1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * USB4 specific functionality
4 *
5 * Copyright (C) 2019, Intel Corporation
6 * Authors: Mika Westerberg <mika.westerberg@linux.intel.com>
7 * Rajmohan Mani <rajmohan.mani@intel.com>
8 */
9
10 #include <linux/delay.h>
11 #include <linux/ktime.h>
12
13 #include "sb_regs.h"
14 #include "tb.h"
15
16 #define USB4_DATA_RETRIES 3
17
18 enum usb4_sb_target {
19 USB4_SB_TARGET_ROUTER,
20 USB4_SB_TARGET_PARTNER,
21 USB4_SB_TARGET_RETIMER,
22 };
23
24 #define USB4_NVM_READ_OFFSET_MASK GENMASK(23, 2)
25 #define USB4_NVM_READ_OFFSET_SHIFT 2
26 #define USB4_NVM_READ_LENGTH_MASK GENMASK(27, 24)
27 #define USB4_NVM_READ_LENGTH_SHIFT 24
28
29 #define USB4_NVM_SET_OFFSET_MASK USB4_NVM_READ_OFFSET_MASK
30 #define USB4_NVM_SET_OFFSET_SHIFT USB4_NVM_READ_OFFSET_SHIFT
31
32 #define USB4_DROM_ADDRESS_MASK GENMASK(14, 2)
33 #define USB4_DROM_ADDRESS_SHIFT 2
34 #define USB4_DROM_SIZE_MASK GENMASK(19, 15)
35 #define USB4_DROM_SIZE_SHIFT 15
36
37 #define USB4_NVM_SECTOR_SIZE_MASK GENMASK(23, 0)
38
39 #define USB4_BA_LENGTH_MASK GENMASK(7, 0)
40 #define USB4_BA_INDEX_MASK GENMASK(15, 0)
41
42 enum usb4_ba_index {
43 USB4_BA_MAX_USB3 = 0x1,
44 USB4_BA_MIN_DP_AUX = 0x2,
45 USB4_BA_MIN_DP_MAIN = 0x3,
46 USB4_BA_MAX_PCIE = 0x4,
47 USB4_BA_MAX_HI = 0x5,
48 };
49
50 #define USB4_BA_VALUE_MASK GENMASK(31, 16)
51 #define USB4_BA_VALUE_SHIFT 16
52
usb4_switch_wait_for_bit(struct tb_switch * sw,u32 offset,u32 bit,u32 value,int timeout_msec)53 static int usb4_switch_wait_for_bit(struct tb_switch *sw, u32 offset, u32 bit,
54 u32 value, int timeout_msec)
55 {
56 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
57
58 do {
59 u32 val;
60 int ret;
61
62 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, offset, 1);
63 if (ret)
64 return ret;
65
66 if ((val & bit) == value)
67 return 0;
68
69 usleep_range(50, 100);
70 } while (ktime_before(ktime_get(), timeout));
71
72 return -ETIMEDOUT;
73 }
74
usb4_native_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)75 static int usb4_native_switch_op(struct tb_switch *sw, u16 opcode,
76 u32 *metadata, u8 *status,
77 const void *tx_data, size_t tx_dwords,
78 void *rx_data, size_t rx_dwords)
79 {
80 u32 val;
81 int ret;
82
83 if (metadata) {
84 ret = tb_sw_write(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
85 if (ret)
86 return ret;
87 }
88 if (tx_dwords) {
89 ret = tb_sw_write(sw, tx_data, TB_CFG_SWITCH, ROUTER_CS_9,
90 tx_dwords);
91 if (ret)
92 return ret;
93 }
94
95 val = opcode | ROUTER_CS_26_OV;
96 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
97 if (ret)
98 return ret;
99
100 ret = usb4_switch_wait_for_bit(sw, ROUTER_CS_26, ROUTER_CS_26_OV, 0, 500);
101 if (ret)
102 return ret;
103
104 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
105 if (ret)
106 return ret;
107
108 if (val & ROUTER_CS_26_ONS)
109 return -EOPNOTSUPP;
110
111 if (status)
112 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
113 ROUTER_CS_26_STATUS_SHIFT;
114
115 if (metadata) {
116 ret = tb_sw_read(sw, metadata, TB_CFG_SWITCH, ROUTER_CS_25, 1);
117 if (ret)
118 return ret;
119 }
120 if (rx_dwords) {
121 ret = tb_sw_read(sw, rx_data, TB_CFG_SWITCH, ROUTER_CS_9,
122 rx_dwords);
123 if (ret)
124 return ret;
125 }
126
127 return 0;
128 }
129
__usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)130 static int __usb4_switch_op(struct tb_switch *sw, u16 opcode, u32 *metadata,
131 u8 *status, const void *tx_data, size_t tx_dwords,
132 void *rx_data, size_t rx_dwords)
133 {
134 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
135
136 if (tx_dwords > NVM_DATA_DWORDS || rx_dwords > NVM_DATA_DWORDS)
137 return -EINVAL;
138
139 /*
140 * If the connection manager implementation provides USB4 router
141 * operation proxy callback, call it here instead of running the
142 * operation natively.
143 */
144 if (cm_ops->usb4_switch_op) {
145 int ret;
146
147 ret = cm_ops->usb4_switch_op(sw, opcode, metadata, status,
148 tx_data, tx_dwords, rx_data,
149 rx_dwords);
150 if (ret != -EOPNOTSUPP)
151 return ret;
152
153 /*
154 * If the proxy was not supported then run the native
155 * router operation instead.
156 */
157 }
158
159 return usb4_native_switch_op(sw, opcode, metadata, status, tx_data,
160 tx_dwords, rx_data, rx_dwords);
161 }
162
usb4_switch_op(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status)163 static inline int usb4_switch_op(struct tb_switch *sw, u16 opcode,
164 u32 *metadata, u8 *status)
165 {
166 return __usb4_switch_op(sw, opcode, metadata, status, NULL, 0, NULL, 0);
167 }
168
usb4_switch_op_data(struct tb_switch * sw,u16 opcode,u32 * metadata,u8 * status,const void * tx_data,size_t tx_dwords,void * rx_data,size_t rx_dwords)169 static inline int usb4_switch_op_data(struct tb_switch *sw, u16 opcode,
170 u32 *metadata, u8 *status,
171 const void *tx_data, size_t tx_dwords,
172 void *rx_data, size_t rx_dwords)
173 {
174 return __usb4_switch_op(sw, opcode, metadata, status, tx_data,
175 tx_dwords, rx_data, rx_dwords);
176 }
177
usb4_switch_check_wakes(struct tb_switch * sw)178 static void usb4_switch_check_wakes(struct tb_switch *sw)
179 {
180 struct tb_port *port;
181 bool wakeup = false;
182 u32 val;
183
184 if (!device_may_wakeup(&sw->dev))
185 return;
186
187 if (tb_route(sw)) {
188 if (tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1))
189 return;
190
191 tb_sw_dbg(sw, "PCIe wake: %s, USB3 wake: %s\n",
192 (val & ROUTER_CS_6_WOPS) ? "yes" : "no",
193 (val & ROUTER_CS_6_WOUS) ? "yes" : "no");
194
195 wakeup = val & (ROUTER_CS_6_WOPS | ROUTER_CS_6_WOUS);
196 }
197
198 /* Check for any connected downstream ports for USB4 wake */
199 tb_switch_for_each_port(sw, port) {
200 if (!tb_port_has_remote(port))
201 continue;
202
203 if (tb_port_read(port, &val, TB_CFG_PORT,
204 port->cap_usb4 + PORT_CS_18, 1))
205 break;
206
207 tb_port_dbg(port, "USB4 wake: %s\n",
208 (val & PORT_CS_18_WOU4S) ? "yes" : "no");
209
210 if (val & PORT_CS_18_WOU4S)
211 wakeup = true;
212 }
213
214 if (wakeup)
215 pm_wakeup_event(&sw->dev, 0);
216 }
217
link_is_usb4(struct tb_port * port)218 static bool link_is_usb4(struct tb_port *port)
219 {
220 u32 val;
221
222 if (!port->cap_usb4)
223 return false;
224
225 if (tb_port_read(port, &val, TB_CFG_PORT,
226 port->cap_usb4 + PORT_CS_18, 1))
227 return false;
228
229 return !(val & PORT_CS_18_TCM);
230 }
231
232 /**
233 * usb4_switch_setup() - Additional setup for USB4 device
234 * @sw: USB4 router to setup
235 *
236 * USB4 routers need additional settings in order to enable all the
237 * tunneling. This function enables USB and PCIe tunneling if it can be
238 * enabled (e.g the parent switch also supports them). If USB tunneling
239 * is not available for some reason (like that there is Thunderbolt 3
240 * switch upstream) then the internal xHCI controller is enabled
241 * instead.
