(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type)391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
392 enum btrfs_exclusive_operation type)
393 {
394 spin_lock(&fs_info->super_lock);
395 if (fs_info->exclusive_operation == type)
396 return true;
397
398 spin_unlock(&fs_info->super_lock);
399 return false;
400 }
401
btrfs_exclop_start_unlock(struct btrfs_fs_info * fs_info)402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
403 {
404 spin_unlock(&fs_info->super_lock);
405 }
406
btrfs_exclop_finish(struct btrfs_fs_info * fs_info)407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
408 {
409 spin_lock(&fs_info->super_lock);
410 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
411 spin_unlock(&fs_info->super_lock);
412 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
413 }
414
btrfs_ioctl_getversion(struct file * file,int __user * arg)415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
416 {
417 struct inode *inode = file_inode(file);
418
419 return put_user(inode->i_generation, arg);
420 }
421
btrfs_ioctl_fitrim(struct btrfs_fs_info * fs_info,void __user * arg)422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
423 void __user *arg)
424 {
425 struct btrfs_device *device;
426 struct request_queue *q;
427 struct fstrim_range range;
428 u64 minlen = ULLONG_MAX;
429 u64 num_devices = 0;
430 int ret;
431
432 if (!capable(CAP_SYS_ADMIN))
433 return -EPERM;
434
435 /*
436 * btrfs_trim_block_group() depends on space cache, which is not
437 * available in zoned filesystem. So, disallow fitrim on a zoned
438 * filesystem for now.
439 */
440 if (btrfs_is_zoned(fs_info))
441 return -EOPNOTSUPP;
442
443 /*
444 * If the fs is mounted with nologreplay, which requires it to be
445 * mounted in RO mode as well, we can not allow discard on free space
446 * inside block groups, because log trees refer to extents that are not
447 * pinned in a block group's free space cache (pinning the extents is
448 * precisely the first phase of replaying a log tree).
449 */
450 if (btrfs_test_opt(fs_info, NOLOGREPLAY))
451 return -EROFS;
452
453 rcu_read_lock();
454 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
455 dev_list) {
456 if (!device->bdev)
457 continue;
458 q = bdev_get_queue(device->bdev);
459 if (blk_queue_discard(q)) {
460 num_devices++;
461 minlen = min_t(u64, q->limits.discard_granularity,
462 minlen);
463 }
464 }
465 rcu_read_unlock();
466
467 if (!num_devices)
468 return -EOPNOTSUPP;
469 if (copy_from_user(&range, arg, sizeof(range)))
470 return -EFAULT;
471
472 /*
473 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of
474 * block group is in the logical address space, which can be any
475 * sectorsize aligned bytenr in the range [0, U64_MAX].
476 */
477 if (range.len < fs_info->sb->s_blocksize)
478 return -EINVAL;
479
480 range.minlen = max(range.minlen, minlen);
481 ret = btrfs_trim_fs(fs_info, &range);
482 if (ret < 0)
483 return ret;
484
485 if (copy_to_user(arg, &range, sizeof(range)))
486 return -EFAULT;
487
488 return 0;
489 }
490
btrfs_is_empty_uuid(u8 * uuid)491 int __pure btrfs_is_empty_uuid(u8 *uuid)
492 {
493 int i;
494
495 for (i = 0; i < BTRFS_UUID_SIZE; i++) {
496 if (uuid[i])
497 return 0;
498 }
499 return 1;
500 }
501
create_subvol(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * name,int namelen,struct btrfs_qgroup_inherit * inherit)502 static noinline int create_subvol(struct user_namespace *mnt_userns,
503 struct inode *dir, struct dentry *dentry,
504 const char *name, int namelen,
505 struct btrfs_qgroup_inherit *inherit)
506 {
507 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
508 struct btrfs_trans_handle *trans;
509 struct btrfs_key key;
510 struct btrfs_root_item *root_item;
511 struct btrfs_inode_item *inode_item;
512 struct extent_buffer *leaf;
513 struct btrfs_root *root = BTRFS_I(dir)->root;
514 struct btrfs_root *new_root;
515 struct btrfs_block_rsv block_rsv;
516 struct timespec64 cur_time = current_time(dir);
517 struct inode *inode;
518 int ret;
519 int err;
520 dev_t anon_dev = 0;
521 u64 objectid;
522 u64 index = 0;
523
524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 if (!root_item)
526 return -ENOMEM;
527
528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 if (ret)
530 goto fail_free;
531
532 ret = get_anon_bdev(&anon_dev);
533 if (ret < 0)
534 goto fail_free;
535
536 /*
537 * Don't create subvolume whose level is not zero. Or qgroup will be
538 * screwed up since it assumes subvolume qgroup's level to be 0.
539 */
540 if (btrfs_qgroup_level(objectid)) {
541 ret = -ENOSPC;
542 goto fail_free;
543 }
544
545 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
546 /*
547 * The same as the snapshot creation, please see the comment
548 * of create_snapshot().
549 */
550 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
551 if (ret)
552 goto fail_free;
553
554 trans = btrfs_start_transaction(root, 0);
555 if (IS_ERR(trans)) {
556 ret = PTR_ERR(trans);
557 btrfs_subvolume_release_metadata(root, &block_rsv);
558 goto fail_free;
559 }
560 trans->block_rsv = &block_rsv;
561 trans->bytes_reserved = block_rsv.size;
562
563 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
564 if (ret)
565 goto fail;
566
567 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
568 BTRFS_NESTING_NORMAL);
569 if (IS_ERR(leaf)) {
570 ret = PTR_ERR(leaf);
571 goto fail;
572 }
573
574 btrfs_mark_buffer_dirty(leaf);
575
576 inode_item = &root_item->inode;
577 btrfs_set_stack_inode_generation(inode_item, 1);
578 btrfs_set_stack_inode_size(inode_item, 3);
579 btrfs_set_stack_inode_nlink(inode_item, 1);
580 btrfs_set_stack_inode_nbytes(inode_item,
581 fs_info->nodesize);
582 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
583
584 btrfs_set_root_flags(root_item, 0);
585 btrfs_set_root_limit(root_item, 0);
586 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
587
588 btrfs_set_root_bytenr(root_item, leaf->start);
589 btrfs_set_root_generation(root_item, trans->transid);
590 btrfs_set_root_level(root_item, 0);
591 btrfs_set_root_refs(root_item, 1);
592 btrfs_set_root_used(root_item, leaf->len);
593 btrfs_set_root_last_snapshot(root_item, 0);
594
595 btrfs_set_root_generation_v2(root_item,
596 btrfs_root_generation(root_item));
597 generate_random_guid(root_item->uuid);
598 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
599 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
600 root_item->ctime = root_item->otime;
601 btrfs_set_root_ctransid(root_item, trans->transid);
602 btrfs_set_root_otransid(root_item, trans->transid);
603
604 btrfs_tree_unlock(leaf);
605
606 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
607
608 key.objectid = objectid;
609 key.offset = 0;
610 key.type = BTRFS_ROOT_ITEM_KEY;
611 ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
612 root_item);
613 if (ret) {
614 /*
615 * Since we don't abort the transaction in this case, free the
616 * tree block so that we don't leak space and leave the
617 * filesystem in an inconsistent state (an extent item in the
618 * extent tree without backreferences). Also no need to have
619 * the tree block locked since it is not in any tree at this
620 * point, so no other task can find it and use it.
621 */
622 btrfs_free_tree_block(trans, root, leaf, 0, 1);
623 free_extent_buffer(leaf);
624 goto fail;
625 }
626
627 free_extent_buffer(leaf);
628 leaf = NULL;
629
630 key.offset = (u64)-1;
631 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
632 if (IS_ERR(new_root)) {
633 free_anon_bdev(anon_dev);
634 ret = PTR_ERR(new_root);
635 btrfs_abort_transaction(trans, ret);
636 goto fail;
637 }
638 /* Freeing will be done in btrfs_put_root() of new_root */
639 anon_dev = 0;
640
641 ret = btrfs_record_root_in_trans(trans, new_root);
642 if (ret) {
643 btrfs_put_root(new_root);
644 btrfs_abort_transaction(trans, ret);
645 goto fail;
646 }
647
648 ret = btrfs_create_subvol_root(trans, new_root, root, mnt_userns);
649 btrfs_put_root(new_root);
650 if (ret) {
651 /* We potentially lose an unused inode item here */
652 btrfs_abort_transaction(trans, ret);
653 goto fail;
654 }
655
656 /*
657 * insert the directory item
658 */
659 ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
660 if (ret) {
661 btrfs_abort_transaction(trans, ret);
662 goto fail;
663 }
664
665 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
666 BTRFS_FT_DIR, index);
667 if (ret) {
668 btrfs_abort_transaction(trans, ret);
669 goto fail;
670 }
671
672 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
673 ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
674 if (ret) {
675 btrfs_abort_transaction(trans, ret);
676 goto fail;
677 }
678
679 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
680 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
681 if (ret) {
682 btrfs_abort_transaction(trans, ret);
683 goto fail;
684 }
685
686 ret = btrfs_uuid_tree_add(trans, root_item->uuid,
687 BTRFS_UUID_KEY_SUBVOL, objectid);
688 if (ret)
689 btrfs_abort_transaction(trans, ret);
690
691 fail:
692 kfree(root_item);
693 trans->block_rsv = NULL;
694 trans->bytes_reserved = 0;
695 btrfs_subvolume_release_metadata(root, &block_rsv);
696
697 err = btrfs_commit_transaction(trans);
698 if (err && !ret)
699 ret = err;
700
701 if (!ret) {
702 inode = btrfs_lookup_dentry(dir, dentry);
703 if (IS_ERR(inode))
704 return PTR_ERR(inode);
705 d_instantiate(dentry, inode);
706 }
707 return ret;
708
709 fail_free:
710 if (anon_dev)
711 free_anon_bdev(anon_dev);
712 kfree(root_item);
713 return ret;
714 }
715
create_snapshot(struct btrfs_root * root,struct inode * dir,struct dentry * dentry,bool readonly,struct btrfs_qgroup_inherit * inherit)716 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
717 struct dentry *dentry, bool readonly,
718 struct btrfs_qgroup_inherit *inherit)
719 {
720 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
721 struct inode *inode;
722 struct btrfs_pending_snapshot *pending_snapshot;
723 struct btrfs_trans_handle *trans;
724 int ret;
725
726 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
727 return -EINVAL;
728
729 if (atomic_read(&root->nr_swapfiles)) {
730 btrfs_warn(fs_info,
731 "cannot snapshot subvolume with active swapfile");
732 return -ETXTBSY;
733 }
734
735 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
736 if (!pending_snapshot)
737 return -ENOMEM;
738
739 ret = get_anon_bdev(&pending_snapshot->anon_dev);
740 if (ret < 0)
741 goto free_pending;
742 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
743 GFP_KERNEL);
744 pending_snapshot->path = btrfs_alloc_path();
745 if (!pending_snapshot->root_item || !pending_snapshot->path) {
746 ret = -ENOMEM;
747 goto free_pending;
748 }
749
750 btrfs_init_block_rsv(&pending_snapshot->block_rsv,
751 BTRFS_BLOCK_RSV_TEMP);
752 /*
753 * 1 - parent dir inode
754 * 2 - dir entries
755 * 1 - root item
756 * 2 - root ref/backref
757 * 1 - root of snapshot
758 * 1 - UUID item
759 */
760 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
761 &pending_snapshot->block_rsv, 8,
762 false);
763 if (ret)
764 goto free_pending;
765
766 pending_snapshot->dentry = dentry;
767 pending_snapshot->root = root;
768 pending_snapshot->readonly = readonly;
769 pending_snapshot->dir = dir;
770 pending_snapshot->inherit = inherit;
771
772 trans = btrfs_start_transaction(root, 0);
773 if (IS_ERR(trans)) {
774 ret = PTR_ERR(trans);
775 goto fail;
776 }
777
778 spin_lock(&fs_info->trans_lock);
779 list_add(&pending_snapshot->list,
780 &trans->transaction->pending_snapshots);
781 spin_unlock(&fs_info->trans_lock);
782
783 ret = btrfs_commit_transaction(trans);
784 if (ret)
785 goto fail;
786
787 ret = pending_snapshot->error;
788 if (ret)
789 goto fail;
790
791 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
792 if (ret)
793 goto fail;
794
795 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
796 if (IS_ERR(inode)) {
797 ret = PTR_ERR(inode);
798 goto fail;
799 }
800
801 d_instantiate(dentry, inode);
802 ret = 0;
803 pending_snapshot->anon_dev = 0;
804 fail:
805 /* Prevent double freeing of anon_dev */
806 if (ret && pending_snapshot->snap)
807 pending_snapshot->snap->anon_dev = 0;
808 btrfs_put_root(pending_snapshot->snap);
809 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
810 free_pending:
811 if (pending_snapshot->anon_dev)
812 free_anon_bdev(pending_snapshot->anon_dev);
813 kfree(pending_snapshot->root_item);
814 btrfs_free_path(pending_snapshot->path);
815 kfree(pending_snapshot);
816
817 return ret;
818 }
819
820 /* copy of may_delete in fs/namei.c()
821 * Check whether we can remove a link victim from directory dir, check
822 * whether the type of victim is right.
823 * 1. We can't do it if dir is read-only (done in permission())
824 * 2. We should have write and exec permissions on dir
825 * 3. We can't remove anything from append-only dir
826 * 4. We can't do anything with immutable dir (done in permission())
827 * 5. If the sticky bit on dir is set we should either
828 * a. be owner of dir, or
829 * b. be owner of victim, or
830 * c. have CAP_FOWNER capability
831 * 6. If the victim is append-only or immutable we can't do anything with
832 * links pointing to it.
833 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
834 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
835 * 9. We can't remove a root or mountpoint.
836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
837 * nfs_async_unlink().
838 */
839
btrfs_may_delete(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * victim,int isdir)840 static int btrfs_may_delete(struct user_namespace *mnt_userns,
841 struct inode *dir, struct dentry *victim, int isdir)
842 {
843 int error;
844
845 if (d_really_is_negative(victim))
846 return -ENOENT;
847
848 BUG_ON(d_inode(victim->d_parent) != dir);
849 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
850
851 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
852 if (error)
853 return error;
854 if (IS_APPEND(dir))
855 return -EPERM;
856 if (check_sticky(mnt_userns, dir, d_inode(victim)) ||
857 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
858 IS_SWAPFILE(d_inode(victim)))
859 return -EPERM;
860 if (isdir) {
861 if (!d_is_dir(victim))
862 return -ENOTDIR;
863 if (IS_ROOT(victim))
864 return -EBUSY;
865 } else if (d_is_dir(victim))
866 return -EISDIR;
867 if (IS_DEADDIR(dir))
868 return -ENOENT;
869 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
870 return -EBUSY;
871 return 0;
872 }
873
874 /* copy of may_create in fs/namei.c() */
btrfs_may_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * child)875 static inline int btrfs_may_create(struct user_namespace *mnt_userns,
876 struct inode *dir, struct dentry *child)
877 {
878 if (d_really_is_positive(child))
879 return -EEXIST;
880 if (IS_DEADDIR(dir))
881 return -ENOENT;
882 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns))
883 return -EOVERFLOW;
884 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC);
885 }
886
887 /*
888 * Create a new subvolume below @parent. This is largely modeled after
889 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
890 * inside this filesystem so it's quite a bit simpler.
891 */
btrfs_mksubvol(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * snap_src,bool readonly,struct btrfs_qgroup_inherit * inherit)892 static noinline int btrfs_mksubvol(const struct path *parent,
893 struct user_namespace *mnt_userns,
894 const char *name, int namelen,
895 struct btrfs_root *snap_src,
896 bool readonly,
897 struct btrfs_qgroup_inherit *inherit)
898 {
899 struct inode *dir = d_inode(parent->dentry);
900 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
901 struct dentry *dentry;
902 int error;
903
904 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
905 if (error == -EINTR)
906 return error;
907
908 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen);
909 error = PTR_ERR(dentry);
910 if (IS_ERR(dentry))
911 goto out_unlock;
912
913 error = btrfs_may_create(mnt_userns, dir, dentry);
914 if (error)
915 goto out_dput;
916
917 /*
918 * even if this name doesn't exist, we may get hash collisions.
919 * check for them now when we can safely fail
920 */
921 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
922 dir->i_ino, name,
923 namelen);
924 if (error)
925 goto out_dput;
926
927 down_read(&fs_info->subvol_sem);
928
929 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
930 goto out_up_read;
931
932 if (snap_src)
933 error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
934 else
935 error = create_subvol(mnt_userns, dir, dentry, name, namelen, inherit);
936
937 if (!error)
938 fsnotify_mkdir(dir, dentry);
939 out_up_read:
940 up_read(&fs_info->subvol_sem);
941 out_dput:
942 dput(dentry);
943 out_unlock:
944 btrfs_inode_unlock(dir, 0);
945 return error;
946 }
947
btrfs_mksnapshot(const struct path * parent,struct user_namespace * mnt_userns,const char * name,int namelen,struct btrfs_root * root,bool readonly,struct btrfs_qgroup_inherit * inherit)948 static noinline int btrfs_mksnapshot(const struct path *parent,
949 struct user_namespace *mnt_userns,
950 const char *name, int namelen,
951 struct btrfs_root *root,
952 bool readonly,
953 struct btrfs_qgroup_inherit *inherit)
954 {
955 int ret;
956 bool snapshot_force_cow = false;
957
958 /*
959 * Force new buffered writes to reserve space even when NOCOW is
960 * possible. This is to avoid later writeback (running dealloc) to
961 * fallback to COW mode and unexpectedly fail with ENOSPC.
962 */
963 btrfs_drew_read_lock(&root->snapshot_lock);
964
965 ret = btrfs_start_delalloc_snapshot(root, false);
966 if (ret)
967 goto out;
968
969 /*
970 * All previous writes have started writeback in NOCOW mode, so now
971 * we force future writes to fallback to COW mode during snapshot
972 * creation.
973 */
974 atomic_inc(&root->snapshot_force_cow);
975 snapshot_force_cow = true;
976
977 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
978
979 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen,
980 root, readonly, inherit);
981 out:
982 if (snapshot_force_cow)
983 atomic_dec(&root->snapshot_force_cow);
984 btrfs_drew_read_unlock(&root->snapshot_lock);
985 return ret;
986 }
987
988 /*
989 * When we're defragging a range, we don't want to kick it off again
990 * if it is really just waiting for delalloc to send it down.
