1 // SPDX-License-Identifier: GPL-2.0
2
3 #include "misc.h"
4 #include "ctree.h"
5 #include "block-group.h"
6 #include "space-info.h"
7 #include "disk-io.h"
8 #include "free-space-cache.h"
9 #include "free-space-tree.h"
10 #include "volumes.h"
11 #include "transaction.h"
12 #include "ref-verify.h"
13 #include "sysfs.h"
14 #include "tree-log.h"
15 #include "delalloc-space.h"
16 #include "discard.h"
17 #include "raid56.h"
18 #include "zoned.h"
19
20 /*
21 * Return target flags in extended format or 0 if restripe for this chunk_type
22 * is not in progress
23 *
24 * Should be called with balance_lock held
25 */
get_restripe_target(struct btrfs_fs_info * fs_info,u64 flags)26 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
27 {
28 struct btrfs_balance_control *bctl = fs_info->balance_ctl;
29 u64 target = 0;
30
31 if (!bctl)
32 return 0;
33
34 if (flags & BTRFS_BLOCK_GROUP_DATA &&
35 bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
36 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
37 } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
38 bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
39 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
40 } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
41 bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
42 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
43 }
44
45 return target;
46 }
47
48 /*
49 * @flags: available profiles in extended format (see ctree.h)
50 *
51 * Return reduced profile in chunk format. If profile changing is in progress
52 * (either running or paused) picks the target profile (if it's already
53 * available), otherwise falls back to plain reducing.
54 */
btrfs_reduce_alloc_profile(struct btrfs_fs_info * fs_info,u64 flags)55 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
56 {
57 u64 num_devices = fs_info->fs_devices->rw_devices;
58 u64 target;
59 u64 raid_type;
60 u64 allowed = 0;
61
62 /*
63 * See if restripe for this chunk_type is in progress, if so try to
64 * reduce to the target profile
65 */
66 spin_lock(&fs_info->balance_lock);
67 target = get_restripe_target(fs_info, flags);
68 if (target) {
69 spin_unlock(&fs_info->balance_lock);
70 return extended_to_chunk(target);
71 }
72 spin_unlock(&fs_info->balance_lock);
73
74 /* First, mask out the RAID levels which aren't possible */
75 for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
76 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
77 allowed |= btrfs_raid_array[raid_type].bg_flag;
78 }
79 allowed &= flags;
80
81 if (allowed & BTRFS_BLOCK_GROUP_RAID6)
82 allowed = BTRFS_BLOCK_GROUP_RAID6;
83 else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
84 allowed = BTRFS_BLOCK_GROUP_RAID5;
85 else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
86 allowed = BTRFS_BLOCK_GROUP_RAID10;
87 else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
88 allowed = BTRFS_BLOCK_GROUP_RAID1;
89 else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
90 allowed = BTRFS_BLOCK_GROUP_RAID0;
91
92 flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
93
94 return extended_to_chunk(flags | allowed);
95 }
96
btrfs_get_alloc_profile(struct btrfs_fs_info * fs_info,u64 orig_flags)97 u64 btrfs_get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
98 {
99 unsigned seq;
100 u64 flags;
101
102 do {
103 flags = orig_flags;
104 seq = read_seqbegin(&fs_info->profiles_lock);
105
106 if (flags & BTRFS_BLOCK_GROUP_DATA)
107 flags |= fs_info->avail_data_alloc_bits;
108 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
109 flags |= fs_info->avail_system_alloc_bits;
110 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
111 flags |= fs_info->avail_metadata_alloc_bits;
112 } while (read_seqretry(&fs_info->profiles_lock, seq));
113
114 return btrfs_reduce_alloc_profile(fs_info, flags);
115 }
116
btrfs_get_block_group(struct btrfs_block_group * cache)117 void btrfs_get_block_group(struct btrfs_block_group *cache)
118 {
119 refcount_inc(&cache->refs);
120 }
121
btrfs_put_block_group(struct btrfs_block_group * cache)122 void btrfs_put_block_group(struct btrfs_block_group *cache)
123 {
124 if (refcount_dec_and_test(&cache->refs)) {
125 WARN_ON(cache->pinned > 0);
126 WARN_ON(cache->reserved > 0);
127
128 /*
129 * A block_group shouldn't be on the discard_list anymore.
130 * Remove the block_group from the discard_list to prevent us
131 * from causing a panic due to NULL pointer dereference.
132 */
133 if (WARN_ON(!list_empty(&cache->discard_list)))
134 btrfs_discard_cancel_work(&cache->fs_info->discard_ctl,
135 cache);
136
137 /*
138 * If not empty, someone is still holding mutex of
139 * full_stripe_lock, which can only be released by caller.
140 * And it will definitely cause use-after-free when caller
141 * tries to release full stripe lock.
142 *
143 * No better way to resolve, but only to warn.
144 */
145 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
146 kfree(cache->free_space_ctl);
147 kfree(cache);
148 }
149 }
150
151 /*
152 * This adds the block group to the fs_info rb tree for the block group cache
153 */
btrfs_add_block_group_cache(struct btrfs_fs_info * info,struct btrfs_block_group * block_group)154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155 struct btrfs_block_group *block_group)
156 {
157 struct rb_node **p;
158 struct rb_node *parent = NULL;
159 struct btrfs_block_group *cache;
160
161 ASSERT(block_group->length != 0);
162
163 spin_lock(&info->block_group_cache_lock);
164 p = &info->block_group_cache_tree.rb_node;
165
166 while (*p) {
167 parent = *p;
168 cache = rb_entry(parent, struct btrfs_block_group, cache_node);
169 if (block_group->start < cache->start) {
170 p = &(*p)->rb_left;
171 } else if (block_group->start > cache->start) {
172 p = &(*p)->rb_right;
173 } else {
174 spin_unlock(&info->block_group_cache_lock);
175 return -EEXIST;
176 }
177 }
178
179 rb_link_node(&block_group->cache_node, parent, p);
180 rb_insert_color(&block_group->cache_node,
181 &info->block_group_cache_tree);
182
183 if (info->first_logical_byte > block_group->start)
184 info->first_logical_byte = block_group->start;
185
186 spin_unlock(&info->block_group_cache_lock);
187
188 return 0;
189 }
190
191 /*
192 * This will return the block group at or after bytenr if contains is 0, else
193 * it will return the block group that contains the bytenr
194 */
block_group_cache_tree_search(struct btrfs_fs_info * info,u64 bytenr,int contains)195 static struct btrfs_block_group *block_group_cache_tree_search(
196 struct btrfs_fs_info *info, u64 bytenr, int contains)
197 {
198 struct btrfs_block_group *cache, *ret = NULL;
199 struct rb_node *n;
200 u64 end, start;
201
202 spin_lock(&info->block_group_cache_lock);
203 n = info->block_group_cache_tree.rb_node;
204
205 while (n) {
206 cache = rb_entry(n, struct btrfs_block_group, cache_node);
207 end = cache->start + cache->length - 1;
208 start = cache->start;
209
210 if (bytenr < start) {
211 if (!contains && (!ret || start < ret->start))
212 ret = cache;
213 n = n->rb_left;
214 } else if (bytenr > start) {
215 if (contains && bytenr <= end) {
216 ret = cache;
217 break;
218 }
219 n = n->rb_right;
220 } else {
221 ret = cache;
222 break;
223 }
224 }
225 if (ret) {
226 btrfs_get_block_group(ret);
227 if (bytenr == 0 && info->first_logical_byte > ret->start)
228 info->first_logical_byte = ret->start;
229 }
230 spin_unlock(&info->block_group_cache_lock);
231
232 return ret;
233 }
234
235 /*
236 * Return the block group that starts at or after bytenr
237 */
btrfs_lookup_first_block_group(struct btrfs_fs_info * info,u64 bytenr)238 struct btrfs_block_group *btrfs_lookup_first_block_group(
239 struct btrfs_fs_info *info, u64 bytenr)
240 {
241 return block_group_cache_tree_search(info, bytenr, 0);
242 }
243
244 /*
245 * Return the block group that contains the given bytenr
246 */
btrfs_lookup_block_group(struct btrfs_fs_info * info,u64 bytenr)247 struct btrfs_block_group *btrfs_lookup_block_group(
248 struct btrfs_fs_info *info, u64 bytenr)
249 {
250 return block_group_cache_tree_search(info, bytenr, 1);
251 }
252
btrfs_next_block_group(struct btrfs_block_group * cache)253 struct btrfs_block_group *btrfs_next_block_group(
254 struct btrfs_block_group *cache)
255 {
256 struct btrfs_fs_info *fs_info = cache->fs_info;
257 struct rb_node *node;
258
259 spin_lock(&fs_info->block_group_cache_lock);
260
261 /* If our block group was removed, we need a full search. */
262 if (RB_EMPTY_NODE(&cache->cache_node)) {
263 const u64 next_bytenr = cache->start + cache->length;
264
265 spin_unlock(&fs_info->block_group_cache_lock);
266 btrfs_put_block_group(cache);
267 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
268 }
269 node = rb_next(&cache->cache_node);
270 btrfs_put_block_group(cache);
271 if (node) {
272 cache = rb_entry(node, struct btrfs_block_group, cache_node);
273 btrfs_get_block_group(cache);
274 } else
275 cache = NULL;
276 spin_unlock(&fs_info->block_group_cache_lock);
277 return cache;
278 }
279
btrfs_inc_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)280 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
281 {
282 struct btrfs_block_group *bg;
283 bool ret = true;
284
285 bg = btrfs_lookup_block_group(fs_info, bytenr);
286 if (!bg)
287 return false;
288
289 spin_lock(&bg->lock);
290 if (bg->ro)
291 ret = false;
292 else
293 atomic_inc(&bg->nocow_writers);
294 spin_unlock(&bg->lock);
295
296 /* No put on block group, done by btrfs_dec_nocow_writers */
297 if (!ret)
298 btrfs_put_block_group(bg);
299
300 return ret;
301 }
302
btrfs_dec_nocow_writers(struct btrfs_fs_info * fs_info,u64 bytenr)303 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
304 {
305 struct btrfs_block_group *bg;
306
307 bg = btrfs_lookup_block_group(fs_info, bytenr);
308 ASSERT(bg);
309 if (atomic_dec_and_test(&bg->nocow_writers))
310 wake_up_var(&bg->nocow_writers);
311 /*
312 * Once for our lookup and once for the lookup done by a previous call
313 * to btrfs_inc_nocow_writers()
314 */
315 btrfs_put_block_group(bg);
316 btrfs_put_block_group(bg);
317 }
318
btrfs_wait_nocow_writers(struct btrfs_block_group * bg)319 void btrfs_wait_nocow_writers(struct btrfs_block_group *bg)
320 {
321 wait_var_event(&bg->nocow_writers, !atomic_read(&bg->nocow_writers));
322 }
323
btrfs_dec_block_group_reservations(struct btrfs_fs_info * fs_info,const u64 start)324 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
325 const u64 start)
326 {
327 struct btrfs_block_group *bg;
328
329 bg = btrfs_lookup_block_group(fs_info, start);
330 ASSERT(bg);
331 if (atomic_dec_and_test(&bg->reservations))
332 wake_up_var(&bg->reservations);
333 btrfs_put_block_group(bg);
334 }
335
btrfs_wait_block_group_reservations(struct btrfs_block_group * bg)336 void btrfs_wait_block_group_reservations(struct btrfs_block_group *bg)
337 {
338 struct btrfs_space_info *space_info = bg->space_info;
339
340 ASSERT(bg->ro);
341
342 if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
343 return;
344
345 /*
346 * Our block group is read only but before we set it to read only,
347 * some task might have had allocated an extent from it already, but it
348 * has not yet created a respective ordered extent (and added it to a
349 * root's list of ordered extents).
350 * Therefore wait for any task currently allocating extents, since the
351 * block group's reservations counter is incremented while a read lock
352 * on the groups' semaphore is held and decremented after releasing
353 * the read access on that semaphore and creating the ordered extent.
354 */
355 down_write(&space_info->groups_sem);
356 up_write(&space_info->groups_sem);
357
358 wait_var_event(&bg->reservations, !atomic_read(&bg->reservations));
359 }
360
btrfs_get_caching_control(struct btrfs_block_group * cache)361 struct btrfs_caching_control *btrfs_get_caching_control(
362 struct btrfs_block_group *cache)
363 {
364 struct btrfs_caching_control *ctl;
365
366 spin_lock(&cache->lock);
367 if (!cache->caching_ctl) {
368 spin_unlock(&cache->lock);
369 return NULL;
370 }
371
372 ctl = cache->caching_ctl;
373 refcount_inc(&ctl->count);
374 spin_unlock(&cache->lock);
375 return ctl;
376 }
377
btrfs_put_caching_control(struct btrfs_caching_control * ctl)378 void btrfs_put_caching_control(struct btrfs_caching_control *ctl)
379 {
380 if (refcount_dec_and_test(&ctl->count))
381 kfree(ctl);
382 }
383
384 /*
385 * When we wait for progress in the block group caching, its because our
386 * allocation attempt failed at least once. So, we must sleep and let some
387 * progress happen before we try again.
388 *
389 * This function will sleep at least once waiting for new free space to show
390 * up, and then it will check the block group free space numbers for our min
391 * num_bytes. Another option is to have it go ahead and look in the rbtree for
392 * a free extent of a given size, but this is a good start.
393 *
394 * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
395 * any of the information in this block group.
396 */
btrfs_wait_block_group_cache_progress(struct btrfs_block_group * cache,u64 num_bytes)397 void btrfs_wait_block_group_cache_progress(struct btrfs_block_group *cache,
398 u64 num_bytes)
399 {
400 struct btrfs_caching_control *caching_ctl;
401
402 caching_ctl = btrfs_get_caching_control(cache);
403 if (!caching_ctl)
404 return;
405
406 wait_event(caching_ctl->wait, btrfs_block_group_done(cache) ||
407 (cache->free_space_ctl->free_space >= num_bytes));
408
409 btrfs_put_caching_control(caching_ctl);
410 }
411
btrfs_wait_block_group_cache_done(struct btrfs_block_group * cache)412 int btrfs_wait_block_group_cache_done(struct btrfs_block_group *cache)
413 {
414 struct btrfs_caching_control *caching_ctl;
415 int ret = 0;
416
417 caching_ctl = btrfs_get_caching_control(cache);
418 if (!caching_ctl)
419 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
420
421 wait_event(caching_ctl->wait, btrfs_block_group_done(cache));
422 if (cache->cached == BTRFS_CACHE_ERROR)
423 ret = -EIO;
424 btrfs_put_caching_control(caching_ctl);
425 return ret;
426 }
427
space_cache_v1_done(struct btrfs_block_group * cache)428 static bool space_cache_v1_done(struct btrfs_block_group *cache)
429 {
430 bool ret;
431
432 spin_lock(&cache->lock);
433 ret = cache->cached != BTRFS_CACHE_FAST;
434 spin_unlock(&cache->lock);
435
436 return ret;
437 }
438
btrfs_wait_space_cache_v1_finished(struct btrfs_block_group * cache,struct btrfs_caching_control * caching_ctl)439 void btrfs_wait_space_cache_v1_finished(struct btrfs_block_group *cache,
440 struct btrfs_caching_control *caching_ctl)
441 {
442 wait_event(caching_ctl->wait, space_cache_v1_done(cache));
443 }
444
445 #ifdef CONFIG_BTRFS_DEBUG
fragment_free_space(struct btrfs_block_group * block_group)446 static void fragment_free_space(struct btrfs_block_group *block_group)
447 {
448 struct btrfs_fs_info *fs_info = block_group->fs_info;
449 u64 start = block_group->start;
450 u64 len = block_group->length;
451 u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
452 fs_info->nodesize : fs_info->sectorsize;
453 u64 step = chunk << 1;
454
455 while (len > chunk) {
456 btrfs_remove_free_space(block_group, start, chunk);
457 start += step;
458 if (len < step)
459 len = 0;
460 else
461 len -= step;
462 }
463 }
464 #endif
465
466 /*
467 * This is only called by btrfs_cache_block_group, since we could have freed
468 * extents we need to check the pinned_extents for any extents that can't be
469 * used yet since their free space will be released as soon as the transaction
470 * commits.
471 */
add_new_free_space(struct btrfs_block_group * block_group,u64 start,u64 end)472 u64 add_new_free_space(struct btrfs_block_group *block_group, u64 start, u64 end)
473 {
474 struct btrfs_fs_info *info = block_group->fs_info;
475 u64 extent_start, extent_end, size, total_added = 0;
476 int ret;
477
478 while (start < end) {
479 ret = find_first_extent_bit(&info->excluded_extents, start,
480 &extent_start, &extent_end,
481 EXTENT_DIRTY | EXTENT_UPTODATE,
482 NULL);
483 if (ret)
484 break;
485
486 if (extent_start <= start) {
487 start = extent_end + 1;
488 } else if (extent_start > start && extent_start < end) {
489 size = extent_start - start;
490 total_added += size;
491 ret = btrfs_add_free_space_async_trimmed(block_group,
492 start, size);
493 BUG_ON(ret); /* -ENOMEM or logic error */
494 start = extent_end + 1;
495 } else {
496 break;
497 }
498 }
499
500 if (start < end) {
501 size = end - start;
502 total_added += size;
503 ret = btrfs_add_free_space_async_trimmed(block_group, start,
504 size);
505 BUG_ON(ret); /* -ENOMEM or logic error */
506 }
507
508 return total_added;
509 }
510
load_extent_tree_free(struct btrfs_caching_control * caching_ctl)511 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
512 {
513 struct btrfs_block_group *block_group = caching_ctl->block_group;
514 struct btrfs_fs_info *fs_info = block_group->fs_info;
515 struct btrfs_root *extent_root = fs_info->extent_root;
516 struct btrfs_path *path;
517 struct extent_buffer *leaf;
518 struct btrfs_key key;
519 u64 total_found = 0;
520 u64 last = 0;
521 u32 nritems;
522 int ret;
523 bool wakeup = true;
524
525 path = btrfs_alloc_path();
526 if (!path)
527 return -ENOMEM;
528
529 last = max_t(u64, block_group->start, BTRFS_SUPER_INFO_OFFSET);
530
531 #ifdef CONFIG_BTRFS_DEBUG
532 /*
533 * If we're fragmenting we don't want to make anybody think we can
534 * allocate from this block group until we've had a chance to fragment
535 * the free space.