242 */
usb4_switch_setup(struct tb_switch * sw)243 int usb4_switch_setup(struct tb_switch *sw)
244 {
245 struct tb_port *downstream_port;
246 struct tb_switch *parent;
247 bool tbt3, xhci;
248 u32 val = 0;
249 int ret;
250
251 usb4_switch_check_wakes(sw);
252
253 if (!tb_route(sw))
254 return 0;
255
256 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_6, 1);
257 if (ret)
258 return ret;
259
260 parent = tb_switch_parent(sw);
261 downstream_port = tb_port_at(tb_route(sw), parent);
262 sw->link_usb4 = link_is_usb4(downstream_port);
263 tb_sw_dbg(sw, "link: %s\n", sw->link_usb4 ? "USB4" : "TBT");
264
265 xhci = val & ROUTER_CS_6_HCI;
266 tbt3 = !(val & ROUTER_CS_6_TNS);
267
268 tb_sw_dbg(sw, "TBT3 support: %s, xHCI: %s\n",
269 tbt3 ? "yes" : "no", xhci ? "yes" : "no");
270
271 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
272 if (ret)
273 return ret;
274
275 if (tb_acpi_may_tunnel_usb3() && sw->link_usb4 &&
276 tb_switch_find_port(parent, TB_TYPE_USB3_DOWN)) {
277 val |= ROUTER_CS_5_UTO;
278 xhci = false;
279 }
280
281 /*
282 * Only enable PCIe tunneling if the parent router supports it
283 * and it is not disabled.
284 */
285 if (tb_acpi_may_tunnel_pcie() &&
286 tb_switch_find_port(parent, TB_TYPE_PCIE_DOWN)) {
287 val |= ROUTER_CS_5_PTO;
288 /*
289 * xHCI can be enabled if PCIe tunneling is supported
290 * and the parent does not have any USB3 dowstream
291 * adapters (so we cannot do USB 3.x tunneling).
292 */
293 if (xhci)
294 val |= ROUTER_CS_5_HCO;
295 }
296
297 /* TBT3 supported by the CM */
298 val |= ROUTER_CS_5_C3S;
299 /* Tunneling configuration is ready now */
300 val |= ROUTER_CS_5_CV;
301
302 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
303 if (ret)
304 return ret;
305
306 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_CR,
307 ROUTER_CS_6_CR, 50);
308 }
309
310 /**
311 * usb4_switch_read_uid() - Read UID from USB4 router
312 * @sw: USB4 router
313 * @uid: UID is stored here
314 *
315 * Reads 64-bit UID from USB4 router config space.
316 */
usb4_switch_read_uid(struct tb_switch * sw,u64 * uid)317 int usb4_switch_read_uid(struct tb_switch *sw, u64 *uid)
318 {
319 return tb_sw_read(sw, uid, TB_CFG_SWITCH, ROUTER_CS_7, 2);
320 }
321
usb4_switch_drom_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)322 static int usb4_switch_drom_read_block(void *data,
323 unsigned int dwaddress, void *buf,
324 size_t dwords)
325 {
326 struct tb_switch *sw = data;
327 u8 status = 0;
328 u32 metadata;
329 int ret;
330
331 metadata = (dwords << USB4_DROM_SIZE_SHIFT) & USB4_DROM_SIZE_MASK;
332 metadata |= (dwaddress << USB4_DROM_ADDRESS_SHIFT) &
333 USB4_DROM_ADDRESS_MASK;
334
335 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_DROM_READ, &metadata,
336 &status, NULL, 0, buf, dwords);
337 if (ret)
338 return ret;
339
340 return status ? -EIO : 0;
341 }
342
343 /**
344 * usb4_switch_drom_read() - Read arbitrary bytes from USB4 router DROM
345 * @sw: USB4 router
346 * @address: Byte address inside DROM to start reading
347 * @buf: Buffer where the DROM content is stored
348 * @size: Number of bytes to read from DROM
349 *
350 * Uses USB4 router operations to read router DROM. For devices this
351 * should always work but for hosts it may return %-EOPNOTSUPP in which
352 * case the host router does not have DROM.
353 */
usb4_switch_drom_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)354 int usb4_switch_drom_read(struct tb_switch *sw, unsigned int address, void *buf,
355 size_t size)
356 {
357 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
358 usb4_switch_drom_read_block, sw);
359 }
360
361 /**
362 * usb4_switch_lane_bonding_possible() - Are conditions met for lane bonding
363 * @sw: USB4 router
364 *
365 * Checks whether conditions are met so that lane bonding can be
366 * established with the upstream router. Call only for device routers.
367 */
usb4_switch_lane_bonding_possible(struct tb_switch * sw)368 bool usb4_switch_lane_bonding_possible(struct tb_switch *sw)
369 {
370 struct tb_port *up;
371 int ret;
372 u32 val;
373
374 up = tb_upstream_port(sw);
375 ret = tb_port_read(up, &val, TB_CFG_PORT, up->cap_usb4 + PORT_CS_18, 1);
376 if (ret)
377 return false;
378
379 return !!(val & PORT_CS_18_BE);
380 }
381
382 /**
383 * usb4_switch_set_wake() - Enabled/disable wake
384 * @sw: USB4 router
385 * @flags: Wakeup flags (%0 to disable)
386 *
387 * Enables/disables router to wake up from sleep.
388 */
usb4_switch_set_wake(struct tb_switch * sw,unsigned int flags)389 int usb4_switch_set_wake(struct tb_switch *sw, unsigned int flags)
390 {
391 struct tb_port *port;
392 u64 route = tb_route(sw);
393 u32 val;
394 int ret;
395
396 /*
397 * Enable wakes coming from all USB4 downstream ports (from
398 * child routers). For device routers do this also for the
399 * upstream USB4 port.
400 */
401 tb_switch_for_each_port(sw, port) {
402 if (!tb_port_is_null(port))
403 continue;
404 if (!route && tb_is_upstream_port(port))
405 continue;
406 if (!port->cap_usb4)
407 continue;
408
409 ret = tb_port_read(port, &val, TB_CFG_PORT,
410 port->cap_usb4 + PORT_CS_19, 1);
411 if (ret)
412 return ret;
413
414 val &= ~(PORT_CS_19_WOC | PORT_CS_19_WOD | PORT_CS_19_WOU4);
415
416 if (tb_is_upstream_port(port)) {
417 val |= PORT_CS_19_WOU4;
418 } else {
419 bool configured = val & PORT_CS_19_PC;
420
421 if ((flags & TB_WAKE_ON_CONNECT) && !configured)
422 val |= PORT_CS_19_WOC;
423 if ((flags & TB_WAKE_ON_DISCONNECT) && configured)
424 val |= PORT_CS_19_WOD;
425 if ((flags & TB_WAKE_ON_USB4) && configured)
426 val |= PORT_CS_19_WOU4;
427 }
428
429 ret = tb_port_write(port, &val, TB_CFG_PORT,
430 port->cap_usb4 + PORT_CS_19, 1);
431 if (ret)
432 return ret;
433 }
434
435 /*
436 * Enable wakes from PCIe, USB 3.x and DP on this router. Only
437 * needed for device routers.
438 */
439 if (route) {
440 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
441 if (ret)
442 return ret;
443
444 val &= ~(ROUTER_CS_5_WOP | ROUTER_CS_5_WOU | ROUTER_CS_5_WOD);
445 if (flags & TB_WAKE_ON_USB3)
446 val |= ROUTER_CS_5_WOU;
447 if (flags & TB_WAKE_ON_PCIE)
448 val |= ROUTER_CS_5_WOP;
449 if (flags & TB_WAKE_ON_DP)
450 val |= ROUTER_CS_5_WOD;
451
452 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
453 if (ret)
454 return ret;
455 }
456
457 return 0;
458 }
459
460 /**
461 * usb4_switch_set_sleep() - Prepare the router to enter sleep
462 * @sw: USB4 router
463 *
464 * Sets sleep bit for the router. Returns when the router sleep ready
465 * bit has been asserted.
466 */
usb4_switch_set_sleep(struct tb_switch * sw)467 int usb4_switch_set_sleep(struct tb_switch *sw)
468 {
469 int ret;
470 u32 val;
471
472 /* Set sleep bit and wait for sleep ready to be asserted */
473 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
474 if (ret)
475 return ret;
476
477 val |= ROUTER_CS_5_SLP;
478
479 ret = tb_sw_write(sw, &val, TB_CFG_SWITCH, ROUTER_CS_5, 1);
480 if (ret)
481 return ret;
482
483 return usb4_switch_wait_for_bit(sw, ROUTER_CS_6, ROUTER_CS_6_SLPR,
484 ROUTER_CS_6_SLPR, 500);
485 }
486
487 /**
488 * usb4_switch_nvm_sector_size() - Return router NVM sector size
489 * @sw: USB4 router
490 *
491 * If the router supports NVM operations this function returns the NVM
492 * sector size in bytes. If NVM operations are not supported returns
493 * %-EOPNOTSUPP.
494 */
usb4_switch_nvm_sector_size(struct tb_switch * sw)495 int usb4_switch_nvm_sector_size(struct tb_switch *sw)
496 {
497 u32 metadata;
498 u8 status;
499 int ret;
500
501 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SECTOR_SIZE, &metadata,
502 &status);
503 if (ret)
504 return ret;
505
506 if (status)
507 return status == 0x2 ? -EOPNOTSUPP : -EIO;
508
509 return metadata & USB4_NVM_SECTOR_SIZE_MASK;
510 }
511
usb4_switch_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)512 static int usb4_switch_nvm_read_block(void *data,
513 unsigned int dwaddress, void *buf, size_t dwords)
514 {
515 struct tb_switch *sw = data;
516 u8 status = 0;
517 u32 metadata;
518 int ret;
519
520 metadata = (dwords << USB4_NVM_READ_LENGTH_SHIFT) &
521 USB4_NVM_READ_LENGTH_MASK;
522 metadata |= (dwaddress << USB4_NVM_READ_OFFSET_SHIFT) &
523 USB4_NVM_READ_OFFSET_MASK;
524
525 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_READ, &metadata,
526 &status, NULL, 0, buf, dwords);
527 if (ret)
528 return ret;
529
530 return status ? -EIO : 0;
531 }
532
533 /**
534 * usb4_switch_nvm_read() - Read arbitrary bytes from router NVM
535 * @sw: USB4 router
536 * @address: Starting address in bytes
537 * @buf: Read data is placed here
538 * @size: How many bytes to read
539 *
540 * Reads NVM contents of the router. If NVM is not supported returns
541 * %-EOPNOTSUPP.
