1 // SPDX-License-Identifier: GPL-2.0-only
2 //
3 // Driver for Cadence QSPI Controller
4 //
5 // Copyright Altera Corporation (C) 2012-2014. All rights reserved.
6 // Copyright Intel Corporation (C) 2019-2020. All rights reserved.
7 // Copyright (C) 2020 Texas Instruments Incorporated - http://www.ti.com
8 
9 #include <linux/clk.h>
10 #include <linux/completion.h>
11 #include <linux/delay.h>
12 #include <linux/dma-mapping.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/iopoll.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/of_device.h>
23 #include <linux/of.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/reset.h>
27 #include <linux/sched.h>
28 #include <linux/spi/spi.h>
29 #include <linux/spi/spi-mem.h>
30 #include <linux/timer.h>
31 
32 #define CQSPI_NAME			"cadence-qspi"
33 #define CQSPI_MAX_CHIPSELECT		16
34 
35 /* Quirks */
36 #define CQSPI_NEEDS_WR_DELAY		BIT(0)
37 #define CQSPI_DISABLE_DAC_MODE		BIT(1)
38 
39 /* Capabilities */
40 #define CQSPI_SUPPORTS_OCTAL		BIT(0)
41 
42 struct cqspi_st;
43 
44 struct cqspi_flash_pdata {
45 	struct cqspi_st	*cqspi;
46 	u32		clk_rate;
47 	u32		read_delay;
48 	u32		tshsl_ns;
49 	u32		tsd2d_ns;
50 	u32		tchsh_ns;
51 	u32		tslch_ns;
52 	u8		inst_width;
53 	u8		addr_width;
54 	u8		data_width;
55 	bool		dtr;
56 	u8		cs;
57 };
58 
59 struct cqspi_st {
60 	struct platform_device	*pdev;
61 
62 	struct clk		*clk;
63 	unsigned int		sclk;
64 
65 	void __iomem		*iobase;
66 	void __iomem		*ahb_base;
67 	resource_size_t		ahb_size;
68 	struct completion	transfer_complete;
69 
70 	struct dma_chan		*rx_chan;
71 	struct completion	rx_dma_complete;
72 	dma_addr_t		mmap_phys_base;
73 
74 	int			current_cs;
75 	unsigned long		master_ref_clk_hz;
76 	bool			is_decoded_cs;
77 	u32			fifo_depth;
78 	u32			fifo_width;
79 	u32			num_chipselect;
80 	bool			rclk_en;
81 	u32			trigger_address;
82 	u32			wr_delay;
83 	bool			use_direct_mode;
84 	struct cqspi_flash_pdata f_pdata[CQSPI_MAX_CHIPSELECT];
85 };
86 
87 struct cqspi_driver_platdata {
88 	u32 hwcaps_mask;
89 	u8 quirks;
90 };
91 
92 /* Operation timeout value */
93 #define CQSPI_TIMEOUT_MS			500
94 #define CQSPI_READ_TIMEOUT_MS			10
95 
96 /* Instruction type */
97 #define CQSPI_INST_TYPE_SINGLE			0
98 #define CQSPI_INST_TYPE_DUAL			1
99 #define CQSPI_INST_TYPE_QUAD			2
100 #define CQSPI_INST_TYPE_OCTAL			3
101 
102 #define CQSPI_DUMMY_CLKS_PER_BYTE		8
103 #define CQSPI_DUMMY_BYTES_MAX			4
104 #define CQSPI_DUMMY_CLKS_MAX			31
105 
106 #define CQSPI_STIG_DATA_LEN_MAX			8
107 
108 /* Register map */
109 #define CQSPI_REG_CONFIG			0x00
110 #define CQSPI_REG_CONFIG_ENABLE_MASK		BIT(0)
111 #define CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL	BIT(7)
112 #define CQSPI_REG_CONFIG_DECODE_MASK		BIT(9)
113 #define CQSPI_REG_CONFIG_CHIPSELECT_LSB		10
114 #define CQSPI_REG_CONFIG_DMA_MASK		BIT(15)
115 #define CQSPI_REG_CONFIG_BAUD_LSB		19
116 #define CQSPI_REG_CONFIG_DTR_PROTO		BIT(24)
117 #define CQSPI_REG_CONFIG_DUAL_OPCODE		BIT(30)
118 #define CQSPI_REG_CONFIG_IDLE_LSB		31
119 #define CQSPI_REG_CONFIG_CHIPSELECT_MASK	0xF
120 #define CQSPI_REG_CONFIG_BAUD_MASK		0xF
121 
122 #define CQSPI_REG_RD_INSTR			0x04
123 #define CQSPI_REG_RD_INSTR_OPCODE_LSB		0
124 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB	8
125 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB	12
126 #define CQSPI_REG_RD_INSTR_TYPE_DATA_LSB	16
127 #define CQSPI_REG_RD_INSTR_MODE_EN_LSB		20
128 #define CQSPI_REG_RD_INSTR_DUMMY_LSB		24
129 #define CQSPI_REG_RD_INSTR_TYPE_INSTR_MASK	0x3
130 #define CQSPI_REG_RD_INSTR_TYPE_ADDR_MASK	0x3
131 #define CQSPI_REG_RD_INSTR_TYPE_DATA_MASK	0x3
132 #define CQSPI_REG_RD_INSTR_DUMMY_MASK		0x1F
133 
134 #define CQSPI_REG_WR_INSTR			0x08
135 #define CQSPI_REG_WR_INSTR_OPCODE_LSB		0
136 #define CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB	12
137 #define CQSPI_REG_WR_INSTR_TYPE_DATA_LSB	16
138 
139 #define CQSPI_REG_DELAY				0x0C
140 #define CQSPI_REG_DELAY_TSLCH_LSB		0
141 #define CQSPI_REG_DELAY_TCHSH_LSB		8
142 #define CQSPI_REG_DELAY_TSD2D_LSB		16
143 #define CQSPI_REG_DELAY_TSHSL_LSB		24
144 #define CQSPI_REG_DELAY_TSLCH_MASK		0xFF
145 #define CQSPI_REG_DELAY_TCHSH_MASK		0xFF
146 #define CQSPI_REG_DELAY_TSD2D_MASK		0xFF
147 #define CQSPI_REG_DELAY_TSHSL_MASK		0xFF
148 
149 #define CQSPI_REG_READCAPTURE			0x10
150 #define CQSPI_REG_READCAPTURE_BYPASS_LSB	0
151 #define CQSPI_REG_READCAPTURE_DELAY_LSB		1
152 #define CQSPI_REG_READCAPTURE_DELAY_MASK	0xF
153 
154 #define CQSPI_REG_SIZE				0x14
155 #define CQSPI_REG_SIZE_ADDRESS_LSB		0
156 #define CQSPI_REG_SIZE_PAGE_LSB			4
157 #define CQSPI_REG_SIZE_BLOCK_LSB		16
158 #define CQSPI_REG_SIZE_ADDRESS_MASK		0xF
159 #define CQSPI_REG_SIZE_PAGE_MASK		0xFFF
160 #define CQSPI_REG_SIZE_BLOCK_MASK		0x3F
161 
162 #define CQSPI_REG_SRAMPARTITION			0x18
163 #define CQSPI_REG_INDIRECTTRIGGER		0x1C
164 
165 #define CQSPI_REG_DMA				0x20
166 #define CQSPI_REG_DMA_SINGLE_LSB		0
167 #define CQSPI_REG_DMA_BURST_LSB			8
168 #define CQSPI_REG_DMA_SINGLE_MASK		0xFF
169 #define CQSPI_REG_DMA_BURST_MASK		0xFF
170 
171 #define CQSPI_REG_REMAP				0x24
172 #define CQSPI_REG_MODE_BIT			0x28
173 
174 #define CQSPI_REG_SDRAMLEVEL			0x2C
175 #define CQSPI_REG_SDRAMLEVEL_RD_LSB		0
176 #define CQSPI_REG_SDRAMLEVEL_WR_LSB		16
177 #define CQSPI_REG_SDRAMLEVEL_RD_MASK		0xFFFF
178 #define CQSPI_REG_SDRAMLEVEL_WR_MASK		0xFFFF
179 
180 #define CQSPI_REG_WR_COMPLETION_CTRL		0x38
181 #define CQSPI_REG_WR_DISABLE_AUTO_POLL		BIT(14)
182 
183 #define CQSPI_REG_IRQSTATUS			0x40
184 #define CQSPI_REG_IRQMASK			0x44
185 
186 #define CQSPI_REG_INDIRECTRD			0x60
187 #define CQSPI_REG_INDIRECTRD_START_MASK		BIT(0)
188 #define CQSPI_REG_INDIRECTRD_CANCEL_MASK	BIT(1)
189 #define CQSPI_REG_INDIRECTRD_DONE_MASK		BIT(5)
190 
191 #define CQSPI_REG_INDIRECTRDWATERMARK		0x64
192 #define CQSPI_REG_INDIRECTRDSTARTADDR		0x68
193 #define CQSPI_REG_INDIRECTRDBYTES		0x6C
194 
195 #define CQSPI_REG_CMDCTRL			0x90
196 #define CQSPI_REG_CMDCTRL_EXECUTE_MASK		BIT(0)
197 #define CQSPI_REG_CMDCTRL_INPROGRESS_MASK	BIT(1)
198 #define CQSPI_REG_CMDCTRL_DUMMY_LSB		7
199 #define CQSPI_REG_CMDCTRL_WR_BYTES_LSB		12
200 #define CQSPI_REG_CMDCTRL_WR_EN_LSB		15
201 #define CQSPI_REG_CMDCTRL_ADD_BYTES_LSB		16
202 #define CQSPI_REG_CMDCTRL_ADDR_EN_LSB		19
203 #define CQSPI_REG_CMDCTRL_RD_BYTES_LSB		20
