1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Atmel AT32 and AT91 SPI Controllers
4 *
5 * Copyright (C) 2006 Atmel Corporation
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/clk.h>
10 #include <linux/module.h>
11 #include <linux/platform_device.h>
12 #include <linux/delay.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/spi/spi.h>
18 #include <linux/slab.h>
19 #include <linux/of.h>
20
21 #include <linux/io.h>
22 #include <linux/gpio/consumer.h>
23 #include <linux/pinctrl/consumer.h>
24 #include <linux/pm_runtime.h>
25 #include <trace/events/spi.h>
26
27 /* SPI register offsets */
28 #define SPI_CR 0x0000
29 #define SPI_MR 0x0004
30 #define SPI_RDR 0x0008
31 #define SPI_TDR 0x000c
32 #define SPI_SR 0x0010
33 #define SPI_IER 0x0014
34 #define SPI_IDR 0x0018
35 #define SPI_IMR 0x001c
36 #define SPI_CSR0 0x0030
37 #define SPI_CSR1 0x0034
38 #define SPI_CSR2 0x0038
39 #define SPI_CSR3 0x003c
40 #define SPI_FMR 0x0040
41 #define SPI_FLR 0x0044
42 #define SPI_VERSION 0x00fc
43 #define SPI_RPR 0x0100
44 #define SPI_RCR 0x0104
45 #define SPI_TPR 0x0108
46 #define SPI_TCR 0x010c
47 #define SPI_RNPR 0x0110
48 #define SPI_RNCR 0x0114
49 #define SPI_TNPR 0x0118
50 #define SPI_TNCR 0x011c
51 #define SPI_PTCR 0x0120
52 #define SPI_PTSR 0x0124
53
54 /* Bitfields in CR */
55 #define SPI_SPIEN_OFFSET 0
56 #define SPI_SPIEN_SIZE 1
57 #define SPI_SPIDIS_OFFSET 1
58 #define SPI_SPIDIS_SIZE 1
59 #define SPI_SWRST_OFFSET 7
60 #define SPI_SWRST_SIZE 1
61 #define SPI_LASTXFER_OFFSET 24
62 #define SPI_LASTXFER_SIZE 1
63 #define SPI_TXFCLR_OFFSET 16
64 #define SPI_TXFCLR_SIZE 1
65 #define SPI_RXFCLR_OFFSET 17
66 #define SPI_RXFCLR_SIZE 1
67 #define SPI_FIFOEN_OFFSET 30
68 #define SPI_FIFOEN_SIZE 1
69 #define SPI_FIFODIS_OFFSET 31
70 #define SPI_FIFODIS_SIZE 1
71
72 /* Bitfields in MR */
73 #define SPI_MSTR_OFFSET 0
74 #define SPI_MSTR_SIZE 1
75 #define SPI_PS_OFFSET 1
76 #define SPI_PS_SIZE 1
77 #define SPI_PCSDEC_OFFSET 2
78 #define SPI_PCSDEC_SIZE 1
79 #define SPI_FDIV_OFFSET 3
80 #define SPI_FDIV_SIZE 1
81 #define SPI_MODFDIS_OFFSET 4
82 #define SPI_MODFDIS_SIZE 1
83 #define SPI_WDRBT_OFFSET 5
84 #define SPI_WDRBT_SIZE 1
85 #define SPI_LLB_OFFSET 7
86 #define SPI_LLB_SIZE 1
87 #define SPI_PCS_OFFSET 16
88 #define SPI_PCS_SIZE 4
89 #define SPI_DLYBCS_OFFSET 24
90 #define SPI_DLYBCS_SIZE 8
91
92 /* Bitfields in RDR */
93 #define SPI_RD_OFFSET 0
94 #define SPI_RD_SIZE 16
95
96 /* Bitfields in TDR */
97 #define SPI_TD_OFFSET 0
98 #define SPI_TD_SIZE 16
99
100 /* Bitfields in SR */
101 #define SPI_RDRF_OFFSET 0
102 #define SPI_RDRF_SIZE 1
103 #define SPI_TDRE_OFFSET 1
104 #define SPI_TDRE_SIZE 1
105 #define SPI_MODF_OFFSET 2
106 #define SPI_MODF_SIZE 1
107 #define SPI_OVRES_OFFSET 3
108 #define SPI_OVRES_SIZE 1
109 #define SPI_ENDRX_OFFSET 4
110 #define SPI_ENDRX_SIZE 1
111 #define SPI_ENDTX_OFFSET 5
112 #define SPI_ENDTX_SIZE 1
113 #define SPI_RXBUFF_OFFSET 6
114 #define SPI_RXBUFF_SIZE 1
115 #define SPI_TXBUFE_OFFSET 7
116 #define SPI_TXBUFE_SIZE 1
117 #define SPI_NSSR_OFFSET 8
118 #define SPI_NSSR_SIZE 1
119 #define SPI_TXEMPTY_OFFSET 9
120 #define SPI_TXEMPTY_SIZE 1
121 #define SPI_SPIENS_OFFSET 16
122 #define SPI_SPIENS_SIZE 1
123 #define SPI_TXFEF_OFFSET 24
124 #define SPI_TXFEF_SIZE 1
125 #define SPI_TXFFF_OFFSET 25
126 #define SPI_TXFFF_SIZE 1
127 #define SPI_TXFTHF_OFFSET 26
128 #define SPI_TXFTHF_SIZE 1
129 #define SPI_RXFEF_OFFSET 27
130 #define SPI_RXFEF_SIZE 1
131 #define SPI_RXFFF_OFFSET 28
132 #define SPI_RXFFF_SIZE 1
133 #define SPI_RXFTHF_OFFSET 29
134 #define SPI_RXFTHF_SIZE 1
135 #define SPI_TXFPTEF_OFFSET 30
136 #define SPI_TXFPTEF_SIZE 1
137 #define SPI_RXFPTEF_OFFSET 31
138 #define SPI_RXFPTEF_SIZE 1
139
140 /* Bitfields in CSR0 */
141 #define SPI_CPOL_OFFSET 0
142 #define SPI_CPOL_SIZE 1
143 #define SPI_NCPHA_OFFSET 1
144 #define SPI_NCPHA_SIZE 1
145 #define SPI_CSAAT_OFFSET 3
146 #define SPI_CSAAT_SIZE 1
147 #define SPI_BITS_OFFSET 4
148 #define SPI_BITS_SIZE 4
149 #define SPI_SCBR_OFFSET 8
150 #define SPI_SCBR_SIZE 8
151 #define SPI_DLYBS_OFFSET 16
152 #define SPI_DLYBS_SIZE 8
153 #define SPI_DLYBCT_OFFSET 24
154 #define SPI_DLYBCT_SIZE 8
155
156 /* Bitfields in RCR */
157 #define SPI_RXCTR_OFFSET 0
158 #define SPI_RXCTR_SIZE 16
159
160 /* Bitfields in TCR */
161 #define SPI_TXCTR_OFFSET 0
162 #define SPI_TXCTR_SIZE 16
163
164 /* Bitfields in RNCR */
165 #define SPI_RXNCR_OFFSET 0
166 #define SPI_RXNCR_SIZE 16
167
168 /* Bitfields in TNCR */
169 #define SPI_TXNCR_OFFSET 0
170 #define SPI_TXNCR_SIZE 16
171
172 /* Bitfields in PTCR */
173 #define SPI_RXTEN_OFFSET 0
174 #define SPI_RXTEN_SIZE 1
175 #define SPI_RXTDIS_OFFSET 1
176 #define SPI_RXTDIS_SIZE 1
177 #define SPI_TXTEN_OFFSET 8
178 #define SPI_TXTEN_SIZE 1
179 #define SPI_TXTDIS_OFFSET 9
180 #define SPI_TXTDIS_SIZE 1
181
182 /* Bitfields in FMR */
183 #define SPI_TXRDYM_OFFSET 0
184 #define SPI_TXRDYM_SIZE 2
185 #define SPI_RXRDYM_OFFSET 4
186 #define SPI_RXRDYM_SIZE 2
187 #define SPI_TXFTHRES_OFFSET 16
188 #define SPI_TXFTHRES_SIZE 6
189 #define SPI_RXFTHRES_OFFSET 24
190 #define SPI_RXFTHRES_SIZE 6
191
192 /* Bitfields in FLR */
193 #define SPI_TXFL_OFFSET 0
194 #define SPI_TXFL_SIZE 6
195 #define SPI_RXFL_OFFSET 16
196 #define SPI_RXFL_SIZE 6
197
198 /* Constants for BITS */
199 #define SPI_BITS_8_BPT 0
200 #define SPI_BITS_9_BPT 1
201 #define SPI_BITS_10_BPT 2
202 #define SPI_BITS_11_BPT 3
203 #define SPI_BITS_12_BPT 4
204 #define SPI_BITS_13_BPT 5
205 #define SPI_BITS_14_BPT 6
206 #define SPI_BITS_15_BPT 7
207 #define SPI_BITS_16_BPT 8
208 #define SPI_ONE_DATA 0
209 #define SPI_TWO_DATA 1
210 #define SPI_FOUR_DATA 2
211
212 /* Bit manipulation macros */
213 #define SPI_BIT(name) \
214 (1 << SPI_##name##_OFFSET)
215 #define SPI_BF(name, value) \
216 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
217 #define SPI_BFEXT(name, value) \
218 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
219 #define SPI_BFINS(name, value, old) \
220 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
221 | SPI_BF(name, value))
222
223 /* Register access macros */
224 #define spi_readl(port, reg) \
225 readl_relaxed((port)->regs + SPI_##reg)
226 #define spi_writel(port, reg, value) \
227 writel_relaxed((value), (port)->regs + SPI_##reg)
228 #define spi_writew(port, reg, value) \
229 writew_relaxed((value), (port)->regs + SPI_##reg)
230
231 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
232 * cache operations; better heuristics consider wordsize and bitrate.
