1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Remote Processor Framework
4 *
5 * Copyright (C) 2011 Texas Instruments, Inc.
6 * Copyright (C) 2011 Google, Inc.
7 *
8 * Ohad Ben-Cohen <ohad@wizery.com>
9 * Brian Swetland <swetland@google.com>
10 * Mark Grosen <mgrosen@ti.com>
11 * Fernando Guzman Lugo <fernando.lugo@ti.com>
12 * Suman Anna <s-anna@ti.com>
13 * Robert Tivy <rtivy@ti.com>
14 * Armando Uribe De Leon <x0095078@ti.com>
15 */
16
17 #define pr_fmt(fmt) "%s: " fmt, __func__
18
19 #include <linux/delay.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/panic_notifier.h>
24 #include <linux/slab.h>
25 #include <linux/mutex.h>
26 #include <linux/dma-map-ops.h>
27 #include <linux/dma-mapping.h>
28 #include <linux/dma-direct.h> /* XXX: pokes into bus_dma_range */
29 #include <linux/firmware.h>
30 #include <linux/string.h>
31 #include <linux/debugfs.h>
32 #include <linux/rculist.h>
33 #include <linux/remoteproc.h>
34 #include <linux/iommu.h>
35 #include <linux/idr.h>
36 #include <linux/elf.h>
37 #include <linux/crc32.h>
38 #include <linux/of_reserved_mem.h>
39 #include <linux/virtio_ids.h>
40 #include <linux/virtio_ring.h>
41 #include <asm/byteorder.h>
42 #include <linux/platform_device.h>
43
44 #include "remoteproc_internal.h"
45
46 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
47
48 static DEFINE_MUTEX(rproc_list_mutex);
49 static LIST_HEAD(rproc_list);
50 static struct notifier_block rproc_panic_nb;
51
52 typedef int (*rproc_handle_resource_t)(struct rproc *rproc,
53 void *, int offset, int avail);
54
55 static int rproc_alloc_carveout(struct rproc *rproc,
56 struct rproc_mem_entry *mem);
57 static int rproc_release_carveout(struct rproc *rproc,
58 struct rproc_mem_entry *mem);
59
60 /* Unique indices for remoteproc devices */
61 static DEFINE_IDA(rproc_dev_index);
62
63 static const char * const rproc_crash_names[] = {
64 [RPROC_MMUFAULT] = "mmufault",
65 [RPROC_WATCHDOG] = "watchdog",
66 [RPROC_FATAL_ERROR] = "fatal error",
67 };
68
69 /* translate rproc_crash_type to string */
rproc_crash_to_string(enum rproc_crash_type type)70 static const char *rproc_crash_to_string(enum rproc_crash_type type)
71 {
72 if (type < ARRAY_SIZE(rproc_crash_names))
73 return rproc_crash_names[type];
74 return "unknown";
75 }
76
77 /*
78 * This is the IOMMU fault handler we register with the IOMMU API
79 * (when relevant; not all remote processors access memory through
80 * an IOMMU).
81 *
82 * IOMMU core will invoke this handler whenever the remote processor
83 * will try to access an unmapped device address.
84 */
rproc_iommu_fault(struct iommu_domain * domain,struct device * dev,unsigned long iova,int flags,void * token)85 static int rproc_iommu_fault(struct iommu_domain *domain, struct device *dev,
86 unsigned long iova, int flags, void *token)
87 {
88 struct rproc *rproc = token;
89
90 dev_err(dev, "iommu fault: da 0x%lx flags 0x%x\n", iova, flags);
91
92 rproc_report_crash(rproc, RPROC_MMUFAULT);
93
94 /*
95 * Let the iommu core know we're not really handling this fault;
96 * we just used it as a recovery trigger.
97 */
98 return -ENOSYS;
99 }
100
rproc_enable_iommu(struct rproc * rproc)101 static int rproc_enable_iommu(struct rproc *rproc)
102 {
103 struct iommu_domain *domain;
104 struct device *dev = rproc->dev.parent;
105 int ret;
106
107 if (!rproc->has_iommu) {
108 dev_dbg(dev, "iommu not present\n");
109 return 0;
110 }
111
112 domain = iommu_domain_alloc(dev->bus);
113 if (!domain) {
114 dev_err(dev, "can't alloc iommu domain\n");
115 return -ENOMEM;
116 }
117
118 iommu_set_fault_handler(domain, rproc_iommu_fault, rproc);
119
120 ret = iommu_attach_device(domain, dev);
121 if (ret) {
122 dev_err(dev, "can't attach iommu device: %d\n", ret);
123 goto free_domain;
124 }
125
126 rproc->domain = domain;
127
128 return 0;
129
130 free_domain:
131 iommu_domain_free(domain);
132 return ret;
133 }
134
rproc_disable_iommu(struct rproc * rproc)135 static void rproc_disable_iommu(struct rproc *rproc)
136 {
137 struct iommu_domain *domain = rproc->domain;
138 struct device *dev = rproc->dev.parent;
139
140 if (!domain)
141 return;
142
143 iommu_detach_device(domain, dev);
144 iommu_domain_free(domain);
145 }
146
rproc_va_to_pa(void * cpu_addr)147 phys_addr_t rproc_va_to_pa(void *cpu_addr)
148 {
149 /*
150 * Return physical address according to virtual address location
151 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
152 * - in kernel: if region allocated in generic dma memory pool
153 */
154 if (is_vmalloc_addr(cpu_addr)) {
155 return page_to_phys(vmalloc_to_page(cpu_addr)) +
156 offset_in_page(cpu_addr);
157 }
158
159 WARN_ON(!virt_addr_valid(cpu_addr));
160 return virt_to_phys(cpu_addr);
161 }
162 EXPORT_SYMBOL(rproc_va_to_pa);
163
164 /**
165 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
166 * @rproc: handle of a remote processor
167 * @da: remoteproc device address to translate
168 * @len: length of the memory region @da is pointing to
169 * @is_iomem: optional pointer filled in to indicate if @da is iomapped memory
170 *
171 * Some remote processors will ask us to allocate them physically contiguous
172 * memory regions (which we call "carveouts"), and map them to specific
173 * device addresses (which are hardcoded in the firmware). They may also have
174 * dedicated memory regions internal to the processors, and use them either
175 * exclusively or alongside carveouts.
176 *
177 * They may then ask us to copy objects into specific device addresses (e.g.
178 * code/data sections) or expose us certain symbols in other device address
179 * (e.g. their trace buffer).
180 *
181 * This function is a helper function with which we can go over the allocated
182 * carveouts and translate specific device addresses to kernel virtual addresses
183 * so we can access the referenced memory. This function also allows to perform
184 * translations on the internal remoteproc memory regions through a platform
185 * implementation specific da_to_va ops, if present.
186 *
187 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
188 * but only on kernel direct mapped RAM memory. Instead, we're just using
189 * here the output of the DMA API for the carveouts, which should be more
190 * correct.
191 *
192 * Return: a valid kernel address on success or NULL on failure
193 */
rproc_da_to_va(struct rproc * rproc,u64 da,size_t len,bool * is_iomem)194 void *rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
195 {
196 struct rproc_mem_entry *carveout;
197 void *ptr = NULL;
198
199 if (rproc->ops->da_to_va) {
200 ptr = rproc->ops->da_to_va(rproc, da, len, is_iomem);
201 if (ptr)
202 goto out;
203 }
204
205 list_for_each_entry(carveout, &rproc->carveouts, node) {
206 int offset = da - carveout->da;
207
208 /* Verify that carveout is allocated */
209 if (!carveout->va)
210 continue;
211
212 /* try next carveout if da is too small */
213 if (offset < 0)
214 continue;
215
216 /* try next carveout if da is too large */
217 if (offset + len > carveout->len)
218 continue;
219
220 ptr = carveout->va + offset;
221
222 if (is_iomem)
223 *is_iomem = carveout->is_iomem;
224
225 break;
226 }
227
228 out:
229 return ptr;
230 }
231 EXPORT_SYMBOL(rproc_da_to_va);
232
233 /**
234 * rproc_find_carveout_by_name() - lookup the carveout region by a name
235 * @rproc: handle of a remote processor
236 * @name: carveout name to find (format string)
237 * @...: optional parameters matching @name string
238 *
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
243 * attributes
244 *
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
248 *
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
250 */
251 __printf(2, 3)
252 struct rproc_mem_entry *
rproc_find_carveout_by_name(struct rproc * rproc,const char * name,...)253 rproc_find_carveout_by_name(struct rproc *rproc, const char *name, ...)
254 {
255 va_list args;
256 char _name[32];
257 struct rproc_mem_entry *carveout, *mem = NULL;
258
259 if (!name)
260 return NULL;
261
262 va_start(args, name);
263 vsnprintf(_name, sizeof(_name), name, args);
264 va_end(args);
265
266 list_for_each_entry(carveout, &rproc->carveouts, node) {
267 /* Compare carveout and requested names */
268 if (!strcmp(carveout->name, _name)) {
269 mem = carveout;
270 break;
271 }
272 }
273
274 return mem;
275 }
276
277 /**
278 * rproc_check_carveout_da() - Check specified carveout da configuration
279 * @rproc: handle of a remote processor
280 * @mem: pointer on carveout to check
281 * @da: area device address
282 * @len: associated area size
283 *
284 * This function is a helper function to verify requested device area (couple
285 * da, len) is part of specified carveout.
286 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
287 * checked.
288 *
289 * Return: 0 if carveout matches request else error
290 */
rproc_check_carveout_da(struct rproc * rproc,struct rproc_mem_entry * mem,u32 da,u32 len)291 static int rproc_check_carveout_da(struct rproc *rproc,
292 struct rproc_mem_entry *mem, u32 da, u32 len)
293 {
294 struct device *dev = &rproc->dev;
295 int delta;
296
297 /* Check requested resource length */
298 if (len > mem->len) {
299 dev_err(dev, "Registered carveout doesn't fit len request\n");
300 return -EINVAL;
301 }
302
303 if (da != FW_RSC_ADDR_ANY && mem->da == FW_RSC_ADDR_ANY) {
304 /* Address doesn't match registered carveout configuration */
305 return -EINVAL;
306 } else if (da != FW_RSC_ADDR_ANY && mem->da != FW_RSC_ADDR_ANY) {
307 delta = da - mem->da;
308
309 /* Check requested resource belongs to registered carveout */
310 if (delta < 0) {
311 dev_err(dev,
312 "Registered carveout doesn't fit da request\n");
313 return -EINVAL;
314 }
315
316 if (delta + len > mem->len) {
317 dev_err(dev,
318 "Registered carveout doesn't fit len request\n");
319 return -EINVAL;
320 }
321 }
322
323 return 0;
324 }
325
rproc_alloc_vring(struct rproc_vdev * rvdev,int i)326 int rproc_alloc_vring(struct rproc_vdev *rvdev, int i)
327 {
328 struct rproc *rproc = rvdev->rproc;
329 struct device *dev = &rproc->dev;
330 struct rproc_vring *rvring = &rvdev->vring[i];
331 struct fw_rsc_vdev *rsc;
332 int ret, notifyid;
333 struct rproc_mem_entry *mem;
334 size_t size;
335
336 /* actual size of vring (in bytes) */
337 size = PAGE_ALIGN(vring_size(rvring->len, rvring->align));
338
339 rsc = (void *)rproc->table_ptr + rvdev->rsc_offset;
340
341 /* Search for pre-registered carveout */
342 mem = rproc_find_carveout_by_name(rproc, "vdev%dvring%d", rvdev->index,
343 i);
344 if (mem) {
345 if (rproc_check_carveout_da(rproc, mem, rsc->vring[i].da, size))
346 return -ENOMEM;
347 } else {
348 /* Register carveout in in list */
349 mem = rproc_mem_entry_init(dev, NULL, 0,
350 size, rsc->vring[i].da,
351 rproc_alloc_carveout,
352 rproc_release_carveout,
353 "vdev%dvring%d",
354 rvdev->index, i);
355 if (!mem) {
356 dev_err(dev, "Can't allocate memory entry structure\n");
357 return -ENOMEM;
358 }
359
360 rproc_add_carveout(rproc, mem);
361 }
362
363 /*
364 * Assign an rproc-wide unique index for this vring
365 * TODO: assign a notifyid for rvdev updates as well
366 * TODO: support predefined notifyids (via resource table)
367 */
368 ret = idr_alloc(&rproc->notifyids, rvring, 0, 0, GFP_KERNEL);
369 if (ret < 0) {
370 dev_err(dev, "idr_alloc failed: %d\n", ret);
371 return ret;
372 }
373 notifyid = ret;
374
375 /* Potentially bump max_notifyid */
376 if (notifyid > rproc->max_notifyid)
377 rproc->max_notifyid = notifyid;
378
379 rvring->notifyid = notifyid;
380
381 /* Let the rproc know the notifyid of this vring.*/
382 rsc->vring[i].notifyid = notifyid;
383 return 0;
384 }
385
386 static int
rproc_parse_vring(struct rproc_vdev * rvdev,struct fw_rsc_vdev * rsc,int i)387 rproc_parse_vring(struct rproc_vdev *rvdev, struct fw_rsc_vdev *rsc, int i)
388 {
389 struct rproc *rproc = rvdev->rproc;
390 struct device *dev = &rproc->dev;
391 struct fw_rsc_vdev_vring *vring = &rsc->vring[i];
392 struct rproc_vring *rvring = &rvdev->vring[i];
393
394 dev_dbg(dev, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
395 i, vring->da, vring->num, vring->align);
396
397 /* verify queue size and vring alignment are sane */
398 if (!vring->num || !vring->align) {
399 dev_err(dev, "invalid qsz (%d) or alignment (%d)\n",
400 vring->num, vring->align);
401 return -EINVAL;
402 }
403
404 rvring->len = vring->num;
405 rvring->align = vring->align;
406 rvring->rvdev = rvdev;
407
408 return 0;
409 }
410
rproc_free_vring(struct rproc_vring * rvring)411 void rproc_free_vring(struct rproc_vring *rvring)
412 {
413 struct rproc *rproc = rvring->rvdev->rproc;
414 int idx = rvring - rvring->rvdev->vring;
415 struct fw_rsc_vdev *rsc;
416
417 idr_remove(&rproc->notifyids, rvring->notifyid);
418
419 /*
420 * At this point rproc_stop() has been called and the installed resource
421 * table in the remote processor memory may no longer be accessible. As
422 * such and as per rproc_stop(), rproc->table_ptr points to the cached
423 * resource table (rproc->cached_table). The cached resource table is
424 * only available when a remote processor has been booted by the
425 * remoteproc core, otherwise it is NULL.