204 #define CQSPI_REG_CMDCTRL_RD_EN_LSB		23
205 #define CQSPI_REG_CMDCTRL_OPCODE_LSB		24
206 #define CQSPI_REG_CMDCTRL_WR_BYTES_MASK		0x7
207 #define CQSPI_REG_CMDCTRL_ADD_BYTES_MASK	0x3
208 #define CQSPI_REG_CMDCTRL_RD_BYTES_MASK		0x7
209 #define CQSPI_REG_CMDCTRL_DUMMY_MASK		0x1F
210 
211 #define CQSPI_REG_INDIRECTWR			0x70
212 #define CQSPI_REG_INDIRECTWR_START_MASK		BIT(0)
213 #define CQSPI_REG_INDIRECTWR_CANCEL_MASK	BIT(1)
214 #define CQSPI_REG_INDIRECTWR_DONE_MASK		BIT(5)
215 
216 #define CQSPI_REG_INDIRECTWRWATERMARK		0x74
217 #define CQSPI_REG_INDIRECTWRSTARTADDR		0x78
218 #define CQSPI_REG_INDIRECTWRBYTES		0x7C
219 
220 #define CQSPI_REG_CMDADDRESS			0x94
221 #define CQSPI_REG_CMDREADDATALOWER		0xA0
222 #define CQSPI_REG_CMDREADDATAUPPER		0xA4
223 #define CQSPI_REG_CMDWRITEDATALOWER		0xA8
224 #define CQSPI_REG_CMDWRITEDATAUPPER		0xAC
225 
226 #define CQSPI_REG_POLLING_STATUS		0xB0
227 #define CQSPI_REG_POLLING_STATUS_DUMMY_LSB	16
228 
229 #define CQSPI_REG_OP_EXT_LOWER			0xE0
230 #define CQSPI_REG_OP_EXT_READ_LSB		24
231 #define CQSPI_REG_OP_EXT_WRITE_LSB		16
232 #define CQSPI_REG_OP_EXT_STIG_LSB		0
233 
234 /* Interrupt status bits */
235 #define CQSPI_REG_IRQ_MODE_ERR			BIT(0)
236 #define CQSPI_REG_IRQ_UNDERFLOW			BIT(1)
237 #define CQSPI_REG_IRQ_IND_COMP			BIT(2)
238 #define CQSPI_REG_IRQ_IND_RD_REJECT		BIT(3)
239 #define CQSPI_REG_IRQ_WR_PROTECTED_ERR		BIT(4)
240 #define CQSPI_REG_IRQ_ILLEGAL_AHB_ERR		BIT(5)
241 #define CQSPI_REG_IRQ_WATERMARK			BIT(6)
242 #define CQSPI_REG_IRQ_IND_SRAM_FULL		BIT(12)
243 
244 #define CQSPI_IRQ_MASK_RD		(CQSPI_REG_IRQ_WATERMARK	| \
245 					 CQSPI_REG_IRQ_IND_SRAM_FULL	| \
246 					 CQSPI_REG_IRQ_IND_COMP)
247 
248 #define CQSPI_IRQ_MASK_WR		(CQSPI_REG_IRQ_IND_COMP		| \
249 					 CQSPI_REG_IRQ_WATERMARK	| \
250 					 CQSPI_REG_IRQ_UNDERFLOW)
251 
252 #define CQSPI_IRQ_STATUS_MASK		0x1FFFF
253 
cqspi_wait_for_bit(void __iomem * reg,const u32 mask,bool clr)254 static int cqspi_wait_for_bit(void __iomem *reg, const u32 mask, bool clr)
255 {
256 	u32 val;
257 
258 	return readl_relaxed_poll_timeout(reg, val,
259 					  (((clr ? ~val : val) & mask) == mask),
260 					  10, CQSPI_TIMEOUT_MS * 1000);
261 }
262 
cqspi_is_idle(struct cqspi_st * cqspi)263 static bool cqspi_is_idle(struct cqspi_st *cqspi)
264 {
265 	u32 reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
266 
267 	return reg & (1UL << CQSPI_REG_CONFIG_IDLE_LSB);
268 }
269 
cqspi_get_rd_sram_level(struct cqspi_st * cqspi)270 static u32 cqspi_get_rd_sram_level(struct cqspi_st *cqspi)
271 {
272 	u32 reg = readl(cqspi->iobase + CQSPI_REG_SDRAMLEVEL);
273 
274 	reg >>= CQSPI_REG_SDRAMLEVEL_RD_LSB;
275 	return reg & CQSPI_REG_SDRAMLEVEL_RD_MASK;
276 }
277 
cqspi_irq_handler(int this_irq,void * dev)278 static irqreturn_t cqspi_irq_handler(int this_irq, void *dev)
279 {
280 	struct cqspi_st *cqspi = dev;
281 	unsigned int irq_status;
282 
283 	/* Read interrupt status */
284 	irq_status = readl(cqspi->iobase + CQSPI_REG_IRQSTATUS);
285 
286 	/* Clear interrupt */
287 	writel(irq_status, cqspi->iobase + CQSPI_REG_IRQSTATUS);
288 
289 	irq_status &= CQSPI_IRQ_MASK_RD | CQSPI_IRQ_MASK_WR;
290 
291 	if (irq_status)
292 		complete(&cqspi->transfer_complete);
293 
294 	return IRQ_HANDLED;
295 }
296 
cqspi_calc_rdreg(struct cqspi_flash_pdata * f_pdata)297 static unsigned int cqspi_calc_rdreg(struct cqspi_flash_pdata *f_pdata)
298 {
299 	u32 rdreg = 0;
300 
301 	rdreg |= f_pdata->inst_width << CQSPI_REG_RD_INSTR_TYPE_INSTR_LSB;
302 	rdreg |= f_pdata->addr_width << CQSPI_REG_RD_INSTR_TYPE_ADDR_LSB;
303 	rdreg |= f_pdata->data_width << CQSPI_REG_RD_INSTR_TYPE_DATA_LSB;
304 
305 	return rdreg;
306 }
307 
cqspi_calc_dummy(const struct spi_mem_op * op,bool dtr)308 static unsigned int cqspi_calc_dummy(const struct spi_mem_op *op, bool dtr)
309 {
310 	unsigned int dummy_clk;
311 
312 	if (!op->dummy.nbytes)
313 		return 0;
314 
315 	dummy_clk = op->dummy.nbytes * (8 / op->dummy.buswidth);
316 	if (dtr)
317 		dummy_clk /= 2;
318 
319 	return dummy_clk;
320 }
321 
cqspi_set_protocol(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)322 static int cqspi_set_protocol(struct cqspi_flash_pdata *f_pdata,
323 			      const struct spi_mem_op *op)
324 {
325 	f_pdata->inst_width = CQSPI_INST_TYPE_SINGLE;
326 	f_pdata->addr_width = CQSPI_INST_TYPE_SINGLE;
327 	f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
328 
329 	/*
330 	 * For an op to be DTR, cmd phase along with every other non-empty
331 	 * phase should have dtr field set to 1. If an op phase has zero
332 	 * nbytes, ignore its dtr field; otherwise, check its dtr field.
333 	 */
334 	f_pdata->dtr = op->cmd.dtr &&
335 		       (!op->addr.nbytes || op->addr.dtr) &&
336 		       (!op->data.nbytes || op->data.dtr);
337 
338 	switch (op->data.buswidth) {
339 	case 0:
340 		break;
341 	case 1:
342 		f_pdata->data_width = CQSPI_INST_TYPE_SINGLE;
343 		break;
344 	case 2:
345 		f_pdata->data_width = CQSPI_INST_TYPE_DUAL;
346 		break;
347 	case 4:
348 		f_pdata->data_width = CQSPI_INST_TYPE_QUAD;
349 		break;
350 	case 8:
351 		f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
352 		break;
353 	default:
354 		return -EINVAL;
355 	}
356 
357 	/* Right now we only support 8-8-8 DTR mode. */
358 	if (f_pdata->dtr) {
359 		switch (op->cmd.buswidth) {
360 		case 0:
361 			break;
362 		case 8:
363 			f_pdata->inst_width = CQSPI_INST_TYPE_OCTAL;
364 			break;
365 		default:
366 			return -EINVAL;
367 		}
368 
369 		switch (op->addr.buswidth) {
370 		case 0:
371 			break;
372 		case 8:
373 			f_pdata->addr_width = CQSPI_INST_TYPE_OCTAL;
374 			break;
375 		default:
376 			return -EINVAL;
377 		}
378 
379 		switch (op->data.buswidth) {
380 		case 0:
381 			break;
382 		case 8:
383 			f_pdata->data_width = CQSPI_INST_TYPE_OCTAL;
384 			break;
385 		default:
386 			return -EINVAL;
387 		}
388 	}
389 
390 	return 0;
391 }
392 
cqspi_wait_idle(struct cqspi_st * cqspi)393 static int cqspi_wait_idle(struct cqspi_st *cqspi)
394 {
395 	const unsigned int poll_idle_retry = 3;
396 	unsigned int count = 0;
397 	unsigned long timeout;
398 
399 	timeout = jiffies + msecs_to_jiffies(CQSPI_TIMEOUT_MS);
400 	while (1) {
401 		/*
402 		 * Read few times in succession to ensure the controller
403 		 * is indeed idle, that is, the bit does not transition
404 		 * low again.