542 */
usb4_switch_nvm_read(struct tb_switch * sw,unsigned int address,void * buf,size_t size)543 int usb4_switch_nvm_read(struct tb_switch *sw, unsigned int address, void *buf,
544 size_t size)
545 {
546 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
547 usb4_switch_nvm_read_block, sw);
548 }
549
550 /**
551 * usb4_switch_nvm_set_offset() - Set NVM write offset
552 * @sw: USB4 router
553 * @address: Start offset
554 *
555 * Explicitly sets NVM write offset. Normally when writing to NVM this
556 * is done automatically by usb4_switch_nvm_write().
557 *
558 * Returns %0 in success and negative errno if there was a failure.
559 */
usb4_switch_nvm_set_offset(struct tb_switch * sw,unsigned int address)560 int usb4_switch_nvm_set_offset(struct tb_switch *sw, unsigned int address)
561 {
562 u32 metadata, dwaddress;
563 u8 status = 0;
564 int ret;
565
566 dwaddress = address / 4;
567 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
568 USB4_NVM_SET_OFFSET_MASK;
569
570 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_SET_OFFSET, &metadata,
571 &status);
572 if (ret)
573 return ret;
574
575 return status ? -EIO : 0;
576 }
577
usb4_switch_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)578 static int usb4_switch_nvm_write_next_block(void *data, unsigned int dwaddress,
579 const void *buf, size_t dwords)
580 {
581 struct tb_switch *sw = data;
582 u8 status;
583 int ret;
584
585 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_NVM_WRITE, NULL, &status,
586 buf, dwords, NULL, 0);
587 if (ret)
588 return ret;
589
590 return status ? -EIO : 0;
591 }
592
593 /**
594 * usb4_switch_nvm_write() - Write to the router NVM
595 * @sw: USB4 router
596 * @address: Start address where to write in bytes
597 * @buf: Pointer to the data to write
598 * @size: Size of @buf in bytes
599 *
600 * Writes @buf to the router NVM using USB4 router operations. If NVM
601 * write is not supported returns %-EOPNOTSUPP.
602 */
usb4_switch_nvm_write(struct tb_switch * sw,unsigned int address,const void * buf,size_t size)603 int usb4_switch_nvm_write(struct tb_switch *sw, unsigned int address,
604 const void *buf, size_t size)
605 {
606 int ret;
607
608 ret = usb4_switch_nvm_set_offset(sw, address);
609 if (ret)
610 return ret;
611
612 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
613 usb4_switch_nvm_write_next_block, sw);
614 }
615
616 /**
617 * usb4_switch_nvm_authenticate() - Authenticate new NVM
618 * @sw: USB4 router
619 *
620 * After the new NVM has been written via usb4_switch_nvm_write(), this
621 * function triggers NVM authentication process. The router gets power
622 * cycled and if the authentication is successful the new NVM starts
623 * running. In case of failure returns negative errno.
624 *
625 * The caller should call usb4_switch_nvm_authenticate_status() to read
626 * the status of the authentication after power cycle. It should be the
627 * first router operation to avoid the status being lost.
628 */
usb4_switch_nvm_authenticate(struct tb_switch * sw)629 int usb4_switch_nvm_authenticate(struct tb_switch *sw)
630 {
631 int ret;
632
633 ret = usb4_switch_op(sw, USB4_SWITCH_OP_NVM_AUTH, NULL, NULL);
634 switch (ret) {
635 /*
636 * The router is power cycled once NVM_AUTH is started so it is
637 * expected to get any of the following errors back.
638 */
639 case -EACCES:
640 case -ENOTCONN:
641 case -ETIMEDOUT:
642 return 0;
643
644 default:
645 return ret;
646 }
647 }
648
649 /**
650 * usb4_switch_nvm_authenticate_status() - Read status of last NVM authenticate
651 * @sw: USB4 router
652 * @status: Status code of the operation
653 *
654 * The function checks if there is status available from the last NVM
655 * authenticate router operation. If there is status then %0 is returned
656 * and the status code is placed in @status. Returns negative errno in case
657 * of failure.
658 *
659 * Must be called before any other router operation.
660 */
usb4_switch_nvm_authenticate_status(struct tb_switch * sw,u32 * status)661 int usb4_switch_nvm_authenticate_status(struct tb_switch *sw, u32 *status)
662 {
663 const struct tb_cm_ops *cm_ops = sw->tb->cm_ops;
664 u16 opcode;
665 u32 val;
666 int ret;
667
668 if (cm_ops->usb4_switch_nvm_authenticate_status) {
669 ret = cm_ops->usb4_switch_nvm_authenticate_status(sw, status);
670 if (ret != -EOPNOTSUPP)
671 return ret;
672 }
673
674 ret = tb_sw_read(sw, &val, TB_CFG_SWITCH, ROUTER_CS_26, 1);
675 if (ret)
676 return ret;
677
678 /* Check that the opcode is correct */
679 opcode = val & ROUTER_CS_26_OPCODE_MASK;
680 if (opcode == USB4_SWITCH_OP_NVM_AUTH) {
681 if (val & ROUTER_CS_26_OV)
682 return -EBUSY;
683 if (val & ROUTER_CS_26_ONS)
684 return -EOPNOTSUPP;
685
686 *status = (val & ROUTER_CS_26_STATUS_MASK) >>
687 ROUTER_CS_26_STATUS_SHIFT;
688 } else {
689 *status = 0;
690 }
691
692 return 0;
693 }
694
695 /**
696 * usb4_switch_credits_init() - Read buffer allocation parameters
697 * @sw: USB4 router
698 *
699 * Reads @sw buffer allocation parameters and initializes @sw buffer
700 * allocation fields accordingly. Specifically @sw->credits_allocation
701 * is set to %true if these parameters can be used in tunneling.
702 *
703 * Returns %0 on success and negative errno otherwise.
704 */
usb4_switch_credits_init(struct tb_switch * sw)705 int usb4_switch_credits_init(struct tb_switch *sw)
706 {
707 int max_usb3, min_dp_aux, min_dp_main, max_pcie, max_dma;
708 int ret, length, i, nports;
709 const struct tb_port *port;
710 u32 data[NVM_DATA_DWORDS];
711 u32 metadata = 0;
712 u8 status = 0;
713
714 memset(data, 0, sizeof(data));
715 ret = usb4_switch_op_data(sw, USB4_SWITCH_OP_BUFFER_ALLOC, &metadata,
716 &status, NULL, 0, data, ARRAY_SIZE(data));
717 if (ret)
718 return ret;
719 if (status)
720 return -EIO;
721
722 length = metadata & USB4_BA_LENGTH_MASK;
723 if (WARN_ON(length > ARRAY_SIZE(data)))
724 return -EMSGSIZE;
725
726 max_usb3 = -1;
727 min_dp_aux = -1;
728 min_dp_main = -1;
729 max_pcie = -1;
730 max_dma = -1;
731
732 tb_sw_dbg(sw, "credit allocation parameters:\n");
733
734 for (i = 0; i < length; i++) {
735 u16 index, value;
736
737 index = data[i] & USB4_BA_INDEX_MASK;
738 value = (data[i] & USB4_BA_VALUE_MASK) >> USB4_BA_VALUE_SHIFT;
739
740 switch (index) {
741 case USB4_BA_MAX_USB3:
742 tb_sw_dbg(sw, " USB3: %u\n", value);
743 max_usb3 = value;
744 break;
745 case USB4_BA_MIN_DP_AUX:
746 tb_sw_dbg(sw, " DP AUX: %u\n", value);
747 min_dp_aux = value;
748 break;
749 case USB4_BA_MIN_DP_MAIN:
750 tb_sw_dbg(sw, " DP main: %u\n", value);
751 min_dp_main = value;
752 break;
753 case USB4_BA_MAX_PCIE:
754 tb_sw_dbg(sw, " PCIe: %u\n", value);
755 max_pcie = value;
756 break;
757 case USB4_BA_MAX_HI:
758 tb_sw_dbg(sw, " DMA: %u\n", value);
759 max_dma = value;
760 break;
761 default:
762 tb_sw_dbg(sw, " unknown credit allocation index %#x, skipping\n",
763 index);
764 break;
765 }
766 }
767
768 /*
769 * Validate the buffer allocation preferences. If we find
770 * issues, log a warning and fall back using the hard-coded
771 * values.
