1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Common code for Intel Running Average Power Limit (RAPL) support.
4 * Copyright (c) 2019, Intel Corporation.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/list.h>
11 #include <linux/types.h>
12 #include <linux/device.h>
13 #include <linux/slab.h>
14 #include <linux/log2.h>
15 #include <linux/bitmap.h>
16 #include <linux/delay.h>
17 #include <linux/sysfs.h>
18 #include <linux/cpu.h>
19 #include <linux/powercap.h>
20 #include <linux/suspend.h>
21 #include <linux/intel_rapl.h>
22 #include <linux/processor.h>
23 #include <linux/platform_device.h>
24
25 #include <asm/iosf_mbi.h>
26 #include <asm/cpu_device_id.h>
27 #include <asm/intel-family.h>
28
29 /* bitmasks for RAPL MSRs, used by primitive access functions */
30 #define ENERGY_STATUS_MASK 0xffffffff
31
32 #define POWER_LIMIT1_MASK 0x7FFF
33 #define POWER_LIMIT1_ENABLE BIT(15)
34 #define POWER_LIMIT1_CLAMP BIT(16)
35
36 #define POWER_LIMIT2_MASK (0x7FFFULL<<32)
37 #define POWER_LIMIT2_ENABLE BIT_ULL(47)
38 #define POWER_LIMIT2_CLAMP BIT_ULL(48)
39 #define POWER_HIGH_LOCK BIT_ULL(63)
40 #define POWER_LOW_LOCK BIT(31)
41
42 #define POWER_LIMIT4_MASK 0x1FFF
43
44 #define TIME_WINDOW1_MASK (0x7FULL<<17)
45 #define TIME_WINDOW2_MASK (0x7FULL<<49)
46
47 #define POWER_UNIT_OFFSET 0
48 #define POWER_UNIT_MASK 0x0F
49
50 #define ENERGY_UNIT_OFFSET 0x08
51 #define ENERGY_UNIT_MASK 0x1F00
52
53 #define TIME_UNIT_OFFSET 0x10
54 #define TIME_UNIT_MASK 0xF0000
55
56 #define POWER_INFO_MAX_MASK (0x7fffULL<<32)
57 #define POWER_INFO_MIN_MASK (0x7fffULL<<16)
58 #define POWER_INFO_MAX_TIME_WIN_MASK (0x3fULL<<48)
59 #define POWER_INFO_THERMAL_SPEC_MASK 0x7fff
60
61 #define PERF_STATUS_THROTTLE_TIME_MASK 0xffffffff
62 #define PP_POLICY_MASK 0x1F
63
64 /* Non HW constants */
65 #define RAPL_PRIMITIVE_DERIVED BIT(1) /* not from raw data */
66 #define RAPL_PRIMITIVE_DUMMY BIT(2)
67
68 #define TIME_WINDOW_MAX_MSEC 40000
69 #define TIME_WINDOW_MIN_MSEC 250
70 #define ENERGY_UNIT_SCALE 1000 /* scale from driver unit to powercap unit */
71 enum unit_type {
72 ARBITRARY_UNIT, /* no translation */
73 POWER_UNIT,
74 ENERGY_UNIT,
75 TIME_UNIT,
76 };
77
78 /* per domain data, some are optional */
79 #define NR_RAW_PRIMITIVES (NR_RAPL_PRIMITIVES - 2)
80
81 #define DOMAIN_STATE_INACTIVE BIT(0)
82 #define DOMAIN_STATE_POWER_LIMIT_SET BIT(1)
83 #define DOMAIN_STATE_BIOS_LOCKED BIT(2)
84
85 static const char pl1_name[] = "long_term";
86 static const char pl2_name[] = "short_term";
87 static const char pl4_name[] = "peak_power";
88
89 #define power_zone_to_rapl_domain(_zone) \
90 container_of(_zone, struct rapl_domain, power_zone)
91
92 struct rapl_defaults {
93 u8 floor_freq_reg_addr;
94 int (*check_unit)(struct rapl_package *rp, int cpu);
95 void (*set_floor_freq)(struct rapl_domain *rd, bool mode);
96 u64 (*compute_time_window)(struct rapl_package *rp, u64 val,
97 bool to_raw);
98 unsigned int dram_domain_energy_unit;
99 unsigned int psys_domain_energy_unit;
100 };
101 static struct rapl_defaults *rapl_defaults;
102
103 /* Sideband MBI registers */
104 #define IOSF_CPU_POWER_BUDGET_CTL_BYT (0x2)
105 #define IOSF_CPU_POWER_BUDGET_CTL_TNG (0xdf)
106
107 #define PACKAGE_PLN_INT_SAVED BIT(0)
108 #define MAX_PRIM_NAME (32)
109
110 /* per domain data. used to describe individual knobs such that access function
111 * can be consolidated into one instead of many inline functions.
112 */
113 struct rapl_primitive_info {
114 const char *name;
115 u64 mask;
116 int shift;
117 enum rapl_domain_reg_id id;
118 enum unit_type unit;
119 u32 flag;
120 };
121
122 #define PRIMITIVE_INFO_INIT(p, m, s, i, u, f) { \
123 .name = #p, \
124 .mask = m, \
125 .shift = s, \
126 .id = i, \
127 .unit = u, \
128 .flag = f \
129 }
130
131 static void rapl_init_domains(struct rapl_package *rp);
132 static int rapl_read_data_raw(struct rapl_domain *rd,
133 enum rapl_primitives prim,
134 bool xlate, u64 *data);
135 static int rapl_write_data_raw(struct rapl_domain *rd,
136 enum rapl_primitives prim,
137 unsigned long long value);
138 static u64 rapl_unit_xlate(struct rapl_domain *rd,
139 enum unit_type type, u64 value, int to_raw);
140 static void package_power_limit_irq_save(struct rapl_package *rp);
141
142 static LIST_HEAD(rapl_packages); /* guarded by CPU hotplug lock */
143
144 static const char *const rapl_domain_names[] = {
145 "package",
146 "core",
147 "uncore",
148 "dram",
149 "psys",
150 };
151
get_energy_counter(struct powercap_zone * power_zone,u64 * energy_raw)152 static int get_energy_counter(struct powercap_zone *power_zone,
153 u64 *energy_raw)
154 {
155 struct rapl_domain *rd;
156 u64 energy_now;
157
158 /* prevent CPU hotplug, make sure the RAPL domain does not go
159 * away while reading the counter.
160 */
161 cpus_read_lock();
162 rd = power_zone_to_rapl_domain(power_zone);
163
164 if (!rapl_read_data_raw(rd, ENERGY_COUNTER, true, &energy_now)) {
165 *energy_raw = energy_now;
166 cpus_read_unlock();
167
168 return 0;
169 }
170 cpus_read_unlock();
171
172 return -EIO;
173 }
174
get_max_energy_counter(struct powercap_zone * pcd_dev,u64 * energy)175 static int get_max_energy_counter(struct powercap_zone *pcd_dev, u64 *energy)
176 {
177 struct rapl_domain *rd = power_zone_to_rapl_domain(pcd_dev);
178
179 *energy = rapl_unit_xlate(rd, ENERGY_UNIT, ENERGY_STATUS_MASK, 0);
180 return 0;
181 }
182
release_zone(struct powercap_zone * power_zone)183 static int release_zone(struct powercap_zone *power_zone)
184 {
185 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
186 struct rapl_package *rp = rd->rp;
187
188 /* package zone is the last zone of a package, we can free
189 * memory here since all children has been unregistered.