991 * If we find a nice big extent or delalloc range for the bytes in the
992 * file you want to defrag, we return 0 to let you know to skip this
993 * part of the file
994 */
check_defrag_in_cache(struct inode * inode,u64 offset,u32 thresh)995 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
996 {
997 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
998 struct extent_map *em = NULL;
999 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1000 u64 end;
1001
1002 read_lock(&em_tree->lock);
1003 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
1004 read_unlock(&em_tree->lock);
1005
1006 if (em) {
1007 end = extent_map_end(em);
1008 free_extent_map(em);
1009 if (end - offset > thresh)
1010 return 0;
1011 }
1012 /* if we already have a nice delalloc here, just stop */
1013 thresh /= 2;
1014 end = count_range_bits(io_tree, &offset, offset + thresh,
1015 thresh, EXTENT_DELALLOC, 1);
1016 if (end >= thresh)
1017 return 0;
1018 return 1;
1019 }
1020
1021 /*
1022 * helper function to walk through a file and find extents
1023 * newer than a specific transid, and smaller than thresh.
1024 *
1025 * This is used by the defragging code to find new and small
1026 * extents
1027 */
find_new_extents(struct btrfs_root * root,struct inode * inode,u64 newer_than,u64 * off,u32 thresh)1028 static int find_new_extents(struct btrfs_root *root,
1029 struct inode *inode, u64 newer_than,
1030 u64 *off, u32 thresh)
1031 {
1032 struct btrfs_path *path;
1033 struct btrfs_key min_key;
1034 struct extent_buffer *leaf;
1035 struct btrfs_file_extent_item *extent;
1036 int type;
1037 int ret;
1038 u64 ino = btrfs_ino(BTRFS_I(inode));
1039
1040 path = btrfs_alloc_path();
1041 if (!path)
1042 return -ENOMEM;
1043
1044 min_key.objectid = ino;
1045 min_key.type = BTRFS_EXTENT_DATA_KEY;
1046 min_key.offset = *off;
1047
1048 while (1) {
1049 ret = btrfs_search_forward(root, &min_key, path, newer_than);
1050 if (ret != 0)
1051 goto none;
1052 process_slot:
1053 if (min_key.objectid != ino)
1054 goto none;
1055 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1056 goto none;
1057
1058 leaf = path->nodes[0];
1059 extent = btrfs_item_ptr(leaf, path->slots[0],
1060 struct btrfs_file_extent_item);
1061
1062 type = btrfs_file_extent_type(leaf, extent);
1063 if (type == BTRFS_FILE_EXTENT_REG &&
1064 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1065 check_defrag_in_cache(inode, min_key.offset, thresh)) {
1066 *off = min_key.offset;
1067 btrfs_free_path(path);
1068 return 0;
1069 }
1070
1071 path->slots[0]++;
1072 if (path->slots[0] < btrfs_header_nritems(leaf)) {
1073 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1074 goto process_slot;
1075 }
1076
1077 if (min_key.offset == (u64)-1)
1078 goto none;
1079
1080 min_key.offset++;
1081 btrfs_release_path(path);
1082 }
1083 none:
1084 btrfs_free_path(path);
1085 return -ENOENT;
1086 }
1087
defrag_lookup_extent(struct inode * inode,u64 start)1088 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1089 {
1090 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1091 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1092 struct extent_map *em;
1093 u64 len = PAGE_SIZE;
1094
1095 /*
1096 * hopefully we have this extent in the tree already, try without
1097 * the full extent lock
1098 */
1099 read_lock(&em_tree->lock);
1100 em = lookup_extent_mapping(em_tree, start, len);
1101 read_unlock(&em_tree->lock);
1102
1103 if (!em) {
1104 struct extent_state *cached = NULL;
1105 u64 end = start + len - 1;
1106
1107 /* get the big lock and read metadata off disk */
1108 lock_extent_bits(io_tree, start, end, &cached);
1109 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1110 unlock_extent_cached(io_tree, start, end, &cached);
1111
1112 if (IS_ERR(em))
1113 return NULL;
1114 }
1115
1116 return em;
1117 }
1118
defrag_check_next_extent(struct inode * inode,struct extent_map * em)1119 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1120 {
1121 struct extent_map *next;
1122 bool ret = true;
1123
1124 /* this is the last extent */
1125 if (em->start + em->len >= i_size_read(inode))
1126 return false;
1127
1128 next = defrag_lookup_extent(inode, em->start + em->len);
1129 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1130 ret = false;
1131 else if ((em->block_start + em->block_len == next->block_start) &&
1132 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1133 ret = false;
1134
1135 free_extent_map(next);
1136 return ret;
1137 }
1138
should_defrag_range(struct inode * inode,u64 start,u32 thresh,u64 * last_len,u64 * skip,u64 * defrag_end,int compress)1139 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1140 u64 *last_len, u64 *skip, u64 *defrag_end,
1141 int compress)
1142 {
1143 struct extent_map *em;
1144 int ret = 1;
1145 bool next_mergeable = true;
1146 bool prev_mergeable = true;
1147
1148 /*
1149 * make sure that once we start defragging an extent, we keep on
1150 * defragging it
1151 */
1152 if (start < *defrag_end)
1153 return 1;
1154
1155 *skip = 0;
1156
1157 em = defrag_lookup_extent(inode, start);
1158 if (!em)
1159 return 0;
1160
1161 /* this will cover holes, and inline extents */
1162 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1163 ret = 0;
1164 goto out;
1165 }
1166
1167 if (!*defrag_end)
1168 prev_mergeable = false;
1169
1170 next_mergeable = defrag_check_next_extent(inode, em);
1171 /*
1172 * we hit a real extent, if it is big or the next extent is not a
1173 * real extent, don't bother defragging it
1174 */
1175 if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1176 (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1177 ret = 0;
1178 out:
1179 /*
1180 * last_len ends up being a counter of how many bytes we've defragged.
1181 * every time we choose not to defrag an extent, we reset *last_len
1182 * so that the next tiny extent will force a defrag.
1183 *
1184 * The end result of this is that tiny extents before a single big
1185 * extent will force at least part of that big extent to be defragged.
1186 */
1187 if (ret) {
1188 *defrag_end = extent_map_end(em);
1189 } else {
1190 *last_len = 0;
1191 *skip = extent_map_end(em);
1192 *defrag_end = 0;
1193 }
1194
1195 free_extent_map(em);
1196 return ret;
1197 }
1198
1199 /*
1200 * it doesn't do much good to defrag one or two pages
1201 * at a time. This pulls in a nice chunk of pages
1202 * to COW and defrag.
1203 *
1204 * It also makes sure the delalloc code has enough
1205 * dirty data to avoid making new small extents as part
1206 * of the defrag
1207 *
1208 * It's a good idea to start RA on this range
1209 * before calling this.
1210 */
cluster_pages_for_defrag(struct inode * inode,struct page ** pages,unsigned long start_index,unsigned long num_pages)1211 static int cluster_pages_for_defrag(struct inode *inode,
1212 struct page **pages,
1213 unsigned long start_index,
1214 unsigned long num_pages)
1215 {
1216 unsigned long file_end;
1217 u64 isize = i_size_read(inode);
1218 u64 page_start;
1219 u64 page_end;
1220 u64 page_cnt;
1221 u64 start = (u64)start_index << PAGE_SHIFT;
1222 u64 search_start;
1223 int ret;
1224 int i;
1225 int i_done;
1226 struct btrfs_ordered_extent *ordered;
1227 struct extent_state *cached_state = NULL;
1228 struct extent_io_tree *tree;
1229 struct extent_changeset *data_reserved = NULL;
1230 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1231
1232 file_end = (isize - 1) >> PAGE_SHIFT;
1233 if (!isize || start_index > file_end)
1234 return 0;
1235
1236 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1237
1238 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1239 start, page_cnt << PAGE_SHIFT);
1240 if (ret)
1241 return ret;
1242 i_done = 0;
1243 tree = &BTRFS_I(inode)->io_tree;
1244
1245 /* step one, lock all the pages */
1246 for (i = 0; i < page_cnt; i++) {
1247 struct page *page;
1248 again:
1249 page = find_or_create_page(inode->i_mapping,
1250 start_index + i, mask);
1251 if (!page)
1252 break;
1253
1254 ret = set_page_extent_mapped(page);
1255 if (ret < 0) {
1256 unlock_page(page);
1257 put_page(page);
1258 break;
1259 }
1260
1261 page_start = page_offset(page);
1262 page_end = page_start + PAGE_SIZE - 1;
1263 while (1) {
1264 lock_extent_bits(tree, page_start, page_end,
1265 &cached_state);
1266 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1267 page_start);
1268 unlock_extent_cached(tree, page_start, page_end,
1269 &cached_state);
1270 if (!ordered)
1271 break;
1272
1273 unlock_page(page);
1274 btrfs_start_ordered_extent(ordered, 1);
1275 btrfs_put_ordered_extent(ordered);
1276 lock_page(page);
1277 /*
1278 * we unlocked the page above, so we need check if
1279 * it was released or not.
1280 */
1281 if (page->mapping != inode->i_mapping) {
1282 unlock_page(page);
1283 put_page(page);
1284 goto again;
1285 }
1286 }
1287
1288 if (!PageUptodate(page)) {
1289 btrfs_readpage(NULL, page);
1290 lock_page(page);
1291 if (!PageUptodate(page)) {
1292 unlock_page(page);
1293 put_page(page);
1294 ret = -EIO;
1295 break;
1296 }
1297 }
1298
1299 if (page->mapping != inode->i_mapping) {
1300 unlock_page(page);
1301 put_page(page);
1302 goto again;
1303 }
1304
1305 pages[i] = page;
1306 i_done++;
1307 }
1308 if (!i_done || ret)
1309 goto out;
1310
1311 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1312 goto out;
1313
1314 /*
1315 * so now we have a nice long stream of locked
1316 * and up to date pages, lets wait on them
1317 */
1318 for (i = 0; i < i_done; i++)
1319 wait_on_page_writeback(pages[i]);
1320
1321 page_start = page_offset(pages[0]);
1322 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1323
1324 lock_extent_bits(&BTRFS_I(inode)->io_tree,
1325 page_start, page_end - 1, &cached_state);
1326
1327 /*
1328 * When defragmenting we skip ranges that have holes or inline extents,
1329 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1330 * space. At btrfs_defrag_file(), we check if a range should be defragged
1331 * before locking the inode and then, if it should, we trigger a sync
1332 * page cache readahead - we lock the inode only after that to avoid
1333 * blocking for too long other tasks that possibly want to operate on
1334 * other file ranges. But before we were able to get the inode lock,
1335 * some other task may have punched a hole in the range, or we may have
1336 * now an inline extent, in which case we should not defrag. So check
1337 * for that here, where we have the inode and the range locked, and bail
1338 * out if that happened.
1339 */
1340 search_start = page_start;
1341 while (search_start < page_end) {
1342 struct extent_map *em;
1343
1344 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1345 page_end - search_start);
1346 if (IS_ERR(em)) {
1347 ret = PTR_ERR(em);
1348 goto out_unlock_range;
1349 }
1350 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1351 free_extent_map(em);
1352 /* Ok, 0 means we did not defrag anything */
1353 ret = 0;
1354 goto out_unlock_range;
1355 }
1356 search_start = extent_map_end(em);
1357 free_extent_map(em);
1358 }
1359
1360 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1361 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1362 EXTENT_DEFRAG, 0, 0, &cached_state);
1363
1364 if (i_done != page_cnt) {
1365 spin_lock(&BTRFS_I(inode)->lock);
1366 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1367 spin_unlock(&BTRFS_I(inode)->lock);
1368 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1369 start, (page_cnt - i_done) << PAGE_SHIFT, true);
1370 }
1371
1372
1373 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1374 &cached_state);
1375
1376 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1377 page_start, page_end - 1, &cached_state);
1378
1379 for (i = 0; i < i_done; i++) {
1380 clear_page_dirty_for_io(pages[i]);
1381 ClearPageChecked(pages[i]);
1382 set_page_dirty(pages[i]);
1383 unlock_page(pages[i]);
1384 put_page(pages[i]);
1385 }
1386 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1387 extent_changeset_free(data_reserved);
1388 return i_done;
1389
1390 out_unlock_range:
1391 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1392 page_start, page_end - 1, &cached_state);
1393 out:
1394 for (i = 0; i < i_done; i++) {
1395 unlock_page(pages[i]);
1396 put_page(pages[i]);
1397 }
1398 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1399 start, page_cnt << PAGE_SHIFT, true);
1400 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1401 extent_changeset_free(data_reserved);
1402 return ret;
1403
1404 }
1405
btrfs_defrag_file(struct inode * inode,struct file * file,struct btrfs_ioctl_defrag_range_args * range,u64 newer_than,unsigned long max_to_defrag)1406 int btrfs_defrag_file(struct inode *inode, struct file *file,
1407 struct btrfs_ioctl_defrag_range_args *range,
1408 u64 newer_than, unsigned long max_to_defrag)
1409 {
1410 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1411 struct btrfs_root *root = BTRFS_I(inode)->root;
1412 struct file_ra_state *ra = NULL;
1413 unsigned long last_index;
1414 u64 isize = i_size_read(inode);
1415 u64 last_len = 0;
1416 u64 skip = 0;
1417 u64 defrag_end = 0;
1418 u64 newer_off = range->start;
1419 unsigned long i;
1420 unsigned long ra_index = 0;
1421 int ret;
1422 int defrag_count = 0;
1423 int compress_type = BTRFS_COMPRESS_ZLIB;
1424 u32 extent_thresh = range->extent_thresh;
1425 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1426 unsigned long cluster = max_cluster;
1427 u64 new_align = ~((u64)SZ_128K - 1);
1428 struct page **pages = NULL;
1429 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1430
1431 if (isize == 0)
1432 return 0;
1433
1434 if (range->start >= isize)
1435 return -EINVAL;
1436
1437 if (do_compress) {
1438 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1439 return -EINVAL;
1440 if (range->compress_type)
1441 compress_type = range->compress_type;
1442 }
1443
1444 if (extent_thresh == 0)
1445 extent_thresh = SZ_256K;
1446
1447 /*
1448 * If we were not given a file, allocate a readahead context. As
1449 * readahead is just an optimization, defrag will work without it so
1450 * we don't error out.
1451 */
1452 if (!file) {
1453 ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1454 if (ra)
1455 file_ra_state_init(ra, inode->i_mapping);
1456 } else {
1457 ra = &file->f_ra;
1458 }
1459
1460 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1461 if (!pages) {
1462 ret = -ENOMEM;
1463 goto out_ra;
1464 }
1465
1466 /* find the last page to defrag */
1467 if (range->start + range->len > range->start) {
1468 last_index = min_t(u64, isize - 1,
1469 range->start + range->len - 1) >> PAGE_SHIFT;
1470 } else {
1471 last_index = (isize - 1) >> PAGE_SHIFT;
1472 }
1473
1474 if (newer_than) {
1475 ret = find_new_extents(root, inode, newer_than,
1476 &newer_off, SZ_64K);
1477 if (!ret) {
1478 range->start = newer_off;
1479 /*
1480 * we always align our defrag to help keep
1481 * the extents in the file evenly spaced
1482 */
1483 i = (newer_off & new_align) >> PAGE_SHIFT;
1484 } else
1485 goto out_ra;
1486 } else {
1487 i = range->start >> PAGE_SHIFT;
1488 }
1489 if (!max_to_defrag)
1490 max_to_defrag = last_index - i + 1;
1491
1492 /*
1493 * make writeback starts from i, so the defrag range can be
1494 * written sequentially.
1495 */
1496 if (i < inode->i_mapping->writeback_index)
1497 inode->i_mapping->writeback_index = i;
1498
1499 while (i <= last_index && defrag_count < max_to_defrag &&
1500 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1501 /*
1502 * make sure we stop running if someone unmounts
1503 * the FS
1504 */
1505 if (!(inode->i_sb->s_flags & SB_ACTIVE))
1506 break;
1507
1508 if (btrfs_defrag_cancelled(fs_info)) {
1509 btrfs_debug(fs_info, "defrag_file cancelled");
1510 ret = -EAGAIN;
1511 goto error;
1512 }
1513
1514 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1515 extent_thresh, &last_len, &skip,
1516 &defrag_end, do_compress)){
1517 unsigned long next;
1518 /*
1519 * the should_defrag function tells us how much to skip
1520 * bump our counter by the suggested amount
1521 */
1522 next = DIV_ROUND_UP(skip, PAGE_SIZE);
1523 i = max(i + 1, next);
1524 continue;
1525 }
1526
1527 if (!newer_than) {
1528 cluster = (PAGE_ALIGN(defrag_end) >>
1529 PAGE_SHIFT) - i;
1530 cluster = min(cluster, max_cluster);
1531 } else {
1532 cluster = max_cluster;
1533 }
1534
1535 if (i + cluster > ra_index) {
1536 ra_index = max(i, ra_index);
1537 if (ra)
1538 page_cache_sync_readahead(inode->i_mapping, ra,
1539 file, ra_index, cluster);
1540 ra_index += cluster;
1541 }
1542
1543 btrfs_inode_lock(inode, 0);
1544 if (IS_SWAPFILE(inode)) {
1545 ret = -ETXTBSY;
1546 } else {
1547 if (do_compress)
1548 BTRFS_I(inode)->defrag_compress = compress_type;
1549 ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1550 }
1551 if (ret < 0) {
1552 btrfs_inode_unlock(inode, 0);
1553 goto out_ra;
1554 }
1555
1556 defrag_count += ret;
1557 balance_dirty_pages_ratelimited(inode->i_mapping);
1558 btrfs_inode_unlock(inode, 0);
1559
1560 if (newer_than) {
1561 if (newer_off == (u64)-1)
1562 break;
1563
1564 if (ret > 0)
1565 i += ret;
1566
1567 newer_off = max(newer_off + 1,
1568 (u64)i << PAGE_SHIFT);
1569
1570 ret = find_new_extents(root, inode, newer_than,
1571 &newer_off, SZ_64K);
1572 if (!ret) {
1573 range->start = newer_off;
1574 i = (newer_off & new_align) >> PAGE_SHIFT;
1575 } else {
1576 break;
1577 }
1578 } else {
1579 if (ret > 0) {
1580 i += ret;
1581 last_len += ret << PAGE_SHIFT;
1582 } else {
1583 i++;
1584 last_len = 0;
1585 }
1586 }
1587 }
1588
1589 ret = defrag_count;
1590 error:
1591 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1592 filemap_flush(inode->i_mapping);
1593 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1594 &BTRFS_I(inode)->runtime_flags))
1595 filemap_flush(inode->i_mapping);
1596 }
1597
1598 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1599 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1600 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1601 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1602 }
1603
1604 out_ra:
1605 if (do_compress) {
1606 btrfs_inode_lock(inode, 0);
1607 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1608 btrfs_inode_unlock(inode, 0);
1609 }
1610 if (!file)
1611 kfree(ra);
1612 kfree(pages);
1613 return ret;
1614 }
1615
1616 /*
1617 * Try to start exclusive operation @type or cancel it if it's running.
