1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SH RSPI driver
4 *
5 * Copyright (C) 2012, 2013 Renesas Solutions Corp.
6 * Copyright (C) 2014 Glider bvba
7 *
8 * Based on spi-sh.c:
9 * Copyright (C) 2011 Renesas Solutions Corp.
10 */
11
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/platform_device.h>
18 #include <linux/io.h>
19 #include <linux/clk.h>
20 #include <linux/dmaengine.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/of_device.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_dma.h>
25 #include <linux/spi/spi.h>
26 #include <linux/spi/rspi.h>
27 #include <linux/spinlock.h>
28
29 #define RSPI_SPCR 0x00 /* Control Register */
30 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */
31 #define RSPI_SPPCR 0x02 /* Pin Control Register */
32 #define RSPI_SPSR 0x03 /* Status Register */
33 #define RSPI_SPDR 0x04 /* Data Register */
34 #define RSPI_SPSCR 0x08 /* Sequence Control Register */
35 #define RSPI_SPSSR 0x09 /* Sequence Status Register */
36 #define RSPI_SPBR 0x0a /* Bit Rate Register */
37 #define RSPI_SPDCR 0x0b /* Data Control Register */
38 #define RSPI_SPCKD 0x0c /* Clock Delay Register */
39 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */
40 #define RSPI_SPND 0x0e /* Next-Access Delay Register */
41 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */
42 #define RSPI_SPCMD0 0x10 /* Command Register 0 */
43 #define RSPI_SPCMD1 0x12 /* Command Register 1 */
44 #define RSPI_SPCMD2 0x14 /* Command Register 2 */
45 #define RSPI_SPCMD3 0x16 /* Command Register 3 */
46 #define RSPI_SPCMD4 0x18 /* Command Register 4 */
47 #define RSPI_SPCMD5 0x1a /* Command Register 5 */
48 #define RSPI_SPCMD6 0x1c /* Command Register 6 */
49 #define RSPI_SPCMD7 0x1e /* Command Register 7 */
50 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2)
51 #define RSPI_NUM_SPCMD 8
52 #define RSPI_RZ_NUM_SPCMD 4
53 #define QSPI_NUM_SPCMD 4
54
55 /* RSPI on RZ only */
56 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */
57 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */
58
59 /* QSPI only */
60 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */
61 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */
62 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */
63 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */
64 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */
65 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */
66 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4)
67
68 /* SPCR - Control Register */
69 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */
70 #define SPCR_SPE 0x40 /* Function Enable */
71 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */
72 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */
73 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */
74 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */
75 /* RSPI on SH only */
76 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */
77 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */
78 /* QSPI on R-Car Gen2 only */
79 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */
80 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */
81
82 /* SSLP - Slave Select Polarity Register */
83 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */
84
85 /* SPPCR - Pin Control Register */
86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */
87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */
88 #define SPPCR_SPOM 0x04
89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */
90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */
91
92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */
93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */
94
95 /* SPSR - Status Register */
96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */
97 #define SPSR_TEND 0x40 /* Transmit End */
98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */
99 #define SPSR_PERF 0x08 /* Parity Error Flag */
100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */
101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */
102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */
103
104 /* SPSCR - Sequence Control Register */
105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */
106
107 /* SPSSR - Sequence Status Register */
108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */
109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */
110
111 /* SPDCR - Data Control Register */
112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */
113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */
114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */
115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0)
116 #define SPDCR_SPLWORD SPDCR_SPLW1
117 #define SPDCR_SPLBYTE SPDCR_SPLW0
118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */
119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */
120 #define SPDCR_SLSEL1 0x08
121 #define SPDCR_SLSEL0 0x04
122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */
123 #define SPDCR_SPFC1 0x02
124 #define SPDCR_SPFC0 0x01
125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */
126
127 /* SPCKD - Clock Delay Register */
128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */
129
130 /* SSLND - Slave Select Negation Delay Register */
131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */
132
133 /* SPND - Next-Access Delay Register */
134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */
135
136 /* SPCR2 - Control Register 2 */
137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */
138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */
139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */
140 #define SPCR2_SPPE 0x01 /* Parity Enable */
141
142 /* SPCMDn - Command Registers */
143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */
144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */
145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */
146 #define SPCMD_LSBF 0x1000 /* LSB First */
147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */
148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK)
149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */
150 #define SPCMD_SPB_16BIT 0x0100
151 #define SPCMD_SPB_20BIT 0x0000
152 #define SPCMD_SPB_24BIT 0x0100
153 #define SPCMD_SPB_32BIT 0x0200
154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */
155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */
156 #define SPCMD_SPIMOD1 0x0040
157 #define SPCMD_SPIMOD0 0x0020
158 #define SPCMD_SPIMOD_SINGLE 0
159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0
