1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/pagemap.h>
11 #include <linux/highmem.h>
12 #include <linux/time.h>
13 #include <linux/init.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/writeback.h>
17 #include <linux/slab.h>
18 #include <linux/sched/mm.h>
19 #include <linux/log2.h>
20 #include <crypto/hash.h>
21 #include "misc.h"
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "volumes.h"
27 #include "ordered-data.h"
28 #include "compression.h"
29 #include "extent_io.h"
30 #include "extent_map.h"
31 #include "zoned.h"
32 
33 static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
34 
btrfs_compress_type2str(enum btrfs_compression_type type)35 const char* btrfs_compress_type2str(enum btrfs_compression_type type)
36 {
37 	switch (type) {
38 	case BTRFS_COMPRESS_ZLIB:
39 	case BTRFS_COMPRESS_LZO:
40 	case BTRFS_COMPRESS_ZSTD:
41 	case BTRFS_COMPRESS_NONE:
42 		return btrfs_compress_types[type];
43 	default:
44 		break;
45 	}
46 
47 	return NULL;
48 }
49 
btrfs_compress_is_valid_type(const char * str,size_t len)50 bool btrfs_compress_is_valid_type(const char *str, size_t len)
51 {
52 	int i;
53 
54 	for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
55 		size_t comp_len = strlen(btrfs_compress_types[i]);
56 
57 		if (len < comp_len)
58 			continue;
59 
60 		if (!strncmp(btrfs_compress_types[i], str, comp_len))
61 			return true;
62 	}
63 	return false;
64 }
65 
compression_compress_pages(int type,struct list_head * ws,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)66 static int compression_compress_pages(int type, struct list_head *ws,
67                struct address_space *mapping, u64 start, struct page **pages,
68                unsigned long *out_pages, unsigned long *total_in,
69                unsigned long *total_out)
70 {
71 	switch (type) {
72 	case BTRFS_COMPRESS_ZLIB:
73 		return zlib_compress_pages(ws, mapping, start, pages,
74 				out_pages, total_in, total_out);
75 	case BTRFS_COMPRESS_LZO:
76 		return lzo_compress_pages(ws, mapping, start, pages,
77 				out_pages, total_in, total_out);
78 	case BTRFS_COMPRESS_ZSTD:
79 		return zstd_compress_pages(ws, mapping, start, pages,
80 				out_pages, total_in, total_out);
81 	case BTRFS_COMPRESS_NONE:
82 	default:
83 		/*
84 		 * This can happen when compression races with remount setting
85 		 * it to 'no compress', while caller doesn't call
86 		 * inode_need_compress() to check if we really need to
87 		 * compress.
88 		 *
89 		 * Not a big deal, just need to inform caller that we
90 		 * haven't allocated any pages yet.
91 		 */
92 		*out_pages = 0;
93 		return -E2BIG;
94 	}
95 }
96 
compression_decompress_bio(int type,struct list_head * ws,struct compressed_bio * cb)97 static int compression_decompress_bio(int type, struct list_head *ws,
98 		struct compressed_bio *cb)
99 {
100 	switch (type) {
101 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
102 	case BTRFS_COMPRESS_LZO:  return lzo_decompress_bio(ws, cb);
103 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
104 	case BTRFS_COMPRESS_NONE:
105 	default:
106 		/*
107 		 * This can't happen, the type is validated several times
108 		 * before we get here.
109 		 */
110 		BUG();
111 	}
112 }
113 
compression_decompress(int type,struct list_head * ws,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)114 static int compression_decompress(int type, struct list_head *ws,
115                unsigned char *data_in, struct page *dest_page,
116                unsigned long start_byte, size_t srclen, size_t destlen)
117 {
118 	switch (type) {
119 	case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
120 						start_byte, srclen, destlen);
121 	case BTRFS_COMPRESS_LZO:  return lzo_decompress(ws, data_in, dest_page,
122 						start_byte, srclen, destlen);
123 	case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
124 						start_byte, srclen, destlen);
125 	case BTRFS_COMPRESS_NONE:
126 	default:
127 		/*
128 		 * This can't happen, the type is validated several times
129 		 * before we get here.
130 		 */
131 		BUG();
132 	}
133 }
134 
135 static int btrfs_decompress_bio(struct compressed_bio *cb);
136 
compressed_bio_size(struct btrfs_fs_info * fs_info,unsigned long disk_size)137 static inline int compressed_bio_size(struct btrfs_fs_info *fs_info,
138 				      unsigned long disk_size)
139 {
140 	return sizeof(struct compressed_bio) +
141 		(DIV_ROUND_UP(disk_size, fs_info->sectorsize)) * fs_info->csum_size;
142 }
143 
check_compressed_csum(struct btrfs_inode * inode,struct bio * bio,u64 disk_start)144 static int check_compressed_csum(struct btrfs_inode *inode, struct bio *bio,
145 				 u64 disk_start)
146 {
147 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
148 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
149 	const u32 csum_size = fs_info->csum_size;
150 	const u32 sectorsize = fs_info->sectorsize;
151 	struct page *page;
152 	unsigned int i;
153 	char *kaddr;
154 	u8 csum[BTRFS_CSUM_SIZE];
155 	struct compressed_bio *cb = bio->bi_private;
156 	u8 *cb_sum = cb->sums;
157 
158 	if (!fs_info->csum_root || (inode->flags & BTRFS_INODE_NODATASUM))
159 		return 0;
160 
161 	shash->tfm = fs_info->csum_shash;
162 
163 	for (i = 0; i < cb->nr_pages; i++) {
164 		u32 pg_offset;
165 		u32 bytes_left = PAGE_SIZE;
166 		page = cb->compressed_pages[i];
167 
168 		/* Determine the remaining bytes inside the page first */
169 		if (i == cb->nr_pages - 1)
170 			bytes_left = cb->compressed_len - i * PAGE_SIZE;
171 
172 		/* Hash through the page sector by sector */
173 		for (pg_offset = 0; pg_offset < bytes_left;
174 		     pg_offset += sectorsize) {
175 			kaddr = kmap_atomic(page);
176 			crypto_shash_digest(shash, kaddr + pg_offset,
177 					    sectorsize, csum);
178 			kunmap_atomic(kaddr);
179 
180 			if (memcmp(&csum, cb_sum, csum_size) != 0) {
181 				btrfs_print_data_csum_error(inode, disk_start,
182 						csum, cb_sum, cb->mirror_num);
183 				if (btrfs_io_bio(bio)->device)
184 					btrfs_dev_stat_inc_and_print(
185 						btrfs_io_bio(bio)->device,
186 						BTRFS_DEV_STAT_CORRUPTION_ERRS);
187 				return -EIO;
188 			}
189 			cb_sum += csum_size;
190 			disk_start += sectorsize;
191 		}
192 	}
193 	return 0;
194 }
195 
196 /* when we finish reading compressed pages from the disk, we
197  * decompress them and then run the bio end_io routines on the
198  * decompressed pages (in the inode address space).
199  *
200  * This allows the checksumming and other IO error handling routines
201  * to work normally
202  *
203  * The compressed pages are freed here, and it must be run
204  * in process context
205  */
end_compressed_bio_read(struct bio * bio)206 static void end_compressed_bio_read(struct bio *bio)
207 {
208 	struct compressed_bio *cb = bio->bi_private;
209 	struct inode *inode;
210 	struct page *page;
211 	unsigned int index;
212 	unsigned int mirror = btrfs_io_bio(bio)->mirror_num;
213 	int ret = 0;
214 
215 	if (bio->bi_status)
216 		cb->errors = 1;
217 
218 	/* if there are more bios still pending for this compressed
219 	 * extent, just exit
220 	 */
221 	if (!refcount_dec_and_test(&cb->pending_bios))
222 		goto out;
223 
224 	/*
225 	 * Record the correct mirror_num in cb->orig_bio so that
226 	 * read-repair can work properly.