536 */
537 if (btrfs_should_fragment_free_space(block_group))
538 wakeup = false;
539 #endif
540 /*
541 * We don't want to deadlock with somebody trying to allocate a new
542 * extent for the extent root while also trying to search the extent
543 * root to add free space. So we skip locking and search the commit
544 * root, since its read-only
545 */
546 path->skip_locking = 1;
547 path->search_commit_root = 1;
548 path->reada = READA_FORWARD;
549
550 key.objectid = last;
551 key.offset = 0;
552 key.type = BTRFS_EXTENT_ITEM_KEY;
553
554 next:
555 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
556 if (ret < 0)
557 goto out;
558
559 leaf = path->nodes[0];
560 nritems = btrfs_header_nritems(leaf);
561
562 while (1) {
563 if (btrfs_fs_closing(fs_info) > 1) {
564 last = (u64)-1;
565 break;
566 }
567
568 if (path->slots[0] < nritems) {
569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
570 } else {
571 ret = btrfs_find_next_key(extent_root, path, &key, 0, 0);
572 if (ret)
573 break;
574
575 if (need_resched() ||
576 rwsem_is_contended(&fs_info->commit_root_sem)) {
577 if (wakeup)
578 caching_ctl->progress = last;
579 btrfs_release_path(path);
580 up_read(&fs_info->commit_root_sem);
581 mutex_unlock(&caching_ctl->mutex);
582 cond_resched();
583 mutex_lock(&caching_ctl->mutex);
584 down_read(&fs_info->commit_root_sem);
585 goto next;
586 }
587
588 ret = btrfs_next_leaf(extent_root, path);
589 if (ret < 0)
590 goto out;
591 if (ret)
592 break;
593 leaf = path->nodes[0];
594 nritems = btrfs_header_nritems(leaf);
595 continue;
596 }
597
598 if (key.objectid < last) {
599 key.objectid = last;
600 key.offset = 0;
601 key.type = BTRFS_EXTENT_ITEM_KEY;
602
603 if (wakeup)
604 caching_ctl->progress = last;
605 btrfs_release_path(path);
606 goto next;
607 }
608
609 if (key.objectid < block_group->start) {
610 path->slots[0]++;
611 continue;
612 }
613
614 if (key.objectid >= block_group->start + block_group->length)
615 break;
616
617 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
618 key.type == BTRFS_METADATA_ITEM_KEY) {
619 total_found += add_new_free_space(block_group, last,
620 key.objectid);
621 if (key.type == BTRFS_METADATA_ITEM_KEY)
622 last = key.objectid +
623 fs_info->nodesize;
624 else
625 last = key.objectid + key.offset;
626
627 if (total_found > CACHING_CTL_WAKE_UP) {
628 total_found = 0;
629 if (wakeup)
630 wake_up(&caching_ctl->wait);
631 }
632 }
633 path->slots[0]++;
634 }
635 ret = 0;
636
637 total_found += add_new_free_space(block_group, last,
638 block_group->start + block_group->length);
639 caching_ctl->progress = (u64)-1;
640
641 out:
642 btrfs_free_path(path);
643 return ret;
644 }
645
caching_thread(struct btrfs_work * work)646 static noinline void caching_thread(struct btrfs_work *work)
647 {
648 struct btrfs_block_group *block_group;
649 struct btrfs_fs_info *fs_info;
650 struct btrfs_caching_control *caching_ctl;
651 int ret;
652
653 caching_ctl = container_of(work, struct btrfs_caching_control, work);
654 block_group = caching_ctl->block_group;
655 fs_info = block_group->fs_info;
656
657 mutex_lock(&caching_ctl->mutex);
658 down_read(&fs_info->commit_root_sem);
659
660 if (btrfs_test_opt(fs_info, SPACE_CACHE)) {
661 ret = load_free_space_cache(block_group);
662 if (ret == 1) {
663 ret = 0;
664 goto done;
665 }
666
667 /*
668 * We failed to load the space cache, set ourselves to
669 * CACHE_STARTED and carry on.
670 */
671 spin_lock(&block_group->lock);
672 block_group->cached = BTRFS_CACHE_STARTED;
673 spin_unlock(&block_group->lock);
674 wake_up(&caching_ctl->wait);
675 }
676
677 /*
678 * If we are in the transaction that populated the free space tree we
679 * can't actually cache from the free space tree as our commit root and
680 * real root are the same, so we could change the contents of the blocks
681 * while caching. Instead do the slow caching in this case, and after
682 * the transaction has committed we will be safe.
683 */
684 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
685 !(test_bit(BTRFS_FS_FREE_SPACE_TREE_UNTRUSTED, &fs_info->flags)))
686 ret = load_free_space_tree(caching_ctl);
687 else
688 ret = load_extent_tree_free(caching_ctl);
689 done:
690 spin_lock(&block_group->lock);
691 block_group->caching_ctl = NULL;
692 block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
693 spin_unlock(&block_group->lock);
694
695 #ifdef CONFIG_BTRFS_DEBUG
696 if (btrfs_should_fragment_free_space(block_group)) {
697 u64 bytes_used;
698
699 spin_lock(&block_group->space_info->lock);
700 spin_lock(&block_group->lock);
701 bytes_used = block_group->length - block_group->used;
702 block_group->space_info->bytes_used += bytes_used >> 1;
703 spin_unlock(&block_group->lock);
704 spin_unlock(&block_group->space_info->lock);
705 fragment_free_space(block_group);
706 }
707 #endif
708
709 caching_ctl->progress = (u64)-1;
710
711 up_read(&fs_info->commit_root_sem);
712 btrfs_free_excluded_extents(block_group);
713 mutex_unlock(&caching_ctl->mutex);
714
715 wake_up(&caching_ctl->wait);
716
717 btrfs_put_caching_control(caching_ctl);
718 btrfs_put_block_group(block_group);
719 }
720
btrfs_cache_block_group(struct btrfs_block_group * cache,int load_cache_only)721 int btrfs_cache_block_group(struct btrfs_block_group *cache, int load_cache_only)
722 {
723 DEFINE_WAIT(wait);
724 struct btrfs_fs_info *fs_info = cache->fs_info;
725 struct btrfs_caching_control *caching_ctl = NULL;
726 int ret = 0;
727
728 /* Allocator for zoned filesystems does not use the cache at all */
729 if (btrfs_is_zoned(fs_info))
730 return 0;
731
732 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
733 if (!caching_ctl)
734 return -ENOMEM;
735
736 INIT_LIST_HEAD(&caching_ctl->list);
737 mutex_init(&caching_ctl->mutex);
738 init_waitqueue_head(&caching_ctl->wait);
739 caching_ctl->block_group = cache;
740 caching_ctl->progress = cache->start;
741 refcount_set(&caching_ctl->count, 2);
742 btrfs_init_work(&caching_ctl->work, caching_thread, NULL, NULL);
743
744 spin_lock(&cache->lock);
745 if (cache->cached != BTRFS_CACHE_NO) {
746 kfree(caching_ctl);
747
748 caching_ctl = cache->caching_ctl;
749 if (caching_ctl)
750 refcount_inc(&caching_ctl->count);
751 spin_unlock(&cache->lock);
752 goto out;
753 }
754 WARN_ON(cache->caching_ctl);
755 cache->caching_ctl = caching_ctl;
756 if (btrfs_test_opt(fs_info, SPACE_CACHE))
757 cache->cached = BTRFS_CACHE_FAST;
758 else
759 cache->cached = BTRFS_CACHE_STARTED;
760 cache->has_caching_ctl = 1;
761 spin_unlock(&cache->lock);
762
763 spin_lock(&fs_info->block_group_cache_lock);
764 refcount_inc(&caching_ctl->count);
765 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
766 spin_unlock(&fs_info->block_group_cache_lock);
767
768 btrfs_get_block_group(cache);
769
770 btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
771 out:
772 if (load_cache_only && caching_ctl)
773 btrfs_wait_space_cache_v1_finished(cache, caching_ctl);
774 if (caching_ctl)
775 btrfs_put_caching_control(caching_ctl);
776
777 return ret;
778 }
779
clear_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)780 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
781 {
782 u64 extra_flags = chunk_to_extended(flags) &
783 BTRFS_EXTENDED_PROFILE_MASK;
784
785 write_seqlock(&fs_info->profiles_lock);
786 if (flags & BTRFS_BLOCK_GROUP_DATA)
787 fs_info->avail_data_alloc_bits &= ~extra_flags;
788 if (flags & BTRFS_BLOCK_GROUP_METADATA)
789 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
790 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
791 fs_info->avail_system_alloc_bits &= ~extra_flags;
792 write_sequnlock(&fs_info->profiles_lock);
793 }
794
795 /*
796 * Clear incompat bits for the following feature(s):
797 *
798 * - RAID56 - in case there's neither RAID5 nor RAID6 profile block group
799 * in the whole filesystem
800 *
801 * - RAID1C34 - same as above for RAID1C3 and RAID1C4 block groups
802 */
clear_incompat_bg_bits(struct btrfs_fs_info * fs_info,u64 flags)803 static void clear_incompat_bg_bits(struct btrfs_fs_info *fs_info, u64 flags)
804 {
805 bool found_raid56 = false;
806 bool found_raid1c34 = false;
807
808 if ((flags & BTRFS_BLOCK_GROUP_RAID56_MASK) ||
809 (flags & BTRFS_BLOCK_GROUP_RAID1C3) ||
810 (flags & BTRFS_BLOCK_GROUP_RAID1C4)) {
811 struct list_head *head = &fs_info->space_info;
812 struct btrfs_space_info *sinfo;
813
814 list_for_each_entry_rcu(sinfo, head, list) {
815 down_read(&sinfo->groups_sem);
816 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID5]))
817 found_raid56 = true;
818 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID6]))
819 found_raid56 = true;
820 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C3]))
821 found_raid1c34 = true;
822 if (!list_empty(&sinfo->block_groups[BTRFS_RAID_RAID1C4]))
823 found_raid1c34 = true;
824 up_read(&sinfo->groups_sem);
825 }
826 if (!found_raid56)
827 btrfs_clear_fs_incompat(fs_info, RAID56);
828 if (!found_raid1c34)
829 btrfs_clear_fs_incompat(fs_info, RAID1C34);
830 }
831 }
832
remove_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * block_group)833 static int remove_block_group_item(struct btrfs_trans_handle *trans,
834 struct btrfs_path *path,
835 struct btrfs_block_group *block_group)
836 {
837 struct btrfs_fs_info *fs_info = trans->fs_info;
838 struct btrfs_root *root;
839 struct btrfs_key key;
840 int ret;
841
842 root = fs_info->extent_root;
843 key.objectid = block_group->start;
844 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
845 key.offset = block_group->length;
846
847 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
848 if (ret > 0)
849 ret = -ENOENT;
850 if (ret < 0)
851 return ret;
852
853 ret = btrfs_del_item(trans, root, path);
854 return ret;
855 }
856
btrfs_remove_block_group(struct btrfs_trans_handle * trans,u64 group_start,struct extent_map * em)857 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
858 u64 group_start, struct extent_map *em)
859 {
860 struct btrfs_fs_info *fs_info = trans->fs_info;
861 struct btrfs_path *path;
862 struct btrfs_block_group *block_group;
863 struct btrfs_free_cluster *cluster;
864 struct inode *inode;
865 struct kobject *kobj = NULL;
866 int ret;
867 int index;
868 int factor;
869 struct btrfs_caching_control *caching_ctl = NULL;
870 bool remove_em;
871 bool remove_rsv = false;
872
873 block_group = btrfs_lookup_block_group(fs_info, group_start);
874 BUG_ON(!block_group);
875 BUG_ON(!block_group->ro);
876
877 trace_btrfs_remove_block_group(block_group);
878 /*
879 * Free the reserved super bytes from this block group before
880 * remove it.
881 */
882 btrfs_free_excluded_extents(block_group);
883 btrfs_free_ref_tree_range(fs_info, block_group->start,
884 block_group->length);
885
886 index = btrfs_bg_flags_to_raid_index(block_group->flags);
887 factor = btrfs_bg_type_to_factor(block_group->flags);
888
889 /* make sure this block group isn't part of an allocation cluster */
890 cluster = &fs_info->data_alloc_cluster;
891 spin_lock(&cluster->refill_lock);
892 btrfs_return_cluster_to_free_space(block_group, cluster);
893 spin_unlock(&cluster->refill_lock);
894
895 /*
896 * make sure this block group isn't part of a metadata
897 * allocation cluster
898 */
899 cluster = &fs_info->meta_alloc_cluster;
900 spin_lock(&cluster->refill_lock);
901 btrfs_return_cluster_to_free_space(block_group, cluster);
902 spin_unlock(&cluster->refill_lock);
903
904 btrfs_clear_treelog_bg(block_group);
905
906 path = btrfs_alloc_path();
907 if (!path) {
908 ret = -ENOMEM;
909 goto out;
910 }
911
912 /*
913 * get the inode first so any iput calls done for the io_list
914 * aren't the final iput (no unlinks allowed now)
915 */
916 inode = lookup_free_space_inode(block_group, path);
917
918 mutex_lock(&trans->transaction->cache_write_mutex);
919 /*
920 * Make sure our free space cache IO is done before removing the
921 * free space inode
922 */
923 spin_lock(&trans->transaction->dirty_bgs_lock);
924 if (!list_empty(&block_group->io_list)) {
925 list_del_init(&block_group->io_list);
926
927 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
928
929 spin_unlock(&trans->transaction->dirty_bgs_lock);
930 btrfs_wait_cache_io(trans, block_group, path);
931 btrfs_put_block_group(block_group);
932 spin_lock(&trans->transaction->dirty_bgs_lock);
933 }
934
935 if (!list_empty(&block_group->dirty_list)) {
936 list_del_init(&block_group->dirty_list);
937 remove_rsv = true;
938 btrfs_put_block_group(block_group);
939 }
940 spin_unlock(&trans->transaction->dirty_bgs_lock);
941 mutex_unlock(&trans->transaction->cache_write_mutex);
942
943 ret = btrfs_remove_free_space_inode(trans, inode, block_group);
944 if (ret)
945 goto out;
946
947 spin_lock(&fs_info->block_group_cache_lock);
948 rb_erase(&block_group->cache_node,
949 &fs_info->block_group_cache_tree);
950 RB_CLEAR_NODE(&block_group->cache_node);
951
952 /* Once for the block groups rbtree */
953 btrfs_put_block_group(block_group);
954
955 if (fs_info->first_logical_byte == block_group->start)
956 fs_info->first_logical_byte = (u64)-1;
957 spin_unlock(&fs_info->block_group_cache_lock);
958
959 down_write(&block_group->space_info->groups_sem);
960 /*
961 * we must use list_del_init so people can check to see if they
962 * are still on the list after taking the semaphore
963 */
964 list_del_init(&block_group->list);
965 if (list_empty(&block_group->space_info->block_groups[index])) {
966 kobj = block_group->space_info->block_group_kobjs[index];
967 block_group->space_info->block_group_kobjs[index] = NULL;
968 clear_avail_alloc_bits(fs_info, block_group->flags);
969 }
970 up_write(&block_group->space_info->groups_sem);
971 clear_incompat_bg_bits(fs_info, block_group->flags);
972 if (kobj) {
973 kobject_del(kobj);
974 kobject_put(kobj);
975 }
976
977 if (block_group->has_caching_ctl)
978 caching_ctl = btrfs_get_caching_control(block_group);
979 if (block_group->cached == BTRFS_CACHE_STARTED)
980 btrfs_wait_block_group_cache_done(block_group);
981 if (block_group->has_caching_ctl) {
982 spin_lock(&fs_info->block_group_cache_lock);
983 if (!caching_ctl) {
984 struct btrfs_caching_control *ctl;
985
986 list_for_each_entry(ctl,
987 &fs_info->caching_block_groups, list)
988 if (ctl->block_group == block_group) {
989 caching_ctl = ctl;
990 refcount_inc(&caching_ctl->count);
991 break;
992 }
993 }
994 if (caching_ctl)
995 list_del_init(&caching_ctl->list);
996 spin_unlock(&fs_info->block_group_cache_lock);
997 if (caching_ctl) {
998 /* Once for the caching bgs list and once for us. */
999 btrfs_put_caching_control(caching_ctl);
1000 btrfs_put_caching_control(caching_ctl);
1001 }
1002 }
1003
1004 spin_lock(&trans->transaction->dirty_bgs_lock);
1005 WARN_ON(!list_empty(&block_group->dirty_list));
1006 WARN_ON(!list_empty(&block_group->io_list));
1007 spin_unlock(&trans->transaction->dirty_bgs_lock);
1008
1009 btrfs_remove_free_space_cache(block_group);
1010
1011 spin_lock(&block_group->space_info->lock);
1012 list_del_init(&block_group->ro_list);
1013
1014 if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
1015 WARN_ON(block_group->space_info->total_bytes
1016 < block_group->length);
1017 WARN_ON(block_group->space_info->bytes_readonly
1018 < block_group->length - block_group->zone_unusable);
1019 WARN_ON(block_group->space_info->bytes_zone_unusable
1020 < block_group->zone_unusable);
1021 WARN_ON(block_group->space_info->disk_total
1022 < block_group->length * factor);
1023 }
1024 block_group->space_info->total_bytes -= block_group->length;
1025 block_group->space_info->bytes_readonly -=
1026 (block_group->length - block_group->zone_unusable);
1027 block_group->space_info->bytes_zone_unusable -=
1028 block_group->zone_unusable;
1029 block_group->space_info->disk_total -= block_group->length * factor;
1030
1031 spin_unlock(&block_group->space_info->lock);
1032
1033 /*
1034 * Remove the free space for the block group from the free space tree
1035 * and the block group's item from the extent tree before marking the
1036 * block group as removed. This is to prevent races with tasks that
1037 * freeze and unfreeze a block group, this task and another task
1038 * allocating a new block group - the unfreeze task ends up removing
1039 * the block group's extent map before the task calling this function
1040 * deletes the block group item from the extent tree, allowing for
1041 * another task to attempt to create another block group with the same
1042 * item key (and failing with -EEXIST and a transaction abort).
1043 */
1044 ret = remove_block_group_free_space(trans, block_group);
1045 if (ret)
1046 goto out;
1047
1048 ret = remove_block_group_item(trans, path, block_group);
1049 if (ret < 0)
1050 goto out;
1051
1052 spin_lock(&block_group->lock);
1053 block_group->removed = 1;
1054 /*
1055 * At this point trimming or scrub can't start on this block group,
1056 * because we removed the block group from the rbtree
1057 * fs_info->block_group_cache_tree so no one can't find it anymore and
1058 * even if someone already got this block group before we removed it
1059 * from the rbtree, they have already incremented block_group->frozen -
1060 * if they didn't, for the trimming case they won't find any free space
1061 * entries because we already removed them all when we called
1062 * btrfs_remove_free_space_cache().