233 */
234 #define DMA_MIN_BYTES 16
235
236 #define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
237
238 #define AUTOSUSPEND_TIMEOUT 2000
239
240 struct atmel_spi_caps {
241 bool is_spi2;
242 bool has_wdrbt;
243 bool has_dma_support;
244 bool has_pdc_support;
245 };
246
247 /*
248 * The core SPI transfer engine just talks to a register bank to set up
249 * DMA transfers; transfer queue progress is driven by IRQs. The clock
250 * framework provides the base clock, subdivided for each spi_device.
251 */
252 struct atmel_spi {
253 spinlock_t lock;
254 unsigned long flags;
255
256 phys_addr_t phybase;
257 void __iomem *regs;
258 int irq;
259 struct clk *clk;
260 struct platform_device *pdev;
261 unsigned long spi_clk;
262
263 struct spi_transfer *current_transfer;
264 int current_remaining_bytes;
265 int done_status;
266 dma_addr_t dma_addr_rx_bbuf;
267 dma_addr_t dma_addr_tx_bbuf;
268 void *addr_rx_bbuf;
269 void *addr_tx_bbuf;
270
271 struct completion xfer_completion;
272
273 struct atmel_spi_caps caps;
274
275 bool use_dma;
276 bool use_pdc;
277
278 bool keep_cs;
279
280 u32 fifo_size;
281 u8 native_cs_free;
282 u8 native_cs_for_gpio;
283 };
284
285 /* Controller-specific per-slave state */
286 struct atmel_spi_device {
287 u32 csr;
288 };
289
290 #define SPI_MAX_DMA_XFER 65535 /* true for both PDC and DMA */
291 #define INVALID_DMA_ADDRESS 0xffffffff
292
293 /*
294 * Version 2 of the SPI controller has
295 * - CR.LASTXFER
296 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
297 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
298 * - SPI_CSRx.CSAAT
299 * - SPI_CSRx.SBCR allows faster clocking
300 */
atmel_spi_is_v2(struct atmel_spi * as)301 static bool atmel_spi_is_v2(struct atmel_spi *as)
302 {
303 return as->caps.is_spi2;
304 }
305
306 /*
307 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
308 * they assume that spi slave device state will not change on deselect, so
309 * that automagic deselection is OK. ("NPCSx rises if no data is to be
310 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
311 * controllers have CSAAT and friends.
312 *
313 * Even controller newer than ar91rm9200, using GPIOs can make sens as
314 * it lets us support active-high chipselects despite the controller's
315 * belief that only active-low devices/systems exists.
316 *
317 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
318 * right when driven with GPIO. ("Mode Fault does not allow more than one
319 * Master on Chip Select 0.") No workaround exists for that ... so for
320 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
321 * and (c) will trigger that first erratum in some cases.
322 */
323
cs_activate(struct atmel_spi * as,struct spi_device * spi)324 static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
325 {
326 struct atmel_spi_device *asd = spi->controller_state;
327 int chip_select;
328 u32 mr;
329
330 if (spi->cs_gpiod)
331 chip_select = as->native_cs_for_gpio;
332 else
333 chip_select = spi->chip_select;
334
335 if (atmel_spi_is_v2(as)) {
336 spi_writel(as, CSR0 + 4 * chip_select, asd->csr);
337 /* For the low SPI version, there is a issue that PDC transfer
338 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
339 */
340 spi_writel(as, CSR0, asd->csr);
341 if (as->caps.has_wdrbt) {
342 spi_writel(as, MR,
343 SPI_BF(PCS, ~(0x01 << chip_select))
344 | SPI_BIT(WDRBT)
345 | SPI_BIT(MODFDIS)
346 | SPI_BIT(MSTR));
347 } else {
348 spi_writel(as, MR,
349 SPI_BF(PCS, ~(0x01 << chip_select))
350 | SPI_BIT(MODFDIS)
351 | SPI_BIT(MSTR));
352 }
353
354 mr = spi_readl(as, MR);
355 } else {
356 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
357 int i;
358 u32 csr;
359
360 /* Make sure clock polarity is correct */
361 for (i = 0; i < spi->master->num_chipselect; i++) {
362 csr = spi_readl(as, CSR0 + 4 * i);
363 if ((csr ^ cpol) & SPI_BIT(CPOL))
364 spi_writel(as, CSR0 + 4 * i,
365 csr ^ SPI_BIT(CPOL));
366 }
367
368 mr = spi_readl(as, MR);
369 mr = SPI_BFINS(PCS, ~(1 << chip_select), mr);
370 spi_writel(as, MR, mr);
371 }
372
373 dev_dbg(&spi->dev, "activate NPCS, mr %08x\n", mr);
374 }
375
cs_deactivate(struct atmel_spi * as,struct spi_device * spi)376 static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
377 {
378 int chip_select;
379 u32 mr;
380
381 if (spi->cs_gpiod)
382 chip_select = as->native_cs_for_gpio;
383 else
384 chip_select = spi->chip_select;
385
386 /* only deactivate *this* device; sometimes transfers to
387 * another device may be active when this routine is called.