405 		 */
406 		if (cqspi_is_idle(cqspi))
407 			count++;
408 		else
409 			count = 0;
410 
411 		if (count >= poll_idle_retry)
412 			return 0;
413 
414 		if (time_after(jiffies, timeout)) {
415 			/* Timeout, in busy mode. */
416 			dev_err(&cqspi->pdev->dev,
417 				"QSPI is still busy after %dms timeout.\n",
418 				CQSPI_TIMEOUT_MS);
419 			return -ETIMEDOUT;
420 		}
421 
422 		cpu_relax();
423 	}
424 }
425 
cqspi_exec_flash_cmd(struct cqspi_st * cqspi,unsigned int reg)426 static int cqspi_exec_flash_cmd(struct cqspi_st *cqspi, unsigned int reg)
427 {
428 	void __iomem *reg_base = cqspi->iobase;
429 	int ret;
430 
431 	/* Write the CMDCTRL without start execution. */
432 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
433 	/* Start execute */
434 	reg |= CQSPI_REG_CMDCTRL_EXECUTE_MASK;
435 	writel(reg, reg_base + CQSPI_REG_CMDCTRL);
436 
437 	/* Polling for completion. */
438 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_CMDCTRL,
439 				 CQSPI_REG_CMDCTRL_INPROGRESS_MASK, 1);
440 	if (ret) {
441 		dev_err(&cqspi->pdev->dev,
442 			"Flash command execution timed out.\n");
443 		return ret;
444 	}
445 
446 	/* Polling QSPI idle status. */
447 	return cqspi_wait_idle(cqspi);
448 }
449 
cqspi_setup_opcode_ext(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift)450 static int cqspi_setup_opcode_ext(struct cqspi_flash_pdata *f_pdata,
451 				  const struct spi_mem_op *op,
452 				  unsigned int shift)
453 {
454 	struct cqspi_st *cqspi = f_pdata->cqspi;
455 	void __iomem *reg_base = cqspi->iobase;
456 	unsigned int reg;
457 	u8 ext;
458 
459 	if (op->cmd.nbytes != 2)
460 		return -EINVAL;
461 
462 	/* Opcode extension is the LSB. */
463 	ext = op->cmd.opcode & 0xff;
464 
465 	reg = readl(reg_base + CQSPI_REG_OP_EXT_LOWER);
466 	reg &= ~(0xff << shift);
467 	reg |= ext << shift;
468 	writel(reg, reg_base + CQSPI_REG_OP_EXT_LOWER);
469 
470 	return 0;
471 }
472 
cqspi_enable_dtr(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op,unsigned int shift,bool enable)473 static int cqspi_enable_dtr(struct cqspi_flash_pdata *f_pdata,
474 			    const struct spi_mem_op *op, unsigned int shift,
475 			    bool enable)
476 {
477 	struct cqspi_st *cqspi = f_pdata->cqspi;
478 	void __iomem *reg_base = cqspi->iobase;
479 	unsigned int reg;
480 	int ret;
481 
482 	reg = readl(reg_base + CQSPI_REG_CONFIG);
483 
484 	/*
485 	 * We enable dual byte opcode here. The callers have to set up the
486 	 * extension opcode based on which type of operation it is.
487 	 */
488 	if (enable) {
489 		reg |= CQSPI_REG_CONFIG_DTR_PROTO;
490 		reg |= CQSPI_REG_CONFIG_DUAL_OPCODE;
491 
492 		/* Set up command opcode extension. */
493 		ret = cqspi_setup_opcode_ext(f_pdata, op, shift);
494 		if (ret)
495 			return ret;
496 	} else {
497 		reg &= ~CQSPI_REG_CONFIG_DTR_PROTO;
498 		reg &= ~CQSPI_REG_CONFIG_DUAL_OPCODE;
499 	}
500 
501 	writel(reg, reg_base + CQSPI_REG_CONFIG);
502 
503 	return cqspi_wait_idle(cqspi);
504 }
505 
cqspi_command_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)506 static int cqspi_command_read(struct cqspi_flash_pdata *f_pdata,
507 			      const struct spi_mem_op *op)
508 {
509 	struct cqspi_st *cqspi = f_pdata->cqspi;
510 	void __iomem *reg_base = cqspi->iobase;
511 	u8 *rxbuf = op->data.buf.in;
512 	u8 opcode;
513 	size_t n_rx = op->data.nbytes;
514 	unsigned int rdreg;
515 	unsigned int reg;
516 	unsigned int dummy_clk;
517 	size_t read_len;
518 	int status;
519 
520 	status = cqspi_set_protocol(f_pdata, op);
521 	if (status)
522 		return status;
523 
524 	status = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
525 				  f_pdata->dtr);
526 	if (status)
527 		return status;
528 
529 	if (!n_rx || n_rx > CQSPI_STIG_DATA_LEN_MAX || !rxbuf) {
530 		dev_err(&cqspi->pdev->dev,
531 			"Invalid input argument, len %zu rxbuf 0x%p\n",
532 			n_rx, rxbuf);
533 		return -EINVAL;
534 	}
535 
536 	if (f_pdata->dtr)
537 		opcode = op->cmd.opcode >> 8;
538 	else
539 		opcode = op->cmd.opcode;
540 
541 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
542 
543 	rdreg = cqspi_calc_rdreg(f_pdata);
544 	writel(rdreg, reg_base + CQSPI_REG_RD_INSTR);
545 
546 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
547 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
548 		return -EOPNOTSUPP;
549 
550 	if (dummy_clk)
551 		reg |= (dummy_clk & CQSPI_REG_CMDCTRL_DUMMY_MASK)
552 		     << CQSPI_REG_CMDCTRL_DUMMY_LSB;
553 
554 	reg |= (0x1 << CQSPI_REG_CMDCTRL_RD_EN_LSB);
555 
556 	/* 0 means 1 byte. */
557 	reg |= (((n_rx - 1) & CQSPI_REG_CMDCTRL_RD_BYTES_MASK)
558 		<< CQSPI_REG_CMDCTRL_RD_BYTES_LSB);
559 	status = cqspi_exec_flash_cmd(cqspi, reg);
560 	if (status)
561 		return status;
562 
563 	reg = readl(reg_base + CQSPI_REG_CMDREADDATALOWER);
564 
565 	/* Put the read value into rx_buf */
566 	read_len = (n_rx > 4) ? 4 : n_rx;
567 	memcpy(rxbuf, &reg, read_len);
568 	rxbuf += read_len;
569 
570 	if (n_rx > 4) {
571 		reg = readl(reg_base + CQSPI_REG_CMDREADDATAUPPER);
572 
573 		read_len = n_rx - read_len;
574 		memcpy(rxbuf, &reg, read_len);
575 	}
576 
577 	return 0;
578 }
579 
cqspi_command_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)580 static int cqspi_command_write(struct cqspi_flash_pdata *f_pdata,
581 			       const struct spi_mem_op *op)
582 {
583 	struct cqspi_st *cqspi = f_pdata->cqspi;
584 	void __iomem *reg_base = cqspi->iobase;
585 	u8 opcode;
586 	const u8 *txbuf = op->data.buf.out;
587 	size_t n_tx = op->data.nbytes;
588 	unsigned int reg;
589 	unsigned int data;
590 	size_t write_len;
591 	int ret;
592 
593 	ret = cqspi_set_protocol(f_pdata, op);
594 	if (ret)
595 		return ret;
596 
597 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_STIG_LSB,
598 			       f_pdata->dtr);
599 	if (ret)
600 		return ret;
601 
602 	if (n_tx > CQSPI_STIG_DATA_LEN_MAX || (n_tx && !txbuf)) {
603 		dev_err(&cqspi->pdev->dev,
604 			"Invalid input argument, cmdlen %zu txbuf 0x%p\n",
605 			n_tx, txbuf);
606 		return -EINVAL;
607 	}
608 
609 	reg = cqspi_calc_rdreg(f_pdata);
610 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
611 
612 	if (f_pdata->dtr)
613 		opcode = op->cmd.opcode >> 8;
614 	else
615 		opcode = op->cmd.opcode;
616 
617 	reg = opcode << CQSPI_REG_CMDCTRL_OPCODE_LSB;
618 
619 	if (op->addr.nbytes) {
620 		reg |= (0x1 << CQSPI_REG_CMDCTRL_ADDR_EN_LSB);
621 		reg |= ((op->addr.nbytes - 1) &
622 			CQSPI_REG_CMDCTRL_ADD_BYTES_MASK)
623 			<< CQSPI_REG_CMDCTRL_ADD_BYTES_LSB;
624 
625 		writel(op->addr.val, reg_base + CQSPI_REG_CMDADDRESS);
626 	}
627 
628 	if (n_tx) {
629 		reg |= (0x1 << CQSPI_REG_CMDCTRL_WR_EN_LSB);
630 		reg |= ((n_tx - 1) & CQSPI_REG_CMDCTRL_WR_BYTES_MASK)
631 			<< CQSPI_REG_CMDCTRL_WR_BYTES_LSB;
632 		data = 0;
633 		write_len = (n_tx > 4) ? 4 : n_tx;
634 		memcpy(&data, txbuf, write_len);
635 		txbuf += write_len;
636 		writel(data, reg_base + CQSPI_REG_CMDWRITEDATALOWER);
637 
638 		if (n_tx > 4) {
639 			data = 0;
640 			write_len = n_tx - 4;
641 			memcpy(&data, txbuf, write_len);
642 			writel(data, reg_base + CQSPI_REG_CMDWRITEDATAUPPER);
643 		}
644 	}
645 
646 	return cqspi_exec_flash_cmd(cqspi, reg);
647 }
648 
cqspi_read_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)649 static int cqspi_read_setup(struct cqspi_flash_pdata *f_pdata,
650 			    const struct spi_mem_op *op)