426 *
427 * Based on the above, reset the virtio device section in the cached
428 * resource table only if there is one to work with.
429 */
430 if (rproc->table_ptr) {
431 rsc = (void *)rproc->table_ptr + rvring->rvdev->rsc_offset;
432 rsc->vring[idx].da = 0;
433 rsc->vring[idx].notifyid = -1;
434 }
435 }
436
rproc_vdev_do_start(struct rproc_subdev * subdev)437 static int rproc_vdev_do_start(struct rproc_subdev *subdev)
438 {
439 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
440
441 return rproc_add_virtio_dev(rvdev, rvdev->id);
442 }
443
rproc_vdev_do_stop(struct rproc_subdev * subdev,bool crashed)444 static void rproc_vdev_do_stop(struct rproc_subdev *subdev, bool crashed)
445 {
446 struct rproc_vdev *rvdev = container_of(subdev, struct rproc_vdev, subdev);
447 int ret;
448
449 ret = device_for_each_child(&rvdev->dev, NULL, rproc_remove_virtio_dev);
450 if (ret)
451 dev_warn(&rvdev->dev, "can't remove vdev child device: %d\n", ret);
452 }
453
454 /**
455 * rproc_rvdev_release() - release the existence of a rvdev
456 *
457 * @dev: the subdevice's dev
458 */
rproc_rvdev_release(struct device * dev)459 static void rproc_rvdev_release(struct device *dev)
460 {
461 struct rproc_vdev *rvdev = container_of(dev, struct rproc_vdev, dev);
462
463 of_reserved_mem_device_release(dev);
464
465 kfree(rvdev);
466 }
467
copy_dma_range_map(struct device * to,struct device * from)468 static int copy_dma_range_map(struct device *to, struct device *from)
469 {
470 const struct bus_dma_region *map = from->dma_range_map, *new_map, *r;
471 int num_ranges = 0;
472
473 if (!map)
474 return 0;
475
476 for (r = map; r->size; r++)
477 num_ranges++;
478
479 new_map = kmemdup(map, array_size(num_ranges + 1, sizeof(*map)),
480 GFP_KERNEL);
481 if (!new_map)
482 return -ENOMEM;
483 to->dma_range_map = new_map;
484 return 0;
485 }
486
487 /**
488 * rproc_handle_vdev() - handle a vdev fw resource
489 * @rproc: the remote processor
490 * @ptr: the vring resource descriptor
491 * @offset: offset of the resource entry
492 * @avail: size of available data (for sanity checking the image)
493 *
494 * This resource entry requests the host to statically register a virtio
495 * device (vdev), and setup everything needed to support it. It contains
496 * everything needed to make it possible: the virtio device id, virtio
497 * device features, vrings information, virtio config space, etc...
498 *
499 * Before registering the vdev, the vrings are allocated from non-cacheable
500 * physically contiguous memory. Currently we only support two vrings per
501 * remote processor (temporary limitation). We might also want to consider
502 * doing the vring allocation only later when ->find_vqs() is invoked, and
503 * then release them upon ->del_vqs().
504 *
505 * Note: @da is currently not really handled correctly: we dynamically
506 * allocate it using the DMA API, ignoring requested hard coded addresses,
507 * and we don't take care of any required IOMMU programming. This is all
508 * going to be taken care of when the generic iommu-based DMA API will be
509 * merged. Meanwhile, statically-addressed iommu-based firmware images should
510 * use RSC_DEVMEM resource entries to map their required @da to the physical
511 * address of their base CMA region (ouch, hacky!).
512 *
513 * Return: 0 on success, or an appropriate error code otherwise
514 */
rproc_handle_vdev(struct rproc * rproc,void * ptr,int offset,int avail)515 static int rproc_handle_vdev(struct rproc *rproc, void *ptr,
516 int offset, int avail)
517 {
518 struct fw_rsc_vdev *rsc = ptr;
519 struct device *dev = &rproc->dev;
520 struct rproc_vdev *rvdev;
521 int i, ret;
522 char name[16];
523
524 /* make sure resource isn't truncated */
525 if (struct_size(rsc, vring, rsc->num_of_vrings) + rsc->config_len >
526 avail) {
527 dev_err(dev, "vdev rsc is truncated\n");
528 return -EINVAL;
529 }
530
531 /* make sure reserved bytes are zeroes */
532 if (rsc->reserved[0] || rsc->reserved[1]) {
533 dev_err(dev, "vdev rsc has non zero reserved bytes\n");
534 return -EINVAL;
535 }
536
537 dev_dbg(dev, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
538 rsc->id, rsc->dfeatures, rsc->config_len, rsc->num_of_vrings);
539
540 /* we currently support only two vrings per rvdev */
541 if (rsc->num_of_vrings > ARRAY_SIZE(rvdev->vring)) {
542 dev_err(dev, "too many vrings: %d\n", rsc->num_of_vrings);
543 return -EINVAL;
544 }
545
546 rvdev = kzalloc(sizeof(*rvdev), GFP_KERNEL);
547 if (!rvdev)
548 return -ENOMEM;
549
550 kref_init(&rvdev->refcount);
551
552 rvdev->id = rsc->id;
553 rvdev->rproc = rproc;
554 rvdev->index = rproc->nb_vdev++;
555
556 /* Initialise vdev subdevice */
557 snprintf(name, sizeof(name), "vdev%dbuffer", rvdev->index);
558 rvdev->dev.parent = &rproc->dev;
559 ret = copy_dma_range_map(&rvdev->dev, rproc->dev.parent);
560 if (ret)
561 return ret;
562 rvdev->dev.release = rproc_rvdev_release;
563 dev_set_name(&rvdev->dev, "%s#%s", dev_name(rvdev->dev.parent), name);
564 dev_set_drvdata(&rvdev->dev, rvdev);
565
566 ret = device_register(&rvdev->dev);
567 if (ret) {
568 put_device(&rvdev->dev);
569 return ret;
570 }
571 /* Make device dma capable by inheriting from parent's capabilities */
572 set_dma_ops(&rvdev->dev, get_dma_ops(rproc->dev.parent));
573
574 ret = dma_coerce_mask_and_coherent(&rvdev->dev,
575 dma_get_mask(rproc->dev.parent));
576 if (ret) {
577 dev_warn(dev,
578 "Failed to set DMA mask %llx. Trying to continue... %x\n",
579 dma_get_mask(rproc->dev.parent), ret);
580 }
581
582 /* parse the vrings */
583 for (i = 0; i < rsc->num_of_vrings; i++) {
584 ret = rproc_parse_vring(rvdev, rsc, i);
585 if (ret)
586 goto free_rvdev;
587 }
588
589 /* remember the resource offset*/
590 rvdev->rsc_offset = offset;
591
592 /* allocate the vring resources */
593 for (i = 0; i < rsc->num_of_vrings; i++) {
594 ret = rproc_alloc_vring(rvdev, i);
595 if (ret)
596 goto unwind_vring_allocations;
597 }
598
599 list_add_tail(&rvdev->node, &rproc->rvdevs);
600
601 rvdev->subdev.start = rproc_vdev_do_start;
602 rvdev->subdev.stop = rproc_vdev_do_stop;
603
604 rproc_add_subdev(rproc, &rvdev->subdev);
605
606 return 0;
607
608 unwind_vring_allocations:
609 for (i--; i >= 0; i--)
610 rproc_free_vring(&rvdev->vring[i]);
611 free_rvdev:
612 device_unregister(&rvdev->dev);
613 return ret;
614 }
615
rproc_vdev_release(struct kref * ref)616 void rproc_vdev_release(struct kref *ref)
617 {
618 struct rproc_vdev *rvdev = container_of(ref, struct rproc_vdev, refcount);
619 struct rproc_vring *rvring;
620 struct rproc *rproc = rvdev->rproc;
621 int id;
622
623 for (id = 0; id < ARRAY_SIZE(rvdev->vring); id++) {
624 rvring = &rvdev->vring[id];
625 rproc_free_vring(rvring);
626 }
627
628 rproc_remove_subdev(rproc, &rvdev->subdev);
629 list_del(&rvdev->node);
630 device_unregister(&rvdev->dev);
631 }
632
633 /**
634 * rproc_handle_trace() - handle a shared trace buffer resource
635 * @rproc: the remote processor
636 * @ptr: the trace resource descriptor
637 * @offset: offset of the resource entry
638 * @avail: size of available data (for sanity checking the image)
639 *
640 * In case the remote processor dumps trace logs into memory,
641 * export it via debugfs.
642 *
643 * Currently, the 'da' member of @rsc should contain the device address
644 * where the remote processor is dumping the traces. Later we could also
645 * support dynamically allocating this address using the generic
646 * DMA API (but currently there isn't a use case for that).
647 *
648 * Return: 0 on success, or an appropriate error code otherwise
649 */
rproc_handle_trace(struct rproc * rproc,void * ptr,int offset,int avail)650 static int rproc_handle_trace(struct rproc *rproc, void *ptr,
651 int offset, int avail)
652 {
653 struct fw_rsc_trace *rsc = ptr;
654 struct rproc_debug_trace *trace;
655 struct device *dev = &rproc->dev;
656 char name[15];
657
658 if (sizeof(*rsc) > avail) {
659 dev_err(dev, "trace rsc is truncated\n");
660 return -EINVAL;
661 }
662
663 /* make sure reserved bytes are zeroes */
664 if (rsc->reserved) {
665 dev_err(dev, "trace rsc has non zero reserved bytes\n");
666 return -EINVAL;
667 }
668
669 trace = kzalloc(sizeof(*trace), GFP_KERNEL);
670 if (!trace)
671 return -ENOMEM;
672
673 /* set the trace buffer dma properties */
674 trace->trace_mem.len = rsc->len;
675 trace->trace_mem.da = rsc->da;
676
677 /* set pointer on rproc device */
678 trace->rproc = rproc;
679
680 /* make sure snprintf always null terminates, even if truncating */
681 snprintf(name, sizeof(name), "trace%d", rproc->num_traces);
682
683 /* create the debugfs entry */
684 trace->tfile = rproc_create_trace_file(name, rproc, trace);
685 if (!trace->tfile) {
686 kfree(trace);
687 return -EINVAL;
688 }
689
690 list_add_tail(&trace->node, &rproc->traces);
691
692 rproc->num_traces++;
693
694 dev_dbg(dev, "%s added: da 0x%x, len 0x%x\n",
695 name, rsc->da, rsc->len);
696
697 return 0;
698 }
699
700 /**
701 * rproc_handle_devmem() - handle devmem resource entry
702 * @rproc: remote processor handle
703 * @ptr: the devmem resource entry
704 * @offset: offset of the resource entry
705 * @avail: size of available data (for sanity checking the image)
706 *
707 * Remote processors commonly need to access certain on-chip peripherals.