388 */
389 mr = spi_readl(as, MR);
390 if (~SPI_BFEXT(PCS, mr) & (1 << chip_select)) {
391 mr = SPI_BFINS(PCS, 0xf, mr);
392 spi_writel(as, MR, mr);
393 }
394
395 dev_dbg(&spi->dev, "DEactivate NPCS, mr %08x\n", mr);
396
397 if (!spi->cs_gpiod)
398 spi_writel(as, CR, SPI_BIT(LASTXFER));
399 }
400
atmel_spi_lock(struct atmel_spi * as)401 static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
402 {
403 spin_lock_irqsave(&as->lock, as->flags);
404 }
405
atmel_spi_unlock(struct atmel_spi * as)406 static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
407 {
408 spin_unlock_irqrestore(&as->lock, as->flags);
409 }
410
atmel_spi_is_vmalloc_xfer(struct spi_transfer * xfer)411 static inline bool atmel_spi_is_vmalloc_xfer(struct spi_transfer *xfer)
412 {
413 return is_vmalloc_addr(xfer->tx_buf) || is_vmalloc_addr(xfer->rx_buf);
414 }
415
atmel_spi_use_dma(struct atmel_spi * as,struct spi_transfer * xfer)416 static inline bool atmel_spi_use_dma(struct atmel_spi *as,
417 struct spi_transfer *xfer)
418 {
419 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
420 }
421
atmel_spi_can_dma(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)422 static bool atmel_spi_can_dma(struct spi_master *master,
423 struct spi_device *spi,
424 struct spi_transfer *xfer)
425 {
426 struct atmel_spi *as = spi_master_get_devdata(master);
427
428 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5))
429 return atmel_spi_use_dma(as, xfer) &&
430 !atmel_spi_is_vmalloc_xfer(xfer);
431 else
432 return atmel_spi_use_dma(as, xfer);
433
434 }
435
atmel_spi_dma_slave_config(struct atmel_spi * as,struct dma_slave_config * slave_config,u8 bits_per_word)436 static int atmel_spi_dma_slave_config(struct atmel_spi *as,
437 struct dma_slave_config *slave_config,
438 u8 bits_per_word)
439 {
440 struct spi_master *master = platform_get_drvdata(as->pdev);
441 int err = 0;
442
443 if (bits_per_word > 8) {
444 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
445 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
446 } else {
447 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
448 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
449 }
450
451 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
452 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
453 slave_config->src_maxburst = 1;
454 slave_config->dst_maxburst = 1;
455 slave_config->device_fc = false;
456
457 /*
458 * This driver uses fixed peripheral select mode (PS bit set to '0' in
459 * the Mode Register).
460 * So according to the datasheet, when FIFOs are available (and
461 * enabled), the Transmit FIFO operates in Multiple Data Mode.
462 * In this mode, up to 2 data, not 4, can be written into the Transmit
463 * Data Register in a single access.
464 * However, the first data has to be written into the lowest 16 bits and
465 * the second data into the highest 16 bits of the Transmit
466 * Data Register. For 8bit data (the most frequent case), it would
467 * require to rework tx_buf so each data would actualy fit 16 bits.
468 * So we'd rather write only one data at the time. Hence the transmit
469 * path works the same whether FIFOs are available (and enabled) or not.
470 */
471 slave_config->direction = DMA_MEM_TO_DEV;
472 if (dmaengine_slave_config(master->dma_tx, slave_config)) {
473 dev_err(&as->pdev->dev,
474 "failed to configure tx dma channel\n");
475 err = -EINVAL;
476 }
477
478 /*
479 * This driver configures the spi controller for master mode (MSTR bit
480 * set to '1' in the Mode Register).
481 * So according to the datasheet, when FIFOs are available (and
482 * enabled), the Receive FIFO operates in Single Data Mode.
483 * So the receive path works the same whether FIFOs are available (and
484 * enabled) or not.
485 */
486 slave_config->direction = DMA_DEV_TO_MEM;
487 if (dmaengine_slave_config(master->dma_rx, slave_config)) {
488 dev_err(&as->pdev->dev,
489 "failed to configure rx dma channel\n");
490 err = -EINVAL;
491 }
492
493 return err;
494 }
495
atmel_spi_configure_dma(struct spi_master * master,struct atmel_spi * as)496 static int atmel_spi_configure_dma(struct spi_master *master,
497 struct atmel_spi *as)
498 {
499 struct dma_slave_config slave_config;
500 struct device *dev = &as->pdev->dev;
501 int err;
502
503 master->dma_tx = dma_request_chan(dev, "tx");
504 if (IS_ERR(master->dma_tx)) {
505 err = PTR_ERR(master->dma_tx);
506 dev_dbg(dev, "No TX DMA channel, DMA is disabled\n");
507 goto error_clear;
508 }
509
510 master->dma_rx = dma_request_chan(dev, "rx");
511 if (IS_ERR(master->dma_rx)) {
512 err = PTR_ERR(master->dma_rx);
513 /*
514 * No reason to check EPROBE_DEFER here since we have already
515 * requested tx channel.
516 */
517 dev_dbg(dev, "No RX DMA channel, DMA is disabled\n");
518 goto error;
519 }
520
521 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
522 if (err)
523 goto error;
524
525 dev_info(&as->pdev->dev,
526 "Using %s (tx) and %s (rx) for DMA transfers\n",
527 dma_chan_name(master->dma_tx),
528 dma_chan_name(master->dma_rx));
529
530 return 0;
531 error:
532 if (!IS_ERR(master->dma_rx))
533 dma_release_channel(master->dma_rx);
534 if (!IS_ERR(master->dma_tx))
535 dma_release_channel(master->dma_tx);
536 error_clear:
537 master->dma_tx = master->dma_rx = NULL;
538 return err;
539 }
540
atmel_spi_stop_dma(struct spi_master * master)541 static void atmel_spi_stop_dma(struct spi_master *master)
542 {
543 if (master->dma_rx)
544 dmaengine_terminate_all(master->dma_rx);
545 if (master->dma_tx)
546 dmaengine_terminate_all(master->dma_tx);
547 }
548
atmel_spi_release_dma(struct spi_master * master)549 static void atmel_spi_release_dma(struct spi_master *master)
550 {
551 if (master->dma_rx) {
552 dma_release_channel(master->dma_rx);
553 master->dma_rx = NULL;
554 }
555 if (master->dma_tx) {
556 dma_release_channel(master->dma_tx);
557 master->dma_tx = NULL;
558 }
559 }
560
561 /* This function is called by the DMA driver from tasklet context */
dma_callback(void * data)562 static void dma_callback(void *data)
563 {
564 struct spi_master *master = data;
565 struct atmel_spi *as = spi_master_get_devdata(master);
566
567 if (is_vmalloc_addr(as->current_transfer->rx_buf) &&
568 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
569 memcpy(as->current_transfer->rx_buf, as->addr_rx_bbuf,
570 as->current_transfer->len);
571 }
572 complete(&as->xfer_completion);
573 }
574
575 /*
576 * Next transfer using PIO without FIFO.
577 */
atmel_spi_next_xfer_single(struct spi_master * master,struct spi_transfer * xfer)578 static void atmel_spi_next_xfer_single(struct spi_master *master,
579 struct spi_transfer *xfer)
580 {
581 struct atmel_spi *as = spi_master_get_devdata(master);
582 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
583
584 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
585
586 /* Make sure data is not remaining in RDR */
587 spi_readl(as, RDR);
588 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
589 spi_readl(as, RDR);
590 cpu_relax();
591 }
592
593 if (xfer->bits_per_word > 8)
594 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
595 else
596 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
597
598 dev_dbg(master->dev.parent,
599 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
600 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
601 xfer->bits_per_word);
602
603 /* Enable relevant interrupts */
604 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
605 }
606
607 /*
608 * Next transfer using PIO with FIFO.