227 	 */
228 	btrfs_io_bio(cb->orig_bio)->mirror_num = mirror;
229 	cb->mirror_num = mirror;
230 
231 	/*
232 	 * Some IO in this cb have failed, just skip checksum as there
233 	 * is no way it could be correct.
234 	 */
235 	if (cb->errors == 1)
236 		goto csum_failed;
237 
238 	inode = cb->inode;
239 	ret = check_compressed_csum(BTRFS_I(inode), bio,
240 				    bio->bi_iter.bi_sector << 9);
241 	if (ret)
242 		goto csum_failed;
243 
244 	/* ok, we're the last bio for this extent, lets start
245 	 * the decompression.
246 	 */
247 	ret = btrfs_decompress_bio(cb);
248 
249 csum_failed:
250 	if (ret)
251 		cb->errors = 1;
252 
253 	/* release the compressed pages */
254 	index = 0;
255 	for (index = 0; index < cb->nr_pages; index++) {
256 		page = cb->compressed_pages[index];
257 		page->mapping = NULL;
258 		put_page(page);
259 	}
260 
261 	/* do io completion on the original bio */
262 	if (cb->errors) {
263 		bio_io_error(cb->orig_bio);
264 	} else {
265 		struct bio_vec *bvec;
266 		struct bvec_iter_all iter_all;
267 
268 		/*
269 		 * we have verified the checksum already, set page
270 		 * checked so the end_io handlers know about it
271 		 */
272 		ASSERT(!bio_flagged(bio, BIO_CLONED));
273 		bio_for_each_segment_all(bvec, cb->orig_bio, iter_all)
274 			SetPageChecked(bvec->bv_page);
275 
276 		bio_endio(cb->orig_bio);
277 	}
278 
279 	/* finally free the cb struct */
280 	kfree(cb->compressed_pages);
281 	kfree(cb);
282 out:
283 	bio_put(bio);
284 }
285 
286 /*
287  * Clear the writeback bits on all of the file
288  * pages for a compressed write
289  */
end_compressed_writeback(struct inode * inode,const struct compressed_bio * cb)290 static noinline void end_compressed_writeback(struct inode *inode,
291 					      const struct compressed_bio *cb)
292 {
293 	unsigned long index = cb->start >> PAGE_SHIFT;
294 	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
295 	struct page *pages[16];
296 	unsigned long nr_pages = end_index - index + 1;
297 	int i;
298 	int ret;
299 
300 	if (cb->errors)
301 		mapping_set_error(inode->i_mapping, -EIO);
302 
303 	while (nr_pages > 0) {
304 		ret = find_get_pages_contig(inode->i_mapping, index,
305 				     min_t(unsigned long,
306 				     nr_pages, ARRAY_SIZE(pages)), pages);
307 		if (ret == 0) {
308 			nr_pages -= 1;
309 			index += 1;
310 			continue;
311 		}
312 		for (i = 0; i < ret; i++) {
313 			if (cb->errors)
314 				SetPageError(pages[i]);
315 			end_page_writeback(pages[i]);
316 			put_page(pages[i]);
317 		}
318 		nr_pages -= ret;
319 		index += ret;
320 	}
321 	/* the inode may be gone now */
322 }
323 
324 /*
325  * do the cleanup once all the compressed pages hit the disk.
326  * This will clear writeback on the file pages and free the compressed
327  * pages.
328  *
329  * This also calls the writeback end hooks for the file pages so that
330  * metadata and checksums can be updated in the file.
331  */
end_compressed_bio_write(struct bio * bio)332 static void end_compressed_bio_write(struct bio *bio)
333 {
334 	struct compressed_bio *cb = bio->bi_private;
335 	struct inode *inode;
336 	struct page *page;
337 	unsigned int index;
338 
339 	if (bio->bi_status)
340 		cb->errors = 1;
341 
342 	/* if there are more bios still pending for this compressed
343 	 * extent, just exit
344 	 */
345 	if (!refcount_dec_and_test(&cb->pending_bios))
346 		goto out;
347 
348 	/* ok, we're the last bio for this extent, step one is to
349 	 * call back into the FS and do all the end_io operations
350 	 */
351 	inode = cb->inode;
352 	btrfs_record_physical_zoned(inode, cb->start, bio);
353 	btrfs_writepage_endio_finish_ordered(BTRFS_I(inode), NULL,
354 			cb->start, cb->start + cb->len - 1,
355 			!cb->errors);
356 
357 	end_compressed_writeback(inode, cb);
358 	/* note, our inode could be gone now */
359 
360 	/*
361 	 * release the compressed pages, these came from alloc_page and
362 	 * are not attached to the inode at all
363 	 */
364 	index = 0;
365 	for (index = 0; index < cb->nr_pages; index++) {
366 		page = cb->compressed_pages[index];
367 		page->mapping = NULL;
368 		put_page(page);
369 	}
370 
371 	/* finally free the cb struct */
372 	kfree(cb->compressed_pages);
373 	kfree(cb);
374 out:
375 	bio_put(bio);
376 }
377 
378 /*
379  * worker function to build and submit bios for previously compressed pages.
380  * The corresponding pages in the inode should be marked for writeback
381  * and the compressed pages should have a reference on them for dropping
382  * when the IO is complete.
383  *
384  * This also checksums the file bytes and gets things ready for
385  * the end io hooks.
386  */
btrfs_submit_compressed_write(struct btrfs_inode * inode,u64 start,unsigned int len,u64 disk_start,unsigned int compressed_len,struct page ** compressed_pages,unsigned int nr_pages,unsigned int write_flags,struct cgroup_subsys_state * blkcg_css)387 blk_status_t btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
388 				 unsigned int len, u64 disk_start,
389 				 unsigned int compressed_len,
390 				 struct page **compressed_pages,
391 				 unsigned int nr_pages,
392 				 unsigned int write_flags,
393 				 struct cgroup_subsys_state *blkcg_css)
394 {
395 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
396 	struct bio *bio = NULL;
397 	struct compressed_bio *cb;
398 	unsigned long bytes_left;
399 	int pg_index = 0;
400 	struct page *page;
401 	u64 first_byte = disk_start;
402 	blk_status_t ret;
403 	int skip_sum = inode->flags & BTRFS_INODE_NODATASUM;
404 	const bool use_append = btrfs_use_zone_append(inode, disk_start);
405 	const unsigned int bio_op = use_append ? REQ_OP_ZONE_APPEND : REQ_OP_WRITE;
406 
407 	WARN_ON(!PAGE_ALIGNED(start));
408 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
409 	if (!cb)
410 		return BLK_STS_RESOURCE;
411 	refcount_set(&cb->pending_bios, 0);
412 	cb->errors = 0;
413 	cb->inode = &inode->vfs_inode;
414 	cb->start = start;
415 	cb->len = len;
416 	cb->mirror_num = 0;
417 	cb->compressed_pages = compressed_pages;
418 	cb->compressed_len = compressed_len;
419 	cb->orig_bio = NULL;
420 	cb->nr_pages = nr_pages;
421 
422 	bio = btrfs_bio_alloc(first_byte);
423 	bio->bi_opf = bio_op | write_flags;
424 	bio->bi_private = cb;
425 	bio->bi_end_io = end_compressed_bio_write;
426 
427 	if (use_append) {
428 		struct btrfs_device *device;
429 
430 		device = btrfs_zoned_get_device(fs_info, disk_start, PAGE_SIZE);
431 		if (IS_ERR(device)) {
432 			kfree(cb);
433 			bio_put(bio);
434 			return BLK_STS_NOTSUPP;
435 		}
436 
437 		bio_set_dev(bio, device->bdev);
438 	}
439 
440 	if (blkcg_css) {
441 		bio->bi_opf |= REQ_CGROUP_PUNT;
442 		kthread_associate_blkcg(blkcg_css);
443 	}
444 	refcount_set(&cb->pending_bios, 1);
445 
446 	/* create and submit bios for the compressed pages */
447 	bytes_left = compressed_len;
448 	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
449 		int submit = 0;
450 		int len = 0;
451 
452 		page = compressed_pages[pg_index];
453 		page->mapping = inode->vfs_inode.i_mapping;
454 		if (bio->bi_iter.bi_size)
455 			submit = btrfs_bio_fits_in_stripe(page, PAGE_SIZE, bio,
456 							  0);
457 
458 		/*
459 		 * Page can only be added to bio if the current bio fits in
460 		 * stripe.