190 */
191 if (rd->id == RAPL_DOMAIN_PACKAGE) {
192 kfree(rd);
193 rp->domains = NULL;
194 }
195
196 return 0;
197
198 }
199
find_nr_power_limit(struct rapl_domain * rd)200 static int find_nr_power_limit(struct rapl_domain *rd)
201 {
202 int i, nr_pl = 0;
203
204 for (i = 0; i < NR_POWER_LIMITS; i++) {
205 if (rd->rpl[i].name)
206 nr_pl++;
207 }
208
209 return nr_pl;
210 }
211
set_domain_enable(struct powercap_zone * power_zone,bool mode)212 static int set_domain_enable(struct powercap_zone *power_zone, bool mode)
213 {
214 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
215
216 if (rd->state & DOMAIN_STATE_BIOS_LOCKED)
217 return -EACCES;
218
219 cpus_read_lock();
220 rapl_write_data_raw(rd, PL1_ENABLE, mode);
221 if (rapl_defaults->set_floor_freq)
222 rapl_defaults->set_floor_freq(rd, mode);
223 cpus_read_unlock();
224
225 return 0;
226 }
227
get_domain_enable(struct powercap_zone * power_zone,bool * mode)228 static int get_domain_enable(struct powercap_zone *power_zone, bool *mode)
229 {
230 struct rapl_domain *rd = power_zone_to_rapl_domain(power_zone);
231 u64 val;
232
233 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
234 *mode = false;
235 return 0;
236 }
237 cpus_read_lock();
238 if (rapl_read_data_raw(rd, PL1_ENABLE, true, &val)) {
239 cpus_read_unlock();
240 return -EIO;
241 }
242 *mode = val;
243 cpus_read_unlock();
244
245 return 0;
246 }
247
248 /* per RAPL domain ops, in the order of rapl_domain_type */
249 static const struct powercap_zone_ops zone_ops[] = {
250 /* RAPL_DOMAIN_PACKAGE */
251 {
252 .get_energy_uj = get_energy_counter,
253 .get_max_energy_range_uj = get_max_energy_counter,
254 .release = release_zone,
255 .set_enable = set_domain_enable,
256 .get_enable = get_domain_enable,
257 },
258 /* RAPL_DOMAIN_PP0 */
259 {
260 .get_energy_uj = get_energy_counter,
261 .get_max_energy_range_uj = get_max_energy_counter,
262 .release = release_zone,
263 .set_enable = set_domain_enable,
264 .get_enable = get_domain_enable,
265 },
266 /* RAPL_DOMAIN_PP1 */
267 {
268 .get_energy_uj = get_energy_counter,
269 .get_max_energy_range_uj = get_max_energy_counter,
270 .release = release_zone,
271 .set_enable = set_domain_enable,
272 .get_enable = get_domain_enable,
273 },
274 /* RAPL_DOMAIN_DRAM */
275 {
276 .get_energy_uj = get_energy_counter,
277 .get_max_energy_range_uj = get_max_energy_counter,
278 .release = release_zone,
279 .set_enable = set_domain_enable,
280 .get_enable = get_domain_enable,
281 },
282 /* RAPL_DOMAIN_PLATFORM */
283 {
284 .get_energy_uj = get_energy_counter,
285 .get_max_energy_range_uj = get_max_energy_counter,
286 .release = release_zone,
287 .set_enable = set_domain_enable,
288 .get_enable = get_domain_enable,
289 },
290 };
291
292 /*
293 * Constraint index used by powercap can be different than power limit (PL)
294 * index in that some PLs maybe missing due to non-existent MSRs. So we
295 * need to convert here by finding the valid PLs only (name populated).
296 */
contraint_to_pl(struct rapl_domain * rd,int cid)297 static int contraint_to_pl(struct rapl_domain *rd, int cid)
298 {
299 int i, j;
300
301 for (i = 0, j = 0; i < NR_POWER_LIMITS; i++) {
302 if ((rd->rpl[i].name) && j++ == cid) {
303 pr_debug("%s: index %d\n", __func__, i);
304 return i;
305 }
306 }
307 pr_err("Cannot find matching power limit for constraint %d\n", cid);
308
309 return -EINVAL;
310 }
311
set_power_limit(struct powercap_zone * power_zone,int cid,u64 power_limit)312 static int set_power_limit(struct powercap_zone *power_zone, int cid,
313 u64 power_limit)
314 {
315 struct rapl_domain *rd;
316 struct rapl_package *rp;
317 int ret = 0;
318 int id;
319
320 cpus_read_lock();
321 rd = power_zone_to_rapl_domain(power_zone);
322 id = contraint_to_pl(rd, cid);
323 if (id < 0) {
324 ret = id;
325 goto set_exit;
326 }
327
328 rp = rd->rp;
329
330 if (rd->state & DOMAIN_STATE_BIOS_LOCKED) {
331 dev_warn(&power_zone->dev,
332 "%s locked by BIOS, monitoring only\n", rd->name);
333 ret = -EACCES;
334 goto set_exit;
335 }
336
337 switch (rd->rpl[id].prim_id) {
338 case PL1_ENABLE:
339 rapl_write_data_raw(rd, POWER_LIMIT1, power_limit);
340 break;
341 case PL2_ENABLE:
342 rapl_write_data_raw(rd, POWER_LIMIT2, power_limit);
343 break;
344 case PL4_ENABLE:
345 rapl_write_data_raw(rd, POWER_LIMIT4, power_limit);
346 break;
347 default:
348 ret = -EINVAL;
349 }
350 if (!ret)
351 package_power_limit_irq_save(rp);
352 set_exit:
353 cpus_read_unlock();
354 return ret;
355 }
356
get_current_power_limit(struct powercap_zone * power_zone,int cid,u64 * data)357 static int get_current_power_limit(struct powercap_zone *power_zone, int cid,
358 u64 *data)
359 {
360 struct rapl_domain *rd;
361 u64 val;
362 int prim;
363 int ret = 0;
364 int id;
365
366 cpus_read_lock();
367 rd = power_zone_to_rapl_domain(power_zone);
368 id = contraint_to_pl(rd, cid);
369 if (id < 0) {
370 ret = id;
371 goto get_exit;
372 }
373
374 switch (rd->rpl[id].prim_id) {
375 case PL1_ENABLE:
376 prim = POWER_LIMIT1;
377 break;
378 case PL2_ENABLE:
379 prim = POWER_LIMIT2;
380 break;
381 case PL4_ENABLE:
382 prim = POWER_LIMIT4;
383 break;
384 default:
385 cpus_read_unlock();
386 return -EINVAL;
387 }
388 if (rapl_read_data_raw(rd, prim, true, &val))
389 ret = -EIO;
390 else
391 *data = val;
392
393 get_exit:
394 cpus_read_unlock();
395
396 return ret;
397 }
398
set_time_window(struct powercap_zone * power_zone,int cid,u64 window)399 static int set_time_window(struct powercap_zone *power_zone, int cid,
400 u64 window)
401 {
402 struct rapl_domain *rd;
403 int ret = 0;
404 int id;
405
406 cpus_read_lock();
407 rd = power_zone_to_rapl_domain(power_zone);
408 id = contraint_to_pl(rd, cid);
409 if (id < 0) {
410 ret = id;
411 goto set_time_exit;
412 }
413
414 switch (rd->rpl[id].prim_id) {
415 case PL1_ENABLE:
416 rapl_write_data_raw(rd, TIME_WINDOW1, window);
417 break;
418 case PL2_ENABLE:
419 rapl_write_data_raw(rd, TIME_WINDOW2, window);
420 break;
421 default:
422 ret = -EINVAL;
423 }
424
425 set_time_exit:
426 cpus_read_unlock();
427 return ret;
428 }
429
get_time_window(struct powercap_zone * power_zone,int cid,u64 * data)430 static int get_time_window(struct powercap_zone *power_zone, int cid,
431 u64 *data)
432 {
433 struct rapl_domain *rd;
434 u64 val;
435 int ret = 0;
436 int id;
437
438 cpus_read_lock();
439 rd = power_zone_to_rapl_domain(power_zone);
440 id = contraint_to_pl(rd, cid);
441 if (id < 0) {
442 ret = id;
443 goto get_time_exit;
444 }
445
446 switch (rd->rpl[id].prim_id) {
447 case PL1_ENABLE:
448 ret = rapl_read_data_raw(rd, TIME_WINDOW1, true, &val);
449 break;
450 case PL2_ENABLE:
451 ret = rapl_read_data_raw(rd, TIME_WINDOW2, true, &val);
452 break;
453 case PL4_ENABLE:
454 /*
455 * Time window parameter is not applicable for PL4 entry
456 * so assigining '0' as default value.