609 */
atmel_spi_next_xfer_fifo(struct spi_master * master,struct spi_transfer * xfer)610 static void atmel_spi_next_xfer_fifo(struct spi_master *master,
611 struct spi_transfer *xfer)
612 {
613 struct atmel_spi *as = spi_master_get_devdata(master);
614 u32 current_remaining_data, num_data;
615 u32 offset = xfer->len - as->current_remaining_bytes;
616 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
617 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
618 u16 td0, td1;
619 u32 fifomr;
620
621 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
622
623 /* Compute the number of data to transfer in the current iteration */
624 current_remaining_data = ((xfer->bits_per_word > 8) ?
625 ((u32)as->current_remaining_bytes >> 1) :
626 (u32)as->current_remaining_bytes);
627 num_data = min(current_remaining_data, as->fifo_size);
628
629 /* Flush RX and TX FIFOs */
630 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
631 while (spi_readl(as, FLR))
632 cpu_relax();
633
634 /* Set RX FIFO Threshold to the number of data to transfer */
635 fifomr = spi_readl(as, FMR);
636 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
637
638 /* Clear FIFO flags in the Status Register, especially RXFTHF */
639 (void)spi_readl(as, SR);
640
641 /* Fill TX FIFO */
642 while (num_data >= 2) {
643 if (xfer->bits_per_word > 8) {
644 td0 = *words++;
645 td1 = *words++;
646 } else {
647 td0 = *bytes++;
648 td1 = *bytes++;
649 }
650
651 spi_writel(as, TDR, (td1 << 16) | td0);
652 num_data -= 2;
653 }
654
655 if (num_data) {
656 if (xfer->bits_per_word > 8)
657 td0 = *words++;
658 else
659 td0 = *bytes++;
660
661 spi_writew(as, TDR, td0);
662 num_data--;
663 }
664
665 dev_dbg(master->dev.parent,
666 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
667 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
668 xfer->bits_per_word);
669
670 /*
671 * Enable RX FIFO Threshold Flag interrupt to be notified about
672 * transfer completion.
673 */
674 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
675 }
676
677 /*
678 * Next transfer using PIO.
679 */
atmel_spi_next_xfer_pio(struct spi_master * master,struct spi_transfer * xfer)680 static void atmel_spi_next_xfer_pio(struct spi_master *master,
681 struct spi_transfer *xfer)
682 {
683 struct atmel_spi *as = spi_master_get_devdata(master);
684
685 if (as->fifo_size)
686 atmel_spi_next_xfer_fifo(master, xfer);
687 else
688 atmel_spi_next_xfer_single(master, xfer);
689 }
690
691 /*
692 * Submit next transfer for DMA.
693 */
atmel_spi_next_xfer_dma_submit(struct spi_master * master,struct spi_transfer * xfer,u32 * plen)694 static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
695 struct spi_transfer *xfer,
696 u32 *plen)
697 {
698 struct atmel_spi *as = spi_master_get_devdata(master);
699 struct dma_chan *rxchan = master->dma_rx;
700 struct dma_chan *txchan = master->dma_tx;
701 struct dma_async_tx_descriptor *rxdesc;
702 struct dma_async_tx_descriptor *txdesc;
703 struct dma_slave_config slave_config;
704 dma_cookie_t cookie;
705
706 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
707
708 /* Check that the channels are available */
709 if (!rxchan || !txchan)
710 return -ENODEV;
711
712
713 *plen = xfer->len;
714
715 if (atmel_spi_dma_slave_config(as, &slave_config,
716 xfer->bits_per_word))
717 goto err_exit;
718
719 /* Send both scatterlists */
720 if (atmel_spi_is_vmalloc_xfer(xfer) &&
721 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
722 rxdesc = dmaengine_prep_slave_single(rxchan,
723 as->dma_addr_rx_bbuf,
724 xfer->len,
725 DMA_DEV_TO_MEM,
726 DMA_PREP_INTERRUPT |
727 DMA_CTRL_ACK);
728 } else {
729 rxdesc = dmaengine_prep_slave_sg(rxchan,
730 xfer->rx_sg.sgl,
731 xfer->rx_sg.nents,
732 DMA_DEV_TO_MEM,
733 DMA_PREP_INTERRUPT |
734 DMA_CTRL_ACK);
735 }
736 if (!rxdesc)
737 goto err_dma;
738
739 if (atmel_spi_is_vmalloc_xfer(xfer) &&
740 IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
741 memcpy(as->addr_tx_bbuf, xfer->tx_buf, xfer->len);
742 txdesc = dmaengine_prep_slave_single(txchan,
743 as->dma_addr_tx_bbuf,
744 xfer->len, DMA_MEM_TO_DEV,
745 DMA_PREP_INTERRUPT |
746 DMA_CTRL_ACK);
747 } else {
748 txdesc = dmaengine_prep_slave_sg(txchan,
749 xfer->tx_sg.sgl,
750 xfer->tx_sg.nents,
751 DMA_MEM_TO_DEV,
752 DMA_PREP_INTERRUPT |
753 DMA_CTRL_ACK);
754 }
755 if (!txdesc)
756 goto err_dma;
757
758 dev_dbg(master->dev.parent,
759 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
760 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
761 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
762
763 /* Enable relevant interrupts */
764 spi_writel(as, IER, SPI_BIT(OVRES));
765
766 /* Put the callback on the RX transfer only, that should finish last */
767 rxdesc->callback = dma_callback;
768 rxdesc->callback_param = master;
769
770 /* Submit and fire RX and TX with TX last so we're ready to read! */
771 cookie = rxdesc->tx_submit(rxdesc);
772 if (dma_submit_error(cookie))
773 goto err_dma;
774 cookie = txdesc->tx_submit(txdesc);
775 if (dma_submit_error(cookie))
776 goto err_dma;
777 rxchan->device->device_issue_pending(rxchan);
778 txchan->device->device_issue_pending(txchan);
779
780 return 0;
781
782 err_dma:
783 spi_writel(as, IDR, SPI_BIT(OVRES));
784 atmel_spi_stop_dma(master);
785 err_exit:
786 return -ENOMEM;
787 }
788
atmel_spi_next_xfer_data(struct spi_master * master,struct spi_transfer * xfer,dma_addr_t * tx_dma,dma_addr_t * rx_dma,u32 * plen)789 static void atmel_spi_next_xfer_data(struct spi_master *master,
790 struct spi_transfer *xfer,
791 dma_addr_t *tx_dma,
792 dma_addr_t *rx_dma,
793 u32 *plen)
794 {
795 *rx_dma = xfer->rx_dma + xfer->len - *plen;
796 *tx_dma = xfer->tx_dma + xfer->len - *plen;
797 if (*plen > master->max_dma_len)
798 *plen = master->max_dma_len;
799 }
800
atmel_spi_set_xfer_speed(struct atmel_spi * as,struct spi_device * spi,struct spi_transfer * xfer)801 static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
802 struct spi_device *spi,
803 struct spi_transfer *xfer)
804 {
805 u32 scbr, csr;
806 unsigned long bus_hz;
807 int chip_select;
808
809 if (spi->cs_gpiod)
810 chip_select = as->native_cs_for_gpio;
811 else
812 chip_select = spi->chip_select;
813
814 /* v1 chips start out at half the peripheral bus speed. */
815 bus_hz = as->spi_clk;
816 if (!atmel_spi_is_v2(as))
817 bus_hz /= 2;
818
819 /*
820 * Calculate the lowest divider that satisfies the
821 * constraint, assuming div32/fdiv/mbz == 0.
822 */
823 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
824
825 /*
826 * If the resulting divider doesn't fit into the
827 * register bitfield, we can't satisfy the constraint.