772 */
773
774 /* Host router must report baMaxHI */
775 if (!tb_route(sw) && max_dma < 0) {
776 tb_sw_warn(sw, "host router is missing baMaxHI\n");
777 goto err_invalid;
778 }
779
780 nports = 0;
781 tb_switch_for_each_port(sw, port) {
782 if (tb_port_is_null(port))
783 nports++;
784 }
785
786 /* Must have DP buffer allocation (multiple USB4 ports) */
787 if (nports > 2 && (min_dp_aux < 0 || min_dp_main < 0)) {
788 tb_sw_warn(sw, "multiple USB4 ports require baMinDPaux/baMinDPmain\n");
789 goto err_invalid;
790 }
791
792 tb_switch_for_each_port(sw, port) {
793 if (tb_port_is_dpout(port) && min_dp_main < 0) {
794 tb_sw_warn(sw, "missing baMinDPmain");
795 goto err_invalid;
796 }
797 if ((tb_port_is_dpin(port) || tb_port_is_dpout(port)) &&
798 min_dp_aux < 0) {
799 tb_sw_warn(sw, "missing baMinDPaux");
800 goto err_invalid;
801 }
802 if ((tb_port_is_usb3_down(port) || tb_port_is_usb3_up(port)) &&
803 max_usb3 < 0) {
804 tb_sw_warn(sw, "missing baMaxUSB3");
805 goto err_invalid;
806 }
807 if ((tb_port_is_pcie_down(port) || tb_port_is_pcie_up(port)) &&
808 max_pcie < 0) {
809 tb_sw_warn(sw, "missing baMaxPCIe");
810 goto err_invalid;
811 }
812 }
813
814 /*
815 * Buffer allocation passed the validation so we can use it in
816 * path creation.
817 */
818 sw->credit_allocation = true;
819 if (max_usb3 > 0)
820 sw->max_usb3_credits = max_usb3;
821 if (min_dp_aux > 0)
822 sw->min_dp_aux_credits = min_dp_aux;
823 if (min_dp_main > 0)
824 sw->min_dp_main_credits = min_dp_main;
825 if (max_pcie > 0)
826 sw->max_pcie_credits = max_pcie;
827 if (max_dma > 0)
828 sw->max_dma_credits = max_dma;
829
830 return 0;
831
832 err_invalid:
833 return -EINVAL;
834 }
835
836 /**
837 * usb4_switch_query_dp_resource() - Query availability of DP IN resource
838 * @sw: USB4 router
839 * @in: DP IN adapter
840 *
841 * For DP tunneling this function can be used to query availability of
842 * DP IN resource. Returns true if the resource is available for DP
843 * tunneling, false otherwise.
844 */
usb4_switch_query_dp_resource(struct tb_switch * sw,struct tb_port * in)845 bool usb4_switch_query_dp_resource(struct tb_switch *sw, struct tb_port *in)
846 {
847 u32 metadata = in->port;
848 u8 status;
849 int ret;
850
851 ret = usb4_switch_op(sw, USB4_SWITCH_OP_QUERY_DP_RESOURCE, &metadata,
852 &status);
853 /*
854 * If DP resource allocation is not supported assume it is
855 * always available.
856 */
857 if (ret == -EOPNOTSUPP)
858 return true;
859 else if (ret)
860 return false;
861
862 return !status;
863 }
864
865 /**
866 * usb4_switch_alloc_dp_resource() - Allocate DP IN resource
867 * @sw: USB4 router
868 * @in: DP IN adapter
869 *
870 * Allocates DP IN resource for DP tunneling using USB4 router
871 * operations. If the resource was allocated returns %0. Otherwise
872 * returns negative errno, in particular %-EBUSY if the resource is
873 * already allocated.
874 */
usb4_switch_alloc_dp_resource(struct tb_switch * sw,struct tb_port * in)875 int usb4_switch_alloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
876 {
877 u32 metadata = in->port;
878 u8 status;
879 int ret;
880
881 ret = usb4_switch_op(sw, USB4_SWITCH_OP_ALLOC_DP_RESOURCE, &metadata,
882 &status);
883 if (ret == -EOPNOTSUPP)
884 return 0;
885 else if (ret)
886 return ret;
887
888 return status ? -EBUSY : 0;
889 }
890
891 /**
892 * usb4_switch_dealloc_dp_resource() - Releases allocated DP IN resource
893 * @sw: USB4 router
894 * @in: DP IN adapter
895 *
896 * Releases the previously allocated DP IN resource.
897 */
usb4_switch_dealloc_dp_resource(struct tb_switch * sw,struct tb_port * in)898 int usb4_switch_dealloc_dp_resource(struct tb_switch *sw, struct tb_port *in)
899 {
900 u32 metadata = in->port;
901 u8 status;
902 int ret;
903
904 ret = usb4_switch_op(sw, USB4_SWITCH_OP_DEALLOC_DP_RESOURCE, &metadata,
905 &status);
906 if (ret == -EOPNOTSUPP)
907 return 0;
908 else if (ret)
909 return ret;
910
911 return status ? -EIO : 0;
912 }
913
usb4_port_idx(const struct tb_switch * sw,const struct tb_port * port)914 static int usb4_port_idx(const struct tb_switch *sw, const struct tb_port *port)
915 {
916 struct tb_port *p;
917 int usb4_idx = 0;
918
919 /* Assume port is primary */
920 tb_switch_for_each_port(sw, p) {
921 if (!tb_port_is_null(p))
922 continue;
923 if (tb_is_upstream_port(p))
924 continue;
925 if (!p->link_nr) {
926 if (p == port)
927 break;
928 usb4_idx++;
929 }
930 }
931
932 return usb4_idx;
933 }
934
935 /**
936 * usb4_switch_map_pcie_down() - Map USB4 port to a PCIe downstream adapter
937 * @sw: USB4 router
938 * @port: USB4 port
939 *
940 * USB4 routers have direct mapping between USB4 ports and PCIe
941 * downstream adapters where the PCIe topology is extended. This
942 * function returns the corresponding downstream PCIe adapter or %NULL
943 * if no such mapping was possible.
944 */
usb4_switch_map_pcie_down(struct tb_switch * sw,const struct tb_port * port)945 struct tb_port *usb4_switch_map_pcie_down(struct tb_switch *sw,
946 const struct tb_port *port)
947 {
948 int usb4_idx = usb4_port_idx(sw, port);
949 struct tb_port *p;
950 int pcie_idx = 0;
951
952 /* Find PCIe down port matching usb4_port */
953 tb_switch_for_each_port(sw, p) {
954 if (!tb_port_is_pcie_down(p))
955 continue;
956
957 if (pcie_idx == usb4_idx)
958 return p;
959
960 pcie_idx++;
961 }
962
963 return NULL;
964 }
965
966 /**
967 * usb4_switch_map_usb3_down() - Map USB4 port to a USB3 downstream adapter
968 * @sw: USB4 router
969 * @port: USB4 port
970 *
971 * USB4 routers have direct mapping between USB4 ports and USB 3.x
972 * downstream adapters where the USB 3.x topology is extended. This
973 * function returns the corresponding downstream USB 3.x adapter or
974 * %NULL if no such mapping was possible.
975 */
usb4_switch_map_usb3_down(struct tb_switch * sw,const struct tb_port * port)976 struct tb_port *usb4_switch_map_usb3_down(struct tb_switch *sw,
977 const struct tb_port *port)
978 {
979 int usb4_idx = usb4_port_idx(sw, port);
980 struct tb_port *p;
981 int usb_idx = 0;
982
983 /* Find USB3 down port matching usb4_port */
984 tb_switch_for_each_port(sw, p) {
985 if (!tb_port_is_usb3_down(p))
986 continue;
987
988 if (usb_idx == usb4_idx)
989 return p;
990
991 usb_idx++;
992 }
993
994 return NULL;
995 }
996
997 /**
998 * usb4_switch_add_ports() - Add USB4 ports for this router
999 * @sw: USB4 router
1000 *
1001 * For USB4 router finds all USB4 ports and registers devices for each.
1002 * Can be called to any router.
1003 *
1004 * Return %0 in case of success and negative errno in case of failure.
1005 */
usb4_switch_add_ports(struct tb_switch * sw)1006 int usb4_switch_add_ports(struct tb_switch *sw)
1007 {
1008 struct tb_port *port;
1009
1010 if (tb_switch_is_icm(sw) || !tb_switch_is_usb4(sw))
1011 return 0;
1012
1013 tb_switch_for_each_port(sw, port) {
1014 struct usb4_port *usb4;
1015
1016 if (!tb_port_is_null(port))
1017 continue;
1018 if (!port->cap_usb4)
1019 continue;
1020
1021 usb4 = usb4_port_device_add(port);
1022 if (IS_ERR(usb4)) {
1023 usb4_switch_remove_ports(sw);
1024 return PTR_ERR(usb4);
1025 }
1026
1027 port->usb4 = usb4;
1028 }
1029
1030 return 0;
1031 }
1032
1033 /**
1034 * usb4_switch_remove_ports() - Removes USB4 ports from this router
1035 * @sw: USB4 router
1036 *
1037 * Unregisters previously registered USB4 ports.
1038 */
usb4_switch_remove_ports(struct tb_switch * sw)1039 void usb4_switch_remove_ports(struct tb_switch *sw)
1040 {
1041 struct tb_port *port;
1042
1043 tb_switch_for_each_port(sw, port) {
1044 if (port->usb4) {
1045 usb4_port_device_remove(port->usb4);
1046 port->usb4 = NULL;
1047 }
1048 }
1049 }
1050
1051 /**
1052 * usb4_port_unlock() - Unlock USB4 downstream port
1053 * @port: USB4 port to unlock
1054 *
1055 * Unlocks USB4 downstream port so that the connection manager can
1056 * access the router below this port.