457 */
458 val = 0;
459 break;
460 default:
461 cpus_read_unlock();
462 return -EINVAL;
463 }
464 if (!ret)
465 *data = val;
466
467 get_time_exit:
468 cpus_read_unlock();
469
470 return ret;
471 }
472
get_constraint_name(struct powercap_zone * power_zone,int cid)473 static const char *get_constraint_name(struct powercap_zone *power_zone,
474 int cid)
475 {
476 struct rapl_domain *rd;
477 int id;
478
479 rd = power_zone_to_rapl_domain(power_zone);
480 id = contraint_to_pl(rd, cid);
481 if (id >= 0)
482 return rd->rpl[id].name;
483
484 return NULL;
485 }
486
get_max_power(struct powercap_zone * power_zone,int id,u64 * data)487 static int get_max_power(struct powercap_zone *power_zone, int id, u64 *data)
488 {
489 struct rapl_domain *rd;
490 u64 val;
491 int prim;
492 int ret = 0;
493
494 cpus_read_lock();
495 rd = power_zone_to_rapl_domain(power_zone);
496 switch (rd->rpl[id].prim_id) {
497 case PL1_ENABLE:
498 prim = THERMAL_SPEC_POWER;
499 break;
500 case PL2_ENABLE:
501 prim = MAX_POWER;
502 break;
503 case PL4_ENABLE:
504 prim = MAX_POWER;
505 break;
506 default:
507 cpus_read_unlock();
508 return -EINVAL;
509 }
510 if (rapl_read_data_raw(rd, prim, true, &val))
511 ret = -EIO;
512 else
513 *data = val;
514
515 /* As a generalization rule, PL4 would be around two times PL2. */
516 if (rd->rpl[id].prim_id == PL4_ENABLE)
517 *data = *data * 2;
518
519 cpus_read_unlock();
520
521 return ret;
522 }
523
524 static const struct powercap_zone_constraint_ops constraint_ops = {
525 .set_power_limit_uw = set_power_limit,
526 .get_power_limit_uw = get_current_power_limit,
527 .set_time_window_us = set_time_window,
528 .get_time_window_us = get_time_window,
529 .get_max_power_uw = get_max_power,
530 .get_name = get_constraint_name,
531 };
532
533 /* called after domain detection and package level data are set */
rapl_init_domains(struct rapl_package * rp)534 static void rapl_init_domains(struct rapl_package *rp)
535 {
536 enum rapl_domain_type i;
537 enum rapl_domain_reg_id j;
538 struct rapl_domain *rd = rp->domains;
539
540 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
541 unsigned int mask = rp->domain_map & (1 << i);
542
543 if (!mask)
544 continue;
545
546 rd->rp = rp;
547
548 if (i == RAPL_DOMAIN_PLATFORM && rp->id > 0) {
549 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "psys-%d",
550 topology_physical_package_id(rp->lead_cpu));
551 } else
552 snprintf(rd->name, RAPL_DOMAIN_NAME_LENGTH, "%s",
553 rapl_domain_names[i]);
554
555 rd->id = i;
556 rd->rpl[0].prim_id = PL1_ENABLE;
557 rd->rpl[0].name = pl1_name;
558
559 /*
560 * The PL2 power domain is applicable for limits two
561 * and limits three
562 */
563 if (rp->priv->limits[i] >= 2) {
564 rd->rpl[1].prim_id = PL2_ENABLE;
565 rd->rpl[1].name = pl2_name;
566 }
567
568 /* Enable PL4 domain if the total power limits are three */
569 if (rp->priv->limits[i] == 3) {
570 rd->rpl[2].prim_id = PL4_ENABLE;
571 rd->rpl[2].name = pl4_name;
572 }
573
574 for (j = 0; j < RAPL_DOMAIN_REG_MAX; j++)
575 rd->regs[j] = rp->priv->regs[i][j];
576
577 switch (i) {
578 case RAPL_DOMAIN_DRAM:
579 rd->domain_energy_unit =
580 rapl_defaults->dram_domain_energy_unit;
581 if (rd->domain_energy_unit)
582 pr_info("DRAM domain energy unit %dpj\n",
583 rd->domain_energy_unit);
584 break;
585 case RAPL_DOMAIN_PLATFORM:
586 rd->domain_energy_unit =
587 rapl_defaults->psys_domain_energy_unit;
588 if (rd->domain_energy_unit)
589 pr_info("Platform domain energy unit %dpj\n",
590 rd->domain_energy_unit);
591 break;
592 default:
593 break;
594 }
595 rd++;
596 }
597 }
598
rapl_unit_xlate(struct rapl_domain * rd,enum unit_type type,u64 value,int to_raw)599 static u64 rapl_unit_xlate(struct rapl_domain *rd, enum unit_type type,
600 u64 value, int to_raw)
601 {
602 u64 units = 1;
603 struct rapl_package *rp = rd->rp;
604 u64 scale = 1;
605
606 switch (type) {
607 case POWER_UNIT:
608 units = rp->power_unit;
609 break;
610 case ENERGY_UNIT:
611 scale = ENERGY_UNIT_SCALE;
612 /* per domain unit takes precedence */
613 if (rd->domain_energy_unit)
614 units = rd->domain_energy_unit;
615 else
616 units = rp->energy_unit;
617 break;
618 case TIME_UNIT:
619 return rapl_defaults->compute_time_window(rp, value, to_raw);
620 case ARBITRARY_UNIT:
621 default:
622 return value;
623 }
624
625 if (to_raw)
626 return div64_u64(value, units) * scale;
627
628 value *= units;
629
630 return div64_u64(value, scale);
631 }
632
633 /* in the order of enum rapl_primitives */
634 static struct rapl_primitive_info rpi[] = {
635 /* name, mask, shift, msr index, unit divisor */
636 PRIMITIVE_INFO_INIT(ENERGY_COUNTER, ENERGY_STATUS_MASK, 0,
637 RAPL_DOMAIN_REG_STATUS, ENERGY_UNIT, 0),
638 PRIMITIVE_INFO_INIT(POWER_LIMIT1, POWER_LIMIT1_MASK, 0,
639 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
640 PRIMITIVE_INFO_INIT(POWER_LIMIT2, POWER_LIMIT2_MASK, 32,