708 *
709 * Some of these remote processors access memory via an iommu device,
710 * and might require us to configure their iommu before they can access
711 * the on-chip peripherals they need.
712 *
713 * This resource entry is a request to map such a peripheral device.
714 *
715 * These devmem entries will contain the physical address of the device in
716 * the 'pa' member. If a specific device address is expected, then 'da' will
717 * contain it (currently this is the only use case supported). 'len' will
718 * contain the size of the physical region we need to map.
719 *
720 * Currently we just "trust" those devmem entries to contain valid physical
721 * addresses, but this is going to change: we want the implementations to
722 * tell us ranges of physical addresses the firmware is allowed to request,
723 * and not allow firmwares to request access to physical addresses that
724 * are outside those ranges.
725 *
726 * Return: 0 on success, or an appropriate error code otherwise
727 */
rproc_handle_devmem(struct rproc * rproc,void * ptr,int offset,int avail)728 static int rproc_handle_devmem(struct rproc *rproc, void *ptr,
729 int offset, int avail)
730 {
731 struct fw_rsc_devmem *rsc = ptr;
732 struct rproc_mem_entry *mapping;
733 struct device *dev = &rproc->dev;
734 int ret;
735
736 /* no point in handling this resource without a valid iommu domain */
737 if (!rproc->domain)
738 return -EINVAL;
739
740 if (sizeof(*rsc) > avail) {
741 dev_err(dev, "devmem rsc is truncated\n");
742 return -EINVAL;
743 }
744
745 /* make sure reserved bytes are zeroes */
746 if (rsc->reserved) {
747 dev_err(dev, "devmem rsc has non zero reserved bytes\n");
748 return -EINVAL;
749 }
750
751 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
752 if (!mapping)
753 return -ENOMEM;
754
755 ret = iommu_map(rproc->domain, rsc->da, rsc->pa, rsc->len, rsc->flags);
756 if (ret) {
757 dev_err(dev, "failed to map devmem: %d\n", ret);
758 goto out;
759 }
760
761 /*
762 * We'll need this info later when we'll want to unmap everything
763 * (e.g. on shutdown).
764 *
765 * We can't trust the remote processor not to change the resource
766 * table, so we must maintain this info independently.
767 */
768 mapping->da = rsc->da;
769 mapping->len = rsc->len;
770 list_add_tail(&mapping->node, &rproc->mappings);
771
772 dev_dbg(dev, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
773 rsc->pa, rsc->da, rsc->len);
774
775 return 0;
776
777 out:
778 kfree(mapping);
779 return ret;
780 }
781
782 /**
783 * rproc_alloc_carveout() - allocated specified carveout
784 * @rproc: rproc handle
785 * @mem: the memory entry to allocate
786 *
787 * This function allocate specified memory entry @mem using
788 * dma_alloc_coherent() as default allocator
789 *
790 * Return: 0 on success, or an appropriate error code otherwise
791 */
rproc_alloc_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)792 static int rproc_alloc_carveout(struct rproc *rproc,
793 struct rproc_mem_entry *mem)
794 {
795 struct rproc_mem_entry *mapping = NULL;
796 struct device *dev = &rproc->dev;
797 dma_addr_t dma;
798 void *va;
799 int ret;
800
801 va = dma_alloc_coherent(dev->parent, mem->len, &dma, GFP_KERNEL);
802 if (!va) {
803 dev_err(dev->parent,
804 "failed to allocate dma memory: len 0x%zx\n",
805 mem->len);
806 return -ENOMEM;
807 }
808
809 dev_dbg(dev, "carveout va %pK, dma %pad, len 0x%zx\n",
810 va, &dma, mem->len);
811
812 if (mem->da != FW_RSC_ADDR_ANY && !rproc->domain) {
813 /*
814 * Check requested da is equal to dma address
815 * and print a warn message in case of missalignment.
816 * Don't stop rproc_start sequence as coprocessor may
817 * build pa to da translation on its side.
818 */
819 if (mem->da != (u32)dma)
820 dev_warn(dev->parent,
821 "Allocated carveout doesn't fit device address request\n");
822 }
823
824 /*
825 * Ok, this is non-standard.
826 *
827 * Sometimes we can't rely on the generic iommu-based DMA API
828 * to dynamically allocate the device address and then set the IOMMU
829 * tables accordingly, because some remote processors might
830 * _require_ us to use hard coded device addresses that their
831 * firmware was compiled with.
832 *
833 * In this case, we must use the IOMMU API directly and map
834 * the memory to the device address as expected by the remote
835 * processor.
836 *
837 * Obviously such remote processor devices should not be configured
838 * to use the iommu-based DMA API: we expect 'dma' to contain the
839 * physical address in this case.
840 */
841 if (mem->da != FW_RSC_ADDR_ANY && rproc->domain) {
842 mapping = kzalloc(sizeof(*mapping), GFP_KERNEL);
843 if (!mapping) {
844 ret = -ENOMEM;
845 goto dma_free;
846 }
847
848 ret = iommu_map(rproc->domain, mem->da, dma, mem->len,
849 mem->flags);
850 if (ret) {
851 dev_err(dev, "iommu_map failed: %d\n", ret);
852 goto free_mapping;
853 }
854
855 /*
856 * We'll need this info later when we'll want to unmap
857 * everything (e.g. on shutdown).
858 *
859 * We can't trust the remote processor not to change the
860 * resource table, so we must maintain this info independently.
861 */
862 mapping->da = mem->da;
863 mapping->len = mem->len;
864 list_add_tail(&mapping->node, &rproc->mappings);
865
866 dev_dbg(dev, "carveout mapped 0x%x to %pad\n",
867 mem->da, &dma);
868 }
869
870 if (mem->da == FW_RSC_ADDR_ANY) {
871 /* Update device address as undefined by requester */
872 if ((u64)dma & HIGH_BITS_MASK)
873 dev_warn(dev, "DMA address cast in 32bit to fit resource table format\n");
874
875 mem->da = (u32)dma;
876 }
877
878 mem->dma = dma;
879 mem->va = va;
880
881 return 0;
882
883 free_mapping:
884 kfree(mapping);
885 dma_free:
886 dma_free_coherent(dev->parent, mem->len, va, dma);
887 return ret;
888 }
889
890 /**
891 * rproc_release_carveout() - release acquired carveout
892 * @rproc: rproc handle
893 * @mem: the memory entry to release
894 *
895 * This function releases specified memory entry @mem allocated via
896 * rproc_alloc_carveout() function by @rproc.
897 *
898 * Return: 0 on success, or an appropriate error code otherwise
899 */
rproc_release_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)900 static int rproc_release_carveout(struct rproc *rproc,
901 struct rproc_mem_entry *mem)
902 {
903 struct device *dev = &rproc->dev;
904
905 /* clean up carveout allocations */
906 dma_free_coherent(dev->parent, mem->len, mem->va, mem->dma);
907 return 0;
908 }
909
910 /**
911 * rproc_handle_carveout() - handle phys contig memory allocation requests
912 * @rproc: rproc handle
913 * @ptr: the resource entry
914 * @offset: offset of the resource entry
915 * @avail: size of available data (for image validation)
916 *
917 * This function will handle firmware requests for allocation of physically
918 * contiguous memory regions.
919 *
920 * These request entries should come first in the firmware's resource table,
921 * as other firmware entries might request placing other data objects inside
922 * these memory regions (e.g. data/code segments, trace resource entries, ...).
923 *
924 * Allocating memory this way helps utilizing the reserved physical memory
925 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
926 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
927 * pressure is important; it may have a substantial impact on performance.
928 *
929 * Return: 0 on success, or an appropriate error code otherwise
930 */
rproc_handle_carveout(struct rproc * rproc,void * ptr,int offset,int avail)931 static int rproc_handle_carveout(struct rproc *rproc,
932 void *ptr, int offset, int avail)
933 {
934 struct fw_rsc_carveout *rsc = ptr;
935 struct rproc_mem_entry *carveout;
936 struct device *dev = &rproc->dev;
937
938 if (sizeof(*rsc) > avail) {
939 dev_err(dev, "carveout rsc is truncated\n");
940 return -EINVAL;
941 }
942
943 /* make sure reserved bytes are zeroes */
944 if (rsc->reserved) {
945 dev_err(dev, "carveout rsc has non zero reserved bytes\n");
946 return -EINVAL;
947 }
948
949 dev_dbg(dev, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
950 rsc->name, rsc->da, rsc->pa, rsc->len, rsc->flags);
951
952 /*
953 * Check carveout rsc already part of a registered carveout,
954 * Search by name, then check the da and length
955 */
956 carveout = rproc_find_carveout_by_name(rproc, rsc->name);
957
958 if (carveout) {
959 if (carveout->rsc_offset != FW_RSC_ADDR_ANY) {
960 dev_err(dev,
961 "Carveout already associated to resource table\n");
962 return -ENOMEM;
963 }
964
965 if (rproc_check_carveout_da(rproc, carveout, rsc->da, rsc->len))
966 return -ENOMEM;
967
968 /* Update memory carveout with resource table info */
969 carveout->rsc_offset = offset;
970 carveout->flags = rsc->flags;
971
972 return 0;
973 }
974
975 /* Register carveout in in list */
976 carveout = rproc_mem_entry_init(dev, NULL, 0, rsc->len, rsc->da,
977 rproc_alloc_carveout,
978 rproc_release_carveout, rsc->name);
979 if (!carveout) {
980 dev_err(dev, "Can't allocate memory entry structure\n");
981 return -ENOMEM;
982 }
983
984 carveout->flags = rsc->flags;
985 carveout->rsc_offset = offset;
986 rproc_add_carveout(rproc, carveout);
987
988 return 0;
989 }
990
991 /**
992 * rproc_add_carveout() - register an allocated carveout region
993 * @rproc: rproc handle
994 * @mem: memory entry to register
995 *
996 * This function registers specified memory entry in @rproc carveouts list.
997 * Specified carveout should have been allocated before registering.
998 */
rproc_add_carveout(struct rproc * rproc,struct rproc_mem_entry * mem)999 void rproc_add_carveout(struct rproc *rproc, struct rproc_mem_entry *mem)
1000 {
1001 list_add_tail(&mem->node, &rproc->carveouts);
1002 }
1003 EXPORT_SYMBOL(rproc_add_carveout);
1004
1005 /**
1006 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1007 * @dev: pointer on device struct
1008 * @va: virtual address
1009 * @dma: dma address
1010 * @len: memory carveout length
1011 * @da: device address
1012 * @alloc: memory carveout allocation function
1013 * @release: memory carveout release function
1014 * @name: carveout name
1015 *
1016 * This function allocates a rproc_mem_entry struct and fill it with parameters
1017 * provided by client.
1018 *
1019 * Return: a valid pointer on success, or NULL on failure
1020 */
1021 __printf(8, 9)
1022 struct rproc_mem_entry *
rproc_mem_entry_init(struct device * dev,void * va,dma_addr_t dma,size_t len,u32 da,int (* alloc)(struct rproc *,struct rproc_mem_entry *),int (* release)(struct rproc *,struct rproc_mem_entry *),const char * name,...)1023 rproc_mem_entry_init(struct device *dev,
1024 void *va, dma_addr_t dma, size_t len, u32 da,
1025 int (*alloc)(struct rproc *, struct rproc_mem_entry *),
1026 int (*release)(struct rproc *, struct rproc_mem_entry *),
1027 const char *name, ...)
1028 {
1029 struct rproc_mem_entry *mem;
1030 va_list args;
1031
1032 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1033 if (!mem)
1034 return mem;
1035
1036 mem->va = va;
1037 mem->dma = dma;
1038 mem->da = da;
1039 mem->len = len;
1040 mem->alloc = alloc;
1041 mem->release = release;
1042 mem->rsc_offset = FW_RSC_ADDR_ANY;
1043 mem->of_resm_idx = -1;
1044
1045 va_start(args, name);
1046 vsnprintf(mem->name, sizeof(mem->name), name, args);
1047 va_end(args);
1048
1049 return mem;
1050 }
1051 EXPORT_SYMBOL(rproc_mem_entry_init);
1052
1053 /**
1054 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
1055 * from a reserved memory phandle
1056 * @dev: pointer on device struct
1057 * @of_resm_idx: reserved memory phandle index in "memory-region"
1058 * @len: memory carveout length
1059 * @da: device address
1060 * @name: carveout name
1061 *
1062 * This function allocates a rproc_mem_entry struct and fill it with parameters
1063 * provided by client.