461 		 */
462 		if (!submit) {
463 			if (pg_index == 0 && use_append)
464 				len = bio_add_zone_append_page(bio, page,
465 							       PAGE_SIZE, 0);
466 			else
467 				len = bio_add_page(bio, page, PAGE_SIZE, 0);
468 		}
469 
470 		page->mapping = NULL;
471 		if (submit || len < PAGE_SIZE) {
472 			/*
473 			 * inc the count before we submit the bio so
474 			 * we know the end IO handler won't happen before
475 			 * we inc the count.  Otherwise, the cb might get
476 			 * freed before we're done setting it up
477 			 */
478 			refcount_inc(&cb->pending_bios);
479 			ret = btrfs_bio_wq_end_io(fs_info, bio,
480 						  BTRFS_WQ_ENDIO_DATA);
481 			BUG_ON(ret); /* -ENOMEM */
482 
483 			if (!skip_sum) {
484 				ret = btrfs_csum_one_bio(inode, bio, start, 1);
485 				BUG_ON(ret); /* -ENOMEM */
486 			}
487 
488 			ret = btrfs_map_bio(fs_info, bio, 0);
489 			if (ret) {
490 				bio->bi_status = ret;
491 				bio_endio(bio);
492 			}
493 
494 			bio = btrfs_bio_alloc(first_byte);
495 			bio->bi_opf = bio_op | write_flags;
496 			bio->bi_private = cb;
497 			bio->bi_end_io = end_compressed_bio_write;
498 			if (blkcg_css)
499 				bio->bi_opf |= REQ_CGROUP_PUNT;
500 			/*
501 			 * Use bio_add_page() to ensure the bio has at least one
502 			 * page.
503 			 */
504 			bio_add_page(bio, page, PAGE_SIZE, 0);
505 		}
506 		if (bytes_left < PAGE_SIZE) {
507 			btrfs_info(fs_info,
508 					"bytes left %lu compress len %u nr %u",
509 			       bytes_left, cb->compressed_len, cb->nr_pages);
510 		}
511 		bytes_left -= PAGE_SIZE;
512 		first_byte += PAGE_SIZE;
513 		cond_resched();
514 	}
515 
516 	ret = btrfs_bio_wq_end_io(fs_info, bio, BTRFS_WQ_ENDIO_DATA);
517 	BUG_ON(ret); /* -ENOMEM */
518 
519 	if (!skip_sum) {
520 		ret = btrfs_csum_one_bio(inode, bio, start, 1);
521 		BUG_ON(ret); /* -ENOMEM */
522 	}
523 
524 	ret = btrfs_map_bio(fs_info, bio, 0);
525 	if (ret) {
526 		bio->bi_status = ret;
527 		bio_endio(bio);
528 	}
529 
530 	if (blkcg_css)
531 		kthread_associate_blkcg(NULL);
532 
533 	return 0;
534 }
535 
bio_end_offset(struct bio * bio)536 static u64 bio_end_offset(struct bio *bio)
537 {
538 	struct bio_vec *last = bio_last_bvec_all(bio);
539 
540 	return page_offset(last->bv_page) + last->bv_len + last->bv_offset;
541 }
542 
add_ra_bio_pages(struct inode * inode,u64 compressed_end,struct compressed_bio * cb)543 static noinline int add_ra_bio_pages(struct inode *inode,
544 				     u64 compressed_end,
545 				     struct compressed_bio *cb)
546 {
547 	unsigned long end_index;
548 	unsigned long pg_index;
549 	u64 last_offset;
550 	u64 isize = i_size_read(inode);
551 	int ret;
552 	struct page *page;
553 	unsigned long nr_pages = 0;
554 	struct extent_map *em;
555 	struct address_space *mapping = inode->i_mapping;
556 	struct extent_map_tree *em_tree;
557 	struct extent_io_tree *tree;
558 	u64 end;
559 	int misses = 0;
560 
561 	last_offset = bio_end_offset(cb->orig_bio);
562 	em_tree = &BTRFS_I(inode)->extent_tree;
563 	tree = &BTRFS_I(inode)->io_tree;
564 
565 	if (isize == 0)
566 		return 0;
567 
568 	/*
569 	 * For current subpage support, we only support 64K page size,
570 	 * which means maximum compressed extent size (128K) is just 2x page
571 	 * size.
572 	 * This makes readahead less effective, so here disable readahead for
573 	 * subpage for now, until full compressed write is supported.
574 	 */
575 	if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
576 		return 0;
577 
578 	end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
579 
580 	while (last_offset < compressed_end) {
581 		pg_index = last_offset >> PAGE_SHIFT;
582 
583 		if (pg_index > end_index)
584 			break;
585 
586 		page = xa_load(&mapping->i_pages, pg_index);
587 		if (page && !xa_is_value(page)) {
588 			misses++;
589 			if (misses > 4)
590 				break;
591 			goto next;
592 		}
593 
594 		page = __page_cache_alloc(mapping_gfp_constraint(mapping,
595 								 ~__GFP_FS));
596 		if (!page)
597 			break;
598 
599 		if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
600 			put_page(page);
601 			goto next;
602 		}
603 
604 		/*
605 		 * at this point, we have a locked page in the page cache
606 		 * for these bytes in the file.  But, we have to make
607 		 * sure they map to this compressed extent on disk.
608 		 */
609 		ret = set_page_extent_mapped(page);
610 		if (ret < 0) {
611 			unlock_page(page);
612 			put_page(page);
613 			break;
614 		}
615 
616 		end = last_offset + PAGE_SIZE - 1;
617 		lock_extent(tree, last_offset, end);
618 		read_lock(&em_tree->lock);
619 		em = lookup_extent_mapping(em_tree, last_offset,
620 					   PAGE_SIZE);
621 		read_unlock(&em_tree->lock);
622 
623 		if (!em || last_offset < em->start ||
624 		    (last_offset + PAGE_SIZE > extent_map_end(em)) ||
625 		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
626 			free_extent_map(em);
627 			unlock_extent(tree, last_offset, end);
628 			unlock_page(page);
629 			put_page(page);
630 			break;
631 		}
632 		free_extent_map(em);
633 
634 		if (page->index == end_index) {
635 			size_t zero_offset = offset_in_page(isize);
636 
637 			if (zero_offset) {
638 				int zeros;
639 				zeros = PAGE_SIZE - zero_offset;
640 				memzero_page(page, zero_offset, zeros);
641 				flush_dcache_page(page);
642 			}
643 		}
644 
645 		ret = bio_add_page(cb->orig_bio, page,
646 				   PAGE_SIZE, 0);
647 
648 		if (ret == PAGE_SIZE) {
649 			nr_pages++;
650 			put_page(page);
651 		} else {
652 			unlock_extent(tree, last_offset, end);
653 			unlock_page(page);
654 			put_page(page);
655 			break;
656 		}
657 next:
658 		last_offset += PAGE_SIZE;
659 	}
660 	return 0;
661 }
662 
663 /*
664  * for a compressed read, the bio we get passed has all the inode pages
665  * in it.  We don't actually do IO on those pages but allocate new ones
666  * to hold the compressed pages on disk.