1057 */
usb4_port_unlock(struct tb_port * port)1058 int usb4_port_unlock(struct tb_port *port)
1059 {
1060 int ret;
1061 u32 val;
1062
1063 ret = tb_port_read(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1064 if (ret)
1065 return ret;
1066
1067 val &= ~ADP_CS_4_LCK;
1068 return tb_port_write(port, &val, TB_CFG_PORT, ADP_CS_4, 1);
1069 }
1070
usb4_port_set_configured(struct tb_port * port,bool configured)1071 static int usb4_port_set_configured(struct tb_port *port, bool configured)
1072 {
1073 int ret;
1074 u32 val;
1075
1076 if (!port->cap_usb4)
1077 return -EINVAL;
1078
1079 ret = tb_port_read(port, &val, TB_CFG_PORT,
1080 port->cap_usb4 + PORT_CS_19, 1);
1081 if (ret)
1082 return ret;
1083
1084 if (configured)
1085 val |= PORT_CS_19_PC;
1086 else
1087 val &= ~PORT_CS_19_PC;
1088
1089 return tb_port_write(port, &val, TB_CFG_PORT,
1090 port->cap_usb4 + PORT_CS_19, 1);
1091 }
1092
1093 /**
1094 * usb4_port_configure() - Set USB4 port configured
1095 * @port: USB4 router
1096 *
1097 * Sets the USB4 link to be configured for power management purposes.
1098 */
usb4_port_configure(struct tb_port * port)1099 int usb4_port_configure(struct tb_port *port)
1100 {
1101 return usb4_port_set_configured(port, true);
1102 }
1103
1104 /**
1105 * usb4_port_unconfigure() - Set USB4 port unconfigured
1106 * @port: USB4 router
1107 *
1108 * Sets the USB4 link to be unconfigured for power management purposes.
1109 */
usb4_port_unconfigure(struct tb_port * port)1110 void usb4_port_unconfigure(struct tb_port *port)
1111 {
1112 usb4_port_set_configured(port, false);
1113 }
1114
usb4_set_xdomain_configured(struct tb_port * port,bool configured)1115 static int usb4_set_xdomain_configured(struct tb_port *port, bool configured)
1116 {
1117 int ret;
1118 u32 val;
1119
1120 if (!port->cap_usb4)
1121 return -EINVAL;
1122
1123 ret = tb_port_read(port, &val, TB_CFG_PORT,
1124 port->cap_usb4 + PORT_CS_19, 1);
1125 if (ret)
1126 return ret;
1127
1128 if (configured)
1129 val |= PORT_CS_19_PID;
1130 else
1131 val &= ~PORT_CS_19_PID;
1132
1133 return tb_port_write(port, &val, TB_CFG_PORT,
1134 port->cap_usb4 + PORT_CS_19, 1);
1135 }
1136
1137 /**
1138 * usb4_port_configure_xdomain() - Configure port for XDomain
1139 * @port: USB4 port connected to another host
1140 *
1141 * Marks the USB4 port as being connected to another host. Returns %0 in
1142 * success and negative errno in failure.
1143 */
usb4_port_configure_xdomain(struct tb_port * port)1144 int usb4_port_configure_xdomain(struct tb_port *port)
1145 {
1146 return usb4_set_xdomain_configured(port, true);
1147 }
1148
1149 /**
1150 * usb4_port_unconfigure_xdomain() - Unconfigure port for XDomain
1151 * @port: USB4 port that was connected to another host
1152 *
1153 * Clears USB4 port from being marked as XDomain.
1154 */
usb4_port_unconfigure_xdomain(struct tb_port * port)1155 void usb4_port_unconfigure_xdomain(struct tb_port *port)
1156 {
1157 usb4_set_xdomain_configured(port, false);
1158 }
1159
usb4_port_wait_for_bit(struct tb_port * port,u32 offset,u32 bit,u32 value,int timeout_msec)1160 static int usb4_port_wait_for_bit(struct tb_port *port, u32 offset, u32 bit,
1161 u32 value, int timeout_msec)
1162 {
1163 ktime_t timeout = ktime_add_ms(ktime_get(), timeout_msec);
1164
1165 do {
1166 u32 val;
1167 int ret;
1168
1169 ret = tb_port_read(port, &val, TB_CFG_PORT, offset, 1);
1170 if (ret)
1171 return ret;
1172
1173 if ((val & bit) == value)
1174 return 0;
1175
1176 usleep_range(50, 100);
1177 } while (ktime_before(ktime_get(), timeout));
1178
1179 return -ETIMEDOUT;
1180 }
1181
usb4_port_read_data(struct tb_port * port,void * data,size_t dwords)1182 static int usb4_port_read_data(struct tb_port *port, void *data, size_t dwords)
1183 {
1184 if (dwords > NVM_DATA_DWORDS)
1185 return -EINVAL;
1186
1187 return tb_port_read(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1188 dwords);
1189 }
1190
usb4_port_write_data(struct tb_port * port,const void * data,size_t dwords)1191 static int usb4_port_write_data(struct tb_port *port, const void *data,
1192 size_t dwords)
1193 {
1194 if (dwords > NVM_DATA_DWORDS)
1195 return -EINVAL;
1196
1197 return tb_port_write(port, data, TB_CFG_PORT, port->cap_usb4 + PORT_CS_2,
1198 dwords);
1199 }
1200
usb4_port_sb_read(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,void * buf,u8 size)1201 static int usb4_port_sb_read(struct tb_port *port, enum usb4_sb_target target,
1202 u8 index, u8 reg, void *buf, u8 size)
1203 {
1204 size_t dwords = DIV_ROUND_UP(size, 4);
1205 int ret;
1206 u32 val;
1207
1208 if (!port->cap_usb4)
1209 return -EINVAL;
1210
1211 val = reg;
1212 val |= size << PORT_CS_1_LENGTH_SHIFT;
1213 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1214 if (target == USB4_SB_TARGET_RETIMER)
1215 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1216 val |= PORT_CS_1_PND;
1217
1218 ret = tb_port_write(port, &val, TB_CFG_PORT,
1219 port->cap_usb4 + PORT_CS_1, 1);
1220 if (ret)
1221 return ret;
1222
1223 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1224 PORT_CS_1_PND, 0, 500);
1225 if (ret)
1226 return ret;
1227
1228 ret = tb_port_read(port, &val, TB_CFG_PORT,
1229 port->cap_usb4 + PORT_CS_1, 1);
1230 if (ret)
1231 return ret;
1232
1233 if (val & PORT_CS_1_NR)
1234 return -ENODEV;
1235 if (val & PORT_CS_1_RC)
1236 return -EIO;
1237
1238 return buf ? usb4_port_read_data(port, buf, dwords) : 0;
1239 }
1240
usb4_port_sb_write(struct tb_port * port,enum usb4_sb_target target,u8 index,u8 reg,const void * buf,u8 size)1241 static int usb4_port_sb_write(struct tb_port *port, enum usb4_sb_target target,
1242 u8 index, u8 reg, const void *buf, u8 size)
1243 {
1244 size_t dwords = DIV_ROUND_UP(size, 4);
1245 int ret;
1246 u32 val;
1247
1248 if (!port->cap_usb4)
1249 return -EINVAL;
1250
1251 if (buf) {
1252 ret = usb4_port_write_data(port, buf, dwords);
1253 if (ret)
1254 return ret;
1255 }
1256
1257 val = reg;
1258 val |= size << PORT_CS_1_LENGTH_SHIFT;
1259 val |= PORT_CS_1_WNR_WRITE;
1260 val |= (target << PORT_CS_1_TARGET_SHIFT) & PORT_CS_1_TARGET_MASK;
1261 if (target == USB4_SB_TARGET_RETIMER)
1262 val |= (index << PORT_CS_1_RETIMER_INDEX_SHIFT);
1263 val |= PORT_CS_1_PND;
1264
1265 ret = tb_port_write(port, &val, TB_CFG_PORT,
1266 port->cap_usb4 + PORT_CS_1, 1);
1267 if (ret)
1268 return ret;
1269
1270 ret = usb4_port_wait_for_bit(port, port->cap_usb4 + PORT_CS_1,
1271 PORT_CS_1_PND, 0, 500);
1272 if (ret)
1273 return ret;
1274
1275 ret = tb_port_read(port, &val, TB_CFG_PORT,
1276 port->cap_usb4 + PORT_CS_1, 1);
1277 if (ret)
1278 return ret;
1279
1280 if (val & PORT_CS_1_NR)
1281 return -ENODEV;
1282 if (val & PORT_CS_1_RC)
1283 return -EIO;
1284
1285 return 0;
1286 }
1287
usb4_port_sb_op(struct tb_port * port,enum usb4_sb_target target,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1288 static int usb4_port_sb_op(struct tb_port *port, enum usb4_sb_target target,
1289 u8 index, enum usb4_sb_opcode opcode, int timeout_msec)
1290 {
1291 ktime_t timeout;
1292 u32 val;
1293 int ret;
1294
1295 val = opcode;
1296 ret = usb4_port_sb_write(port, target, index, USB4_SB_OPCODE, &val,
1297 sizeof(val));
1298 if (ret)
1299 return ret;
1300
1301 timeout = ktime_add_ms(ktime_get(), timeout_msec);
1302
1303 do {
1304 /* Check results */
1305 ret = usb4_port_sb_read(port, target, index, USB4_SB_OPCODE,
1306 &val, sizeof(val));
1307 if (ret)
1308 return ret;
1309
1310 switch (val) {
1311 case 0:
1312 return 0;
1313
1314 case USB4_SB_OPCODE_ERR:
1315 return -EAGAIN;
1316
1317 case USB4_SB_OPCODE_ONS:
1318 return -EOPNOTSUPP;
1319
1320 default:
1321 if (val != opcode)
1322 return -EIO;
1323 break;
1324 }
1325 } while (ktime_before(ktime_get(), timeout));
1326
1327 return -ETIMEDOUT;
1328 }
1329
usb4_port_set_router_offline(struct tb_port * port,bool offline)1330 static int usb4_port_set_router_offline(struct tb_port *port, bool offline)
1331 {
1332 u32 val = !offline;
1333 int ret;
1334
1335 ret = usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1336 USB4_SB_METADATA, &val, sizeof(val));
1337 if (ret)
1338 return ret;
1339
1340 val = USB4_SB_OPCODE_ROUTER_OFFLINE;
1341 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1342 USB4_SB_OPCODE, &val, sizeof(val));
1343 }
1344
1345 /**
1346 * usb4_port_router_offline() - Put the USB4 port to offline mode
1347 * @port: USB4 port
1348 *
1349 * This function puts the USB4 port into offline mode. In this mode the
1350 * port does not react on hotplug events anymore. This needs to be
1351 * called before retimer access is done when the USB4 links is not up.