1063 *
1064 * And we must not remove the extent map from the fs_info->mapping_tree
1065 * to prevent the same logical address range and physical device space
1066 * ranges from being reused for a new block group. This is needed to
1067 * avoid races with trimming and scrub.
1068 *
1069 * An fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
1070 * completely transactionless, so while it is trimming a range the
1071 * currently running transaction might finish and a new one start,
1072 * allowing for new block groups to be created that can reuse the same
1073 * physical device locations unless we take this special care.
1074 *
1075 * There may also be an implicit trim operation if the file system
1076 * is mounted with -odiscard. The same protections must remain
1077 * in place until the extents have been discarded completely when
1078 * the transaction commit has completed.
1079 */
1080 remove_em = (atomic_read(&block_group->frozen) == 0);
1081 spin_unlock(&block_group->lock);
1082
1083 if (remove_em) {
1084 struct extent_map_tree *em_tree;
1085
1086 em_tree = &fs_info->mapping_tree;
1087 write_lock(&em_tree->lock);
1088 remove_extent_mapping(em_tree, em);
1089 write_unlock(&em_tree->lock);
1090 /* once for the tree */
1091 free_extent_map(em);
1092 }
1093
1094 out:
1095 /* Once for the lookup reference */
1096 btrfs_put_block_group(block_group);
1097 if (remove_rsv)
1098 btrfs_delayed_refs_rsv_release(fs_info, 1);
1099 btrfs_free_path(path);
1100 return ret;
1101 }
1102
btrfs_start_trans_remove_block_group(struct btrfs_fs_info * fs_info,const u64 chunk_offset)1103 struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
1104 struct btrfs_fs_info *fs_info, const u64 chunk_offset)
1105 {
1106 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
1107 struct extent_map *em;
1108 struct map_lookup *map;
1109 unsigned int num_items;
1110
1111 read_lock(&em_tree->lock);
1112 em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1113 read_unlock(&em_tree->lock);
1114 ASSERT(em && em->start == chunk_offset);
1115
1116 /*
1117 * We need to reserve 3 + N units from the metadata space info in order
1118 * to remove a block group (done at btrfs_remove_chunk() and at
1119 * btrfs_remove_block_group()), which are used for:
1120 *
1121 * 1 unit for adding the free space inode's orphan (located in the tree
1122 * of tree roots).
1123 * 1 unit for deleting the block group item (located in the extent
1124 * tree).
1125 * 1 unit for deleting the free space item (located in tree of tree
1126 * roots).
1127 * N units for deleting N device extent items corresponding to each
1128 * stripe (located in the device tree).
1129 *
1130 * In order to remove a block group we also need to reserve units in the
1131 * system space info in order to update the chunk tree (update one or
1132 * more device items and remove one chunk item), but this is done at
1133 * btrfs_remove_chunk() through a call to check_system_chunk().
1134 */
1135 map = em->map_lookup;
1136 num_items = 3 + map->num_stripes;
1137 free_extent_map(em);
1138
1139 return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
1140 num_items);
1141 }
1142
1143 /*
1144 * Mark block group @cache read-only, so later write won't happen to block
1145 * group @cache.
1146 *
1147 * If @force is not set, this function will only mark the block group readonly
1148 * if we have enough free space (1M) in other metadata/system block groups.
1149 * If @force is not set, this function will mark the block group readonly
1150 * without checking free space.
1151 *
1152 * NOTE: This function doesn't care if other block groups can contain all the
1153 * data in this block group. That check should be done by relocation routine,
1154 * not this function.
1155 */
inc_block_group_ro(struct btrfs_block_group * cache,int force)1156 static int inc_block_group_ro(struct btrfs_block_group *cache, int force)
1157 {
1158 struct btrfs_space_info *sinfo = cache->space_info;
1159 u64 num_bytes;
1160 int ret = -ENOSPC;
1161
1162 spin_lock(&sinfo->lock);
1163 spin_lock(&cache->lock);
1164
1165 if (cache->swap_extents) {
1166 ret = -ETXTBSY;
1167 goto out;
1168 }
1169
1170 if (cache->ro) {
1171 cache->ro++;
1172 ret = 0;
1173 goto out;
1174 }
1175
1176 num_bytes = cache->length - cache->reserved - cache->pinned -
1177 cache->bytes_super - cache->zone_unusable - cache->used;
1178
1179 /*
1180 * Data never overcommits, even in mixed mode, so do just the straight
1181 * check of left over space in how much we have allocated.
1182 */
1183 if (force) {
1184 ret = 0;
1185 } else if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA) {
1186 u64 sinfo_used = btrfs_space_info_used(sinfo, true);
1187
1188 /*
1189 * Here we make sure if we mark this bg RO, we still have enough
1190 * free space as buffer.
1191 */
1192 if (sinfo_used + num_bytes <= sinfo->total_bytes)
1193 ret = 0;
1194 } else {
1195 /*
1196 * We overcommit metadata, so we need to do the
1197 * btrfs_can_overcommit check here, and we need to pass in
1198 * BTRFS_RESERVE_NO_FLUSH to give ourselves the most amount of
1199 * leeway to allow us to mark this block group as read only.
1200 */
1201 if (btrfs_can_overcommit(cache->fs_info, sinfo, num_bytes,
1202 BTRFS_RESERVE_NO_FLUSH))
1203 ret = 0;
1204 }
1205
1206 if (!ret) {
1207 sinfo->bytes_readonly += num_bytes;
1208 if (btrfs_is_zoned(cache->fs_info)) {
1209 /* Migrate zone_unusable bytes to readonly */
1210 sinfo->bytes_readonly += cache->zone_unusable;
1211 sinfo->bytes_zone_unusable -= cache->zone_unusable;
1212 cache->zone_unusable = 0;
1213 }
1214 cache->ro++;
1215 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
1216 }
1217 out:
1218 spin_unlock(&cache->lock);
1219 spin_unlock(&sinfo->lock);
1220 if (ret == -ENOSPC && btrfs_test_opt(cache->fs_info, ENOSPC_DEBUG)) {
1221 btrfs_info(cache->fs_info,
1222 "unable to make block group %llu ro", cache->start);
1223 btrfs_dump_space_info(cache->fs_info, cache->space_info, 0, 0);
1224 }
1225 return ret;
1226 }
1227
clean_pinned_extents(struct btrfs_trans_handle * trans,struct btrfs_block_group * bg)1228 static bool clean_pinned_extents(struct btrfs_trans_handle *trans,
1229 struct btrfs_block_group *bg)
1230 {
1231 struct btrfs_fs_info *fs_info = bg->fs_info;
1232 struct btrfs_transaction *prev_trans = NULL;
1233 const u64 start = bg->start;
1234 const u64 end = start + bg->length - 1;
1235 int ret;
1236
1237 spin_lock(&fs_info->trans_lock);
1238 if (trans->transaction->list.prev != &fs_info->trans_list) {
1239 prev_trans = list_last_entry(&trans->transaction->list,
1240 struct btrfs_transaction, list);
1241 refcount_inc(&prev_trans->use_count);
1242 }
1243 spin_unlock(&fs_info->trans_lock);
1244
1245 /*
1246 * Hold the unused_bg_unpin_mutex lock to avoid racing with
1247 * btrfs_finish_extent_commit(). If we are at transaction N, another
1248 * task might be running finish_extent_commit() for the previous
1249 * transaction N - 1, and have seen a range belonging to the block
1250 * group in pinned_extents before we were able to clear the whole block
1251 * group range from pinned_extents. This means that task can lookup for
1252 * the block group after we unpinned it from pinned_extents and removed
1253 * it, leading to a BUG_ON() at unpin_extent_range().
1254 */
1255 mutex_lock(&fs_info->unused_bg_unpin_mutex);
1256 if (prev_trans) {
1257 ret = clear_extent_bits(&prev_trans->pinned_extents, start, end,
1258 EXTENT_DIRTY);
1259 if (ret)
1260 goto out;
1261 }
1262
1263 ret = clear_extent_bits(&trans->transaction->pinned_extents, start, end,
1264 EXTENT_DIRTY);
1265 out:
1266 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
1267 if (prev_trans)
1268 btrfs_put_transaction(prev_trans);
1269
1270 return ret == 0;
1271 }
1272
1273 /*
1274 * Process the unused_bgs list and remove any that don't have any allocated
1275 * space inside of them.
1276 */
btrfs_delete_unused_bgs(struct btrfs_fs_info * fs_info)1277 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
1278 {
1279 struct btrfs_block_group *block_group;
1280 struct btrfs_space_info *space_info;
1281 struct btrfs_trans_handle *trans;
1282 const bool async_trim_enabled = btrfs_test_opt(fs_info, DISCARD_ASYNC);
1283 int ret = 0;
1284
1285 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1286 return;
1287
1288 /*
1289 * Long running balances can keep us blocked here for eternity, so
1290 * simply skip deletion if we're unable to get the mutex.
1291 */
1292 if (!mutex_trylock(&fs_info->reclaim_bgs_lock))
1293 return;
1294
1295 spin_lock(&fs_info->unused_bgs_lock);
1296 while (!list_empty(&fs_info->unused_bgs)) {
1297 int trimming;
1298
1299 block_group = list_first_entry(&fs_info->unused_bgs,
1300 struct btrfs_block_group,
1301 bg_list);
1302 list_del_init(&block_group->bg_list);
1303
1304 space_info = block_group->space_info;
1305
1306 if (ret || btrfs_mixed_space_info(space_info)) {
1307 btrfs_put_block_group(block_group);
1308 continue;
1309 }
1310 spin_unlock(&fs_info->unused_bgs_lock);
1311
1312 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group);
1313
1314 /* Don't want to race with allocators so take the groups_sem */
1315 down_write(&space_info->groups_sem);
1316
1317 /*
1318 * Async discard moves the final block group discard to be prior
1319 * to the unused_bgs code path. Therefore, if it's not fully
1320 * trimmed, punt it back to the async discard lists.
1321 */
1322 if (btrfs_test_opt(fs_info, DISCARD_ASYNC) &&
1323 !btrfs_is_free_space_trimmed(block_group)) {
1324 trace_btrfs_skip_unused_block_group(block_group);
1325 up_write(&space_info->groups_sem);
1326 /* Requeue if we failed because of async discard */
1327 btrfs_discard_queue_work(&fs_info->discard_ctl,
1328 block_group);
1329 goto next;
1330 }
1331
1332 spin_lock(&block_group->lock);
1333 if (block_group->reserved || block_group->pinned ||
1334 block_group->used || block_group->ro ||
1335 list_is_singular(&block_group->list)) {
1336 /*
1337 * We want to bail if we made new allocations or have
1338 * outstanding allocations in this block group. We do
1339 * the ro check in case balance is currently acting on
1340 * this block group.
1341 */
1342 trace_btrfs_skip_unused_block_group(block_group);
1343 spin_unlock(&block_group->lock);
1344 up_write(&space_info->groups_sem);
1345 goto next;
1346 }
1347 spin_unlock(&block_group->lock);
1348
1349 /* We don't want to force the issue, only flip if it's ok. */
1350 ret = inc_block_group_ro(block_group, 0);
1351 up_write(&space_info->groups_sem);
1352 if (ret < 0) {
1353 ret = 0;
1354 goto next;
1355 }
1356
1357 /*
1358 * Want to do this before we do anything else so we can recover
1359 * properly if we fail to join the transaction.
1360 */
1361 trans = btrfs_start_trans_remove_block_group(fs_info,
1362 block_group->start);
1363 if (IS_ERR(trans)) {
1364 btrfs_dec_block_group_ro(block_group);
1365 ret = PTR_ERR(trans);
1366 goto next;
1367 }
1368
1369 /*
1370 * We could have pending pinned extents for this block group,
1371 * just delete them, we don't care about them anymore.
1372 */
1373 if (!clean_pinned_extents(trans, block_group)) {
1374 btrfs_dec_block_group_ro(block_group);
1375 goto end_trans;
1376 }
1377
1378 /*
1379 * At this point, the block_group is read only and should fail
1380 * new allocations. However, btrfs_finish_extent_commit() can
1381 * cause this block_group to be placed back on the discard
1382 * lists because now the block_group isn't fully discarded.
1383 * Bail here and try again later after discarding everything.
1384 */
1385 spin_lock(&fs_info->discard_ctl.lock);
1386 if (!list_empty(&block_group->discard_list)) {
1387 spin_unlock(&fs_info->discard_ctl.lock);
1388 btrfs_dec_block_group_ro(block_group);
1389 btrfs_discard_queue_work(&fs_info->discard_ctl,
1390 block_group);
1391 goto end_trans;
1392 }
1393 spin_unlock(&fs_info->discard_ctl.lock);
1394
1395 /* Reset pinned so btrfs_put_block_group doesn't complain */
1396 spin_lock(&space_info->lock);
1397 spin_lock(&block_group->lock);
1398
1399 btrfs_space_info_update_bytes_pinned(fs_info, space_info,
1400 -block_group->pinned);
1401 space_info->bytes_readonly += block_group->pinned;
1402 block_group->pinned = 0;
1403
1404 spin_unlock(&block_group->lock);
1405 spin_unlock(&space_info->lock);
1406
1407 /*
1408 * The normal path here is an unused block group is passed here,
1409 * then trimming is handled in the transaction commit path.
1410 * Async discard interposes before this to do the trimming
1411 * before coming down the unused block group path as trimming
1412 * will no longer be done later in the transaction commit path.
1413 */
1414 if (!async_trim_enabled && btrfs_test_opt(fs_info, DISCARD_ASYNC))
1415 goto flip_async;
1416
1417 /*
1418 * DISCARD can flip during remount. On zoned filesystems, we
1419 * need to reset sequential-required zones.
1420 */
1421 trimming = btrfs_test_opt(fs_info, DISCARD_SYNC) ||
1422 btrfs_is_zoned(fs_info);
1423
1424 /* Implicit trim during transaction commit. */
1425 if (trimming)
1426 btrfs_freeze_block_group(block_group);
1427
1428 /*
1429 * Btrfs_remove_chunk will abort the transaction if things go
1430 * horribly wrong.
1431 */
1432 ret = btrfs_remove_chunk(trans, block_group->start);
1433
1434 if (ret) {
1435 if (trimming)
1436 btrfs_unfreeze_block_group(block_group);
1437 goto end_trans;
1438 }
1439
1440 /*
1441 * If we're not mounted with -odiscard, we can just forget
1442 * about this block group. Otherwise we'll need to wait
1443 * until transaction commit to do the actual discard.
1444 */
1445 if (trimming) {
1446 spin_lock(&fs_info->unused_bgs_lock);
1447 /*
1448 * A concurrent scrub might have added us to the list
1449 * fs_info->unused_bgs, so use a list_move operation
1450 * to add the block group to the deleted_bgs list.
1451 */
1452 list_move(&block_group->bg_list,
1453 &trans->transaction->deleted_bgs);
1454 spin_unlock(&fs_info->unused_bgs_lock);
1455 btrfs_get_block_group(block_group);
1456 }
1457 end_trans:
1458 btrfs_end_transaction(trans);
1459 next:
1460 btrfs_put_block_group(block_group);
1461 spin_lock(&fs_info->unused_bgs_lock);
1462 }
1463 spin_unlock(&fs_info->unused_bgs_lock);
1464 mutex_unlock(&fs_info->reclaim_bgs_lock);
1465 return;
1466
1467 flip_async:
1468 btrfs_end_transaction(trans);
1469 mutex_unlock(&fs_info->reclaim_bgs_lock);
1470 btrfs_put_block_group(block_group);
1471 btrfs_discard_punt_unused_bgs_list(fs_info);
1472 }
1473
btrfs_mark_bg_unused(struct btrfs_block_group * bg)1474 void btrfs_mark_bg_unused(struct btrfs_block_group *bg)
1475 {
1476 struct btrfs_fs_info *fs_info = bg->fs_info;
1477
1478 spin_lock(&fs_info->unused_bgs_lock);
1479 if (list_empty(&bg->bg_list)) {
1480 btrfs_get_block_group(bg);
1481 trace_btrfs_add_unused_block_group(bg);
1482 list_add_tail(&bg->bg_list, &fs_info->unused_bgs);
1483 }
1484 spin_unlock(&fs_info->unused_bgs_lock);
1485 }
1486
btrfs_reclaim_bgs_work(struct work_struct * work)1487 void btrfs_reclaim_bgs_work(struct work_struct *work)
1488 {
1489 struct btrfs_fs_info *fs_info =
1490 container_of(work, struct btrfs_fs_info, reclaim_bgs_work);
1491 struct btrfs_block_group *bg;
1492 struct btrfs_space_info *space_info;
1493 LIST_HEAD(again_list);
1494
1495 if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1496 return;
1497
1498 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE))
1499 return;
1500
1501 /*
1502 * Long running balances can keep us blocked here for eternity, so
1503 * simply skip reclaim if we're unable to get the mutex.
1504 */
1505 if (!mutex_trylock(&fs_info->reclaim_bgs_lock)) {
1506 btrfs_exclop_finish(fs_info);
1507 return;
1508 }
1509
1510 spin_lock(&fs_info->unused_bgs_lock);
1511 while (!list_empty(&fs_info->reclaim_bgs)) {
1512 u64 zone_unusable;
1513 int ret = 0;
1514
1515 bg = list_first_entry(&fs_info->reclaim_bgs,
1516 struct btrfs_block_group,
1517 bg_list);
1518 list_del_init(&bg->bg_list);
1519
1520 space_info = bg->space_info;
1521 spin_unlock(&fs_info->unused_bgs_lock);
1522
1523 /* Don't race with allocators so take the groups_sem */
1524 down_write(&space_info->groups_sem);
1525
1526 spin_lock(&bg->lock);
1527 if (bg->reserved || bg->pinned || bg->ro) {
1528 /*
1529 * We want to bail if we made new allocations or have
1530 * outstanding allocations in this block group. We do
1531 * the ro check in case balance is currently acting on
1532 * this block group.
1533 */
1534 spin_unlock(&bg->lock);
1535 up_write(&space_info->groups_sem);
1536 goto next;
1537 }
1538 spin_unlock(&bg->lock);
1539
1540 /* Get out fast, in case we're unmounting the filesystem */
1541 if (btrfs_fs_closing(fs_info)) {
1542 up_write(&space_info->groups_sem);
1543 goto next;
1544 }
1545
1546 /*
1547 * Cache the zone_unusable value before turning the block group
1548 * to read only. As soon as the blog group is read only it's
1549 * zone_unusable value gets moved to the block group's read-only
1550 * bytes and isn't available for calculations anymore.