160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1
161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */
162 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */
163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */
164 #define SPCMD_BRDV(brdv) ((brdv) << 2)
165 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */
166 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */
167
168 /* SPBFCR - Buffer Control Register */
169 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */
170 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */
171 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */
172 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */
173 /* QSPI on R-Car Gen2 */
174 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */
175 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */
176 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */
177 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */
178
179 #define QSPI_BUFFER_SIZE 32u
180
181 struct rspi_data {
182 void __iomem *addr;
183 u32 speed_hz;
184 struct spi_controller *ctlr;
185 struct platform_device *pdev;
186 wait_queue_head_t wait;
187 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */
188 struct clk *clk;
189 u16 spcmd;
190 u8 spsr;
191 u8 sppcr;
192 int rx_irq, tx_irq;
193 const struct spi_ops *ops;
194
195 unsigned dma_callbacked:1;
196 unsigned byte_access:1;
197 };
198
rspi_write8(const struct rspi_data * rspi,u8 data,u16 offset)199 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
200 {
201 iowrite8(data, rspi->addr + offset);
202 }
203
rspi_write16(const struct rspi_data * rspi,u16 data,u16 offset)204 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
205 {
206 iowrite16(data, rspi->addr + offset);
207 }
208
rspi_write32(const struct rspi_data * rspi,u32 data,u16 offset)209 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
210 {
211 iowrite32(data, rspi->addr + offset);
212 }
213
rspi_read8(const struct rspi_data * rspi,u16 offset)214 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
215 {
216 return ioread8(rspi->addr + offset);
217 }
218
rspi_read16(const struct rspi_data * rspi,u16 offset)219 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
220 {
221 return ioread16(rspi->addr + offset);
222 }
223
rspi_write_data(const struct rspi_data * rspi,u16 data)224 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
225 {
226 if (rspi->byte_access)
227 rspi_write8(rspi, data, RSPI_SPDR);
228 else /* 16 bit */
229 rspi_write16(rspi, data, RSPI_SPDR);
230 }
231
rspi_read_data(const struct rspi_data * rspi)232 static u16 rspi_read_data(const struct rspi_data *rspi)
233 {
234 if (rspi->byte_access)
235 return rspi_read8(rspi, RSPI_SPDR);
236 else /* 16 bit */
237 return rspi_read16(rspi, RSPI_SPDR);
238 }
239
240 /* optional functions */
241 struct spi_ops {
242 int (*set_config_register)(struct rspi_data *rspi, int access_size);
243 int (*transfer_one)(struct spi_controller *ctlr,
244 struct spi_device *spi, struct spi_transfer *xfer);
245 u16 extra_mode_bits;
246 u16 min_div;
247 u16 max_div;
248 u16 flags;
249 u16 fifo_size;
250 u8 num_hw_ss;
251 };
252
rspi_set_rate(struct rspi_data * rspi)253 static void rspi_set_rate(struct rspi_data *rspi)
254 {
255 unsigned long clksrc;
256 int brdv = 0, spbr;
257
258 clksrc = clk_get_rate(rspi->clk);
259 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1;
260 while (spbr > 255 && brdv < 3) {
261 brdv++;
262 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1;
263 }
264
265 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
266 rspi->spcmd |= SPCMD_BRDV(brdv);
267 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1));
268 }
269
270 /*
271 * functions for RSPI on legacy SH
272 */
rspi_set_config_register(struct rspi_data * rspi,int access_size)273 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
274 {
275 /* Sets output mode, MOSI signal, and (optionally) loopback */
276 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
277
278 /* Sets transfer bit rate */
279 rspi_set_rate(rspi);
280
281 /* Disable dummy transmission, set 16-bit word access, 1 frame */
282 rspi_write8(rspi, 0, RSPI_SPDCR);
283 rspi->byte_access = 0;
284
285 /* Sets RSPCK, SSL, next-access delay value */
286 rspi_write8(rspi, 0x00, RSPI_SPCKD);
287 rspi_write8(rspi, 0x00, RSPI_SSLND);
288 rspi_write8(rspi, 0x00, RSPI_SPND);
289
290 /* Sets parity, interrupt mask */
291 rspi_write8(rspi, 0x00, RSPI_SPCR2);
292
293 /* Resets sequencer */
294 rspi_write8(rspi, 0, RSPI_SPSCR);
295 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
296 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
297
298 /* Sets RSPI mode */
299 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
300
301 return 0;
302 }
303
304 /*
305 * functions for RSPI on RZ
306 */
rspi_rz_set_config_register(struct rspi_data * rspi,int access_size)307 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
308 {
309 /* Sets output mode, MOSI signal, and (optionally) loopback */
310 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
311
312 /* Sets transfer bit rate */
313 rspi_set_rate(rspi);
314
315 /* Disable dummy transmission, set byte access */
316 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
317 rspi->byte_access = 1;
318
319 /* Sets RSPCK, SSL, next-access delay value */
320 rspi_write8(rspi, 0x00, RSPI_SPCKD);
321 rspi_write8(rspi, 0x00, RSPI_SSLND);
322 rspi_write8(rspi, 0x00, RSPI_SPND);
323
324 /* Resets sequencer */
325 rspi_write8(rspi, 0, RSPI_SPSCR);
326 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
327 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
328
329 /* Sets RSPI mode */
330 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
331
332 return 0;
333 }
334
335 /*
336 * functions for QSPI
337 */
qspi_set_config_register(struct rspi_data * rspi,int access_size)338 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
339 {
340 unsigned long clksrc;
341 int brdv = 0, spbr;
342
343 /* Sets output mode, MOSI signal, and (optionally) loopback */
344 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
345
346 /* Sets transfer bit rate */
347 clksrc = clk_get_rate(rspi->clk);
348 if (rspi->speed_hz >= clksrc) {
349 spbr = 0;
350 rspi->speed_hz = clksrc;
351 } else {
352 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz);
353 while (spbr > 255 && brdv < 3) {
354 brdv++;
355 spbr = DIV_ROUND_UP(spbr, 2);
356 }
357 spbr = clamp(spbr, 0, 255);
358 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr);
359 }