667  *
668  * bio->bi_iter.bi_sector points to the compressed extent on disk
669  * bio->bi_io_vec points to all of the inode pages
670  *
671  * After the compressed pages are read, we copy the bytes into the
672  * bio we were passed and then call the bio end_io calls
673  */
btrfs_submit_compressed_read(struct inode * inode,struct bio * bio,int mirror_num,unsigned long bio_flags)674 blk_status_t btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
675 				 int mirror_num, unsigned long bio_flags)
676 {
677 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
678 	struct extent_map_tree *em_tree;
679 	struct compressed_bio *cb;
680 	unsigned int compressed_len;
681 	unsigned int nr_pages;
682 	unsigned int pg_index;
683 	struct page *page;
684 	struct bio *comp_bio;
685 	u64 cur_disk_byte = bio->bi_iter.bi_sector << 9;
686 	u64 file_offset;
687 	u64 em_len;
688 	u64 em_start;
689 	struct extent_map *em;
690 	blk_status_t ret = BLK_STS_RESOURCE;
691 	int faili = 0;
692 	u8 *sums;
693 
694 	em_tree = &BTRFS_I(inode)->extent_tree;
695 
696 	file_offset = bio_first_bvec_all(bio)->bv_offset +
697 		      page_offset(bio_first_page_all(bio));
698 
699 	/* we need the actual starting offset of this extent in the file */
700 	read_lock(&em_tree->lock);
701 	em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
702 	read_unlock(&em_tree->lock);
703 	if (!em)
704 		return BLK_STS_IOERR;
705 
706 	ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
707 	compressed_len = em->block_len;
708 	cb = kmalloc(compressed_bio_size(fs_info, compressed_len), GFP_NOFS);
709 	if (!cb)
710 		goto out;
711 
712 	refcount_set(&cb->pending_bios, 0);
713 	cb->errors = 0;
714 	cb->inode = inode;
715 	cb->mirror_num = mirror_num;
716 	sums = cb->sums;
717 
718 	cb->start = em->orig_start;
719 	em_len = em->len;
720 	em_start = em->start;
721 
722 	free_extent_map(em);
723 	em = NULL;
724 
725 	cb->len = bio->bi_iter.bi_size;
726 	cb->compressed_len = compressed_len;
727 	cb->compress_type = extent_compress_type(bio_flags);
728 	cb->orig_bio = bio;
729 
730 	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
731 	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
732 				       GFP_NOFS);
733 	if (!cb->compressed_pages)
734 		goto fail1;
735 
736 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
737 		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS);
738 		if (!cb->compressed_pages[pg_index]) {
739 			faili = pg_index - 1;
740 			ret = BLK_STS_RESOURCE;
741 			goto fail2;
742 		}
743 	}
744 	faili = nr_pages - 1;
745 	cb->nr_pages = nr_pages;
746 
747 	add_ra_bio_pages(inode, em_start + em_len, cb);
748 
749 	/* include any pages we added in add_ra-bio_pages */
750 	cb->len = bio->bi_iter.bi_size;
751 
752 	comp_bio = btrfs_bio_alloc(cur_disk_byte);
753 	comp_bio->bi_opf = REQ_OP_READ;
754 	comp_bio->bi_private = cb;
755 	comp_bio->bi_end_io = end_compressed_bio_read;
756 	refcount_set(&cb->pending_bios, 1);
757 
758 	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
759 		u32 pg_len = PAGE_SIZE;
760 		int submit = 0;
761 
762 		/*
763 		 * To handle subpage case, we need to make sure the bio only
764 		 * covers the range we need.
765 		 *
766 		 * If we're at the last page, truncate the length to only cover
767 		 * the remaining part.
768 		 */
769 		if (pg_index == nr_pages - 1)
770 			pg_len = min_t(u32, PAGE_SIZE,
771 					compressed_len - pg_index * PAGE_SIZE);
772 
773 		page = cb->compressed_pages[pg_index];
774 		page->mapping = inode->i_mapping;
775 		page->index = em_start >> PAGE_SHIFT;
776 
777 		if (comp_bio->bi_iter.bi_size)
778 			submit = btrfs_bio_fits_in_stripe(page, pg_len,
779 							  comp_bio, 0);
780 
781 		page->mapping = NULL;
782 		if (submit || bio_add_page(comp_bio, page, pg_len, 0) < pg_len) {
783 			unsigned int nr_sectors;
784 
785 			ret = btrfs_bio_wq_end_io(fs_info, comp_bio,
786 						  BTRFS_WQ_ENDIO_DATA);
787 			BUG_ON(ret); /* -ENOMEM */
788 
789 			/*
790 			 * inc the count before we submit the bio so
791 			 * we know the end IO handler won't happen before
792 			 * we inc the count.  Otherwise, the cb might get
793 			 * freed before we're done setting it up
794 			 */
795 			refcount_inc(&cb->pending_bios);
796 
797 			ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
798 			BUG_ON(ret); /* -ENOMEM */
799 
800 			nr_sectors = DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
801 						  fs_info->sectorsize);
802 			sums += fs_info->csum_size * nr_sectors;
803 
804 			ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
805 			if (ret) {
806 				comp_bio->bi_status = ret;
807 				bio_endio(comp_bio);
808 			}
809 
810 			comp_bio = btrfs_bio_alloc(cur_disk_byte);
811 			comp_bio->bi_opf = REQ_OP_READ;
812 			comp_bio->bi_private = cb;
813 			comp_bio->bi_end_io = end_compressed_bio_read;
814 
815 			bio_add_page(comp_bio, page, pg_len, 0);
816 		}
817 		cur_disk_byte += pg_len;
818 	}
819 
820 	ret = btrfs_bio_wq_end_io(fs_info, comp_bio, BTRFS_WQ_ENDIO_DATA);
821 	BUG_ON(ret); /* -ENOMEM */
822 
823 	ret = btrfs_lookup_bio_sums(inode, comp_bio, sums);
824 	BUG_ON(ret); /* -ENOMEM */
825 
826 	ret = btrfs_map_bio(fs_info, comp_bio, mirror_num);
827 	if (ret) {
828 		comp_bio->bi_status = ret;
829 		bio_endio(comp_bio);
830 	}
831 
832 	return 0;
833 
834 fail2:
835 	while (faili >= 0) {
836 		__free_page(cb->compressed_pages[faili]);
837 		faili--;
838 	}
839 
840 	kfree(cb->compressed_pages);
841 fail1:
842 	kfree(cb);
843 out:
844 	free_extent_map(em);
845 	return ret;
846 }
847 
848 /*
849  * Heuristic uses systematic sampling to collect data from the input data
850  * range, the logic can be tuned by the following constants:
851  *
852  * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
853  * @SAMPLING_INTERVAL  - range from which the sampled data can be collected
854  */
855 #define SAMPLING_READ_SIZE	(16)
856 #define SAMPLING_INTERVAL	(256)
857 
858 /*
859  * For statistical analysis of the input data we consider bytes that form a
860  * Galois Field of 256 objects. Each object has an attribute count, ie. how
861  * many times the object appeared in the sample.
862  */
863 #define BUCKET_SIZE		(256)
864 
865 /*
866  * The size of the sample is based on a statistical sampling rule of thumb.
867  * The common way is to perform sampling tests as long as the number of
868  * elements in each cell is at least 5.
869  *
870  * Instead of 5, we choose 32 to obtain more accurate results.
871  * If the data contain the maximum number of symbols, which is 256, we obtain a
872  * sample size bound by 8192.
873  *
874  * For a sample of at most 8KB of data per data range: 16 consecutive bytes
875  * from up to 512 locations.