1551 */
1552 zone_unusable = bg->zone_unusable;
1553 ret = inc_block_group_ro(bg, 0);
1554 up_write(&space_info->groups_sem);
1555 if (ret < 0)
1556 goto next;
1557
1558 btrfs_info(fs_info,
1559 "reclaiming chunk %llu with %llu%% used %llu%% unusable",
1560 bg->start, div_u64(bg->used * 100, bg->length),
1561 div64_u64(zone_unusable * 100, bg->length));
1562 trace_btrfs_reclaim_block_group(bg);
1563 ret = btrfs_relocate_chunk(fs_info, bg->start);
1564 if (ret && ret != -EAGAIN)
1565 btrfs_err(fs_info, "error relocating chunk %llu",
1566 bg->start);
1567
1568 next:
1569 spin_lock(&fs_info->unused_bgs_lock);
1570 if (ret == -EAGAIN && list_empty(&bg->bg_list))
1571 list_add_tail(&bg->bg_list, &again_list);
1572 else
1573 btrfs_put_block_group(bg);
1574 }
1575 list_splice_tail(&again_list, &fs_info->reclaim_bgs);
1576 spin_unlock(&fs_info->unused_bgs_lock);
1577 mutex_unlock(&fs_info->reclaim_bgs_lock);
1578 btrfs_exclop_finish(fs_info);
1579 }
1580
btrfs_reclaim_bgs(struct btrfs_fs_info * fs_info)1581 void btrfs_reclaim_bgs(struct btrfs_fs_info *fs_info)
1582 {
1583 spin_lock(&fs_info->unused_bgs_lock);
1584 if (!list_empty(&fs_info->reclaim_bgs))
1585 queue_work(system_unbound_wq, &fs_info->reclaim_bgs_work);
1586 spin_unlock(&fs_info->unused_bgs_lock);
1587 }
1588
btrfs_mark_bg_to_reclaim(struct btrfs_block_group * bg)1589 void btrfs_mark_bg_to_reclaim(struct btrfs_block_group *bg)
1590 {
1591 struct btrfs_fs_info *fs_info = bg->fs_info;
1592
1593 spin_lock(&fs_info->unused_bgs_lock);
1594 if (list_empty(&bg->bg_list)) {
1595 btrfs_get_block_group(bg);
1596 trace_btrfs_add_reclaim_block_group(bg);
1597 list_add_tail(&bg->bg_list, &fs_info->reclaim_bgs);
1598 }
1599 spin_unlock(&fs_info->unused_bgs_lock);
1600 }
1601
read_bg_from_eb(struct btrfs_fs_info * fs_info,struct btrfs_key * key,struct btrfs_path * path)1602 static int read_bg_from_eb(struct btrfs_fs_info *fs_info, struct btrfs_key *key,
1603 struct btrfs_path *path)
1604 {
1605 struct extent_map_tree *em_tree;
1606 struct extent_map *em;
1607 struct btrfs_block_group_item bg;
1608 struct extent_buffer *leaf;
1609 int slot;
1610 u64 flags;
1611 int ret = 0;
1612
1613 slot = path->slots[0];
1614 leaf = path->nodes[0];
1615
1616 em_tree = &fs_info->mapping_tree;
1617 read_lock(&em_tree->lock);
1618 em = lookup_extent_mapping(em_tree, key->objectid, key->offset);
1619 read_unlock(&em_tree->lock);
1620 if (!em) {
1621 btrfs_err(fs_info,
1622 "logical %llu len %llu found bg but no related chunk",
1623 key->objectid, key->offset);
1624 return -ENOENT;
1625 }
1626
1627 if (em->start != key->objectid || em->len != key->offset) {
1628 btrfs_err(fs_info,
1629 "block group %llu len %llu mismatch with chunk %llu len %llu",
1630 key->objectid, key->offset, em->start, em->len);
1631 ret = -EUCLEAN;
1632 goto out_free_em;
1633 }
1634
1635 read_extent_buffer(leaf, &bg, btrfs_item_ptr_offset(leaf, slot),
1636 sizeof(bg));
1637 flags = btrfs_stack_block_group_flags(&bg) &
1638 BTRFS_BLOCK_GROUP_TYPE_MASK;
1639
1640 if (flags != (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1641 btrfs_err(fs_info,
1642 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
1643 key->objectid, key->offset, flags,
1644 (BTRFS_BLOCK_GROUP_TYPE_MASK & em->map_lookup->type));
1645 ret = -EUCLEAN;
1646 }
1647
1648 out_free_em:
1649 free_extent_map(em);
1650 return ret;
1651 }
1652
find_first_block_group(struct btrfs_fs_info * fs_info,struct btrfs_path * path,struct btrfs_key * key)1653 static int find_first_block_group(struct btrfs_fs_info *fs_info,
1654 struct btrfs_path *path,
1655 struct btrfs_key *key)
1656 {
1657 struct btrfs_root *root = fs_info->extent_root;
1658 int ret;
1659 struct btrfs_key found_key;
1660 struct extent_buffer *leaf;
1661 int slot;
1662
1663 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
1664 if (ret < 0)
1665 return ret;
1666
1667 while (1) {
1668 slot = path->slots[0];
1669 leaf = path->nodes[0];
1670 if (slot >= btrfs_header_nritems(leaf)) {
1671 ret = btrfs_next_leaf(root, path);
1672 if (ret == 0)
1673 continue;
1674 if (ret < 0)
1675 goto out;
1676 break;
1677 }
1678 btrfs_item_key_to_cpu(leaf, &found_key, slot);
1679
1680 if (found_key.objectid >= key->objectid &&
1681 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
1682 ret = read_bg_from_eb(fs_info, &found_key, path);
1683 break;
1684 }
1685
1686 path->slots[0]++;
1687 }
1688 out:
1689 return ret;
1690 }
1691
set_avail_alloc_bits(struct btrfs_fs_info * fs_info,u64 flags)1692 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
1693 {
1694 u64 extra_flags = chunk_to_extended(flags) &
1695 BTRFS_EXTENDED_PROFILE_MASK;
1696
1697 write_seqlock(&fs_info->profiles_lock);
1698 if (flags & BTRFS_BLOCK_GROUP_DATA)
1699 fs_info->avail_data_alloc_bits |= extra_flags;
1700 if (flags & BTRFS_BLOCK_GROUP_METADATA)
1701 fs_info->avail_metadata_alloc_bits |= extra_flags;
1702 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
1703 fs_info->avail_system_alloc_bits |= extra_flags;
1704 write_sequnlock(&fs_info->profiles_lock);
1705 }
1706
1707 /**
1708 * Map a physical disk address to a list of logical addresses
1709 *
1710 * @fs_info: the filesystem
1711 * @chunk_start: logical address of block group
1712 * @bdev: physical device to resolve, can be NULL to indicate any device
1713 * @physical: physical address to map to logical addresses
1714 * @logical: return array of logical addresses which map to @physical
1715 * @naddrs: length of @logical
1716 * @stripe_len: size of IO stripe for the given block group
1717 *
1718 * Maps a particular @physical disk address to a list of @logical addresses.
1719 * Used primarily to exclude those portions of a block group that contain super
1720 * block copies.
1721 */
btrfs_rmap_block(struct btrfs_fs_info * fs_info,u64 chunk_start,struct block_device * bdev,u64 physical,u64 ** logical,int * naddrs,int * stripe_len)1722 int btrfs_rmap_block(struct btrfs_fs_info *fs_info, u64 chunk_start,
1723 struct block_device *bdev, u64 physical, u64 **logical,
1724 int *naddrs, int *stripe_len)
1725 {
1726 struct extent_map *em;
1727 struct map_lookup *map;
1728 u64 *buf;
1729 u64 bytenr;
1730 u64 data_stripe_length;
1731 u64 io_stripe_size;
1732 int i, nr = 0;
1733 int ret = 0;
1734
1735 em = btrfs_get_chunk_map(fs_info, chunk_start, 1);
1736 if (IS_ERR(em))
1737 return -EIO;
1738
1739 map = em->map_lookup;
1740 data_stripe_length = em->orig_block_len;
1741 io_stripe_size = map->stripe_len;
1742 chunk_start = em->start;
1743
1744 /* For RAID5/6 adjust to a full IO stripe length */
1745 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
1746 io_stripe_size = map->stripe_len * nr_data_stripes(map);
1747
1748 buf = kcalloc(map->num_stripes, sizeof(u64), GFP_NOFS);
1749 if (!buf) {
1750 ret = -ENOMEM;
1751 goto out;
1752 }
1753
1754 for (i = 0; i < map->num_stripes; i++) {
1755 bool already_inserted = false;
1756 u64 stripe_nr;
1757 u64 offset;
1758 int j;
1759
1760 if (!in_range(physical, map->stripes[i].physical,
1761 data_stripe_length))
1762 continue;
1763
1764 if (bdev && map->stripes[i].dev->bdev != bdev)
1765 continue;
1766
1767 stripe_nr = physical - map->stripes[i].physical;
1768 stripe_nr = div64_u64_rem(stripe_nr, map->stripe_len, &offset);
1769
1770 if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
1771 stripe_nr = stripe_nr * map->num_stripes + i;
1772 stripe_nr = div_u64(stripe_nr, map->sub_stripes);
1773 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
1774 stripe_nr = stripe_nr * map->num_stripes + i;
1775 }
1776 /*
1777 * The remaining case would be for RAID56, multiply by
1778 * nr_data_stripes(). Alternatively, just use rmap_len below
1779 * instead of map->stripe_len
1780 */
1781
1782 bytenr = chunk_start + stripe_nr * io_stripe_size + offset;
1783
1784 /* Ensure we don't add duplicate addresses */
1785 for (j = 0; j < nr; j++) {
1786 if (buf[j] == bytenr) {
1787 already_inserted = true;
1788 break;
1789 }
1790 }
1791
1792 if (!already_inserted)
1793 buf[nr++] = bytenr;
1794 }
1795
1796 *logical = buf;
1797 *naddrs = nr;
1798 *stripe_len = io_stripe_size;
1799 out:
1800 free_extent_map(em);
1801 return ret;
1802 }
1803
exclude_super_stripes(struct btrfs_block_group * cache)1804 static int exclude_super_stripes(struct btrfs_block_group *cache)
1805 {
1806 struct btrfs_fs_info *fs_info = cache->fs_info;
1807 const bool zoned = btrfs_is_zoned(fs_info);
1808 u64 bytenr;
1809 u64 *logical;
1810 int stripe_len;
1811 int i, nr, ret;
1812
1813 if (cache->start < BTRFS_SUPER_INFO_OFFSET) {
1814 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->start;
1815 cache->bytes_super += stripe_len;
1816 ret = btrfs_add_excluded_extent(fs_info, cache->start,
1817 stripe_len);
1818 if (ret)
1819 return ret;
1820 }
1821
1822 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
1823 bytenr = btrfs_sb_offset(i);
1824 ret = btrfs_rmap_block(fs_info, cache->start, NULL,
1825 bytenr, &logical, &nr, &stripe_len);
1826 if (ret)
1827 return ret;
1828
1829 /* Shouldn't have super stripes in sequential zones */
1830 if (zoned && nr) {
1831 btrfs_err(fs_info,
1832 "zoned: block group %llu must not contain super block",
1833 cache->start);
1834 return -EUCLEAN;
1835 }
1836
1837 while (nr--) {
1838 u64 len = min_t(u64, stripe_len,
1839 cache->start + cache->length - logical[nr]);
1840
1841 cache->bytes_super += len;
1842 ret = btrfs_add_excluded_extent(fs_info, logical[nr],
1843 len);
1844 if (ret) {
1845 kfree(logical);
1846 return ret;
1847 }
1848 }
1849
1850 kfree(logical);
1851 }
1852 return 0;
1853 }
1854
link_block_group(struct btrfs_block_group * cache)1855 static void link_block_group(struct btrfs_block_group *cache)
1856 {
1857 struct btrfs_space_info *space_info = cache->space_info;
1858 int index = btrfs_bg_flags_to_raid_index(cache->flags);
1859
1860 down_write(&space_info->groups_sem);
1861 list_add_tail(&cache->list, &space_info->block_groups[index]);
1862 up_write(&space_info->groups_sem);
1863 }
1864
btrfs_create_block_group_cache(struct btrfs_fs_info * fs_info,u64 start)1865 static struct btrfs_block_group *btrfs_create_block_group_cache(
1866 struct btrfs_fs_info *fs_info, u64 start)
1867 {
1868 struct btrfs_block_group *cache;
1869
1870 cache = kzalloc(sizeof(*cache), GFP_NOFS);
1871 if (!cache)
1872 return NULL;
1873
1874 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
1875 GFP_NOFS);
1876 if (!cache->free_space_ctl) {
1877 kfree(cache);
1878 return NULL;
1879 }
1880
1881 cache->start = start;
1882
1883 cache->fs_info = fs_info;
1884 cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
1885
1886 cache->discard_index = BTRFS_DISCARD_INDEX_UNUSED;
1887
1888 refcount_set(&cache->refs, 1);
1889 spin_lock_init(&cache->lock);
1890 init_rwsem(&cache->data_rwsem);
1891 INIT_LIST_HEAD(&cache->list);
1892 INIT_LIST_HEAD(&cache->cluster_list);
1893 INIT_LIST_HEAD(&cache->bg_list);
1894 INIT_LIST_HEAD(&cache->ro_list);
1895 INIT_LIST_HEAD(&cache->discard_list);
1896 INIT_LIST_HEAD(&cache->dirty_list);
1897 INIT_LIST_HEAD(&cache->io_list);
1898 btrfs_init_free_space_ctl(cache, cache->free_space_ctl);
1899 atomic_set(&cache->frozen, 0);
1900 mutex_init(&cache->free_space_lock);
1901 btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
1902
1903 return cache;
1904 }
1905
1906 /*
1907 * Iterate all chunks and verify that each of them has the corresponding block
1908 * group
1909 */
check_chunk_block_group_mappings(struct btrfs_fs_info * fs_info)1910 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
1911 {
1912 struct extent_map_tree *map_tree = &fs_info->mapping_tree;
1913 struct extent_map *em;
1914 struct btrfs_block_group *bg;
1915 u64 start = 0;
1916 int ret = 0;
1917
1918 while (1) {
1919 read_lock(&map_tree->lock);
1920 /*
1921 * lookup_extent_mapping will return the first extent map
1922 * intersecting the range, so setting @len to 1 is enough to
1923 * get the first chunk.
1924 */
1925 em = lookup_extent_mapping(map_tree, start, 1);
1926 read_unlock(&map_tree->lock);
1927 if (!em)
1928 break;
1929
1930 bg = btrfs_lookup_block_group(fs_info, em->start);
1931 if (!bg) {
1932 btrfs_err(fs_info,
1933 "chunk start=%llu len=%llu doesn't have corresponding block group",
1934 em->start, em->len);
1935 ret = -EUCLEAN;
1936 free_extent_map(em);
1937 break;
1938 }
1939 if (bg->start != em->start || bg->length != em->len ||
1940 (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
1941 (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
1942 btrfs_err(fs_info,
1943 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
1944 em->start, em->len,
1945 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
1946 bg->start, bg->length,
1947 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
1948 ret = -EUCLEAN;
1949 free_extent_map(em);
1950 btrfs_put_block_group(bg);
1951 break;
1952 }
1953 start = em->start + em->len;
1954 free_extent_map(em);
1955 btrfs_put_block_group(bg);
1956 }
1957 return ret;
1958 }
1959
read_one_block_group(struct btrfs_fs_info * info,struct btrfs_block_group_item * bgi,const struct btrfs_key * key,int need_clear)1960 static int read_one_block_group(struct btrfs_fs_info *info,
1961 struct btrfs_block_group_item *bgi,
1962 const struct btrfs_key *key,
1963 int need_clear)
1964 {
1965 struct btrfs_block_group *cache;
1966 struct btrfs_space_info *space_info;
1967 const bool mixed = btrfs_fs_incompat(info, MIXED_GROUPS);
1968 int ret;
1969
1970 ASSERT(key->type == BTRFS_BLOCK_GROUP_ITEM_KEY);
1971
1972 cache = btrfs_create_block_group_cache(info, key->objectid);
1973 if (!cache)
1974 return -ENOMEM;
1975
1976 cache->length = key->offset;
1977 cache->used = btrfs_stack_block_group_used(bgi);
1978 cache->flags = btrfs_stack_block_group_flags(bgi);
1979
1980 set_free_space_tree_thresholds(cache);
1981
1982 if (need_clear) {
1983 /*
1984 * When we mount with old space cache, we need to
1985 * set BTRFS_DC_CLEAR and set dirty flag.
1986 *
1987 * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
1988 * truncate the old free space cache inode and
1989 * setup a new one.
1990 * b) Setting 'dirty flag' makes sure that we flush
1991 * the new space cache info onto disk.
1992 */
1993 if (btrfs_test_opt(info, SPACE_CACHE))
1994 cache->disk_cache_state = BTRFS_DC_CLEAR;
1995 }
1996 if (!mixed && ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
1997 (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
1998 btrfs_err(info,
1999 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
2000 cache->start);
2001 ret = -EINVAL;
2002 goto error;
2003 }
2004
2005 ret = btrfs_load_block_group_zone_info(cache, false);
2006 if (ret) {
2007 btrfs_err(info, "zoned: failed to load zone info of bg %llu",
2008 cache->start);
2009 goto error;
2010 }
2011
2012 /*
2013 * We need to exclude the super stripes now so that the space info has
2014 * super bytes accounted for, otherwise we'll think we have more space
2015 * than we actually do.
2016 */
2017 ret = exclude_super_stripes(cache);
2018 if (ret) {
2019 /* We may have excluded something, so call this just in case. */
2020 btrfs_free_excluded_extents(cache);
2021 goto error;
2022 }
2023
2024 /*
2025 * For zoned filesystem, space after the allocation offset is the only
2026 * free space for a block group. So, we don't need any caching work.
2027 * btrfs_calc_zone_unusable() will set the amount of free space and
2028 * zone_unusable space.
2029 *
2030 * For regular filesystem, check for two cases, either we are full, and
2031 * therefore don't need to bother with the caching work since we won't
2032 * find any space, or we are empty, and we can just add all the space
2033 * in and be done with it. This saves us _a_lot_ of time, particularly
2034 * in the full case.
