1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21
22 struct nvmem_device {
23 struct module *owner;
24 struct device dev;
25 int stride;
26 int word_size;
27 int id;
28 struct kref refcnt;
29 size_t size;
30 bool read_only;
31 bool root_only;
32 int flags;
33 enum nvmem_type type;
34 struct bin_attribute eeprom;
35 struct device *base_dev;
36 struct list_head cells;
37 const struct nvmem_keepout *keepout;
38 unsigned int nkeepout;
39 nvmem_reg_read_t reg_read;
40 nvmem_reg_write_t reg_write;
41 struct gpio_desc *wp_gpio;
42 void *priv;
43 };
44
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46
47 #define FLAG_COMPAT BIT(0)
48
49 struct nvmem_cell {
50 const char *name;
51 int offset;
52 int bytes;
53 int bit_offset;
54 int nbits;
55 struct device_node *np;
56 struct nvmem_device *nvmem;
57 struct list_head node;
58 };
59
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 void *val, size_t bytes)
73 {
74 if (nvmem->reg_read)
75 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76
77 return -EINVAL;
78 }
79
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 void *val, size_t bytes)
82 {
83 int ret;
84
85 if (nvmem->reg_write) {
86 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 return ret;
90 }
91
92 return -EINVAL;
93 }
94
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 unsigned int offset, void *val,
97 size_t bytes, int write)
98 {
99
100 unsigned int end = offset + bytes;
101 unsigned int kend, ksize;
102 const struct nvmem_keepout *keepout = nvmem->keepout;
103 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 int rc;
105
106 /*
107 * Skip all keepouts before the range being accessed.
108 * Keepouts are sorted.
109 */
110 while ((keepout < keepoutend) && (keepout->end <= offset))
111 keepout++;
112
113 while ((offset < end) && (keepout < keepoutend)) {
114 /* Access the valid portion before the keepout. */
115 if (offset < keepout->start) {
116 kend = min(end, keepout->start);
117 ksize = kend - offset;
118 if (write)
119 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 else
121 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122
123 if (rc)
124 return rc;
125
126 offset += ksize;
127 val += ksize;
128 }
129
130 /*
131 * Now we're aligned to the start of this keepout zone. Go
132 * through it.
133 */
134 kend = min(end, keepout->end);
135 ksize = kend - offset;
136 if (!write)
137 memset(val, keepout->value, ksize);
138
139 val += ksize;
140 offset += ksize;
141 keepout++;
142 }
143
144 /*
145 * If we ran out of keepouts but there's still stuff to do, send it
146 * down directly
147 */
148 if (offset < end) {
149 ksize = end - offset;
150 if (write)
151 return __nvmem_reg_write(nvmem, offset, val, ksize);
152 else
153 return __nvmem_reg_read(nvmem, offset, val, ksize);
154 }
155
156 return 0;
157 }
158
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 void *val, size_t bytes)
161 {
162 if (!nvmem->nkeepout)
163 return __nvmem_reg_read(nvmem, offset, val, bytes);
164
165 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 void *val, size_t bytes)
170 {
171 if (!nvmem->nkeepout)
172 return __nvmem_reg_write(nvmem, offset, val, bytes);
173
174 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 [NVMEM_TYPE_UNKNOWN] = "Unknown",
180 [NVMEM_TYPE_EEPROM] = "EEPROM",
181 [NVMEM_TYPE_OTP] = "OTP",
182 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 [NVMEM_TYPE_FRAM] = "FRAM",
184 };
185
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189