828 */
829 if (scbr >= (1 << SPI_SCBR_SIZE)) {
830 dev_err(&spi->dev,
831 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
832 xfer->speed_hz, scbr, bus_hz/255);
833 return -EINVAL;
834 }
835 if (scbr == 0) {
836 dev_err(&spi->dev,
837 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
838 xfer->speed_hz, scbr, bus_hz);
839 return -EINVAL;
840 }
841 csr = spi_readl(as, CSR0 + 4 * chip_select);
842 csr = SPI_BFINS(SCBR, scbr, csr);
843 spi_writel(as, CSR0 + 4 * chip_select, csr);
844 xfer->effective_speed_hz = bus_hz / scbr;
845
846 return 0;
847 }
848
849 /*
850 * Submit next transfer for PDC.
851 * lock is held, spi irq is blocked
852 */
atmel_spi_pdc_next_xfer(struct spi_master * master,struct spi_transfer * xfer)853 static void atmel_spi_pdc_next_xfer(struct spi_master *master,
854 struct spi_transfer *xfer)
855 {
856 struct atmel_spi *as = spi_master_get_devdata(master);
857 u32 len;
858 dma_addr_t tx_dma, rx_dma;
859
860 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
861
862 len = as->current_remaining_bytes;
863 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
864 as->current_remaining_bytes -= len;
865
866 spi_writel(as, RPR, rx_dma);
867 spi_writel(as, TPR, tx_dma);
868
869 if (xfer->bits_per_word > 8)
870 len >>= 1;
871 spi_writel(as, RCR, len);
872 spi_writel(as, TCR, len);
873
874 dev_dbg(&master->dev,
875 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
876 xfer, xfer->len, xfer->tx_buf,
877 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
878 (unsigned long long)xfer->rx_dma);
879
880 if (as->current_remaining_bytes) {
881 len = as->current_remaining_bytes;
882 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
883 as->current_remaining_bytes -= len;
884
885 spi_writel(as, RNPR, rx_dma);
886 spi_writel(as, TNPR, tx_dma);
887
888 if (xfer->bits_per_word > 8)
889 len >>= 1;
890 spi_writel(as, RNCR, len);
891 spi_writel(as, TNCR, len);
892
893 dev_dbg(&master->dev,
894 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
895 xfer, xfer->len, xfer->tx_buf,
896 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
897 (unsigned long long)xfer->rx_dma);
898 }
899
900 /* REVISIT: We're waiting for RXBUFF before we start the next
901 * transfer because we need to handle some difficult timing
902 * issues otherwise. If we wait for TXBUFE in one transfer and
903 * then starts waiting for RXBUFF in the next, it's difficult
904 * to tell the difference between the RXBUFF interrupt we're
905 * actually waiting for and the RXBUFF interrupt of the
906 * previous transfer.
907 *
908 * It should be doable, though. Just not now...
909 */
910 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
911 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
912 }
913
914 /*
915 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
916 * - The buffer is either valid for CPU access, else NULL
917 * - If the buffer is valid, so is its DMA address
918 *
919 * This driver manages the dma address unless message->is_dma_mapped.
920 */
921 static int
atmel_spi_dma_map_xfer(struct atmel_spi * as,struct spi_transfer * xfer)922 atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
923 {
924 struct device *dev = &as->pdev->dev;
925
926 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
927 if (xfer->tx_buf) {
928 /* tx_buf is a const void* where we need a void * for the dma
929 * mapping */
930 void *nonconst_tx = (void *)xfer->tx_buf;
931
932 xfer->tx_dma = dma_map_single(dev,
933 nonconst_tx, xfer->len,
934 DMA_TO_DEVICE);
935 if (dma_mapping_error(dev, xfer->tx_dma))
936 return -ENOMEM;
937 }
938 if (xfer->rx_buf) {
939 xfer->rx_dma = dma_map_single(dev,
940 xfer->rx_buf, xfer->len,
941 DMA_FROM_DEVICE);
942 if (dma_mapping_error(dev, xfer->rx_dma)) {
943 if (xfer->tx_buf)
944 dma_unmap_single(dev,
945 xfer->tx_dma, xfer->len,
946 DMA_TO_DEVICE);
947 return -ENOMEM;
948 }
949 }
950 return 0;
951 }
952
atmel_spi_dma_unmap_xfer(struct spi_master * master,struct spi_transfer * xfer)953 static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
954 struct spi_transfer *xfer)
955 {
956 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
957 dma_unmap_single(master->dev.parent, xfer->tx_dma,
958 xfer->len, DMA_TO_DEVICE);
959 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
960 dma_unmap_single(master->dev.parent, xfer->rx_dma,
961 xfer->len, DMA_FROM_DEVICE);
962 }
963
atmel_spi_disable_pdc_transfer(struct atmel_spi * as)964 static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
965 {
966 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
967 }
968
969 static void
atmel_spi_pump_single_data(struct atmel_spi * as,struct spi_transfer * xfer)970 atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
971 {
972 u8 *rxp;
973 u16 *rxp16;
974 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
975
976 if (xfer->bits_per_word > 8) {
977 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
978 *rxp16 = spi_readl(as, RDR);
979 } else {
980 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
981 *rxp = spi_readl(as, RDR);
982 }
983 if (xfer->bits_per_word > 8) {
984 if (as->current_remaining_bytes > 2)
985 as->current_remaining_bytes -= 2;
986 else
987 as->current_remaining_bytes = 0;
988 } else {
989 as->current_remaining_bytes--;
990 }
991 }
992
993 static void
atmel_spi_pump_fifo_data(struct atmel_spi * as,struct spi_transfer * xfer)994 atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
995 {
996 u32 fifolr = spi_readl(as, FLR);
997 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
998 u32 offset = xfer->len - as->current_remaining_bytes;
999 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1000 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1001 u16 rd; /* RD field is the lowest 16 bits of RDR */
1002
1003 /* Update the number of remaining bytes to transfer */
1004 num_bytes = ((xfer->bits_per_word > 8) ?
1005 (num_data << 1) :
1006 num_data);
1007
1008 if (as->current_remaining_bytes > num_bytes)
1009 as->current_remaining_bytes -= num_bytes;
1010 else
1011 as->current_remaining_bytes = 0;
1012
1013 /* Handle odd number of bytes when data are more than 8bit width */
1014 if (xfer->bits_per_word > 8)
1015 as->current_remaining_bytes &= ~0x1;
1016
1017 /* Read data */
1018 while (num_data) {
1019 rd = spi_readl(as, RDR);
1020 if (xfer->bits_per_word > 8)
1021 *words++ = rd;
1022 else
1023 *bytes++ = rd;
1024 num_data--;
1025 }
1026 }
1027
1028 /* Called from IRQ
1029 *
1030 * Must update "current_remaining_bytes" to keep track of data
1031 * to transfer.
1032 */
1033 static void
atmel_spi_pump_pio_data(struct atmel_spi * as,struct spi_transfer * xfer)1034 atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1035 {
1036 if (as->fifo_size)
1037 atmel_spi_pump_fifo_data(as, xfer);
1038 else
1039 atmel_spi_pump_single_data(as, xfer);
1040 }
1041
1042 /* Interrupt
1043 *
1044 */
1045 static irqreturn_t
atmel_spi_pio_interrupt(int irq,void * dev_id)1046 atmel_spi_pio_interrupt(int irq, void *dev_id)
1047 {
1048 struct spi_master *master = dev_id;
1049 struct atmel_spi *as = spi_master_get_devdata(master);
1050 u32 status, pending, imr;
1051 struct spi_transfer *xfer;
1052 int ret = IRQ_NONE;
1053
1054 imr = spi_readl(as, IMR);
1055 status = spi_readl(as, SR);
1056 pending = status & imr;
1057
1058 if (pending & SPI_BIT(OVRES)) {
1059 ret = IRQ_HANDLED;
1060 spi_writel(as, IDR, SPI_BIT(OVRES));
1061 dev_warn(master->dev.parent, "overrun\n");
1062
1063 /*
1064 * When we get an overrun, we disregard the current
1065 * transfer. Data will not be copied back from any
1066 * bounce buffer and msg->actual_len will not be
1067 * updated with the last xfer.