651 {
652 	struct cqspi_st *cqspi = f_pdata->cqspi;
653 	void __iomem *reg_base = cqspi->iobase;
654 	unsigned int dummy_clk = 0;
655 	unsigned int reg;
656 	int ret;
657 	u8 opcode;
658 
659 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_READ_LSB,
660 			       f_pdata->dtr);
661 	if (ret)
662 		return ret;
663 
664 	if (f_pdata->dtr)
665 		opcode = op->cmd.opcode >> 8;
666 	else
667 		opcode = op->cmd.opcode;
668 
669 	reg = opcode << CQSPI_REG_RD_INSTR_OPCODE_LSB;
670 	reg |= cqspi_calc_rdreg(f_pdata);
671 
672 	/* Setup dummy clock cycles */
673 	dummy_clk = cqspi_calc_dummy(op, f_pdata->dtr);
674 
675 	if (dummy_clk > CQSPI_DUMMY_CLKS_MAX)
676 		return -EOPNOTSUPP;
677 
678 	if (dummy_clk)
679 		reg |= (dummy_clk & CQSPI_REG_RD_INSTR_DUMMY_MASK)
680 		       << CQSPI_REG_RD_INSTR_DUMMY_LSB;
681 
682 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
683 
684 	/* Set address width */
685 	reg = readl(reg_base + CQSPI_REG_SIZE);
686 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
687 	reg |= (op->addr.nbytes - 1);
688 	writel(reg, reg_base + CQSPI_REG_SIZE);
689 	return 0;
690 }
691 
cqspi_indirect_read_execute(struct cqspi_flash_pdata * f_pdata,u8 * rxbuf,loff_t from_addr,const size_t n_rx)692 static int cqspi_indirect_read_execute(struct cqspi_flash_pdata *f_pdata,
693 				       u8 *rxbuf, loff_t from_addr,
694 				       const size_t n_rx)
695 {
696 	struct cqspi_st *cqspi = f_pdata->cqspi;
697 	struct device *dev = &cqspi->pdev->dev;
698 	void __iomem *reg_base = cqspi->iobase;
699 	void __iomem *ahb_base = cqspi->ahb_base;
700 	unsigned int remaining = n_rx;
701 	unsigned int mod_bytes = n_rx % 4;
702 	unsigned int bytes_to_read = 0;
703 	u8 *rxbuf_end = rxbuf + n_rx;
704 	int ret = 0;
705 
706 	writel(from_addr, reg_base + CQSPI_REG_INDIRECTRDSTARTADDR);
707 	writel(remaining, reg_base + CQSPI_REG_INDIRECTRDBYTES);
708 
709 	/* Clear all interrupts. */
710 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
711 
712 	writel(CQSPI_IRQ_MASK_RD, reg_base + CQSPI_REG_IRQMASK);
713 
714 	reinit_completion(&cqspi->transfer_complete);
715 	writel(CQSPI_REG_INDIRECTRD_START_MASK,
716 	       reg_base + CQSPI_REG_INDIRECTRD);
717 
718 	while (remaining > 0) {
719 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
720 						 msecs_to_jiffies(CQSPI_READ_TIMEOUT_MS)))
721 			ret = -ETIMEDOUT;
722 
723 		bytes_to_read = cqspi_get_rd_sram_level(cqspi);
724 
725 		if (ret && bytes_to_read == 0) {
726 			dev_err(dev, "Indirect read timeout, no bytes\n");
727 			goto failrd;
728 		}
729 
730 		while (bytes_to_read != 0) {
731 			unsigned int word_remain = round_down(remaining, 4);
732 
733 			bytes_to_read *= cqspi->fifo_width;
734 			bytes_to_read = bytes_to_read > remaining ?
735 					remaining : bytes_to_read;
736 			bytes_to_read = round_down(bytes_to_read, 4);
737 			/* Read 4 byte word chunks then single bytes */
738 			if (bytes_to_read) {
739 				ioread32_rep(ahb_base, rxbuf,
740 					     (bytes_to_read / 4));
741 			} else if (!word_remain && mod_bytes) {
742 				unsigned int temp = ioread32(ahb_base);
743 
744 				bytes_to_read = mod_bytes;
745 				memcpy(rxbuf, &temp, min((unsigned int)
746 							 (rxbuf_end - rxbuf),
747 							 bytes_to_read));
748 			}
749 			rxbuf += bytes_to_read;
750 			remaining -= bytes_to_read;
751 			bytes_to_read = cqspi_get_rd_sram_level(cqspi);
752 		}
753 
754 		if (remaining > 0)
755 			reinit_completion(&cqspi->transfer_complete);
756 	}
757 
758 	/* Check indirect done status */
759 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTRD,
760 				 CQSPI_REG_INDIRECTRD_DONE_MASK, 0);
761 	if (ret) {
762 		dev_err(dev, "Indirect read completion error (%i)\n", ret);
763 		goto failrd;
764 	}
765 
766 	/* Disable interrupt */
767 	writel(0, reg_base + CQSPI_REG_IRQMASK);
768 
769 	/* Clear indirect completion status */
770 	writel(CQSPI_REG_INDIRECTRD_DONE_MASK, reg_base + CQSPI_REG_INDIRECTRD);
771 
772 	return 0;
773 
774 failrd:
775 	/* Disable interrupt */
776 	writel(0, reg_base + CQSPI_REG_IRQMASK);
777 
778 	/* Cancel the indirect read */
779 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
780 	       reg_base + CQSPI_REG_INDIRECTRD);
781 	return ret;
782 }
783 
cqspi_write_setup(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)784 static int cqspi_write_setup(struct cqspi_flash_pdata *f_pdata,
785 			     const struct spi_mem_op *op)
786 {
787 	unsigned int reg;
788 	int ret;
789 	struct cqspi_st *cqspi = f_pdata->cqspi;
790 	void __iomem *reg_base = cqspi->iobase;
791 	u8 opcode;
792 
793 	ret = cqspi_enable_dtr(f_pdata, op, CQSPI_REG_OP_EXT_WRITE_LSB,
794 			       f_pdata->dtr);
795 	if (ret)
796 		return ret;
797 
798 	if (f_pdata->dtr)
799 		opcode = op->cmd.opcode >> 8;
800 	else
801 		opcode = op->cmd.opcode;
802 
803 	/* Set opcode. */
804 	reg = opcode << CQSPI_REG_WR_INSTR_OPCODE_LSB;
805 	reg |= f_pdata->data_width << CQSPI_REG_WR_INSTR_TYPE_DATA_LSB;
806 	reg |= f_pdata->addr_width << CQSPI_REG_WR_INSTR_TYPE_ADDR_LSB;
807 	writel(reg, reg_base + CQSPI_REG_WR_INSTR);
808 	reg = cqspi_calc_rdreg(f_pdata);
809 	writel(reg, reg_base + CQSPI_REG_RD_INSTR);
810 
811 	/*
812 	 * SPI NAND flashes require the address of the status register to be
813 	 * passed in the Read SR command. Also, some SPI NOR flashes like the
814 	 * cypress Semper flash expect a 4-byte dummy address in the Read SR
815 	 * command in DTR mode.
816 	 *
817 	 * But this controller does not support address phase in the Read SR
818 	 * command when doing auto-HW polling. So, disable write completion
819 	 * polling on the controller's side. spinand and spi-nor will take
820 	 * care of polling the status register.
821 	 */
822 	reg = readl(reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
823 	reg |= CQSPI_REG_WR_DISABLE_AUTO_POLL;
824 	writel(reg, reg_base + CQSPI_REG_WR_COMPLETION_CTRL);
825 
826 	reg = readl(reg_base + CQSPI_REG_SIZE);
827 	reg &= ~CQSPI_REG_SIZE_ADDRESS_MASK;
828 	reg |= (op->addr.nbytes - 1);
829 	writel(reg, reg_base + CQSPI_REG_SIZE);
830 	return 0;
831 }
832 
cqspi_indirect_write_execute(struct cqspi_flash_pdata * f_pdata,loff_t to_addr,const u8 * txbuf,const size_t n_tx)833 static int cqspi_indirect_write_execute(struct cqspi_flash_pdata *f_pdata,
834 					loff_t to_addr, const u8 *txbuf,
835 					const size_t n_tx)
836 {
837 	struct cqspi_st *cqspi = f_pdata->cqspi;
838 	struct device *dev = &cqspi->pdev->dev;
839 	void __iomem *reg_base = cqspi->iobase;
840 	unsigned int remaining = n_tx;
841 	unsigned int write_bytes;
842 	int ret;
843 
844 	writel(to_addr, reg_base + CQSPI_REG_INDIRECTWRSTARTADDR);
845 	writel(remaining, reg_base + CQSPI_REG_INDIRECTWRBYTES);
846 
847 	/* Clear all interrupts. */
848 	writel(CQSPI_IRQ_STATUS_MASK, reg_base + CQSPI_REG_IRQSTATUS);
849 
850 	writel(CQSPI_IRQ_MASK_WR, reg_base + CQSPI_REG_IRQMASK);
851 
852 	reinit_completion(&cqspi->transfer_complete);
853 	writel(CQSPI_REG_INDIRECTWR_START_MASK,
854 	       reg_base + CQSPI_REG_INDIRECTWR);
855 	/*
856 	 * As per 66AK2G02 TRM SPRUHY8F section 11.15.5.3 Indirect Access
857 	 * Controller programming sequence, couple of cycles of
858 	 * QSPI_REF_CLK delay is required for the above bit to
859 	 * be internally synchronized by the QSPI module. Provide 5
860 	 * cycles of delay.