2035 */
2036 if (btrfs_is_zoned(info)) {
2037 btrfs_calc_zone_unusable(cache);
2038 } else if (cache->length == cache->used) {
2039 cache->last_byte_to_unpin = (u64)-1;
2040 cache->cached = BTRFS_CACHE_FINISHED;
2041 btrfs_free_excluded_extents(cache);
2042 } else if (cache->used == 0) {
2043 cache->last_byte_to_unpin = (u64)-1;
2044 cache->cached = BTRFS_CACHE_FINISHED;
2045 add_new_free_space(cache, cache->start,
2046 cache->start + cache->length);
2047 btrfs_free_excluded_extents(cache);
2048 }
2049
2050 ret = btrfs_add_block_group_cache(info, cache);
2051 if (ret) {
2052 btrfs_remove_free_space_cache(cache);
2053 goto error;
2054 }
2055 trace_btrfs_add_block_group(info, cache, 0);
2056 btrfs_update_space_info(info, cache->flags, cache->length,
2057 cache->used, cache->bytes_super,
2058 cache->zone_unusable, &space_info);
2059
2060 cache->space_info = space_info;
2061
2062 link_block_group(cache);
2063
2064 set_avail_alloc_bits(info, cache->flags);
2065 if (btrfs_chunk_readonly(info, cache->start)) {
2066 inc_block_group_ro(cache, 1);
2067 } else if (cache->used == 0) {
2068 ASSERT(list_empty(&cache->bg_list));
2069 if (btrfs_test_opt(info, DISCARD_ASYNC))
2070 btrfs_discard_queue_work(&info->discard_ctl, cache);
2071 else
2072 btrfs_mark_bg_unused(cache);
2073 }
2074 return 0;
2075 error:
2076 btrfs_put_block_group(cache);
2077 return ret;
2078 }
2079
fill_dummy_bgs(struct btrfs_fs_info * fs_info)2080 static int fill_dummy_bgs(struct btrfs_fs_info *fs_info)
2081 {
2082 struct extent_map_tree *em_tree = &fs_info->mapping_tree;
2083 struct btrfs_space_info *space_info;
2084 struct rb_node *node;
2085 int ret = 0;
2086
2087 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) {
2088 struct extent_map *em;
2089 struct map_lookup *map;
2090 struct btrfs_block_group *bg;
2091
2092 em = rb_entry(node, struct extent_map, rb_node);
2093 map = em->map_lookup;
2094 bg = btrfs_create_block_group_cache(fs_info, em->start);
2095 if (!bg) {
2096 ret = -ENOMEM;
2097 break;
2098 }
2099
2100 /* Fill dummy cache as FULL */
2101 bg->length = em->len;
2102 bg->flags = map->type;
2103 bg->last_byte_to_unpin = (u64)-1;
2104 bg->cached = BTRFS_CACHE_FINISHED;
2105 bg->used = em->len;
2106 bg->flags = map->type;
2107 ret = btrfs_add_block_group_cache(fs_info, bg);
2108 /*
2109 * We may have some valid block group cache added already, in
2110 * that case we skip to the next one.
2111 */
2112 if (ret == -EEXIST) {
2113 ret = 0;
2114 btrfs_put_block_group(bg);
2115 continue;
2116 }
2117
2118 if (ret) {
2119 btrfs_remove_free_space_cache(bg);
2120 btrfs_put_block_group(bg);
2121 break;
2122 }
2123
2124 btrfs_update_space_info(fs_info, bg->flags, em->len, em->len,
2125 0, 0, &space_info);
2126 bg->space_info = space_info;
2127 link_block_group(bg);
2128
2129 set_avail_alloc_bits(fs_info, bg->flags);
2130 }
2131 if (!ret)
2132 btrfs_init_global_block_rsv(fs_info);
2133 return ret;
2134 }
2135
btrfs_read_block_groups(struct btrfs_fs_info * info)2136 int btrfs_read_block_groups(struct btrfs_fs_info *info)
2137 {
2138 struct btrfs_path *path;
2139 int ret;
2140 struct btrfs_block_group *cache;
2141 struct btrfs_space_info *space_info;
2142 struct btrfs_key key;
2143 int need_clear = 0;
2144 u64 cache_gen;
2145
2146 if (!info->extent_root)
2147 return fill_dummy_bgs(info);
2148
2149 key.objectid = 0;
2150 key.offset = 0;
2151 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2152 path = btrfs_alloc_path();
2153 if (!path)
2154 return -ENOMEM;
2155
2156 cache_gen = btrfs_super_cache_generation(info->super_copy);
2157 if (btrfs_test_opt(info, SPACE_CACHE) &&
2158 btrfs_super_generation(info->super_copy) != cache_gen)
2159 need_clear = 1;
2160 if (btrfs_test_opt(info, CLEAR_CACHE))
2161 need_clear = 1;
2162
2163 while (1) {
2164 struct btrfs_block_group_item bgi;
2165 struct extent_buffer *leaf;
2166 int slot;
2167
2168 ret = find_first_block_group(info, path, &key);
2169 if (ret > 0)
2170 break;
2171 if (ret != 0)
2172 goto error;
2173
2174 leaf = path->nodes[0];
2175 slot = path->slots[0];
2176
2177 read_extent_buffer(leaf, &bgi, btrfs_item_ptr_offset(leaf, slot),
2178 sizeof(bgi));
2179
2180 btrfs_item_key_to_cpu(leaf, &key, slot);
2181 btrfs_release_path(path);
2182 ret = read_one_block_group(info, &bgi, &key, need_clear);
2183 if (ret < 0)
2184 goto error;
2185 key.objectid += key.offset;
2186 key.offset = 0;
2187 }
2188 btrfs_release_path(path);
2189
2190 list_for_each_entry(space_info, &info->space_info, list) {
2191 int i;
2192
2193 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2194 if (list_empty(&space_info->block_groups[i]))
2195 continue;
2196 cache = list_first_entry(&space_info->block_groups[i],
2197 struct btrfs_block_group,
2198 list);
2199 btrfs_sysfs_add_block_group_type(cache);
2200 }
2201
2202 if (!(btrfs_get_alloc_profile(info, space_info->flags) &
2203 (BTRFS_BLOCK_GROUP_RAID10 |
2204 BTRFS_BLOCK_GROUP_RAID1_MASK |
2205 BTRFS_BLOCK_GROUP_RAID56_MASK |
2206 BTRFS_BLOCK_GROUP_DUP)))
2207 continue;
2208 /*
2209 * Avoid allocating from un-mirrored block group if there are
2210 * mirrored block groups.
2211 */
2212 list_for_each_entry(cache,
2213 &space_info->block_groups[BTRFS_RAID_RAID0],
2214 list)
2215 inc_block_group_ro(cache, 1);
2216 list_for_each_entry(cache,
2217 &space_info->block_groups[BTRFS_RAID_SINGLE],
2218 list)
2219 inc_block_group_ro(cache, 1);
2220 }
2221
2222 btrfs_init_global_block_rsv(info);
2223 ret = check_chunk_block_group_mappings(info);
2224 error:
2225 btrfs_free_path(path);
2226 /*
2227 * We've hit some error while reading the extent tree, and have
2228 * rescue=ibadroots mount option.
2229 * Try to fill the tree using dummy block groups so that the user can
2230 * continue to mount and grab their data.
2231 */
2232 if (ret && btrfs_test_opt(info, IGNOREBADROOTS))
2233 ret = fill_dummy_bgs(info);
2234 return ret;
2235 }
2236
2237 /*
2238 * This function, insert_block_group_item(), belongs to the phase 2 of chunk
2239 * allocation.
2240 *
2241 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2242 * phases.
2243 */
insert_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_block_group * block_group)2244 static int insert_block_group_item(struct btrfs_trans_handle *trans,
2245 struct btrfs_block_group *block_group)
2246 {
2247 struct btrfs_fs_info *fs_info = trans->fs_info;
2248 struct btrfs_block_group_item bgi;
2249 struct btrfs_root *root;
2250 struct btrfs_key key;
2251
2252 spin_lock(&block_group->lock);
2253 btrfs_set_stack_block_group_used(&bgi, block_group->used);
2254 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2255 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2256 btrfs_set_stack_block_group_flags(&bgi, block_group->flags);
2257 key.objectid = block_group->start;
2258 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2259 key.offset = block_group->length;
2260 spin_unlock(&block_group->lock);
2261
2262 root = fs_info->extent_root;
2263 return btrfs_insert_item(trans, root, &key, &bgi, sizeof(bgi));
2264 }
2265
insert_dev_extent(struct btrfs_trans_handle * trans,struct btrfs_device * device,u64 chunk_offset,u64 start,u64 num_bytes)2266 static int insert_dev_extent(struct btrfs_trans_handle *trans,
2267 struct btrfs_device *device, u64 chunk_offset,
2268 u64 start, u64 num_bytes)
2269 {
2270 struct btrfs_fs_info *fs_info = device->fs_info;
2271 struct btrfs_root *root = fs_info->dev_root;
2272 struct btrfs_path *path;
2273 struct btrfs_dev_extent *extent;
2274 struct extent_buffer *leaf;
2275 struct btrfs_key key;
2276 int ret;
2277
2278 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state));
2279 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state));
2280 path = btrfs_alloc_path();
2281 if (!path)
2282 return -ENOMEM;
2283
2284 key.objectid = device->devid;
2285 key.type = BTRFS_DEV_EXTENT_KEY;
2286 key.offset = start;
2287 ret = btrfs_insert_empty_item(trans, root, path, &key, sizeof(*extent));
2288 if (ret)
2289 goto out;
2290
2291 leaf = path->nodes[0];
2292 extent = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent);
2293 btrfs_set_dev_extent_chunk_tree(leaf, extent, BTRFS_CHUNK_TREE_OBJECTID);
2294 btrfs_set_dev_extent_chunk_objectid(leaf, extent,
2295 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2296 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
2297
2298 btrfs_set_dev_extent_length(leaf, extent, num_bytes);
2299 btrfs_mark_buffer_dirty(leaf);
2300 out:
2301 btrfs_free_path(path);
2302 return ret;
2303 }
2304
2305 /*
2306 * This function belongs to phase 2.
2307 *
2308 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2309 * phases.
2310 */
insert_dev_extents(struct btrfs_trans_handle * trans,u64 chunk_offset,u64 chunk_size)2311 static int insert_dev_extents(struct btrfs_trans_handle *trans,
2312 u64 chunk_offset, u64 chunk_size)
2313 {
2314 struct btrfs_fs_info *fs_info = trans->fs_info;
2315 struct btrfs_device *device;
2316 struct extent_map *em;
2317 struct map_lookup *map;
2318 u64 dev_offset;
2319 u64 stripe_size;
2320 int i;
2321 int ret = 0;
2322
2323 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size);
2324 if (IS_ERR(em))
2325 return PTR_ERR(em);
2326
2327 map = em->map_lookup;
2328 stripe_size = em->orig_block_len;
2329
2330 /*
2331 * Take the device list mutex to prevent races with the final phase of
2332 * a device replace operation that replaces the device object associated
2333 * with the map's stripes, because the device object's id can change
2334 * at any time during that final phase of the device replace operation
2335 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the
2336 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID,
2337 * resulting in persisting a device extent item with such ID.
2338 */
2339 mutex_lock(&fs_info->fs_devices->device_list_mutex);
2340 for (i = 0; i < map->num_stripes; i++) {
2341 device = map->stripes[i].dev;
2342 dev_offset = map->stripes[i].physical;
2343
2344 ret = insert_dev_extent(trans, device, chunk_offset, dev_offset,
2345 stripe_size);
2346 if (ret)
2347 break;
2348 }
2349 mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2350
2351 free_extent_map(em);
2352 return ret;
2353 }
2354
2355 /*
2356 * This function, btrfs_create_pending_block_groups(), belongs to the phase 2 of
2357 * chunk allocation.
2358 *
2359 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation
2360 * phases.
2361 */
btrfs_create_pending_block_groups(struct btrfs_trans_handle * trans)2362 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans)
2363 {
2364 struct btrfs_fs_info *fs_info = trans->fs_info;
2365 struct btrfs_block_group *block_group;
2366 int ret = 0;
2367
2368 while (!list_empty(&trans->new_bgs)) {
2369 int index;
2370
2371 block_group = list_first_entry(&trans->new_bgs,
2372 struct btrfs_block_group,
2373 bg_list);
2374 if (ret)
2375 goto next;
2376
2377 index = btrfs_bg_flags_to_raid_index(block_group->flags);
2378
2379 ret = insert_block_group_item(trans, block_group);
2380 if (ret)
2381 btrfs_abort_transaction(trans, ret);
2382 if (!block_group->chunk_item_inserted) {
2383 mutex_lock(&fs_info->chunk_mutex);
2384 ret = btrfs_chunk_alloc_add_chunk_item(trans, block_group);
2385 mutex_unlock(&fs_info->chunk_mutex);
2386 if (ret)
2387 btrfs_abort_transaction(trans, ret);
2388 }
2389 ret = insert_dev_extents(trans, block_group->start,
2390 block_group->length);
2391 if (ret)
2392 btrfs_abort_transaction(trans, ret);
2393 add_block_group_free_space(trans, block_group);
2394
2395 /*
2396 * If we restriped during balance, we may have added a new raid
2397 * type, so now add the sysfs entries when it is safe to do so.
2398 * We don't have to worry about locking here as it's handled in
2399 * btrfs_sysfs_add_block_group_type.
2400 */
2401 if (block_group->space_info->block_group_kobjs[index] == NULL)
2402 btrfs_sysfs_add_block_group_type(block_group);
2403
2404 /* Already aborted the transaction if it failed. */
2405 next:
2406 btrfs_delayed_refs_rsv_release(fs_info, 1);
2407 list_del_init(&block_group->bg_list);
2408 }
2409 btrfs_trans_release_chunk_metadata(trans);
2410 }
2411
btrfs_make_block_group(struct btrfs_trans_handle * trans,u64 bytes_used,u64 type,u64 chunk_offset,u64 size)2412 struct btrfs_block_group *btrfs_make_block_group(struct btrfs_trans_handle *trans,
2413 u64 bytes_used, u64 type,
2414 u64 chunk_offset, u64 size)
2415 {
2416 struct btrfs_fs_info *fs_info = trans->fs_info;
2417 struct btrfs_block_group *cache;
2418 int ret;
2419
2420 btrfs_set_log_full_commit(trans);
2421
2422 cache = btrfs_create_block_group_cache(fs_info, chunk_offset);
2423 if (!cache)
2424 return ERR_PTR(-ENOMEM);
2425
2426 cache->length = size;
2427 set_free_space_tree_thresholds(cache);
2428 cache->used = bytes_used;
2429 cache->flags = type;
2430 cache->last_byte_to_unpin = (u64)-1;
2431 cache->cached = BTRFS_CACHE_FINISHED;
2432 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
2433 cache->needs_free_space = 1;
2434
2435 ret = btrfs_load_block_group_zone_info(cache, true);
2436 if (ret) {
2437 btrfs_put_block_group(cache);
2438 return ERR_PTR(ret);
2439 }
2440
2441 ret = exclude_super_stripes(cache);
2442 if (ret) {
2443 /* We may have excluded something, so call this just in case */
2444 btrfs_free_excluded_extents(cache);
2445 btrfs_put_block_group(cache);
2446 return ERR_PTR(ret);
2447 }
2448
2449 add_new_free_space(cache, chunk_offset, chunk_offset + size);
2450
2451 btrfs_free_excluded_extents(cache);
2452
2453 #ifdef CONFIG_BTRFS_DEBUG
2454 if (btrfs_should_fragment_free_space(cache)) {
2455 u64 new_bytes_used = size - bytes_used;
2456
2457 bytes_used += new_bytes_used >> 1;
2458 fragment_free_space(cache);
2459 }
2460 #endif
2461 /*
2462 * Ensure the corresponding space_info object is created and
2463 * assigned to our block group. We want our bg to be added to the rbtree
2464 * with its ->space_info set.
2465 */
2466 cache->space_info = btrfs_find_space_info(fs_info, cache->flags);
2467 ASSERT(cache->space_info);
2468
2469 ret = btrfs_add_block_group_cache(fs_info, cache);
2470 if (ret) {
2471 btrfs_remove_free_space_cache(cache);
2472 btrfs_put_block_group(cache);
2473 return ERR_PTR(ret);
2474 }
2475
2476 /*
2477 * Now that our block group has its ->space_info set and is inserted in
2478 * the rbtree, update the space info's counters.
2479 */
2480 trace_btrfs_add_block_group(fs_info, cache, 1);
2481 btrfs_update_space_info(fs_info, cache->flags, size, bytes_used,
2482 cache->bytes_super, 0, &cache->space_info);
2483 btrfs_update_global_block_rsv(fs_info);
2484
2485 link_block_group(cache);
2486
2487 list_add_tail(&cache->bg_list, &trans->new_bgs);
2488 trans->delayed_ref_updates++;
2489 btrfs_update_delayed_refs_rsv(trans);
2490
2491 set_avail_alloc_bits(fs_info, type);
2492 return cache;
2493 }
2494
2495 /*
2496 * Mark one block group RO, can be called several times for the same block
2497 * group.
2498 *
2499 * @cache: the destination block group
2500 * @do_chunk_alloc: whether need to do chunk pre-allocation, this is to
2501 * ensure we still have some free space after marking this
2502 * block group RO.
2503 */
btrfs_inc_block_group_ro(struct btrfs_block_group * cache,bool do_chunk_alloc)2504 int btrfs_inc_block_group_ro(struct btrfs_block_group *cache,
2505 bool do_chunk_alloc)
2506 {
2507 struct btrfs_fs_info *fs_info = cache->fs_info;
2508 struct btrfs_trans_handle *trans;
2509 u64 alloc_flags;
2510 int ret;
2511 bool dirty_bg_running;
2512
2513 do {
2514 trans = btrfs_join_transaction(fs_info->extent_root);
2515 if (IS_ERR(trans))
2516 return PTR_ERR(trans);
2517
2518 dirty_bg_running = false;
2519
2520 /*
2521 * We're not allowed to set block groups readonly after the dirty
2522 * block group cache has started writing. If it already started,
2523 * back off and let this transaction commit.