360 rspi_write8(rspi, spbr, RSPI_SPBR);
361 rspi->spcmd |= SPCMD_BRDV(brdv);
362
363 /* Disable dummy transmission, set byte access */
364 rspi_write8(rspi, 0, RSPI_SPDCR);
365 rspi->byte_access = 1;
366
367 /* Sets RSPCK, SSL, next-access delay value */
368 rspi_write8(rspi, 0x00, RSPI_SPCKD);
369 rspi_write8(rspi, 0x00, RSPI_SSLND);
370 rspi_write8(rspi, 0x00, RSPI_SPND);
371
372 /* Data Length Setting */
373 if (access_size == 8)
374 rspi->spcmd |= SPCMD_SPB_8BIT;
375 else if (access_size == 16)
376 rspi->spcmd |= SPCMD_SPB_16BIT;
377 else
378 rspi->spcmd |= SPCMD_SPB_32BIT;
379
380 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
381
382 /* Resets transfer data length */
383 rspi_write32(rspi, 0, QSPI_SPBMUL0);
384
385 /* Resets transmit and receive buffer */
386 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
387 /* Sets buffer to allow normal operation */
388 rspi_write8(rspi, 0x00, QSPI_SPBFCR);
389
390 /* Resets sequencer */
391 rspi_write8(rspi, 0, RSPI_SPSCR);
392 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
393
394 /* Sets RSPI mode */
395 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
396
397 return 0;
398 }
399
qspi_update(const struct rspi_data * rspi,u8 mask,u8 val,u8 reg)400 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg)
401 {
402 u8 data;
403
404 data = rspi_read8(rspi, reg);
405 data &= ~mask;
406 data |= (val & mask);
407 rspi_write8(rspi, data, reg);
408 }
409
qspi_set_send_trigger(struct rspi_data * rspi,unsigned int len)410 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi,
411 unsigned int len)
412 {
413 unsigned int n;
414
415 n = min(len, QSPI_BUFFER_SIZE);
416
417 if (len >= QSPI_BUFFER_SIZE) {
418 /* sets triggering number to 32 bytes */
419 qspi_update(rspi, SPBFCR_TXTRG_MASK,
420 SPBFCR_TXTRG_32B, QSPI_SPBFCR);
421 } else {
422 /* sets triggering number to 1 byte */
423 qspi_update(rspi, SPBFCR_TXTRG_MASK,
424 SPBFCR_TXTRG_1B, QSPI_SPBFCR);
425 }
426
427 return n;
428 }
429
qspi_set_receive_trigger(struct rspi_data * rspi,unsigned int len)430 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len)
431 {
432 unsigned int n;
433
434 n = min(len, QSPI_BUFFER_SIZE);
435
436 if (len >= QSPI_BUFFER_SIZE) {
437 /* sets triggering number to 32 bytes */
438 qspi_update(rspi, SPBFCR_RXTRG_MASK,
439 SPBFCR_RXTRG_32B, QSPI_SPBFCR);
440 } else {
441 /* sets triggering number to 1 byte */
442 qspi_update(rspi, SPBFCR_RXTRG_MASK,
443 SPBFCR_RXTRG_1B, QSPI_SPBFCR);
444 }
445 return n;
446 }
447
rspi_enable_irq(const struct rspi_data * rspi,u8 enable)448 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
449 {
450 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
451 }
452
rspi_disable_irq(const struct rspi_data * rspi,u8 disable)453 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
454 {
455 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
456 }
457
rspi_wait_for_interrupt(struct rspi_data * rspi,u8 wait_mask,u8 enable_bit)458 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
459 u8 enable_bit)
460 {
461 int ret;
462
463 rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
464 if (rspi->spsr & wait_mask)
465 return 0;
466
467 rspi_enable_irq(rspi, enable_bit);
468 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
469 if (ret == 0 && !(rspi->spsr & wait_mask))
470 return -ETIMEDOUT;
471
472 return 0;
473 }
474
rspi_wait_for_tx_empty(struct rspi_data * rspi)475 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
476 {
477 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
478 }
479
rspi_wait_for_rx_full(struct rspi_data * rspi)480 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
481 {
482 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
483 }
484
rspi_data_out(struct rspi_data * rspi,u8 data)485 static int rspi_data_out(struct rspi_data *rspi, u8 data)
486 {
487 int error = rspi_wait_for_tx_empty(rspi);
488 if (error < 0) {
489 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
490 return error;
491 }
492 rspi_write_data(rspi, data);
493 return 0;
494 }
495
rspi_data_in(struct rspi_data * rspi)496 static int rspi_data_in(struct rspi_data *rspi)
497 {
498 int error;
499 u8 data;
500
501 error = rspi_wait_for_rx_full(rspi);
502 if (error < 0) {
503 dev_err(&rspi->ctlr->dev, "receive timeout\n");
504 return error;
505 }
506 data = rspi_read_data(rspi);
507 return data;
508 }
509
rspi_pio_transfer(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int n)510 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
511 unsigned int n)
512 {
513 while (n-- > 0) {
514 if (tx) {
515 int ret = rspi_data_out(rspi, *tx++);
516 if (ret < 0)
517 return ret;
518 }
519 if (rx) {
520 int ret = rspi_data_in(rspi);
521 if (ret < 0)
522 return ret;
523 *rx++ = ret;
524 }
525 }
526
527 return 0;
528 }
529
rspi_dma_complete(void * arg)530 static void rspi_dma_complete(void *arg)
531 {
532 struct rspi_data *rspi = arg;
533
534 rspi->dma_callbacked = 1;
535 wake_up_interruptible(&rspi->wait);
536 }
537
rspi_dma_transfer(struct rspi_data * rspi,struct sg_table * tx,struct sg_table * rx)538 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
539 struct sg_table *rx)
540 {
541 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
542 u8 irq_mask = 0;
543 unsigned int other_irq = 0;
544 dma_cookie_t cookie;
545 int ret;
546
547 /* First prepare and submit the DMA request(s), as this may fail */
548 if (rx) {
549 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl,
550 rx->nents, DMA_DEV_TO_MEM,
551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
552 if (!desc_rx) {
553 ret = -EAGAIN;
554 goto no_dma_rx;
555 }
556
557 desc_rx->callback = rspi_dma_complete;
558 desc_rx->callback_param = rspi;
559 cookie = dmaengine_submit(desc_rx);
560 if (dma_submit_error(cookie)) {
561 ret = cookie;
562 goto no_dma_rx;
563 }
564
565 irq_mask |= SPCR_SPRIE;
566 }
567
568 if (tx) {
569 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl,
570 tx->nents, DMA_MEM_TO_DEV,
571 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
572 if (!desc_tx) {
573 ret = -EAGAIN;
574 goto no_dma_tx;
575 }
576
577 if (rx) {
578 /* No callback */
579 desc_tx->callback = NULL;
580 } else {
581 desc_tx->callback = rspi_dma_complete;
582 desc_tx->callback_param = rspi;
583 }
584 cookie = dmaengine_submit(desc_tx);
585 if (dma_submit_error(cookie)) {
586 ret = cookie;
587 goto no_dma_tx;
588 }
589
590 irq_mask |= SPCR_SPTIE;
591 }
592
593 /*
594 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
595 * called. So, this driver disables the IRQ while DMA transfer.