876  */
877 #define MAX_SAMPLE_SIZE		(BTRFS_MAX_UNCOMPRESSED *		\
878 				 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
879 
880 struct bucket_item {
881 	u32 count;
882 };
883 
884 struct heuristic_ws {
885 	/* Partial copy of input data */
886 	u8 *sample;
887 	u32 sample_size;
888 	/* Buckets store counters for each byte value */
889 	struct bucket_item *bucket;
890 	/* Sorting buffer */
891 	struct bucket_item *bucket_b;
892 	struct list_head list;
893 };
894 
895 static struct workspace_manager heuristic_wsm;
896 
free_heuristic_ws(struct list_head * ws)897 static void free_heuristic_ws(struct list_head *ws)
898 {
899 	struct heuristic_ws *workspace;
900 
901 	workspace = list_entry(ws, struct heuristic_ws, list);
902 
903 	kvfree(workspace->sample);
904 	kfree(workspace->bucket);
905 	kfree(workspace->bucket_b);
906 	kfree(workspace);
907 }
908 
alloc_heuristic_ws(unsigned int level)909 static struct list_head *alloc_heuristic_ws(unsigned int level)
910 {
911 	struct heuristic_ws *ws;
912 
913 	ws = kzalloc(sizeof(*ws), GFP_KERNEL);
914 	if (!ws)
915 		return ERR_PTR(-ENOMEM);
916 
917 	ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
918 	if (!ws->sample)
919 		goto fail;
920 
921 	ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
922 	if (!ws->bucket)
923 		goto fail;
924 
925 	ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
926 	if (!ws->bucket_b)
927 		goto fail;
928 
929 	INIT_LIST_HEAD(&ws->list);
930 	return &ws->list;
931 fail:
932 	free_heuristic_ws(&ws->list);
933 	return ERR_PTR(-ENOMEM);
934 }
935 
936 const struct btrfs_compress_op btrfs_heuristic_compress = {
937 	.workspace_manager = &heuristic_wsm,
938 };
939 
940 static const struct btrfs_compress_op * const btrfs_compress_op[] = {
941 	/* The heuristic is represented as compression type 0 */
942 	&btrfs_heuristic_compress,
943 	&btrfs_zlib_compress,
944 	&btrfs_lzo_compress,
945 	&btrfs_zstd_compress,
946 };
947 
alloc_workspace(int type,unsigned int level)948 static struct list_head *alloc_workspace(int type, unsigned int level)
949 {
950 	switch (type) {
951 	case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
952 	case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
953 	case BTRFS_COMPRESS_LZO:  return lzo_alloc_workspace(level);
954 	case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
955 	default:
956 		/*
957 		 * This can't happen, the type is validated several times
958 		 * before we get here.
959 		 */
960 		BUG();
961 	}
962 }
963 
free_workspace(int type,struct list_head * ws)964 static void free_workspace(int type, struct list_head *ws)
965 {
966 	switch (type) {
967 	case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
968 	case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
969 	case BTRFS_COMPRESS_LZO:  return lzo_free_workspace(ws);
970 	case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
971 	default:
972 		/*
973 		 * This can't happen, the type is validated several times
974 		 * before we get here.
975 		 */
976 		BUG();
977 	}
978 }
979 
btrfs_init_workspace_manager(int type)980 static void btrfs_init_workspace_manager(int type)
981 {
982 	struct workspace_manager *wsm;
983 	struct list_head *workspace;
984 
985 	wsm = btrfs_compress_op[type]->workspace_manager;
986 	INIT_LIST_HEAD(&wsm->idle_ws);
987 	spin_lock_init(&wsm->ws_lock);
988 	atomic_set(&wsm->total_ws, 0);
989 	init_waitqueue_head(&wsm->ws_wait);
990 
991 	/*
992 	 * Preallocate one workspace for each compression type so we can
993 	 * guarantee forward progress in the worst case
994 	 */
995 	workspace = alloc_workspace(type, 0);
996 	if (IS_ERR(workspace)) {
997 		pr_warn(
998 	"BTRFS: cannot preallocate compression workspace, will try later\n");
999 	} else {
1000 		atomic_set(&wsm->total_ws, 1);
1001 		wsm->free_ws = 1;
1002 		list_add(workspace, &wsm->idle_ws);
1003 	}
1004 }
1005 
btrfs_cleanup_workspace_manager(int type)1006 static void btrfs_cleanup_workspace_manager(int type)
1007 {
1008 	struct workspace_manager *wsman;
1009 	struct list_head *ws;
1010 
1011 	wsman = btrfs_compress_op[type]->workspace_manager;
1012 	while (!list_empty(&wsman->idle_ws)) {
1013 		ws = wsman->idle_ws.next;
1014 		list_del(ws);
1015 		free_workspace(type, ws);
1016 		atomic_dec(&wsman->total_ws);
1017 	}
1018 }
1019 
1020 /*
1021  * This finds an available workspace or allocates a new one.
1022  * If it's not possible to allocate a new one, waits until there's one.
1023  * Preallocation makes a forward progress guarantees and we do not return
1024  * errors.
1025  */
btrfs_get_workspace(int type,unsigned int level)1026 struct list_head *btrfs_get_workspace(int type, unsigned int level)
1027 {
1028 	struct workspace_manager *wsm;
1029 	struct list_head *workspace;
1030 	int cpus = num_online_cpus();
1031 	unsigned nofs_flag;
1032 	struct list_head *idle_ws;
1033 	spinlock_t *ws_lock;
1034 	atomic_t *total_ws;
1035 	wait_queue_head_t *ws_wait;
1036 	int *free_ws;
1037 
1038 	wsm = btrfs_compress_op[type]->workspace_manager;
1039 	idle_ws	 = &wsm->idle_ws;
1040 	ws_lock	 = &wsm->ws_lock;
1041 	total_ws = &wsm->total_ws;
1042 	ws_wait	 = &wsm->ws_wait;
1043 	free_ws	 = &wsm->free_ws;
1044 
1045 again:
1046 	spin_lock(ws_lock);
1047 	if (!list_empty(idle_ws)) {
1048 		workspace = idle_ws->next;
1049 		list_del(workspace);
1050 		(*free_ws)--;
1051 		spin_unlock(ws_lock);
1052 		return workspace;
1053 
1054 	}
1055 	if (atomic_read(total_ws) > cpus) {
1056 		DEFINE_WAIT(wait);
1057 
1058 		spin_unlock(ws_lock);
1059 		prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
1060 		if (atomic_read(total_ws) > cpus && !*free_ws)
1061 			schedule();
1062 		finish_wait(ws_wait, &wait);
1063 		goto again;
1064 	}
1065 	atomic_inc(total_ws);
1066 	spin_unlock(ws_lock);
1067 
1068 	/*
1069 	 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
1070 	 * to turn it off here because we might get called from the restricted
1071 	 * context of btrfs_compress_bio/btrfs_compress_pages
1072 	 */
1073 	nofs_flag = memalloc_nofs_save();
1074 	workspace = alloc_workspace(type, level);
1075 	memalloc_nofs_restore(nofs_flag);
1076 
1077 	if (IS_ERR(workspace)) {
1078 		atomic_dec(total_ws);
1079 		wake_up(ws_wait);
1080 
1081 		/*
1082 		 * Do not return the error but go back to waiting. There's a
1083 		 * workspace preallocated for each type and the compression
1084 		 * time is bounded so we get to a workspace eventually. This
1085 		 * makes our caller's life easier.
1086 		 *
1087 		 * To prevent silent and low-probability deadlocks (when the
1088 		 * initial preallocation fails), check if there are any
1089 		 * workspaces at all.
1090 		 */
1091 		if (atomic_read(total_ws) == 0) {
1092 			static DEFINE_RATELIMIT_STATE(_rs,
1093 					/* once per minute */ 60 * HZ,
1094 					/* no burst */ 1);
1095 
1096 			if (__ratelimit(&_rs)) {
1097 				pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
1098 			}
1099 		}
1100 		goto again;
1101 	}
1102 	return workspace;
1103 }
1104 
get_workspace(int type,int level)1105 static struct list_head *get_workspace(int type, int level)
1106 {
1107 	switch (type) {
1108 	case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
1109 	case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
1110 	case BTRFS_COMPRESS_LZO:  return btrfs_get_workspace(type, level);
1111 	case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
1112 	default:
1113 		/*
1114 		 * This can't happen, the type is validated several times
1115 		 * before we get here.