861 	 */
862 	if (cqspi->wr_delay)
863 		ndelay(cqspi->wr_delay);
864 
865 	while (remaining > 0) {
866 		size_t write_words, mod_bytes;
867 
868 		write_bytes = remaining;
869 		write_words = write_bytes / 4;
870 		mod_bytes = write_bytes % 4;
871 		/* Write 4 bytes at a time then single bytes. */
872 		if (write_words) {
873 			iowrite32_rep(cqspi->ahb_base, txbuf, write_words);
874 			txbuf += (write_words * 4);
875 		}
876 		if (mod_bytes) {
877 			unsigned int temp = 0xFFFFFFFF;
878 
879 			memcpy(&temp, txbuf, mod_bytes);
880 			iowrite32(temp, cqspi->ahb_base);
881 			txbuf += mod_bytes;
882 		}
883 
884 		if (!wait_for_completion_timeout(&cqspi->transfer_complete,
885 						 msecs_to_jiffies(CQSPI_TIMEOUT_MS))) {
886 			dev_err(dev, "Indirect write timeout\n");
887 			ret = -ETIMEDOUT;
888 			goto failwr;
889 		}
890 
891 		remaining -= write_bytes;
892 
893 		if (remaining > 0)
894 			reinit_completion(&cqspi->transfer_complete);
895 	}
896 
897 	/* Check indirect done status */
898 	ret = cqspi_wait_for_bit(reg_base + CQSPI_REG_INDIRECTWR,
899 				 CQSPI_REG_INDIRECTWR_DONE_MASK, 0);
900 	if (ret) {
901 		dev_err(dev, "Indirect write completion error (%i)\n", ret);
902 		goto failwr;
903 	}
904 
905 	/* Disable interrupt. */
906 	writel(0, reg_base + CQSPI_REG_IRQMASK);
907 
908 	/* Clear indirect completion status */
909 	writel(CQSPI_REG_INDIRECTWR_DONE_MASK, reg_base + CQSPI_REG_INDIRECTWR);
910 
911 	cqspi_wait_idle(cqspi);
912 
913 	return 0;
914 
915 failwr:
916 	/* Disable interrupt. */
917 	writel(0, reg_base + CQSPI_REG_IRQMASK);
918 
919 	/* Cancel the indirect write */
920 	writel(CQSPI_REG_INDIRECTWR_CANCEL_MASK,
921 	       reg_base + CQSPI_REG_INDIRECTWR);
922 	return ret;
923 }
924 
cqspi_chipselect(struct cqspi_flash_pdata * f_pdata)925 static void cqspi_chipselect(struct cqspi_flash_pdata *f_pdata)
926 {
927 	struct cqspi_st *cqspi = f_pdata->cqspi;
928 	void __iomem *reg_base = cqspi->iobase;
929 	unsigned int chip_select = f_pdata->cs;
930 	unsigned int reg;
931 
932 	reg = readl(reg_base + CQSPI_REG_CONFIG);
933 	if (cqspi->is_decoded_cs) {
934 		reg |= CQSPI_REG_CONFIG_DECODE_MASK;
935 	} else {
936 		reg &= ~CQSPI_REG_CONFIG_DECODE_MASK;
937 
938 		/* Convert CS if without decoder.
939 		 * CS0 to 4b'1110
940 		 * CS1 to 4b'1101
941 		 * CS2 to 4b'1011
942 		 * CS3 to 4b'0111
943 		 */
944 		chip_select = 0xF & ~(1 << chip_select);
945 	}
946 
947 	reg &= ~(CQSPI_REG_CONFIG_CHIPSELECT_MASK
948 		 << CQSPI_REG_CONFIG_CHIPSELECT_LSB);
949 	reg |= (chip_select & CQSPI_REG_CONFIG_CHIPSELECT_MASK)
950 	    << CQSPI_REG_CONFIG_CHIPSELECT_LSB;
951 	writel(reg, reg_base + CQSPI_REG_CONFIG);
952 }
953 
calculate_ticks_for_ns(const unsigned int ref_clk_hz,const unsigned int ns_val)954 static unsigned int calculate_ticks_for_ns(const unsigned int ref_clk_hz,
955 					   const unsigned int ns_val)
956 {
957 	unsigned int ticks;
958 
959 	ticks = ref_clk_hz / 1000;	/* kHz */
960 	ticks = DIV_ROUND_UP(ticks * ns_val, 1000000);
961 
962 	return ticks;
963 }
964 
cqspi_delay(struct cqspi_flash_pdata * f_pdata)965 static void cqspi_delay(struct cqspi_flash_pdata *f_pdata)
966 {
967 	struct cqspi_st *cqspi = f_pdata->cqspi;
968 	void __iomem *iobase = cqspi->iobase;
969 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
970 	unsigned int tshsl, tchsh, tslch, tsd2d;
971 	unsigned int reg;
972 	unsigned int tsclk;
973 
974 	/* calculate the number of ref ticks for one sclk tick */
975 	tsclk = DIV_ROUND_UP(ref_clk_hz, cqspi->sclk);
976 
977 	tshsl = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tshsl_ns);
978 	/* this particular value must be at least one sclk */
979 	if (tshsl < tsclk)
980 		tshsl = tsclk;
981 
982 	tchsh = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tchsh_ns);
983 	tslch = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tslch_ns);
984 	tsd2d = calculate_ticks_for_ns(ref_clk_hz, f_pdata->tsd2d_ns);
985 
986 	reg = (tshsl & CQSPI_REG_DELAY_TSHSL_MASK)
987 	       << CQSPI_REG_DELAY_TSHSL_LSB;
988 	reg |= (tchsh & CQSPI_REG_DELAY_TCHSH_MASK)
989 		<< CQSPI_REG_DELAY_TCHSH_LSB;
990 	reg |= (tslch & CQSPI_REG_DELAY_TSLCH_MASK)
991 		<< CQSPI_REG_DELAY_TSLCH_LSB;
992 	reg |= (tsd2d & CQSPI_REG_DELAY_TSD2D_MASK)
993 		<< CQSPI_REG_DELAY_TSD2D_LSB;
994 	writel(reg, iobase + CQSPI_REG_DELAY);
995 }
996 
cqspi_config_baudrate_div(struct cqspi_st * cqspi)997 static void cqspi_config_baudrate_div(struct cqspi_st *cqspi)
998 {
999 	const unsigned int ref_clk_hz = cqspi->master_ref_clk_hz;
1000 	void __iomem *reg_base = cqspi->iobase;
1001 	u32 reg, div;
1002 
1003 	/* Recalculate the baudrate divisor based on QSPI specification. */
1004 	div = DIV_ROUND_UP(ref_clk_hz, 2 * cqspi->sclk) - 1;
1005 
1006 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1007 	reg &= ~(CQSPI_REG_CONFIG_BAUD_MASK << CQSPI_REG_CONFIG_BAUD_LSB);
1008 	reg |= (div & CQSPI_REG_CONFIG_BAUD_MASK) << CQSPI_REG_CONFIG_BAUD_LSB;
1009 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1010 }
1011 
cqspi_readdata_capture(struct cqspi_st * cqspi,const bool bypass,const unsigned int delay)1012 static void cqspi_readdata_capture(struct cqspi_st *cqspi,
1013 				   const bool bypass,
1014 				   const unsigned int delay)
1015 {
1016 	void __iomem *reg_base = cqspi->iobase;
1017 	unsigned int reg;
1018 
1019 	reg = readl(reg_base + CQSPI_REG_READCAPTURE);
1020 
1021 	if (bypass)
1022 		reg |= (1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1023 	else
1024 		reg &= ~(1 << CQSPI_REG_READCAPTURE_BYPASS_LSB);
1025 
1026 	reg &= ~(CQSPI_REG_READCAPTURE_DELAY_MASK
1027 		 << CQSPI_REG_READCAPTURE_DELAY_LSB);
1028 
1029 	reg |= (delay & CQSPI_REG_READCAPTURE_DELAY_MASK)
1030 		<< CQSPI_REG_READCAPTURE_DELAY_LSB;
1031 
1032 	writel(reg, reg_base + CQSPI_REG_READCAPTURE);
1033 }
1034 
cqspi_controller_enable(struct cqspi_st * cqspi,bool enable)1035 static void cqspi_controller_enable(struct cqspi_st *cqspi, bool enable)
1036 {
1037 	void __iomem *reg_base = cqspi->iobase;
1038 	unsigned int reg;
1039 
1040 	reg = readl(reg_base + CQSPI_REG_CONFIG);
1041 
1042 	if (enable)
1043 		reg |= CQSPI_REG_CONFIG_ENABLE_MASK;
1044 	else
1045 		reg &= ~CQSPI_REG_CONFIG_ENABLE_MASK;
1046 
1047 	writel(reg, reg_base + CQSPI_REG_CONFIG);
1048 }
1049 
cqspi_configure(struct cqspi_flash_pdata * f_pdata,unsigned long sclk)1050 static void cqspi_configure(struct cqspi_flash_pdata *f_pdata,
1051 			    unsigned long sclk)
1052 {
1053 	struct cqspi_st *cqspi = f_pdata->cqspi;
1054 	int switch_cs = (cqspi->current_cs != f_pdata->cs);
1055 	int switch_ck = (cqspi->sclk != sclk);
1056 
1057 	if (switch_cs || switch_ck)
1058 		cqspi_controller_enable(cqspi, 0);
1059 
1060 	/* Switch chip select. */
1061 	if (switch_cs) {
1062 		cqspi->current_cs = f_pdata->cs;
1063 		cqspi_chipselect(f_pdata);
1064 	}
1065 
1066 	/* Setup baudrate divisor and delays */
1067 	if (switch_ck) {
1068 		cqspi->sclk = sclk;
1069 		cqspi_config_baudrate_div(cqspi);
1070 		cqspi_delay(f_pdata);
1071 		cqspi_readdata_capture(cqspi, !cqspi->rclk_en,
1072 				       f_pdata->read_delay);
1073 	}
1074 
1075 	if (switch_cs || switch_ck)
1076 		cqspi_controller_enable(cqspi, 1);
1077 }
1078 
cqspi_write(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1079 static ssize_t cqspi_write(struct cqspi_flash_pdata *f_pdata,
1080 			   const struct spi_mem_op *op)
1081 {
1082 	struct cqspi_st *cqspi = f_pdata->cqspi;
1083 	loff_t to = op->addr.val;
1084 	size_t len = op->data.nbytes;
1085 	const u_char *buf = op->data.buf.out;
1086 	int ret;
1087 
1088 	ret = cqspi_set_protocol(f_pdata, op);
1089 	if (ret)
1090 		return ret;
1091 
1092 	ret = cqspi_write_setup(f_pdata, op);
1093 	if (ret)
1094 		return ret;
1095 
1096 	/*
1097 	 * Some flashes like the Cypress Semper flash expect a dummy 4-byte
1098 	 * address (all 0s) with the read status register command in DTR mode.