596 */
597 if (tx)
598 disable_irq(other_irq = rspi->tx_irq);
599 if (rx && rspi->rx_irq != other_irq)
600 disable_irq(rspi->rx_irq);
601
602 rspi_enable_irq(rspi, irq_mask);
603 rspi->dma_callbacked = 0;
604
605 /* Now start DMA */
606 if (rx)
607 dma_async_issue_pending(rspi->ctlr->dma_rx);
608 if (tx)
609 dma_async_issue_pending(rspi->ctlr->dma_tx);
610
611 ret = wait_event_interruptible_timeout(rspi->wait,
612 rspi->dma_callbacked, HZ);
613 if (ret > 0 && rspi->dma_callbacked) {
614 ret = 0;
615 } else {
616 if (!ret) {
617 dev_err(&rspi->ctlr->dev, "DMA timeout\n");
618 ret = -ETIMEDOUT;
619 }
620 if (tx)
621 dmaengine_terminate_sync(rspi->ctlr->dma_tx);
622 if (rx)
623 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
624 }
625
626 rspi_disable_irq(rspi, irq_mask);
627
628 if (tx)
629 enable_irq(rspi->tx_irq);
630 if (rx && rspi->rx_irq != other_irq)
631 enable_irq(rspi->rx_irq);
632
633 return ret;
634
635 no_dma_tx:
636 if (rx)
637 dmaengine_terminate_sync(rspi->ctlr->dma_rx);
638 no_dma_rx:
639 if (ret == -EAGAIN) {
640 dev_warn_once(&rspi->ctlr->dev,
641 "DMA not available, falling back to PIO\n");
642 }
643 return ret;
644 }
645
rspi_receive_init(const struct rspi_data * rspi)646 static void rspi_receive_init(const struct rspi_data *rspi)
647 {
648 u8 spsr;
649
650 spsr = rspi_read8(rspi, RSPI_SPSR);
651 if (spsr & SPSR_SPRF)
652 rspi_read_data(rspi); /* dummy read */
653 if (spsr & SPSR_OVRF)
654 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
655 RSPI_SPSR);
656 }
657
rspi_rz_receive_init(const struct rspi_data * rspi)658 static void rspi_rz_receive_init(const struct rspi_data *rspi)
659 {
660 rspi_receive_init(rspi);
661 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
662 rspi_write8(rspi, 0, RSPI_SPBFCR);
663 }
664
qspi_receive_init(const struct rspi_data * rspi)665 static void qspi_receive_init(const struct rspi_data *rspi)
666 {
667 u8 spsr;
668
669 spsr = rspi_read8(rspi, RSPI_SPSR);
670 if (spsr & SPSR_SPRF)
671 rspi_read_data(rspi); /* dummy read */
672 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
673 rspi_write8(rspi, 0, QSPI_SPBFCR);
674 }
675
__rspi_can_dma(const struct rspi_data * rspi,const struct spi_transfer * xfer)676 static bool __rspi_can_dma(const struct rspi_data *rspi,
677 const struct spi_transfer *xfer)
678 {
679 return xfer->len > rspi->ops->fifo_size;
680 }
681
rspi_can_dma(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)682 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi,
683 struct spi_transfer *xfer)
684 {
685 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
686
687 return __rspi_can_dma(rspi, xfer);
688 }
689
rspi_dma_check_then_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)690 static int rspi_dma_check_then_transfer(struct rspi_data *rspi,
691 struct spi_transfer *xfer)
692 {
693 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer))
694 return -EAGAIN;
695
696 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */
697 return rspi_dma_transfer(rspi, &xfer->tx_sg,
698 xfer->rx_buf ? &xfer->rx_sg : NULL);
699 }
700
rspi_common_transfer(struct rspi_data * rspi,struct spi_transfer * xfer)701 static int rspi_common_transfer(struct rspi_data *rspi,
702 struct spi_transfer *xfer)
703 {
704 int ret;
705
706 xfer->effective_speed_hz = rspi->speed_hz;
707
708 ret = rspi_dma_check_then_transfer(rspi, xfer);
709 if (ret != -EAGAIN)
710 return ret;
711
712 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
713 if (ret < 0)
714 return ret;
715
716 /* Wait for the last transmission */
717 rspi_wait_for_tx_empty(rspi);
718
719 return 0;
720 }
721
rspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)722 static int rspi_transfer_one(struct spi_controller *ctlr,
723 struct spi_device *spi, struct spi_transfer *xfer)
724 {
725 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
726 u8 spcr;
727
728 spcr = rspi_read8(rspi, RSPI_SPCR);
729 if (xfer->rx_buf) {
730 rspi_receive_init(rspi);
731 spcr &= ~SPCR_TXMD;
732 } else {
733 spcr |= SPCR_TXMD;
734 }
735 rspi_write8(rspi, spcr, RSPI_SPCR);
736
737 return rspi_common_transfer(rspi, xfer);
738 }
739
rspi_rz_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)740 static int rspi_rz_transfer_one(struct spi_controller *ctlr,
741 struct spi_device *spi,
742 struct spi_transfer *xfer)
743 {
744 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
745
746 rspi_rz_receive_init(rspi);
747
748 return rspi_common_transfer(rspi, xfer);
749 }
750
qspi_trigger_transfer_out_in(struct rspi_data * rspi,const u8 * tx,u8 * rx,unsigned int len)751 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx,
752 u8 *rx, unsigned int len)
753 {
754 unsigned int i, n;
755 int ret;
756
757 while (len > 0) {
758 n = qspi_set_send_trigger(rspi, len);
759 qspi_set_receive_trigger(rspi, len);
760 ret = rspi_wait_for_tx_empty(rspi);
761 if (ret < 0) {
762 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
763 return ret;
764 }
765 for (i = 0; i < n; i++)
766 rspi_write_data(rspi, *tx++);
767
768 ret = rspi_wait_for_rx_full(rspi);
769 if (ret < 0) {
770 dev_err(&rspi->ctlr->dev, "receive timeout\n");
771 return ret;
772 }
773 for (i = 0; i < n; i++)
774 *rx++ = rspi_read_data(rspi);
775
776 len -= n;
777 }
778
779 return 0;
780 }
781
qspi_transfer_out_in(struct rspi_data * rspi,struct spi_transfer * xfer)782 static int qspi_transfer_out_in(struct rspi_data *rspi,