type_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t type_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192 {
193 struct nvmem_device *nvmem = to_nvmem_device(dev);
194
195 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197
198 static DEVICE_ATTR_RO(type);
199
200 static struct attribute *nvmem_attrs[] = {
201 &dev_attr_type.attr,
202 NULL,
203 };
204
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206 struct bin_attribute *attr, char *buf,
207 loff_t pos, size_t count)
208 {
209 struct device *dev;
210 struct nvmem_device *nvmem;
211 int rc;
212
213 if (attr->private)
214 dev = attr->private;
215 else
216 dev = kobj_to_dev(kobj);
217 nvmem = to_nvmem_device(dev);
218
219 /* Stop the user from reading */
220 if (pos >= nvmem->size)
221 return 0;
222
223 if (!IS_ALIGNED(pos, nvmem->stride))
224 return -EINVAL;
225
226 if (count < nvmem->word_size)
227 return -EINVAL;
228
229 if (pos + count > nvmem->size)
230 count = nvmem->size - pos;
231
232 count = round_down(count, nvmem->word_size);
233
234 if (!nvmem->reg_read)
235 return -EPERM;
236
237 rc = nvmem_reg_read(nvmem, pos, buf, count);
238
239 if (rc)
240 return rc;
241
242 return count;
243 }
244
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 struct bin_attribute *attr, char *buf,
247 loff_t pos, size_t count)
248 {
249 struct device *dev;
250 struct nvmem_device *nvmem;
251 int rc;
252
253 if (attr->private)
254 dev = attr->private;
255 else
256 dev = kobj_to_dev(kobj);
257 nvmem = to_nvmem_device(dev);
258
259 /* Stop the user from writing */
260 if (pos >= nvmem->size)
261 return -EFBIG;
262
263 if (!IS_ALIGNED(pos, nvmem->stride))
264 return -EINVAL;
265
266 if (count < nvmem->word_size)
267 return -EINVAL;
268
269 if (pos + count > nvmem->size)
270 count = nvmem->size - pos;
271
272 count = round_down(count, nvmem->word_size);
273
274 if (!nvmem->reg_write)
275 return -EPERM;
276
277 rc = nvmem_reg_write(nvmem, pos, buf, count);
278
279 if (rc)
280 return rc;
281
282 return count;
283 }
284
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287 umode_t mode = 0400;
288
289 if (!nvmem->root_only)
290 mode |= 0044;
291
292 if (!nvmem->read_only)
293 mode |= 0200;
294
295 if (!nvmem->reg_write)
296 mode &= ~0200;
297
298 if (!nvmem->reg_read)
299 mode &= ~0444;
300
301 return mode;
302 }
303
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305 struct bin_attribute *attr, int i)
306 {
307 struct device *dev = kobj_to_dev(kobj);
308 struct nvmem_device *nvmem = to_nvmem_device(dev);
309
310 return nvmem_bin_attr_get_umode(nvmem);
311 }
312
313 /* default read/write permissions */
314 static struct bin_attribute bin_attr_rw_nvmem = {
315 .attr = {
316 .name = "nvmem",
317 .mode = 0644,
318 },
319 .read = bin_attr_nvmem_read,
320 .write = bin_attr_nvmem_write,
321 };
322
323 static struct bin_attribute *nvmem_bin_attributes[] = {
324 &bin_attr_rw_nvmem,
325 NULL,
326 };
327
328 static const struct attribute_group nvmem_bin_group = {
329 .bin_attrs = nvmem_bin_attributes,
330 .attrs = nvmem_attrs,
331 .is_bin_visible = nvmem_bin_attr_is_visible,
332 };
333
334 static const struct attribute_group *nvmem_dev_groups[] = {
335 &nvmem_bin_group,
336 NULL,
337 };
338
339 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
340 .attr = {
341 .name = "eeprom",
342 },
343 .read = bin_attr_nvmem_read,
344 .write = bin_attr_nvmem_write,
345 };
346
347 /*
348 * nvmem_setup_compat() - Create an additional binary entry in
349 * drivers sys directory, to be backwards compatible with the older
350 * drivers/misc/eeprom drivers.