1068 *
1069 * We will also not process any remaning transfers in
1070 * the message.
1071 */
1072 as->done_status = -EIO;
1073 smp_wmb();
1074
1075 /* Clear any overrun happening while cleaning up */
1076 spi_readl(as, SR);
1077
1078 complete(&as->xfer_completion);
1079
1080 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1081 atmel_spi_lock(as);
1082
1083 if (as->current_remaining_bytes) {
1084 ret = IRQ_HANDLED;
1085 xfer = as->current_transfer;
1086 atmel_spi_pump_pio_data(as, xfer);
1087 if (!as->current_remaining_bytes)
1088 spi_writel(as, IDR, pending);
1089
1090 complete(&as->xfer_completion);
1091 }
1092
1093 atmel_spi_unlock(as);
1094 } else {
1095 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1096 ret = IRQ_HANDLED;
1097 spi_writel(as, IDR, pending);
1098 }
1099
1100 return ret;
1101 }
1102
1103 static irqreturn_t
atmel_spi_pdc_interrupt(int irq,void * dev_id)1104 atmel_spi_pdc_interrupt(int irq, void *dev_id)
1105 {
1106 struct spi_master *master = dev_id;
1107 struct atmel_spi *as = spi_master_get_devdata(master);
1108 u32 status, pending, imr;
1109 int ret = IRQ_NONE;
1110
1111 imr = spi_readl(as, IMR);
1112 status = spi_readl(as, SR);
1113 pending = status & imr;
1114
1115 if (pending & SPI_BIT(OVRES)) {
1116
1117 ret = IRQ_HANDLED;
1118
1119 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
1120 | SPI_BIT(OVRES)));
1121
1122 /* Clear any overrun happening while cleaning up */
1123 spi_readl(as, SR);
1124
1125 as->done_status = -EIO;
1126
1127 complete(&as->xfer_completion);
1128
1129 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
1130 ret = IRQ_HANDLED;
1131
1132 spi_writel(as, IDR, pending);
1133
1134 complete(&as->xfer_completion);
1135 }
1136
1137 return ret;
1138 }
1139
atmel_word_delay_csr(struct spi_device * spi,struct atmel_spi * as)1140 static int atmel_word_delay_csr(struct spi_device *spi, struct atmel_spi *as)
1141 {
1142 struct spi_delay *delay = &spi->word_delay;
1143 u32 value = delay->value;
1144
1145 switch (delay->unit) {
1146 case SPI_DELAY_UNIT_NSECS:
1147 value /= 1000;
1148 break;
1149 case SPI_DELAY_UNIT_USECS:
1150 break;
1151 default:
1152 return -EINVAL;
1153 }
1154
1155 return (as->spi_clk / 1000000 * value) >> 5;
1156 }
1157
initialize_native_cs_for_gpio(struct atmel_spi * as)1158 static void initialize_native_cs_for_gpio(struct atmel_spi *as)
1159 {
1160 int i;
1161 struct spi_master *master = platform_get_drvdata(as->pdev);
1162
1163 if (!as->native_cs_free)
1164 return; /* already initialized */
1165
1166 if (!master->cs_gpiods)
1167 return; /* No CS GPIO */
1168
1169 /*
1170 * On the first version of the controller (AT91RM9200), CS0
1171 * can't be used associated with GPIO
1172 */
1173 if (atmel_spi_is_v2(as))
1174 i = 0;
1175 else
1176 i = 1;
1177
1178 for (; i < 4; i++)
1179 if (master->cs_gpiods[i])
1180 as->native_cs_free |= BIT(i);
1181
1182 if (as->native_cs_free)
1183 as->native_cs_for_gpio = ffs(as->native_cs_free);
1184 }
1185
atmel_spi_setup(struct spi_device * spi)1186 static int atmel_spi_setup(struct spi_device *spi)
1187 {
1188 struct atmel_spi *as;
1189 struct atmel_spi_device *asd;
1190 u32 csr;
1191 unsigned int bits = spi->bits_per_word;
1192 int chip_select;
1193 int word_delay_csr;
1194
1195 as = spi_master_get_devdata(spi->master);
1196
1197 /* see notes above re chipselect */
1198 if (!spi->cs_gpiod && (spi->mode & SPI_CS_HIGH)) {
1199 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n");
1200 return -EINVAL;
1201 }
1202
1203 /* Setup() is called during spi_register_controller(aka
1204 * spi_register_master) but after all membmers of the cs_gpiod
1205 * array have been filled, so we can looked for which native
1206 * CS will be free for using with GPIO
1207 */
1208 initialize_native_cs_for_gpio(as);
1209
1210 if (spi->cs_gpiod && as->native_cs_free) {
1211 dev_err(&spi->dev,
1212 "No native CS available to support this GPIO CS\n");
1213 return -EBUSY;
1214 }
1215
1216 if (spi->cs_gpiod)
1217 chip_select = as->native_cs_for_gpio;
1218 else
1219 chip_select = spi->chip_select;
1220
1221 csr = SPI_BF(BITS, bits - 8);
1222 if (spi->mode & SPI_CPOL)
1223 csr |= SPI_BIT(CPOL);
1224 if (!(spi->mode & SPI_CPHA))
1225 csr |= SPI_BIT(NCPHA);
1226
1227 if (!spi->cs_gpiod)
1228 csr |= SPI_BIT(CSAAT);
1229 csr |= SPI_BF(DLYBS, 0);
1230
1231 word_delay_csr = atmel_word_delay_csr(spi, as);
1232 if (word_delay_csr < 0)
1233 return word_delay_csr;
1234
1235 /* DLYBCT adds delays between words. This is useful for slow devices
1236 * that need a bit of time to setup the next transfer.
1237 */
1238 csr |= SPI_BF(DLYBCT, word_delay_csr);
1239
1240 asd = spi->controller_state;
1241 if (!asd) {
1242 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1243 if (!asd)
1244 return -ENOMEM;
1245
1246 spi->controller_state = asd;
1247 }
1248
1249 asd->csr = csr;
1250
1251 dev_dbg(&spi->dev,
1252 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1253 bits, spi->mode, spi->chip_select, csr);
1254
1255 if (!atmel_spi_is_v2(as))
1256 spi_writel(as, CSR0 + 4 * chip_select, csr);
1257
1258 return 0;
1259 }
1260
atmel_spi_set_cs(struct spi_device * spi,bool enable)1261 static void atmel_spi_set_cs(struct spi_device *spi, bool enable)
1262 {
1263 struct atmel_spi *as = spi_master_get_devdata(spi->master);
1264 /* the core doesn't really pass us enable/disable, but CS HIGH vs CS LOW
1265 * since we already have routines for activate/deactivate translate
1266 * high/low to active/inactive
1267 */
1268 enable = (!!(spi->mode & SPI_CS_HIGH) == enable);
1269
1270 if (enable) {
1271 cs_activate(as, spi);
1272 } else {
1273 cs_deactivate(as, spi);
1274 }
1275
1276 }
1277
atmel_spi_one_transfer(struct spi_master * master,struct spi_device * spi,struct spi_transfer * xfer)1278 static int atmel_spi_one_transfer(struct spi_master *master,
1279 struct spi_device *spi,
1280 struct spi_transfer *xfer)
1281 {
1282 struct atmel_spi *as;
1283 u8 bits;
1284 u32 len;
1285 struct atmel_spi_device *asd;
1286 int timeout;
1287 int ret;
1288 unsigned long dma_timeout;
1289
1290 as = spi_master_get_devdata(master);
1291
1292 asd = spi->controller_state;
1293 bits = (asd->csr >> 4) & 0xf;
1294 if (bits != xfer->bits_per_word - 8) {
1295 dev_dbg(&spi->dev,
1296 "you can't yet change bits_per_word in transfers\n");
1297 return -ENOPROTOOPT;
1298 }
1299
1300 /*
1301 * DMA map early, for performance (empties dcache ASAP) and
1302 * better fault reporting.