1064 *
1065 * Return: a valid pointer on success, or NULL on failure
1066 */
1067 __printf(5, 6)
1068 struct rproc_mem_entry *
rproc_of_resm_mem_entry_init(struct device * dev,u32 of_resm_idx,size_t len,u32 da,const char * name,...)1069 rproc_of_resm_mem_entry_init(struct device *dev, u32 of_resm_idx, size_t len,
1070 u32 da, const char *name, ...)
1071 {
1072 struct rproc_mem_entry *mem;
1073 va_list args;
1074
1075 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
1076 if (!mem)
1077 return mem;
1078
1079 mem->da = da;
1080 mem->len = len;
1081 mem->rsc_offset = FW_RSC_ADDR_ANY;
1082 mem->of_resm_idx = of_resm_idx;
1083
1084 va_start(args, name);
1085 vsnprintf(mem->name, sizeof(mem->name), name, args);
1086 va_end(args);
1087
1088 return mem;
1089 }
1090 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init);
1091
1092 /**
1093 * rproc_of_parse_firmware() - parse and return the firmware-name
1094 * @dev: pointer on device struct representing a rproc
1095 * @index: index to use for the firmware-name retrieval
1096 * @fw_name: pointer to a character string, in which the firmware
1097 * name is returned on success and unmodified otherwise.
1098 *
1099 * This is an OF helper function that parses a device's DT node for
1100 * the "firmware-name" property and returns the firmware name pointer
1101 * in @fw_name on success.
1102 *
1103 * Return: 0 on success, or an appropriate failure.
1104 */
rproc_of_parse_firmware(struct device * dev,int index,const char ** fw_name)1105 int rproc_of_parse_firmware(struct device *dev, int index, const char **fw_name)
1106 {
1107 int ret;
1108
1109 ret = of_property_read_string_index(dev->of_node, "firmware-name",
1110 index, fw_name);
1111 return ret ? ret : 0;
1112 }
1113 EXPORT_SYMBOL(rproc_of_parse_firmware);
1114
1115 /*
1116 * A lookup table for resource handlers. The indices are defined in
1117 * enum fw_resource_type.
1118 */
1119 static rproc_handle_resource_t rproc_loading_handlers[RSC_LAST] = {
1120 [RSC_CARVEOUT] = rproc_handle_carveout,
1121 [RSC_DEVMEM] = rproc_handle_devmem,
1122 [RSC_TRACE] = rproc_handle_trace,
1123 [RSC_VDEV] = rproc_handle_vdev,
1124 };
1125
1126 /* handle firmware resource entries before booting the remote processor */
rproc_handle_resources(struct rproc * rproc,rproc_handle_resource_t handlers[RSC_LAST])1127 static int rproc_handle_resources(struct rproc *rproc,
1128 rproc_handle_resource_t handlers[RSC_LAST])
1129 {
1130 struct device *dev = &rproc->dev;
1131 rproc_handle_resource_t handler;
1132 int ret = 0, i;
1133
1134 if (!rproc->table_ptr)
1135 return 0;
1136
1137 for (i = 0; i < rproc->table_ptr->num; i++) {
1138 int offset = rproc->table_ptr->offset[i];
1139 struct fw_rsc_hdr *hdr = (void *)rproc->table_ptr + offset;
1140 int avail = rproc->table_sz - offset - sizeof(*hdr);
1141 void *rsc = (void *)hdr + sizeof(*hdr);
1142
1143 /* make sure table isn't truncated */
1144 if (avail < 0) {
1145 dev_err(dev, "rsc table is truncated\n");
1146 return -EINVAL;
1147 }
1148
1149 dev_dbg(dev, "rsc: type %d\n", hdr->type);
1150
1151 if (hdr->type >= RSC_VENDOR_START &&
1152 hdr->type <= RSC_VENDOR_END) {
1153 ret = rproc_handle_rsc(rproc, hdr->type, rsc,
1154 offset + sizeof(*hdr), avail);
1155 if (ret == RSC_HANDLED)
1156 continue;
1157 else if (ret < 0)
1158 break;
1159
1160 dev_warn(dev, "unsupported vendor resource %d\n",
1161 hdr->type);
1162 continue;
1163 }
1164
1165 if (hdr->type >= RSC_LAST) {
1166 dev_warn(dev, "unsupported resource %d\n", hdr->type);
1167 continue;
1168 }
1169
1170 handler = handlers[hdr->type];
1171 if (!handler)
1172 continue;
1173
1174 ret = handler(rproc, rsc, offset + sizeof(*hdr), avail);
1175 if (ret)
1176 break;
1177 }
1178
1179 return ret;
1180 }
1181
rproc_prepare_subdevices(struct rproc * rproc)1182 static int rproc_prepare_subdevices(struct rproc *rproc)
1183 {
1184 struct rproc_subdev *subdev;
1185 int ret;
1186
1187 list_for_each_entry(subdev, &rproc->subdevs, node) {
1188 if (subdev->prepare) {
1189 ret = subdev->prepare(subdev);
1190 if (ret)
1191 goto unroll_preparation;
1192 }
1193 }
1194
1195 return 0;
1196
1197 unroll_preparation:
1198 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1199 if (subdev->unprepare)
1200 subdev->unprepare(subdev);
1201 }
1202
1203 return ret;
1204 }
1205
rproc_start_subdevices(struct rproc * rproc)1206 static int rproc_start_subdevices(struct rproc *rproc)
1207 {
1208 struct rproc_subdev *subdev;
1209 int ret;
1210
1211 list_for_each_entry(subdev, &rproc->subdevs, node) {
1212 if (subdev->start) {
1213 ret = subdev->start(subdev);
1214 if (ret)
1215 goto unroll_registration;
1216 }
1217 }
1218
1219 return 0;
1220
1221 unroll_registration:
1222 list_for_each_entry_continue_reverse(subdev, &rproc->subdevs, node) {
1223 if (subdev->stop)
1224 subdev->stop(subdev, true);
1225 }
1226
1227 return ret;
1228 }
1229
rproc_stop_subdevices(struct rproc * rproc,bool crashed)1230 static void rproc_stop_subdevices(struct rproc *rproc, bool crashed)
1231 {
1232 struct rproc_subdev *subdev;
1233
1234 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1235 if (subdev->stop)
1236 subdev->stop(subdev, crashed);
1237 }
1238 }
1239
rproc_unprepare_subdevices(struct rproc * rproc)1240 static void rproc_unprepare_subdevices(struct rproc *rproc)
1241 {
1242 struct rproc_subdev *subdev;
1243
1244 list_for_each_entry_reverse(subdev, &rproc->subdevs, node) {
1245 if (subdev->unprepare)
1246 subdev->unprepare(subdev);
1247 }
1248 }
1249
1250 /**
1251 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1252 * in the list
1253 * @rproc: the remote processor handle
1254 *
1255 * This function parses registered carveout list, performs allocation
1256 * if alloc() ops registered and updates resource table information
1257 * if rsc_offset set.
1258 *
1259 * Return: 0 on success
1260 */
rproc_alloc_registered_carveouts(struct rproc * rproc)1261 static int rproc_alloc_registered_carveouts(struct rproc *rproc)
1262 {
1263 struct rproc_mem_entry *entry, *tmp;
1264 struct fw_rsc_carveout *rsc;
1265 struct device *dev = &rproc->dev;
1266 u64 pa;
1267 int ret;
1268
1269 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1270 if (entry->alloc) {
1271 ret = entry->alloc(rproc, entry);
1272 if (ret) {
1273 dev_err(dev, "Unable to allocate carveout %s: %d\n",
1274 entry->name, ret);
1275 return -ENOMEM;
1276 }
1277 }
1278
1279 if (entry->rsc_offset != FW_RSC_ADDR_ANY) {
1280 /* update resource table */
1281 rsc = (void *)rproc->table_ptr + entry->rsc_offset;
1282
1283 /*
1284 * Some remote processors might need to know the pa
1285 * even though they are behind an IOMMU. E.g., OMAP4's
1286 * remote M3 processor needs this so it can control
1287 * on-chip hardware accelerators that are not behind
1288 * the IOMMU, and therefor must know the pa.
1289 *
1290 * Generally we don't want to expose physical addresses
1291 * if we don't have to (remote processors are generally
1292 * _not_ trusted), so we might want to do this only for
1293 * remote processor that _must_ have this (e.g. OMAP4's
1294 * dual M3 subsystem).
1295 *
1296 * Non-IOMMU processors might also want to have this info.
1297 * In this case, the device address and the physical address
1298 * are the same.
1299 */
1300
1301 /* Use va if defined else dma to generate pa */
1302 if (entry->va)
1303 pa = (u64)rproc_va_to_pa(entry->va);
1304 else
1305 pa = (u64)entry->dma;
1306
1307 if (((u64)pa) & HIGH_BITS_MASK)
1308 dev_warn(dev,
1309 "Physical address cast in 32bit to fit resource table format\n");
1310
1311 rsc->pa = (u32)pa;
1312 rsc->da = entry->da;
1313 rsc->len = entry->len;
1314 }
1315 }
1316
1317 return 0;
1318 }
1319
1320
1321 /**
1322 * rproc_resource_cleanup() - clean up and free all acquired resources
1323 * @rproc: rproc handle
1324 *
1325 * This function will free all resources acquired for @rproc, and it
1326 * is called whenever @rproc either shuts down or fails to boot.
1327 */
rproc_resource_cleanup(struct rproc * rproc)1328 void rproc_resource_cleanup(struct rproc *rproc)
1329 {
1330 struct rproc_mem_entry *entry, *tmp;
1331 struct rproc_debug_trace *trace, *ttmp;
1332 struct rproc_vdev *rvdev, *rvtmp;
1333 struct device *dev = &rproc->dev;
1334
1335 /* clean up debugfs trace entries */
1336 list_for_each_entry_safe(trace, ttmp, &rproc->traces, node) {
1337 rproc_remove_trace_file(trace->tfile);
1338 rproc->num_traces--;
1339 list_del(&trace->node);
1340 kfree(trace);
1341 }
1342
1343 /* clean up iommu mapping entries */
1344 list_for_each_entry_safe(entry, tmp, &rproc->mappings, node) {
1345 size_t unmapped;
1346
1347 unmapped = iommu_unmap(rproc->domain, entry->da, entry->len);
1348 if (unmapped != entry->len) {
1349 /* nothing much to do besides complaining */
1350 dev_err(dev, "failed to unmap %zx/%zu\n", entry->len,
1351 unmapped);
1352 }
1353
1354 list_del(&entry->node);
1355 kfree(entry);
1356 }
1357
1358 /* clean up carveout allocations */
1359 list_for_each_entry_safe(entry, tmp, &rproc->carveouts, node) {
1360 if (entry->release)
1361 entry->release(rproc, entry);
1362 list_del(&entry->node);
1363 kfree(entry);
1364 }
1365
1366 /* clean up remote vdev entries */
1367 list_for_each_entry_safe(rvdev, rvtmp, &rproc->rvdevs, node)
1368 kref_put(&rvdev->refcount, rproc_vdev_release);
1369
1370 rproc_coredump_cleanup(rproc);
1371 }
1372 EXPORT_SYMBOL(rproc_resource_cleanup);
1373
rproc_start(struct rproc * rproc,const struct firmware * fw)1374 static int rproc_start(struct rproc *rproc, const struct firmware *fw)
1375 {
1376 struct resource_table *loaded_table;
1377 struct device *dev = &rproc->dev;
1378 int ret;
1379
1380 /* load the ELF segments to memory */
1381 ret = rproc_load_segments(rproc, fw);
1382 if (ret) {
1383 dev_err(dev, "Failed to load program segments: %d\n", ret);
1384 return ret;
1385 }
1386
1387 /*
1388 * The starting device has been given the rproc->cached_table as the
1389 * resource table. The address of the vring along with the other
1390 * allocated resources (carveouts etc) is stored in cached_table.
1391 * In order to pass this information to the remote device we must copy
1392 * this information to device memory. We also update the table_ptr so
1393 * that any subsequent changes will be applied to the loaded version.