2524 */
2525 mutex_lock(&fs_info->ro_block_group_mutex);
2526 if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
2527 u64 transid = trans->transid;
2528
2529 mutex_unlock(&fs_info->ro_block_group_mutex);
2530 btrfs_end_transaction(trans);
2531
2532 ret = btrfs_wait_for_commit(fs_info, transid);
2533 if (ret)
2534 return ret;
2535 dirty_bg_running = true;
2536 }
2537 } while (dirty_bg_running);
2538
2539 if (do_chunk_alloc) {
2540 /*
2541 * If we are changing raid levels, try to allocate a
2542 * corresponding block group with the new raid level.
2543 */
2544 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2545 if (alloc_flags != cache->flags) {
2546 ret = btrfs_chunk_alloc(trans, alloc_flags,
2547 CHUNK_ALLOC_FORCE);
2548 /*
2549 * ENOSPC is allowed here, we may have enough space
2550 * already allocated at the new raid level to carry on
2551 */
2552 if (ret == -ENOSPC)
2553 ret = 0;
2554 if (ret < 0)
2555 goto out;
2556 }
2557 }
2558
2559 ret = inc_block_group_ro(cache, 0);
2560 if (!do_chunk_alloc || ret == -ETXTBSY)
2561 goto unlock_out;
2562 if (!ret)
2563 goto out;
2564 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->space_info->flags);
2565 ret = btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
2566 if (ret < 0)
2567 goto out;
2568 ret = inc_block_group_ro(cache, 0);
2569 if (ret == -ETXTBSY)
2570 goto unlock_out;
2571 out:
2572 if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
2573 alloc_flags = btrfs_get_alloc_profile(fs_info, cache->flags);
2574 mutex_lock(&fs_info->chunk_mutex);
2575 check_system_chunk(trans, alloc_flags);
2576 mutex_unlock(&fs_info->chunk_mutex);
2577 }
2578 unlock_out:
2579 mutex_unlock(&fs_info->ro_block_group_mutex);
2580
2581 btrfs_end_transaction(trans);
2582 return ret;
2583 }
2584
btrfs_dec_block_group_ro(struct btrfs_block_group * cache)2585 void btrfs_dec_block_group_ro(struct btrfs_block_group *cache)
2586 {
2587 struct btrfs_space_info *sinfo = cache->space_info;
2588 u64 num_bytes;
2589
2590 BUG_ON(!cache->ro);
2591
2592 spin_lock(&sinfo->lock);
2593 spin_lock(&cache->lock);
2594 if (!--cache->ro) {
2595 if (btrfs_is_zoned(cache->fs_info)) {
2596 /* Migrate zone_unusable bytes back */
2597 cache->zone_unusable = cache->alloc_offset - cache->used;
2598 sinfo->bytes_zone_unusable += cache->zone_unusable;
2599 sinfo->bytes_readonly -= cache->zone_unusable;
2600 }
2601 num_bytes = cache->length - cache->reserved -
2602 cache->pinned - cache->bytes_super -
2603 cache->zone_unusable - cache->used;
2604 sinfo->bytes_readonly -= num_bytes;
2605 list_del_init(&cache->ro_list);
2606 }
2607 spin_unlock(&cache->lock);
2608 spin_unlock(&sinfo->lock);
2609 }
2610
update_block_group_item(struct btrfs_trans_handle * trans,struct btrfs_path * path,struct btrfs_block_group * cache)2611 static int update_block_group_item(struct btrfs_trans_handle *trans,
2612 struct btrfs_path *path,
2613 struct btrfs_block_group *cache)
2614 {
2615 struct btrfs_fs_info *fs_info = trans->fs_info;
2616 int ret;
2617 struct btrfs_root *root = fs_info->extent_root;
2618 unsigned long bi;
2619 struct extent_buffer *leaf;
2620 struct btrfs_block_group_item bgi;
2621 struct btrfs_key key;
2622
2623 key.objectid = cache->start;
2624 key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
2625 key.offset = cache->length;
2626
2627 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2628 if (ret) {
2629 if (ret > 0)
2630 ret = -ENOENT;
2631 goto fail;
2632 }
2633
2634 leaf = path->nodes[0];
2635 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2636 btrfs_set_stack_block_group_used(&bgi, cache->used);
2637 btrfs_set_stack_block_group_chunk_objectid(&bgi,
2638 BTRFS_FIRST_CHUNK_TREE_OBJECTID);
2639 btrfs_set_stack_block_group_flags(&bgi, cache->flags);
2640 write_extent_buffer(leaf, &bgi, bi, sizeof(bgi));
2641 btrfs_mark_buffer_dirty(leaf);
2642 fail:
2643 btrfs_release_path(path);
2644 return ret;
2645
2646 }
2647
cache_save_setup(struct btrfs_block_group * block_group,struct btrfs_trans_handle * trans,struct btrfs_path * path)2648 static int cache_save_setup(struct btrfs_block_group *block_group,
2649 struct btrfs_trans_handle *trans,
2650 struct btrfs_path *path)
2651 {
2652 struct btrfs_fs_info *fs_info = block_group->fs_info;
2653 struct btrfs_root *root = fs_info->tree_root;
2654 struct inode *inode = NULL;
2655 struct extent_changeset *data_reserved = NULL;
2656 u64 alloc_hint = 0;
2657 int dcs = BTRFS_DC_ERROR;
2658 u64 cache_size = 0;
2659 int retries = 0;
2660 int ret = 0;
2661
2662 if (!btrfs_test_opt(fs_info, SPACE_CACHE))
2663 return 0;
2664
2665 /*
2666 * If this block group is smaller than 100 megs don't bother caching the
2667 * block group.
2668 */
2669 if (block_group->length < (100 * SZ_1M)) {
2670 spin_lock(&block_group->lock);
2671 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2672 spin_unlock(&block_group->lock);
2673 return 0;
2674 }
2675
2676 if (TRANS_ABORTED(trans))
2677 return 0;
2678 again:
2679 inode = lookup_free_space_inode(block_group, path);
2680 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2681 ret = PTR_ERR(inode);
2682 btrfs_release_path(path);
2683 goto out;
2684 }
2685
2686 if (IS_ERR(inode)) {
2687 BUG_ON(retries);
2688 retries++;
2689
2690 if (block_group->ro)
2691 goto out_free;
2692
2693 ret = create_free_space_inode(trans, block_group, path);
2694 if (ret)
2695 goto out_free;
2696 goto again;
2697 }
2698
2699 /*
2700 * We want to set the generation to 0, that way if anything goes wrong
2701 * from here on out we know not to trust this cache when we load up next
2702 * time.
2703 */
2704 BTRFS_I(inode)->generation = 0;
2705 ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
2706 if (ret) {
2707 /*
2708 * So theoretically we could recover from this, simply set the
2709 * super cache generation to 0 so we know to invalidate the
2710 * cache, but then we'd have to keep track of the block groups
2711 * that fail this way so we know we _have_ to reset this cache
2712 * before the next commit or risk reading stale cache. So to
2713 * limit our exposure to horrible edge cases lets just abort the
2714 * transaction, this only happens in really bad situations
2715 * anyway.
2716 */
2717 btrfs_abort_transaction(trans, ret);
2718 goto out_put;
2719 }
2720 WARN_ON(ret);
2721
2722 /* We've already setup this transaction, go ahead and exit */
2723 if (block_group->cache_generation == trans->transid &&
2724 i_size_read(inode)) {
2725 dcs = BTRFS_DC_SETUP;
2726 goto out_put;
2727 }
2728
2729 if (i_size_read(inode) > 0) {
2730 ret = btrfs_check_trunc_cache_free_space(fs_info,
2731 &fs_info->global_block_rsv);
2732 if (ret)
2733 goto out_put;
2734
2735 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
2736 if (ret)
2737 goto out_put;
2738 }
2739
2740 spin_lock(&block_group->lock);
2741 if (block_group->cached != BTRFS_CACHE_FINISHED ||
2742 !btrfs_test_opt(fs_info, SPACE_CACHE)) {
2743 /*
2744 * don't bother trying to write stuff out _if_
2745 * a) we're not cached,
2746 * b) we're with nospace_cache mount option,
2747 * c) we're with v2 space_cache (FREE_SPACE_TREE).
2748 */
2749 dcs = BTRFS_DC_WRITTEN;
2750 spin_unlock(&block_group->lock);
2751 goto out_put;
2752 }
2753 spin_unlock(&block_group->lock);
2754
2755 /*
2756 * We hit an ENOSPC when setting up the cache in this transaction, just
2757 * skip doing the setup, we've already cleared the cache so we're safe.
2758 */
2759 if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
2760 ret = -ENOSPC;
2761 goto out_put;
2762 }
2763
2764 /*
2765 * Try to preallocate enough space based on how big the block group is.
2766 * Keep in mind this has to include any pinned space which could end up
2767 * taking up quite a bit since it's not folded into the other space
2768 * cache.
2769 */
2770 cache_size = div_u64(block_group->length, SZ_256M);
2771 if (!cache_size)
2772 cache_size = 1;
2773
2774 cache_size *= 16;
2775 cache_size *= fs_info->sectorsize;
2776
2777 ret = btrfs_check_data_free_space(BTRFS_I(inode), &data_reserved, 0,
2778 cache_size);
2779 if (ret)
2780 goto out_put;
2781
2782 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, cache_size,
2783 cache_size, cache_size,
2784 &alloc_hint);
2785 /*
2786 * Our cache requires contiguous chunks so that we don't modify a bunch
2787 * of metadata or split extents when writing the cache out, which means
2788 * we can enospc if we are heavily fragmented in addition to just normal
2789 * out of space conditions. So if we hit this just skip setting up any
2790 * other block groups for this transaction, maybe we'll unpin enough
2791 * space the next time around.
2792 */
2793 if (!ret)
2794 dcs = BTRFS_DC_SETUP;
2795 else if (ret == -ENOSPC)
2796 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
2797
2798 out_put:
2799 iput(inode);
2800 out_free:
2801 btrfs_release_path(path);
2802 out:
2803 spin_lock(&block_group->lock);
2804 if (!ret && dcs == BTRFS_DC_SETUP)
2805 block_group->cache_generation = trans->transid;
2806 block_group->disk_cache_state = dcs;
2807 spin_unlock(&block_group->lock);
2808
2809 extent_changeset_free(data_reserved);
2810 return ret;
2811 }
2812
btrfs_setup_space_cache(struct btrfs_trans_handle * trans)2813 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans)
2814 {
2815 struct btrfs_fs_info *fs_info = trans->fs_info;
2816 struct btrfs_block_group *cache, *tmp;
2817 struct btrfs_transaction *cur_trans = trans->transaction;
2818 struct btrfs_path *path;
2819
2820 if (list_empty(&cur_trans->dirty_bgs) ||
2821 !btrfs_test_opt(fs_info, SPACE_CACHE))
2822 return 0;
2823
2824 path = btrfs_alloc_path();
2825 if (!path)
2826 return -ENOMEM;
2827
2828 /* Could add new block groups, use _safe just in case */
2829 list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
2830 dirty_list) {
2831 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2832 cache_save_setup(cache, trans, path);
2833 }
2834
2835 btrfs_free_path(path);
2836 return 0;
2837 }
2838
2839 /*
2840 * Transaction commit does final block group cache writeback during a critical
2841 * section where nothing is allowed to change the FS. This is required in
2842 * order for the cache to actually match the block group, but can introduce a
2843 * lot of latency into the commit.
2844 *
2845 * So, btrfs_start_dirty_block_groups is here to kick off block group cache IO.
2846 * There's a chance we'll have to redo some of it if the block group changes
2847 * again during the commit, but it greatly reduces the commit latency by
2848 * getting rid of the easy block groups while we're still allowing others to
2849 * join the commit.
2850 */
btrfs_start_dirty_block_groups(struct btrfs_trans_handle * trans)2851 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans)
2852 {
2853 struct btrfs_fs_info *fs_info = trans->fs_info;
2854 struct btrfs_block_group *cache;
2855 struct btrfs_transaction *cur_trans = trans->transaction;
2856 int ret = 0;
2857 int should_put;
2858 struct btrfs_path *path = NULL;
2859 LIST_HEAD(dirty);
2860 struct list_head *io = &cur_trans->io_bgs;
2861 int num_started = 0;
2862 int loops = 0;
2863
2864 spin_lock(&cur_trans->dirty_bgs_lock);
2865 if (list_empty(&cur_trans->dirty_bgs)) {
2866 spin_unlock(&cur_trans->dirty_bgs_lock);
2867 return 0;
2868 }
2869 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2870 spin_unlock(&cur_trans->dirty_bgs_lock);
2871
2872 again:
2873 /* Make sure all the block groups on our dirty list actually exist */
2874 btrfs_create_pending_block_groups(trans);
2875
2876 if (!path) {
2877 path = btrfs_alloc_path();
2878 if (!path) {
2879 ret = -ENOMEM;
2880 goto out;
2881 }
2882 }
2883
2884 /*
2885 * cache_write_mutex is here only to save us from balance or automatic
2886 * removal of empty block groups deleting this block group while we are
2887 * writing out the cache
2888 */
2889 mutex_lock(&trans->transaction->cache_write_mutex);
2890 while (!list_empty(&dirty)) {
2891 bool drop_reserve = true;
2892
2893 cache = list_first_entry(&dirty, struct btrfs_block_group,
2894 dirty_list);
2895 /*
2896 * This can happen if something re-dirties a block group that
2897 * is already under IO. Just wait for it to finish and then do
2898 * it all again
2899 */
2900 if (!list_empty(&cache->io_list)) {
2901 list_del_init(&cache->io_list);
2902 btrfs_wait_cache_io(trans, cache, path);
2903 btrfs_put_block_group(cache);
2904 }
2905
2906
2907 /*
2908 * btrfs_wait_cache_io uses the cache->dirty_list to decide if
2909 * it should update the cache_state. Don't delete until after
2910 * we wait.
2911 *
2912 * Since we're not running in the commit critical section
2913 * we need the dirty_bgs_lock to protect from update_block_group
2914 */
2915 spin_lock(&cur_trans->dirty_bgs_lock);
2916 list_del_init(&cache->dirty_list);
2917 spin_unlock(&cur_trans->dirty_bgs_lock);
2918
2919 should_put = 1;
2920
2921 cache_save_setup(cache, trans, path);
2922
2923 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
2924 cache->io_ctl.inode = NULL;
2925 ret = btrfs_write_out_cache(trans, cache, path);
2926 if (ret == 0 && cache->io_ctl.inode) {
2927 num_started++;
2928 should_put = 0;
2929
2930 /*
2931 * The cache_write_mutex is protecting the
2932 * io_list, also refer to the definition of
2933 * btrfs_transaction::io_bgs for more details
2934 */
2935 list_add_tail(&cache->io_list, io);
2936 } else {
2937 /*
2938 * If we failed to write the cache, the
2939 * generation will be bad and life goes on
2940 */
2941 ret = 0;
2942 }
2943 }
2944 if (!ret) {
2945 ret = update_block_group_item(trans, path, cache);
2946 /*
2947 * Our block group might still be attached to the list
2948 * of new block groups in the transaction handle of some
2949 * other task (struct btrfs_trans_handle->new_bgs). This
2950 * means its block group item isn't yet in the extent
2951 * tree. If this happens ignore the error, as we will
2952 * try again later in the critical section of the
2953 * transaction commit.
2954 */
2955 if (ret == -ENOENT) {
2956 ret = 0;
2957 spin_lock(&cur_trans->dirty_bgs_lock);
2958 if (list_empty(&cache->dirty_list)) {
2959 list_add_tail(&cache->dirty_list,
2960 &cur_trans->dirty_bgs);
2961 btrfs_get_block_group(cache);
2962 drop_reserve = false;
2963 }
2964 spin_unlock(&cur_trans->dirty_bgs_lock);
2965 } else if (ret) {
2966 btrfs_abort_transaction(trans, ret);
2967 }
2968 }
2969
2970 /* If it's not on the io list, we need to put the block group */
2971 if (should_put)
2972 btrfs_put_block_group(cache);
2973 if (drop_reserve)
2974 btrfs_delayed_refs_rsv_release(fs_info, 1);
2975 /*
2976 * Avoid blocking other tasks for too long. It might even save
2977 * us from writing caches for block groups that are going to be
2978 * removed.
2979 */
2980 mutex_unlock(&trans->transaction->cache_write_mutex);
2981 if (ret)
2982 goto out;
2983 mutex_lock(&trans->transaction->cache_write_mutex);
2984 }
2985 mutex_unlock(&trans->transaction->cache_write_mutex);
2986
2987 /*
2988 * Go through delayed refs for all the stuff we've just kicked off
2989 * and then loop back (just once)
2990 */
2991 if (!ret)
2992 ret = btrfs_run_delayed_refs(trans, 0);
2993 if (!ret && loops == 0) {
2994 loops++;
2995 spin_lock(&cur_trans->dirty_bgs_lock);
2996 list_splice_init(&cur_trans->dirty_bgs, &dirty);
2997 /*
2998 * dirty_bgs_lock protects us from concurrent block group
2999 * deletes too (not just cache_write_mutex).
3000 */
3001 if (!list_empty(&dirty)) {
3002 spin_unlock(&cur_trans->dirty_bgs_lock);
3003 goto again;
3004 }
3005 spin_unlock(&cur_trans->dirty_bgs_lock);
3006 }
3007 out:
3008 if (ret < 0) {
3009 spin_lock(&cur_trans->dirty_bgs_lock);
3010 list_splice_init(&dirty, &cur_trans->dirty_bgs);
3011 spin_unlock(&cur_trans->dirty_bgs_lock);
3012 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3013 }
3014
3015 btrfs_free_path(path);
3016 return ret;
3017 }
3018
btrfs_write_dirty_block_groups(struct btrfs_trans_handle * trans)3019 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans)
3020 {
3021 struct btrfs_fs_info *fs_info = trans->fs_info;
3022 struct btrfs_block_group *cache;
3023 struct btrfs_transaction *cur_trans = trans->transaction;
3024 int ret = 0;
3025 int should_put;
3026 struct btrfs_path *path;
3027 struct list_head *io = &cur_trans->io_bgs;
3028 int num_started = 0;
3029
3030 path = btrfs_alloc_path();
3031 if (!path)
3032 return -ENOMEM;
3033
3034 /*
3035 * Even though we are in the critical section of the transaction commit,
3036 * we can still have concurrent tasks adding elements to this
3037 * transaction's list of dirty block groups. These tasks correspond to
3038 * endio free space workers started when writeback finishes for a
3039 * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3040 * allocate new block groups as a result of COWing nodes of the root
3041 * tree when updating the free space inode. The writeback for the space
3042 * caches is triggered by an earlier call to
3043 * btrfs_start_dirty_block_groups() and iterations of the following
3044 * loop.