641 RAPL_DOMAIN_REG_LIMIT, POWER_UNIT, 0),
642 PRIMITIVE_INFO_INIT(POWER_LIMIT4, POWER_LIMIT4_MASK, 0,
643 RAPL_DOMAIN_REG_PL4, POWER_UNIT, 0),
644 PRIMITIVE_INFO_INIT(FW_LOCK, POWER_LOW_LOCK, 31,
645 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
646 PRIMITIVE_INFO_INIT(PL1_ENABLE, POWER_LIMIT1_ENABLE, 15,
647 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
648 PRIMITIVE_INFO_INIT(PL1_CLAMP, POWER_LIMIT1_CLAMP, 16,
649 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
650 PRIMITIVE_INFO_INIT(PL2_ENABLE, POWER_LIMIT2_ENABLE, 47,
651 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
652 PRIMITIVE_INFO_INIT(PL2_CLAMP, POWER_LIMIT2_CLAMP, 48,
653 RAPL_DOMAIN_REG_LIMIT, ARBITRARY_UNIT, 0),
654 PRIMITIVE_INFO_INIT(PL4_ENABLE, POWER_LIMIT4_MASK, 0,
655 RAPL_DOMAIN_REG_PL4, ARBITRARY_UNIT, 0),
656 PRIMITIVE_INFO_INIT(TIME_WINDOW1, TIME_WINDOW1_MASK, 17,
657 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
658 PRIMITIVE_INFO_INIT(TIME_WINDOW2, TIME_WINDOW2_MASK, 49,
659 RAPL_DOMAIN_REG_LIMIT, TIME_UNIT, 0),
660 PRIMITIVE_INFO_INIT(THERMAL_SPEC_POWER, POWER_INFO_THERMAL_SPEC_MASK,
661 0, RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
662 PRIMITIVE_INFO_INIT(MAX_POWER, POWER_INFO_MAX_MASK, 32,
663 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
664 PRIMITIVE_INFO_INIT(MIN_POWER, POWER_INFO_MIN_MASK, 16,
665 RAPL_DOMAIN_REG_INFO, POWER_UNIT, 0),
666 PRIMITIVE_INFO_INIT(MAX_TIME_WINDOW, POWER_INFO_MAX_TIME_WIN_MASK, 48,
667 RAPL_DOMAIN_REG_INFO, TIME_UNIT, 0),
668 PRIMITIVE_INFO_INIT(THROTTLED_TIME, PERF_STATUS_THROTTLE_TIME_MASK, 0,
669 RAPL_DOMAIN_REG_PERF, TIME_UNIT, 0),
670 PRIMITIVE_INFO_INIT(PRIORITY_LEVEL, PP_POLICY_MASK, 0,
671 RAPL_DOMAIN_REG_POLICY, ARBITRARY_UNIT, 0),
672 /* non-hardware */
673 PRIMITIVE_INFO_INIT(AVERAGE_POWER, 0, 0, 0, POWER_UNIT,
674 RAPL_PRIMITIVE_DERIVED),
675 {NULL, 0, 0, 0},
676 };
677
678 /* Read primitive data based on its related struct rapl_primitive_info.
679 * if xlate flag is set, return translated data based on data units, i.e.
680 * time, energy, and power.
681 * RAPL MSRs are non-architectual and are laid out not consistently across
682 * domains. Here we use primitive info to allow writing consolidated access
683 * functions.
684 * For a given primitive, it is processed by MSR mask and shift. Unit conversion
685 * is pre-assigned based on RAPL unit MSRs read at init time.
686 * 63-------------------------- 31--------------------------- 0
687 * | xxxxx (mask) |
688 * | |<- shift ----------------|
689 * 63-------------------------- 31--------------------------- 0
690 */
rapl_read_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,bool xlate,u64 * data)691 static int rapl_read_data_raw(struct rapl_domain *rd,
692 enum rapl_primitives prim, bool xlate, u64 *data)
693 {
694 u64 value;
695 struct rapl_primitive_info *rp = &rpi[prim];
696 struct reg_action ra;
697 int cpu;
698
699 if (!rp->name || rp->flag & RAPL_PRIMITIVE_DUMMY)
700 return -EINVAL;
701
702 ra.reg = rd->regs[rp->id];
703 if (!ra.reg)
704 return -EINVAL;
705
706 cpu = rd->rp->lead_cpu;
707
708 /* domain with 2 limits has different bit */
709 if (prim == FW_LOCK && rd->rp->priv->limits[rd->id] == 2) {
710 rp->mask = POWER_HIGH_LOCK;
711 rp->shift = 63;
712 }
713 /* non-hardware data are collected by the polling thread */
714 if (rp->flag & RAPL_PRIMITIVE_DERIVED) {
715 *data = rd->rdd.primitives[prim];
716 return 0;
717 }
718
719 ra.mask = rp->mask;
720
721 if (rd->rp->priv->read_raw(cpu, &ra)) {
722 pr_debug("failed to read reg 0x%llx on cpu %d\n", ra.reg, cpu);
723 return -EIO;
724 }
725
726 value = ra.value >> rp->shift;
727
728 if (xlate)
729 *data = rapl_unit_xlate(rd, rp->unit, value, 0);
730 else
731 *data = value;
732
733 return 0;
734 }
735
736 /* Similar use of primitive info in the read counterpart */
rapl_write_data_raw(struct rapl_domain * rd,enum rapl_primitives prim,unsigned long long value)737 static int rapl_write_data_raw(struct rapl_domain *rd,
738 enum rapl_primitives prim,
739 unsigned long long value)
740 {
741 struct rapl_primitive_info *rp = &rpi[prim];
742 int cpu;
743 u64 bits;
744 struct reg_action ra;
745 int ret;
746
747 cpu = rd->rp->lead_cpu;
748 bits = rapl_unit_xlate(rd, rp->unit, value, 1);
749 bits <<= rp->shift;
750 bits &= rp->mask;
751
752 memset(&ra, 0, sizeof(ra));
753
754 ra.reg = rd->regs[rp->id];
755 ra.mask = rp->mask;
756 ra.value = bits;
757
758 ret = rd->rp->priv->write_raw(cpu, &ra);
759
760 return ret;
761 }
762
763 /*
764 * Raw RAPL data stored in MSRs are in certain scales. We need to
765 * convert them into standard units based on the units reported in
766 * the RAPL unit MSRs. This is specific to CPUs as the method to
767 * calculate units differ on different CPUs.
768 * We convert the units to below format based on CPUs.
769 * i.e.