351 */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)352 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
353 const struct nvmem_config *config)
354 {
355 int rval;
356
357 if (!config->compat)
358 return 0;
359
360 if (!config->base_dev)
361 return -EINVAL;
362
363 if (config->type == NVMEM_TYPE_FRAM)
364 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
365
366 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
367 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
368 nvmem->eeprom.size = nvmem->size;
369 #ifdef CONFIG_DEBUG_LOCK_ALLOC
370 nvmem->eeprom.attr.key = &eeprom_lock_key;
371 #endif
372 nvmem->eeprom.private = &nvmem->dev;
373 nvmem->base_dev = config->base_dev;
374
375 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
376 if (rval) {
377 dev_err(&nvmem->dev,
378 "Failed to create eeprom binary file %d\n", rval);
379 return rval;
380 }
381
382 nvmem->flags |= FLAG_COMPAT;
383
384 return 0;
385 }
386
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)387 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
388 const struct nvmem_config *config)
389 {
390 if (config->compat)
391 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
392 }
393
394 #else /* CONFIG_NVMEM_SYSFS */
395
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)396 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
397 const struct nvmem_config *config)
398 {
399 return -ENOSYS;
400 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 const struct nvmem_config *config)
403 {
404 }
405
406 #endif /* CONFIG_NVMEM_SYSFS */
407
nvmem_release(struct device * dev)408 static void nvmem_release(struct device *dev)
409 {
410 struct nvmem_device *nvmem = to_nvmem_device(dev);
411
412 ida_free(&nvmem_ida, nvmem->id);
413 gpiod_put(nvmem->wp_gpio);
414 kfree(nvmem);
415 }
416
417 static const struct device_type nvmem_provider_type = {
418 .release = nvmem_release,
419 };
420
421 static struct bus_type nvmem_bus_type = {
422 .name = "nvmem",
423 };
424
nvmem_cell_drop(struct nvmem_cell * cell)425 static void nvmem_cell_drop(struct nvmem_cell *cell)
426 {
427 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
428 mutex_lock(&nvmem_mutex);
429 list_del(&cell->node);
430 mutex_unlock(&nvmem_mutex);
431 of_node_put(cell->np);
432 kfree_const(cell->name);
433 kfree(cell);
434 }
435
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)436 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
437 {
438 struct nvmem_cell *cell, *p;
439
440 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
441 nvmem_cell_drop(cell);
442 }
443
nvmem_cell_add(struct nvmem_cell * cell)444 static void nvmem_cell_add(struct nvmem_cell *cell)
445 {
446 mutex_lock(&nvmem_mutex);
447 list_add_tail(&cell->node, &cell->nvmem->cells);
448 mutex_unlock(&nvmem_mutex);
449 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
450 }
451
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)452 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
453 const struct nvmem_cell_info *info,
454 struct nvmem_cell *cell)
455 {
456 cell->nvmem = nvmem;
457 cell->offset = info->offset;
458 cell->bytes = info->bytes;
459 cell->name = info->name;
460
461 cell->bit_offset = info->bit_offset;
462 cell->nbits = info->nbits;
463
464 if (cell->nbits)
465 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
466 BITS_PER_BYTE);
467
468 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
469 dev_err(&nvmem->dev,
470 "cell %s unaligned to nvmem stride %d\n",
471 cell->name ?: "<unknown>", nvmem->stride);
472 return -EINVAL;
473 }
474
475 return 0;
476 }
477
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)478 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
479 const struct nvmem_cell_info *info,
480 struct nvmem_cell *cell)
481 {
482 int err;
483
484 err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
485 if (err)
486 return err;
487
488 cell->name = kstrdup_const(info->name, GFP_KERNEL);
489 if (!cell->name)
490 return -ENOMEM;
491
492 return 0;
493 }
494
495 /**
496 * nvmem_add_cells() - Add cell information to an nvmem device
497 *
498 * @nvmem: nvmem device to add cells to.
499 * @info: nvmem cell info to add to the device
500 * @ncells: number of cells in info
501 *
502 * Return: 0 or negative error code on failure.
503 */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)504 static int nvmem_add_cells(struct nvmem_device *nvmem,
505 const struct nvmem_cell_info *info,
506 int ncells)
507 {
508 struct nvmem_cell **cells;
509 int i, rval;
510
511 cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
512 if (!cells)
513 return -ENOMEM;
514
515 for (i = 0; i < ncells; i++) {
516 cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
517 if (!cells[i]) {
518 rval = -ENOMEM;
519 goto err;
520 }
521
522 rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
523 if (rval) {
524 kfree(cells[i]);
525 goto err;
526 }
527
528 nvmem_cell_add(cells[i]);
529 }
530
531 /* remove tmp array */
532 kfree(cells);
533
534 return 0;
535 err:
536 while (i--)
537 nvmem_cell_drop(cells[i]);
538
539 kfree(cells);
540
541 return rval;
542 }
543
544 /**
545 * nvmem_register_notifier() - Register a notifier block for nvmem events.