1352 *
1353 * Returns %0 in case of success and negative errno if there was an
1354 * error.
1355 */
usb4_port_router_offline(struct tb_port * port)1356 int usb4_port_router_offline(struct tb_port *port)
1357 {
1358 return usb4_port_set_router_offline(port, true);
1359 }
1360
1361 /**
1362 * usb4_port_router_online() - Put the USB4 port back to online
1363 * @port: USB4 port
1364 *
1365 * Makes the USB4 port functional again.
1366 */
usb4_port_router_online(struct tb_port * port)1367 int usb4_port_router_online(struct tb_port *port)
1368 {
1369 return usb4_port_set_router_offline(port, false);
1370 }
1371
1372 /**
1373 * usb4_port_enumerate_retimers() - Send RT broadcast transaction
1374 * @port: USB4 port
1375 *
1376 * This forces the USB4 port to send broadcast RT transaction which
1377 * makes the retimers on the link to assign index to themselves. Returns
1378 * %0 in case of success and negative errno if there was an error.
1379 */
usb4_port_enumerate_retimers(struct tb_port * port)1380 int usb4_port_enumerate_retimers(struct tb_port *port)
1381 {
1382 u32 val;
1383
1384 val = USB4_SB_OPCODE_ENUMERATE_RETIMERS;
1385 return usb4_port_sb_write(port, USB4_SB_TARGET_ROUTER, 0,
1386 USB4_SB_OPCODE, &val, sizeof(val));
1387 }
1388
usb4_port_retimer_op(struct tb_port * port,u8 index,enum usb4_sb_opcode opcode,int timeout_msec)1389 static inline int usb4_port_retimer_op(struct tb_port *port, u8 index,
1390 enum usb4_sb_opcode opcode,
1391 int timeout_msec)
1392 {
1393 return usb4_port_sb_op(port, USB4_SB_TARGET_RETIMER, index, opcode,
1394 timeout_msec);
1395 }
1396
1397 /**
1398 * usb4_port_retimer_set_inbound_sbtx() - Enable sideband channel transactions
1399 * @port: USB4 port
1400 * @index: Retimer index
1401 *
1402 * Enables sideband channel transations on SBTX. Can be used when USB4
1403 * link does not go up, for example if there is no device connected.
1404 */
usb4_port_retimer_set_inbound_sbtx(struct tb_port * port,u8 index)1405 int usb4_port_retimer_set_inbound_sbtx(struct tb_port *port, u8 index)
1406 {
1407 int ret;
1408
1409 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1410 500);
1411
1412 if (ret != -ENODEV)
1413 return ret;
1414
1415 /*
1416 * Per the USB4 retimer spec, the retimer is not required to
1417 * send an RT (Retimer Transaction) response for the first
1418 * SET_INBOUND_SBTX command
1419 */
1420 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_SET_INBOUND_SBTX,
1421 500);
1422 }
1423
1424 /**
1425 * usb4_port_retimer_read() - Read from retimer sideband registers
1426 * @port: USB4 port
1427 * @index: Retimer index
1428 * @reg: Sideband register to read
1429 * @buf: Data from @reg is stored here
1430 * @size: Number of bytes to read
1431 *
1432 * Function reads retimer sideband registers starting from @reg. The
1433 * retimer is connected to @port at @index. Returns %0 in case of
1434 * success, and read data is copied to @buf. If there is no retimer
1435 * present at given @index returns %-ENODEV. In any other failure
1436 * returns negative errno.
1437 */
usb4_port_retimer_read(struct tb_port * port,u8 index,u8 reg,void * buf,u8 size)1438 int usb4_port_retimer_read(struct tb_port *port, u8 index, u8 reg, void *buf,
1439 u8 size)
1440 {
1441 return usb4_port_sb_read(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1442 size);
1443 }
1444
1445 /**
1446 * usb4_port_retimer_write() - Write to retimer sideband registers
1447 * @port: USB4 port
1448 * @index: Retimer index
1449 * @reg: Sideband register to write
1450 * @buf: Data that is written starting from @reg
1451 * @size: Number of bytes to write
1452 *
1453 * Writes retimer sideband registers starting from @reg. The retimer is
1454 * connected to @port at @index. Returns %0 in case of success. If there
1455 * is no retimer present at given @index returns %-ENODEV. In any other
1456 * failure returns negative errno.
1457 */
usb4_port_retimer_write(struct tb_port * port,u8 index,u8 reg,const void * buf,u8 size)1458 int usb4_port_retimer_write(struct tb_port *port, u8 index, u8 reg,
1459 const void *buf, u8 size)
1460 {
1461 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index, reg, buf,
1462 size);
1463 }
1464
1465 /**
1466 * usb4_port_retimer_is_last() - Is the retimer last on-board retimer
1467 * @port: USB4 port
1468 * @index: Retimer index
1469 *
1470 * If the retimer at @index is last one (connected directly to the
1471 * Type-C port) this function returns %1. If it is not returns %0. If
1472 * the retimer is not present returns %-ENODEV. Otherwise returns
1473 * negative errno.
1474 */
usb4_port_retimer_is_last(struct tb_port * port,u8 index)1475 int usb4_port_retimer_is_last(struct tb_port *port, u8 index)
1476 {
1477 u32 metadata;
1478 int ret;
1479
1480 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_QUERY_LAST_RETIMER,
1481 500);
1482 if (ret)
1483 return ret;
1484
1485 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1486 sizeof(metadata));
1487 return ret ? ret : metadata & 1;
1488 }
1489
1490 /**
1491 * usb4_port_retimer_nvm_sector_size() - Read retimer NVM sector size
1492 * @port: USB4 port
1493 * @index: Retimer index
1494 *
1495 * Reads NVM sector size (in bytes) of a retimer at @index. This
1496 * operation can be used to determine whether the retimer supports NVM
1497 * upgrade for example. Returns sector size in bytes or negative errno
1498 * in case of error. Specifically returns %-ENODEV if there is no
1499 * retimer at @index.
1500 */
usb4_port_retimer_nvm_sector_size(struct tb_port * port,u8 index)1501 int usb4_port_retimer_nvm_sector_size(struct tb_port *port, u8 index)
1502 {
1503 u32 metadata;
1504 int ret;
1505
1506 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_GET_NVM_SECTOR_SIZE,
1507 500);
1508 if (ret)
1509 return ret;
1510
1511 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA, &metadata,
1512 sizeof(metadata));
1513 return ret ? ret : metadata & USB4_NVM_SECTOR_SIZE_MASK;
1514 }
1515
1516 /**
1517 * usb4_port_retimer_nvm_set_offset() - Set NVM write offset
1518 * @port: USB4 port
1519 * @index: Retimer index
1520 * @address: Start offset
1521 *
1522 * Exlicitly sets NVM write offset. Normally when writing to NVM this is
1523 * done automatically by usb4_port_retimer_nvm_write().
1524 *
1525 * Returns %0 in success and negative errno if there was a failure.
1526 */
usb4_port_retimer_nvm_set_offset(struct tb_port * port,u8 index,unsigned int address)1527 int usb4_port_retimer_nvm_set_offset(struct tb_port *port, u8 index,
1528 unsigned int address)
1529 {
1530 u32 metadata, dwaddress;
1531 int ret;
1532
1533 dwaddress = address / 4;
1534 metadata = (dwaddress << USB4_NVM_SET_OFFSET_SHIFT) &
1535 USB4_NVM_SET_OFFSET_MASK;
1536
1537 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1538 sizeof(metadata));
1539 if (ret)
1540 return ret;
1541
1542 return usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_SET_OFFSET,
1543 500);
1544 }
1545
1546 struct retimer_info {
1547 struct tb_port *port;
1548 u8 index;
1549 };
1550
usb4_port_retimer_nvm_write_next_block(void * data,unsigned int dwaddress,const void * buf,size_t dwords)1551 static int usb4_port_retimer_nvm_write_next_block(void *data,
1552 unsigned int dwaddress, const void *buf, size_t dwords)
1553
1554 {
1555 const struct retimer_info *info = data;
1556 struct tb_port *port = info->port;
1557 u8 index = info->index;
1558 int ret;
1559
1560 ret = usb4_port_retimer_write(port, index, USB4_SB_DATA,
1561 buf, dwords * 4);
1562 if (ret)
1563 return ret;
1564
1565 return usb4_port_retimer_op(port, index,
1566 USB4_SB_OPCODE_NVM_BLOCK_WRITE, 1000);
1567 }
1568
1569 /**
1570 * usb4_port_retimer_nvm_write() - Write to retimer NVM
1571 * @port: USB4 port
1572 * @index: Retimer index
1573 * @address: Byte address where to start the write
1574 * @buf: Data to write
1575 * @size: Size in bytes how much to write
1576 *
1577 * Writes @size bytes from @buf to the retimer NVM. Used for NVM
1578 * upgrade. Returns %0 if the data was written successfully and negative
1579 * errno in case of failure. Specifically returns %-ENODEV if there is
1580 * no retimer at @index.