770 * energy unit: picoJoules : Represented in picoJoules by default
771 * power unit : microWatts : Represented in milliWatts by default
772 * time unit : microseconds: Represented in seconds by default
773 */
rapl_check_unit_core(struct rapl_package * rp,int cpu)774 static int rapl_check_unit_core(struct rapl_package *rp, int cpu)
775 {
776 struct reg_action ra;
777 u32 value;
778
779 ra.reg = rp->priv->reg_unit;
780 ra.mask = ~0;
781 if (rp->priv->read_raw(cpu, &ra)) {
782 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
783 rp->priv->reg_unit, cpu);
784 return -ENODEV;
785 }
786
787 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
788 rp->energy_unit = ENERGY_UNIT_SCALE * 1000000 / (1 << value);
789
790 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
791 rp->power_unit = 1000000 / (1 << value);
792
793 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
794 rp->time_unit = 1000000 / (1 << value);
795
796 pr_debug("Core CPU %s energy=%dpJ, time=%dus, power=%duW\n",
797 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
798
799 return 0;
800 }
801
rapl_check_unit_atom(struct rapl_package * rp,int cpu)802 static int rapl_check_unit_atom(struct rapl_package *rp, int cpu)
803 {
804 struct reg_action ra;
805 u32 value;
806
807 ra.reg = rp->priv->reg_unit;
808 ra.mask = ~0;
809 if (rp->priv->read_raw(cpu, &ra)) {
810 pr_err("Failed to read power unit REG 0x%llx on CPU %d, exit.\n",
811 rp->priv->reg_unit, cpu);
812 return -ENODEV;
813 }
814
815 value = (ra.value & ENERGY_UNIT_MASK) >> ENERGY_UNIT_OFFSET;
816 rp->energy_unit = ENERGY_UNIT_SCALE * 1 << value;
817
818 value = (ra.value & POWER_UNIT_MASK) >> POWER_UNIT_OFFSET;
819 rp->power_unit = (1 << value) * 1000;
820
821 value = (ra.value & TIME_UNIT_MASK) >> TIME_UNIT_OFFSET;
822 rp->time_unit = 1000000 / (1 << value);
823
824 pr_debug("Atom %s energy=%dpJ, time=%dus, power=%duW\n",
825 rp->name, rp->energy_unit, rp->time_unit, rp->power_unit);
826
827 return 0;
828 }
829
power_limit_irq_save_cpu(void * info)830 static void power_limit_irq_save_cpu(void *info)
831 {
832 u32 l, h = 0;
833 struct rapl_package *rp = (struct rapl_package *)info;
834
835 /* save the state of PLN irq mask bit before disabling it */
836 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
837 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED)) {
838 rp->power_limit_irq = l & PACKAGE_THERM_INT_PLN_ENABLE;
839 rp->power_limit_irq |= PACKAGE_PLN_INT_SAVED;
840 }
841 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
842 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
843 }
844
845 /* REVISIT:
846 * When package power limit is set artificially low by RAPL, LVT
847 * thermal interrupt for package power limit should be ignored
848 * since we are not really exceeding the real limit. The intention
849 * is to avoid excessive interrupts while we are trying to save power.
850 * A useful feature might be routing the package_power_limit interrupt
851 * to userspace via eventfd. once we have a usecase, this is simple
852 * to do by adding an atomic notifier.
853 */
854
package_power_limit_irq_save(struct rapl_package * rp)855 static void package_power_limit_irq_save(struct rapl_package *rp)
856 {
857 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
858 return;
859
860 smp_call_function_single(rp->lead_cpu, power_limit_irq_save_cpu, rp, 1);
861 }
862
863 /*
864 * Restore per package power limit interrupt enable state. Called from cpu
865 * hotplug code on package removal.
866 */
package_power_limit_irq_restore(struct rapl_package * rp)867 static void package_power_limit_irq_restore(struct rapl_package *rp)
868 {
869 u32 l, h;
870
871 if (!boot_cpu_has(X86_FEATURE_PTS) || !boot_cpu_has(X86_FEATURE_PLN))
872 return;
873
874 /* irq enable state not saved, nothing to restore */
875 if (!(rp->power_limit_irq & PACKAGE_PLN_INT_SAVED))
876 return;
877
878 rdmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, &l, &h);
879
880 if (rp->power_limit_irq & PACKAGE_THERM_INT_PLN_ENABLE)
881 l |= PACKAGE_THERM_INT_PLN_ENABLE;
882 else
883 l &= ~PACKAGE_THERM_INT_PLN_ENABLE;
884
885 wrmsr_safe(MSR_IA32_PACKAGE_THERM_INTERRUPT, l, h);
886 }
887
set_floor_freq_default(struct rapl_domain * rd,bool mode)888 static void set_floor_freq_default(struct rapl_domain *rd, bool mode)
889 {
890 int nr_powerlimit = find_nr_power_limit(rd);
891
892 /* always enable clamp such that p-state can go below OS requested
893 * range. power capping priority over guranteed frequency.
894 */
895 rapl_write_data_raw(rd, PL1_CLAMP, mode);
896
897 /* some domains have pl2 */
898 if (nr_powerlimit > 1) {
899 rapl_write_data_raw(rd, PL2_ENABLE, mode);
900 rapl_write_data_raw(rd, PL2_CLAMP, mode);
901 }
902 }
903
set_floor_freq_atom(struct rapl_domain * rd,bool enable)904 static void set_floor_freq_atom(struct rapl_domain *rd, bool enable)
905 {
906 static u32 power_ctrl_orig_val;
907 u32 mdata;
908
909 if (!rapl_defaults->floor_freq_reg_addr) {
910 pr_err("Invalid floor frequency config register\n");
911 return;
912 }
913
914 if (!power_ctrl_orig_val)
915 iosf_mbi_read(BT_MBI_UNIT_PMC, MBI_CR_READ,
916 rapl_defaults->floor_freq_reg_addr,
917 &power_ctrl_orig_val);
918 mdata = power_ctrl_orig_val;
919 if (enable) {
920 mdata &= ~(0x7f << 8);
921 mdata |= 1 << 8;
922 }
923 iosf_mbi_write(BT_MBI_UNIT_PMC, MBI_CR_WRITE,
924 rapl_defaults->floor_freq_reg_addr, mdata);
925 }
926
rapl_compute_time_window_core(struct rapl_package * rp,u64 value,bool to_raw)927 static u64 rapl_compute_time_window_core(struct rapl_package *rp, u64 value,
928 bool to_raw)
929 {
930 u64 f, y; /* fraction and exp. used for time unit */
931
932 /*
933 * Special processing based on 2^Y*(1+F/4), refer
934 * to Intel Software Developer's manual Vol.3B: CH 14.9.3.
935 */
936 if (!to_raw) {
937 f = (value & 0x60) >> 5;
938 y = value & 0x1f;
939 value = (1 << y) * (4 + f) * rp->time_unit / 4;
940 } else {
941 do_div(value, rp->time_unit);
942 y = ilog2(value);
943 f = div64_u64(4 * (value - (1 << y)), 1 << y);
944 value = (y & 0x1f) | ((f & 0x3) << 5);
945 }
946 return value;
947 }
948
rapl_compute_time_window_atom(struct rapl_package * rp,u64 value,bool to_raw)949 static u64 rapl_compute_time_window_atom(struct rapl_package *rp, u64 value,
950 bool to_raw)
951 {
952 /*
953 * Atom time unit encoding is straight forward val * time_unit,
954 * where time_unit is default to 1 sec. Never 0.