3045 * Also we want to do the cache_save_setup first and then run the
3046 * delayed refs to make sure we have the best chance at doing this all
3047 * in one shot.
3048 */
3049 spin_lock(&cur_trans->dirty_bgs_lock);
3050 while (!list_empty(&cur_trans->dirty_bgs)) {
3051 cache = list_first_entry(&cur_trans->dirty_bgs,
3052 struct btrfs_block_group,
3053 dirty_list);
3054
3055 /*
3056 * This can happen if cache_save_setup re-dirties a block group
3057 * that is already under IO. Just wait for it to finish and
3058 * then do it all again
3059 */
3060 if (!list_empty(&cache->io_list)) {
3061 spin_unlock(&cur_trans->dirty_bgs_lock);
3062 list_del_init(&cache->io_list);
3063 btrfs_wait_cache_io(trans, cache, path);
3064 btrfs_put_block_group(cache);
3065 spin_lock(&cur_trans->dirty_bgs_lock);
3066 }
3067
3068 /*
3069 * Don't remove from the dirty list until after we've waited on
3070 * any pending IO
3071 */
3072 list_del_init(&cache->dirty_list);
3073 spin_unlock(&cur_trans->dirty_bgs_lock);
3074 should_put = 1;
3075
3076 cache_save_setup(cache, trans, path);
3077
3078 if (!ret)
3079 ret = btrfs_run_delayed_refs(trans,
3080 (unsigned long) -1);
3081
3082 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3083 cache->io_ctl.inode = NULL;
3084 ret = btrfs_write_out_cache(trans, cache, path);
3085 if (ret == 0 && cache->io_ctl.inode) {
3086 num_started++;
3087 should_put = 0;
3088 list_add_tail(&cache->io_list, io);
3089 } else {
3090 /*
3091 * If we failed to write the cache, the
3092 * generation will be bad and life goes on
3093 */
3094 ret = 0;
3095 }
3096 }
3097 if (!ret) {
3098 ret = update_block_group_item(trans, path, cache);
3099 /*
3100 * One of the free space endio workers might have
3101 * created a new block group while updating a free space
3102 * cache's inode (at inode.c:btrfs_finish_ordered_io())
3103 * and hasn't released its transaction handle yet, in
3104 * which case the new block group is still attached to
3105 * its transaction handle and its creation has not
3106 * finished yet (no block group item in the extent tree
3107 * yet, etc). If this is the case, wait for all free
3108 * space endio workers to finish and retry. This is a
3109 * very rare case so no need for a more efficient and
3110 * complex approach.
3111 */
3112 if (ret == -ENOENT) {
3113 wait_event(cur_trans->writer_wait,
3114 atomic_read(&cur_trans->num_writers) == 1);
3115 ret = update_block_group_item(trans, path, cache);
3116 }
3117 if (ret)
3118 btrfs_abort_transaction(trans, ret);
3119 }
3120
3121 /* If its not on the io list, we need to put the block group */
3122 if (should_put)
3123 btrfs_put_block_group(cache);
3124 btrfs_delayed_refs_rsv_release(fs_info, 1);
3125 spin_lock(&cur_trans->dirty_bgs_lock);
3126 }
3127 spin_unlock(&cur_trans->dirty_bgs_lock);
3128
3129 /*
3130 * Refer to the definition of io_bgs member for details why it's safe
3131 * to use it without any locking
3132 */
3133 while (!list_empty(io)) {
3134 cache = list_first_entry(io, struct btrfs_block_group,
3135 io_list);
3136 list_del_init(&cache->io_list);
3137 btrfs_wait_cache_io(trans, cache, path);
3138 btrfs_put_block_group(cache);
3139 }
3140
3141 btrfs_free_path(path);
3142 return ret;
3143 }
3144
btrfs_update_block_group(struct btrfs_trans_handle * trans,u64 bytenr,u64 num_bytes,int alloc)3145 int btrfs_update_block_group(struct btrfs_trans_handle *trans,
3146 u64 bytenr, u64 num_bytes, int alloc)
3147 {
3148 struct btrfs_fs_info *info = trans->fs_info;
3149 struct btrfs_block_group *cache = NULL;
3150 u64 total = num_bytes;
3151 u64 old_val;
3152 u64 byte_in_group;
3153 int factor;
3154 int ret = 0;
3155
3156 /* Block accounting for super block */
3157 spin_lock(&info->delalloc_root_lock);
3158 old_val = btrfs_super_bytes_used(info->super_copy);
3159 if (alloc)
3160 old_val += num_bytes;
3161 else
3162 old_val -= num_bytes;
3163 btrfs_set_super_bytes_used(info->super_copy, old_val);
3164 spin_unlock(&info->delalloc_root_lock);
3165
3166 while (total) {
3167 cache = btrfs_lookup_block_group(info, bytenr);
3168 if (!cache) {
3169 ret = -ENOENT;
3170 break;
3171 }
3172 factor = btrfs_bg_type_to_factor(cache->flags);
3173
3174 /*
3175 * If this block group has free space cache written out, we
3176 * need to make sure to load it if we are removing space. This
3177 * is because we need the unpinning stage to actually add the
3178 * space back to the block group, otherwise we will leak space.
3179 */
3180 if (!alloc && !btrfs_block_group_done(cache))
3181 btrfs_cache_block_group(cache, 1);
3182
3183 byte_in_group = bytenr - cache->start;
3184 WARN_ON(byte_in_group > cache->length);
3185
3186 spin_lock(&cache->space_info->lock);
3187 spin_lock(&cache->lock);
3188
3189 if (btrfs_test_opt(info, SPACE_CACHE) &&
3190 cache->disk_cache_state < BTRFS_DC_CLEAR)
3191 cache->disk_cache_state = BTRFS_DC_CLEAR;
3192
3193 old_val = cache->used;
3194 num_bytes = min(total, cache->length - byte_in_group);
3195 if (alloc) {
3196 old_val += num_bytes;
3197 cache->used = old_val;
3198 cache->reserved -= num_bytes;
3199 cache->space_info->bytes_reserved -= num_bytes;
3200 cache->space_info->bytes_used += num_bytes;
3201 cache->space_info->disk_used += num_bytes * factor;
3202 spin_unlock(&cache->lock);
3203 spin_unlock(&cache->space_info->lock);
3204 } else {
3205 old_val -= num_bytes;
3206 cache->used = old_val;
3207 cache->pinned += num_bytes;
3208 btrfs_space_info_update_bytes_pinned(info,
3209 cache->space_info, num_bytes);
3210 cache->space_info->bytes_used -= num_bytes;
3211 cache->space_info->disk_used -= num_bytes * factor;
3212 spin_unlock(&cache->lock);
3213 spin_unlock(&cache->space_info->lock);
3214
3215 set_extent_dirty(&trans->transaction->pinned_extents,
3216 bytenr, bytenr + num_bytes - 1,
3217 GFP_NOFS | __GFP_NOFAIL);
3218 }
3219
3220 spin_lock(&trans->transaction->dirty_bgs_lock);
3221 if (list_empty(&cache->dirty_list)) {
3222 list_add_tail(&cache->dirty_list,
3223 &trans->transaction->dirty_bgs);
3224 trans->delayed_ref_updates++;
3225 btrfs_get_block_group(cache);
3226 }
3227 spin_unlock(&trans->transaction->dirty_bgs_lock);
3228
3229 /*
3230 * No longer have used bytes in this block group, queue it for
3231 * deletion. We do this after adding the block group to the
3232 * dirty list to avoid races between cleaner kthread and space
3233 * cache writeout.
3234 */
3235 if (!alloc && old_val == 0) {
3236 if (!btrfs_test_opt(info, DISCARD_ASYNC))
3237 btrfs_mark_bg_unused(cache);
3238 }
3239
3240 btrfs_put_block_group(cache);
3241 total -= num_bytes;
3242 bytenr += num_bytes;
3243 }
3244
3245 /* Modified block groups are accounted for in the delayed_refs_rsv. */
3246 btrfs_update_delayed_refs_rsv(trans);
3247 return ret;
3248 }
3249
3250 /**
3251 * btrfs_add_reserved_bytes - update the block_group and space info counters
3252 * @cache: The cache we are manipulating
3253 * @ram_bytes: The number of bytes of file content, and will be same to
3254 * @num_bytes except for the compress path.
3255 * @num_bytes: The number of bytes in question
3256 * @delalloc: The blocks are allocated for the delalloc write
3257 *
3258 * This is called by the allocator when it reserves space. If this is a
3259 * reservation and the block group has become read only we cannot make the
3260 * reservation and return -EAGAIN, otherwise this function always succeeds.
3261 */
btrfs_add_reserved_bytes(struct btrfs_block_group * cache,u64 ram_bytes,u64 num_bytes,int delalloc)3262 int btrfs_add_reserved_bytes(struct btrfs_block_group *cache,
3263 u64 ram_bytes, u64 num_bytes, int delalloc)
3264 {
3265 struct btrfs_space_info *space_info = cache->space_info;
3266 int ret = 0;
3267
3268 spin_lock(&space_info->lock);
3269 spin_lock(&cache->lock);
3270 if (cache->ro) {
3271 ret = -EAGAIN;
3272 } else {
3273 cache->reserved += num_bytes;
3274 space_info->bytes_reserved += num_bytes;
3275 trace_btrfs_space_reservation(cache->fs_info, "space_info",
3276 space_info->flags, num_bytes, 1);
3277 btrfs_space_info_update_bytes_may_use(cache->fs_info,
3278 space_info, -ram_bytes);
3279 if (delalloc)
3280 cache->delalloc_bytes += num_bytes;
3281
3282 /*
3283 * Compression can use less space than we reserved, so wake
3284 * tickets if that happens
3285 */
3286 if (num_bytes < ram_bytes)
3287 btrfs_try_granting_tickets(cache->fs_info, space_info);
3288 }
3289 spin_unlock(&cache->lock);
3290 spin_unlock(&space_info->lock);
3291 return ret;
3292 }
3293
3294 /**
3295 * btrfs_free_reserved_bytes - update the block_group and space info counters
3296 * @cache: The cache we are manipulating
3297 * @num_bytes: The number of bytes in question
3298 * @delalloc: The blocks are allocated for the delalloc write
3299 *
3300 * This is called by somebody who is freeing space that was never actually used
3301 * on disk. For example if you reserve some space for a new leaf in transaction
3302 * A and before transaction A commits you free that leaf, you call this with
3303 * reserve set to 0 in order to clear the reservation.
3304 */
btrfs_free_reserved_bytes(struct btrfs_block_group * cache,u64 num_bytes,int delalloc)3305 void btrfs_free_reserved_bytes(struct btrfs_block_group *cache,
3306 u64 num_bytes, int delalloc)
3307 {
3308 struct btrfs_space_info *space_info = cache->space_info;
3309
3310 spin_lock(&space_info->lock);
3311 spin_lock(&cache->lock);
3312 if (cache->ro)
3313 space_info->bytes_readonly += num_bytes;
3314 cache->reserved -= num_bytes;
3315 space_info->bytes_reserved -= num_bytes;
3316 space_info->max_extent_size = 0;
3317
3318 if (delalloc)
3319 cache->delalloc_bytes -= num_bytes;
3320 spin_unlock(&cache->lock);
3321
3322 btrfs_try_granting_tickets(cache->fs_info, space_info);
3323 spin_unlock(&space_info->lock);
3324 }
3325
force_metadata_allocation(struct btrfs_fs_info * info)3326 static void force_metadata_allocation(struct btrfs_fs_info *info)
3327 {
3328 struct list_head *head = &info->space_info;
3329 struct btrfs_space_info *found;
3330
3331 list_for_each_entry(found, head, list) {
3332 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3333 found->force_alloc = CHUNK_ALLOC_FORCE;
3334 }
3335 }
3336
should_alloc_chunk(struct btrfs_fs_info * fs_info,struct btrfs_space_info * sinfo,int force)3337 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
3338 struct btrfs_space_info *sinfo, int force)
3339 {
3340 u64 bytes_used = btrfs_space_info_used(sinfo, false);
3341 u64 thresh;
3342
3343 if (force == CHUNK_ALLOC_FORCE)
3344 return 1;
3345
3346 /*
3347 * in limited mode, we want to have some free space up to
3348 * about 1% of the FS size.
3349 */
3350 if (force == CHUNK_ALLOC_LIMITED) {
3351 thresh = btrfs_super_total_bytes(fs_info->super_copy);
3352 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
3353
3354 if (sinfo->total_bytes - bytes_used < thresh)
3355 return 1;
3356 }
3357
3358 if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
3359 return 0;
3360 return 1;
3361 }
3362
btrfs_force_chunk_alloc(struct btrfs_trans_handle * trans,u64 type)3363 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans, u64 type)
3364 {
3365 u64 alloc_flags = btrfs_get_alloc_profile(trans->fs_info, type);
3366
3367 return btrfs_chunk_alloc(trans, alloc_flags, CHUNK_ALLOC_FORCE);
3368 }
3369
do_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags)3370 static int do_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags)
3371 {
3372 struct btrfs_block_group *bg;
3373 int ret;
3374
3375 /*
3376 * Check if we have enough space in the system space info because we
3377 * will need to update device items in the chunk btree and insert a new
3378 * chunk item in the chunk btree as well. This will allocate a new
3379 * system block group if needed.
3380 */
3381 check_system_chunk(trans, flags);
3382
3383 bg = btrfs_alloc_chunk(trans, flags);
3384 if (IS_ERR(bg)) {
3385 ret = PTR_ERR(bg);
3386 goto out;
3387 }
3388
3389 /*
3390 * If this is a system chunk allocation then stop right here and do not
3391 * add the chunk item to the chunk btree. This is to prevent a deadlock
3392 * because this system chunk allocation can be triggered while COWing
3393 * some extent buffer of the chunk btree and while holding a lock on a
3394 * parent extent buffer, in which case attempting to insert the chunk
3395 * item (or update the device item) would result in a deadlock on that
3396 * parent extent buffer. In this case defer the chunk btree updates to
3397 * the second phase of chunk allocation and keep our reservation until
3398 * the second phase completes.
3399 *
3400 * This is a rare case and can only be triggered by the very few cases
3401 * we have where we need to touch the chunk btree outside chunk allocation
3402 * and chunk removal. These cases are basically adding a device, removing
3403 * a device or resizing a device.
3404 */
3405 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3406 return 0;
3407
3408 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3409 /*
3410 * Normally we are not expected to fail with -ENOSPC here, since we have
3411 * previously reserved space in the system space_info and allocated one
3412 * new system chunk if necessary. However there are two exceptions:
3413 *
3414 * 1) We may have enough free space in the system space_info but all the
3415 * existing system block groups have a profile which can not be used
3416 * for extent allocation.
3417 *
3418 * This happens when mounting in degraded mode. For example we have a
3419 * RAID1 filesystem with 2 devices, lose one device and mount the fs
3420 * using the other device in degraded mode. If we then allocate a chunk,
3421 * we may have enough free space in the existing system space_info, but
3422 * none of the block groups can be used for extent allocation since they
3423 * have a RAID1 profile, and because we are in degraded mode with a
3424 * single device, we are forced to allocate a new system chunk with a
3425 * SINGLE profile. Making check_system_chunk() iterate over all system
3426 * block groups and check if they have a usable profile and enough space
3427 * can be slow on very large filesystems, so we tolerate the -ENOSPC and
3428 * try again after forcing allocation of a new system chunk. Like this
3429 * we avoid paying the cost of that search in normal circumstances, when
3430 * we were not mounted in degraded mode;
3431 *
3432 * 2) We had enough free space info the system space_info, and one suitable
3433 * block group to allocate from when we called check_system_chunk()
3434 * above. However right after we called it, the only system block group
3435 * with enough free space got turned into RO mode by a running scrub,
3436 * and in this case we have to allocate a new one and retry. We only
3437 * need do this allocate and retry once, since we have a transaction
3438 * handle and scrub uses the commit root to search for block groups.
3439 */
3440 if (ret == -ENOSPC) {
3441 const u64 sys_flags = btrfs_system_alloc_profile(trans->fs_info);
3442 struct btrfs_block_group *sys_bg;
3443
3444 sys_bg = btrfs_alloc_chunk(trans, sys_flags);
3445 if (IS_ERR(sys_bg)) {
3446 ret = PTR_ERR(sys_bg);
3447 btrfs_abort_transaction(trans, ret);
3448 goto out;
3449 }
3450
3451 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg);
3452 if (ret) {
3453 btrfs_abort_transaction(trans, ret);
3454 goto out;
3455 }
3456
3457 ret = btrfs_chunk_alloc_add_chunk_item(trans, bg);
3458 if (ret) {
3459 btrfs_abort_transaction(trans, ret);
3460 goto out;
3461 }
3462 } else if (ret) {
3463 btrfs_abort_transaction(trans, ret);
3464 goto out;
3465 }
3466 out:
3467 btrfs_trans_release_chunk_metadata(trans);
3468
3469 return ret;
3470 }
3471
3472 /*
3473 * Chunk allocation is done in 2 phases:
3474 *
3475 * 1) Phase 1 - through btrfs_chunk_alloc() we allocate device extents for
3476 * the chunk, the chunk mapping, create its block group and add the items
3477 * that belong in the chunk btree to it - more specifically, we need to
3478 * update device items in the chunk btree and add a new chunk item to it.
3479 *
3480 * 2) Phase 2 - through btrfs_create_pending_block_groups(), we add the block
3481 * group item to the extent btree and the device extent items to the devices
3482 * btree.
3483 *
3484 * This is done to prevent deadlocks. For example when COWing a node from the
3485 * extent btree we are holding a write lock on the node's parent and if we
3486 * trigger chunk allocation and attempted to insert the new block group item
3487 * in the extent btree right way, we could deadlock because the path for the
3488 * insertion can include that parent node. At first glance it seems impossible
3489 * to trigger chunk allocation after starting a transaction since tasks should
3490 * reserve enough transaction units (metadata space), however while that is true
3491 * most of the time, chunk allocation may still be triggered for several reasons:
3492 *
3493 * 1) When reserving metadata, we check if there is enough free space in the
3494 * metadata space_info and therefore don't trigger allocation of a new chunk.
