1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Device tree based initialization code for reserved memory.
4 *
5 * Copyright (c) 2013, 2015 The Linux Foundation. All Rights Reserved.
6 * Copyright (c) 2013,2014 Samsung Electronics Co., Ltd.
7 * http://www.samsung.com
8 * Author: Marek Szyprowski <m.szyprowski@samsung.com>
9 * Author: Josh Cartwright <joshc@codeaurora.org>
10 */
11
12 #define pr_fmt(fmt) "OF: reserved mem: " fmt
13
14 #include <linux/err.h>
15 #include <linux/of.h>
16 #include <linux/of_fdt.h>
17 #include <linux/of_platform.h>
18 #include <linux/mm.h>
19 #include <linux/sizes.h>
20 #include <linux/of_reserved_mem.h>
21 #include <linux/sort.h>
22 #include <linux/slab.h>
23 #include <linux/memblock.h>
24 #include <linux/kmemleak.h>
25
26 #include "of_private.h"
27
28 #define MAX_RESERVED_REGIONS 64
29 static struct reserved_mem reserved_mem[MAX_RESERVED_REGIONS];
30 static int reserved_mem_count;
31
early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,phys_addr_t align,phys_addr_t start,phys_addr_t end,bool nomap,phys_addr_t * res_base)32 static int __init early_init_dt_alloc_reserved_memory_arch(phys_addr_t size,
33 phys_addr_t align, phys_addr_t start, phys_addr_t end, bool nomap,
34 phys_addr_t *res_base)
35 {
36 phys_addr_t base;
37 int err = 0;
38
39 end = !end ? MEMBLOCK_ALLOC_ANYWHERE : end;
40 align = !align ? SMP_CACHE_BYTES : align;
41 base = memblock_phys_alloc_range(size, align, start, end);
42 if (!base)
43 return -ENOMEM;
44
45 *res_base = base;
46 if (nomap) {
47 err = memblock_mark_nomap(base, size);
48 if (err)
49 memblock_free(base, size);
50 kmemleak_ignore_phys(base);
51 }
52
53 return err;
54 }
55
56 /*
57 * fdt_reserved_mem_save_node() - save fdt node for second pass initialization
58 */
fdt_reserved_mem_save_node(unsigned long node,const char * uname,phys_addr_t base,phys_addr_t size)59 void __init fdt_reserved_mem_save_node(unsigned long node, const char *uname,
60 phys_addr_t base, phys_addr_t size)
61 {
62 struct reserved_mem *rmem = &reserved_mem[reserved_mem_count];
63
64 if (reserved_mem_count == ARRAY_SIZE(reserved_mem)) {
65 pr_err("not enough space for all defined regions.\n");
66 return;
67 }
68
69 rmem->fdt_node = node;
70 rmem->name = uname;
71 rmem->base = base;
72 rmem->size = size;
73
74 reserved_mem_count++;
75 return;
76 }
77
78 /*
79 * __reserved_mem_alloc_size() - allocate reserved memory described by
80 * 'size', 'alignment' and 'alloc-ranges' properties.