1581 */
usb4_port_retimer_nvm_write(struct tb_port * port,u8 index,unsigned int address,const void * buf,size_t size)1582 int usb4_port_retimer_nvm_write(struct tb_port *port, u8 index, unsigned int address,
1583 const void *buf, size_t size)
1584 {
1585 struct retimer_info info = { .port = port, .index = index };
1586 int ret;
1587
1588 ret = usb4_port_retimer_nvm_set_offset(port, index, address);
1589 if (ret)
1590 return ret;
1591
1592 return tb_nvm_write_data(address, buf, size, USB4_DATA_RETRIES,
1593 usb4_port_retimer_nvm_write_next_block, &info);
1594 }
1595
1596 /**
1597 * usb4_port_retimer_nvm_authenticate() - Start retimer NVM upgrade
1598 * @port: USB4 port
1599 * @index: Retimer index
1600 *
1601 * After the new NVM image has been written via usb4_port_retimer_nvm_write()
1602 * this function can be used to trigger the NVM upgrade process. If
1603 * successful the retimer restarts with the new NVM and may not have the
1604 * index set so one needs to call usb4_port_enumerate_retimers() to
1605 * force index to be assigned.
1606 */
usb4_port_retimer_nvm_authenticate(struct tb_port * port,u8 index)1607 int usb4_port_retimer_nvm_authenticate(struct tb_port *port, u8 index)
1608 {
1609 u32 val;
1610
1611 /*
1612 * We need to use the raw operation here because once the
1613 * authentication completes the retimer index is not set anymore
1614 * so we do not get back the status now.
1615 */
1616 val = USB4_SB_OPCODE_NVM_AUTH_WRITE;
1617 return usb4_port_sb_write(port, USB4_SB_TARGET_RETIMER, index,
1618 USB4_SB_OPCODE, &val, sizeof(val));
1619 }
1620
1621 /**
1622 * usb4_port_retimer_nvm_authenticate_status() - Read status of NVM upgrade
1623 * @port: USB4 port
1624 * @index: Retimer index
1625 * @status: Raw status code read from metadata
1626 *
1627 * This can be called after usb4_port_retimer_nvm_authenticate() and
1628 * usb4_port_enumerate_retimers() to fetch status of the NVM upgrade.
1629 *
1630 * Returns %0 if the authentication status was successfully read. The
1631 * completion metadata (the result) is then stored into @status. If
1632 * reading the status fails, returns negative errno.
1633 */
usb4_port_retimer_nvm_authenticate_status(struct tb_port * port,u8 index,u32 * status)1634 int usb4_port_retimer_nvm_authenticate_status(struct tb_port *port, u8 index,
1635 u32 *status)
1636 {
1637 u32 metadata, val;
1638 int ret;
1639
1640 ret = usb4_port_retimer_read(port, index, USB4_SB_OPCODE, &val,
1641 sizeof(val));
1642 if (ret)
1643 return ret;
1644
1645 switch (val) {
1646 case 0:
1647 *status = 0;
1648 return 0;
1649
1650 case USB4_SB_OPCODE_ERR:
1651 ret = usb4_port_retimer_read(port, index, USB4_SB_METADATA,
1652 &metadata, sizeof(metadata));
1653 if (ret)
1654 return ret;
1655
1656 *status = metadata & USB4_SB_METADATA_NVM_AUTH_WRITE_MASK;
1657 return 0;
1658
1659 case USB4_SB_OPCODE_ONS:
1660 return -EOPNOTSUPP;
1661
1662 default:
1663 return -EIO;
1664 }
1665 }
1666
usb4_port_retimer_nvm_read_block(void * data,unsigned int dwaddress,void * buf,size_t dwords)1667 static int usb4_port_retimer_nvm_read_block(void *data, unsigned int dwaddress,
1668 void *buf, size_t dwords)
1669 {
1670 const struct retimer_info *info = data;
1671 struct tb_port *port = info->port;
1672 u8 index = info->index;
1673 u32 metadata;
1674 int ret;
1675
1676 metadata = dwaddress << USB4_NVM_READ_OFFSET_SHIFT;
1677 if (dwords < NVM_DATA_DWORDS)
1678 metadata |= dwords << USB4_NVM_READ_LENGTH_SHIFT;
1679
1680 ret = usb4_port_retimer_write(port, index, USB4_SB_METADATA, &metadata,
1681 sizeof(metadata));
1682 if (ret)
1683 return ret;
1684
1685 ret = usb4_port_retimer_op(port, index, USB4_SB_OPCODE_NVM_READ, 500);
1686 if (ret)
1687 return ret;
1688
1689 return usb4_port_retimer_read(port, index, USB4_SB_DATA, buf,
1690 dwords * 4);
1691 }
1692
1693 /**
1694 * usb4_port_retimer_nvm_read() - Read contents of retimer NVM
1695 * @port: USB4 port
1696 * @index: Retimer index
1697 * @address: NVM address (in bytes) to start reading
1698 * @buf: Data read from NVM is stored here
1699 * @size: Number of bytes to read
1700 *
1701 * Reads retimer NVM and copies the contents to @buf. Returns %0 if the
1702 * read was successful and negative errno in case of failure.
1703 * Specifically returns %-ENODEV if there is no retimer at @index.
1704 */
usb4_port_retimer_nvm_read(struct tb_port * port,u8 index,unsigned int address,void * buf,size_t size)1705 int usb4_port_retimer_nvm_read(struct tb_port *port, u8 index,
1706 unsigned int address, void *buf, size_t size)
1707 {
1708 struct retimer_info info = { .port = port, .index = index };
1709
1710 return tb_nvm_read_data(address, buf, size, USB4_DATA_RETRIES,
1711 usb4_port_retimer_nvm_read_block, &info);
1712 }
1713
1714 /**
1715 * usb4_usb3_port_max_link_rate() - Maximum support USB3 link rate
1716 * @port: USB3 adapter port
1717 *
1718 * Return maximum supported link rate of a USB3 adapter in Mb/s.
1719 * Negative errno in case of error.
1720 */
usb4_usb3_port_max_link_rate(struct tb_port * port)1721 int usb4_usb3_port_max_link_rate(struct tb_port *port)
1722 {
1723 int ret, lr;
1724 u32 val;
1725
1726 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1727 return -EINVAL;
1728
1729 ret = tb_port_read(port, &val, TB_CFG_PORT,
1730 port->cap_adap + ADP_USB3_CS_4, 1);
1731 if (ret)
1732 return ret;
1733
1734 lr = (val & ADP_USB3_CS_4_MSLR_MASK) >> ADP_USB3_CS_4_MSLR_SHIFT;
1735 return lr == ADP_USB3_CS_4_MSLR_20G ? 20000 : 10000;
1736 }
1737
1738 /**
1739 * usb4_usb3_port_actual_link_rate() - Established USB3 link rate
1740 * @port: USB3 adapter port
1741 *
1742 * Return actual established link rate of a USB3 adapter in Mb/s. If the
1743 * link is not up returns %0 and negative errno in case of failure.
1744 */
usb4_usb3_port_actual_link_rate(struct tb_port * port)1745 int usb4_usb3_port_actual_link_rate(struct tb_port *port)
1746 {
1747 int ret, lr;
1748 u32 val;
1749
1750 if (!tb_port_is_usb3_down(port) && !tb_port_is_usb3_up(port))
1751 return -EINVAL;
1752
1753 ret = tb_port_read(port, &val, TB_CFG_PORT,
1754 port->cap_adap + ADP_USB3_CS_4, 1);
1755 if (ret)
1756 return ret;
1757
1758 if (!(val & ADP_USB3_CS_4_ULV))
1759 return 0;
1760
1761 lr = val & ADP_USB3_CS_4_ALR_MASK;
1762 return lr == ADP_USB3_CS_4_ALR_20G ? 20000 : 10000;
1763 }
1764
usb4_usb3_port_cm_request(struct tb_port * port,bool request)1765 static int usb4_usb3_port_cm_request(struct tb_port *port, bool request)
1766 {
1767 int ret;
1768 u32 val;
1769
1770 if (!tb_port_is_usb3_down(port))
1771 return -EINVAL;
1772 if (tb_route(port->sw))
1773 return -EINVAL;
1774
1775 ret = tb_port_read(port, &val, TB_CFG_PORT,
1776 port->cap_adap + ADP_USB3_CS_2, 1);
1777 if (ret)
1778 return ret;
1779
1780 if (request)
1781 val |= ADP_USB3_CS_2_CMR;
1782 else
1783 val &= ~ADP_USB3_CS_2_CMR;
1784
1785 ret = tb_port_write(port, &val, TB_CFG_PORT,
1786 port->cap_adap + ADP_USB3_CS_2, 1);
1787 if (ret)
1788 return ret;
1789
1790 /*
1791 * We can use val here directly as the CMR bit is in the same place
1792 * as HCA. Just mask out others.