1394 */
1395 loaded_table = rproc_find_loaded_rsc_table(rproc, fw);
1396 if (loaded_table) {
1397 memcpy(loaded_table, rproc->cached_table, rproc->table_sz);
1398 rproc->table_ptr = loaded_table;
1399 }
1400
1401 ret = rproc_prepare_subdevices(rproc);
1402 if (ret) {
1403 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1404 rproc->name, ret);
1405 goto reset_table_ptr;
1406 }
1407
1408 /* power up the remote processor */
1409 ret = rproc->ops->start(rproc);
1410 if (ret) {
1411 dev_err(dev, "can't start rproc %s: %d\n", rproc->name, ret);
1412 goto unprepare_subdevices;
1413 }
1414
1415 /* Start any subdevices for the remote processor */
1416 ret = rproc_start_subdevices(rproc);
1417 if (ret) {
1418 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1419 rproc->name, ret);
1420 goto stop_rproc;
1421 }
1422
1423 rproc->state = RPROC_RUNNING;
1424
1425 dev_info(dev, "remote processor %s is now up\n", rproc->name);
1426
1427 return 0;
1428
1429 stop_rproc:
1430 rproc->ops->stop(rproc);
1431 unprepare_subdevices:
1432 rproc_unprepare_subdevices(rproc);
1433 reset_table_ptr:
1434 rproc->table_ptr = rproc->cached_table;
1435
1436 return ret;
1437 }
1438
__rproc_attach(struct rproc * rproc)1439 static int __rproc_attach(struct rproc *rproc)
1440 {
1441 struct device *dev = &rproc->dev;
1442 int ret;
1443
1444 ret = rproc_prepare_subdevices(rproc);
1445 if (ret) {
1446 dev_err(dev, "failed to prepare subdevices for %s: %d\n",
1447 rproc->name, ret);
1448 goto out;
1449 }
1450
1451 /* Attach to the remote processor */
1452 ret = rproc_attach_device(rproc);
1453 if (ret) {
1454 dev_err(dev, "can't attach to rproc %s: %d\n",
1455 rproc->name, ret);
1456 goto unprepare_subdevices;
1457 }
1458
1459 /* Start any subdevices for the remote processor */
1460 ret = rproc_start_subdevices(rproc);
1461 if (ret) {
1462 dev_err(dev, "failed to probe subdevices for %s: %d\n",
1463 rproc->name, ret);
1464 goto stop_rproc;
1465 }
1466
1467 rproc->state = RPROC_ATTACHED;
1468
1469 dev_info(dev, "remote processor %s is now attached\n", rproc->name);
1470
1471 return 0;
1472
1473 stop_rproc:
1474 rproc->ops->stop(rproc);
1475 unprepare_subdevices:
1476 rproc_unprepare_subdevices(rproc);
1477 out:
1478 return ret;
1479 }
1480
1481 /*
1482 * take a firmware and boot a remote processor with it.
1483 */
rproc_fw_boot(struct rproc * rproc,const struct firmware * fw)1484 static int rproc_fw_boot(struct rproc *rproc, const struct firmware *fw)
1485 {
1486 struct device *dev = &rproc->dev;
1487 const char *name = rproc->firmware;
1488 int ret;
1489
1490 ret = rproc_fw_sanity_check(rproc, fw);
1491 if (ret)
1492 return ret;
1493
1494 dev_info(dev, "Booting fw image %s, size %zd\n", name, fw->size);
1495
1496 /*
1497 * if enabling an IOMMU isn't relevant for this rproc, this is
1498 * just a nop
1499 */
1500 ret = rproc_enable_iommu(rproc);
1501 if (ret) {
1502 dev_err(dev, "can't enable iommu: %d\n", ret);
1503 return ret;
1504 }
1505
1506 /* Prepare rproc for firmware loading if needed */
1507 ret = rproc_prepare_device(rproc);
1508 if (ret) {
1509 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1510 goto disable_iommu;
1511 }
1512
1513 rproc->bootaddr = rproc_get_boot_addr(rproc, fw);
1514
1515 /* Load resource table, core dump segment list etc from the firmware */
1516 ret = rproc_parse_fw(rproc, fw);
1517 if (ret)
1518 goto unprepare_rproc;
1519
1520 /* reset max_notifyid */
1521 rproc->max_notifyid = -1;
1522
1523 /* reset handled vdev */
1524 rproc->nb_vdev = 0;
1525
1526 /* handle fw resources which are required to boot rproc */
1527 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1528 if (ret) {
1529 dev_err(dev, "Failed to process resources: %d\n", ret);
1530 goto clean_up_resources;
1531 }
1532
1533 /* Allocate carveout resources associated to rproc */
1534 ret = rproc_alloc_registered_carveouts(rproc);
1535 if (ret) {
1536 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1537 ret);
1538 goto clean_up_resources;
1539 }
1540
1541 ret = rproc_start(rproc, fw);
1542 if (ret)
1543 goto clean_up_resources;
1544
1545 return 0;
1546
1547 clean_up_resources:
1548 rproc_resource_cleanup(rproc);
1549 kfree(rproc->cached_table);
1550 rproc->cached_table = NULL;
1551 rproc->table_ptr = NULL;
1552 unprepare_rproc:
1553 /* release HW resources if needed */
1554 rproc_unprepare_device(rproc);
1555 disable_iommu:
1556 rproc_disable_iommu(rproc);
1557 return ret;
1558 }
1559
rproc_set_rsc_table(struct rproc * rproc)1560 static int rproc_set_rsc_table(struct rproc *rproc)
1561 {
1562 struct resource_table *table_ptr;
1563 struct device *dev = &rproc->dev;
1564 size_t table_sz;
1565 int ret;
1566
1567 table_ptr = rproc_get_loaded_rsc_table(rproc, &table_sz);
1568 if (!table_ptr) {
1569 /* Not having a resource table is acceptable */
1570 return 0;
1571 }
1572
1573 if (IS_ERR(table_ptr)) {
1574 ret = PTR_ERR(table_ptr);
1575 dev_err(dev, "can't load resource table: %d\n", ret);
1576 return ret;
1577 }
1578
1579 /*
1580 * If it is possible to detach the remote processor, keep an untouched
1581 * copy of the resource table. That way we can start fresh again when
1582 * the remote processor is re-attached, that is:
1583 *
1584 * DETACHED -> ATTACHED -> DETACHED -> ATTACHED
1585 *
1586 * Free'd in rproc_reset_rsc_table_on_detach() and
1587 * rproc_reset_rsc_table_on_stop().
1588 */
1589 if (rproc->ops->detach) {
1590 rproc->clean_table = kmemdup(table_ptr, table_sz, GFP_KERNEL);
1591 if (!rproc->clean_table)
1592 return -ENOMEM;
1593 } else {
1594 rproc->clean_table = NULL;
1595 }
1596
1597 rproc->cached_table = NULL;
1598 rproc->table_ptr = table_ptr;
1599 rproc->table_sz = table_sz;
1600
1601 return 0;
1602 }
1603
rproc_reset_rsc_table_on_detach(struct rproc * rproc)1604 static int rproc_reset_rsc_table_on_detach(struct rproc *rproc)
1605 {
1606 struct resource_table *table_ptr;
1607
1608 /* A resource table was never retrieved, nothing to do here */
1609 if (!rproc->table_ptr)
1610 return 0;
1611
1612 /*
1613 * If we made it to this point a clean_table _must_ have been
1614 * allocated in rproc_set_rsc_table(). If one isn't present
1615 * something went really wrong and we must complain.
1616 */
1617 if (WARN_ON(!rproc->clean_table))
1618 return -EINVAL;
1619
1620 /* Remember where the external entity installed the resource table */
1621 table_ptr = rproc->table_ptr;
1622
1623 /*
1624 * If we made it here the remote processor was started by another
1625 * entity and a cache table doesn't exist. As such make a copy of
1626 * the resource table currently used by the remote processor and
1627 * use that for the rest of the shutdown process. The memory
1628 * allocated here is free'd in rproc_detach().
1629 */
1630 rproc->cached_table = kmemdup(rproc->table_ptr,
1631 rproc->table_sz, GFP_KERNEL);
1632 if (!rproc->cached_table)
1633 return -ENOMEM;
1634
1635 /*
1636 * Use a copy of the resource table for the remainder of the
1637 * shutdown process.
1638 */
1639 rproc->table_ptr = rproc->cached_table;
1640
1641 /*
1642 * Reset the memory area where the firmware loaded the resource table
1643 * to its original value. That way when we re-attach the remote
1644 * processor the resource table is clean and ready to be used again.
1645 */
1646 memcpy(table_ptr, rproc->clean_table, rproc->table_sz);
1647
1648 /*
1649 * The clean resource table is no longer needed. Allocated in
1650 * rproc_set_rsc_table().
1651 */
1652 kfree(rproc->clean_table);
1653
1654 return 0;
1655 }
1656
rproc_reset_rsc_table_on_stop(struct rproc * rproc)1657 static int rproc_reset_rsc_table_on_stop(struct rproc *rproc)
1658 {
1659 /* A resource table was never retrieved, nothing to do here */
1660 if (!rproc->table_ptr)
1661 return 0;
1662
1663 /*
1664 * If a cache table exists the remote processor was started by
1665 * the remoteproc core. That cache table should be used for
1666 * the rest of the shutdown process.
1667 */
1668 if (rproc->cached_table)
1669 goto out;
1670
1671 /*
1672 * If we made it here the remote processor was started by another
1673 * entity and a cache table doesn't exist. As such make a copy of
1674 * the resource table currently used by the remote processor and
1675 * use that for the rest of the shutdown process. The memory
1676 * allocated here is free'd in rproc_shutdown().
1677 */
1678 rproc->cached_table = kmemdup(rproc->table_ptr,
1679 rproc->table_sz, GFP_KERNEL);
1680 if (!rproc->cached_table)
1681 return -ENOMEM;
1682
1683 /*
1684 * Since the remote processor is being switched off the clean table
1685 * won't be needed. Allocated in rproc_set_rsc_table().
1686 */
1687 kfree(rproc->clean_table);
1688
1689 out:
1690 /*
1691 * Use a copy of the resource table for the remainder of the
1692 * shutdown process.
1693 */
1694 rproc->table_ptr = rproc->cached_table;
1695 return 0;
1696 }
1697
1698 /*
1699 * Attach to remote processor - similar to rproc_fw_boot() but without
1700 * the steps that deal with the firmware image.
1701 */
rproc_attach(struct rproc * rproc)1702 static int rproc_attach(struct rproc *rproc)
1703 {
1704 struct device *dev = &rproc->dev;
1705 int ret;
1706
1707 /*
1708 * if enabling an IOMMU isn't relevant for this rproc, this is
1709 * just a nop
1710 */
1711 ret = rproc_enable_iommu(rproc);
1712 if (ret) {
1713 dev_err(dev, "can't enable iommu: %d\n", ret);
1714 return ret;
1715 }
1716
1717 /* Do anything that is needed to boot the remote processor */
1718 ret = rproc_prepare_device(rproc);
1719 if (ret) {
1720 dev_err(dev, "can't prepare rproc %s: %d\n", rproc->name, ret);
1721 goto disable_iommu;
1722 }
1723
1724 ret = rproc_set_rsc_table(rproc);
1725 if (ret) {
1726 dev_err(dev, "can't load resource table: %d\n", ret);
1727 goto unprepare_device;
1728 }
1729
1730 /* reset max_notifyid */
1731 rproc->max_notifyid = -1;
1732
1733 /* reset handled vdev */
1734 rproc->nb_vdev = 0;
1735
1736 /*
1737 * Handle firmware resources required to attach to a remote processor.
1738 * Because we are attaching rather than booting the remote processor,
1739 * we expect the platform driver to properly set rproc->table_ptr.
1740 */
1741 ret = rproc_handle_resources(rproc, rproc_loading_handlers);
1742 if (ret) {
1743 dev_err(dev, "Failed to process resources: %d\n", ret);
1744 goto unprepare_device;
1745 }
1746
1747 /* Allocate carveout resources associated to rproc */
1748 ret = rproc_alloc_registered_carveouts(rproc);
1749 if (ret) {
1750 dev_err(dev, "Failed to allocate associated carveouts: %d\n",
1751 ret);
1752 goto clean_up_resources;
1753 }
1754
1755 ret = __rproc_attach(rproc);
1756 if (ret)
1757 goto clean_up_resources;
1758
1759 return 0;
1760
1761 clean_up_resources:
1762 rproc_resource_cleanup(rproc);
1763 unprepare_device:
1764 /* release HW resources if needed */
1765 rproc_unprepare_device(rproc);
1766 disable_iommu:
1767 rproc_disable_iommu(rproc);
1768 return ret;
1769 }
1770
1771 /*
1772 * take a firmware and boot it up.