81 */
__reserved_mem_alloc_size(unsigned long node,const char * uname,phys_addr_t * res_base,phys_addr_t * res_size)82 static int __init __reserved_mem_alloc_size(unsigned long node,
83 const char *uname, phys_addr_t *res_base, phys_addr_t *res_size)
84 {
85 int t_len = (dt_root_addr_cells + dt_root_size_cells) * sizeof(__be32);
86 phys_addr_t start = 0, end = 0;
87 phys_addr_t base = 0, align = 0, size;
88 int len;
89 const __be32 *prop;
90 bool nomap;
91 int ret;
92
93 prop = of_get_flat_dt_prop(node, "size", &len);
94 if (!prop)
95 return -EINVAL;
96
97 if (len != dt_root_size_cells * sizeof(__be32)) {
98 pr_err("invalid size property in '%s' node.\n", uname);
99 return -EINVAL;
100 }
101 size = dt_mem_next_cell(dt_root_size_cells, &prop);
102
103 prop = of_get_flat_dt_prop(node, "alignment", &len);
104 if (prop) {
105 if (len != dt_root_addr_cells * sizeof(__be32)) {
106 pr_err("invalid alignment property in '%s' node.\n",
107 uname);
108 return -EINVAL;
109 }
110 align = dt_mem_next_cell(dt_root_addr_cells, &prop);
111 }
112
113 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
114
115 /* Need adjust the alignment to satisfy the CMA requirement */
116 if (IS_ENABLED(CONFIG_CMA)
117 && of_flat_dt_is_compatible(node, "shared-dma-pool")
118 && of_get_flat_dt_prop(node, "reusable", NULL)
119 && !nomap) {
120 unsigned long order =
121 max_t(unsigned long, MAX_ORDER - 1, pageblock_order);
122
123 align = max(align, (phys_addr_t)PAGE_SIZE << order);
124 }
125
126 prop = of_get_flat_dt_prop(node, "alloc-ranges", &len);
127 if (prop) {
128
129 if (len % t_len != 0) {
130 pr_err("invalid alloc-ranges property in '%s', skipping node.\n",
131 uname);
132 return -EINVAL;
133 }
134
135 base = 0;
136
137 while (len > 0) {
138 start = dt_mem_next_cell(dt_root_addr_cells, &prop);
139 end = start + dt_mem_next_cell(dt_root_size_cells,
140 &prop);
141
142 ret = early_init_dt_alloc_reserved_memory_arch(size,
143 align, start, end, nomap, &base);
144 if (ret == 0) {
145 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
146 uname, &base,
147 (unsigned long)(size / SZ_1M));
148 break;
149 }
150 len -= t_len;
151 }
152
153 } else {
154 ret = early_init_dt_alloc_reserved_memory_arch(size, align,
155 0, 0, nomap, &base);
156 if (ret == 0)
157 pr_debug("allocated memory for '%s' node: base %pa, size %lu MiB\n",
158 uname, &base, (unsigned long)(size / SZ_1M));
159 }
160
161 if (base == 0) {
162 pr_info("failed to allocate memory for node '%s'\n", uname);
163 return -ENOMEM;
164 }
165
166 *res_base = base;
167 *res_size = size;
168
169 return 0;
170 }
171
172 static const struct of_device_id __rmem_of_table_sentinel
173 __used __section("__reservedmem_of_table_end");
174
175 /*
176 * __reserved_mem_init_node() - call region specific reserved memory init code
177 */
__reserved_mem_init_node(struct reserved_mem * rmem)178 static int __init __reserved_mem_init_node(struct reserved_mem *rmem)
179 {
180 extern const struct of_device_id __reservedmem_of_table[];
181 const struct of_device_id *i;
182 int ret = -ENOENT;
183
184 for (i = __reservedmem_of_table; i < &__rmem_of_table_sentinel; i++) {
185 reservedmem_of_init_fn initfn = i->data;
186 const char *compat = i->compatible;
187
188 if (!of_flat_dt_is_compatible(rmem->fdt_node, compat))
189 continue;
190
191 ret = initfn(rmem);
192 if (ret == 0) {
193 pr_info("initialized node %s, compatible id %s\n",
194 rmem->name, compat);
195 break;
196 }
197 }
198 return ret;
199 }
200
__rmem_cmp(const void * a,const void * b)201 static int __init __rmem_cmp(const void *a, const void *b)
202 {
203 const struct reserved_mem *ra = a, *rb = b;
204
205 if (ra->base < rb->base)
206 return -1;
207
208 if (ra->base > rb->base)
209 return 1;
210
211 /*
212 * Put the dynamic allocations (address == 0, size == 0) before static
213 * allocations at address 0x0 so that overlap detection works
214 * correctly.