1303 */
1304 if ((!master->cur_msg->is_dma_mapped)
1305 && as->use_pdc) {
1306 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1307 return -ENOMEM;
1308 }
1309
1310 atmel_spi_set_xfer_speed(as, spi, xfer);
1311
1312 as->done_status = 0;
1313 as->current_transfer = xfer;
1314 as->current_remaining_bytes = xfer->len;
1315 while (as->current_remaining_bytes) {
1316 reinit_completion(&as->xfer_completion);
1317
1318 if (as->use_pdc) {
1319 atmel_spi_lock(as);
1320 atmel_spi_pdc_next_xfer(master, xfer);
1321 atmel_spi_unlock(as);
1322 } else if (atmel_spi_use_dma(as, xfer)) {
1323 len = as->current_remaining_bytes;
1324 ret = atmel_spi_next_xfer_dma_submit(master,
1325 xfer, &len);
1326 if (ret) {
1327 dev_err(&spi->dev,
1328 "unable to use DMA, fallback to PIO\n");
1329 as->done_status = ret;
1330 break;
1331 } else {
1332 as->current_remaining_bytes -= len;
1333 if (as->current_remaining_bytes < 0)
1334 as->current_remaining_bytes = 0;
1335 }
1336 } else {
1337 atmel_spi_lock(as);
1338 atmel_spi_next_xfer_pio(master, xfer);
1339 atmel_spi_unlock(as);
1340 }
1341
1342 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1343 SPI_DMA_TIMEOUT);
1344 if (WARN_ON(dma_timeout == 0)) {
1345 dev_err(&spi->dev, "spi transfer timeout\n");
1346 as->done_status = -EIO;
1347 }
1348
1349 if (as->done_status)
1350 break;
1351 }
1352
1353 if (as->done_status) {
1354 if (as->use_pdc) {
1355 dev_warn(master->dev.parent,
1356 "overrun (%u/%u remaining)\n",
1357 spi_readl(as, TCR), spi_readl(as, RCR));
1358
1359 /*
1360 * Clean up DMA registers and make sure the data
1361 * registers are empty.
1362 */
1363 spi_writel(as, RNCR, 0);
1364 spi_writel(as, TNCR, 0);
1365 spi_writel(as, RCR, 0);
1366 spi_writel(as, TCR, 0);
1367 for (timeout = 1000; timeout; timeout--)
1368 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1369 break;
1370 if (!timeout)
1371 dev_warn(master->dev.parent,
1372 "timeout waiting for TXEMPTY");
1373 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1374 spi_readl(as, RDR);
1375
1376 /* Clear any overrun happening while cleaning up */
1377 spi_readl(as, SR);
1378
1379 } else if (atmel_spi_use_dma(as, xfer)) {
1380 atmel_spi_stop_dma(master);
1381 }
1382 }
1383
1384 if (!master->cur_msg->is_dma_mapped
1385 && as->use_pdc)
1386 atmel_spi_dma_unmap_xfer(master, xfer);
1387
1388 if (as->use_pdc)
1389 atmel_spi_disable_pdc_transfer(as);
1390
1391 return as->done_status;
1392 }
1393
atmel_spi_cleanup(struct spi_device * spi)1394 static void atmel_spi_cleanup(struct spi_device *spi)
1395 {
1396 struct atmel_spi_device *asd = spi->controller_state;
1397
1398 if (!asd)
1399 return;
1400
1401 spi->controller_state = NULL;
1402 kfree(asd);
1403 }
1404
atmel_get_version(struct atmel_spi * as)1405 static inline unsigned int atmel_get_version(struct atmel_spi *as)
1406 {
1407 return spi_readl(as, VERSION) & 0x00000fff;
1408 }
1409
atmel_get_caps(struct atmel_spi * as)1410 static void atmel_get_caps(struct atmel_spi *as)
1411 {
1412 unsigned int version;
1413
1414 version = atmel_get_version(as);
1415
1416 as->caps.is_spi2 = version > 0x121;
1417 as->caps.has_wdrbt = version >= 0x210;
1418 as->caps.has_dma_support = version >= 0x212;
1419 as->caps.has_pdc_support = version < 0x212;
1420 }
1421
atmel_spi_init(struct atmel_spi * as)1422 static void atmel_spi_init(struct atmel_spi *as)
1423 {
1424 spi_writel(as, CR, SPI_BIT(SWRST));
1425 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1426
1427 /* It is recommended to enable FIFOs first thing after reset */
1428 if (as->fifo_size)
1429 spi_writel(as, CR, SPI_BIT(FIFOEN));
1430
1431 if (as->caps.has_wdrbt) {
1432 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1433 | SPI_BIT(MSTR));
1434 } else {
1435 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1436 }
1437
1438 if (as->use_pdc)
1439 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1440 spi_writel(as, CR, SPI_BIT(SPIEN));
1441 }
1442
atmel_spi_probe(struct platform_device * pdev)1443 static int atmel_spi_probe(struct platform_device *pdev)
1444 {
1445 struct resource *regs;
1446 int irq;
1447 struct clk *clk;
1448 int ret;
1449 struct spi_master *master;
1450 struct atmel_spi *as;
1451
1452 /* Select default pin state */
1453 pinctrl_pm_select_default_state(&pdev->dev);
1454
1455 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1456 if (!regs)
1457 return -ENXIO;
1458
1459 irq = platform_get_irq(pdev, 0);
1460 if (irq < 0)
1461 return irq;
1462
1463 clk = devm_clk_get(&pdev->dev, "spi_clk");
1464 if (IS_ERR(clk))
1465 return PTR_ERR(clk);
1466
1467 /* setup spi core then atmel-specific driver state */
1468 master = spi_alloc_master(&pdev->dev, sizeof(*as));
1469 if (!master)
1470 return -ENOMEM;
1471
1472 /* the spi->mode bits understood by this driver: */
1473 master->use_gpio_descriptors = true;
1474 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1475 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
1476 master->dev.of_node = pdev->dev.of_node;
1477 master->bus_num = pdev->id;
1478 master->num_chipselect = 4;
1479 master->setup = atmel_spi_setup;
1480 master->flags = (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX |
1481 SPI_MASTER_GPIO_SS);
1482 master->transfer_one = atmel_spi_one_transfer;
1483 master->set_cs = atmel_spi_set_cs;
1484 master->cleanup = atmel_spi_cleanup;
1485 master->auto_runtime_pm = true;
1486 master->max_dma_len = SPI_MAX_DMA_XFER;
1487 master->can_dma = atmel_spi_can_dma;
1488 platform_set_drvdata(pdev, master);
1489
1490 as = spi_master_get_devdata(master);
1491
1492 spin_lock_init(&as->lock);
1493
1494 as->pdev = pdev;
1495 as->regs = devm_ioremap_resource(&pdev->dev, regs);
1496 if (IS_ERR(as->regs)) {
1497 ret = PTR_ERR(as->regs);
1498 goto out_unmap_regs;
1499 }
1500 as->phybase = regs->start;
1501 as->irq = irq;
1502 as->clk = clk;
1503
1504 init_completion(&as->xfer_completion);
1505
1506 atmel_get_caps(as);
1507
1508 as->use_dma = false;
1509 as->use_pdc = false;
1510 if (as->caps.has_dma_support) {
1511 ret = atmel_spi_configure_dma(master, as);
1512 if (ret == 0) {
1513 as->use_dma = true;
1514 } else if (ret == -EPROBE_DEFER) {
1515 goto out_unmap_regs;
1516 }
1517 } else if (as->caps.has_pdc_support) {