546 *
547 * @nb: notifier block to be called on nvmem events.
548 *
549 * Return: 0 on success, negative error number on failure.
550 */
nvmem_register_notifier(struct notifier_block * nb)551 int nvmem_register_notifier(struct notifier_block *nb)
552 {
553 return blocking_notifier_chain_register(&nvmem_notifier, nb);
554 }
555 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
556
557 /**
558 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
559 *
560 * @nb: notifier block to be unregistered.
561 *
562 * Return: 0 on success, negative error number on failure.
563 */
nvmem_unregister_notifier(struct notifier_block * nb)564 int nvmem_unregister_notifier(struct notifier_block *nb)
565 {
566 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
567 }
568 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
569
nvmem_add_cells_from_table(struct nvmem_device * nvmem)570 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
571 {
572 const struct nvmem_cell_info *info;
573 struct nvmem_cell_table *table;
574 struct nvmem_cell *cell;
575 int rval = 0, i;
576
577 mutex_lock(&nvmem_cell_mutex);
578 list_for_each_entry(table, &nvmem_cell_tables, node) {
579 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
580 for (i = 0; i < table->ncells; i++) {
581 info = &table->cells[i];
582
583 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
584 if (!cell) {
585 rval = -ENOMEM;
586 goto out;
587 }
588
589 rval = nvmem_cell_info_to_nvmem_cell(nvmem,
590 info,
591 cell);
592 if (rval) {
593 kfree(cell);
594 goto out;
595 }
596
597 nvmem_cell_add(cell);
598 }
599 }
600 }
601
602 out:
603 mutex_unlock(&nvmem_cell_mutex);
604 return rval;
605 }
606
607 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)608 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
609 {
610 struct nvmem_cell *iter, *cell = NULL;
611
612 mutex_lock(&nvmem_mutex);
613 list_for_each_entry(iter, &nvmem->cells, node) {
614 if (strcmp(cell_id, iter->name) == 0) {
615 cell = iter;
616 break;
617 }
618 }
619 mutex_unlock(&nvmem_mutex);
620
621 return cell;
622 }
623
nvmem_validate_keepouts(struct nvmem_device * nvmem)624 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
625 {
626 unsigned int cur = 0;
627 const struct nvmem_keepout *keepout = nvmem->keepout;
628 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
629
630 while (keepout < keepoutend) {
631 /* Ensure keepouts are sorted and don't overlap. */
632 if (keepout->start < cur) {
633 dev_err(&nvmem->dev,
634 "Keepout regions aren't sorted or overlap.\n");
635
636 return -ERANGE;
637 }
638
639 if (keepout->end < keepout->start) {
640 dev_err(&nvmem->dev,
641 "Invalid keepout region.\n");
642
643 return -EINVAL;
644 }
645
646 /*
647 * Validate keepouts (and holes between) don't violate
648 * word_size constraints.