783 struct spi_transfer *xfer)
784 {
785 int ret;
786
787 qspi_receive_init(rspi);
788
789 ret = rspi_dma_check_then_transfer(rspi, xfer);
790 if (ret != -EAGAIN)
791 return ret;
792
793 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf,
794 xfer->rx_buf, xfer->len);
795 }
796
qspi_transfer_out(struct rspi_data * rspi,struct spi_transfer * xfer)797 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
798 {
799 const u8 *tx = xfer->tx_buf;
800 unsigned int n = xfer->len;
801 unsigned int i, len;
802 int ret;
803
804 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
805 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
806 if (ret != -EAGAIN)
807 return ret;
808 }
809
810 while (n > 0) {
811 len = qspi_set_send_trigger(rspi, n);
812 ret = rspi_wait_for_tx_empty(rspi);
813 if (ret < 0) {
814 dev_err(&rspi->ctlr->dev, "transmit timeout\n");
815 return ret;
816 }
817 for (i = 0; i < len; i++)
818 rspi_write_data(rspi, *tx++);
819
820 n -= len;
821 }
822
823 /* Wait for the last transmission */
824 rspi_wait_for_tx_empty(rspi);
825
826 return 0;
827 }
828
qspi_transfer_in(struct rspi_data * rspi,struct spi_transfer * xfer)829 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
830 {
831 u8 *rx = xfer->rx_buf;
832 unsigned int n = xfer->len;
833 unsigned int i, len;
834 int ret;
835
836 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) {
837 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
838 if (ret != -EAGAIN)
839 return ret;
840 }
841
842 while (n > 0) {
843 len = qspi_set_receive_trigger(rspi, n);
844 ret = rspi_wait_for_rx_full(rspi);
845 if (ret < 0) {
846 dev_err(&rspi->ctlr->dev, "receive timeout\n");
847 return ret;
848 }
849 for (i = 0; i < len; i++)
850 *rx++ = rspi_read_data(rspi);
851
852 n -= len;
853 }
854
855 return 0;
856 }
857
qspi_transfer_one(struct spi_controller * ctlr,struct spi_device * spi,struct spi_transfer * xfer)858 static int qspi_transfer_one(struct spi_controller *ctlr,
859 struct spi_device *spi, struct spi_transfer *xfer)
860 {
861 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
862
863 xfer->effective_speed_hz = rspi->speed_hz;
864 if (spi->mode & SPI_LOOP) {
865 return qspi_transfer_out_in(rspi, xfer);
866 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
867 /* Quad or Dual SPI Write */
868 return qspi_transfer_out(rspi, xfer);
869 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
870 /* Quad or Dual SPI Read */
871 return qspi_transfer_in(rspi, xfer);
872 } else {
873 /* Single SPI Transfer */
874 return qspi_transfer_out_in(rspi, xfer);
875 }
876 }
877
qspi_transfer_mode(const struct spi_transfer * xfer)878 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
879 {
880 if (xfer->tx_buf)
881 switch (xfer->tx_nbits) {
882 case SPI_NBITS_QUAD:
883 return SPCMD_SPIMOD_QUAD;
884 case SPI_NBITS_DUAL:
885 return SPCMD_SPIMOD_DUAL;
886 default:
887 return 0;
888 }
889 if (xfer->rx_buf)
890 switch (xfer->rx_nbits) {
891 case SPI_NBITS_QUAD:
892 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
893 case SPI_NBITS_DUAL:
894 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
895 default:
896 return 0;
897 }
898
899 return 0;
900 }
901
qspi_setup_sequencer(struct rspi_data * rspi,const struct spi_message * msg)902 static int qspi_setup_sequencer(struct rspi_data *rspi,
903 const struct spi_message *msg)
904 {
905 const struct spi_transfer *xfer;
906 unsigned int i = 0, len = 0;
907 u16 current_mode = 0xffff, mode;
908
909 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
910 mode = qspi_transfer_mode(xfer);
911 if (mode == current_mode) {
912 len += xfer->len;
913 continue;
914 }
915
916 /* Transfer mode change */
917 if (i) {
918 /* Set transfer data length of previous transfer */
919 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
920 }
921
922 if (i >= QSPI_NUM_SPCMD) {
923 dev_err(&msg->spi->dev,
924 "Too many different transfer modes");
925 return -EINVAL;
926 }
927
928 /* Program transfer mode for this transfer */
929 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
930 current_mode = mode;
931 len = xfer->len;
932 i++;
933 }
934 if (i) {
935 /* Set final transfer data length and sequence length */
936 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
937 rspi_write8(rspi, i - 1, RSPI_SPSCR);
938 }
939
940 return 0;
941 }
942
rspi_setup(struct spi_device * spi)943 static int rspi_setup(struct spi_device *spi)
944 {
945 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller);
946 u8 sslp;
947
948 if (spi->cs_gpiod)
949 return 0;
950
951 pm_runtime_get_sync(&rspi->pdev->dev);
952 spin_lock_irq(&rspi->lock);
953
954 sslp = rspi_read8(rspi, RSPI_SSLP);
955 if (spi->mode & SPI_CS_HIGH)
956 sslp |= SSLP_SSLP(spi->chip_select);
957 else
958 sslp &= ~SSLP_SSLP(spi->chip_select);
959 rspi_write8(rspi, sslp, RSPI_SSLP);
960
961 spin_unlock_irq(&rspi->lock);
962 pm_runtime_put(&rspi->pdev->dev);
963 return 0;
964 }
965
rspi_prepare_message(struct spi_controller * ctlr,struct spi_message * msg)966 static int rspi_prepare_message(struct spi_controller *ctlr,
967 struct spi_message *msg)
968 {
969 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
970 struct spi_device *spi = msg->spi;
971 const struct spi_transfer *xfer;
972 int ret;
973
974 /*
975 * As the Bit Rate Register must not be changed while the device is
976 * active, all transfers in a message must use the same bit rate.