955 */
956 if (!to_raw)
957 return (value) ? value *= rp->time_unit : rp->time_unit;
958
959 value = div64_u64(value, rp->time_unit);
960
961 return value;
962 }
963
964 static const struct rapl_defaults rapl_defaults_core = {
965 .floor_freq_reg_addr = 0,
966 .check_unit = rapl_check_unit_core,
967 .set_floor_freq = set_floor_freq_default,
968 .compute_time_window = rapl_compute_time_window_core,
969 };
970
971 static const struct rapl_defaults rapl_defaults_hsw_server = {
972 .check_unit = rapl_check_unit_core,
973 .set_floor_freq = set_floor_freq_default,
974 .compute_time_window = rapl_compute_time_window_core,
975 .dram_domain_energy_unit = 15300,
976 };
977
978 static const struct rapl_defaults rapl_defaults_spr_server = {
979 .check_unit = rapl_check_unit_core,
980 .set_floor_freq = set_floor_freq_default,
981 .compute_time_window = rapl_compute_time_window_core,
982 .dram_domain_energy_unit = 15300,
983 .psys_domain_energy_unit = 1000000000,
984 };
985
986 static const struct rapl_defaults rapl_defaults_byt = {
987 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_BYT,
988 .check_unit = rapl_check_unit_atom,
989 .set_floor_freq = set_floor_freq_atom,
990 .compute_time_window = rapl_compute_time_window_atom,
991 };
992
993 static const struct rapl_defaults rapl_defaults_tng = {
994 .floor_freq_reg_addr = IOSF_CPU_POWER_BUDGET_CTL_TNG,
995 .check_unit = rapl_check_unit_atom,
996 .set_floor_freq = set_floor_freq_atom,
997 .compute_time_window = rapl_compute_time_window_atom,
998 };
999
1000 static const struct rapl_defaults rapl_defaults_ann = {
1001 .floor_freq_reg_addr = 0,
1002 .check_unit = rapl_check_unit_atom,
1003 .set_floor_freq = NULL,
1004 .compute_time_window = rapl_compute_time_window_atom,
1005 };
1006
1007 static const struct rapl_defaults rapl_defaults_cht = {
1008 .floor_freq_reg_addr = 0,
1009 .check_unit = rapl_check_unit_atom,
1010 .set_floor_freq = NULL,
1011 .compute_time_window = rapl_compute_time_window_atom,
1012 };
1013
1014 static const struct rapl_defaults rapl_defaults_amd = {
1015 .check_unit = rapl_check_unit_core,
1016 };
1017
1018 static const struct x86_cpu_id rapl_ids[] __initconst = {
1019 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE, &rapl_defaults_core),
1020 X86_MATCH_INTEL_FAM6_MODEL(SANDYBRIDGE_X, &rapl_defaults_core),
1021
1022 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE, &rapl_defaults_core),
1023 X86_MATCH_INTEL_FAM6_MODEL(IVYBRIDGE_X, &rapl_defaults_core),
1024
1025 X86_MATCH_INTEL_FAM6_MODEL(HASWELL, &rapl_defaults_core),
1026 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_L, &rapl_defaults_core),
1027 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_G, &rapl_defaults_core),
1028 X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, &rapl_defaults_hsw_server),
1029
1030 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL, &rapl_defaults_core),
1031 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_G, &rapl_defaults_core),
1032 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_D, &rapl_defaults_core),
1033 X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, &rapl_defaults_hsw_server),
1034
1035 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE, &rapl_defaults_core),
1036 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_L, &rapl_defaults_core),
1037 X86_MATCH_INTEL_FAM6_MODEL(SKYLAKE_X, &rapl_defaults_hsw_server),
1038 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE_L, &rapl_defaults_core),
1039 X86_MATCH_INTEL_FAM6_MODEL(KABYLAKE, &rapl_defaults_core),
1040 X86_MATCH_INTEL_FAM6_MODEL(CANNONLAKE_L, &rapl_defaults_core),
1041 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_L, &rapl_defaults_core),
1042 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE, &rapl_defaults_core),
1043 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_NNPI, &rapl_defaults_core),
1044 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_X, &rapl_defaults_hsw_server),
1045 X86_MATCH_INTEL_FAM6_MODEL(ICELAKE_D, &rapl_defaults_hsw_server),
1046 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE_L, &rapl_defaults_core),
1047 X86_MATCH_INTEL_FAM6_MODEL(COMETLAKE, &rapl_defaults_core),
1048 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE_L, &rapl_defaults_core),
1049 X86_MATCH_INTEL_FAM6_MODEL(TIGERLAKE, &rapl_defaults_core),
1050 X86_MATCH_INTEL_FAM6_MODEL(ROCKETLAKE, &rapl_defaults_core),
1051 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE, &rapl_defaults_core),
1052 X86_MATCH_INTEL_FAM6_MODEL(ALDERLAKE_L, &rapl_defaults_core),
1053 X86_MATCH_INTEL_FAM6_MODEL(SAPPHIRERAPIDS_X, &rapl_defaults_spr_server),
1054 X86_MATCH_INTEL_FAM6_MODEL(LAKEFIELD, &rapl_defaults_core),
1055
1056 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT, &rapl_defaults_byt),
1057 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT, &rapl_defaults_cht),
1058 X86_MATCH_INTEL_FAM6_MODEL(ATOM_SILVERMONT_MID, &rapl_defaults_tng),
1059 X86_MATCH_INTEL_FAM6_MODEL(ATOM_AIRMONT_MID, &rapl_defaults_ann),
1060 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT, &rapl_defaults_core),
1061 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_PLUS, &rapl_defaults_core),
1062 X86_MATCH_INTEL_FAM6_MODEL(ATOM_GOLDMONT_D, &rapl_defaults_core),
1063 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT, &rapl_defaults_core),
1064 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_D, &rapl_defaults_core),
1065 X86_MATCH_INTEL_FAM6_MODEL(ATOM_TREMONT_L, &rapl_defaults_core),
1066
1067 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNL, &rapl_defaults_hsw_server),
1068 X86_MATCH_INTEL_FAM6_MODEL(XEON_PHI_KNM, &rapl_defaults_hsw_server),
1069
1070 X86_MATCH_VENDOR_FAM(AMD, 0x17, &rapl_defaults_amd),
1071 X86_MATCH_VENDOR_FAM(AMD, 0x19, &rapl_defaults_amd),
1072 X86_MATCH_VENDOR_FAM(HYGON, 0x18, &rapl_defaults_amd),
1073 {}
1074 };
1075 MODULE_DEVICE_TABLE(x86cpu, rapl_ids);
1076
1077 /* Read once for all raw primitive data for domains */
rapl_update_domain_data(struct rapl_package * rp)1078 static void rapl_update_domain_data(struct rapl_package *rp)
1079 {
1080 int dmn, prim;
1081 u64 val;
1082
1083 for (dmn = 0; dmn < rp->nr_domains; dmn++) {
1084 pr_debug("update %s domain %s data\n", rp->name,
1085 rp->domains[dmn].name);
1086 /* exclude non-raw primitives */
1087 for (prim = 0; prim < NR_RAW_PRIMITIVES; prim++) {
1088 if (!rapl_read_data_raw(&rp->domains[dmn], prim,
1089 rpi[prim].unit, &val))
1090 rp->domains[dmn].rdd.primitives[prim] = val;
1091 }
1092 }
1093
1094 }
1095
rapl_package_register_powercap(struct rapl_package * rp)1096 static int rapl_package_register_powercap(struct rapl_package *rp)
1097 {
1098 struct rapl_domain *rd;
1099 struct powercap_zone *power_zone = NULL;
1100 int nr_pl, ret;
1101
1102 /* Update the domain data of the new package */
1103 rapl_update_domain_data(rp);
1104
1105 /* first we register package domain as the parent zone */
1106 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1107 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1108 nr_pl = find_nr_power_limit(rd);
1109 pr_debug("register package domain %s\n", rp->name);
1110 power_zone = powercap_register_zone(&rd->power_zone,
1111 rp->priv->control_type, rp->name,
1112 NULL, &zone_ops[rd->id], nr_pl,
1113 &constraint_ops);
1114 if (IS_ERR(power_zone)) {
1115 pr_debug("failed to register power zone %s\n",
1116 rp->name);
1117 return PTR_ERR(power_zone);
1118 }
1119 /* track parent zone in per package/socket data */
1120 rp->power_zone = power_zone;
1121 /* done, only one package domain per socket */
1122 break;
1123 }
1124 }
1125 if (!power_zone) {
1126 pr_err("no package domain found, unknown topology!\n");
1127 return -ENODEV;
1128 }
1129 /* now register domains as children of the socket/package */
1130 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1131 struct powercap_zone *parent = rp->power_zone;
1132
1133 if (rd->id == RAPL_DOMAIN_PACKAGE)
1134 continue;
1135 if (rd->id == RAPL_DOMAIN_PLATFORM)
1136 parent = NULL;
1137 /* number of power limits per domain varies */
1138 nr_pl = find_nr_power_limit(rd);
1139 power_zone = powercap_register_zone(&rd->power_zone,
1140 rp->priv->control_type,
1141 rd->name, parent,
1142 &zone_ops[rd->id], nr_pl,
1143 &constraint_ops);
1144
1145 if (IS_ERR(power_zone)) {
1146 pr_debug("failed to register power_zone, %s:%s\n",
1147 rp->name, rd->name);
1148 ret = PTR_ERR(power_zone);
1149 goto err_cleanup;
1150 }
1151 }
1152 return 0;
1153
1154 err_cleanup:
1155 /*
1156 * Clean up previously initialized domains within the package if we
1157 * failed after the first domain setup.