1618 *
1619 * Return:
1620 * 0 - normal mode, newly claimed op started
1621 * >0 - normal mode, something else is running,
1622 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1623 * ECANCELED - cancel mode, successful cancel
1624 * ENOTCONN - cancel mode, operation not running anymore
1625 */
exclop_start_or_cancel_reloc(struct btrfs_fs_info * fs_info,enum btrfs_exclusive_operation type,bool cancel)1626 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1627 enum btrfs_exclusive_operation type, bool cancel)
1628 {
1629 if (!cancel) {
1630 /* Start normal op */
1631 if (!btrfs_exclop_start(fs_info, type))
1632 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1633 /* Exclusive operation is now claimed */
1634 return 0;
1635 }
1636
1637 /* Cancel running op */
1638 if (btrfs_exclop_start_try_lock(fs_info, type)) {
1639 /*
1640 * This blocks any exclop finish from setting it to NONE, so we
1641 * request cancellation. Either it runs and we will wait for it,
1642 * or it has finished and no waiting will happen.
1643 */
1644 atomic_inc(&fs_info->reloc_cancel_req);
1645 btrfs_exclop_start_unlock(fs_info);
1646
1647 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1648 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1649 TASK_INTERRUPTIBLE);
1650
1651 return -ECANCELED;
1652 }
1653
1654 /* Something else is running or none */
1655 return -ENOTCONN;
1656 }
1657
btrfs_ioctl_resize(struct file * file,void __user * arg)1658 static noinline int btrfs_ioctl_resize(struct file *file,
1659 void __user *arg)
1660 {
1661 struct inode *inode = file_inode(file);
1662 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1663 u64 new_size;
1664 u64 old_size;
1665 u64 devid = 1;
1666 struct btrfs_root *root = BTRFS_I(inode)->root;
1667 struct btrfs_ioctl_vol_args *vol_args;
1668 struct btrfs_trans_handle *trans;
1669 struct btrfs_device *device = NULL;
1670 char *sizestr;
1671 char *retptr;
1672 char *devstr = NULL;
1673 int ret = 0;
1674 int mod = 0;
1675 bool cancel;
1676
1677 if (!capable(CAP_SYS_ADMIN))
1678 return -EPERM;
1679
1680 ret = mnt_want_write_file(file);
1681 if (ret)
1682 return ret;
1683
1684 /*
1685 * Read the arguments before checking exclusivity to be able to
1686 * distinguish regular resize and cancel
1687 */
1688 vol_args = memdup_user(arg, sizeof(*vol_args));
1689 if (IS_ERR(vol_args)) {
1690 ret = PTR_ERR(vol_args);
1691 goto out_drop;
1692 }
1693 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1694 sizestr = vol_args->name;
1695 cancel = (strcmp("cancel", sizestr) == 0);
1696 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1697 if (ret)
1698 goto out_free;
1699 /* Exclusive operation is now claimed */
1700
1701 devstr = strchr(sizestr, ':');
1702 if (devstr) {
1703 sizestr = devstr + 1;
1704 *devstr = '\0';
1705 devstr = vol_args->name;
1706 ret = kstrtoull(devstr, 10, &devid);
1707 if (ret)
1708 goto out_finish;
1709 if (!devid) {
1710 ret = -EINVAL;
1711 goto out_finish;
1712 }
1713 btrfs_info(fs_info, "resizing devid %llu", devid);
1714 }
1715
1716 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1717 if (!device) {
1718 btrfs_info(fs_info, "resizer unable to find device %llu",
1719 devid);
1720 ret = -ENODEV;
1721 goto out_finish;
1722 }
1723
1724 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1725 btrfs_info(fs_info,
1726 "resizer unable to apply on readonly device %llu",
1727 devid);
1728 ret = -EPERM;
1729 goto out_finish;
1730 }
1731
1732 if (!strcmp(sizestr, "max"))
1733 new_size = device->bdev->bd_inode->i_size;
1734 else {
1735 if (sizestr[0] == '-') {
1736 mod = -1;
1737 sizestr++;
1738 } else if (sizestr[0] == '+') {
1739 mod = 1;
1740 sizestr++;
1741 }
1742 new_size = memparse(sizestr, &retptr);
1743 if (*retptr != '\0' || new_size == 0) {
1744 ret = -EINVAL;
1745 goto out_finish;
1746 }
1747 }
1748
1749 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1750 ret = -EPERM;
1751 goto out_finish;
1752 }
1753
1754 old_size = btrfs_device_get_total_bytes(device);
1755
1756 if (mod < 0) {
1757 if (new_size > old_size) {
1758 ret = -EINVAL;
1759 goto out_finish;
1760 }
1761 new_size = old_size - new_size;
1762 } else if (mod > 0) {
1763 if (new_size > ULLONG_MAX - old_size) {
1764 ret = -ERANGE;
1765 goto out_finish;
1766 }
1767 new_size = old_size + new_size;
1768 }
1769
1770 if (new_size < SZ_256M) {
1771 ret = -EINVAL;
1772 goto out_finish;
1773 }
1774 if (new_size > device->bdev->bd_inode->i_size) {
1775 ret = -EFBIG;
1776 goto out_finish;
1777 }
1778
1779 new_size = round_down(new_size, fs_info->sectorsize);
1780
1781 if (new_size > old_size) {
1782 trans = btrfs_start_transaction(root, 0);
1783 if (IS_ERR(trans)) {
1784 ret = PTR_ERR(trans);
1785 goto out_finish;
1786 }
1787 ret = btrfs_grow_device(trans, device, new_size);
1788 btrfs_commit_transaction(trans);
1789 } else if (new_size < old_size) {
1790 ret = btrfs_shrink_device(device, new_size);
1791 } /* equal, nothing need to do */
1792
1793 if (ret == 0 && new_size != old_size)
1794 btrfs_info_in_rcu(fs_info,
1795 "resize device %s (devid %llu) from %llu to %llu",
1796 rcu_str_deref(device->name), device->devid,
1797 old_size, new_size);
1798 out_finish:
1799 btrfs_exclop_finish(fs_info);
1800 out_free:
1801 kfree(vol_args);
1802 out_drop:
1803 mnt_drop_write_file(file);
1804 return ret;
1805 }
1806
__btrfs_ioctl_snap_create(struct file * file,struct user_namespace * mnt_userns,const char * name,unsigned long fd,int subvol,bool readonly,struct btrfs_qgroup_inherit * inherit)1807 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1808 struct user_namespace *mnt_userns,
1809 const char *name, unsigned long fd, int subvol,
1810 bool readonly,
1811 struct btrfs_qgroup_inherit *inherit)
1812 {
1813 int namelen;
1814 int ret = 0;
1815
1816 if (!S_ISDIR(file_inode(file)->i_mode))
1817 return -ENOTDIR;
1818
1819 ret = mnt_want_write_file(file);
1820 if (ret)
1821 goto out;
1822
1823 namelen = strlen(name);
1824 if (strchr(name, '/')) {
1825 ret = -EINVAL;
1826 goto out_drop_write;
1827 }
1828
1829 if (name[0] == '.' &&
1830 (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1831 ret = -EEXIST;
1832 goto out_drop_write;
1833 }
1834
1835 if (subvol) {
1836 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name,
1837 namelen, NULL, readonly, inherit);
1838 } else {
1839 struct fd src = fdget(fd);
1840 struct inode *src_inode;
1841 if (!src.file) {
1842 ret = -EINVAL;
1843 goto out_drop_write;
1844 }
1845
1846 src_inode = file_inode(src.file);
1847 if (src_inode->i_sb != file_inode(file)->i_sb) {
1848 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1849 "Snapshot src from another FS");
1850 ret = -EXDEV;
1851 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) {
1852 /*
1853 * Subvolume creation is not restricted, but snapshots
1854 * are limited to own subvolumes only
1855 */
1856 ret = -EPERM;
1857 } else {
1858 ret = btrfs_mksnapshot(&file->f_path, mnt_userns,
1859 name, namelen,
1860 BTRFS_I(src_inode)->root,
1861 readonly, inherit);
1862 }
1863 fdput(src);
1864 }
1865 out_drop_write:
1866 mnt_drop_write_file(file);
1867 out:
1868 return ret;
1869 }
1870
btrfs_ioctl_snap_create(struct file * file,void __user * arg,int subvol)1871 static noinline int btrfs_ioctl_snap_create(struct file *file,
1872 void __user *arg, int subvol)
1873 {
1874 struct btrfs_ioctl_vol_args *vol_args;
1875 int ret;
1876
1877 if (!S_ISDIR(file_inode(file)->i_mode))
1878 return -ENOTDIR;
1879
1880 vol_args = memdup_user(arg, sizeof(*vol_args));
1881 if (IS_ERR(vol_args))
1882 return PTR_ERR(vol_args);
1883 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1884
1885 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1886 vol_args->name, vol_args->fd, subvol,
1887 false, NULL);
1888
1889 kfree(vol_args);
1890 return ret;
1891 }
1892
btrfs_ioctl_snap_create_v2(struct file * file,void __user * arg,int subvol)1893 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1894 void __user *arg, int subvol)
1895 {
1896 struct btrfs_ioctl_vol_args_v2 *vol_args;
1897 int ret;
1898 bool readonly = false;
1899 struct btrfs_qgroup_inherit *inherit = NULL;
1900
1901 if (!S_ISDIR(file_inode(file)->i_mode))
1902 return -ENOTDIR;
1903
1904 vol_args = memdup_user(arg, sizeof(*vol_args));
1905 if (IS_ERR(vol_args))
1906 return PTR_ERR(vol_args);
1907 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1908
1909 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1910 ret = -EOPNOTSUPP;
1911 goto free_args;
1912 }
1913
1914 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1915 readonly = true;
1916 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1917 u64 nums;
1918
1919 if (vol_args->size < sizeof(*inherit) ||
1920 vol_args->size > PAGE_SIZE) {
1921 ret = -EINVAL;
1922 goto free_args;
1923 }
1924 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1925 if (IS_ERR(inherit)) {
1926 ret = PTR_ERR(inherit);
1927 goto free_args;
1928 }
1929
1930 if (inherit->num_qgroups > PAGE_SIZE ||
1931 inherit->num_ref_copies > PAGE_SIZE ||
1932 inherit->num_excl_copies > PAGE_SIZE) {
1933 ret = -EINVAL;
1934 goto free_inherit;
1935 }
1936
1937 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1938 2 * inherit->num_excl_copies;
1939 if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1940 ret = -EINVAL;
1941 goto free_inherit;
1942 }
1943 }
1944
1945 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file),
1946 vol_args->name, vol_args->fd, subvol,
1947 readonly, inherit);
1948 if (ret)
1949 goto free_inherit;
1950 free_inherit:
1951 kfree(inherit);
1952 free_args:
1953 kfree(vol_args);
1954 return ret;
1955 }
1956
btrfs_ioctl_subvol_getflags(struct file * file,void __user * arg)1957 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1958 void __user *arg)
1959 {
1960 struct inode *inode = file_inode(file);
1961 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1962 struct btrfs_root *root = BTRFS_I(inode)->root;
1963 int ret = 0;
1964 u64 flags = 0;
1965
1966 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1967 return -EINVAL;
1968
1969 down_read(&fs_info->subvol_sem);
1970 if (btrfs_root_readonly(root))
1971 flags |= BTRFS_SUBVOL_RDONLY;
1972 up_read(&fs_info->subvol_sem);
1973
1974 if (copy_to_user(arg, &flags, sizeof(flags)))
1975 ret = -EFAULT;
1976
1977 return ret;
1978 }
1979
btrfs_ioctl_subvol_setflags(struct file * file,void __user * arg)1980 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1981 void __user *arg)
1982 {
1983 struct inode *inode = file_inode(file);
1984 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1985 struct btrfs_root *root = BTRFS_I(inode)->root;
1986 struct btrfs_trans_handle *trans;
1987 u64 root_flags;
1988 u64 flags;
1989 int ret = 0;
1990
1991 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode))
1992 return -EPERM;
1993
1994 ret = mnt_want_write_file(file);
1995 if (ret)
1996 goto out;
1997
1998 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1999 ret = -EINVAL;
2000 goto out_drop_write;
2001 }
2002
2003 if (copy_from_user(&flags, arg, sizeof(flags))) {
2004 ret = -EFAULT;
2005 goto out_drop_write;
2006 }
2007
2008 if (flags & ~BTRFS_SUBVOL_RDONLY) {
2009 ret = -EOPNOTSUPP;
2010 goto out_drop_write;
2011 }
2012
2013 down_write(&fs_info->subvol_sem);
2014
2015 /* nothing to do */
2016 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2017 goto out_drop_sem;
2018
2019 root_flags = btrfs_root_flags(&root->root_item);
2020 if (flags & BTRFS_SUBVOL_RDONLY) {
2021 btrfs_set_root_flags(&root->root_item,
2022 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2023 } else {
2024 /*
2025 * Block RO -> RW transition if this subvolume is involved in
2026 * send
2027 */
2028 spin_lock(&root->root_item_lock);
2029 if (root->send_in_progress == 0) {
2030 btrfs_set_root_flags(&root->root_item,
2031 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2032 spin_unlock(&root->root_item_lock);
2033 } else {
2034 spin_unlock(&root->root_item_lock);
2035 btrfs_warn(fs_info,
2036 "Attempt to set subvolume %llu read-write during send",
2037 root->root_key.objectid);
2038 ret = -EPERM;
2039 goto out_drop_sem;
2040 }
2041 }
2042
2043 trans = btrfs_start_transaction(root, 1);
2044 if (IS_ERR(trans)) {
2045 ret = PTR_ERR(trans);
2046 goto out_reset;
2047 }
2048
2049 ret = btrfs_update_root(trans, fs_info->tree_root,
2050 &root->root_key, &root->root_item);
2051 if (ret < 0) {
2052 btrfs_end_transaction(trans);
2053 goto out_reset;
2054 }
2055
2056 ret = btrfs_commit_transaction(trans);
2057
2058 out_reset:
2059 if (ret)
2060 btrfs_set_root_flags(&root->root_item, root_flags);
2061 out_drop_sem:
2062 up_write(&fs_info->subvol_sem);
2063 out_drop_write:
2064 mnt_drop_write_file(file);
2065 out:
2066 return ret;
2067 }
2068
key_in_sk(struct btrfs_key * key,struct btrfs_ioctl_search_key * sk)2069 static noinline int key_in_sk(struct btrfs_key *key,
2070 struct btrfs_ioctl_search_key *sk)
2071 {
2072 struct btrfs_key test;
2073 int ret;
2074
2075 test.objectid = sk->min_objectid;
2076 test.type = sk->min_type;
2077 test.offset = sk->min_offset;
2078
2079 ret = btrfs_comp_cpu_keys(key, &test);
2080 if (ret < 0)
2081 return 0;
2082
2083 test.objectid = sk->max_objectid;
2084 test.type = sk->max_type;
2085 test.offset = sk->max_offset;
2086
2087 ret = btrfs_comp_cpu_keys(key, &test);
2088 if (ret > 0)
2089 return 0;
2090 return 1;
2091 }
2092
copy_to_sk(struct btrfs_path * path,struct btrfs_key * key,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf,unsigned long * sk_offset,int * num_found)2093 static noinline int copy_to_sk(struct btrfs_path *path,
2094 struct btrfs_key *key,
2095 struct btrfs_ioctl_search_key *sk,
2096 size_t *buf_size,
2097 char __user *ubuf,
2098 unsigned long *sk_offset,
2099 int *num_found)
2100 {
2101 u64 found_transid;
2102 struct extent_buffer *leaf;
2103 struct btrfs_ioctl_search_header sh;
2104 struct btrfs_key test;
2105 unsigned long item_off;
2106 unsigned long item_len;
2107 int nritems;
2108 int i;
2109 int slot;
2110 int ret = 0;
2111
2112 leaf = path->nodes[0];
2113 slot = path->slots[0];
2114 nritems = btrfs_header_nritems(leaf);
2115
2116 if (btrfs_header_generation(leaf) > sk->max_transid) {
2117 i = nritems;
2118 goto advance_key;
2119 }
2120 found_transid = btrfs_header_generation(leaf);
2121
2122 for (i = slot; i < nritems; i++) {
2123 item_off = btrfs_item_ptr_offset(leaf, i);
2124 item_len = btrfs_item_size_nr(leaf, i);
2125
2126 btrfs_item_key_to_cpu(leaf, key, i);
2127 if (!key_in_sk(key, sk))
2128 continue;
2129
2130 if (sizeof(sh) + item_len > *buf_size) {
2131 if (*num_found) {
2132 ret = 1;
2133 goto out;
2134 }
2135
2136 /*
2137 * return one empty item back for v1, which does not
2138 * handle -EOVERFLOW
2139 */
2140
2141 *buf_size = sizeof(sh) + item_len;
2142 item_len = 0;
2143 ret = -EOVERFLOW;
2144 }
2145
2146 if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2147 ret = 1;
2148 goto out;
2149 }
2150
2151 sh.objectid = key->objectid;
2152 sh.offset = key->offset;
2153 sh.type = key->type;
2154 sh.len = item_len;
2155 sh.transid = found_transid;
2156
2157 /*
2158 * Copy search result header. If we fault then loop again so we
2159 * can fault in the pages and -EFAULT there if there's a
2160 * problem. Otherwise we'll fault and then copy the buffer in
2161 * properly this next time through
2162 */
2163 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2164 ret = 0;
2165 goto out;
2166 }
2167
2168 *sk_offset += sizeof(sh);
2169
2170 if (item_len) {
2171 char __user *up = ubuf + *sk_offset;
2172 /*
2173 * Copy the item, same behavior as above, but reset the
2174 * * sk_offset so we copy the full thing again.