1518 as->use_pdc = true;
1519 }
1520
1521 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1522 as->addr_rx_bbuf = dma_alloc_coherent(&pdev->dev,
1523 SPI_MAX_DMA_XFER,
1524 &as->dma_addr_rx_bbuf,
1525 GFP_KERNEL | GFP_DMA);
1526 if (!as->addr_rx_bbuf) {
1527 as->use_dma = false;
1528 } else {
1529 as->addr_tx_bbuf = dma_alloc_coherent(&pdev->dev,
1530 SPI_MAX_DMA_XFER,
1531 &as->dma_addr_tx_bbuf,
1532 GFP_KERNEL | GFP_DMA);
1533 if (!as->addr_tx_bbuf) {
1534 as->use_dma = false;
1535 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1536 as->addr_rx_bbuf,
1537 as->dma_addr_rx_bbuf);
1538 }
1539 }
1540 if (!as->use_dma)
1541 dev_info(master->dev.parent,
1542 " can not allocate dma coherent memory\n");
1543 }
1544
1545 if (as->caps.has_dma_support && !as->use_dma)
1546 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1547
1548 if (as->use_pdc) {
1549 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1550 0, dev_name(&pdev->dev), master);
1551 } else {
1552 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1553 0, dev_name(&pdev->dev), master);
1554 }
1555 if (ret)
1556 goto out_unmap_regs;
1557
1558 /* Initialize the hardware */
1559 ret = clk_prepare_enable(clk);
1560 if (ret)
1561 goto out_free_irq;
1562
1563 as->spi_clk = clk_get_rate(clk);
1564
1565 as->fifo_size = 0;
1566 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1567 &as->fifo_size)) {
1568 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1569 }
1570
1571 atmel_spi_init(as);
1572
1573 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1574 pm_runtime_use_autosuspend(&pdev->dev);
1575 pm_runtime_set_active(&pdev->dev);
1576 pm_runtime_enable(&pdev->dev);
1577
1578 ret = devm_spi_register_master(&pdev->dev, master);
1579 if (ret)
1580 goto out_free_dma;
1581
1582 /* go! */
1583 dev_info(&pdev->dev, "Atmel SPI Controller version 0x%x at 0x%08lx (irq %d)\n",
1584 atmel_get_version(as), (unsigned long)regs->start,
1585 irq);
1586
1587 return 0;
1588
1589 out_free_dma:
1590 pm_runtime_disable(&pdev->dev);
1591 pm_runtime_set_suspended(&pdev->dev);
1592
1593 if (as->use_dma)
1594 atmel_spi_release_dma(master);
1595
1596 spi_writel(as, CR, SPI_BIT(SWRST));
1597 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1598 clk_disable_unprepare(clk);
1599 out_free_irq:
1600 out_unmap_regs:
1601 spi_master_put(master);
1602 return ret;
1603 }
1604
atmel_spi_remove(struct platform_device * pdev)1605 static int atmel_spi_remove(struct platform_device *pdev)
1606 {
1607 struct spi_master *master = platform_get_drvdata(pdev);
1608 struct atmel_spi *as = spi_master_get_devdata(master);
1609
1610 pm_runtime_get_sync(&pdev->dev);
1611
1612 /* reset the hardware and block queue progress */
1613 if (as->use_dma) {
1614 atmel_spi_stop_dma(master);
1615 atmel_spi_release_dma(master);
1616 if (IS_ENABLED(CONFIG_SOC_SAM_V4_V5)) {
1617 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1618 as->addr_tx_bbuf,
1619 as->dma_addr_tx_bbuf);
1620 dma_free_coherent(&pdev->dev, SPI_MAX_DMA_XFER,
1621 as->addr_rx_bbuf,
1622 as->dma_addr_rx_bbuf);
1623 }
1624 }
1625
1626 spin_lock_irq(&as->lock);
1627 spi_writel(as, CR, SPI_BIT(SWRST));
1628 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
1629 spi_readl(as, SR);
1630 spin_unlock_irq(&as->lock);
1631
1632 clk_disable_unprepare(as->clk);
1633
1634 pm_runtime_put_noidle(&pdev->dev);
1635 pm_runtime_disable(&pdev->dev);
1636
1637 return 0;
1638 }
1639
1640 #ifdef CONFIG_PM
atmel_spi_runtime_suspend(struct device * dev)1641 static int atmel_spi_runtime_suspend(struct device *dev)
1642 {
1643 struct spi_master *master = dev_get_drvdata(dev);
1644 struct atmel_spi *as = spi_master_get_devdata(master);
1645
1646 clk_disable_unprepare(as->clk);
1647 pinctrl_pm_select_sleep_state(dev);
1648
1649 return 0;
1650 }
1651
atmel_spi_runtime_resume(struct device * dev)1652 static int atmel_spi_runtime_resume(struct device *dev)
1653 {
1654 struct spi_master *master = dev_get_drvdata(dev);
1655 struct atmel_spi *as = spi_master_get_devdata(master);
1656
1657 pinctrl_pm_select_default_state(dev);
1658
1659 return clk_prepare_enable(as->clk);
1660 }
1661
1662 #ifdef CONFIG_PM_SLEEP
atmel_spi_suspend(struct device * dev)1663 static int atmel_spi_suspend(struct device *dev)
1664 {
1665 struct spi_master *master = dev_get_drvdata(dev);
1666 int ret;
1667
1668 /* Stop the queue running */
1669 ret = spi_master_suspend(master);
1670 if (ret)
1671 return ret;
1672
1673 if (!pm_runtime_suspended(dev))
1674 atmel_spi_runtime_suspend(dev);
1675
1676 return 0;
1677 }
1678
atmel_spi_resume(struct device * dev)1679 static int atmel_spi_resume(struct device *dev)
1680 {
1681 struct spi_master *master = dev_get_drvdata(dev);
1682 struct atmel_spi *as = spi_master_get_devdata(master);
1683 int ret;
1684
1685 ret = clk_prepare_enable(as->clk);
1686 if (ret)
1687 return ret;
1688
1689 atmel_spi_init(as);
1690
1691 clk_disable_unprepare(as->clk);
1692
1693 if (!pm_runtime_suspended(dev)) {
1694 ret = atmel_spi_runtime_resume(dev);
1695 if (ret)
1696 return ret;
1697 }
1698
1699 /* Start the queue running */
1700 return spi_master_resume(master);
1701 }
1702 #endif
1703
1704 static const struct dev_pm_ops atmel_spi_pm_ops = {
1705 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1706 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1707 atmel_spi_runtime_resume, NULL)
1708 };
1709 #define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
1710 #else
1711 #define ATMEL_SPI_PM_OPS NULL
1712 #endif
1713
1714 static const struct of_device_id atmel_spi_dt_ids[] = {
1715 { .compatible = "atmel,at91rm9200-spi" },
1716 { /* sentinel */ }
1717 };
1718
1719 MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1720
1721 static struct platform_driver atmel_spi_driver = {
1722 .driver = {
1723 .name = "atmel_spi",
1724 .pm = ATMEL_SPI_PM_OPS,
1725 .of_match_table = atmel_spi_dt_ids,
1726 },
1727 .probe = atmel_spi_probe,
1728 .remove = atmel_spi_remove,
1729 };
1730 module_platform_driver(atmel_spi_driver);
1731
1732 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
1733 MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
1734 MODULE_LICENSE("GPL");
1735 MODULE_ALIAS("platform:atmel_spi");
1736