1773 *
1774 * Note: this function is called asynchronously upon registration of the
1775 * remote processor (so we must wait until it completes before we try
1776 * to unregister the device. one other option is just to use kref here,
1777 * that might be cleaner).
1778 */
rproc_auto_boot_callback(const struct firmware * fw,void * context)1779 static void rproc_auto_boot_callback(const struct firmware *fw, void *context)
1780 {
1781 struct rproc *rproc = context;
1782
1783 rproc_boot(rproc);
1784
1785 release_firmware(fw);
1786 }
1787
rproc_trigger_auto_boot(struct rproc * rproc)1788 static int rproc_trigger_auto_boot(struct rproc *rproc)
1789 {
1790 int ret;
1791
1792 /*
1793 * Since the remote processor is in a detached state, it has already
1794 * been booted by another entity. As such there is no point in waiting
1795 * for a firmware image to be loaded, we can simply initiate the process
1796 * of attaching to it immediately.
1797 */
1798 if (rproc->state == RPROC_DETACHED)
1799 return rproc_boot(rproc);
1800
1801 /*
1802 * We're initiating an asynchronous firmware loading, so we can
1803 * be built-in kernel code, without hanging the boot process.
1804 */
1805 ret = request_firmware_nowait(THIS_MODULE, FW_ACTION_UEVENT,
1806 rproc->firmware, &rproc->dev, GFP_KERNEL,
1807 rproc, rproc_auto_boot_callback);
1808 if (ret < 0)
1809 dev_err(&rproc->dev, "request_firmware_nowait err: %d\n", ret);
1810
1811 return ret;
1812 }
1813
rproc_stop(struct rproc * rproc,bool crashed)1814 static int rproc_stop(struct rproc *rproc, bool crashed)
1815 {
1816 struct device *dev = &rproc->dev;
1817 int ret;
1818
1819 /* No need to continue if a stop() operation has not been provided */
1820 if (!rproc->ops->stop)
1821 return -EINVAL;
1822
1823 /* Stop any subdevices for the remote processor */
1824 rproc_stop_subdevices(rproc, crashed);
1825
1826 /* the installed resource table is no longer accessible */
1827 ret = rproc_reset_rsc_table_on_stop(rproc);
1828 if (ret) {
1829 dev_err(dev, "can't reset resource table: %d\n", ret);
1830 return ret;
1831 }
1832
1833
1834 /* power off the remote processor */
1835 ret = rproc->ops->stop(rproc);
1836 if (ret) {
1837 dev_err(dev, "can't stop rproc: %d\n", ret);
1838 return ret;
1839 }
1840
1841 rproc_unprepare_subdevices(rproc);
1842
1843 rproc->state = RPROC_OFFLINE;
1844
1845 dev_info(dev, "stopped remote processor %s\n", rproc->name);
1846
1847 return 0;
1848 }
1849
1850 /*
1851 * __rproc_detach(): Does the opposite of __rproc_attach()
1852 */
__rproc_detach(struct rproc * rproc)1853 static int __rproc_detach(struct rproc *rproc)
1854 {
1855 struct device *dev = &rproc->dev;
1856 int ret;
1857
1858 /* No need to continue if a detach() operation has not been provided */
1859 if (!rproc->ops->detach)
1860 return -EINVAL;
1861
1862 /* Stop any subdevices for the remote processor */
1863 rproc_stop_subdevices(rproc, false);
1864
1865 /* the installed resource table is no longer accessible */
1866 ret = rproc_reset_rsc_table_on_detach(rproc);
1867 if (ret) {
1868 dev_err(dev, "can't reset resource table: %d\n", ret);
1869 return ret;
1870 }
1871
1872 /* Tell the remote processor the core isn't available anymore */
1873 ret = rproc->ops->detach(rproc);
1874 if (ret) {
1875 dev_err(dev, "can't detach from rproc: %d\n", ret);
1876 return ret;
1877 }
1878
1879 rproc_unprepare_subdevices(rproc);
1880
1881 rproc->state = RPROC_DETACHED;
1882
1883 dev_info(dev, "detached remote processor %s\n", rproc->name);
1884
1885 return 0;
1886 }
1887
1888 /**
1889 * rproc_trigger_recovery() - recover a remoteproc
1890 * @rproc: the remote processor
1891 *
1892 * The recovery is done by resetting all the virtio devices, that way all the
1893 * rpmsg drivers will be reseted along with the remote processor making the
1894 * remoteproc functional again.
1895 *
1896 * This function can sleep, so it cannot be called from atomic context.
1897 *
1898 * Return: 0 on success or a negative value upon failure
1899 */
rproc_trigger_recovery(struct rproc * rproc)1900 int rproc_trigger_recovery(struct rproc *rproc)
1901 {
1902 const struct firmware *firmware_p;
1903 struct device *dev = &rproc->dev;
1904 int ret;
1905
1906 ret = mutex_lock_interruptible(&rproc->lock);
1907 if (ret)
1908 return ret;
1909
1910 /* State could have changed before we got the mutex */
1911 if (rproc->state != RPROC_CRASHED)
1912 goto unlock_mutex;
1913
1914 dev_err(dev, "recovering %s\n", rproc->name);
1915
1916 ret = rproc_stop(rproc, true);
1917 if (ret)
1918 goto unlock_mutex;
1919
1920 /* generate coredump */
1921 rproc->ops->coredump(rproc);
1922
1923 /* load firmware */
1924 ret = request_firmware(&firmware_p, rproc->firmware, dev);
1925 if (ret < 0) {
1926 dev_err(dev, "request_firmware failed: %d\n", ret);
1927 goto unlock_mutex;
1928 }
1929
1930 /* boot the remote processor up again */
1931 ret = rproc_start(rproc, firmware_p);
1932
1933 release_firmware(firmware_p);
1934
1935 unlock_mutex:
1936 mutex_unlock(&rproc->lock);
1937 return ret;
1938 }
1939
1940 /**
1941 * rproc_crash_handler_work() - handle a crash
1942 * @work: work treating the crash
1943 *
1944 * This function needs to handle everything related to a crash, like cpu
1945 * registers and stack dump, information to help to debug the fatal error, etc.
1946 */
rproc_crash_handler_work(struct work_struct * work)1947 static void rproc_crash_handler_work(struct work_struct *work)
1948 {
1949 struct rproc *rproc = container_of(work, struct rproc, crash_handler);
1950 struct device *dev = &rproc->dev;
1951
1952 dev_dbg(dev, "enter %s\n", __func__);
1953
1954 mutex_lock(&rproc->lock);
1955
1956 if (rproc->state == RPROC_CRASHED || rproc->state == RPROC_OFFLINE) {
1957 /* handle only the first crash detected */
1958 mutex_unlock(&rproc->lock);
1959 return;
1960 }
1961
1962 rproc->state = RPROC_CRASHED;
1963 dev_err(dev, "handling crash #%u in %s\n", ++rproc->crash_cnt,
1964 rproc->name);
1965
1966 mutex_unlock(&rproc->lock);
1967
1968 if (!rproc->recovery_disabled)
1969 rproc_trigger_recovery(rproc);
1970
1971 pm_relax(rproc->dev.parent);
1972 }
1973
1974 /**
1975 * rproc_boot() - boot a remote processor
1976 * @rproc: handle of a remote processor
1977 *
1978 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1979 *
1980 * If the remote processor is already powered on, this function immediately
1981 * returns (successfully).
1982 *
1983 * Return: 0 on success, and an appropriate error value otherwise
1984 */
rproc_boot(struct rproc * rproc)1985 int rproc_boot(struct rproc *rproc)
1986 {
1987 const struct firmware *firmware_p;
1988 struct device *dev;
1989 int ret;
1990
1991 if (!rproc) {
1992 pr_err("invalid rproc handle\n");
1993 return -EINVAL;
1994 }
1995
1996 dev = &rproc->dev;
1997
1998 ret = mutex_lock_interruptible(&rproc->lock);
1999 if (ret) {
2000 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2001 return ret;
2002 }
2003
2004 if (rproc->state == RPROC_DELETED) {
2005 ret = -ENODEV;
2006 dev_err(dev, "can't boot deleted rproc %s\n", rproc->name);
2007 goto unlock_mutex;
2008 }
2009
2010 /* skip the boot or attach process if rproc is already powered up */
2011 if (atomic_inc_return(&rproc->power) > 1) {
2012 ret = 0;
2013 goto unlock_mutex;
2014 }
2015
2016 if (rproc->state == RPROC_DETACHED) {
2017 dev_info(dev, "attaching to %s\n", rproc->name);
2018
2019 ret = rproc_attach(rproc);
2020 } else {
2021 dev_info(dev, "powering up %s\n", rproc->name);
2022
2023 /* load firmware */
2024 ret = request_firmware(&firmware_p, rproc->firmware, dev);
2025 if (ret < 0) {
2026 dev_err(dev, "request_firmware failed: %d\n", ret);
2027 goto downref_rproc;
2028 }
2029
2030 ret = rproc_fw_boot(rproc, firmware_p);
2031
2032 release_firmware(firmware_p);
2033 }
2034
2035 downref_rproc:
2036 if (ret)
2037 atomic_dec(&rproc->power);
2038 unlock_mutex:
2039 mutex_unlock(&rproc->lock);
2040 return ret;
2041 }
2042 EXPORT_SYMBOL(rproc_boot);
2043
2044 /**
2045 * rproc_shutdown() - power off the remote processor
2046 * @rproc: the remote processor
2047 *
2048 * Power off a remote processor (previously booted with rproc_boot()).
2049 *
2050 * In case @rproc is still being used by an additional user(s), then
2051 * this function will just decrement the power refcount and exit,
2052 * without really powering off the device.
2053 *
2054 * Every call to rproc_boot() must (eventually) be accompanied by a call
2055 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
2056 *
2057 * Notes:
2058 * - we're not decrementing the rproc's refcount, only the power refcount.
2059 * which means that the @rproc handle stays valid even after rproc_shutdown()
2060 * returns, and users can still use it with a subsequent rproc_boot(), if
2061 * needed.
2062 */
rproc_shutdown(struct rproc * rproc)2063 void rproc_shutdown(struct rproc *rproc)
2064 {
2065 struct device *dev = &rproc->dev;
2066 int ret;
2067
2068 ret = mutex_lock_interruptible(&rproc->lock);
2069 if (ret) {
2070 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2071 return;
2072 }
2073
2074 /* if the remote proc is still needed, bail out */
2075 if (!atomic_dec_and_test(&rproc->power))
2076 goto out;
2077
2078 ret = rproc_stop(rproc, false);
2079 if (ret) {
2080 atomic_inc(&rproc->power);
2081 goto out;
2082 }
2083
2084 /* clean up all acquired resources */
2085 rproc_resource_cleanup(rproc);
2086
2087 /* release HW resources if needed */
2088 rproc_unprepare_device(rproc);
2089
2090 rproc_disable_iommu(rproc);
2091
2092 /* Free the copy of the resource table */
2093 kfree(rproc->cached_table);
2094 rproc->cached_table = NULL;
2095 rproc->table_ptr = NULL;
2096 out:
2097 mutex_unlock(&rproc->lock);
2098 }
2099 EXPORT_SYMBOL(rproc_shutdown);
2100
2101 /**
2102 * rproc_detach() - Detach the remote processor from the
2103 * remoteproc core
2104 *
2105 * @rproc: the remote processor
2106 *
2107 * Detach a remote processor (previously attached to with rproc_attach()).
2108 *
2109 * In case @rproc is still being used by an additional user(s), then
2110 * this function will just decrement the power refcount and exit,
2111 * without disconnecting the device.
2112 *
2113 * Function rproc_detach() calls __rproc_detach() in order to let a remote
2114 * processor know that services provided by the application processor are
2115 * no longer available. From there it should be possible to remove the
2116 * platform driver and even power cycle the application processor (if the HW
2117 * supports it) without needing to switch off the remote processor.