2175 */
2176 if (read_extent_buffer_to_user_nofault(leaf, up,
2177 item_off, item_len)) {
2178 ret = 0;
2179 *sk_offset -= sizeof(sh);
2180 goto out;
2181 }
2182
2183 *sk_offset += item_len;
2184 }
2185 (*num_found)++;
2186
2187 if (ret) /* -EOVERFLOW from above */
2188 goto out;
2189
2190 if (*num_found >= sk->nr_items) {
2191 ret = 1;
2192 goto out;
2193 }
2194 }
2195 advance_key:
2196 ret = 0;
2197 test.objectid = sk->max_objectid;
2198 test.type = sk->max_type;
2199 test.offset = sk->max_offset;
2200 if (btrfs_comp_cpu_keys(key, &test) >= 0)
2201 ret = 1;
2202 else if (key->offset < (u64)-1)
2203 key->offset++;
2204 else if (key->type < (u8)-1) {
2205 key->offset = 0;
2206 key->type++;
2207 } else if (key->objectid < (u64)-1) {
2208 key->offset = 0;
2209 key->type = 0;
2210 key->objectid++;
2211 } else
2212 ret = 1;
2213 out:
2214 /*
2215 * 0: all items from this leaf copied, continue with next
2216 * 1: * more items can be copied, but unused buffer is too small
2217 * * all items were found
2218 * Either way, it will stops the loop which iterates to the next
2219 * leaf
2220 * -EOVERFLOW: item was to large for buffer
2221 * -EFAULT: could not copy extent buffer back to userspace
2222 */
2223 return ret;
2224 }
2225
search_ioctl(struct inode * inode,struct btrfs_ioctl_search_key * sk,size_t * buf_size,char __user * ubuf)2226 static noinline int search_ioctl(struct inode *inode,
2227 struct btrfs_ioctl_search_key *sk,
2228 size_t *buf_size,
2229 char __user *ubuf)
2230 {
2231 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2232 struct btrfs_root *root;
2233 struct btrfs_key key;
2234 struct btrfs_path *path;
2235 int ret;
2236 int num_found = 0;
2237 unsigned long sk_offset = 0;
2238
2239 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2240 *buf_size = sizeof(struct btrfs_ioctl_search_header);
2241 return -EOVERFLOW;
2242 }
2243
2244 path = btrfs_alloc_path();
2245 if (!path)
2246 return -ENOMEM;
2247
2248 if (sk->tree_id == 0) {
2249 /* search the root of the inode that was passed */
2250 root = btrfs_grab_root(BTRFS_I(inode)->root);
2251 } else {
2252 root = btrfs_get_fs_root(info, sk->tree_id, true);
2253 if (IS_ERR(root)) {
2254 btrfs_free_path(path);
2255 return PTR_ERR(root);
2256 }
2257 }
2258
2259 key.objectid = sk->min_objectid;
2260 key.type = sk->min_type;
2261 key.offset = sk->min_offset;
2262
2263 while (1) {
2264 ret = fault_in_pages_writeable(ubuf + sk_offset,
2265 *buf_size - sk_offset);
2266 if (ret)
2267 break;
2268
2269 ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2270 if (ret != 0) {
2271 if (ret > 0)
2272 ret = 0;
2273 goto err;
2274 }
2275 ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2276 &sk_offset, &num_found);
2277 btrfs_release_path(path);
2278 if (ret)
2279 break;
2280
2281 }
2282 if (ret > 0)
2283 ret = 0;
2284 err:
2285 sk->nr_items = num_found;
2286 btrfs_put_root(root);
2287 btrfs_free_path(path);
2288 return ret;
2289 }
2290
btrfs_ioctl_tree_search(struct file * file,void __user * argp)2291 static noinline int btrfs_ioctl_tree_search(struct file *file,
2292 void __user *argp)
2293 {
2294 struct btrfs_ioctl_search_args __user *uargs;
2295 struct btrfs_ioctl_search_key sk;
2296 struct inode *inode;
2297 int ret;
2298 size_t buf_size;
2299
2300 if (!capable(CAP_SYS_ADMIN))
2301 return -EPERM;
2302
2303 uargs = (struct btrfs_ioctl_search_args __user *)argp;
2304
2305 if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2306 return -EFAULT;
2307
2308 buf_size = sizeof(uargs->buf);
2309
2310 inode = file_inode(file);
2311 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2312
2313 /*
2314 * In the origin implementation an overflow is handled by returning a
2315 * search header with a len of zero, so reset ret.
2316 */
2317 if (ret == -EOVERFLOW)
2318 ret = 0;
2319
2320 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2321 ret = -EFAULT;
2322 return ret;
2323 }
2324
btrfs_ioctl_tree_search_v2(struct file * file,void __user * argp)2325 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2326 void __user *argp)
2327 {
2328 struct btrfs_ioctl_search_args_v2 __user *uarg;
2329 struct btrfs_ioctl_search_args_v2 args;
2330 struct inode *inode;
2331 int ret;
2332 size_t buf_size;
2333 const size_t buf_limit = SZ_16M;
2334
2335 if (!capable(CAP_SYS_ADMIN))
2336 return -EPERM;
2337
2338 /* copy search header and buffer size */
2339 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2340 if (copy_from_user(&args, uarg, sizeof(args)))
2341 return -EFAULT;
2342
2343 buf_size = args.buf_size;
2344
2345 /* limit result size to 16MB */
2346 if (buf_size > buf_limit)
2347 buf_size = buf_limit;
2348
2349 inode = file_inode(file);
2350 ret = search_ioctl(inode, &args.key, &buf_size,
2351 (char __user *)(&uarg->buf[0]));
2352 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2353 ret = -EFAULT;
2354 else if (ret == -EOVERFLOW &&
2355 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2356 ret = -EFAULT;
2357
2358 return ret;
2359 }
2360
2361 /*
2362 * Search INODE_REFs to identify path name of 'dirid' directory
2363 * in a 'tree_id' tree. and sets path name to 'name'.
2364 */
btrfs_search_path_in_tree(struct btrfs_fs_info * info,u64 tree_id,u64 dirid,char * name)2365 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2366 u64 tree_id, u64 dirid, char *name)
2367 {
2368 struct btrfs_root *root;
2369 struct btrfs_key key;
2370 char *ptr;
2371 int ret = -1;
2372 int slot;
2373 int len;
2374 int total_len = 0;
2375 struct btrfs_inode_ref *iref;
2376 struct extent_buffer *l;
2377 struct btrfs_path *path;
2378
2379 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2380 name[0]='\0';
2381 return 0;
2382 }
2383
2384 path = btrfs_alloc_path();
2385 if (!path)
2386 return -ENOMEM;
2387
2388 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2389
2390 root = btrfs_get_fs_root(info, tree_id, true);
2391 if (IS_ERR(root)) {
2392 ret = PTR_ERR(root);
2393 root = NULL;
2394 goto out;
2395 }
2396
2397 key.objectid = dirid;
2398 key.type = BTRFS_INODE_REF_KEY;
2399 key.offset = (u64)-1;
2400
2401 while (1) {
2402 ret = btrfs_search_backwards(root, &key, path);
2403 if (ret < 0)
2404 goto out;
2405 else if (ret > 0) {
2406 ret = -ENOENT;
2407 goto out;
2408 }
2409
2410 l = path->nodes[0];
2411 slot = path->slots[0];
2412
2413 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2414 len = btrfs_inode_ref_name_len(l, iref);
2415 ptr -= len + 1;
2416 total_len += len + 1;
2417 if (ptr < name) {
2418 ret = -ENAMETOOLONG;
2419 goto out;
2420 }
2421
2422 *(ptr + len) = '/';
2423 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2424
2425 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2426 break;
2427
2428 btrfs_release_path(path);
2429 key.objectid = key.offset;
2430 key.offset = (u64)-1;
2431 dirid = key.objectid;
2432 }
2433 memmove(name, ptr, total_len);
2434 name[total_len] = '\0';
2435 ret = 0;
2436 out:
2437 btrfs_put_root(root);
2438 btrfs_free_path(path);
2439 return ret;
2440 }
2441
btrfs_search_path_in_tree_user(struct user_namespace * mnt_userns,struct inode * inode,struct btrfs_ioctl_ino_lookup_user_args * args)2442 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns,
2443 struct inode *inode,
2444 struct btrfs_ioctl_ino_lookup_user_args *args)
2445 {
2446 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2447 struct super_block *sb = inode->i_sb;
2448 struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2449 u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2450 u64 dirid = args->dirid;
2451 unsigned long item_off;
2452 unsigned long item_len;
2453 struct btrfs_inode_ref *iref;
2454 struct btrfs_root_ref *rref;
2455 struct btrfs_root *root = NULL;
2456 struct btrfs_path *path;
2457 struct btrfs_key key, key2;
2458 struct extent_buffer *leaf;
2459 struct inode *temp_inode;
2460 char *ptr;
2461 int slot;
2462 int len;
2463 int total_len = 0;
2464 int ret;
2465
2466 path = btrfs_alloc_path();
2467 if (!path)
2468 return -ENOMEM;
2469
2470 /*
2471 * If the bottom subvolume does not exist directly under upper_limit,
2472 * construct the path in from the bottom up.
2473 */
2474 if (dirid != upper_limit.objectid) {
2475 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2476
2477 root = btrfs_get_fs_root(fs_info, treeid, true);
2478 if (IS_ERR(root)) {
2479 ret = PTR_ERR(root);
2480 goto out;
2481 }
2482
2483 key.objectid = dirid;
2484 key.type = BTRFS_INODE_REF_KEY;
2485 key.offset = (u64)-1;
2486 while (1) {
2487 ret = btrfs_search_backwards(root, &key, path);
2488 if (ret < 0)
2489 goto out_put;
2490 else if (ret > 0) {
2491 ret = -ENOENT;
2492 goto out_put;
2493 }
2494
2495 leaf = path->nodes[0];
2496 slot = path->slots[0];
2497
2498 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2499 len = btrfs_inode_ref_name_len(leaf, iref);
2500 ptr -= len + 1;
2501 total_len += len + 1;
2502 if (ptr < args->path) {
2503 ret = -ENAMETOOLONG;
2504 goto out_put;
2505 }
2506
2507 *(ptr + len) = '/';
2508 read_extent_buffer(leaf, ptr,
2509 (unsigned long)(iref + 1), len);
2510
2511 /* Check the read+exec permission of this directory */
2512 ret = btrfs_previous_item(root, path, dirid,
2513 BTRFS_INODE_ITEM_KEY);
2514 if (ret < 0) {
2515 goto out_put;
2516 } else if (ret > 0) {
2517 ret = -ENOENT;
2518 goto out_put;
2519 }
2520
2521 leaf = path->nodes[0];
2522 slot = path->slots[0];
2523 btrfs_item_key_to_cpu(leaf, &key2, slot);
2524 if (key2.objectid != dirid) {
2525 ret = -ENOENT;
2526 goto out_put;
2527 }
2528
2529 temp_inode = btrfs_iget(sb, key2.objectid, root);
2530 if (IS_ERR(temp_inode)) {
2531 ret = PTR_ERR(temp_inode);
2532 goto out_put;
2533 }
2534 ret = inode_permission(mnt_userns, temp_inode,
2535 MAY_READ | MAY_EXEC);
2536 iput(temp_inode);
2537 if (ret) {
2538 ret = -EACCES;
2539 goto out_put;
2540 }
2541
2542 if (key.offset == upper_limit.objectid)
2543 break;
2544 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2545 ret = -EACCES;
2546 goto out_put;
2547 }
2548
2549 btrfs_release_path(path);
2550 key.objectid = key.offset;
2551 key.offset = (u64)-1;
2552 dirid = key.objectid;
2553 }
2554
2555 memmove(args->path, ptr, total_len);
2556 args->path[total_len] = '\0';
2557 btrfs_put_root(root);
2558 root = NULL;
2559 btrfs_release_path(path);
2560 }
2561
2562 /* Get the bottom subvolume's name from ROOT_REF */
2563 key.objectid = treeid;
2564 key.type = BTRFS_ROOT_REF_KEY;
2565 key.offset = args->treeid;
2566 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2567 if (ret < 0) {
2568 goto out;
2569 } else if (ret > 0) {
2570 ret = -ENOENT;
2571 goto out;
2572 }
2573
2574 leaf = path->nodes[0];
2575 slot = path->slots[0];
2576 btrfs_item_key_to_cpu(leaf, &key, slot);
2577
2578 item_off = btrfs_item_ptr_offset(leaf, slot);
2579 item_len = btrfs_item_size_nr(leaf, slot);
2580 /* Check if dirid in ROOT_REF corresponds to passed dirid */
2581 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2582 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2583 ret = -EINVAL;
2584 goto out;
2585 }
2586
2587 /* Copy subvolume's name */
2588 item_off += sizeof(struct btrfs_root_ref);
2589 item_len -= sizeof(struct btrfs_root_ref);
2590 read_extent_buffer(leaf, args->name, item_off, item_len);
2591 args->name[item_len] = 0;
2592
2593 out_put:
2594 btrfs_put_root(root);
2595 out:
2596 btrfs_free_path(path);
2597 return ret;
2598 }
2599
btrfs_ioctl_ino_lookup(struct file * file,void __user * argp)2600 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2601 void __user *argp)
2602 {
2603 struct btrfs_ioctl_ino_lookup_args *args;
2604 struct inode *inode;
2605 int ret = 0;
2606
2607 args = memdup_user(argp, sizeof(*args));
2608 if (IS_ERR(args))
2609 return PTR_ERR(args);
2610
2611 inode = file_inode(file);
2612
2613 /*
2614 * Unprivileged query to obtain the containing subvolume root id. The
2615 * path is reset so it's consistent with btrfs_search_path_in_tree.
2616 */
2617 if (args->treeid == 0)
2618 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2619
2620 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2621 args->name[0] = 0;
2622 goto out;
2623 }
2624
2625 if (!capable(CAP_SYS_ADMIN)) {
2626 ret = -EPERM;
2627 goto out;
2628 }
2629
2630 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2631 args->treeid, args->objectid,
2632 args->name);
2633
2634 out:
2635 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2636 ret = -EFAULT;
2637
2638 kfree(args);
2639 return ret;
2640 }
2641
2642 /*
2643 * Version of ino_lookup ioctl (unprivileged)
2644 *
2645 * The main differences from ino_lookup ioctl are:
2646 *
2647 * 1. Read + Exec permission will be checked using inode_permission() during
2648 * path construction. -EACCES will be returned in case of failure.
2649 * 2. Path construction will be stopped at the inode number which corresponds
2650 * to the fd with which this ioctl is called. If constructed path does not
2651 * exist under fd's inode, -EACCES will be returned.
2652 * 3. The name of bottom subvolume is also searched and filled.
2653 */
btrfs_ioctl_ino_lookup_user(struct file * file,void __user * argp)2654 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2655 {
2656 struct btrfs_ioctl_ino_lookup_user_args *args;
2657 struct inode *inode;
2658 int ret;
2659
2660 args = memdup_user(argp, sizeof(*args));
2661 if (IS_ERR(args))
2662 return PTR_ERR(args);
2663
2664 inode = file_inode(file);
2665
2666 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2667 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2668 /*
2669 * The subvolume does not exist under fd with which this is
2670 * called
2671 */
2672 kfree(args);
2673 return -EACCES;
2674 }
2675
2676 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args);
2677
2678 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2679 ret = -EFAULT;
2680
2681 kfree(args);
2682 return ret;
2683 }
2684
2685 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
btrfs_ioctl_get_subvol_info(struct file * file,void __user * argp)2686 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2687 {
2688 struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2689 struct btrfs_fs_info *fs_info;
2690 struct btrfs_root *root;
2691 struct btrfs_path *path;
2692 struct btrfs_key key;
2693 struct btrfs_root_item *root_item;
2694 struct btrfs_root_ref *rref;
2695 struct extent_buffer *leaf;
2696 unsigned long item_off;
2697 unsigned long item_len;
2698 struct inode *inode;
2699 int slot;
2700 int ret = 0;
2701
2702 path = btrfs_alloc_path();
2703 if (!path)
2704 return -ENOMEM;
2705
2706 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2707 if (!subvol_info) {
2708 btrfs_free_path(path);
2709 return -ENOMEM;
2710 }
2711
2712 inode = file_inode(file);
2713 fs_info = BTRFS_I(inode)->root->fs_info;
2714
2715 /* Get root_item of inode's subvolume */
2716 key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2717 root = btrfs_get_fs_root(fs_info, key.objectid, true);
2718 if (IS_ERR(root)) {
2719 ret = PTR_ERR(root);
2720 goto out_free;
2721 }
2722 root_item = &root->root_item;
2723
2724 subvol_info->treeid = key.objectid;
2725
2726 subvol_info->generation = btrfs_root_generation(root_item);
2727 subvol_info->flags = btrfs_root_flags(root_item);
2728
2729 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2730 memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2731 BTRFS_UUID_SIZE);
2732 memcpy(subvol_info->received_uuid, root_item->received_uuid,
2733 BTRFS_UUID_SIZE);
2734
2735 subvol_info->ctransid = btrfs_root_ctransid(root_item);
2736 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2737 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2738
2739 subvol_info->otransid = btrfs_root_otransid(root_item);
2740 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2741 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2742
2743 subvol_info->stransid = btrfs_root_stransid(root_item);
2744 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2745 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2746
2747 subvol_info->rtransid = btrfs_root_rtransid(root_item);
2748 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2749 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2750
2751 if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2752 /* Search root tree for ROOT_BACKREF of this subvolume */
2753 key.type = BTRFS_ROOT_BACKREF_KEY;
2754 key.offset = 0;
2755 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2756 if (ret < 0) {
2757 goto out;
2758 } else if (path->slots[0] >=
2759 btrfs_header_nritems(path->nodes[0])) {
2760 ret = btrfs_next_leaf(fs_info->tree_root, path);
2761 if (ret < 0) {
2762 goto out;
2763 } else if (ret > 0) {
2764 ret = -EUCLEAN;
2765 goto out;
2766 }
2767 }
2768
2769 leaf = path->nodes[0];
2770 slot = path->slots[0];
2771 btrfs_item_key_to_cpu(leaf, &key, slot);
2772 if (key.objectid == subvol_info->treeid &&
2773 key.type == BTRFS_ROOT_BACKREF_KEY) {
2774 subvol_info->parent_id = key.offset;
2775
2776 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2778
2779 item_off = btrfs_item_ptr_offset(leaf, slot)
2780 + sizeof(struct btrfs_root_ref);
2781 item_len = btrfs_item_size_nr(leaf, slot)
2782 - sizeof(struct btrfs_root_ref);
2783 read_extent_buffer(leaf, subvol_info->name,
2784 item_off, item_len);
2785 } else {
2786 ret = -ENOENT;
2787 goto out;
2788 }
2789 }
2790
2791 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2792 ret = -EFAULT;
2793
2794 out:
2795 btrfs_put_root(root);
2796 out_free:
2797 btrfs_free_path(path);
2798 kfree(subvol_info);
2799 return ret;
2800 }
2801
2802 /*
2803 * Return ROOT_REF information of the subvolume containing this inode
2804 * except the subvolume name.