1099 	 * But this controller does not support sending dummy address bytes to
1100 	 * the flash when it is polling the write completion register in DTR
1101 	 * mode. So, we can not use direct mode when in DTR mode for writing
1102 	 * data.
1103 	 */
1104 	if (!f_pdata->dtr && cqspi->use_direct_mode &&
1105 	    ((to + len) <= cqspi->ahb_size)) {
1106 		memcpy_toio(cqspi->ahb_base + to, buf, len);
1107 		return cqspi_wait_idle(cqspi);
1108 	}
1109 
1110 	return cqspi_indirect_write_execute(f_pdata, to, buf, len);
1111 }
1112 
cqspi_rx_dma_callback(void * param)1113 static void cqspi_rx_dma_callback(void *param)
1114 {
1115 	struct cqspi_st *cqspi = param;
1116 
1117 	complete(&cqspi->rx_dma_complete);
1118 }
1119 
cqspi_direct_read_execute(struct cqspi_flash_pdata * f_pdata,u_char * buf,loff_t from,size_t len)1120 static int cqspi_direct_read_execute(struct cqspi_flash_pdata *f_pdata,
1121 				     u_char *buf, loff_t from, size_t len)
1122 {
1123 	struct cqspi_st *cqspi = f_pdata->cqspi;
1124 	struct device *dev = &cqspi->pdev->dev;
1125 	enum dma_ctrl_flags flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT;
1126 	dma_addr_t dma_src = (dma_addr_t)cqspi->mmap_phys_base + from;
1127 	int ret = 0;
1128 	struct dma_async_tx_descriptor *tx;
1129 	dma_cookie_t cookie;
1130 	dma_addr_t dma_dst;
1131 	struct device *ddev;
1132 
1133 	if (!cqspi->rx_chan || !virt_addr_valid(buf)) {
1134 		memcpy_fromio(buf, cqspi->ahb_base + from, len);
1135 		return 0;
1136 	}
1137 
1138 	ddev = cqspi->rx_chan->device->dev;
1139 	dma_dst = dma_map_single(ddev, buf, len, DMA_FROM_DEVICE);
1140 	if (dma_mapping_error(ddev, dma_dst)) {
1141 		dev_err(dev, "dma mapping failed\n");
1142 		return -ENOMEM;
1143 	}
1144 	tx = dmaengine_prep_dma_memcpy(cqspi->rx_chan, dma_dst, dma_src,
1145 				       len, flags);
1146 	if (!tx) {
1147 		dev_err(dev, "device_prep_dma_memcpy error\n");
1148 		ret = -EIO;
1149 		goto err_unmap;
1150 	}
1151 
1152 	tx->callback = cqspi_rx_dma_callback;
1153 	tx->callback_param = cqspi;
1154 	cookie = tx->tx_submit(tx);
1155 	reinit_completion(&cqspi->rx_dma_complete);
1156 
1157 	ret = dma_submit_error(cookie);
1158 	if (ret) {
1159 		dev_err(dev, "dma_submit_error %d\n", cookie);
1160 		ret = -EIO;
1161 		goto err_unmap;
1162 	}
1163 
1164 	dma_async_issue_pending(cqspi->rx_chan);
1165 	if (!wait_for_completion_timeout(&cqspi->rx_dma_complete,
1166 					 msecs_to_jiffies(max_t(size_t, len, 500)))) {
1167 		dmaengine_terminate_sync(cqspi->rx_chan);
1168 		dev_err(dev, "DMA wait_for_completion_timeout\n");
1169 		ret = -ETIMEDOUT;
1170 		goto err_unmap;
1171 	}
1172 
1173 err_unmap:
1174 	dma_unmap_single(ddev, dma_dst, len, DMA_FROM_DEVICE);
1175 
1176 	return ret;
1177 }
1178 
cqspi_read(struct cqspi_flash_pdata * f_pdata,const struct spi_mem_op * op)1179 static ssize_t cqspi_read(struct cqspi_flash_pdata *f_pdata,
1180 			  const struct spi_mem_op *op)
1181 {
1182 	struct cqspi_st *cqspi = f_pdata->cqspi;
1183 	loff_t from = op->addr.val;
1184 	size_t len = op->data.nbytes;
1185 	u_char *buf = op->data.buf.in;
1186 	int ret;
1187 
1188 	ret = cqspi_set_protocol(f_pdata, op);
1189 	if (ret)
1190 		return ret;
1191 
1192 	ret = cqspi_read_setup(f_pdata, op);
1193 	if (ret)
1194 		return ret;
1195 
1196 	if (cqspi->use_direct_mode && ((from + len) <= cqspi->ahb_size))
1197 		return cqspi_direct_read_execute(f_pdata, buf, from, len);
1198 
1199 	return cqspi_indirect_read_execute(f_pdata, buf, from, len);
1200 }
1201 
cqspi_mem_process(struct spi_mem * mem,const struct spi_mem_op * op)1202 static int cqspi_mem_process(struct spi_mem *mem, const struct spi_mem_op *op)
1203 {
1204 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1205 	struct cqspi_flash_pdata *f_pdata;
1206 
1207 	f_pdata = &cqspi->f_pdata[mem->spi->chip_select];
1208 	cqspi_configure(f_pdata, mem->spi->max_speed_hz);
1209 
1210 	if (op->data.dir == SPI_MEM_DATA_IN && op->data.buf.in) {
1211 		if (!op->addr.nbytes)
1212 			return cqspi_command_read(f_pdata, op);
1213 
1214 		return cqspi_read(f_pdata, op);
1215 	}
1216 
1217 	if (!op->addr.nbytes || !op->data.buf.out)
1218 		return cqspi_command_write(f_pdata, op);
1219 
1220 	return cqspi_write(f_pdata, op);
1221 }
1222 
cqspi_exec_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1223 static int cqspi_exec_mem_op(struct spi_mem *mem, const struct spi_mem_op *op)
1224 {
1225 	int ret;
1226 
1227 	ret = cqspi_mem_process(mem, op);
1228 	if (ret)
1229 		dev_err(&mem->spi->dev, "operation failed with %d\n", ret);
1230 
1231 	return ret;
1232 }
1233 
cqspi_supports_mem_op(struct spi_mem * mem,const struct spi_mem_op * op)1234 static bool cqspi_supports_mem_op(struct spi_mem *mem,
1235 				  const struct spi_mem_op *op)
1236 {
1237 	bool all_true, all_false;
1238 
1239 	/*
1240 	 * op->dummy.dtr is required for converting nbytes into ncycles.
1241 	 * Also, don't check the dtr field of the op phase having zero nbytes.