1793 */
1794 val &= ADP_USB3_CS_2_CMR;
1795 return usb4_port_wait_for_bit(port, port->cap_adap + ADP_USB3_CS_1,
1796 ADP_USB3_CS_1_HCA, val, 1500);
1797 }
1798
usb4_usb3_port_set_cm_request(struct tb_port * port)1799 static inline int usb4_usb3_port_set_cm_request(struct tb_port *port)
1800 {
1801 return usb4_usb3_port_cm_request(port, true);
1802 }
1803
usb4_usb3_port_clear_cm_request(struct tb_port * port)1804 static inline int usb4_usb3_port_clear_cm_request(struct tb_port *port)
1805 {
1806 return usb4_usb3_port_cm_request(port, false);
1807 }
1808
usb3_bw_to_mbps(u32 bw,u8 scale)1809 static unsigned int usb3_bw_to_mbps(u32 bw, u8 scale)
1810 {
1811 unsigned long uframes;
1812
1813 uframes = bw * 512UL << scale;
1814 return DIV_ROUND_CLOSEST(uframes * 8000, 1000 * 1000);
1815 }
1816
mbps_to_usb3_bw(unsigned int mbps,u8 scale)1817 static u32 mbps_to_usb3_bw(unsigned int mbps, u8 scale)
1818 {
1819 unsigned long uframes;
1820
1821 /* 1 uframe is 1/8 ms (125 us) -> 1 / 8000 s */
1822 uframes = ((unsigned long)mbps * 1000 * 1000) / 8000;
1823 return DIV_ROUND_UP(uframes, 512UL << scale);
1824 }
1825
usb4_usb3_port_read_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1826 static int usb4_usb3_port_read_allocated_bandwidth(struct tb_port *port,
1827 int *upstream_bw,
1828 int *downstream_bw)
1829 {
1830 u32 val, bw, scale;
1831 int ret;
1832
1833 ret = tb_port_read(port, &val, TB_CFG_PORT,
1834 port->cap_adap + ADP_USB3_CS_2, 1);
1835 if (ret)
1836 return ret;
1837
1838 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1839 port->cap_adap + ADP_USB3_CS_3, 1);
1840 if (ret)
1841 return ret;
1842
1843 scale &= ADP_USB3_CS_3_SCALE_MASK;
1844
1845 bw = val & ADP_USB3_CS_2_AUBW_MASK;
1846 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1847
1848 bw = (val & ADP_USB3_CS_2_ADBW_MASK) >> ADP_USB3_CS_2_ADBW_SHIFT;
1849 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1850
1851 return 0;
1852 }
1853
1854 /**
1855 * usb4_usb3_port_allocated_bandwidth() - Bandwidth allocated for USB3
1856 * @port: USB3 adapter port
1857 * @upstream_bw: Allocated upstream bandwidth is stored here
1858 * @downstream_bw: Allocated downstream bandwidth is stored here
1859 *
1860 * Stores currently allocated USB3 bandwidth into @upstream_bw and
1861 * @downstream_bw in Mb/s. Returns %0 in case of success and negative
1862 * errno in failure.
1863 */
usb4_usb3_port_allocated_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1864 int usb4_usb3_port_allocated_bandwidth(struct tb_port *port, int *upstream_bw,
1865 int *downstream_bw)
1866 {
1867 int ret;
1868
1869 ret = usb4_usb3_port_set_cm_request(port);
1870 if (ret)
1871 return ret;
1872
1873 ret = usb4_usb3_port_read_allocated_bandwidth(port, upstream_bw,
1874 downstream_bw);
1875 usb4_usb3_port_clear_cm_request(port);
1876
1877 return ret;
1878 }
1879
usb4_usb3_port_read_consumed_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1880 static int usb4_usb3_port_read_consumed_bandwidth(struct tb_port *port,
1881 int *upstream_bw,
1882 int *downstream_bw)
1883 {
1884 u32 val, bw, scale;
1885 int ret;
1886
1887 ret = tb_port_read(port, &val, TB_CFG_PORT,
1888 port->cap_adap + ADP_USB3_CS_1, 1);
1889 if (ret)
1890 return ret;
1891
1892 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1893 port->cap_adap + ADP_USB3_CS_3, 1);
1894 if (ret)
1895 return ret;
1896
1897 scale &= ADP_USB3_CS_3_SCALE_MASK;
1898
1899 bw = val & ADP_USB3_CS_1_CUBW_MASK;
1900 *upstream_bw = usb3_bw_to_mbps(bw, scale);
1901
1902 bw = (val & ADP_USB3_CS_1_CDBW_MASK) >> ADP_USB3_CS_1_CDBW_SHIFT;
1903 *downstream_bw = usb3_bw_to_mbps(bw, scale);
1904
1905 return 0;
1906 }
1907
usb4_usb3_port_write_allocated_bandwidth(struct tb_port * port,int upstream_bw,int downstream_bw)1908 static int usb4_usb3_port_write_allocated_bandwidth(struct tb_port *port,
1909 int upstream_bw,
1910 int downstream_bw)
1911 {
1912 u32 val, ubw, dbw, scale;
1913 int ret;
1914
1915 /* Read the used scale, hardware default is 0 */
1916 ret = tb_port_read(port, &scale, TB_CFG_PORT,
1917 port->cap_adap + ADP_USB3_CS_3, 1);
1918 if (ret)
1919 return ret;
1920
1921 scale &= ADP_USB3_CS_3_SCALE_MASK;
1922 ubw = mbps_to_usb3_bw(upstream_bw, scale);
1923 dbw = mbps_to_usb3_bw(downstream_bw, scale);
1924
1925 ret = tb_port_read(port, &val, TB_CFG_PORT,
1926 port->cap_adap + ADP_USB3_CS_2, 1);
1927 if (ret)
1928 return ret;
1929
1930 val &= ~(ADP_USB3_CS_2_AUBW_MASK | ADP_USB3_CS_2_ADBW_MASK);
1931 val |= dbw << ADP_USB3_CS_2_ADBW_SHIFT;
1932 val |= ubw;
1933
1934 return tb_port_write(port, &val, TB_CFG_PORT,
1935 port->cap_adap + ADP_USB3_CS_2, 1);
1936 }
1937
1938 /**
1939 * usb4_usb3_port_allocate_bandwidth() - Allocate bandwidth for USB3
1940 * @port: USB3 adapter port
1941 * @upstream_bw: New upstream bandwidth
1942 * @downstream_bw: New downstream bandwidth
1943 *
1944 * This can be used to set how much bandwidth is allocated for the USB3
1945 * tunneled isochronous traffic. @upstream_bw and @downstream_bw are the
1946 * new values programmed to the USB3 adapter allocation registers. If
1947 * the values are lower than what is currently consumed the allocation
1948 * is set to what is currently consumed instead (consumed bandwidth
1949 * cannot be taken away by CM). The actual new values are returned in
1950 * @upstream_bw and @downstream_bw.
1951 *
1952 * Returns %0 in case of success and negative errno if there was a
1953 * failure.
1954 */
usb4_usb3_port_allocate_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1955 int usb4_usb3_port_allocate_bandwidth(struct tb_port *port, int *upstream_bw,
1956 int *downstream_bw)
1957 {
1958 int ret, consumed_up, consumed_down, allocate_up, allocate_down;
1959
1960 ret = usb4_usb3_port_set_cm_request(port);
1961 if (ret)
1962 return ret;
1963
1964 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
1965 &consumed_down);
1966 if (ret)
1967 goto err_request;
1968
1969 /* Don't allow it go lower than what is consumed */
1970 allocate_up = max(*upstream_bw, consumed_up);
1971 allocate_down = max(*downstream_bw, consumed_down);
1972
1973 ret = usb4_usb3_port_write_allocated_bandwidth(port, allocate_up,
1974 allocate_down);
1975 if (ret)
1976 goto err_request;
1977
1978 *upstream_bw = allocate_up;
1979 *downstream_bw = allocate_down;
1980
1981 err_request:
1982 usb4_usb3_port_clear_cm_request(port);
1983 return ret;
1984 }
1985
1986 /**
1987 * usb4_usb3_port_release_bandwidth() - Release allocated USB3 bandwidth
1988 * @port: USB3 adapter port
1989 * @upstream_bw: New allocated upstream bandwidth
1990 * @downstream_bw: New allocated downstream bandwidth
1991 *
1992 * Releases USB3 allocated bandwidth down to what is actually consumed.
1993 * The new bandwidth is returned in @upstream_bw and @downstream_bw.
1994 *
1995 * Returns 0% in success and negative errno in case of failure.
1996 */
usb4_usb3_port_release_bandwidth(struct tb_port * port,int * upstream_bw,int * downstream_bw)1997 int usb4_usb3_port_release_bandwidth(struct tb_port *port, int *upstream_bw,
1998 int *downstream_bw)
1999 {
2000 int ret, consumed_up, consumed_down;
2001
2002 ret = usb4_usb3_port_set_cm_request(port);
2003 if (ret)
2004 return ret;
2005
2006 ret = usb4_usb3_port_read_consumed_bandwidth(port, &consumed_up,
2007 &consumed_down);
2008 if (ret)
2009 goto err_request;
2010
2011 /*
2012 * Always keep 1000 Mb/s to make sure xHCI has at least some
2013 * bandwidth available for isochronous traffic.
2014 */
2015 if (consumed_up < 1000)
2016 consumed_up = 1000;
2017 if (consumed_down < 1000)
2018 consumed_down = 1000;
2019
2020 ret = usb4_usb3_port_write_allocated_bandwidth(port, consumed_up,
2021 consumed_down);
2022 if (ret)
2023 goto err_request;
2024
2025 *upstream_bw = consumed_up;
2026 *downstream_bw = consumed_down;
2027
2028 err_request:
2029 usb4_usb3_port_clear_cm_request(port);
2030 return ret;
2031 }
2032