649 */
650 if ((keepout->end - keepout->start < nvmem->word_size) ||
651 ((keepout->start != cur) &&
652 (keepout->start - cur < nvmem->word_size))) {
653
654 dev_err(&nvmem->dev,
655 "Keepout regions violate word_size constraints.\n");
656
657 return -ERANGE;
658 }
659
660 /* Validate keepouts don't violate stride (alignment). */
661 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
662 !IS_ALIGNED(keepout->end, nvmem->stride)) {
663
664 dev_err(&nvmem->dev,
665 "Keepout regions violate stride.\n");
666
667 return -EINVAL;
668 }
669
670 cur = keepout->end;
671 keepout++;
672 }
673
674 return 0;
675 }
676
nvmem_add_cells_from_of(struct nvmem_device * nvmem)677 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
678 {
679 struct device_node *parent, *child;
680 struct device *dev = &nvmem->dev;
681 struct nvmem_cell *cell;
682 const __be32 *addr;
683 int len;
684
685 parent = dev->of_node;
686
687 for_each_child_of_node(parent, child) {
688 addr = of_get_property(child, "reg", &len);
689 if (!addr)
690 continue;
691 if (len < 2 * sizeof(u32)) {
692 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
693 of_node_put(child);
694 return -EINVAL;
695 }
696
697 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
698 if (!cell) {
699 of_node_put(child);
700 return -ENOMEM;
701 }
702
703 cell->nvmem = nvmem;
704 cell->offset = be32_to_cpup(addr++);
705 cell->bytes = be32_to_cpup(addr);
706 cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
707
708 addr = of_get_property(child, "bits", &len);
709 if (addr && len == (2 * sizeof(u32))) {
710 cell->bit_offset = be32_to_cpup(addr++);
711 cell->nbits = be32_to_cpup(addr);
712 }
713
714 if (cell->nbits)
715 cell->bytes = DIV_ROUND_UP(
716 cell->nbits + cell->bit_offset,
717 BITS_PER_BYTE);
718
719 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
720 dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
721 cell->name, nvmem->stride);
722 /* Cells already added will be freed later. */
723 kfree_const(cell->name);
724 kfree(cell);
725 of_node_put(child);
726 return -EINVAL;
727 }
728
729 cell->np = of_node_get(child);
730 nvmem_cell_add(cell);
731 }
732
733 return 0;
734 }
735
736 /**
737 * nvmem_register() - Register a nvmem device for given nvmem_config.
738 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
739 *
740 * @config: nvmem device configuration with which nvmem device is created.
741 *
742 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743 * on success.
744 */
745
nvmem_register(const struct nvmem_config * config)746 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
747 {
748 struct nvmem_device *nvmem;
749 int rval;
750
751 if (!config->dev)
752 return ERR_PTR(-EINVAL);
753
754 if (!config->reg_read && !config->reg_write)
755 return ERR_PTR(-EINVAL);
756
757 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
758 if (!nvmem)
759 return ERR_PTR(-ENOMEM);
760
761 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
762 if (rval < 0) {
763 kfree(nvmem);
764 return ERR_PTR(rval);
765 }
766
767 if (config->wp_gpio)
768 nvmem->wp_gpio = config->wp_gpio;
769 else
770 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
771 GPIOD_OUT_HIGH);
772 if (IS_ERR(nvmem->wp_gpio)) {
773 ida_free(&nvmem_ida, nvmem->id);
774 rval = PTR_ERR(nvmem->wp_gpio);
775 kfree(nvmem);
776 return ERR_PTR(rval);
777 }
778
779 kref_init(&nvmem->refcnt);
780 INIT_LIST_HEAD(&nvmem->cells);
781
782 nvmem->id = rval;
783 nvmem->owner = config->owner;
784 if (!nvmem->owner && config->dev->driver)
785 nvmem->owner = config->dev->driver->owner;
786 nvmem->stride = config->stride ?: 1;
787 nvmem->word_size = config->word_size ?: 1;
788 nvmem->size = config->size;
789 nvmem->dev.type = &nvmem_provider_type;
790 nvmem->dev.bus = &nvmem_bus_type;
791 nvmem->dev.parent = config->dev;
792 nvmem->root_only = config->root_only;
793 nvmem->priv = config->priv;
794 nvmem->type = config->type;
795 nvmem->reg_read = config->reg_read;
796 nvmem->reg_write = config->reg_write;
797 nvmem->keepout = config->keepout;
798 nvmem->nkeepout = config->nkeepout;
799 if (config->of_node)
800 nvmem->dev.of_node = config->of_node;