1242 	 */
1243 	all_true = op->cmd.dtr &&
1244 		   (!op->addr.nbytes || op->addr.dtr) &&
1245 		   (!op->dummy.nbytes || op->dummy.dtr) &&
1246 		   (!op->data.nbytes || op->data.dtr);
1247 
1248 	all_false = !op->cmd.dtr && !op->addr.dtr && !op->dummy.dtr &&
1249 		    !op->data.dtr;
1250 
1251 	/* Mixed DTR modes not supported. */
1252 	if (!(all_true || all_false))
1253 		return false;
1254 
1255 	if (all_true)
1256 		return spi_mem_dtr_supports_op(mem, op);
1257 	else
1258 		return spi_mem_default_supports_op(mem, op);
1259 }
1260 
cqspi_of_get_flash_pdata(struct platform_device * pdev,struct cqspi_flash_pdata * f_pdata,struct device_node * np)1261 static int cqspi_of_get_flash_pdata(struct platform_device *pdev,
1262 				    struct cqspi_flash_pdata *f_pdata,
1263 				    struct device_node *np)
1264 {
1265 	if (of_property_read_u32(np, "cdns,read-delay", &f_pdata->read_delay)) {
1266 		dev_err(&pdev->dev, "couldn't determine read-delay\n");
1267 		return -ENXIO;
1268 	}
1269 
1270 	if (of_property_read_u32(np, "cdns,tshsl-ns", &f_pdata->tshsl_ns)) {
1271 		dev_err(&pdev->dev, "couldn't determine tshsl-ns\n");
1272 		return -ENXIO;
1273 	}
1274 
1275 	if (of_property_read_u32(np, "cdns,tsd2d-ns", &f_pdata->tsd2d_ns)) {
1276 		dev_err(&pdev->dev, "couldn't determine tsd2d-ns\n");
1277 		return -ENXIO;
1278 	}
1279 
1280 	if (of_property_read_u32(np, "cdns,tchsh-ns", &f_pdata->tchsh_ns)) {
1281 		dev_err(&pdev->dev, "couldn't determine tchsh-ns\n");
1282 		return -ENXIO;
1283 	}
1284 
1285 	if (of_property_read_u32(np, "cdns,tslch-ns", &f_pdata->tslch_ns)) {
1286 		dev_err(&pdev->dev, "couldn't determine tslch-ns\n");
1287 		return -ENXIO;
1288 	}
1289 
1290 	if (of_property_read_u32(np, "spi-max-frequency", &f_pdata->clk_rate)) {
1291 		dev_err(&pdev->dev, "couldn't determine spi-max-frequency\n");
1292 		return -ENXIO;
1293 	}
1294 
1295 	return 0;
1296 }
1297 
cqspi_of_get_pdata(struct cqspi_st * cqspi)1298 static int cqspi_of_get_pdata(struct cqspi_st *cqspi)
1299 {
1300 	struct device *dev = &cqspi->pdev->dev;
1301 	struct device_node *np = dev->of_node;
1302 
1303 	cqspi->is_decoded_cs = of_property_read_bool(np, "cdns,is-decoded-cs");
1304 
1305 	if (of_property_read_u32(np, "cdns,fifo-depth", &cqspi->fifo_depth)) {
1306 		dev_err(dev, "couldn't determine fifo-depth\n");
1307 		return -ENXIO;
1308 	}
1309 
1310 	if (of_property_read_u32(np, "cdns,fifo-width", &cqspi->fifo_width)) {
1311 		dev_err(dev, "couldn't determine fifo-width\n");
1312 		return -ENXIO;
1313 	}
1314 
1315 	if (of_property_read_u32(np, "cdns,trigger-address",
1316 				 &cqspi->trigger_address)) {
1317 		dev_err(dev, "couldn't determine trigger-address\n");
1318 		return -ENXIO;
1319 	}
1320 
1321 	if (of_property_read_u32(np, "num-cs", &cqspi->num_chipselect))
1322 		cqspi->num_chipselect = CQSPI_MAX_CHIPSELECT;
1323 
1324 	cqspi->rclk_en = of_property_read_bool(np, "cdns,rclk-en");
1325 
1326 	return 0;
1327 }
1328 
cqspi_controller_init(struct cqspi_st * cqspi)1329 static void cqspi_controller_init(struct cqspi_st *cqspi)
1330 {
1331 	u32 reg;
1332 
1333 	cqspi_controller_enable(cqspi, 0);
1334 
1335 	/* Configure the remap address register, no remap */
1336 	writel(0, cqspi->iobase + CQSPI_REG_REMAP);
1337 
1338 	/* Disable all interrupts. */
1339 	writel(0, cqspi->iobase + CQSPI_REG_IRQMASK);
1340 
1341 	/* Configure the SRAM split to 1:1 . */
1342 	writel(cqspi->fifo_depth / 2, cqspi->iobase + CQSPI_REG_SRAMPARTITION);
1343 
1344 	/* Load indirect trigger address. */
1345 	writel(cqspi->trigger_address,
1346 	       cqspi->iobase + CQSPI_REG_INDIRECTTRIGGER);
1347 
1348 	/* Program read watermark -- 1/2 of the FIFO. */
1349 	writel(cqspi->fifo_depth * cqspi->fifo_width / 2,
1350 	       cqspi->iobase + CQSPI_REG_INDIRECTRDWATERMARK);
1351 	/* Program write watermark -- 1/8 of the FIFO. */
1352 	writel(cqspi->fifo_depth * cqspi->fifo_width / 8,
1353 	       cqspi->iobase + CQSPI_REG_INDIRECTWRWATERMARK);
1354 
1355 	/* Disable direct access controller */
1356 	if (!cqspi->use_direct_mode) {
1357 		reg = readl(cqspi->iobase + CQSPI_REG_CONFIG);
1358 		reg &= ~CQSPI_REG_CONFIG_ENB_DIR_ACC_CTRL;
1359 		writel(reg, cqspi->iobase + CQSPI_REG_CONFIG);
1360 	}
1361 
1362 	cqspi_controller_enable(cqspi, 1);
1363 }
1364 
cqspi_request_mmap_dma(struct cqspi_st * cqspi)1365 static int cqspi_request_mmap_dma(struct cqspi_st *cqspi)
1366 {
1367 	dma_cap_mask_t mask;
1368 
1369 	dma_cap_zero(mask);
1370 	dma_cap_set(DMA_MEMCPY, mask);
1371 
1372 	cqspi->rx_chan = dma_request_chan_by_mask(&mask);
1373 	if (IS_ERR(cqspi->rx_chan)) {
1374 		int ret = PTR_ERR(cqspi->rx_chan);
1375 		cqspi->rx_chan = NULL;
1376 		return dev_err_probe(&cqspi->pdev->dev, ret, "No Rx DMA available\n");
1377 	}
1378 	init_completion(&cqspi->rx_dma_complete);
1379 
1380 	return 0;
1381 }
1382 
cqspi_get_name(struct spi_mem * mem)1383 static const char *cqspi_get_name(struct spi_mem *mem)
1384 {
1385 	struct cqspi_st *cqspi = spi_master_get_devdata(mem->spi->master);
1386 	struct device *dev = &cqspi->pdev->dev;
1387 
1388 	return devm_kasprintf(dev, GFP_KERNEL, "%s.%d", dev_name(dev), mem->spi->chip_select);
1389 }
1390 
1391 static const struct spi_controller_mem_ops cqspi_mem_ops = {
1392 	.exec_op = cqspi_exec_mem_op,
1393 	.get_name = cqspi_get_name,
1394 	.supports_op = cqspi_supports_mem_op,
1395 };
1396 
cqspi_setup_flash(struct cqspi_st * cqspi)1397 static int cqspi_setup_flash(struct cqspi_st *cqspi)
1398 {
1399 	struct platform_device *pdev = cqspi->pdev;
1400 	struct device *dev = &pdev->dev;
1401 	struct device_node *np = dev->of_node;
1402 	struct cqspi_flash_pdata *f_pdata;
1403 	unsigned int cs;
1404 	int ret;
1405 
1406 	/* Get flash device data */
1407 	for_each_available_child_of_node(dev->of_node, np) {
1408 		ret = of_property_read_u32(np, "reg", &cs);
1409 		if (ret) {
1410 			dev_err(dev, "Couldn't determine chip select.\n");
1411 			of_node_put(np);
1412 			return ret;
1413 		}
1414 
1415 		if (cs >= CQSPI_MAX_CHIPSELECT) {
1416 			dev_err(dev, "Chip select %d out of range.\n", cs);
1417 			of_node_put(np);
1418 			return -EINVAL;
1419 		}
1420 
1421 		f_pdata = &cqspi->f_pdata[cs];
1422 		f_pdata->cqspi = cqspi;
1423 		f_pdata->cs = cs;
1424 
1425 		ret = cqspi_of_get_flash_pdata(pdev, f_pdata, np);
1426 		if (ret) {
1427 			of_node_put(np);
1428 			return ret;
1429 		}
1430 	}
1431 
1432 	return 0;
1433 }
1434 
cqspi_probe(struct platform_device * pdev)1435 static int cqspi_probe(struct platform_device *pdev)
1436 {
1437 	const struct cqspi_driver_platdata *ddata;
1438 	struct reset_control *rstc, *rstc_ocp;
1439 	struct device *dev = &pdev->dev;
1440 	struct spi_master *master;
1441 	struct resource *res_ahb;
1442 	struct cqspi_st *cqspi;
1443 	struct resource *res;
1444 	int ret;
1445 	int irq;
1446 
1447 	master = spi_alloc_master(&pdev->dev, sizeof(*cqspi));
1448 	if (!master) {
1449 		dev_err(&pdev->dev, "spi_alloc_master failed\n");
1450 		return -ENOMEM;
1451 	}
1452 	master->mode_bits = SPI_RX_QUAD | SPI_RX_DUAL;
1453 	master->mem_ops = &cqspi_mem_ops;
1454 	master->dev.of_node = pdev->dev.of_node;
1455 
1456 	cqspi = spi_master_get_devdata(master);
1457 
1458 	cqspi->pdev = pdev;