1116 		 */
1117 		BUG();
1118 	}
1119 }
1120 
1121 /*
1122  * put a workspace struct back on the list or free it if we have enough
1123  * idle ones sitting around
1124  */
btrfs_put_workspace(int type,struct list_head * ws)1125 void btrfs_put_workspace(int type, struct list_head *ws)
1126 {
1127 	struct workspace_manager *wsm;
1128 	struct list_head *idle_ws;
1129 	spinlock_t *ws_lock;
1130 	atomic_t *total_ws;
1131 	wait_queue_head_t *ws_wait;
1132 	int *free_ws;
1133 
1134 	wsm = btrfs_compress_op[type]->workspace_manager;
1135 	idle_ws	 = &wsm->idle_ws;
1136 	ws_lock	 = &wsm->ws_lock;
1137 	total_ws = &wsm->total_ws;
1138 	ws_wait	 = &wsm->ws_wait;
1139 	free_ws	 = &wsm->free_ws;
1140 
1141 	spin_lock(ws_lock);
1142 	if (*free_ws <= num_online_cpus()) {
1143 		list_add(ws, idle_ws);
1144 		(*free_ws)++;
1145 		spin_unlock(ws_lock);
1146 		goto wake;
1147 	}
1148 	spin_unlock(ws_lock);
1149 
1150 	free_workspace(type, ws);
1151 	atomic_dec(total_ws);
1152 wake:
1153 	cond_wake_up(ws_wait);
1154 }
1155 
put_workspace(int type,struct list_head * ws)1156 static void put_workspace(int type, struct list_head *ws)
1157 {
1158 	switch (type) {
1159 	case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
1160 	case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
1161 	case BTRFS_COMPRESS_LZO:  return btrfs_put_workspace(type, ws);
1162 	case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
1163 	default:
1164 		/*
1165 		 * This can't happen, the type is validated several times
1166 		 * before we get here.
1167 		 */
1168 		BUG();
1169 	}
1170 }
1171 
1172 /*
1173  * Adjust @level according to the limits of the compression algorithm or
1174  * fallback to default
1175  */
btrfs_compress_set_level(int type,unsigned level)1176 static unsigned int btrfs_compress_set_level(int type, unsigned level)
1177 {
1178 	const struct btrfs_compress_op *ops = btrfs_compress_op[type];
1179 
1180 	if (level == 0)
1181 		level = ops->default_level;
1182 	else
1183 		level = min(level, ops->max_level);
1184 
1185 	return level;
1186 }
1187 
1188 /*
1189  * Given an address space and start and length, compress the bytes into @pages
1190  * that are allocated on demand.
1191  *
1192  * @type_level is encoded algorithm and level, where level 0 means whatever
1193  * default the algorithm chooses and is opaque here;
1194  * - compression algo are 0-3
1195  * - the level are bits 4-7
1196  *
1197  * @out_pages is an in/out parameter, holds maximum number of pages to allocate
1198  * and returns number of actually allocated pages
1199  *
1200  * @total_in is used to return the number of bytes actually read.  It
1201  * may be smaller than the input length if we had to exit early because we
1202  * ran out of room in the pages array or because we cross the
1203  * max_out threshold.
1204  *
1205  * @total_out is an in/out parameter, must be set to the input length and will
1206  * be also used to return the total number of compressed bytes
1207  */
btrfs_compress_pages(unsigned int type_level,struct address_space * mapping,u64 start,struct page ** pages,unsigned long * out_pages,unsigned long * total_in,unsigned long * total_out)1208 int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
1209 			 u64 start, struct page **pages,
1210 			 unsigned long *out_pages,
1211 			 unsigned long *total_in,
1212 			 unsigned long *total_out)
1213 {
1214 	int type = btrfs_compress_type(type_level);
1215 	int level = btrfs_compress_level(type_level);
1216 	struct list_head *workspace;
1217 	int ret;
1218 
1219 	level = btrfs_compress_set_level(type, level);
1220 	workspace = get_workspace(type, level);
1221 	ret = compression_compress_pages(type, workspace, mapping, start, pages,
1222 					 out_pages, total_in, total_out);
1223 	put_workspace(type, workspace);
1224 	return ret;
1225 }
1226 
btrfs_decompress_bio(struct compressed_bio * cb)1227 static int btrfs_decompress_bio(struct compressed_bio *cb)
1228 {
1229 	struct list_head *workspace;
1230 	int ret;
1231 	int type = cb->compress_type;
1232 
1233 	workspace = get_workspace(type, 0);
1234 	ret = compression_decompress_bio(type, workspace, cb);
1235 	put_workspace(type, workspace);
1236 
1237 	return ret;
1238 }
1239 
1240 /*
1241  * a less complex decompression routine.  Our compressed data fits in a
1242  * single page, and we want to read a single page out of it.
1243  * start_byte tells us the offset into the compressed data we're interested in
1244  */
btrfs_decompress(int type,unsigned char * data_in,struct page * dest_page,unsigned long start_byte,size_t srclen,size_t destlen)1245 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
1246 		     unsigned long start_byte, size_t srclen, size_t destlen)
1247 {
1248 	struct list_head *workspace;
1249 	int ret;
1250 
1251 	workspace = get_workspace(type, 0);
1252 	ret = compression_decompress(type, workspace, data_in, dest_page,
1253 				     start_byte, srclen, destlen);
1254 	put_workspace(type, workspace);
1255 
1256 	return ret;
1257 }
1258 
btrfs_init_compress(void)1259 void __init btrfs_init_compress(void)
1260 {
1261 	btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
1262 	btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
1263 	btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
1264 	zstd_init_workspace_manager();
1265 }
1266 
btrfs_exit_compress(void)1267 void __cold btrfs_exit_compress(void)
1268 {
1269 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
1270 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
1271 	btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
1272 	zstd_cleanup_workspace_manager();
1273 }
1274 
1275 /*
1276  * Copy decompressed data from working buffer to pages.
1277  *
1278  * @buf:		The decompressed data buffer
1279  * @buf_len:		The decompressed data length
1280  * @decompressed:	Number of bytes that are already decompressed inside the
1281  * 			compressed extent
1282  * @cb:			The compressed extent descriptor
1283  * @orig_bio:		The original bio that the caller wants to read for
1284  *
1285  * An easier to understand graph is like below:
1286  *
1287  * 		|<- orig_bio ->|     |<- orig_bio->|
1288  * 	|<-------      full decompressed extent      ----->|
1289  * 	|<-----------    @cb range   ---->|
1290  * 	|			|<-- @buf_len -->|
1291  * 	|<--- @decompressed --->|
1292  *
1293  * Note that, @cb can be a subpage of the full decompressed extent, but
1294  * @cb->start always has the same as the orig_file_offset value of the full
1295  * decompressed extent.
1296  *
1297  * When reading compressed extent, we have to read the full compressed extent,
1298  * while @orig_bio may only want part of the range.
1299  * Thus this function will ensure only data covered by @orig_bio will be copied
1300  * to.
1301  *
1302  * Return 0 if we have copied all needed contents for @orig_bio.
1303  * Return >0 if we need continue decompress.