977 * In theory, the sequencer could be enabled, and each Command Register
978 * could divide the base bit rate by a different value.
979 * However, most RSPI variants do not have Transfer Data Length
980 * Multiplier Setting Registers, so each sequence step would be limited
981 * to a single word, making this feature unsuitable for large
982 * transfers, which would gain most from it.
983 */
984 rspi->speed_hz = spi->max_speed_hz;
985 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
986 if (xfer->speed_hz < rspi->speed_hz)
987 rspi->speed_hz = xfer->speed_hz;
988 }
989
990 rspi->spcmd = SPCMD_SSLKP;
991 if (spi->mode & SPI_CPOL)
992 rspi->spcmd |= SPCMD_CPOL;
993 if (spi->mode & SPI_CPHA)
994 rspi->spcmd |= SPCMD_CPHA;
995 if (spi->mode & SPI_LSB_FIRST)
996 rspi->spcmd |= SPCMD_LSBF;
997
998 /* Configure slave signal to assert */
999 rspi->spcmd |= SPCMD_SSLA(spi->cs_gpiod ? rspi->ctlr->unused_native_cs
1000 : spi->chip_select);
1001
1002 /* CMOS output mode and MOSI signal from previous transfer */
1003 rspi->sppcr = 0;
1004 if (spi->mode & SPI_LOOP)
1005 rspi->sppcr |= SPPCR_SPLP;
1006
1007 rspi->ops->set_config_register(rspi, 8);
1008
1009 if (msg->spi->mode &
1010 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
1011 /* Setup sequencer for messages with multiple transfer modes */
1012 ret = qspi_setup_sequencer(rspi, msg);
1013 if (ret < 0)
1014 return ret;
1015 }
1016
1017 /* Enable SPI function in master mode */
1018 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
1019 return 0;
1020 }
1021
rspi_unprepare_message(struct spi_controller * ctlr,struct spi_message * msg)1022 static int rspi_unprepare_message(struct spi_controller *ctlr,
1023 struct spi_message *msg)
1024 {
1025 struct rspi_data *rspi = spi_controller_get_devdata(ctlr);
1026
1027 /* Disable SPI function */
1028 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
1029
1030 /* Reset sequencer for Single SPI Transfers */
1031 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
1032 rspi_write8(rspi, 0, RSPI_SPSCR);
1033 return 0;
1034 }
1035
rspi_irq_mux(int irq,void * _sr)1036 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
1037 {
1038 struct rspi_data *rspi = _sr;
1039 u8 spsr;
1040 irqreturn_t ret = IRQ_NONE;
1041 u8 disable_irq = 0;
1042
1043 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1044 if (spsr & SPSR_SPRF)
1045 disable_irq |= SPCR_SPRIE;
1046 if (spsr & SPSR_SPTEF)
1047 disable_irq |= SPCR_SPTIE;
1048
1049 if (disable_irq) {
1050 ret = IRQ_HANDLED;
1051 rspi_disable_irq(rspi, disable_irq);
1052 wake_up(&rspi->wait);
1053 }
1054
1055 return ret;
1056 }
1057
rspi_irq_rx(int irq,void * _sr)1058 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
1059 {
1060 struct rspi_data *rspi = _sr;
1061 u8 spsr;
1062
1063 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1064 if (spsr & SPSR_SPRF) {
1065 rspi_disable_irq(rspi, SPCR_SPRIE);
1066 wake_up(&rspi->wait);
1067 return IRQ_HANDLED;
1068 }
1069
1070 return 0;
1071 }
1072
rspi_irq_tx(int irq,void * _sr)1073 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
1074 {
1075 struct rspi_data *rspi = _sr;
1076 u8 spsr;
1077
1078 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
1079 if (spsr & SPSR_SPTEF) {
1080 rspi_disable_irq(rspi, SPCR_SPTIE);
1081 wake_up(&rspi->wait);
1082 return IRQ_HANDLED;
1083 }
1084
1085 return 0;
1086 }
1087
rspi_request_dma_chan(struct device * dev,enum dma_transfer_direction dir,unsigned int id,dma_addr_t port_addr)1088 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
1089 enum dma_transfer_direction dir,
1090 unsigned int id,
1091 dma_addr_t port_addr)
1092 {
1093 dma_cap_mask_t mask;
1094 struct dma_chan *chan;
1095 struct dma_slave_config cfg;
1096 int ret;
1097
1098 dma_cap_zero(mask);
1099 dma_cap_set(DMA_SLAVE, mask);
1100
1101 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
1102 (void *)(unsigned long)id, dev,
1103 dir == DMA_MEM_TO_DEV ? "tx" : "rx");
1104 if (!chan) {
1105 dev_warn(dev, "dma_request_slave_channel_compat failed\n");
1106 return NULL;
1107 }
1108
1109 memset(&cfg, 0, sizeof(cfg));
1110 cfg.direction = dir;
1111 if (dir == DMA_MEM_TO_DEV) {
1112 cfg.dst_addr = port_addr;
1113 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1114 } else {
1115 cfg.src_addr = port_addr;
1116 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1117 }
1118
1119 ret = dmaengine_slave_config(chan, &cfg);
1120 if (ret) {
1121 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
1122 dma_release_channel(chan);
1123 return NULL;
1124 }
1125
1126 return chan;
1127 }
1128