215 */
216 if (ra->size < rb->size)
217 return -1;
218 if (ra->size > rb->size)
219 return 1;
220
221 return 0;
222 }
223
__rmem_check_for_overlap(void)224 static void __init __rmem_check_for_overlap(void)
225 {
226 int i;
227
228 if (reserved_mem_count < 2)
229 return;
230
231 sort(reserved_mem, reserved_mem_count, sizeof(reserved_mem[0]),
232 __rmem_cmp, NULL);
233 for (i = 0; i < reserved_mem_count - 1; i++) {
234 struct reserved_mem *this, *next;
235
236 this = &reserved_mem[i];
237 next = &reserved_mem[i + 1];
238
239 if (this->base + this->size > next->base) {
240 phys_addr_t this_end, next_end;
241
242 this_end = this->base + this->size;
243 next_end = next->base + next->size;
244 pr_err("OVERLAP DETECTED!\n%s (%pa--%pa) overlaps with %s (%pa--%pa)\n",
245 this->name, &this->base, &this_end,
246 next->name, &next->base, &next_end);
247 }
248 }
249 }
250
251 /**
252 * fdt_init_reserved_mem() - allocate and init all saved reserved memory regions
253 */
fdt_init_reserved_mem(void)254 void __init fdt_init_reserved_mem(void)
255 {
256 int i;
257
258 /* check for overlapping reserved regions */
259 __rmem_check_for_overlap();
260
261 for (i = 0; i < reserved_mem_count; i++) {
262 struct reserved_mem *rmem = &reserved_mem[i];
263 unsigned long node = rmem->fdt_node;
264 int len;
265 const __be32 *prop;
266 int err = 0;
267 bool nomap;
268
269 nomap = of_get_flat_dt_prop(node, "no-map", NULL) != NULL;
270 prop = of_get_flat_dt_prop(node, "phandle", &len);
271 if (!prop)
272 prop = of_get_flat_dt_prop(node, "linux,phandle", &len);
273 if (prop)
274 rmem->phandle = of_read_number(prop, len/4);
275
276 if (rmem->size == 0)
277 err = __reserved_mem_alloc_size(node, rmem->name,
278 &rmem->base, &rmem->size);
279 if (err == 0) {
280 err = __reserved_mem_init_node(rmem);
281 if (err != 0 && err != -ENOENT) {
282 pr_info("node %s compatible matching fail\n",
283 rmem->name);
284 if (nomap)
285 memblock_clear_nomap(rmem->base, rmem->size);
286 else
287 memblock_free(rmem->base, rmem->size);
288 }
289 }
290 }
291 }
292
__find_rmem(struct device_node * node)293 static inline struct reserved_mem *__find_rmem(struct device_node *node)
294 {
295 unsigned int i;
296
297 if (!node->phandle)
298 return NULL;
299
300 for (i = 0; i < reserved_mem_count; i++)
301 if (reserved_mem[i].phandle == node->phandle)
302 return &reserved_mem[i];
303 return NULL;
304 }
305
306 struct rmem_assigned_device {
307 struct device *dev;
308 struct reserved_mem *rmem;
309 struct list_head list;
310 };
311
312 static LIST_HEAD(of_rmem_assigned_device_list);
313 static DEFINE_MUTEX(of_rmem_assigned_device_mutex);
314
315 /**
316 * of_reserved_mem_device_init_by_idx() - assign reserved memory region to
317 * given device
318 * @dev: Pointer to the device to configure
319 * @np: Pointer to the device_node with 'reserved-memory' property
320 * @idx: Index of selected region
321 *
322 * This function assigns respective DMA-mapping operations based on reserved
323 * memory region specified by 'memory-region' property in @np node to the @dev
324 * device. When driver needs to use more than one reserved memory region, it
325 * should allocate child devices and initialize regions by name for each of
326 * child device.
327 *
328 * Returns error code or zero on success.