2805 */
btrfs_ioctl_get_subvol_rootref(struct file * file,void __user * argp)2806 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2807 {
2808 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2809 struct btrfs_root_ref *rref;
2810 struct btrfs_root *root;
2811 struct btrfs_path *path;
2812 struct btrfs_key key;
2813 struct extent_buffer *leaf;
2814 struct inode *inode;
2815 u64 objectid;
2816 int slot;
2817 int ret;
2818 u8 found;
2819
2820 path = btrfs_alloc_path();
2821 if (!path)
2822 return -ENOMEM;
2823
2824 rootrefs = memdup_user(argp, sizeof(*rootrefs));
2825 if (IS_ERR(rootrefs)) {
2826 btrfs_free_path(path);
2827 return PTR_ERR(rootrefs);
2828 }
2829
2830 inode = file_inode(file);
2831 root = BTRFS_I(inode)->root->fs_info->tree_root;
2832 objectid = BTRFS_I(inode)->root->root_key.objectid;
2833
2834 key.objectid = objectid;
2835 key.type = BTRFS_ROOT_REF_KEY;
2836 key.offset = rootrefs->min_treeid;
2837 found = 0;
2838
2839 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2840 if (ret < 0) {
2841 goto out;
2842 } else if (path->slots[0] >=
2843 btrfs_header_nritems(path->nodes[0])) {
2844 ret = btrfs_next_leaf(root, path);
2845 if (ret < 0) {
2846 goto out;
2847 } else if (ret > 0) {
2848 ret = -EUCLEAN;
2849 goto out;
2850 }
2851 }
2852 while (1) {
2853 leaf = path->nodes[0];
2854 slot = path->slots[0];
2855
2856 btrfs_item_key_to_cpu(leaf, &key, slot);
2857 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2858 ret = 0;
2859 goto out;
2860 }
2861
2862 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2863 ret = -EOVERFLOW;
2864 goto out;
2865 }
2866
2867 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2868 rootrefs->rootref[found].treeid = key.offset;
2869 rootrefs->rootref[found].dirid =
2870 btrfs_root_ref_dirid(leaf, rref);
2871 found++;
2872
2873 ret = btrfs_next_item(root, path);
2874 if (ret < 0) {
2875 goto out;
2876 } else if (ret > 0) {
2877 ret = -EUCLEAN;
2878 goto out;
2879 }
2880 }
2881
2882 out:
2883 if (!ret || ret == -EOVERFLOW) {
2884 rootrefs->num_items = found;
2885 /* update min_treeid for next search */
2886 if (found)
2887 rootrefs->min_treeid =
2888 rootrefs->rootref[found - 1].treeid + 1;
2889 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2890 ret = -EFAULT;
2891 }
2892
2893 kfree(rootrefs);
2894 btrfs_free_path(path);
2895
2896 return ret;
2897 }
2898
btrfs_ioctl_snap_destroy(struct file * file,void __user * arg,bool destroy_v2)2899 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2900 void __user *arg,
2901 bool destroy_v2)
2902 {
2903 struct dentry *parent = file->f_path.dentry;
2904 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2905 struct dentry *dentry;
2906 struct inode *dir = d_inode(parent);
2907 struct inode *inode;
2908 struct btrfs_root *root = BTRFS_I(dir)->root;
2909 struct btrfs_root *dest = NULL;
2910 struct btrfs_ioctl_vol_args *vol_args = NULL;
2911 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2912 struct user_namespace *mnt_userns = file_mnt_user_ns(file);
2913 char *subvol_name, *subvol_name_ptr = NULL;
2914 int subvol_namelen;
2915 int err = 0;
2916 bool destroy_parent = false;
2917
2918 if (destroy_v2) {
2919 vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2920 if (IS_ERR(vol_args2))
2921 return PTR_ERR(vol_args2);
2922
2923 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2924 err = -EOPNOTSUPP;
2925 goto out;
2926 }
2927
2928 /*
2929 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2930 * name, same as v1 currently does.
2931 */
2932 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2933 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2934 subvol_name = vol_args2->name;
2935
2936 err = mnt_want_write_file(file);
2937 if (err)
2938 goto out;
2939 } else {
2940 struct inode *old_dir;
2941
2942 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2943 err = -EINVAL;
2944 goto out;
2945 }
2946
2947 err = mnt_want_write_file(file);
2948 if (err)
2949 goto out;
2950
2951 dentry = btrfs_get_dentry(fs_info->sb,
2952 BTRFS_FIRST_FREE_OBJECTID,
2953 vol_args2->subvolid, 0, 0);
2954 if (IS_ERR(dentry)) {
2955 err = PTR_ERR(dentry);
2956 goto out_drop_write;
2957 }
2958
2959 /*
2960 * Change the default parent since the subvolume being
2961 * deleted can be outside of the current mount point.
2962 */
2963 parent = btrfs_get_parent(dentry);
2964
2965 /*
2966 * At this point dentry->d_name can point to '/' if the
2967 * subvolume we want to destroy is outsite of the
2968 * current mount point, so we need to release the
2969 * current dentry and execute the lookup to return a new
2970 * one with ->d_name pointing to the
2971 * <mount point>/subvol_name.
2972 */
2973 dput(dentry);
2974 if (IS_ERR(parent)) {
2975 err = PTR_ERR(parent);
2976 goto out_drop_write;
2977 }
2978 old_dir = dir;
2979 dir = d_inode(parent);
2980
2981 /*
2982 * If v2 was used with SPEC_BY_ID, a new parent was
2983 * allocated since the subvolume can be outside of the
2984 * current mount point. Later on we need to release this
2985 * new parent dentry.
2986 */
2987 destroy_parent = true;
2988
2989 /*
2990 * On idmapped mounts, deletion via subvolid is
2991 * restricted to subvolumes that are immediate
2992 * ancestors of the inode referenced by the file
2993 * descriptor in the ioctl. Otherwise the idmapping
2994 * could potentially be abused to delete subvolumes
2995 * anywhere in the filesystem the user wouldn't be able
2996 * to delete without an idmapped mount.
2997 */
2998 if (old_dir != dir && mnt_userns != &init_user_ns) {
2999 err = -EOPNOTSUPP;
3000 goto free_parent;
3001 }
3002
3003 subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
3004 fs_info, vol_args2->subvolid);
3005 if (IS_ERR(subvol_name_ptr)) {
3006 err = PTR_ERR(subvol_name_ptr);
3007 goto free_parent;
3008 }
3009 /* subvol_name_ptr is already nul terminated */
3010 subvol_name = (char *)kbasename(subvol_name_ptr);
3011 }
3012 } else {
3013 vol_args = memdup_user(arg, sizeof(*vol_args));
3014 if (IS_ERR(vol_args))
3015 return PTR_ERR(vol_args);
3016
3017 vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
3018 subvol_name = vol_args->name;
3019
3020 err = mnt_want_write_file(file);
3021 if (err)
3022 goto out;
3023 }
3024
3025 subvol_namelen = strlen(subvol_name);
3026
3027 if (strchr(subvol_name, '/') ||
3028 strncmp(subvol_name, "..", subvol_namelen) == 0) {
3029 err = -EINVAL;
3030 goto free_subvol_name;
3031 }
3032
3033 if (!S_ISDIR(dir->i_mode)) {
3034 err = -ENOTDIR;
3035 goto free_subvol_name;
3036 }
3037
3038 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3039 if (err == -EINTR)
3040 goto free_subvol_name;
3041 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen);
3042 if (IS_ERR(dentry)) {
3043 err = PTR_ERR(dentry);
3044 goto out_unlock_dir;
3045 }
3046
3047 if (d_really_is_negative(dentry)) {
3048 err = -ENOENT;
3049 goto out_dput;
3050 }
3051
3052 inode = d_inode(dentry);
3053 dest = BTRFS_I(inode)->root;
3054 if (!capable(CAP_SYS_ADMIN)) {
3055 /*
3056 * Regular user. Only allow this with a special mount
3057 * option, when the user has write+exec access to the
3058 * subvol root, and when rmdir(2) would have been
3059 * allowed.
3060 *
3061 * Note that this is _not_ check that the subvol is
3062 * empty or doesn't contain data that we wouldn't
3063 * otherwise be able to delete.
3064 *
3065 * Users who want to delete empty subvols should try
3066 * rmdir(2).
3067 */
3068 err = -EPERM;
3069 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3070 goto out_dput;
3071
3072 /*
3073 * Do not allow deletion if the parent dir is the same
3074 * as the dir to be deleted. That means the ioctl
3075 * must be called on the dentry referencing the root
3076 * of the subvol, not a random directory contained
3077 * within it.
3078 */
3079 err = -EINVAL;
3080 if (root == dest)
3081 goto out_dput;
3082
3083 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC);
3084 if (err)
3085 goto out_dput;
3086 }
3087
3088 /* check if subvolume may be deleted by a user */
3089 err = btrfs_may_delete(mnt_userns, dir, dentry, 1);
3090 if (err)
3091 goto out_dput;
3092
3093 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3094 err = -EINVAL;
3095 goto out_dput;
3096 }
3097
3098 btrfs_inode_lock(inode, 0);
3099 err = btrfs_delete_subvolume(dir, dentry);
3100 btrfs_inode_unlock(inode, 0);
3101 if (!err) {
3102 fsnotify_rmdir(dir, dentry);
3103 d_delete(dentry);
3104 }
3105
3106 out_dput:
3107 dput(dentry);
3108 out_unlock_dir:
3109 btrfs_inode_unlock(dir, 0);
3110 free_subvol_name:
3111 kfree(subvol_name_ptr);
3112 free_parent:
3113 if (destroy_parent)
3114 dput(parent);
3115 out_drop_write:
3116 mnt_drop_write_file(file);
3117 out:
3118 kfree(vol_args2);
3119 kfree(vol_args);
3120 return err;
3121 }
3122
btrfs_ioctl_defrag(struct file * file,void __user * argp)3123 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3124 {
3125 struct inode *inode = file_inode(file);
3126 struct btrfs_root *root = BTRFS_I(inode)->root;
3127 struct btrfs_ioctl_defrag_range_args range = {0};
3128 int ret;
3129
3130 ret = mnt_want_write_file(file);
3131 if (ret)
3132 return ret;
3133
3134 if (btrfs_root_readonly(root)) {
3135 ret = -EROFS;
3136 goto out;
3137 }
3138
3139 /* Subpage defrag will be supported in later commits */
3140 if (root->fs_info->sectorsize < PAGE_SIZE) {
3141 ret = -ENOTTY;
3142 goto out;
3143 }
3144
3145 switch (inode->i_mode & S_IFMT) {
3146 case S_IFDIR:
3147 if (!capable(CAP_SYS_ADMIN)) {
3148 ret = -EPERM;
3149 goto out;
3150 }
3151 ret = btrfs_defrag_root(root);
3152 break;
3153 case S_IFREG:
3154 /*
3155 * Note that this does not check the file descriptor for write
3156 * access. This prevents defragmenting executables that are
3157 * running and allows defrag on files open in read-only mode.
3158 */
3159 if (!capable(CAP_SYS_ADMIN) &&
3160 inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3161 ret = -EPERM;
3162 goto out;
3163 }
3164
3165 if (argp) {
3166 if (copy_from_user(&range, argp, sizeof(range))) {
3167 ret = -EFAULT;
3168 goto out;
3169 }
3170 /* compression requires us to start the IO */
3171 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3172 range.flags |= BTRFS_DEFRAG_RANGE_START_IO;
3173 range.extent_thresh = (u32)-1;
3174 }
3175 } else {
3176 /* the rest are all set to zero by kzalloc */
3177 range.len = (u64)-1;
3178 }
3179 ret = btrfs_defrag_file(file_inode(file), file,
3180 &range, BTRFS_OLDEST_GENERATION, 0);
3181 if (ret > 0)
3182 ret = 0;
3183 break;
3184 default:
3185 ret = -EINVAL;
3186 }
3187 out:
3188 mnt_drop_write_file(file);
3189 return ret;
3190 }
3191
btrfs_ioctl_add_dev(struct btrfs_fs_info * fs_info,void __user * arg)3192 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3193 {
3194 struct btrfs_ioctl_vol_args *vol_args;
3195 int ret;
3196
3197 if (!capable(CAP_SYS_ADMIN))
3198 return -EPERM;
3199
3200 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3201 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3202
3203 vol_args = memdup_user(arg, sizeof(*vol_args));
3204 if (IS_ERR(vol_args)) {
3205 ret = PTR_ERR(vol_args);
3206 goto out;
3207 }
3208
3209 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3210 ret = btrfs_init_new_device(fs_info, vol_args->name);
3211
3212 if (!ret)
3213 btrfs_info(fs_info, "disk added %s", vol_args->name);
3214
3215 kfree(vol_args);
3216 out:
3217 btrfs_exclop_finish(fs_info);
3218 return ret;
3219 }
3220
btrfs_ioctl_rm_dev_v2(struct file * file,void __user * arg)3221 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3222 {
3223 struct inode *inode = file_inode(file);
3224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3225 struct btrfs_ioctl_vol_args_v2 *vol_args;
3226 struct block_device *bdev = NULL;
3227 fmode_t mode;
3228 int ret;
3229 bool cancel = false;
3230
3231 if (!capable(CAP_SYS_ADMIN))
3232 return -EPERM;
3233
3234 ret = mnt_want_write_file(file);
3235 if (ret)
3236 return ret;
3237
3238 vol_args = memdup_user(arg, sizeof(*vol_args));
3239 if (IS_ERR(vol_args)) {
3240 ret = PTR_ERR(vol_args);
3241 goto err_drop;
3242 }
3243
3244 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3245 ret = -EOPNOTSUPP;
3246 goto out;
3247 }
3248 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3249 if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3250 strcmp("cancel", vol_args->name) == 0)
3251 cancel = true;
3252
3253 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3254 cancel);
3255 if (ret)
3256 goto out;
3257 /* Exclusive operation is now claimed */
3258
3259 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3260 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid, &bdev, &mode);
3261 else
3262 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3263
3264 btrfs_exclop_finish(fs_info);
3265
3266 if (!ret) {
3267 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3268 btrfs_info(fs_info, "device deleted: id %llu",
3269 vol_args->devid);
3270 else
3271 btrfs_info(fs_info, "device deleted: %s",
3272 vol_args->name);
3273 }
3274 out:
3275 kfree(vol_args);
3276 err_drop:
3277 mnt_drop_write_file(file);
3278 if (bdev)
3279 blkdev_put(bdev, mode);
3280 return ret;
3281 }
3282
btrfs_ioctl_rm_dev(struct file * file,void __user * arg)3283 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3284 {
3285 struct inode *inode = file_inode(file);
3286 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3287 struct btrfs_ioctl_vol_args *vol_args;
3288 struct block_device *bdev = NULL;
3289 fmode_t mode;
3290 int ret;
3291 bool cancel;
3292
3293 if (!capable(CAP_SYS_ADMIN))
3294 return -EPERM;
3295
3296 ret = mnt_want_write_file(file);
3297 if (ret)
3298 return ret;
3299
3300 vol_args = memdup_user(arg, sizeof(*vol_args));
3301 if (IS_ERR(vol_args)) {
3302 ret = PTR_ERR(vol_args);
3303 goto out_drop_write;
3304 }
3305 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3306 cancel = (strcmp("cancel", vol_args->name) == 0);
3307
3308 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3309 cancel);
3310 if (ret == 0) {
3311 ret = btrfs_rm_device(fs_info, vol_args->name, 0, &bdev, &mode);
3312 if (!ret)
3313 btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3314 btrfs_exclop_finish(fs_info);
3315 }
3316
3317 kfree(vol_args);
3318 out_drop_write:
3319 mnt_drop_write_file(file);
3320 if (bdev)
3321 blkdev_put(bdev, mode);
3322 return ret;
3323 }
3324
btrfs_ioctl_fs_info(struct btrfs_fs_info * fs_info,void __user * arg)3325 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3326 void __user *arg)
3327 {
3328 struct btrfs_ioctl_fs_info_args *fi_args;
3329 struct btrfs_device *device;
3330 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3331 u64 flags_in;
3332 int ret = 0;
3333
3334 fi_args = memdup_user(arg, sizeof(*fi_args));
3335 if (IS_ERR(fi_args))
3336 return PTR_ERR(fi_args);
3337
3338 flags_in = fi_args->flags;
3339 memset(fi_args, 0, sizeof(*fi_args));
3340
3341 rcu_read_lock();
3342 fi_args->num_devices = fs_devices->num_devices;
3343
3344 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3345 if (device->devid > fi_args->max_id)
3346 fi_args->max_id = device->devid;
3347 }
3348 rcu_read_unlock();
3349
3350 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3351 fi_args->nodesize = fs_info->nodesize;
3352 fi_args->sectorsize = fs_info->sectorsize;
3353 fi_args->clone_alignment = fs_info->sectorsize;
3354
3355 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3356 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3357 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3358 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3359 }
3360
3361 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3362 fi_args->generation = fs_info->generation;
3363 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3364 }
3365
3366 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3367 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3368 sizeof(fi_args->metadata_uuid));
3369 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3370 }
3371
3372 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3373 ret = -EFAULT;
3374
3375 kfree(fi_args);
3376 return ret;
3377 }
3378
btrfs_ioctl_dev_info(struct btrfs_fs_info * fs_info,void __user * arg)3379 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3380 void __user *arg)
3381 {
3382 struct btrfs_ioctl_dev_info_args *di_args;
3383 struct btrfs_device *dev;
3384 int ret = 0;
3385 char *s_uuid = NULL;
3386
3387 di_args = memdup_user(arg, sizeof(*di_args));
3388 if (IS_ERR(di_args))
3389 return PTR_ERR(di_args);
3390
3391 if (!btrfs_is_empty_uuid(di_args->uuid))
3392 s_uuid = di_args->uuid;
3393
3394 rcu_read_lock();
3395 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3396 NULL);
3397
3398 if (!dev) {
3399 ret = -ENODEV;
3400 goto out;
3401 }
3402
3403 di_args->devid = dev->devid;
3404 di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3405 di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3406 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3407 if (dev->name) {
3408 strncpy(di_args->path, rcu_str_deref(dev->name),
3409 sizeof(di_args->path) - 1);
3410 di_args->path[sizeof(di_args->path) - 1] = 0;
3411 } else {
3412 di_args->path[0] = '\0';
3413 }
3414
3415 out:
3416 rcu_read_unlock();
3417 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3418 ret = -EFAULT;
3419
3420 kfree(di_args);
3421 return ret;
3422 }
3423
btrfs_ioctl_default_subvol(struct file * file,void __user * argp)3424 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3425 {