rspi_request_dma(struct device * dev,struct spi_controller * ctlr,const struct resource * res)1129 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr,
1130 const struct resource *res)
1131 {
1132 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
1133 unsigned int dma_tx_id, dma_rx_id;
1134
1135 if (dev->of_node) {
1136 /* In the OF case we will get the slave IDs from the DT */
1137 dma_tx_id = 0;
1138 dma_rx_id = 0;
1139 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
1140 dma_tx_id = rspi_pd->dma_tx_id;
1141 dma_rx_id = rspi_pd->dma_rx_id;
1142 } else {
1143 /* The driver assumes no error. */
1144 return 0;
1145 }
1146
1147 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
1148 res->start + RSPI_SPDR);
1149 if (!ctlr->dma_tx)
1150 return -ENODEV;
1151
1152 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
1153 res->start + RSPI_SPDR);
1154 if (!ctlr->dma_rx) {
1155 dma_release_channel(ctlr->dma_tx);
1156 ctlr->dma_tx = NULL;
1157 return -ENODEV;
1158 }
1159
1160 ctlr->can_dma = rspi_can_dma;
1161 dev_info(dev, "DMA available");
1162 return 0;
1163 }
1164
rspi_release_dma(struct spi_controller * ctlr)1165 static void rspi_release_dma(struct spi_controller *ctlr)
1166 {
1167 if (ctlr->dma_tx)
1168 dma_release_channel(ctlr->dma_tx);
1169 if (ctlr->dma_rx)
1170 dma_release_channel(ctlr->dma_rx);
1171 }
1172
rspi_remove(struct platform_device * pdev)1173 static int rspi_remove(struct platform_device *pdev)
1174 {
1175 struct rspi_data *rspi = platform_get_drvdata(pdev);
1176
1177 rspi_release_dma(rspi->ctlr);
1178 pm_runtime_disable(&pdev->dev);
1179
1180 return 0;
1181 }
1182
1183 static const struct spi_ops rspi_ops = {
1184 .set_config_register = rspi_set_config_register,
1185 .transfer_one = rspi_transfer_one,
1186 .min_div = 2,
1187 .max_div = 4096,
1188 .flags = SPI_CONTROLLER_MUST_TX,
1189 .fifo_size = 8,
1190 .num_hw_ss = 2,
1191 };
1192
1193 static const struct spi_ops rspi_rz_ops = {
1194 .set_config_register = rspi_rz_set_config_register,
1195 .transfer_one = rspi_rz_transfer_one,
1196 .min_div = 2,
1197 .max_div = 4096,
1198 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1199 .fifo_size = 8, /* 8 for TX, 32 for RX */
1200 .num_hw_ss = 1,
1201 };
1202
1203 static const struct spi_ops qspi_ops = {
1204 .set_config_register = qspi_set_config_register,
1205 .transfer_one = qspi_transfer_one,
1206 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD |
1207 SPI_RX_DUAL | SPI_RX_QUAD,
1208 .min_div = 1,
1209 .max_div = 4080,
1210 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX,
1211 .fifo_size = 32,
1212 .num_hw_ss = 1,
1213 };
1214
1215 #ifdef CONFIG_OF
1216 static const struct of_device_id rspi_of_match[] = {
1217 /* RSPI on legacy SH */
1218 { .compatible = "renesas,rspi", .data = &rspi_ops },
1219 /* RSPI on RZ/A1H */
1220 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1221 /* QSPI on R-Car Gen2 */
1222 { .compatible = "renesas,qspi", .data = &qspi_ops },
1223 { /* sentinel */ }
1224 };
1225
1226 MODULE_DEVICE_TABLE(of, rspi_of_match);
1227
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1228 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1229 {
1230 u32 num_cs;
1231 int error;
1232
1233 /* Parse DT properties */
1234 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1235 if (error) {
1236 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1237 return error;
1238 }
1239
1240 ctlr->num_chipselect = num_cs;
1241 return 0;
1242 }
1243 #else
1244 #define rspi_of_match NULL
rspi_parse_dt(struct device * dev,struct spi_controller * ctlr)1245 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr)
1246 {
1247 return -EINVAL;
1248 }
1249 #endif /* CONFIG_OF */
1250
rspi_request_irq(struct device * dev,unsigned int irq,irq_handler_t handler,const char * suffix,void * dev_id)1251 static int rspi_request_irq(struct device *dev, unsigned int irq,
1252 irq_handler_t handler, const char *suffix,
1253 void *dev_id)
1254 {
1255 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1256 dev_name(dev), suffix);
1257 if (!name)
1258 return -ENOMEM;
1259
1260 return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1261 }
1262
rspi_probe(struct platform_device * pdev)1263 static int rspi_probe(struct platform_device *pdev)
1264 {
1265 struct resource *res;
1266 struct spi_controller *ctlr;
1267 struct rspi_data *rspi;
1268 int ret;
1269 const struct rspi_plat_data *rspi_pd;
1270 const struct spi_ops *ops;
1271 unsigned long clksrc;
1272
1273 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1274 if (ctlr == NULL)