1304  */
btrfs_decompress_buf2page(const char * buf,u32 buf_len,struct compressed_bio * cb,u32 decompressed)1305 int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1306 			      struct compressed_bio *cb, u32 decompressed)
1307 {
1308 	struct bio *orig_bio = cb->orig_bio;
1309 	/* Offset inside the full decompressed extent */
1310 	u32 cur_offset;
1311 
1312 	cur_offset = decompressed;
1313 	/* The main loop to do the copy */
1314 	while (cur_offset < decompressed + buf_len) {
1315 		struct bio_vec bvec;
1316 		size_t copy_len;
1317 		u32 copy_start;
1318 		/* Offset inside the full decompressed extent */
1319 		u32 bvec_offset;
1320 
1321 		bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1322 		/*
1323 		 * cb->start may underflow, but subtracting that value can still
1324 		 * give us correct offset inside the full decompressed extent.
1325 		 */
1326 		bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1327 
1328 		/* Haven't reached the bvec range, exit */
1329 		if (decompressed + buf_len <= bvec_offset)
1330 			return 1;
1331 
1332 		copy_start = max(cur_offset, bvec_offset);
1333 		copy_len = min(bvec_offset + bvec.bv_len,
1334 			       decompressed + buf_len) - copy_start;
1335 		ASSERT(copy_len);
1336 
1337 		/*
1338 		 * Extra range check to ensure we didn't go beyond
1339 		 * @buf + @buf_len.
1340 		 */
1341 		ASSERT(copy_start - decompressed < buf_len);
1342 		memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1343 			       buf + copy_start - decompressed, copy_len);
1344 		flush_dcache_page(bvec.bv_page);
1345 		cur_offset += copy_len;
1346 
1347 		bio_advance(orig_bio, copy_len);
1348 		/* Finished the bio */
1349 		if (!orig_bio->bi_iter.bi_size)
1350 			return 0;
1351 	}
1352 	return 1;
1353 }
1354 
1355 /*
1356  * Shannon Entropy calculation
1357  *
1358  * Pure byte distribution analysis fails to determine compressibility of data.
1359  * Try calculating entropy to estimate the average minimum number of bits
1360  * needed to encode the sampled data.
1361  *
1362  * For convenience, return the percentage of needed bits, instead of amount of
1363  * bits directly.
1364  *
1365  * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1366  *			    and can be compressible with high probability
1367  *
1368  * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1369  *
1370  * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1371  */
1372 #define ENTROPY_LVL_ACEPTABLE		(65)
1373 #define ENTROPY_LVL_HIGH		(80)
1374 
1375 /*
1376  * For increasead precision in shannon_entropy calculation,
1377  * let's do pow(n, M) to save more digits after comma:
1378  *
1379  * - maximum int bit length is 64
1380  * - ilog2(MAX_SAMPLE_SIZE)	-> 13
1381  * - 13 * 4 = 52 < 64		-> M = 4
1382  *
1383  * So use pow(n, 4).
1384  */
ilog2_w(u64 n)1385 static inline u32 ilog2_w(u64 n)
1386 {
1387 	return ilog2(n * n * n * n);
1388 }
1389 
shannon_entropy(struct heuristic_ws * ws)1390 static u32 shannon_entropy(struct heuristic_ws *ws)
1391 {
1392 	const u32 entropy_max = 8 * ilog2_w(2);
1393 	u32 entropy_sum = 0;
1394 	u32 p, p_base, sz_base;
1395 	u32 i;
1396 
1397 	sz_base = ilog2_w(ws->sample_size);
1398 	for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1399 		p = ws->bucket[i].count;
1400 		p_base = ilog2_w(p);
1401 		entropy_sum += p * (sz_base - p_base);
1402 	}
1403 
1404 	entropy_sum /= ws->sample_size;
1405 	return entropy_sum * 100 / entropy_max;
1406 }
1407 
1408 #define RADIX_BASE		4U
1409 #define COUNTERS_SIZE		(1U << RADIX_BASE)
1410 
get4bits(u64 num,int shift)1411 static u8 get4bits(u64 num, int shift) {
1412 	u8 low4bits;
1413 
1414 	num >>= shift;
1415 	/* Reverse order */
1416 	low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1417 	return low4bits;
1418 }
1419 
1420 /*
1421  * Use 4 bits as radix base
1422  * Use 16 u32 counters for calculating new position in buf array
1423  *
1424  * @array     - array that will be sorted
1425  * @array_buf - buffer array to store sorting results
1426  *              must be equal in size to @array
1427  * @num       - array size
1428  */
radix_sort(struct bucket_item * array,struct bucket_item * array_buf,int num)1429 static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1430 		       int num)
1431 {
1432 	u64 max_num;
1433 	u64 buf_num;
1434 	u32 counters[COUNTERS_SIZE];
1435 	u32 new_addr;
1436 	u32 addr;
1437 	int bitlen;
1438 	int shift;
1439 	int i;
1440 
1441 	/*
1442 	 * Try avoid useless loop iterations for small numbers stored in big
1443 	 * counters.  Example: 48 33 4 ... in 64bit array
1444 	 */
1445 	max_num = array[0].count;
1446 	for (i = 1; i < num; i++) {
1447 		buf_num = array[i].count;
1448 		if (buf_num > max_num)
1449 			max_num = buf_num;
1450 	}
1451 
1452 	buf_num = ilog2(max_num);
1453 	bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1454 
1455 	shift = 0;
1456 	while (shift < bitlen) {
1457 		memset(counters, 0, sizeof(counters));
1458 
1459 		for (i = 0; i < num; i++) {
1460 			buf_num = array[i].count;
1461 			addr = get4bits(buf_num, shift);
1462 			counters[addr]++;
1463 		}
1464 
1465 		for (i = 1; i < COUNTERS_SIZE; i++)
1466 			counters[i] += counters[i - 1];
1467 
1468 		for (i = num - 1; i >= 0; i--) {
1469 			buf_num = array[i].count;
1470 			addr = get4bits(buf_num, shift);
1471 			counters[addr]--;
1472 			new_addr = counters[addr];
1473 			array_buf[new_addr] = array[i];
1474 		}
1475 
1476 		shift += RADIX_BASE;
1477 
1478 		/*
1479 		 * Normal radix expects to move data from a temporary array, to
1480 		 * the main one.  But that requires some CPU time. Avoid that
1481 		 * by doing another sort iteration to original array instead of
1482 		 * memcpy()
1483 		 */
1484 		memset(counters, 0, sizeof(counters));
1485 
1486 		for (i = 0; i < num; i ++) {
1487 			buf_num = array_buf[i].count;
1488 			addr = get4bits(buf_num, shift);
1489 			counters[addr]++;
1490 		}
1491 
1492 		for (i = 1; i < COUNTERS_SIZE; i++)
1493 			counters[i] += counters[i - 1];
1494 
1495 		for (i = num - 1; i >= 0; i--) {
1496 			buf_num = array_buf[i].count;
1497 			addr = get4bits(buf_num, shift);
1498 			counters[addr]--;
1499 			new_addr = counters[addr];
1500 			array[new_addr] = array_buf[i];
1501 		}
1502 
1503 		shift += RADIX_BASE;
1504 	}
1505 }
1506 
1507 /*
1508  * Size of the core byte set - how many bytes cover 90% of the sample
1509  *
1510  * There are several types of structured binary data that use nearly all byte
1511  * values. The distribution can be uniform and counts in all buckets will be
1512  * nearly the same (eg. encrypted data). Unlikely to be compressible.
1513  *
1514  * Other possibility is normal (Gaussian) distribution, where the data could
1515  * be potentially compressible, but we have to take a few more steps to decide
1516  * how much.