329 */
of_reserved_mem_device_init_by_idx(struct device * dev,struct device_node * np,int idx)330 int of_reserved_mem_device_init_by_idx(struct device *dev,
331 struct device_node *np, int idx)
332 {
333 struct rmem_assigned_device *rd;
334 struct device_node *target;
335 struct reserved_mem *rmem;
336 int ret;
337
338 if (!np || !dev)
339 return -EINVAL;
340
341 target = of_parse_phandle(np, "memory-region", idx);
342 if (!target)
343 return -ENODEV;
344
345 if (!of_device_is_available(target)) {
346 of_node_put(target);
347 return 0;
348 }
349
350 rmem = __find_rmem(target);
351 of_node_put(target);
352
353 if (!rmem || !rmem->ops || !rmem->ops->device_init)
354 return -EINVAL;
355
356 rd = kmalloc(sizeof(struct rmem_assigned_device), GFP_KERNEL);
357 if (!rd)
358 return -ENOMEM;
359
360 ret = rmem->ops->device_init(rmem, dev);
361 if (ret == 0) {
362 rd->dev = dev;
363 rd->rmem = rmem;
364
365 mutex_lock(&of_rmem_assigned_device_mutex);
366 list_add(&rd->list, &of_rmem_assigned_device_list);
367 mutex_unlock(&of_rmem_assigned_device_mutex);
368
369 dev_info(dev, "assigned reserved memory node %s\n", rmem->name);
370 } else {
371 kfree(rd);
372 }
373
374 return ret;
375 }
376 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_idx);
377
378 /**
379 * of_reserved_mem_device_init_by_name() - assign named reserved memory region
380 * to given device
381 * @dev: pointer to the device to configure
382 * @np: pointer to the device node with 'memory-region' property
383 * @name: name of the selected memory region
384 *
385 * Returns: 0 on success or a negative error-code on failure.
386 */
of_reserved_mem_device_init_by_name(struct device * dev,struct device_node * np,const char * name)387 int of_reserved_mem_device_init_by_name(struct device *dev,
388 struct device_node *np,
389 const char *name)
390 {
391 int idx = of_property_match_string(np, "memory-region-names", name);
392
393 return of_reserved_mem_device_init_by_idx(dev, np, idx);
394 }
395 EXPORT_SYMBOL_GPL(of_reserved_mem_device_init_by_name);
396
397 /**
398 * of_reserved_mem_device_release() - release reserved memory device structures
399 * @dev: Pointer to the device to deconfigure
400 *
401 * This function releases structures allocated for memory region handling for
402 * the given device.
403 */
of_reserved_mem_device_release(struct device * dev)404 void of_reserved_mem_device_release(struct device *dev)
405 {
406 struct rmem_assigned_device *rd, *tmp;
407 LIST_HEAD(release_list);
408
409 mutex_lock(&of_rmem_assigned_device_mutex);
410 list_for_each_entry_safe(rd, tmp, &of_rmem_assigned_device_list, list) {
411 if (rd->dev == dev)
412 list_move_tail(&rd->list, &release_list);
413 }
414 mutex_unlock(&of_rmem_assigned_device_mutex);
415
416 list_for_each_entry_safe(rd, tmp, &release_list, list) {
417 if (rd->rmem && rd->rmem->ops && rd->rmem->ops->device_release)
418 rd->rmem->ops->device_release(rd->rmem, dev);
419
420 kfree(rd);
421 }
422 }
423 EXPORT_SYMBOL_GPL(of_reserved_mem_device_release);
424
425 /**
426 * of_reserved_mem_lookup() - acquire reserved_mem from a device node
427 * @np: node pointer of the desired reserved-memory region
428 *
429 * This function allows drivers to acquire a reference to the reserved_mem
430 * struct based on a device node handle.
431 *
432 * Returns a reserved_mem reference, or NULL on error.
433 */
of_reserved_mem_lookup(struct device_node * np)434 struct reserved_mem *of_reserved_mem_lookup(struct device_node *np)
435 {
436 const char *name;
437 int i;
438
439 if (!np->full_name)
440 return NULL;
441
442 name = kbasename(np->full_name);
443 for (i = 0; i < reserved_mem_count; i++)
444 if (!strcmp(reserved_mem[i].name, name))
445 return &reserved_mem[i];
446
447 return NULL;
448 }
449 EXPORT_SYMBOL_GPL(of_reserved_mem_lookup);
450