3495 * However later when the task actually tries to COW an extent buffer from
3496 * the extent btree or from the device btree for example, it is forced to
3497 * allocate a new block group (chunk) because the only one that had enough
3498 * free space was just turned to RO mode by a running scrub for example (or
3499 * device replace, block group reclaim thread, etc), so we can not use it
3500 * for allocating an extent and end up being forced to allocate a new one;
3501 *
3502 * 2) Because we only check that the metadata space_info has enough free bytes,
3503 * we end up not allocating a new metadata chunk in that case. However if
3504 * the filesystem was mounted in degraded mode, none of the existing block
3505 * groups might be suitable for extent allocation due to their incompatible
3506 * profile (for e.g. mounting a 2 devices filesystem, where all block groups
3507 * use a RAID1 profile, in degraded mode using a single device). In this case
3508 * when the task attempts to COW some extent buffer of the extent btree for
3509 * example, it will trigger allocation of a new metadata block group with a
3510 * suitable profile (SINGLE profile in the example of the degraded mount of
3511 * the RAID1 filesystem);
3512 *
3513 * 3) The task has reserved enough transaction units / metadata space, but when
3514 * it attempts to COW an extent buffer from the extent or device btree for
3515 * example, it does not find any free extent in any metadata block group,
3516 * therefore forced to try to allocate a new metadata block group.
3517 * This is because some other task allocated all available extents in the
3518 * meanwhile - this typically happens with tasks that don't reserve space
3519 * properly, either intentionally or as a bug. One example where this is
3520 * done intentionally is fsync, as it does not reserve any transaction units
3521 * and ends up allocating a variable number of metadata extents for log
3522 * tree extent buffers.
3523 *
3524 * We also need this 2 phases setup when adding a device to a filesystem with
3525 * a seed device - we must create new metadata and system chunks without adding
3526 * any of the block group items to the chunk, extent and device btrees. If we
3527 * did not do it this way, we would get ENOSPC when attempting to update those
3528 * btrees, since all the chunks from the seed device are read-only.
3529 *
3530 * Phase 1 does the updates and insertions to the chunk btree because if we had
3531 * it done in phase 2 and have a thundering herd of tasks allocating chunks in
3532 * parallel, we risk having too many system chunks allocated by many tasks if
3533 * many tasks reach phase 1 without the previous ones completing phase 2. In the
3534 * extreme case this leads to exhaustion of the system chunk array in the
3535 * superblock. This is easier to trigger if using a btree node/leaf size of 64K
3536 * and with RAID filesystems (so we have more device items in the chunk btree).
3537 * This has happened before and commit eafa4fd0ad0607 ("btrfs: fix exhaustion of
3538 * the system chunk array due to concurrent allocations") provides more details.
3539 *
3540 * For allocation of system chunks, we defer the updates and insertions into the
3541 * chunk btree to phase 2. This is to prevent deadlocks on extent buffers because
3542 * if the chunk allocation is triggered while COWing an extent buffer of the
3543 * chunk btree, we are holding a lock on the parent of that extent buffer and
3544 * doing the chunk btree updates and insertions can require locking that parent.
3545 * This is for the very few and rare cases where we update the chunk btree that
3546 * are not chunk allocation or chunk removal: adding a device, removing a device
3547 * or resizing a device.
3548 *
3549 * The reservation of system space, done through check_system_chunk(), as well
3550 * as all the updates and insertions into the chunk btree must be done while
3551 * holding fs_info->chunk_mutex. This is important to guarantee that while COWing
3552 * an extent buffer from the chunks btree we never trigger allocation of a new
3553 * system chunk, which would result in a deadlock (trying to lock twice an
3554 * extent buffer of the chunk btree, first time before triggering the chunk
3555 * allocation and the second time during chunk allocation while attempting to
3556 * update the chunks btree). The system chunk array is also updated while holding
3557 * that mutex. The same logic applies to removing chunks - we must reserve system
3558 * space, update the chunk btree and the system chunk array in the superblock
3559 * while holding fs_info->chunk_mutex.
3560 *
3561 * This function, btrfs_chunk_alloc(), belongs to phase 1.
3562 *
3563 * If @force is CHUNK_ALLOC_FORCE:
3564 * - return 1 if it successfully allocates a chunk,
3565 * - return errors including -ENOSPC otherwise.
3566 * If @force is NOT CHUNK_ALLOC_FORCE:
3567 * - return 0 if it doesn't need to allocate a new chunk,
3568 * - return 1 if it successfully allocates a chunk,
3569 * - return errors including -ENOSPC otherwise.
3570 */
btrfs_chunk_alloc(struct btrfs_trans_handle * trans,u64 flags,enum btrfs_chunk_alloc_enum force)3571 int btrfs_chunk_alloc(struct btrfs_trans_handle *trans, u64 flags,
3572 enum btrfs_chunk_alloc_enum force)
3573 {
3574 struct btrfs_fs_info *fs_info = trans->fs_info;
3575 struct btrfs_space_info *space_info;
3576 bool wait_for_alloc = false;
3577 bool should_alloc = false;
3578 int ret = 0;
3579
3580 /* Don't re-enter if we're already allocating a chunk */
3581 if (trans->allocating_chunk)
3582 return -ENOSPC;
3583 /*
3584 * If we are removing a chunk, don't re-enter or we would deadlock.
3585 * System space reservation and system chunk allocation is done by the
3586 * chunk remove operation (btrfs_remove_chunk()).
3587 */
3588 if (trans->removing_chunk)
3589 return -ENOSPC;
3590
3591 space_info = btrfs_find_space_info(fs_info, flags);
3592 ASSERT(space_info);
3593
3594 do {
3595 spin_lock(&space_info->lock);
3596 if (force < space_info->force_alloc)
3597 force = space_info->force_alloc;
3598 should_alloc = should_alloc_chunk(fs_info, space_info, force);
3599 if (space_info->full) {
3600 /* No more free physical space */
3601 if (should_alloc)
3602 ret = -ENOSPC;
3603 else
3604 ret = 0;
3605 spin_unlock(&space_info->lock);
3606 return ret;
3607 } else if (!should_alloc) {
3608 spin_unlock(&space_info->lock);
3609 return 0;
3610 } else if (space_info->chunk_alloc) {
3611 /*
3612 * Someone is already allocating, so we need to block
3613 * until this someone is finished and then loop to
3614 * recheck if we should continue with our allocation
3615 * attempt.
3616 */
3617 wait_for_alloc = true;
3618 spin_unlock(&space_info->lock);
3619 mutex_lock(&fs_info->chunk_mutex);
3620 mutex_unlock(&fs_info->chunk_mutex);
3621 } else {
3622 /* Proceed with allocation */
3623 space_info->chunk_alloc = 1;
3624 wait_for_alloc = false;
3625 spin_unlock(&space_info->lock);
3626 }
3627
3628 cond_resched();
3629 } while (wait_for_alloc);
3630
3631 mutex_lock(&fs_info->chunk_mutex);
3632 trans->allocating_chunk = true;
3633
3634 /*
3635 * If we have mixed data/metadata chunks we want to make sure we keep
3636 * allocating mixed chunks instead of individual chunks.
3637 */
3638 if (btrfs_mixed_space_info(space_info))
3639 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3640
3641 /*
3642 * if we're doing a data chunk, go ahead and make sure that
3643 * we keep a reasonable number of metadata chunks allocated in the
3644 * FS as well.
3645 */
3646 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3647 fs_info->data_chunk_allocations++;
3648 if (!(fs_info->data_chunk_allocations %
3649 fs_info->metadata_ratio))
3650 force_metadata_allocation(fs_info);
3651 }
3652
3653 ret = do_chunk_alloc(trans, flags);
3654 trans->allocating_chunk = false;
3655
3656 spin_lock(&space_info->lock);
3657 if (ret < 0) {
3658 if (ret == -ENOSPC)
3659 space_info->full = 1;
3660 else
3661 goto out;
3662 } else {
3663 ret = 1;
3664 space_info->max_extent_size = 0;
3665 }
3666
3667 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3668 out:
3669 space_info->chunk_alloc = 0;
3670 spin_unlock(&space_info->lock);
3671 mutex_unlock(&fs_info->chunk_mutex);
3672
3673 return ret;
3674 }
3675
get_profile_num_devs(struct btrfs_fs_info * fs_info,u64 type)3676 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
3677 {
3678 u64 num_dev;
3679
3680 num_dev = btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)].devs_max;
3681 if (!num_dev)
3682 num_dev = fs_info->fs_devices->rw_devices;
3683
3684 return num_dev;
3685 }
3686
3687 /*
3688 * Reserve space in the system space for allocating or removing a chunk
3689 */
check_system_chunk(struct btrfs_trans_handle * trans,u64 type)3690 void check_system_chunk(struct btrfs_trans_handle *trans, u64 type)
3691 {
3692 struct btrfs_fs_info *fs_info = trans->fs_info;
3693 struct btrfs_space_info *info;
3694 u64 left;
3695 u64 thresh;
3696 int ret = 0;
3697 u64 num_devs;
3698
3699 /*
3700 * Needed because we can end up allocating a system chunk and for an
3701 * atomic and race free space reservation in the chunk block reserve.
3702 */
3703 lockdep_assert_held(&fs_info->chunk_mutex);
3704
3705 info = btrfs_find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3706 spin_lock(&info->lock);
3707 left = info->total_bytes - btrfs_space_info_used(info, true);
3708 spin_unlock(&info->lock);
3709
3710 num_devs = get_profile_num_devs(fs_info, type);
3711
3712 /* num_devs device items to update and 1 chunk item to add or remove */
3713 thresh = btrfs_calc_metadata_size(fs_info, num_devs) +
3714 btrfs_calc_insert_metadata_size(fs_info, 1);
3715
3716 if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
3717 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
3718 left, thresh, type);
3719 btrfs_dump_space_info(fs_info, info, 0, 0);
3720 }
3721
3722 if (left < thresh) {
3723 u64 flags = btrfs_system_alloc_profile(fs_info);
3724 struct btrfs_block_group *bg;
3725
3726 /*
3727 * Ignore failure to create system chunk. We might end up not
3728 * needing it, as we might not need to COW all nodes/leafs from
3729 * the paths we visit in the chunk tree (they were already COWed
3730 * or created in the current transaction for example).
3731 *
3732 * Also, if our caller is allocating a system chunk, do not
3733 * attempt to insert the chunk item in the chunk btree, as we
3734 * could deadlock on an extent buffer since our caller may be
3735 * COWing an extent buffer from the chunk btree.
3736 */
3737 bg = btrfs_alloc_chunk(trans, flags);
3738 if (IS_ERR(bg)) {
3739 ret = PTR_ERR(bg);
3740 } else if (!(type & BTRFS_BLOCK_GROUP_SYSTEM)) {
3741 /*
3742 * If we fail to add the chunk item here, we end up
3743 * trying again at phase 2 of chunk allocation, at
3744 * btrfs_create_pending_block_groups(). So ignore
3745 * any error here.
3746 */
3747 btrfs_chunk_alloc_add_chunk_item(trans, bg);
3748 }
3749 }
3750
3751 if (!ret) {
3752 ret = btrfs_block_rsv_add(fs_info->chunk_root,
3753 &fs_info->chunk_block_rsv,
3754 thresh, BTRFS_RESERVE_NO_FLUSH);
3755 if (!ret)
3756 trans->chunk_bytes_reserved += thresh;
3757 }
3758 }
3759
btrfs_put_block_group_cache(struct btrfs_fs_info * info)3760 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
3761 {
3762 struct btrfs_block_group *block_group;
3763 u64 last = 0;
3764
3765 while (1) {
3766 struct inode *inode;
3767
3768 block_group = btrfs_lookup_first_block_group(info, last);
3769 while (block_group) {
3770 btrfs_wait_block_group_cache_done(block_group);
3771 spin_lock(&block_group->lock);
3772 if (block_group->iref)
3773 break;
3774 spin_unlock(&block_group->lock);
3775 block_group = btrfs_next_block_group(block_group);
3776 }
3777 if (!block_group) {
3778 if (last == 0)
3779 break;
3780 last = 0;
3781 continue;
3782 }
3783
3784 inode = block_group->inode;
3785 block_group->iref = 0;
3786 block_group->inode = NULL;
3787 spin_unlock(&block_group->lock);
3788 ASSERT(block_group->io_ctl.inode == NULL);
3789 iput(inode);
3790 last = block_group->start + block_group->length;
3791 btrfs_put_block_group(block_group);
3792 }
3793 }
3794
3795 /*
3796 * Must be called only after stopping all workers, since we could have block
3797 * group caching kthreads running, and therefore they could race with us if we
3798 * freed the block groups before stopping them.
3799 */
btrfs_free_block_groups(struct btrfs_fs_info * info)3800 int btrfs_free_block_groups(struct btrfs_fs_info *info)
3801 {
3802 struct btrfs_block_group *block_group;
3803 struct btrfs_space_info *space_info;
3804 struct btrfs_caching_control *caching_ctl;
3805 struct rb_node *n;
3806
3807 spin_lock(&info->block_group_cache_lock);
3808 while (!list_empty(&info->caching_block_groups)) {
3809 caching_ctl = list_entry(info->caching_block_groups.next,
3810 struct btrfs_caching_control, list);
3811 list_del(&caching_ctl->list);
3812 btrfs_put_caching_control(caching_ctl);
3813 }
3814 spin_unlock(&info->block_group_cache_lock);
3815
3816 spin_lock(&info->unused_bgs_lock);
3817 while (!list_empty(&info->unused_bgs)) {
3818 block_group = list_first_entry(&info->unused_bgs,
3819 struct btrfs_block_group,
3820 bg_list);
3821 list_del_init(&block_group->bg_list);
3822 btrfs_put_block_group(block_group);
3823 }
3824 spin_unlock(&info->unused_bgs_lock);
3825
3826 spin_lock(&info->unused_bgs_lock);
3827 while (!list_empty(&info->reclaim_bgs)) {
3828 block_group = list_first_entry(&info->reclaim_bgs,
3829 struct btrfs_block_group,
3830 bg_list);
3831 list_del_init(&block_group->bg_list);
3832 btrfs_put_block_group(block_group);
3833 }
3834 spin_unlock(&info->unused_bgs_lock);
3835
3836 spin_lock(&info->block_group_cache_lock);
3837 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
3838 block_group = rb_entry(n, struct btrfs_block_group,
3839 cache_node);
3840 rb_erase(&block_group->cache_node,
3841 &info->block_group_cache_tree);
3842 RB_CLEAR_NODE(&block_group->cache_node);
3843 spin_unlock(&info->block_group_cache_lock);
3844
3845 down_write(&block_group->space_info->groups_sem);
3846 list_del(&block_group->list);
3847 up_write(&block_group->space_info->groups_sem);
3848
3849 /*
3850 * We haven't cached this block group, which means we could
3851 * possibly have excluded extents on this block group.
3852 */
3853 if (block_group->cached == BTRFS_CACHE_NO ||
3854 block_group->cached == BTRFS_CACHE_ERROR)
3855 btrfs_free_excluded_extents(block_group);
3856
3857 btrfs_remove_free_space_cache(block_group);
3858 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
3859 ASSERT(list_empty(&block_group->dirty_list));
3860 ASSERT(list_empty(&block_group->io_list));
3861 ASSERT(list_empty(&block_group->bg_list));
3862 ASSERT(refcount_read(&block_group->refs) == 1);
3863 ASSERT(block_group->swap_extents == 0);
3864 btrfs_put_block_group(block_group);
3865
3866 spin_lock(&info->block_group_cache_lock);
3867 }
3868 spin_unlock(&info->block_group_cache_lock);
3869
3870 btrfs_release_global_block_rsv(info);
3871
3872 while (!list_empty(&info->space_info)) {
3873 space_info = list_entry(info->space_info.next,
3874 struct btrfs_space_info,
3875 list);
3876
3877 /*
3878 * Do not hide this behind enospc_debug, this is actually
3879 * important and indicates a real bug if this happens.
3880 */
3881 if (WARN_ON(space_info->bytes_pinned > 0 ||
3882 space_info->bytes_reserved > 0 ||
3883 space_info->bytes_may_use > 0))
3884 btrfs_dump_space_info(info, space_info, 0, 0);
3885 WARN_ON(space_info->reclaim_size > 0);
3886 list_del(&space_info->list);
3887 btrfs_sysfs_remove_space_info(space_info);
3888 }
3889 return 0;
3890 }
3891
btrfs_freeze_block_group(struct btrfs_block_group * cache)3892 void btrfs_freeze_block_group(struct btrfs_block_group *cache)
3893 {
3894 atomic_inc(&cache->frozen);
3895 }
3896
btrfs_unfreeze_block_group(struct btrfs_block_group * block_group)3897 void btrfs_unfreeze_block_group(struct btrfs_block_group *block_group)
3898 {
3899 struct btrfs_fs_info *fs_info = block_group->fs_info;
3900 struct extent_map_tree *em_tree;
3901 struct extent_map *em;
3902 bool cleanup;
3903
3904 spin_lock(&block_group->lock);
3905 cleanup = (atomic_dec_and_test(&block_group->frozen) &&
3906 block_group->removed);
3907 spin_unlock(&block_group->lock);
3908
3909 if (cleanup) {
3910 em_tree = &fs_info->mapping_tree;
3911 write_lock(&em_tree->lock);
3912 em = lookup_extent_mapping(em_tree, block_group->start,
3913 1);
3914 BUG_ON(!em); /* logic error, can't happen */
3915 remove_extent_mapping(em_tree, em);
3916 write_unlock(&em_tree->lock);
3917
3918 /* once for us and once for the tree */
3919 free_extent_map(em);
3920 free_extent_map(em);
3921
3922 /*
3923 * We may have left one free space entry and other possible
3924 * tasks trimming this block group have left 1 entry each one.
3925 * Free them if any.
3926 */
3927 __btrfs_remove_free_space_cache(block_group->free_space_ctl);
3928 }
3929 }
3930
btrfs_inc_block_group_swap_extents(struct btrfs_block_group * bg)3931 bool btrfs_inc_block_group_swap_extents(struct btrfs_block_group *bg)
3932 {
3933 bool ret = true;
3934
3935 spin_lock(&bg->lock);
3936 if (bg->ro)
3937 ret = false;
3938 else
3939 bg->swap_extents++;
3940 spin_unlock(&bg->lock);
3941
3942 return ret;
3943 }
3944
btrfs_dec_block_group_swap_extents(struct btrfs_block_group * bg,int amount)3945 void btrfs_dec_block_group_swap_extents(struct btrfs_block_group *bg, int amount)
3946 {
3947 spin_lock(&bg->lock);
3948 ASSERT(!bg->ro);
3949 ASSERT(bg->swap_extents >= amount);
3950 bg->swap_extents -= amount;
3951 spin_unlock(&bg->lock);
3952 }
3953