3426 struct inode *inode = file_inode(file);
3427 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3428 struct btrfs_root *root = BTRFS_I(inode)->root;
3429 struct btrfs_root *new_root;
3430 struct btrfs_dir_item *di;
3431 struct btrfs_trans_handle *trans;
3432 struct btrfs_path *path = NULL;
3433 struct btrfs_disk_key disk_key;
3434 u64 objectid = 0;
3435 u64 dir_id;
3436 int ret;
3437
3438 if (!capable(CAP_SYS_ADMIN))
3439 return -EPERM;
3440
3441 ret = mnt_want_write_file(file);
3442 if (ret)
3443 return ret;
3444
3445 if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3446 ret = -EFAULT;
3447 goto out;
3448 }
3449
3450 if (!objectid)
3451 objectid = BTRFS_FS_TREE_OBJECTID;
3452
3453 new_root = btrfs_get_fs_root(fs_info, objectid, true);
3454 if (IS_ERR(new_root)) {
3455 ret = PTR_ERR(new_root);
3456 goto out;
3457 }
3458 if (!is_fstree(new_root->root_key.objectid)) {
3459 ret = -ENOENT;
3460 goto out_free;
3461 }
3462
3463 path = btrfs_alloc_path();
3464 if (!path) {
3465 ret = -ENOMEM;
3466 goto out_free;
3467 }
3468
3469 trans = btrfs_start_transaction(root, 1);
3470 if (IS_ERR(trans)) {
3471 ret = PTR_ERR(trans);
3472 goto out_free;
3473 }
3474
3475 dir_id = btrfs_super_root_dir(fs_info->super_copy);
3476 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3477 dir_id, "default", 7, 1);
3478 if (IS_ERR_OR_NULL(di)) {
3479 btrfs_release_path(path);
3480 btrfs_end_transaction(trans);
3481 btrfs_err(fs_info,
3482 "Umm, you don't have the default diritem, this isn't going to work");
3483 ret = -ENOENT;
3484 goto out_free;
3485 }
3486
3487 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3488 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3489 btrfs_mark_buffer_dirty(path->nodes[0]);
3490 btrfs_release_path(path);
3491
3492 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3493 btrfs_end_transaction(trans);
3494 out_free:
3495 btrfs_put_root(new_root);
3496 btrfs_free_path(path);
3497 out:
3498 mnt_drop_write_file(file);
3499 return ret;
3500 }
3501
get_block_group_info(struct list_head * groups_list,struct btrfs_ioctl_space_info * space)3502 static void get_block_group_info(struct list_head *groups_list,
3503 struct btrfs_ioctl_space_info *space)
3504 {
3505 struct btrfs_block_group *block_group;
3506
3507 space->total_bytes = 0;
3508 space->used_bytes = 0;
3509 space->flags = 0;
3510 list_for_each_entry(block_group, groups_list, list) {
3511 space->flags = block_group->flags;
3512 space->total_bytes += block_group->length;
3513 space->used_bytes += block_group->used;
3514 }
3515 }
3516
btrfs_ioctl_space_info(struct btrfs_fs_info * fs_info,void __user * arg)3517 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3518 void __user *arg)
3519 {
3520 struct btrfs_ioctl_space_args space_args;
3521 struct btrfs_ioctl_space_info space;
3522 struct btrfs_ioctl_space_info *dest;
3523 struct btrfs_ioctl_space_info *dest_orig;
3524 struct btrfs_ioctl_space_info __user *user_dest;
3525 struct btrfs_space_info *info;
3526 static const u64 types[] = {
3527 BTRFS_BLOCK_GROUP_DATA,
3528 BTRFS_BLOCK_GROUP_SYSTEM,
3529 BTRFS_BLOCK_GROUP_METADATA,
3530 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3531 };
3532 int num_types = 4;
3533 int alloc_size;
3534 int ret = 0;
3535 u64 slot_count = 0;
3536 int i, c;
3537
3538 if (copy_from_user(&space_args,
3539 (struct btrfs_ioctl_space_args __user *)arg,
3540 sizeof(space_args)))
3541 return -EFAULT;
3542
3543 for (i = 0; i < num_types; i++) {
3544 struct btrfs_space_info *tmp;
3545
3546 info = NULL;
3547 list_for_each_entry(tmp, &fs_info->space_info, list) {
3548 if (tmp->flags == types[i]) {
3549 info = tmp;
3550 break;
3551 }
3552 }
3553
3554 if (!info)
3555 continue;
3556
3557 down_read(&info->groups_sem);
3558 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3559 if (!list_empty(&info->block_groups[c]))
3560 slot_count++;
3561 }
3562 up_read(&info->groups_sem);
3563 }
3564
3565 /*
3566 * Global block reserve, exported as a space_info
3567 */
3568 slot_count++;
3569
3570 /* space_slots == 0 means they are asking for a count */
3571 if (space_args.space_slots == 0) {
3572 space_args.total_spaces = slot_count;
3573 goto out;
3574 }
3575
3576 slot_count = min_t(u64, space_args.space_slots, slot_count);
3577
3578 alloc_size = sizeof(*dest) * slot_count;
3579
3580 /* we generally have at most 6 or so space infos, one for each raid
3581 * level. So, a whole page should be more than enough for everyone
3582 */
3583 if (alloc_size > PAGE_SIZE)
3584 return -ENOMEM;
3585
3586 space_args.total_spaces = 0;
3587 dest = kmalloc(alloc_size, GFP_KERNEL);
3588 if (!dest)
3589 return -ENOMEM;
3590 dest_orig = dest;
3591
3592 /* now we have a buffer to copy into */
3593 for (i = 0; i < num_types; i++) {
3594 struct btrfs_space_info *tmp;
3595
3596 if (!slot_count)
3597 break;
3598
3599 info = NULL;
3600 list_for_each_entry(tmp, &fs_info->space_info, list) {
3601 if (tmp->flags == types[i]) {
3602 info = tmp;
3603 break;
3604 }
3605 }
3606
3607 if (!info)
3608 continue;
3609 down_read(&info->groups_sem);
3610 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3611 if (!list_empty(&info->block_groups[c])) {
3612 get_block_group_info(&info->block_groups[c],
3613 &space);
3614 memcpy(dest, &space, sizeof(space));
3615 dest++;
3616 space_args.total_spaces++;
3617 slot_count--;
3618 }
3619 if (!slot_count)
3620 break;
3621 }
3622 up_read(&info->groups_sem);
3623 }
3624
3625 /*
3626 * Add global block reserve
3627 */
3628 if (slot_count) {
3629 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3630
3631 spin_lock(&block_rsv->lock);
3632 space.total_bytes = block_rsv->size;
3633 space.used_bytes = block_rsv->size - block_rsv->reserved;
3634 spin_unlock(&block_rsv->lock);
3635 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3636 memcpy(dest, &space, sizeof(space));
3637 space_args.total_spaces++;
3638 }
3639
3640 user_dest = (struct btrfs_ioctl_space_info __user *)
3641 (arg + sizeof(struct btrfs_ioctl_space_args));
3642
3643 if (copy_to_user(user_dest, dest_orig, alloc_size))
3644 ret = -EFAULT;
3645
3646 kfree(dest_orig);
3647 out:
3648 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3649 ret = -EFAULT;
3650
3651 return ret;
3652 }
3653
btrfs_ioctl_start_sync(struct btrfs_root * root,void __user * argp)3654 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3655 void __user *argp)
3656 {
3657 struct btrfs_trans_handle *trans;
3658 u64 transid;
3659 int ret;
3660
3661 trans = btrfs_attach_transaction_barrier(root);
3662 if (IS_ERR(trans)) {
3663 if (PTR_ERR(trans) != -ENOENT)
3664 return PTR_ERR(trans);
3665
3666 /* No running transaction, don't bother */
3667 transid = root->fs_info->last_trans_committed;
3668 goto out;
3669 }
3670 transid = trans->transid;
3671 ret = btrfs_commit_transaction_async(trans);
3672 if (ret) {
3673 btrfs_end_transaction(trans);
3674 return ret;
3675 }
3676 out:
3677 if (argp)
3678 if (copy_to_user(argp, &transid, sizeof(transid)))
3679 return -EFAULT;
3680 return 0;
3681 }
3682
btrfs_ioctl_wait_sync(struct btrfs_fs_info * fs_info,void __user * argp)3683 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3684 void __user *argp)
3685 {
3686 u64 transid;
3687
3688 if (argp) {
3689 if (copy_from_user(&transid, argp, sizeof(transid)))
3690 return -EFAULT;
3691 } else {
3692 transid = 0; /* current trans */
3693 }
3694 return btrfs_wait_for_commit(fs_info, transid);
3695 }
3696
btrfs_ioctl_scrub(struct file * file,void __user * arg)3697 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3698 {
3699 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3700 struct btrfs_ioctl_scrub_args *sa;
3701 int ret;
3702
3703 if (!capable(CAP_SYS_ADMIN))
3704 return -EPERM;
3705
3706 sa = memdup_user(arg, sizeof(*sa));
3707 if (IS_ERR(sa))
3708 return PTR_ERR(sa);
3709
3710 if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3711 ret = mnt_want_write_file(file);
3712 if (ret)
3713 goto out;
3714 }
3715
3716 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3717 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3718 0);
3719
3720 /*
3721 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3722 * error. This is important as it allows user space to know how much
3723 * progress scrub has done. For example, if scrub is canceled we get
3724 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3725 * space. Later user space can inspect the progress from the structure
3726 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3727 * previously (btrfs-progs does this).
3728 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3729 * then return -EFAULT to signal the structure was not copied or it may
3730 * be corrupt and unreliable due to a partial copy.
3731 */
3732 if (copy_to_user(arg, sa, sizeof(*sa)))
3733 ret = -EFAULT;
3734
3735 if (!(sa->flags & BTRFS_SCRUB_READONLY))
3736 mnt_drop_write_file(file);
3737 out:
3738 kfree(sa);
3739 return ret;
3740 }
3741
btrfs_ioctl_scrub_cancel(struct btrfs_fs_info * fs_info)3742 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3743 {
3744 if (!capable(CAP_SYS_ADMIN))
3745 return -EPERM;
3746
3747 return btrfs_scrub_cancel(fs_info);
3748 }
3749
btrfs_ioctl_scrub_progress(struct btrfs_fs_info * fs_info,void __user * arg)3750 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3751 void __user *arg)
3752 {
3753 struct btrfs_ioctl_scrub_args *sa;
3754 int ret;
3755
3756 if (!capable(CAP_SYS_ADMIN))
3757 return -EPERM;
3758
3759 sa = memdup_user(arg, sizeof(*sa));
3760 if (IS_ERR(sa))
3761 return PTR_ERR(sa);
3762
3763 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3764
3765 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3766 ret = -EFAULT;
3767
3768 kfree(sa);
3769 return ret;
3770 }
3771
btrfs_ioctl_get_dev_stats(struct btrfs_fs_info * fs_info,void __user * arg)3772 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3773 void __user *arg)
3774 {
3775 struct btrfs_ioctl_get_dev_stats *sa;
3776 int ret;
3777
3778 sa = memdup_user(arg, sizeof(*sa));
3779 if (IS_ERR(sa))
3780 return PTR_ERR(sa);
3781
3782 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3783 kfree(sa);
3784 return -EPERM;
3785 }
3786
3787 ret = btrfs_get_dev_stats(fs_info, sa);
3788
3789 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3790 ret = -EFAULT;
3791
3792 kfree(sa);
3793 return ret;
3794 }
3795
btrfs_ioctl_dev_replace(struct btrfs_fs_info * fs_info,void __user * arg)3796 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3797 void __user *arg)
3798 {
3799 struct btrfs_ioctl_dev_replace_args *p;
3800 int ret;
3801
3802 if (!capable(CAP_SYS_ADMIN))
3803 return -EPERM;
3804
3805 p = memdup_user(arg, sizeof(*p));
3806 if (IS_ERR(p))
3807 return PTR_ERR(p);
3808
3809 switch (p->cmd) {
3810 case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3811 if (sb_rdonly(fs_info->sb)) {
3812 ret = -EROFS;
3813 goto out;
3814 }
3815 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3816 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3817 } else {
3818 ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3819 btrfs_exclop_finish(fs_info);
3820 }
3821 break;
3822 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3823 btrfs_dev_replace_status(fs_info, p);
3824 ret = 0;
3825 break;
3826 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3827 p->result = btrfs_dev_replace_cancel(fs_info);
3828 ret = 0;
3829 break;
3830 default:
3831 ret = -EINVAL;
3832 break;
3833 }
3834
3835 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3836 ret = -EFAULT;
3837 out:
3838 kfree(p);
3839 return ret;
3840 }
3841
btrfs_ioctl_ino_to_path(struct btrfs_root * root,void __user * arg)3842 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3843 {
3844 int ret = 0;
3845 int i;
3846 u64 rel_ptr;
3847 int size;
3848 struct btrfs_ioctl_ino_path_args *ipa = NULL;
3849 struct inode_fs_paths *ipath = NULL;
3850 struct btrfs_path *path;
3851
3852 if (!capable(CAP_DAC_READ_SEARCH))
3853 return -EPERM;
3854
3855 path = btrfs_alloc_path();
3856 if (!path) {
3857 ret = -ENOMEM;
3858 goto out;
3859 }
3860
3861 ipa = memdup_user(arg, sizeof(*ipa));
3862 if (IS_ERR(ipa)) {
3863 ret = PTR_ERR(ipa);
3864 ipa = NULL;
3865 goto out;
3866 }
3867
3868 size = min_t(u32, ipa->size, 4096);
3869 ipath = init_ipath(size, root, path);
3870 if (IS_ERR(ipath)) {
3871 ret = PTR_ERR(ipath);
3872 ipath = NULL;
3873 goto out;
3874 }
3875
3876 ret = paths_from_inode(ipa->inum, ipath);
3877 if (ret < 0)
3878 goto out;
3879
3880 for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3881 rel_ptr = ipath->fspath->val[i] -
3882 (u64)(unsigned long)ipath->fspath->val;
3883 ipath->fspath->val[i] = rel_ptr;
3884 }
3885
3886 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3887 ipath->fspath, size);
3888 if (ret) {
3889 ret = -EFAULT;
3890 goto out;
3891 }
3892
3893 out:
3894 btrfs_free_path(path);
3895 free_ipath(ipath);
3896 kfree(ipa);
3897
3898 return ret;
3899 }
3900
build_ino_list(u64 inum,u64 offset,u64 root,void * ctx)3901 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3902 {
3903 struct btrfs_data_container *inodes = ctx;
3904 const size_t c = 3 * sizeof(u64);
3905
3906 if (inodes->bytes_left >= c) {
3907 inodes->bytes_left -= c;
3908 inodes->val[inodes->elem_cnt] = inum;
3909 inodes->val[inodes->elem_cnt + 1] = offset;
3910 inodes->val[inodes->elem_cnt + 2] = root;
3911 inodes->elem_cnt += 3;
3912 } else {
3913 inodes->bytes_missing += c - inodes->bytes_left;
3914 inodes->bytes_left = 0;
3915 inodes->elem_missed += 3;
3916 }
3917
3918 return 0;
3919 }
3920
btrfs_ioctl_logical_to_ino(struct btrfs_fs_info * fs_info,void __user * arg,int version)3921 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3922 void __user *arg, int version)
3923 {
3924 int ret = 0;
3925 int size;
3926 struct btrfs_ioctl_logical_ino_args *loi;
3927 struct btrfs_data_container *inodes = NULL;
3928 struct btrfs_path *path = NULL;
3929 bool ignore_offset;
3930
3931 if (!capable(CAP_SYS_ADMIN))
3932 return -EPERM;
3933
3934 loi = memdup_user(arg, sizeof(*loi));
3935 if (IS_ERR(loi))
3936 return PTR_ERR(loi);
3937
3938 if (version == 1) {
3939 ignore_offset = false;
3940 size = min_t(u32, loi->size, SZ_64K);
3941 } else {
3942 /* All reserved bits must be 0 for now */
3943 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3944 ret = -EINVAL;
3945 goto out_loi;
3946 }
3947 /* Only accept flags we have defined so far */
3948 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3949 ret = -EINVAL;
3950 goto out_loi;
3951 }
3952 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3953 size = min_t(u32, loi->size, SZ_16M);
3954 }
3955
3956 path = btrfs_alloc_path();
3957 if (!path) {
3958 ret = -ENOMEM;
3959 goto out;
3960 }
3961
3962 inodes = init_data_container(size);
3963 if (IS_ERR(inodes)) {
3964 ret = PTR_ERR(inodes);
3965 inodes = NULL;
3966 goto out;
3967 }
3968
3969 ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3970 build_ino_list, inodes, ignore_offset);
3971 if (ret == -EINVAL)
3972 ret = -ENOENT;
3973 if (ret < 0)
3974 goto out;
3975
3976 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3977 size);
3978 if (ret)
3979 ret = -EFAULT;
3980
3981 out:
3982 btrfs_free_path(path);
3983 kvfree(inodes);
3984 out_loi:
3985 kfree(loi);
3986
3987 return ret;
3988 }
3989
btrfs_update_ioctl_balance_args(struct btrfs_fs_info * fs_info,struct btrfs_ioctl_balance_args * bargs)3990 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3991 struct btrfs_ioctl_balance_args *bargs)
3992 {
3993 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3994
3995 bargs->flags = bctl->flags;
3996
3997 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3998 bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3999 if (atomic_read(&fs_info->balance_pause_req))
4000 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4001 if (atomic_read(&fs_info->balance_cancel_req))
4002 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4003
4004 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4005 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4006 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4007
4008 spin_lock(&fs_info->balance_lock);
4009 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4010 spin_unlock(&fs_info->balance_lock);
4011 }
4012
btrfs_ioctl_balance(struct file * file,void __user * arg)4013 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4014 {
4015 struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4016 struct btrfs_fs_info *fs_info = root->fs_info;
4017 struct btrfs_ioctl_balance_args *bargs;
4018 struct btrfs_balance_control *bctl;
4019 bool need_unlock; /* for mut. excl. ops lock */
4020 int ret;
4021
4022 if (!capable(CAP_SYS_ADMIN))
4023 return -EPERM;
4024
4025 ret = mnt_want_write_file(file);
4026 if (ret)
4027 return ret;
4028
4029 again:
4030 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4031 mutex_lock(&fs_info->balance_mutex);
4032 need_unlock = true;
4033 goto locked;
4034 }
4035
4036 /*
4037 * mut. excl. ops lock is locked. Three possibilities:
4038 * (1) some other op is running
4039 * (2) balance is running
4040 * (3) balance is paused -- special case (think resume)
4041 */
4042 mutex_lock(&fs_info->balance_mutex);
4043 if (fs_info->balance_ctl) {
4044 /* this is either (2) or (3) */
4045 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4046 mutex_unlock(&fs_info->balance_mutex);
4047 /*
4048 * Lock released to allow other waiters to continue,
4049 * we'll reexamine the status again.