2118 *
2119 * Return: 0 on success, and an appropriate error value otherwise
2120 */
rproc_detach(struct rproc * rproc)2121 int rproc_detach(struct rproc *rproc)
2122 {
2123 struct device *dev = &rproc->dev;
2124 int ret;
2125
2126 ret = mutex_lock_interruptible(&rproc->lock);
2127 if (ret) {
2128 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2129 return ret;
2130 }
2131
2132 /* if the remote proc is still needed, bail out */
2133 if (!atomic_dec_and_test(&rproc->power)) {
2134 ret = 0;
2135 goto out;
2136 }
2137
2138 ret = __rproc_detach(rproc);
2139 if (ret) {
2140 atomic_inc(&rproc->power);
2141 goto out;
2142 }
2143
2144 /* clean up all acquired resources */
2145 rproc_resource_cleanup(rproc);
2146
2147 /* release HW resources if needed */
2148 rproc_unprepare_device(rproc);
2149
2150 rproc_disable_iommu(rproc);
2151
2152 /* Free the copy of the resource table */
2153 kfree(rproc->cached_table);
2154 rproc->cached_table = NULL;
2155 rproc->table_ptr = NULL;
2156 out:
2157 mutex_unlock(&rproc->lock);
2158 return ret;
2159 }
2160 EXPORT_SYMBOL(rproc_detach);
2161
2162 /**
2163 * rproc_get_by_phandle() - find a remote processor by phandle
2164 * @phandle: phandle to the rproc
2165 *
2166 * Finds an rproc handle using the remote processor's phandle, and then
2167 * return a handle to the rproc.
2168 *
2169 * This function increments the remote processor's refcount, so always
2170 * use rproc_put() to decrement it back once rproc isn't needed anymore.
2171 *
2172 * Return: rproc handle on success, and NULL on failure
2173 */
2174 #ifdef CONFIG_OF
rproc_get_by_phandle(phandle phandle)2175 struct rproc *rproc_get_by_phandle(phandle phandle)
2176 {
2177 struct rproc *rproc = NULL, *r;
2178 struct device_node *np;
2179
2180 np = of_find_node_by_phandle(phandle);
2181 if (!np)
2182 return NULL;
2183
2184 rcu_read_lock();
2185 list_for_each_entry_rcu(r, &rproc_list, node) {
2186 if (r->dev.parent && r->dev.parent->of_node == np) {
2187 /* prevent underlying implementation from being removed */
2188 if (!try_module_get(r->dev.parent->driver->owner)) {
2189 dev_err(&r->dev, "can't get owner\n");
2190 break;
2191 }
2192
2193 rproc = r;
2194 get_device(&rproc->dev);
2195 break;
2196 }
2197 }
2198 rcu_read_unlock();
2199
2200 of_node_put(np);
2201
2202 return rproc;
2203 }
2204 #else
rproc_get_by_phandle(phandle phandle)2205 struct rproc *rproc_get_by_phandle(phandle phandle)
2206 {
2207 return NULL;
2208 }
2209 #endif
2210 EXPORT_SYMBOL(rproc_get_by_phandle);
2211
2212 /**
2213 * rproc_set_firmware() - assign a new firmware
2214 * @rproc: rproc handle to which the new firmware is being assigned
2215 * @fw_name: new firmware name to be assigned
2216 *
2217 * This function allows remoteproc drivers or clients to configure a custom
2218 * firmware name that is different from the default name used during remoteproc
2219 * registration. The function does not trigger a remote processor boot,
2220 * only sets the firmware name used for a subsequent boot. This function
2221 * should also be called only when the remote processor is offline.
2222 *
2223 * This allows either the userspace to configure a different name through
2224 * sysfs or a kernel-level remoteproc or a remoteproc client driver to set
2225 * a specific firmware when it is controlling the boot and shutdown of the
2226 * remote processor.
2227 *
2228 * Return: 0 on success or a negative value upon failure
2229 */
rproc_set_firmware(struct rproc * rproc,const char * fw_name)2230 int rproc_set_firmware(struct rproc *rproc, const char *fw_name)
2231 {
2232 struct device *dev;
2233 int ret, len;
2234 char *p;
2235
2236 if (!rproc || !fw_name)
2237 return -EINVAL;
2238
2239 dev = rproc->dev.parent;
2240
2241 ret = mutex_lock_interruptible(&rproc->lock);
2242 if (ret) {
2243 dev_err(dev, "can't lock rproc %s: %d\n", rproc->name, ret);
2244 return -EINVAL;
2245 }
2246
2247 if (rproc->state != RPROC_OFFLINE) {
2248 dev_err(dev, "can't change firmware while running\n");
2249 ret = -EBUSY;
2250 goto out;
2251 }
2252
2253 len = strcspn(fw_name, "\n");
2254 if (!len) {
2255 dev_err(dev, "can't provide empty string for firmware name\n");
2256 ret = -EINVAL;
2257 goto out;
2258 }
2259
2260 p = kstrndup(fw_name, len, GFP_KERNEL);
2261 if (!p) {
2262 ret = -ENOMEM;
2263 goto out;
2264 }
2265
2266 kfree_const(rproc->firmware);
2267 rproc->firmware = p;
2268
2269 out:
2270 mutex_unlock(&rproc->lock);
2271 return ret;
2272 }
2273 EXPORT_SYMBOL(rproc_set_firmware);
2274
rproc_validate(struct rproc * rproc)2275 static int rproc_validate(struct rproc *rproc)
2276 {
2277 switch (rproc->state) {
2278 case RPROC_OFFLINE:
2279 /*
2280 * An offline processor without a start()
2281 * function makes no sense.
2282 */
2283 if (!rproc->ops->start)
2284 return -EINVAL;
2285 break;
2286 case RPROC_DETACHED:
2287 /*
2288 * A remote processor in a detached state without an
2289 * attach() function makes not sense.
2290 */
2291 if (!rproc->ops->attach)
2292 return -EINVAL;
2293 /*
2294 * When attaching to a remote processor the device memory
2295 * is already available and as such there is no need to have a
2296 * cached table.
2297 */
2298 if (rproc->cached_table)
2299 return -EINVAL;
2300 break;
2301 default:
2302 /*
2303 * When adding a remote processor, the state of the device
2304 * can be offline or detached, nothing else.
2305 */
2306 return -EINVAL;
2307 }
2308
2309 return 0;
2310 }
2311
2312 /**
2313 * rproc_add() - register a remote processor
2314 * @rproc: the remote processor handle to register
2315 *
2316 * Registers @rproc with the remoteproc framework, after it has been
2317 * allocated with rproc_alloc().
2318 *
2319 * This is called by the platform-specific rproc implementation, whenever
2320 * a new remote processor device is probed.
2321 *
2322 * Note: this function initiates an asynchronous firmware loading
2323 * context, which will look for virtio devices supported by the rproc's
2324 * firmware.
2325 *
2326 * If found, those virtio devices will be created and added, so as a result
2327 * of registering this remote processor, additional virtio drivers might be
2328 * probed.
2329 *
2330 * Return: 0 on success and an appropriate error code otherwise
2331 */
rproc_add(struct rproc * rproc)2332 int rproc_add(struct rproc *rproc)
2333 {
2334 struct device *dev = &rproc->dev;
2335 int ret;
2336
2337 ret = rproc_validate(rproc);
2338 if (ret < 0)
2339 return ret;
2340
2341 /* add char device for this remoteproc */
2342 ret = rproc_char_device_add(rproc);
2343 if (ret < 0)
2344 return ret;
2345
2346 ret = device_add(dev);
2347 if (ret < 0) {
2348 put_device(dev);
2349 goto rproc_remove_cdev;
2350 }
2351
2352 dev_info(dev, "%s is available\n", rproc->name);
2353
2354 /* create debugfs entries */
2355 rproc_create_debug_dir(rproc);
2356
2357 /* if rproc is marked always-on, request it to boot */
2358 if (rproc->auto_boot) {
2359 ret = rproc_trigger_auto_boot(rproc);
2360 if (ret < 0)
2361 goto rproc_remove_dev;
2362 }
2363
2364 /* expose to rproc_get_by_phandle users */
2365 mutex_lock(&rproc_list_mutex);
2366 list_add_rcu(&rproc->node, &rproc_list);
2367 mutex_unlock(&rproc_list_mutex);
2368
2369 return 0;
2370
2371 rproc_remove_dev:
2372 rproc_delete_debug_dir(rproc);
2373 device_del(dev);
2374 rproc_remove_cdev:
2375 rproc_char_device_remove(rproc);
2376 return ret;
2377 }
2378 EXPORT_SYMBOL(rproc_add);
2379
devm_rproc_remove(void * rproc)2380 static void devm_rproc_remove(void *rproc)
2381 {
2382 rproc_del(rproc);
2383 }
2384
2385 /**
2386 * devm_rproc_add() - resource managed rproc_add()
2387 * @dev: the underlying device
2388 * @rproc: the remote processor handle to register
2389 *
2390 * This function performs like rproc_add() but the registered rproc device will
2391 * automatically be removed on driver detach.
2392 *
2393 * Return: 0 on success, negative errno on failure
2394 */
devm_rproc_add(struct device * dev,struct rproc * rproc)2395 int devm_rproc_add(struct device *dev, struct rproc *rproc)
2396 {
2397 int err;
2398
2399 err = rproc_add(rproc);
2400 if (err)
2401 return err;
2402
2403 return devm_add_action_or_reset(dev, devm_rproc_remove, rproc);
2404 }
2405 EXPORT_SYMBOL(devm_rproc_add);
2406
2407 /**
2408 * rproc_type_release() - release a remote processor instance
2409 * @dev: the rproc's device
2410 *
2411 * This function should _never_ be called directly.
2412 *
2413 * It will be called by the driver core when no one holds a valid pointer
2414 * to @dev anymore.
2415 */
rproc_type_release(struct device * dev)2416 static void rproc_type_release(struct device *dev)
2417 {
2418 struct rproc *rproc = container_of(dev, struct rproc, dev);
2419
2420 dev_info(&rproc->dev, "releasing %s\n", rproc->name);
2421
2422 idr_destroy(&rproc->notifyids);
2423
2424 if (rproc->index >= 0)
2425 ida_simple_remove(&rproc_dev_index, rproc->index);
2426
2427 kfree_const(rproc->firmware);
2428 kfree_const(rproc->name);
2429 kfree(rproc->ops);
2430 kfree(rproc);
2431 }
2432
2433 static const struct device_type rproc_type = {
2434 .name = "remoteproc",
2435 .release = rproc_type_release,
2436 };
2437
rproc_alloc_firmware(struct rproc * rproc,const char * name,const char * firmware)2438 static int rproc_alloc_firmware(struct rproc *rproc,
2439 const char *name, const char *firmware)
2440 {
2441 const char *p;
2442
2443 /*
2444 * Allocate a firmware name if the caller gave us one to work
2445 * with. Otherwise construct a new one using a default pattern.
2446 */
2447 if (firmware)
2448 p = kstrdup_const(firmware, GFP_KERNEL);
2449 else
2450 p = kasprintf(GFP_KERNEL, "rproc-%s-fw", name);
2451
2452 if (!p)
2453 return -ENOMEM;
2454
2455 rproc->firmware = p;
2456
2457 return 0;
2458 }
2459
rproc_alloc_ops(struct rproc * rproc,const struct rproc_ops * ops)2460 static int rproc_alloc_ops(struct rproc *rproc, const struct rproc_ops *ops)
2461 {
2462 rproc->ops = kmemdup(ops, sizeof(*ops), GFP_KERNEL);
2463 if (!rproc->ops)
2464 return -ENOMEM;
2465
2466 /* Default to rproc_coredump if no coredump function is specified */
2467 if (!rproc->ops->coredump)
2468 rproc->ops->coredump = rproc_coredump;
2469
2470 if (rproc->ops->load)
2471 return 0;
2472
2473 /* Default to ELF loader if no load function is specified */
2474 rproc->ops->load = rproc_elf_load_segments;
2475 rproc->ops->parse_fw = rproc_elf_load_rsc_table;
2476 rproc->ops->find_loaded_rsc_table = rproc_elf_find_loaded_rsc_table;
2477 rproc->ops->sanity_check = rproc_elf_sanity_check;
2478 rproc->ops->get_boot_addr = rproc_elf_get_boot_addr;
2479
2480 return 0;
2481 }
2482
2483 /**
2484 * rproc_alloc() - allocate a remote processor handle
2485 * @dev: the underlying device
2486 * @name: name of this remote processor
2487 * @ops: platform-specific handlers (mainly start/stop)
2488 * @firmware: name of firmware file to load, can be NULL
2489 * @len: length of private data needed by the rproc driver (in bytes)
2490 *
2491 * Allocates a new remote processor handle, but does not register
2492 * it yet. if @firmware is NULL, a default name is used.