801 else if (!config->no_of_node)
802 nvmem->dev.of_node = config->dev->of_node;
803
804 switch (config->id) {
805 case NVMEM_DEVID_NONE:
806 dev_set_name(&nvmem->dev, "%s", config->name);
807 break;
808 case NVMEM_DEVID_AUTO:
809 dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
810 break;
811 default:
812 dev_set_name(&nvmem->dev, "%s%d",
813 config->name ? : "nvmem",
814 config->name ? config->id : nvmem->id);
815 break;
816 }
817
818 nvmem->read_only = device_property_present(config->dev, "read-only") ||
819 config->read_only || !nvmem->reg_write;
820
821 #ifdef CONFIG_NVMEM_SYSFS
822 nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824
825 if (nvmem->nkeepout) {
826 rval = nvmem_validate_keepouts(nvmem);
827 if (rval) {
828 ida_free(&nvmem_ida, nvmem->id);
829 kfree(nvmem);
830 return ERR_PTR(rval);
831 }
832 }
833
834 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
835
836 rval = device_register(&nvmem->dev);
837 if (rval)
838 goto err_put_device;
839
840 if (config->compat) {
841 rval = nvmem_sysfs_setup_compat(nvmem, config);
842 if (rval)
843 goto err_device_del;
844 }
845
846 if (config->cells) {
847 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
848 if (rval)
849 goto err_teardown_compat;
850 }
851
852 rval = nvmem_add_cells_from_table(nvmem);
853 if (rval)
854 goto err_remove_cells;
855
856 rval = nvmem_add_cells_from_of(nvmem);
857 if (rval)
858 goto err_remove_cells;
859
860 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
861
862 return nvmem;
863
864 err_remove_cells:
865 nvmem_device_remove_all_cells(nvmem);
866 err_teardown_compat:
867 if (config->compat)
868 nvmem_sysfs_remove_compat(nvmem, config);
869 err_device_del:
870 device_del(&nvmem->dev);
871 err_put_device:
872 put_device(&nvmem->dev);
873
874 return ERR_PTR(rval);
875 }
876 EXPORT_SYMBOL_GPL(nvmem_register);
877
nvmem_device_release(struct kref * kref)878 static void nvmem_device_release(struct kref *kref)
879 {
880 struct nvmem_device *nvmem;
881
882 nvmem = container_of(kref, struct nvmem_device, refcnt);
883
884 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
885
886 if (nvmem->flags & FLAG_COMPAT)
887 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
888
889 nvmem_device_remove_all_cells(nvmem);
890 device_unregister(&nvmem->dev);
891 }
892
893 /**
894 * nvmem_unregister() - Unregister previously registered nvmem device
895 *
896 * @nvmem: Pointer to previously registered nvmem device.
897 */
nvmem_unregister(struct nvmem_device * nvmem)898 void nvmem_unregister(struct nvmem_device *nvmem)
899 {
900 kref_put(&nvmem->refcnt, nvmem_device_release);
901 }
902 EXPORT_SYMBOL_GPL(nvmem_unregister);
903
devm_nvmem_release(struct device * dev,void * res)904 static void devm_nvmem_release(struct device *dev, void *res)
905 {
906 nvmem_unregister(*(struct nvmem_device **)res);
907 }
908
909 /**
910 * devm_nvmem_register() - Register a managed nvmem device for given
911 * nvmem_config.
912 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
913 *
914 * @dev: Device that uses the nvmem device.
915 * @config: nvmem device configuration with which nvmem device is created.
916 *
917 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
918 * on success.
919 */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)920 struct nvmem_device *devm_nvmem_register(struct device *dev,
921 const struct nvmem_config *config)
922 {
923 struct nvmem_device **ptr, *nvmem;
924
925 ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
926 if (!ptr)
927 return ERR_PTR(-ENOMEM);
928
929 nvmem = nvmem_register(config);
930
931 if (!IS_ERR(nvmem)) {
932 *ptr = nvmem;
933 devres_add(dev, ptr);
934 } else {
935 devres_free(ptr);
936 }
937
938 return nvmem;
939 }
940 EXPORT_SYMBOL_GPL(devm_nvmem_register);
941
devm_nvmem_match(struct device * dev,void * res,void * data)942 static int devm_nvmem_match(struct device *dev, void *res, void *data)
943 {
944 struct nvmem_device **r = res;
945
946 return *r == data;
947 }
948
949 /**
950 * devm_nvmem_unregister() - Unregister previously registered managed nvmem
951 * device.
952 *
953 * @dev: Device that uses the nvmem device.