1459 	platform_set_drvdata(pdev, cqspi);
1460 
1461 	/* Obtain configuration from OF. */
1462 	ret = cqspi_of_get_pdata(cqspi);
1463 	if (ret) {
1464 		dev_err(dev, "Cannot get mandatory OF data.\n");
1465 		ret = -ENODEV;
1466 		goto probe_master_put;
1467 	}
1468 
1469 	/* Obtain QSPI clock. */
1470 	cqspi->clk = devm_clk_get(dev, NULL);
1471 	if (IS_ERR(cqspi->clk)) {
1472 		dev_err(dev, "Cannot claim QSPI clock.\n");
1473 		ret = PTR_ERR(cqspi->clk);
1474 		goto probe_master_put;
1475 	}
1476 
1477 	/* Obtain and remap controller address. */
1478 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1479 	cqspi->iobase = devm_ioremap_resource(dev, res);
1480 	if (IS_ERR(cqspi->iobase)) {
1481 		dev_err(dev, "Cannot remap controller address.\n");
1482 		ret = PTR_ERR(cqspi->iobase);
1483 		goto probe_master_put;
1484 	}
1485 
1486 	/* Obtain and remap AHB address. */
1487 	res_ahb = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1488 	cqspi->ahb_base = devm_ioremap_resource(dev, res_ahb);
1489 	if (IS_ERR(cqspi->ahb_base)) {
1490 		dev_err(dev, "Cannot remap AHB address.\n");
1491 		ret = PTR_ERR(cqspi->ahb_base);
1492 		goto probe_master_put;
1493 	}
1494 	cqspi->mmap_phys_base = (dma_addr_t)res_ahb->start;
1495 	cqspi->ahb_size = resource_size(res_ahb);
1496 
1497 	init_completion(&cqspi->transfer_complete);
1498 
1499 	/* Obtain IRQ line. */
1500 	irq = platform_get_irq(pdev, 0);
1501 	if (irq < 0) {
1502 		ret = -ENXIO;
1503 		goto probe_master_put;
1504 	}
1505 
1506 	pm_runtime_enable(dev);
1507 	ret = pm_runtime_get_sync(dev);
1508 	if (ret < 0) {
1509 		pm_runtime_put_noidle(dev);
1510 		goto probe_master_put;
1511 	}
1512 
1513 	ret = clk_prepare_enable(cqspi->clk);
1514 	if (ret) {
1515 		dev_err(dev, "Cannot enable QSPI clock.\n");
1516 		goto probe_clk_failed;
1517 	}
1518 
1519 	/* Obtain QSPI reset control */
1520 	rstc = devm_reset_control_get_optional_exclusive(dev, "qspi");
1521 	if (IS_ERR(rstc)) {
1522 		ret = PTR_ERR(rstc);
1523 		dev_err(dev, "Cannot get QSPI reset.\n");
1524 		goto probe_reset_failed;
1525 	}
1526 
1527 	rstc_ocp = devm_reset_control_get_optional_exclusive(dev, "qspi-ocp");
1528 	if (IS_ERR(rstc_ocp)) {
1529 		ret = PTR_ERR(rstc_ocp);
1530 		dev_err(dev, "Cannot get QSPI OCP reset.\n");
1531 		goto probe_reset_failed;
1532 	}
1533 
1534 	reset_control_assert(rstc);
1535 	reset_control_deassert(rstc);
1536 
1537 	reset_control_assert(rstc_ocp);
1538 	reset_control_deassert(rstc_ocp);
1539 
1540 	cqspi->master_ref_clk_hz = clk_get_rate(cqspi->clk);
1541 	master->max_speed_hz = cqspi->master_ref_clk_hz;
1542 	ddata  = of_device_get_match_data(dev);
1543 	if (ddata) {
1544 		if (ddata->quirks & CQSPI_NEEDS_WR_DELAY)
1545 			cqspi->wr_delay = 50 * DIV_ROUND_UP(NSEC_PER_SEC,
1546 						cqspi->master_ref_clk_hz);
1547 		if (ddata->hwcaps_mask & CQSPI_SUPPORTS_OCTAL)
1548 			master->mode_bits |= SPI_RX_OCTAL | SPI_TX_OCTAL;
1549 		if (!(ddata->quirks & CQSPI_DISABLE_DAC_MODE))
1550 			cqspi->use_direct_mode = true;
1551 	}
1552 
1553 	ret = devm_request_irq(dev, irq, cqspi_irq_handler, 0,
1554 			       pdev->name, cqspi);
1555 	if (ret) {
1556 		dev_err(dev, "Cannot request IRQ.\n");
1557 		goto probe_reset_failed;
1558 	}
1559 
1560 	cqspi_wait_idle(cqspi);
1561 	cqspi_controller_init(cqspi);
1562 	cqspi->current_cs = -1;
1563 	cqspi->sclk = 0;
1564 
1565 	master->num_chipselect = cqspi->num_chipselect;
1566 
1567 	ret = cqspi_setup_flash(cqspi);
1568 	if (ret) {
1569 		dev_err(dev, "failed to setup flash parameters %d\n", ret);
1570 		goto probe_setup_failed;
1571 	}
1572 
1573 	if (cqspi->use_direct_mode) {
1574 		ret = cqspi_request_mmap_dma(cqspi);
1575 		if (ret == -EPROBE_DEFER)
1576 			goto probe_setup_failed;
1577 	}
1578 
1579 	ret = devm_spi_register_master(dev, master);
1580 	if (ret) {
1581 		dev_err(&pdev->dev, "failed to register SPI ctlr %d\n", ret);
1582 		goto probe_setup_failed;
1583 	}
1584 
1585 	return 0;
1586 probe_setup_failed:
1587 	cqspi_controller_enable(cqspi, 0);
1588 probe_reset_failed:
1589 	clk_disable_unprepare(cqspi->clk);
1590 probe_clk_failed:
1591 	pm_runtime_put_sync(dev);
1592 	pm_runtime_disable(dev);
1593 probe_master_put:
1594 	spi_master_put(master);
1595 	return ret;
1596 }
1597 
cqspi_remove(struct platform_device * pdev)1598 static int cqspi_remove(struct platform_device *pdev)
1599 {
1600 	struct cqspi_st *cqspi = platform_get_drvdata(pdev);
1601 
1602 	cqspi_controller_enable(cqspi, 0);
1603 
1604 	if (cqspi->rx_chan)
1605 		dma_release_channel(cqspi->rx_chan);
1606 
1607 	clk_disable_unprepare(cqspi->clk);
1608 
1609 	pm_runtime_put_sync(&pdev->dev);
1610 	pm_runtime_disable(&pdev->dev);
1611 
1612 	return 0;
1613 }
1614 
1615 #ifdef CONFIG_PM_SLEEP
cqspi_suspend(struct device * dev)1616 static int cqspi_suspend(struct device *dev)
1617 {
1618 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1619 
1620 	cqspi_controller_enable(cqspi, 0);
1621 	return 0;
1622 }
1623 
cqspi_resume(struct device * dev)1624 static int cqspi_resume(struct device *dev)
1625 {
1626 	struct cqspi_st *cqspi = dev_get_drvdata(dev);
1627 
1628 	cqspi_controller_enable(cqspi, 1);
1629 	return 0;
1630 }
1631 
1632 static const struct dev_pm_ops cqspi__dev_pm_ops = {
1633 	.suspend = cqspi_suspend,
1634 	.resume = cqspi_resume,
1635 };
1636 
1637 #define CQSPI_DEV_PM_OPS	(&cqspi__dev_pm_ops)
1638 #else
1639 #define CQSPI_DEV_PM_OPS	NULL
1640 #endif
1641 
1642 static const struct cqspi_driver_platdata cdns_qspi = {
1643 	.quirks = CQSPI_DISABLE_DAC_MODE,
1644 };
1645 
1646 static const struct cqspi_driver_platdata k2g_qspi = {
1647 	.quirks = CQSPI_NEEDS_WR_DELAY,
1648 };
1649 
1650 static const struct cqspi_driver_platdata am654_ospi = {
1651 	.hwcaps_mask = CQSPI_SUPPORTS_OCTAL,
1652 	.quirks = CQSPI_NEEDS_WR_DELAY,
1653 };
1654 
1655 static const struct cqspi_driver_platdata intel_lgm_qspi = {
1656 	.quirks = CQSPI_DISABLE_DAC_MODE,
1657 };
1658 
1659 static const struct of_device_id cqspi_dt_ids[] = {
1660 	{
1661 		.compatible = "cdns,qspi-nor",
1662 		.data = &cdns_qspi,
1663 	},
1664 	{
1665 		.compatible = "ti,k2g-qspi",
1666 		.data = &k2g_qspi,
1667 	},
1668 	{
1669 		.compatible = "ti,am654-ospi",
1670 		.data = &am654_ospi,
1671 	},
1672 	{
1673 		.compatible = "intel,lgm-qspi",
1674 		.data = &intel_lgm_qspi,
1675 	},
1676 	{ /* end of table */ }
1677 };
1678 
1679 MODULE_DEVICE_TABLE(of, cqspi_dt_ids);
1680 
1681 static struct platform_driver cqspi_platform_driver = {
1682 	.probe = cqspi_probe,
1683 	.remove = cqspi_remove,
1684 	.driver = {
1685 		.name = CQSPI_NAME,
1686 		.pm = CQSPI_DEV_PM_OPS,
1687 		.of_match_table = cqspi_dt_ids,
1688 	},
1689 };
1690 
1691 module_platform_driver(cqspi_platform_driver);
1692 
1693 MODULE_DESCRIPTION("Cadence QSPI Controller Driver");
1694 MODULE_LICENSE("GPL v2");
1695 MODULE_ALIAS("platform:" CQSPI_NAME);
1696 MODULE_AUTHOR("Ley Foon Tan <lftan@altera.com>");
1697 MODULE_AUTHOR("Graham Moore <grmoore@opensource.altera.com>");
1698 MODULE_AUTHOR("Vadivel Murugan R <vadivel.muruganx.ramuthevar@intel.com>");
1699 MODULE_AUTHOR("Vignesh Raghavendra <vigneshr@ti.com>");
1700 MODULE_AUTHOR("Pratyush Yadav <p.yadav@ti.com>");
1701