2493 *
2494 * This function should be used by rproc implementations during initialization
2495 * of the remote processor.
2496 *
2497 * After creating an rproc handle using this function, and when ready,
2498 * implementations should then call rproc_add() to complete
2499 * the registration of the remote processor.
2500 *
2501 * Note: _never_ directly deallocate @rproc, even if it was not registered
2502 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
2503 *
2504 * Return: new rproc pointer on success, and NULL on failure
2505 */
rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2506 struct rproc *rproc_alloc(struct device *dev, const char *name,
2507 const struct rproc_ops *ops,
2508 const char *firmware, int len)
2509 {
2510 struct rproc *rproc;
2511
2512 if (!dev || !name || !ops)
2513 return NULL;
2514
2515 rproc = kzalloc(sizeof(struct rproc) + len, GFP_KERNEL);
2516 if (!rproc)
2517 return NULL;
2518
2519 rproc->priv = &rproc[1];
2520 rproc->auto_boot = true;
2521 rproc->elf_class = ELFCLASSNONE;
2522 rproc->elf_machine = EM_NONE;
2523
2524 device_initialize(&rproc->dev);
2525 rproc->dev.parent = dev;
2526 rproc->dev.type = &rproc_type;
2527 rproc->dev.class = &rproc_class;
2528 rproc->dev.driver_data = rproc;
2529 idr_init(&rproc->notifyids);
2530
2531 rproc->name = kstrdup_const(name, GFP_KERNEL);
2532 if (!rproc->name)
2533 goto put_device;
2534
2535 if (rproc_alloc_firmware(rproc, name, firmware))
2536 goto put_device;
2537
2538 if (rproc_alloc_ops(rproc, ops))
2539 goto put_device;
2540
2541 /* Assign a unique device index and name */
2542 rproc->index = ida_simple_get(&rproc_dev_index, 0, 0, GFP_KERNEL);
2543 if (rproc->index < 0) {
2544 dev_err(dev, "ida_simple_get failed: %d\n", rproc->index);
2545 goto put_device;
2546 }
2547
2548 dev_set_name(&rproc->dev, "remoteproc%d", rproc->index);
2549
2550 atomic_set(&rproc->power, 0);
2551
2552 mutex_init(&rproc->lock);
2553
2554 INIT_LIST_HEAD(&rproc->carveouts);
2555 INIT_LIST_HEAD(&rproc->mappings);
2556 INIT_LIST_HEAD(&rproc->traces);
2557 INIT_LIST_HEAD(&rproc->rvdevs);
2558 INIT_LIST_HEAD(&rproc->subdevs);
2559 INIT_LIST_HEAD(&rproc->dump_segments);
2560
2561 INIT_WORK(&rproc->crash_handler, rproc_crash_handler_work);
2562
2563 rproc->state = RPROC_OFFLINE;
2564
2565 return rproc;
2566
2567 put_device:
2568 put_device(&rproc->dev);
2569 return NULL;
2570 }
2571 EXPORT_SYMBOL(rproc_alloc);
2572
2573 /**
2574 * rproc_free() - unroll rproc_alloc()
2575 * @rproc: the remote processor handle
2576 *
2577 * This function decrements the rproc dev refcount.
2578 *
2579 * If no one holds any reference to rproc anymore, then its refcount would
2580 * now drop to zero, and it would be freed.
2581 */
rproc_free(struct rproc * rproc)2582 void rproc_free(struct rproc *rproc)
2583 {
2584 put_device(&rproc->dev);
2585 }
2586 EXPORT_SYMBOL(rproc_free);
2587
2588 /**
2589 * rproc_put() - release rproc reference
2590 * @rproc: the remote processor handle
2591 *
2592 * This function decrements the rproc dev refcount.
2593 *
2594 * If no one holds any reference to rproc anymore, then its refcount would
2595 * now drop to zero, and it would be freed.
2596 */
rproc_put(struct rproc * rproc)2597 void rproc_put(struct rproc *rproc)
2598 {
2599 module_put(rproc->dev.parent->driver->owner);
2600 put_device(&rproc->dev);
2601 }
2602 EXPORT_SYMBOL(rproc_put);
2603
2604 /**
2605 * rproc_del() - unregister a remote processor
2606 * @rproc: rproc handle to unregister
2607 *
2608 * This function should be called when the platform specific rproc
2609 * implementation decides to remove the rproc device. it should
2610 * _only_ be called if a previous invocation of rproc_add()
2611 * has completed successfully.
2612 *
2613 * After rproc_del() returns, @rproc isn't freed yet, because
2614 * of the outstanding reference created by rproc_alloc. To decrement that
2615 * one last refcount, one still needs to call rproc_free().
2616 *
2617 * Return: 0 on success and -EINVAL if @rproc isn't valid
2618 */
rproc_del(struct rproc * rproc)2619 int rproc_del(struct rproc *rproc)
2620 {
2621 if (!rproc)
2622 return -EINVAL;
2623
2624 /* TODO: make sure this works with rproc->power > 1 */
2625 rproc_shutdown(rproc);
2626
2627 mutex_lock(&rproc->lock);
2628 rproc->state = RPROC_DELETED;
2629 mutex_unlock(&rproc->lock);
2630
2631 rproc_delete_debug_dir(rproc);
2632
2633 /* the rproc is downref'ed as soon as it's removed from the klist */
2634 mutex_lock(&rproc_list_mutex);
2635 list_del_rcu(&rproc->node);
2636 mutex_unlock(&rproc_list_mutex);
2637
2638 /* Ensure that no readers of rproc_list are still active */
2639 synchronize_rcu();
2640
2641 device_del(&rproc->dev);
2642 rproc_char_device_remove(rproc);
2643
2644 return 0;
2645 }
2646 EXPORT_SYMBOL(rproc_del);
2647
devm_rproc_free(struct device * dev,void * res)2648 static void devm_rproc_free(struct device *dev, void *res)
2649 {
2650 rproc_free(*(struct rproc **)res);
2651 }
2652
2653 /**
2654 * devm_rproc_alloc() - resource managed rproc_alloc()
2655 * @dev: the underlying device
2656 * @name: name of this remote processor
2657 * @ops: platform-specific handlers (mainly start/stop)
2658 * @firmware: name of firmware file to load, can be NULL
2659 * @len: length of private data needed by the rproc driver (in bytes)
2660 *
2661 * This function performs like rproc_alloc() but the acquired rproc device will
2662 * automatically be released on driver detach.
2663 *
2664 * Return: new rproc instance, or NULL on failure
2665 */
devm_rproc_alloc(struct device * dev,const char * name,const struct rproc_ops * ops,const char * firmware,int len)2666 struct rproc *devm_rproc_alloc(struct device *dev, const char *name,
2667 const struct rproc_ops *ops,
2668 const char *firmware, int len)
2669 {
2670 struct rproc **ptr, *rproc;
2671
2672 ptr = devres_alloc(devm_rproc_free, sizeof(*ptr), GFP_KERNEL);
2673 if (!ptr)
2674 return NULL;
2675
2676 rproc = rproc_alloc(dev, name, ops, firmware, len);
2677 if (rproc) {
2678 *ptr = rproc;
2679 devres_add(dev, ptr);
2680 } else {
2681 devres_free(ptr);
2682 }
2683
2684 return rproc;
2685 }
2686 EXPORT_SYMBOL(devm_rproc_alloc);
2687
2688 /**
2689 * rproc_add_subdev() - add a subdevice to a remoteproc
2690 * @rproc: rproc handle to add the subdevice to
2691 * @subdev: subdev handle to register
2692 *
2693 * Caller is responsible for populating optional subdevice function pointers.
2694 */
rproc_add_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2695 void rproc_add_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2696 {
2697 list_add_tail(&subdev->node, &rproc->subdevs);
2698 }
2699 EXPORT_SYMBOL(rproc_add_subdev);
2700
2701 /**
2702 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2703 * @rproc: rproc handle to remove the subdevice from
2704 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2705 */
rproc_remove_subdev(struct rproc * rproc,struct rproc_subdev * subdev)2706 void rproc_remove_subdev(struct rproc *rproc, struct rproc_subdev *subdev)
2707 {
2708 list_del(&subdev->node);
2709 }
2710 EXPORT_SYMBOL(rproc_remove_subdev);
2711
2712 /**
2713 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2714 * @dev: child device to find ancestor of
2715 *
2716 * Return: the ancestor rproc instance, or NULL if not found
2717 */
rproc_get_by_child(struct device * dev)2718 struct rproc *rproc_get_by_child(struct device *dev)
2719 {
2720 for (dev = dev->parent; dev; dev = dev->parent) {
2721 if (dev->type == &rproc_type)
2722 return dev->driver_data;
2723 }
2724
2725 return NULL;
2726 }
2727 EXPORT_SYMBOL(rproc_get_by_child);
2728
2729 /**
2730 * rproc_report_crash() - rproc crash reporter function
2731 * @rproc: remote processor
2732 * @type: crash type
2733 *
2734 * This function must be called every time a crash is detected by the low-level
2735 * drivers implementing a specific remoteproc. This should not be called from a
2736 * non-remoteproc driver.
2737 *
2738 * This function can be called from atomic/interrupt context.
2739 */
rproc_report_crash(struct rproc * rproc,enum rproc_crash_type type)2740 void rproc_report_crash(struct rproc *rproc, enum rproc_crash_type type)
2741 {
2742 if (!rproc) {
2743 pr_err("NULL rproc pointer\n");
2744 return;
2745 }
2746
2747 /* Prevent suspend while the remoteproc is being recovered */
2748 pm_stay_awake(rproc->dev.parent);
2749
2750 dev_err(&rproc->dev, "crash detected in %s: type %s\n",
2751 rproc->name, rproc_crash_to_string(type));
2752
2753 /* Have a worker handle the error; ensure system is not suspended */
2754 queue_work(system_freezable_wq, &rproc->crash_handler);
2755 }
2756 EXPORT_SYMBOL(rproc_report_crash);
2757
rproc_panic_handler(struct notifier_block * nb,unsigned long event,void * ptr)2758 static int rproc_panic_handler(struct notifier_block *nb, unsigned long event,
2759 void *ptr)
2760 {
2761 unsigned int longest = 0;
2762 struct rproc *rproc;
2763 unsigned int d;
2764
2765 rcu_read_lock();
2766 list_for_each_entry_rcu(rproc, &rproc_list, node) {
2767 if (!rproc->ops->panic)
2768 continue;
2769
2770 if (rproc->state != RPROC_RUNNING &&
2771 rproc->state != RPROC_ATTACHED)
2772 continue;
2773
2774 d = rproc->ops->panic(rproc);
2775 longest = max(longest, d);
2776 }
2777 rcu_read_unlock();
2778
2779 /*
2780 * Delay for the longest requested duration before returning. This can
2781 * be used by the remoteproc drivers to give the remote processor time
2782 * to perform any requested operations (such as flush caches), when
2783 * it's not possible to signal the Linux side due to the panic.
2784 */
2785 mdelay(longest);
2786
2787 return NOTIFY_DONE;
2788 }
2789
rproc_init_panic(void)2790 static void __init rproc_init_panic(void)
2791 {
2792 rproc_panic_nb.notifier_call = rproc_panic_handler;
2793 atomic_notifier_chain_register(&panic_notifier_list, &rproc_panic_nb);
2794 }
2795
rproc_exit_panic(void)2796 static void __exit rproc_exit_panic(void)
2797 {
2798 atomic_notifier_chain_unregister(&panic_notifier_list, &rproc_panic_nb);
2799 }
2800
remoteproc_init(void)2801 static int __init remoteproc_init(void)
2802 {
2803 rproc_init_sysfs();
2804 rproc_init_debugfs();
2805 rproc_init_cdev();
2806 rproc_init_panic();
2807
2808 return 0;
2809 }
2810 subsys_initcall(remoteproc_init);
2811
remoteproc_exit(void)2812 static void __exit remoteproc_exit(void)
2813 {
2814 ida_destroy(&rproc_dev_index);
2815
2816 rproc_exit_panic();
2817 rproc_exit_debugfs();
2818 rproc_exit_sysfs();
2819 }
2820 module_exit(remoteproc_exit);
2821
2822 MODULE_LICENSE("GPL v2");
2823 MODULE_DESCRIPTION("Generic Remote Processor Framework");
2824