1275 return -ENOMEM;
1276
1277 ops = of_device_get_match_data(&pdev->dev);
1278 if (ops) {
1279 ret = rspi_parse_dt(&pdev->dev, ctlr);
1280 if (ret)
1281 goto error1;
1282 } else {
1283 ops = (struct spi_ops *)pdev->id_entry->driver_data;
1284 rspi_pd = dev_get_platdata(&pdev->dev);
1285 if (rspi_pd && rspi_pd->num_chipselect)
1286 ctlr->num_chipselect = rspi_pd->num_chipselect;
1287 else
1288 ctlr->num_chipselect = 2; /* default */
1289 }
1290
1291 rspi = spi_controller_get_devdata(ctlr);
1292 platform_set_drvdata(pdev, rspi);
1293 rspi->ops = ops;
1294 rspi->ctlr = ctlr;
1295
1296 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1297 rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1298 if (IS_ERR(rspi->addr)) {
1299 ret = PTR_ERR(rspi->addr);
1300 goto error1;
1301 }
1302
1303 rspi->clk = devm_clk_get(&pdev->dev, NULL);
1304 if (IS_ERR(rspi->clk)) {
1305 dev_err(&pdev->dev, "cannot get clock\n");
1306 ret = PTR_ERR(rspi->clk);
1307 goto error1;
1308 }
1309
1310 rspi->pdev = pdev;
1311 pm_runtime_enable(&pdev->dev);
1312
1313 init_waitqueue_head(&rspi->wait);
1314 spin_lock_init(&rspi->lock);
1315
1316 ctlr->bus_num = pdev->id;
1317 ctlr->setup = rspi_setup;
1318 ctlr->auto_runtime_pm = true;
1319 ctlr->transfer_one = ops->transfer_one;
1320 ctlr->prepare_message = rspi_prepare_message;
1321 ctlr->unprepare_message = rspi_unprepare_message;
1322 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
1323 SPI_LOOP | ops->extra_mode_bits;
1324 clksrc = clk_get_rate(rspi->clk);
1325 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div);
1326 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div);
1327 ctlr->flags = ops->flags;
1328 ctlr->dev.of_node = pdev->dev.of_node;
1329 ctlr->use_gpio_descriptors = true;
1330 ctlr->max_native_cs = rspi->ops->num_hw_ss;
1331
1332 ret = platform_get_irq_byname_optional(pdev, "rx");
1333 if (ret < 0) {
1334 ret = platform_get_irq_byname_optional(pdev, "mux");
1335 if (ret < 0)
1336 ret = platform_get_irq(pdev, 0);
1337 if (ret >= 0)
1338 rspi->rx_irq = rspi->tx_irq = ret;
1339 } else {
1340 rspi->rx_irq = ret;
1341 ret = platform_get_irq_byname(pdev, "tx");
1342 if (ret >= 0)
1343 rspi->tx_irq = ret;
1344 }
1345
1346 if (rspi->rx_irq == rspi->tx_irq) {
1347 /* Single multiplexed interrupt */
1348 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1349 "mux", rspi);
1350 } else {
1351 /* Multi-interrupt mode, only SPRI and SPTI are used */
1352 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1353 "rx", rspi);
1354 if (!ret)
1355 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1356 rspi_irq_tx, "tx", rspi);
1357 }
1358 if (ret < 0) {
1359 dev_err(&pdev->dev, "request_irq error\n");
1360 goto error2;
1361 }
1362
1363 ret = rspi_request_dma(&pdev->dev, ctlr, res);
1364 if (ret < 0)
1365 dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1366
1367 ret = devm_spi_register_controller(&pdev->dev, ctlr);
1368 if (ret < 0) {
1369 dev_err(&pdev->dev, "devm_spi_register_controller error.\n");
1370 goto error3;
1371 }
1372
1373 dev_info(&pdev->dev, "probed\n");
1374
1375 return 0;
1376
1377 error3:
1378 rspi_release_dma(ctlr);
1379 error2:
1380 pm_runtime_disable(&pdev->dev);
1381 error1:
1382 spi_controller_put(ctlr);
1383
1384 return ret;
1385 }
1386
1387 static const struct platform_device_id spi_driver_ids[] = {
1388 { "rspi", (kernel_ulong_t)&rspi_ops },
1389 {},
1390 };
1391
1392 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1393
1394 #ifdef CONFIG_PM_SLEEP
rspi_suspend(struct device * dev)1395 static int rspi_suspend(struct device *dev)
1396 {
1397 struct rspi_data *rspi = dev_get_drvdata(dev);
1398
1399 return spi_controller_suspend(rspi->ctlr);
1400 }
1401
rspi_resume(struct device * dev)1402 static int rspi_resume(struct device *dev)
1403 {
1404 struct rspi_data *rspi = dev_get_drvdata(dev);
1405
1406 return spi_controller_resume(rspi->ctlr);
1407 }
1408
1409 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume);
1410 #define DEV_PM_OPS &rspi_pm_ops
1411 #else
1412 #define DEV_PM_OPS NULL
1413 #endif /* CONFIG_PM_SLEEP */
1414
1415 static struct platform_driver rspi_driver = {
1416 .probe = rspi_probe,
1417 .remove = rspi_remove,
1418 .id_table = spi_driver_ids,
1419 .driver = {
1420 .name = "renesas_spi",
1421 .pm = DEV_PM_OPS,
1422 .of_match_table = of_match_ptr(rspi_of_match),
1423 },
1424 };
1425 module_platform_driver(rspi_driver);
1426
1427 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1428 MODULE_LICENSE("GPL v2");
1429 MODULE_AUTHOR("Yoshihiro Shimoda");
1430 MODULE_ALIAS("platform:rspi");
1431