1517  *
1518  * @BYTE_CORE_SET_LOW  - main part of byte values repeated frequently,
1519  *                       compression algo can easy fix that
1520  * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1521  *                       probability is not compressible
1522  */
1523 #define BYTE_CORE_SET_LOW		(64)
1524 #define BYTE_CORE_SET_HIGH		(200)
1525 
byte_core_set_size(struct heuristic_ws * ws)1526 static int byte_core_set_size(struct heuristic_ws *ws)
1527 {
1528 	u32 i;
1529 	u32 coreset_sum = 0;
1530 	const u32 core_set_threshold = ws->sample_size * 90 / 100;
1531 	struct bucket_item *bucket = ws->bucket;
1532 
1533 	/* Sort in reverse order */
1534 	radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1535 
1536 	for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1537 		coreset_sum += bucket[i].count;
1538 
1539 	if (coreset_sum > core_set_threshold)
1540 		return i;
1541 
1542 	for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1543 		coreset_sum += bucket[i].count;
1544 		if (coreset_sum > core_set_threshold)
1545 			break;
1546 	}
1547 
1548 	return i;
1549 }
1550 
1551 /*
1552  * Count byte values in buckets.
1553  * This heuristic can detect textual data (configs, xml, json, html, etc).
1554  * Because in most text-like data byte set is restricted to limited number of
1555  * possible characters, and that restriction in most cases makes data easy to
1556  * compress.
1557  *
1558  * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1559  *	less - compressible
1560  *	more - need additional analysis
1561  */
1562 #define BYTE_SET_THRESHOLD		(64)
1563 
byte_set_size(const struct heuristic_ws * ws)1564 static u32 byte_set_size(const struct heuristic_ws *ws)
1565 {
1566 	u32 i;
1567 	u32 byte_set_size = 0;
1568 
1569 	for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1570 		if (ws->bucket[i].count > 0)
1571 			byte_set_size++;
1572 	}
1573 
1574 	/*
1575 	 * Continue collecting count of byte values in buckets.  If the byte
1576 	 * set size is bigger then the threshold, it's pointless to continue,
1577 	 * the detection technique would fail for this type of data.
1578 	 */
1579 	for (; i < BUCKET_SIZE; i++) {
1580 		if (ws->bucket[i].count > 0) {
1581 			byte_set_size++;
1582 			if (byte_set_size > BYTE_SET_THRESHOLD)
1583 				return byte_set_size;
1584 		}
1585 	}
1586 
1587 	return byte_set_size;
1588 }
1589 
sample_repeated_patterns(struct heuristic_ws * ws)1590 static bool sample_repeated_patterns(struct heuristic_ws *ws)
1591 {
1592 	const u32 half_of_sample = ws->sample_size / 2;
1593 	const u8 *data = ws->sample;
1594 
1595 	return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1596 }
1597 
heuristic_collect_sample(struct inode * inode,u64 start,u64 end,struct heuristic_ws * ws)1598 static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1599 				     struct heuristic_ws *ws)
1600 {
1601 	struct page *page;
1602 	u64 index, index_end;
1603 	u32 i, curr_sample_pos;
1604 	u8 *in_data;
1605 
1606 	/*
1607 	 * Compression handles the input data by chunks of 128KiB
1608 	 * (defined by BTRFS_MAX_UNCOMPRESSED)
1609 	 *
1610 	 * We do the same for the heuristic and loop over the whole range.
1611 	 *
1612 	 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1613 	 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1614 	 */
1615 	if (end - start > BTRFS_MAX_UNCOMPRESSED)
1616 		end = start + BTRFS_MAX_UNCOMPRESSED;
1617 
1618 	index = start >> PAGE_SHIFT;
1619 	index_end = end >> PAGE_SHIFT;
1620 
1621 	/* Don't miss unaligned end */
1622 	if (!IS_ALIGNED(end, PAGE_SIZE))
1623 		index_end++;
1624 
1625 	curr_sample_pos = 0;
1626 	while (index < index_end) {
1627 		page = find_get_page(inode->i_mapping, index);
1628 		in_data = kmap_local_page(page);
1629 		/* Handle case where the start is not aligned to PAGE_SIZE */
1630 		i = start % PAGE_SIZE;
1631 		while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1632 			/* Don't sample any garbage from the last page */
1633 			if (start > end - SAMPLING_READ_SIZE)
1634 				break;
1635 			memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1636 					SAMPLING_READ_SIZE);
1637 			i += SAMPLING_INTERVAL;
1638 			start += SAMPLING_INTERVAL;
1639 			curr_sample_pos += SAMPLING_READ_SIZE;
1640 		}
1641 		kunmap_local(in_data);
1642 		put_page(page);
1643 
1644 		index++;
1645 	}
1646 
1647 	ws->sample_size = curr_sample_pos;
1648 }
1649 
1650 /*
1651  * Compression heuristic.
1652  *
1653  * For now is's a naive and optimistic 'return true', we'll extend the logic to
1654  * quickly (compared to direct compression) detect data characteristics
1655  * (compressible/uncompressible) to avoid wasting CPU time on uncompressible
1656  * data.
1657  *
1658  * The following types of analysis can be performed:
1659  * - detect mostly zero data
1660  * - detect data with low "byte set" size (text, etc)
1661  * - detect data with low/high "core byte" set
1662  *
1663  * Return non-zero if the compression should be done, 0 otherwise.
1664  */
btrfs_compress_heuristic(struct inode * inode,u64 start,u64 end)1665 int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1666 {
1667 	struct list_head *ws_list = get_workspace(0, 0);
1668 	struct heuristic_ws *ws;
1669 	u32 i;
1670 	u8 byte;
1671 	int ret = 0;
1672 
1673 	ws = list_entry(ws_list, struct heuristic_ws, list);
1674 
1675 	heuristic_collect_sample(inode, start, end, ws);
1676 
1677 	if (sample_repeated_patterns(ws)) {
1678 		ret = 1;
1679 		goto out;
1680 	}
1681 
1682 	memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1683 
1684 	for (i = 0; i < ws->sample_size; i++) {
1685 		byte = ws->sample[i];
1686 		ws->bucket[byte].count++;
1687 	}
1688 
1689 	i = byte_set_size(ws);
1690 	if (i < BYTE_SET_THRESHOLD) {
1691 		ret = 2;
1692 		goto out;
1693 	}
1694 
1695 	i = byte_core_set_size(ws);
1696 	if (i <= BYTE_CORE_SET_LOW) {
1697 		ret = 3;
1698 		goto out;
1699 	}
1700 
1701 	if (i >= BYTE_CORE_SET_HIGH) {
1702 		ret = 0;
1703 		goto out;
1704 	}
1705 
1706 	i = shannon_entropy(ws);
1707 	if (i <= ENTROPY_LVL_ACEPTABLE) {
1708 		ret = 4;
1709 		goto out;
1710 	}
1711 
1712 	/*
1713 	 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1714 	 * needed to give green light to compression.
1715 	 *
1716 	 * For now just assume that compression at that level is not worth the
1717 	 * resources because:
1718 	 *
1719 	 * 1. it is possible to defrag the data later
1720 	 *
1721 	 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1722 	 * values, every bucket has counter at level ~54. The heuristic would
1723 	 * be confused. This can happen when data have some internal repeated
1724 	 * patterns like "abbacbbc...". This can be detected by analyzing
1725 	 * pairs of bytes, which is too costly.
1726 	 */
1727 	if (i < ENTROPY_LVL_HIGH) {
1728 		ret = 5;
1729 		goto out;
1730 	} else {
1731 		ret = 0;
1732 		goto out;
1733 	}
1734 
1735 out:
1736 	put_workspace(0, ws_list);
1737 	return ret;
1738 }
1739 
1740 /*
1741  * Convert the compression suffix (eg. after "zlib" starting with ":") to
1742  * level, unrecognized string will set the default level
1743  */
btrfs_compress_str2level(unsigned int type,const char * str)1744 unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1745 {
1746 	unsigned int level = 0;
1747 	int ret;
1748 
1749 	if (!type)
1750 		return 0;
1751 
1752 	if (str[0] == ':') {
1753 		ret = kstrtouint(str + 1, 10, &level);
1754 		if (ret)
1755 			level = 0;
1756 	}
1757 
1758 	level = btrfs_compress_set_level(type, level);
1759 
1760 	return level;
1761 }
1762