4050 */
4051 mutex_lock(&fs_info->balance_mutex);
4052
4053 if (fs_info->balance_ctl &&
4054 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4055 /* this is (3) */
4056 need_unlock = false;
4057 goto locked;
4058 }
4059
4060 mutex_unlock(&fs_info->balance_mutex);
4061 goto again;
4062 } else {
4063 /* this is (2) */
4064 mutex_unlock(&fs_info->balance_mutex);
4065 ret = -EINPROGRESS;
4066 goto out;
4067 }
4068 } else {
4069 /* this is (1) */
4070 mutex_unlock(&fs_info->balance_mutex);
4071 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4072 goto out;
4073 }
4074
4075 locked:
4076
4077 if (arg) {
4078 bargs = memdup_user(arg, sizeof(*bargs));
4079 if (IS_ERR(bargs)) {
4080 ret = PTR_ERR(bargs);
4081 goto out_unlock;
4082 }
4083
4084 if (bargs->flags & BTRFS_BALANCE_RESUME) {
4085 if (!fs_info->balance_ctl) {
4086 ret = -ENOTCONN;
4087 goto out_bargs;
4088 }
4089
4090 bctl = fs_info->balance_ctl;
4091 spin_lock(&fs_info->balance_lock);
4092 bctl->flags |= BTRFS_BALANCE_RESUME;
4093 spin_unlock(&fs_info->balance_lock);
4094
4095 goto do_balance;
4096 }
4097 } else {
4098 bargs = NULL;
4099 }
4100
4101 if (fs_info->balance_ctl) {
4102 ret = -EINPROGRESS;
4103 goto out_bargs;
4104 }
4105
4106 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4107 if (!bctl) {
4108 ret = -ENOMEM;
4109 goto out_bargs;
4110 }
4111
4112 if (arg) {
4113 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4114 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4115 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4116
4117 bctl->flags = bargs->flags;
4118 } else {
4119 /* balance everything - no filters */
4120 bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4121 }
4122
4123 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4124 ret = -EINVAL;
4125 goto out_bctl;
4126 }
4127
4128 do_balance:
4129 /*
4130 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4131 * bctl is freed in reset_balance_state, or, if restriper was paused
4132 * all the way until unmount, in free_fs_info. The flag should be
4133 * cleared after reset_balance_state.
4134 */
4135 need_unlock = false;
4136
4137 ret = btrfs_balance(fs_info, bctl, bargs);
4138 bctl = NULL;
4139
4140 if ((ret == 0 || ret == -ECANCELED) && arg) {
4141 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4142 ret = -EFAULT;
4143 }
4144
4145 out_bctl:
4146 kfree(bctl);
4147 out_bargs:
4148 kfree(bargs);
4149 out_unlock:
4150 mutex_unlock(&fs_info->balance_mutex);
4151 if (need_unlock)
4152 btrfs_exclop_finish(fs_info);
4153 out:
4154 mnt_drop_write_file(file);
4155 return ret;
4156 }
4157
btrfs_ioctl_balance_ctl(struct btrfs_fs_info * fs_info,int cmd)4158 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4159 {
4160 if (!capable(CAP_SYS_ADMIN))
4161 return -EPERM;
4162
4163 switch (cmd) {
4164 case BTRFS_BALANCE_CTL_PAUSE:
4165 return btrfs_pause_balance(fs_info);
4166 case BTRFS_BALANCE_CTL_CANCEL:
4167 return btrfs_cancel_balance(fs_info);
4168 }
4169
4170 return -EINVAL;
4171 }
4172
btrfs_ioctl_balance_progress(struct btrfs_fs_info * fs_info,void __user * arg)4173 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4174 void __user *arg)
4175 {
4176 struct btrfs_ioctl_balance_args *bargs;
4177 int ret = 0;
4178
4179 if (!capable(CAP_SYS_ADMIN))
4180 return -EPERM;
4181
4182 mutex_lock(&fs_info->balance_mutex);
4183 if (!fs_info->balance_ctl) {
4184 ret = -ENOTCONN;
4185 goto out;
4186 }
4187
4188 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4189 if (!bargs) {
4190 ret = -ENOMEM;
4191 goto out;
4192 }
4193
4194 btrfs_update_ioctl_balance_args(fs_info, bargs);
4195
4196 if (copy_to_user(arg, bargs, sizeof(*bargs)))
4197 ret = -EFAULT;
4198
4199 kfree(bargs);
4200 out:
4201 mutex_unlock(&fs_info->balance_mutex);
4202 return ret;
4203 }
4204
btrfs_ioctl_quota_ctl(struct file * file,void __user * arg)4205 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4206 {
4207 struct inode *inode = file_inode(file);
4208 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4209 struct btrfs_ioctl_quota_ctl_args *sa;
4210 int ret;
4211
4212 if (!capable(CAP_SYS_ADMIN))
4213 return -EPERM;
4214
4215 ret = mnt_want_write_file(file);
4216 if (ret)
4217 return ret;
4218
4219 sa = memdup_user(arg, sizeof(*sa));
4220 if (IS_ERR(sa)) {
4221 ret = PTR_ERR(sa);
4222 goto drop_write;
4223 }
4224
4225 down_write(&fs_info->subvol_sem);
4226
4227 switch (sa->cmd) {
4228 case BTRFS_QUOTA_CTL_ENABLE:
4229 ret = btrfs_quota_enable(fs_info);
4230 break;
4231 case BTRFS_QUOTA_CTL_DISABLE:
4232 ret = btrfs_quota_disable(fs_info);
4233 break;
4234 default:
4235 ret = -EINVAL;
4236 break;
4237 }
4238
4239 kfree(sa);
4240 up_write(&fs_info->subvol_sem);
4241 drop_write:
4242 mnt_drop_write_file(file);
4243 return ret;
4244 }
4245
btrfs_ioctl_qgroup_assign(struct file * file,void __user * arg)4246 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4247 {
4248 struct inode *inode = file_inode(file);
4249 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4250 struct btrfs_root *root = BTRFS_I(inode)->root;
4251 struct btrfs_ioctl_qgroup_assign_args *sa;
4252 struct btrfs_trans_handle *trans;
4253 int ret;
4254 int err;
4255
4256 if (!capable(CAP_SYS_ADMIN))
4257 return -EPERM;
4258
4259 ret = mnt_want_write_file(file);
4260 if (ret)
4261 return ret;
4262
4263 sa = memdup_user(arg, sizeof(*sa));
4264 if (IS_ERR(sa)) {
4265 ret = PTR_ERR(sa);
4266 goto drop_write;
4267 }
4268
4269 trans = btrfs_join_transaction(root);
4270 if (IS_ERR(trans)) {
4271 ret = PTR_ERR(trans);
4272 goto out;
4273 }
4274
4275 if (sa->assign) {
4276 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4277 } else {
4278 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4279 }
4280
4281 /* update qgroup status and info */
4282 err = btrfs_run_qgroups(trans);
4283 if (err < 0)
4284 btrfs_handle_fs_error(fs_info, err,
4285 "failed to update qgroup status and info");
4286 err = btrfs_end_transaction(trans);
4287 if (err && !ret)
4288 ret = err;
4289
4290 out:
4291 kfree(sa);
4292 drop_write:
4293 mnt_drop_write_file(file);
4294 return ret;
4295 }
4296
btrfs_ioctl_qgroup_create(struct file * file,void __user * arg)4297 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4298 {
4299 struct inode *inode = file_inode(file);
4300 struct btrfs_root *root = BTRFS_I(inode)->root;
4301 struct btrfs_ioctl_qgroup_create_args *sa;
4302 struct btrfs_trans_handle *trans;
4303 int ret;
4304 int err;
4305
4306 if (!capable(CAP_SYS_ADMIN))
4307 return -EPERM;
4308
4309 ret = mnt_want_write_file(file);
4310 if (ret)
4311 return ret;
4312
4313 sa = memdup_user(arg, sizeof(*sa));
4314 if (IS_ERR(sa)) {
4315 ret = PTR_ERR(sa);
4316 goto drop_write;
4317 }
4318
4319 if (!sa->qgroupid) {
4320 ret = -EINVAL;
4321 goto out;
4322 }
4323
4324 trans = btrfs_join_transaction(root);
4325 if (IS_ERR(trans)) {
4326 ret = PTR_ERR(trans);
4327 goto out;
4328 }
4329
4330 if (sa->create) {
4331 ret = btrfs_create_qgroup(trans, sa->qgroupid);
4332 } else {
4333 ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4334 }
4335
4336 err = btrfs_end_transaction(trans);
4337 if (err && !ret)
4338 ret = err;
4339
4340 out:
4341 kfree(sa);
4342 drop_write:
4343 mnt_drop_write_file(file);
4344 return ret;
4345 }
4346
btrfs_ioctl_qgroup_limit(struct file * file,void __user * arg)4347 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4348 {
4349 struct inode *inode = file_inode(file);
4350 struct btrfs_root *root = BTRFS_I(inode)->root;
4351 struct btrfs_ioctl_qgroup_limit_args *sa;
4352 struct btrfs_trans_handle *trans;
4353 int ret;
4354 int err;
4355 u64 qgroupid;
4356
4357 if (!capable(CAP_SYS_ADMIN))
4358 return -EPERM;
4359
4360 ret = mnt_want_write_file(file);
4361 if (ret)
4362 return ret;
4363
4364 sa = memdup_user(arg, sizeof(*sa));
4365 if (IS_ERR(sa)) {
4366 ret = PTR_ERR(sa);
4367 goto drop_write;
4368 }
4369
4370 trans = btrfs_join_transaction(root);
4371 if (IS_ERR(trans)) {
4372 ret = PTR_ERR(trans);
4373 goto out;
4374 }
4375
4376 qgroupid = sa->qgroupid;
4377 if (!qgroupid) {
4378 /* take the current subvol as qgroup */
4379 qgroupid = root->root_key.objectid;
4380 }
4381
4382 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4383
4384 err = btrfs_end_transaction(trans);
4385 if (err && !ret)
4386 ret = err;
4387
4388 out:
4389 kfree(sa);
4390 drop_write:
4391 mnt_drop_write_file(file);
4392 return ret;
4393 }
4394
btrfs_ioctl_quota_rescan(struct file * file,void __user * arg)4395 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4396 {
4397 struct inode *inode = file_inode(file);
4398 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4399 struct btrfs_ioctl_quota_rescan_args *qsa;
4400 int ret;
4401
4402 if (!capable(CAP_SYS_ADMIN))
4403 return -EPERM;
4404
4405 ret = mnt_want_write_file(file);
4406 if (ret)
4407 return ret;
4408
4409 qsa = memdup_user(arg, sizeof(*qsa));
4410 if (IS_ERR(qsa)) {
4411 ret = PTR_ERR(qsa);
4412 goto drop_write;
4413 }
4414
4415 if (qsa->flags) {
4416 ret = -EINVAL;
4417 goto out;
4418 }
4419
4420 ret = btrfs_qgroup_rescan(fs_info);
4421
4422 out:
4423 kfree(qsa);
4424 drop_write:
4425 mnt_drop_write_file(file);
4426 return ret;
4427 }
4428
btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info * fs_info,void __user * arg)4429 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4430 void __user *arg)
4431 {
4432 struct btrfs_ioctl_quota_rescan_args qsa = {0};
4433 int ret = 0;
4434
4435 if (!capable(CAP_SYS_ADMIN))
4436 return -EPERM;
4437
4438 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4439 qsa.flags = 1;
4440 qsa.progress = fs_info->qgroup_rescan_progress.objectid;
4441 }
4442
4443 if (copy_to_user(arg, &qsa, sizeof(qsa)))
4444 ret = -EFAULT;
4445
4446 return ret;
4447 }
4448
btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info * fs_info,void __user * arg)4449 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4450 void __user *arg)
4451 {
4452 if (!capable(CAP_SYS_ADMIN))
4453 return -EPERM;
4454
4455 return btrfs_qgroup_wait_for_completion(fs_info, true);
4456 }
4457
_btrfs_ioctl_set_received_subvol(struct file * file,struct user_namespace * mnt_userns,struct btrfs_ioctl_received_subvol_args * sa)4458 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4459 struct user_namespace *mnt_userns,
4460 struct btrfs_ioctl_received_subvol_args *sa)
4461 {
4462 struct inode *inode = file_inode(file);
4463 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4464 struct btrfs_root *root = BTRFS_I(inode)->root;
4465 struct btrfs_root_item *root_item = &root->root_item;
4466 struct btrfs_trans_handle *trans;
4467 struct timespec64 ct = current_time(inode);
4468 int ret = 0;
4469 int received_uuid_changed;
4470
4471 if (!inode_owner_or_capable(mnt_userns, inode))
4472 return -EPERM;
4473
4474 ret = mnt_want_write_file(file);
4475 if (ret < 0)
4476 return ret;
4477
4478 down_write(&fs_info->subvol_sem);
4479
4480 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4481 ret = -EINVAL;
4482 goto out;
4483 }
4484
4485 if (btrfs_root_readonly(root)) {
4486 ret = -EROFS;
4487 goto out;
4488 }
4489
4490 /*
4491 * 1 - root item
4492 * 2 - uuid items (received uuid + subvol uuid)
4493 */
4494 trans = btrfs_start_transaction(root, 3);
4495 if (IS_ERR(trans)) {
4496 ret = PTR_ERR(trans);
4497 trans = NULL;
4498 goto out;
4499 }
4500
4501 sa->rtransid = trans->transid;
4502 sa->rtime.sec = ct.tv_sec;
4503 sa->rtime.nsec = ct.tv_nsec;
4504
4505 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4506 BTRFS_UUID_SIZE);
4507 if (received_uuid_changed &&
4508 !btrfs_is_empty_uuid(root_item->received_uuid)) {
4509 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4510 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4511 root->root_key.objectid);
4512 if (ret && ret != -ENOENT) {
4513 btrfs_abort_transaction(trans, ret);
4514 btrfs_end_transaction(trans);
4515 goto out;
4516 }
4517 }
4518 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4519 btrfs_set_root_stransid(root_item, sa->stransid);
4520 btrfs_set_root_rtransid(root_item, sa->rtransid);
4521 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4522 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4523 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4524 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4525
4526 ret = btrfs_update_root(trans, fs_info->tree_root,
4527 &root->root_key, &root->root_item);
4528 if (ret < 0) {
4529 btrfs_end_transaction(trans);
4530 goto out;
4531 }
4532 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4533 ret = btrfs_uuid_tree_add(trans, sa->uuid,
4534 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4535 root->root_key.objectid);
4536 if (ret < 0 && ret != -EEXIST) {
4537 btrfs_abort_transaction(trans, ret);
4538 btrfs_end_transaction(trans);
4539 goto out;
4540 }
4541 }
4542 ret = btrfs_commit_transaction(trans);
4543 out:
4544 up_write(&fs_info->subvol_sem);
4545 mnt_drop_write_file(file);
4546 return ret;
4547 }
4548
4549 #ifdef CONFIG_64BIT
btrfs_ioctl_set_received_subvol_32(struct file * file,void __user * arg)4550 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4551 void __user *arg)
4552 {
4553 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4554 struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4555 int ret = 0;
4556
4557 args32 = memdup_user(arg, sizeof(*args32));
4558 if (IS_ERR(args32))
4559 return PTR_ERR(args32);
4560
4561 args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4562 if (!args64) {
4563 ret = -ENOMEM;
4564 goto out;
4565 }
4566
4567 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4568 args64->stransid = args32->stransid;
4569 args64->rtransid = args32->rtransid;
4570 args64->stime.sec = args32->stime.sec;
4571 args64->stime.nsec = args32->stime.nsec;
4572 args64->rtime.sec = args32->rtime.sec;
4573 args64->rtime.nsec = args32->rtime.nsec;
4574 args64->flags = args32->flags;
4575
4576 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64);
4577 if (ret)
4578 goto out;
4579
4580 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4581 args32->stransid = args64->stransid;
4582 args32->rtransid = args64->rtransid;
4583 args32->stime.sec = args64->stime.sec;
4584 args32->stime.nsec = args64->stime.nsec;
4585 args32->rtime.sec = args64->rtime.sec;
4586 args32->rtime.nsec = args64->rtime.nsec;
4587 args32->flags = args64->flags;
4588
4589 ret = copy_to_user(arg, args32, sizeof(*args32));
4590 if (ret)
4591 ret = -EFAULT;
4592
4593 out:
4594 kfree(args32);
4595 kfree(args64);
4596 return ret;
4597 }
4598 #endif
4599
btrfs_ioctl_set_received_subvol(struct file * file,void __user * arg)4600 static long btrfs_ioctl_set_received_subvol(struct file *file,
4601 void __user *arg)
4602 {
4603 struct btrfs_ioctl_received_subvol_args *sa = NULL;
4604 int ret = 0;
4605
4606 sa = memdup_user(arg, sizeof(*sa));
4607 if (IS_ERR(sa))
4608 return PTR_ERR(sa);
4609
4610 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa);
4611
4612 if (ret)
4613 goto out;
4614
4615 ret = copy_to_user(arg, sa, sizeof(*sa));
4616 if (ret)
4617 ret = -EFAULT;
4618
4619 out:
4620 kfree(sa);
4621 return ret;
4622 }
4623