1158 */
1159 while (--rd >= rp->domains) {
1160 pr_debug("unregister %s domain %s\n", rp->name, rd->name);
1161 powercap_unregister_zone(rp->priv->control_type,
1162 &rd->power_zone);
1163 }
1164
1165 return ret;
1166 }
1167
rapl_check_domain(int cpu,int domain,struct rapl_package * rp)1168 static int rapl_check_domain(int cpu, int domain, struct rapl_package *rp)
1169 {
1170 struct reg_action ra;
1171
1172 switch (domain) {
1173 case RAPL_DOMAIN_PACKAGE:
1174 case RAPL_DOMAIN_PP0:
1175 case RAPL_DOMAIN_PP1:
1176 case RAPL_DOMAIN_DRAM:
1177 case RAPL_DOMAIN_PLATFORM:
1178 ra.reg = rp->priv->regs[domain][RAPL_DOMAIN_REG_STATUS];
1179 break;
1180 default:
1181 pr_err("invalid domain id %d\n", domain);
1182 return -EINVAL;
1183 }
1184 /* make sure domain counters are available and contains non-zero
1185 * values, otherwise skip it.
1186 */
1187
1188 ra.mask = ENERGY_STATUS_MASK;
1189 if (rp->priv->read_raw(cpu, &ra) || !ra.value)
1190 return -ENODEV;
1191
1192 return 0;
1193 }
1194
1195 /*
1196 * Check if power limits are available. Two cases when they are not available:
1197 * 1. Locked by BIOS, in this case we still provide read-only access so that
1198 * users can see what limit is set by the BIOS.
1199 * 2. Some CPUs make some domains monitoring only which means PLx MSRs may not
1200 * exist at all. In this case, we do not show the constraints in powercap.
1201 *
1202 * Called after domains are detected and initialized.
1203 */
rapl_detect_powerlimit(struct rapl_domain * rd)1204 static void rapl_detect_powerlimit(struct rapl_domain *rd)
1205 {
1206 u64 val64;
1207 int i;
1208
1209 /* check if the domain is locked by BIOS, ignore if MSR doesn't exist */
1210 if (!rapl_read_data_raw(rd, FW_LOCK, false, &val64)) {
1211 if (val64) {
1212 pr_info("RAPL %s domain %s locked by BIOS\n",
1213 rd->rp->name, rd->name);
1214 rd->state |= DOMAIN_STATE_BIOS_LOCKED;
1215 }
1216 }
1217 /* check if power limit MSR exists, otherwise domain is monitoring only */
1218 for (i = 0; i < NR_POWER_LIMITS; i++) {
1219 int prim = rd->rpl[i].prim_id;
1220
1221 if (rapl_read_data_raw(rd, prim, false, &val64))
1222 rd->rpl[i].name = NULL;
1223 }
1224 }
1225
1226 /* Detect active and valid domains for the given CPU, caller must
1227 * ensure the CPU belongs to the targeted package and CPU hotlug is disabled.
1228 */
rapl_detect_domains(struct rapl_package * rp,int cpu)1229 static int rapl_detect_domains(struct rapl_package *rp, int cpu)
1230 {
1231 struct rapl_domain *rd;
1232 int i;
1233
1234 for (i = 0; i < RAPL_DOMAIN_MAX; i++) {
1235 /* use physical package id to read counters */
1236 if (!rapl_check_domain(cpu, i, rp)) {
1237 rp->domain_map |= 1 << i;
1238 pr_info("Found RAPL domain %s\n", rapl_domain_names[i]);
1239 }
1240 }
1241 rp->nr_domains = bitmap_weight(&rp->domain_map, RAPL_DOMAIN_MAX);
1242 if (!rp->nr_domains) {
1243 pr_debug("no valid rapl domains found in %s\n", rp->name);
1244 return -ENODEV;
1245 }
1246 pr_debug("found %d domains on %s\n", rp->nr_domains, rp->name);
1247
1248 rp->domains = kcalloc(rp->nr_domains + 1, sizeof(struct rapl_domain),
1249 GFP_KERNEL);
1250 if (!rp->domains)
1251 return -ENOMEM;
1252
1253 rapl_init_domains(rp);
1254
1255 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++)
1256 rapl_detect_powerlimit(rd);
1257
1258 return 0;
1259 }
1260
1261 /* called from CPU hotplug notifier, hotplug lock held */
rapl_remove_package(struct rapl_package * rp)1262 void rapl_remove_package(struct rapl_package *rp)
1263 {
1264 struct rapl_domain *rd, *rd_package = NULL;
1265
1266 package_power_limit_irq_restore(rp);
1267
1268 for (rd = rp->domains; rd < rp->domains + rp->nr_domains; rd++) {
1269 rapl_write_data_raw(rd, PL1_ENABLE, 0);
1270 rapl_write_data_raw(rd, PL1_CLAMP, 0);
1271 if (find_nr_power_limit(rd) > 1) {
1272 rapl_write_data_raw(rd, PL2_ENABLE, 0);
1273 rapl_write_data_raw(rd, PL2_CLAMP, 0);
1274 rapl_write_data_raw(rd, PL4_ENABLE, 0);
1275 }
1276 if (rd->id == RAPL_DOMAIN_PACKAGE) {
1277 rd_package = rd;
1278 continue;
1279 }
1280 pr_debug("remove package, undo power limit on %s: %s\n",
1281 rp->name, rd->name);
1282 powercap_unregister_zone(rp->priv->control_type,
1283 &rd->power_zone);
1284 }
1285 /* do parent zone last */
1286 powercap_unregister_zone(rp->priv->control_type,
1287 &rd_package->power_zone);
1288 list_del(&rp->plist);
1289 kfree(rp);
1290 }
1291 EXPORT_SYMBOL_GPL(rapl_remove_package);
1292
1293 /* caller to ensure CPU hotplug lock is held */
rapl_find_package_domain(int cpu,struct rapl_if_priv * priv)1294 struct rapl_package *rapl_find_package_domain(int cpu, struct rapl_if_priv *priv)
1295 {
1296 int id = topology_logical_die_id(cpu);
1297 struct rapl_package *rp;
1298
1299 list_for_each_entry(rp, &rapl_packages, plist) {
1300 if (rp->id == id
1301 && rp->priv->control_type == priv->control_type)
1302 return rp;
1303 }
1304
1305 return NULL;
1306 }
1307 EXPORT_SYMBOL_GPL(rapl_find_package_domain);
1308
1309 /* called from CPU hotplug notifier, hotplug lock held */
rapl_add_package(int cpu,struct rapl_if_priv * priv)1310 struct rapl_package *rapl_add_package(int cpu, struct rapl_if_priv *priv)