954 * @nvmem: Pointer to previously registered nvmem device.
955 *
956 * Return: Will be negative on error or zero on success.
957 */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)958 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
959 {
960 return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
961 }
962 EXPORT_SYMBOL(devm_nvmem_unregister);
963
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))964 static struct nvmem_device *__nvmem_device_get(void *data,
965 int (*match)(struct device *dev, const void *data))
966 {
967 struct nvmem_device *nvmem = NULL;
968 struct device *dev;
969
970 mutex_lock(&nvmem_mutex);
971 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
972 if (dev)
973 nvmem = to_nvmem_device(dev);
974 mutex_unlock(&nvmem_mutex);
975 if (!nvmem)
976 return ERR_PTR(-EPROBE_DEFER);
977
978 if (!try_module_get(nvmem->owner)) {
979 dev_err(&nvmem->dev,
980 "could not increase module refcount for cell %s\n",
981 nvmem_dev_name(nvmem));
982
983 put_device(&nvmem->dev);
984 return ERR_PTR(-EINVAL);
985 }
986
987 kref_get(&nvmem->refcnt);
988
989 return nvmem;
990 }
991
__nvmem_device_put(struct nvmem_device * nvmem)992 static void __nvmem_device_put(struct nvmem_device *nvmem)
993 {
994 put_device(&nvmem->dev);
995 module_put(nvmem->owner);
996 kref_put(&nvmem->refcnt, nvmem_device_release);
997 }
998
999 #if IS_ENABLED(CONFIG_OF)
1000 /**
1001 * of_nvmem_device_get() - Get nvmem device from a given id
1002 *
1003 * @np: Device tree node that uses the nvmem device.
1004 * @id: nvmem name from nvmem-names property.
1005 *
1006 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1007 * on success.
1008 */
of_nvmem_device_get(struct device_node * np,const char * id)1009 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1010 {
1011
1012 struct device_node *nvmem_np;
1013 struct nvmem_device *nvmem;
1014 int index = 0;
1015
1016 if (id)
1017 index = of_property_match_string(np, "nvmem-names", id);
1018
1019 nvmem_np = of_parse_phandle(np, "nvmem", index);
1020 if (!nvmem_np)
1021 return ERR_PTR(-ENOENT);
1022
1023 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1024 of_node_put(nvmem_np);
1025 return nvmem;
1026 }
1027 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1028 #endif
1029
1030 /**
1031 * nvmem_device_get() - Get nvmem device from a given id
1032 *
1033 * @dev: Device that uses the nvmem device.
1034 * @dev_name: name of the requested nvmem device.
1035 *
1036 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1037 * on success.
1038 */
nvmem_device_get(struct device * dev,const char * dev_name)1039 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1040 {
1041 if (dev->of_node) { /* try dt first */
1042 struct nvmem_device *nvmem;
1043
1044 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1045
1046 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1047 return nvmem;
1048
1049 }
1050
1051 return __nvmem_device_get((void *)dev_name, device_match_name);
1052 }
1053 EXPORT_SYMBOL_GPL(nvmem_device_get);
1054
1055 /**
1056 * nvmem_device_find() - Find nvmem device with matching function
1057 *
1058 * @data: Data to pass to match function
1059 * @match: Callback function to check device
1060 *
1061 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1062 * on success.
1063 */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1064 struct nvmem_device *nvmem_device_find(void *data,
1065 int (*match)(struct device *dev, const void *data))
1066 {
1067 return __nvmem_device_get(data, match);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_device_find);
1070
devm_nvmem_device_match(struct device * dev,void * res,void * data)1071 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1072 {
1073 struct nvmem_device **nvmem = res;
1074
1075 if (WARN_ON(!nvmem || !*nvmem))
1076 return 0;
1077
1078 return *nvmem == data;
1079 }
1080
devm_nvmem_device_release(struct device * dev,void * res)1081 static void devm_nvmem_device_release(struct device *dev, void *res)
1082 {
1083 nvmem_device_put(*(struct nvmem_device **)res);
1084 }
1085
1086 /**
1087 * devm_nvmem_device_put() - put alredy got nvmem device
1088 *
1089 * @dev: Device that uses the nvmem device.