btrfs_ioctl_get_fslabel(struct btrfs_fs_info * fs_info,void __user * arg)4624 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4625 void __user *arg)
4626 {
4627 size_t len;
4628 int ret;
4629 char label[BTRFS_LABEL_SIZE];
4630
4631 spin_lock(&fs_info->super_lock);
4632 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4633 spin_unlock(&fs_info->super_lock);
4634
4635 len = strnlen(label, BTRFS_LABEL_SIZE);
4636
4637 if (len == BTRFS_LABEL_SIZE) {
4638 btrfs_warn(fs_info,
4639 "label is too long, return the first %zu bytes",
4640 --len);
4641 }
4642
4643 ret = copy_to_user(arg, label, len);
4644
4645 return ret ? -EFAULT : 0;
4646 }
4647
btrfs_ioctl_set_fslabel(struct file * file,void __user * arg)4648 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4649 {
4650 struct inode *inode = file_inode(file);
4651 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4652 struct btrfs_root *root = BTRFS_I(inode)->root;
4653 struct btrfs_super_block *super_block = fs_info->super_copy;
4654 struct btrfs_trans_handle *trans;
4655 char label[BTRFS_LABEL_SIZE];
4656 int ret;
4657
4658 if (!capable(CAP_SYS_ADMIN))
4659 return -EPERM;
4660
4661 if (copy_from_user(label, arg, sizeof(label)))
4662 return -EFAULT;
4663
4664 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4665 btrfs_err(fs_info,
4666 "unable to set label with more than %d bytes",
4667 BTRFS_LABEL_SIZE - 1);
4668 return -EINVAL;
4669 }
4670
4671 ret = mnt_want_write_file(file);
4672 if (ret)
4673 return ret;
4674
4675 trans = btrfs_start_transaction(root, 0);
4676 if (IS_ERR(trans)) {
4677 ret = PTR_ERR(trans);
4678 goto out_unlock;
4679 }
4680
4681 spin_lock(&fs_info->super_lock);
4682 strcpy(super_block->label, label);
4683 spin_unlock(&fs_info->super_lock);
4684 ret = btrfs_commit_transaction(trans);
4685
4686 out_unlock:
4687 mnt_drop_write_file(file);
4688 return ret;
4689 }
4690
4691 #define INIT_FEATURE_FLAGS(suffix) \
4692 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4693 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4694 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4695
btrfs_ioctl_get_supported_features(void __user * arg)4696 int btrfs_ioctl_get_supported_features(void __user *arg)
4697 {
4698 static const struct btrfs_ioctl_feature_flags features[3] = {
4699 INIT_FEATURE_FLAGS(SUPP),
4700 INIT_FEATURE_FLAGS(SAFE_SET),
4701 INIT_FEATURE_FLAGS(SAFE_CLEAR)
4702 };
4703
4704 if (copy_to_user(arg, &features, sizeof(features)))
4705 return -EFAULT;
4706
4707 return 0;
4708 }
4709
btrfs_ioctl_get_features(struct btrfs_fs_info * fs_info,void __user * arg)4710 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4711 void __user *arg)
4712 {
4713 struct btrfs_super_block *super_block = fs_info->super_copy;
4714 struct btrfs_ioctl_feature_flags features;
4715
4716 features.compat_flags = btrfs_super_compat_flags(super_block);
4717 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4718 features.incompat_flags = btrfs_super_incompat_flags(super_block);
4719
4720 if (copy_to_user(arg, &features, sizeof(features)))
4721 return -EFAULT;
4722
4723 return 0;
4724 }
4725
check_feature_bits(struct btrfs_fs_info * fs_info,enum btrfs_feature_set set,u64 change_mask,u64 flags,u64 supported_flags,u64 safe_set,u64 safe_clear)4726 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4727 enum btrfs_feature_set set,
4728 u64 change_mask, u64 flags, u64 supported_flags,
4729 u64 safe_set, u64 safe_clear)
4730 {
4731 const char *type = btrfs_feature_set_name(set);
4732 char *names;
4733 u64 disallowed, unsupported;
4734 u64 set_mask = flags & change_mask;
4735 u64 clear_mask = ~flags & change_mask;
4736
4737 unsupported = set_mask & ~supported_flags;
4738 if (unsupported) {
4739 names = btrfs_printable_features(set, unsupported);
4740 if (names) {
4741 btrfs_warn(fs_info,
4742 "this kernel does not support the %s feature bit%s",
4743 names, strchr(names, ',') ? "s" : "");
4744 kfree(names);
4745 } else
4746 btrfs_warn(fs_info,
4747 "this kernel does not support %s bits 0x%llx",
4748 type, unsupported);
4749 return -EOPNOTSUPP;
4750 }
4751
4752 disallowed = set_mask & ~safe_set;
4753 if (disallowed) {
4754 names = btrfs_printable_features(set, disallowed);
4755 if (names) {
4756 btrfs_warn(fs_info,
4757 "can't set the %s feature bit%s while mounted",
4758 names, strchr(names, ',') ? "s" : "");
4759 kfree(names);
4760 } else
4761 btrfs_warn(fs_info,
4762 "can't set %s bits 0x%llx while mounted",
4763 type, disallowed);
4764 return -EPERM;
4765 }
4766
4767 disallowed = clear_mask & ~safe_clear;
4768 if (disallowed) {
4769 names = btrfs_printable_features(set, disallowed);
4770 if (names) {
4771 btrfs_warn(fs_info,
4772 "can't clear the %s feature bit%s while mounted",
4773 names, strchr(names, ',') ? "s" : "");
4774 kfree(names);
4775 } else
4776 btrfs_warn(fs_info,
4777 "can't clear %s bits 0x%llx while mounted",
4778 type, disallowed);
4779 return -EPERM;
4780 }
4781
4782 return 0;
4783 }
4784
4785 #define check_feature(fs_info, change_mask, flags, mask_base) \
4786 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \
4787 BTRFS_FEATURE_ ## mask_base ## _SUPP, \
4788 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \
4789 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4790
btrfs_ioctl_set_features(struct file * file,void __user * arg)4791 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4792 {
4793 struct inode *inode = file_inode(file);
4794 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4795 struct btrfs_root *root = BTRFS_I(inode)->root;
4796 struct btrfs_super_block *super_block = fs_info->super_copy;
4797 struct btrfs_ioctl_feature_flags flags[2];
4798 struct btrfs_trans_handle *trans;
4799 u64 newflags;
4800 int ret;
4801
4802 if (!capable(CAP_SYS_ADMIN))
4803 return -EPERM;
4804
4805 if (copy_from_user(flags, arg, sizeof(flags)))
4806 return -EFAULT;
4807
4808 /* Nothing to do */
4809 if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4810 !flags[0].incompat_flags)
4811 return 0;
4812
4813 ret = check_feature(fs_info, flags[0].compat_flags,
4814 flags[1].compat_flags, COMPAT);
4815 if (ret)
4816 return ret;
4817
4818 ret = check_feature(fs_info, flags[0].compat_ro_flags,
4819 flags[1].compat_ro_flags, COMPAT_RO);
4820 if (ret)
4821 return ret;
4822
4823 ret = check_feature(fs_info, flags[0].incompat_flags,
4824 flags[1].incompat_flags, INCOMPAT);
4825 if (ret)
4826 return ret;
4827
4828 ret = mnt_want_write_file(file);
4829 if (ret)
4830 return ret;
4831
4832 trans = btrfs_start_transaction(root, 0);
4833 if (IS_ERR(trans)) {
4834 ret = PTR_ERR(trans);
4835 goto out_drop_write;
4836 }
4837
4838 spin_lock(&fs_info->super_lock);
4839 newflags = btrfs_super_compat_flags(super_block);
4840 newflags |= flags[0].compat_flags & flags[1].compat_flags;
4841 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4842 btrfs_set_super_compat_flags(super_block, newflags);
4843
4844 newflags = btrfs_super_compat_ro_flags(super_block);
4845 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4846 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4847 btrfs_set_super_compat_ro_flags(super_block, newflags);
4848
4849 newflags = btrfs_super_incompat_flags(super_block);
4850 newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4851 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4852 btrfs_set_super_incompat_flags(super_block, newflags);
4853 spin_unlock(&fs_info->super_lock);
4854
4855 ret = btrfs_commit_transaction(trans);
4856 out_drop_write:
4857 mnt_drop_write_file(file);
4858
4859 return ret;
4860 }
4861
_btrfs_ioctl_send(struct file * file,void __user * argp,bool compat)4862 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4863 {
4864 struct btrfs_ioctl_send_args *arg;
4865 int ret;
4866
4867 if (compat) {
4868 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4869 struct btrfs_ioctl_send_args_32 args32;
4870
4871 ret = copy_from_user(&args32, argp, sizeof(args32));
4872 if (ret)
4873 return -EFAULT;
4874 arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4875 if (!arg)
4876 return -ENOMEM;
4877 arg->send_fd = args32.send_fd;
4878 arg->clone_sources_count = args32.clone_sources_count;
4879 arg->clone_sources = compat_ptr(args32.clone_sources);
4880 arg->parent_root = args32.parent_root;
4881 arg->flags = args32.flags;
4882 memcpy(arg->reserved, args32.reserved,
4883 sizeof(args32.reserved));
4884 #else
4885 return -ENOTTY;
4886 #endif
4887 } else {
4888 arg = memdup_user(argp, sizeof(*arg));
4889 if (IS_ERR(arg))
4890 return PTR_ERR(arg);
4891 }
4892 ret = btrfs_ioctl_send(file, arg);
4893 kfree(arg);
4894 return ret;
4895 }
4896
btrfs_ioctl(struct file * file,unsigned int cmd,unsigned long arg)4897 long btrfs_ioctl(struct file *file, unsigned int
4898 cmd, unsigned long arg)
4899 {
4900 struct inode *inode = file_inode(file);
4901 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4902 struct btrfs_root *root = BTRFS_I(inode)->root;
4903 void __user *argp = (void __user *)arg;
4904
4905 switch (cmd) {
4906 case FS_IOC_GETVERSION:
4907 return btrfs_ioctl_getversion(file, argp);
4908 case FS_IOC_GETFSLABEL:
4909 return btrfs_ioctl_get_fslabel(fs_info, argp);
4910 case FS_IOC_SETFSLABEL:
4911 return btrfs_ioctl_set_fslabel(file, argp);
4912 case FITRIM:
4913 return btrfs_ioctl_fitrim(fs_info, argp);
4914 case BTRFS_IOC_SNAP_CREATE:
4915 return btrfs_ioctl_snap_create(file, argp, 0);
4916 case BTRFS_IOC_SNAP_CREATE_V2:
4917 return btrfs_ioctl_snap_create_v2(file, argp, 0);
4918 case BTRFS_IOC_SUBVOL_CREATE:
4919 return btrfs_ioctl_snap_create(file, argp, 1);
4920 case BTRFS_IOC_SUBVOL_CREATE_V2:
4921 return btrfs_ioctl_snap_create_v2(file, argp, 1);
4922 case BTRFS_IOC_SNAP_DESTROY:
4923 return btrfs_ioctl_snap_destroy(file, argp, false);
4924 case BTRFS_IOC_SNAP_DESTROY_V2:
4925 return btrfs_ioctl_snap_destroy(file, argp, true);
4926 case BTRFS_IOC_SUBVOL_GETFLAGS:
4927 return btrfs_ioctl_subvol_getflags(file, argp);
4928 case BTRFS_IOC_SUBVOL_SETFLAGS:
4929 return btrfs_ioctl_subvol_setflags(file, argp);
4930 case BTRFS_IOC_DEFAULT_SUBVOL:
4931 return btrfs_ioctl_default_subvol(file, argp);
4932 case BTRFS_IOC_DEFRAG:
4933 return btrfs_ioctl_defrag(file, NULL);
4934 case BTRFS_IOC_DEFRAG_RANGE:
4935 return btrfs_ioctl_defrag(file, argp);
4936 case BTRFS_IOC_RESIZE:
4937 return btrfs_ioctl_resize(file, argp);
4938 case BTRFS_IOC_ADD_DEV:
4939 return btrfs_ioctl_add_dev(fs_info, argp);
4940 case BTRFS_IOC_RM_DEV:
4941 return btrfs_ioctl_rm_dev(file, argp);
4942 case BTRFS_IOC_RM_DEV_V2:
4943 return btrfs_ioctl_rm_dev_v2(file, argp);
4944 case BTRFS_IOC_FS_INFO:
4945 return btrfs_ioctl_fs_info(fs_info, argp);
4946 case BTRFS_IOC_DEV_INFO:
4947 return btrfs_ioctl_dev_info(fs_info, argp);
4948 case BTRFS_IOC_BALANCE:
4949 return btrfs_ioctl_balance(file, NULL);
4950 case BTRFS_IOC_TREE_SEARCH:
4951 return btrfs_ioctl_tree_search(file, argp);
4952 case BTRFS_IOC_TREE_SEARCH_V2:
4953 return btrfs_ioctl_tree_search_v2(file, argp);
4954 case BTRFS_IOC_INO_LOOKUP:
4955 return btrfs_ioctl_ino_lookup(file, argp);
4956 case BTRFS_IOC_INO_PATHS:
4957 return btrfs_ioctl_ino_to_path(root, argp);
4958 case BTRFS_IOC_LOGICAL_INO:
4959 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4960 case BTRFS_IOC_LOGICAL_INO_V2:
4961 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4962 case BTRFS_IOC_SPACE_INFO:
4963 return btrfs_ioctl_space_info(fs_info, argp);
4964 case BTRFS_IOC_SYNC: {
4965 int ret;
4966
4967 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4968 if (ret)
4969 return ret;
4970 ret = btrfs_sync_fs(inode->i_sb, 1);
4971 /*
4972 * The transaction thread may want to do more work,
4973 * namely it pokes the cleaner kthread that will start
4974 * processing uncleaned subvols.
4975 */
4976 wake_up_process(fs_info->transaction_kthread);
4977 return ret;
4978 }
4979 case BTRFS_IOC_START_SYNC:
4980 return btrfs_ioctl_start_sync(root, argp);
4981 case BTRFS_IOC_WAIT_SYNC:
4982 return btrfs_ioctl_wait_sync(fs_info, argp);
4983 case BTRFS_IOC_SCRUB:
4984 return btrfs_ioctl_scrub(file, argp);
4985 case BTRFS_IOC_SCRUB_CANCEL:
4986 return btrfs_ioctl_scrub_cancel(fs_info);
4987 case BTRFS_IOC_SCRUB_PROGRESS:
4988 return btrfs_ioctl_scrub_progress(fs_info, argp);
4989 case BTRFS_IOC_BALANCE_V2:
4990 return btrfs_ioctl_balance(file, argp);
4991 case BTRFS_IOC_BALANCE_CTL:
4992 return btrfs_ioctl_balance_ctl(fs_info, arg);
4993 case BTRFS_IOC_BALANCE_PROGRESS:
4994 return btrfs_ioctl_balance_progress(fs_info, argp);
4995 case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4996 return btrfs_ioctl_set_received_subvol(file, argp);
4997 #ifdef CONFIG_64BIT
4998 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4999 return btrfs_ioctl_set_received_subvol_32(file, argp);
5000 #endif
5001 case BTRFS_IOC_SEND:
5002 return _btrfs_ioctl_send(file, argp, false);
5003 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
5004 case BTRFS_IOC_SEND_32:
5005 return _btrfs_ioctl_send(file, argp, true);
5006 #endif
5007 case BTRFS_IOC_GET_DEV_STATS:
5008 return btrfs_ioctl_get_dev_stats(fs_info, argp);
5009 case BTRFS_IOC_QUOTA_CTL:
5010 return btrfs_ioctl_quota_ctl(file, argp);
5011 case BTRFS_IOC_QGROUP_ASSIGN:
5012 return btrfs_ioctl_qgroup_assign(file, argp);
5013 case BTRFS_IOC_QGROUP_CREATE:
5014 return btrfs_ioctl_qgroup_create(file, argp);
5015 case BTRFS_IOC_QGROUP_LIMIT:
5016 return btrfs_ioctl_qgroup_limit(file, argp);
5017 case BTRFS_IOC_QUOTA_RESCAN:
5018 return btrfs_ioctl_quota_rescan(file, argp);
5019 case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5020 return btrfs_ioctl_quota_rescan_status(fs_info, argp);
5021 case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5022 return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5023 case BTRFS_IOC_DEV_REPLACE:
5024 return btrfs_ioctl_dev_replace(fs_info, argp);
5025 case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5026 return btrfs_ioctl_get_supported_features(argp);
5027 case BTRFS_IOC_GET_FEATURES:
5028 return btrfs_ioctl_get_features(fs_info, argp);
5029 case BTRFS_IOC_SET_FEATURES:
5030 return btrfs_ioctl_set_features(file, argp);
5031 case BTRFS_IOC_GET_SUBVOL_INFO:
5032 return btrfs_ioctl_get_subvol_info(file, argp);
5033 case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5034 return btrfs_ioctl_get_subvol_rootref(file, argp);
5035 case BTRFS_IOC_INO_LOOKUP_USER:
5036 return btrfs_ioctl_ino_lookup_user(file, argp);
5037 case FS_IOC_ENABLE_VERITY:
5038 return fsverity_ioctl_enable(file, (const void __user *)argp);
5039 case FS_IOC_MEASURE_VERITY:
5040 return fsverity_ioctl_measure(file, argp);
5041 }
5042
5043 return -ENOTTY;
5044 }
5045
5046 #ifdef CONFIG_COMPAT
btrfs_compat_ioctl(struct file * file,unsigned int cmd,unsigned long arg)5047 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5048 {
5049 /*
5050 * These all access 32-bit values anyway so no further
5051 * handling is necessary.
5052 */
5053 switch (cmd) {
5054 case FS_IOC32_GETVERSION:
5055 cmd = FS_IOC_GETVERSION;
5056 break;
5057 }
5058
5059 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5060 }
5061 #endif
5062