1311 {
1312 int id = topology_logical_die_id(cpu);
1313 struct rapl_package *rp;
1314 int ret;
1315
1316 if (!rapl_defaults)
1317 return ERR_PTR(-ENODEV);
1318
1319 rp = kzalloc(sizeof(struct rapl_package), GFP_KERNEL);
1320 if (!rp)
1321 return ERR_PTR(-ENOMEM);
1322
1323 /* add the new package to the list */
1324 rp->id = id;
1325 rp->lead_cpu = cpu;
1326 rp->priv = priv;
1327
1328 if (topology_max_die_per_package() > 1)
1329 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH,
1330 "package-%d-die-%d",
1331 topology_physical_package_id(cpu), topology_die_id(cpu));
1332 else
1333 snprintf(rp->name, PACKAGE_DOMAIN_NAME_LENGTH, "package-%d",
1334 topology_physical_package_id(cpu));
1335
1336 /* check if the package contains valid domains */
1337 if (rapl_detect_domains(rp, cpu) || rapl_defaults->check_unit(rp, cpu)) {
1338 ret = -ENODEV;
1339 goto err_free_package;
1340 }
1341 ret = rapl_package_register_powercap(rp);
1342 if (!ret) {
1343 INIT_LIST_HEAD(&rp->plist);
1344 list_add(&rp->plist, &rapl_packages);
1345 return rp;
1346 }
1347
1348 err_free_package:
1349 kfree(rp->domains);
1350 kfree(rp);
1351 return ERR_PTR(ret);
1352 }
1353 EXPORT_SYMBOL_GPL(rapl_add_package);
1354
power_limit_state_save(void)1355 static void power_limit_state_save(void)
1356 {
1357 struct rapl_package *rp;
1358 struct rapl_domain *rd;
1359 int nr_pl, ret, i;
1360
1361 cpus_read_lock();
1362 list_for_each_entry(rp, &rapl_packages, plist) {
1363 if (!rp->power_zone)
1364 continue;
1365 rd = power_zone_to_rapl_domain(rp->power_zone);
1366 nr_pl = find_nr_power_limit(rd);
1367 for (i = 0; i < nr_pl; i++) {
1368 switch (rd->rpl[i].prim_id) {
1369 case PL1_ENABLE:
1370 ret = rapl_read_data_raw(rd,
1371 POWER_LIMIT1, true,
1372 &rd->rpl[i].last_power_limit);
1373 if (ret)
1374 rd->rpl[i].last_power_limit = 0;
1375 break;
1376 case PL2_ENABLE:
1377 ret = rapl_read_data_raw(rd,
1378 POWER_LIMIT2, true,
1379 &rd->rpl[i].last_power_limit);
1380 if (ret)
1381 rd->rpl[i].last_power_limit = 0;
1382 break;
1383 case PL4_ENABLE:
1384 ret = rapl_read_data_raw(rd,
1385 POWER_LIMIT4, true,
1386 &rd->rpl[i].last_power_limit);
1387 if (ret)
1388 rd->rpl[i].last_power_limit = 0;
1389 break;
1390 }
1391 }
1392 }
1393 cpus_read_unlock();
1394 }
1395
power_limit_state_restore(void)1396 static void power_limit_state_restore(void)
1397 {
1398 struct rapl_package *rp;
1399 struct rapl_domain *rd;
1400 int nr_pl, i;
1401
1402 cpus_read_lock();
1403 list_for_each_entry(rp, &rapl_packages, plist) {
1404 if (!rp->power_zone)
1405 continue;
1406 rd = power_zone_to_rapl_domain(rp->power_zone);
1407 nr_pl = find_nr_power_limit(rd);
1408 for (i = 0; i < nr_pl; i++) {
1409 switch (rd->rpl[i].prim_id) {
1410 case PL1_ENABLE:
1411 if (rd->rpl[i].last_power_limit)
1412 rapl_write_data_raw(rd, POWER_LIMIT1,
1413 rd->rpl[i].last_power_limit);
1414 break;
1415 case PL2_ENABLE:
1416 if (rd->rpl[i].last_power_limit)
1417 rapl_write_data_raw(rd, POWER_LIMIT2,
1418 rd->rpl[i].last_power_limit);
1419 break;
1420 case PL4_ENABLE:
1421 if (rd->rpl[i].last_power_limit)
1422 rapl_write_data_raw(rd, POWER_LIMIT4,
1423 rd->rpl[i].last_power_limit);
1424 break;
1425 }
1426 }
1427 }
1428 cpus_read_unlock();
1429 }
1430
rapl_pm_callback(struct notifier_block * nb,unsigned long mode,void * _unused)1431 static int rapl_pm_callback(struct notifier_block *nb,
1432 unsigned long mode, void *_unused)
1433 {
1434 switch (mode) {
1435 case PM_SUSPEND_PREPARE:
1436 power_limit_state_save();
1437 break;
1438 case PM_POST_SUSPEND:
1439 power_limit_state_restore();
1440 break;
1441 }
1442 return NOTIFY_OK;
1443 }
1444
1445 static struct notifier_block rapl_pm_notifier = {
1446 .notifier_call = rapl_pm_callback,
1447 };
1448
1449 static struct platform_device *rapl_msr_platdev;
1450
rapl_init(void)1451 static int __init rapl_init(void)
1452 {
1453 const struct x86_cpu_id *id;
1454 int ret;
1455
1456 id = x86_match_cpu(rapl_ids);
1457 if (!id) {
1458 pr_err("driver does not support CPU family %d model %d\n",
1459 boot_cpu_data.x86, boot_cpu_data.x86_model);
1460
1461 return -ENODEV;
1462 }
1463
1464 rapl_defaults = (struct rapl_defaults *)id->driver_data;
1465
1466 ret = register_pm_notifier(&rapl_pm_notifier);
1467 if (ret)
1468 return ret;
1469
1470 rapl_msr_platdev = platform_device_alloc("intel_rapl_msr", 0);
1471 if (!rapl_msr_platdev) {
1472 ret = -ENOMEM;
1473 goto end;
1474 }
1475
1476 ret = platform_device_add(rapl_msr_platdev);
1477 if (ret)
1478 platform_device_put(rapl_msr_platdev);
1479
1480 end:
1481 if (ret)
1482 unregister_pm_notifier(&rapl_pm_notifier);
1483
1484 return ret;
1485 }
1486
rapl_exit(void)1487 static void __exit rapl_exit(void)
1488 {
1489 platform_device_unregister(rapl_msr_platdev);
1490 unregister_pm_notifier(&rapl_pm_notifier);
1491 }
1492
1493 fs_initcall(rapl_init);
1494 module_exit(rapl_exit);
1495
1496 MODULE_DESCRIPTION("Intel Runtime Average Power Limit (RAPL) common code");
1497 MODULE_AUTHOR("Jacob Pan <jacob.jun.pan@intel.com>");
1498 MODULE_LICENSE("GPL v2");
1499