1090 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1091 * that needs to be released.
1092 */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1093 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1094 {
1095 int ret;
1096
1097 ret = devres_release(dev, devm_nvmem_device_release,
1098 devm_nvmem_device_match, nvmem);
1099
1100 WARN_ON(ret);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1103
1104 /**
1105 * nvmem_device_put() - put alredy got nvmem device
1106 *
1107 * @nvmem: pointer to nvmem device that needs to be released.
1108 */
nvmem_device_put(struct nvmem_device * nvmem)1109 void nvmem_device_put(struct nvmem_device *nvmem)
1110 {
1111 __nvmem_device_put(nvmem);
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_device_put);
1114
1115 /**
1116 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1117 *
1118 * @dev: Device that requests the nvmem device.
1119 * @id: name id for the requested nvmem device.
1120 *
1121 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1122 * on success. The nvmem_cell will be freed by the automatically once the
1123 * device is freed.
1124 */
devm_nvmem_device_get(struct device * dev,const char * id)1125 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1126 {
1127 struct nvmem_device **ptr, *nvmem;
1128
1129 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1130 if (!ptr)
1131 return ERR_PTR(-ENOMEM);
1132
1133 nvmem = nvmem_device_get(dev, id);
1134 if (!IS_ERR(nvmem)) {
1135 *ptr = nvmem;
1136 devres_add(dev, ptr);
1137 } else {
1138 devres_free(ptr);
1139 }
1140
1141 return nvmem;
1142 }
1143 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1144
1145 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1146 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1147 {
1148 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1149 struct nvmem_cell_lookup *lookup;
1150 struct nvmem_device *nvmem;
1151 const char *dev_id;
1152
1153 if (!dev)
1154 return ERR_PTR(-EINVAL);
1155
1156 dev_id = dev_name(dev);
1157
1158 mutex_lock(&nvmem_lookup_mutex);
1159
1160 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1161 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1162 (strcmp(lookup->con_id, con_id) == 0)) {
1163 /* This is the right entry. */
1164 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1165 device_match_name);
1166 if (IS_ERR(nvmem)) {
1167 /* Provider may not be registered yet. */
1168 cell = ERR_CAST(nvmem);
1169 break;
1170 }
1171
1172 cell = nvmem_find_cell_by_name(nvmem,
1173 lookup->cell_name);
1174 if (!cell) {
1175 __nvmem_device_put(nvmem);
1176 cell = ERR_PTR(-ENOENT);
1177 }
1178 break;
1179 }
1180 }
1181
1182 mutex_unlock(&nvmem_lookup_mutex);
1183 return cell;
1184 }
1185
1186 #if IS_ENABLED(CONFIG_OF)
1187 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1188 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1189 {
1190 struct nvmem_cell *iter, *cell = NULL;
1191
1192 mutex_lock(&nvmem_mutex);
1193 list_for_each_entry(iter, &nvmem->cells, node) {
1194 if (np == iter->np) {
1195 cell = iter;
1196 break;
1197 }
1198 }
1199 mutex_unlock(&nvmem_mutex);
1200
1201 return cell;
1202 }
1203
1204 /**
1205 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1206 *
1207 * @np: Device tree node that uses the nvmem cell.
1208 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1209 * for the cell at index 0 (the lone cell with no accompanying
1210 * nvmem-cell-names property).
1211 *
1212 * Return: Will be an ERR_PTR() on error or a valid pointer
1213 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1214 * nvmem_cell_put().
1215 */
of_nvmem_cell_get(struct device_node * np,const char * id)1216 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1217 {
1218 struct device_node *cell_np, *nvmem_np;
1219 struct nvmem_device *nvmem;
1220 struct nvmem_cell *cell;
1221 int index = 0;
1222
1223 /* if cell name exists, find index to the name */
1224 if (id)
1225 index = of_property_match_string(np, "nvmem-cell-names", id);
1226
1227 cell_np = of_parse_phandle(np, "nvmem-cells", index);
1228 if (!cell_np)
1229 return ERR_PTR(-ENOENT);
1230
1231 nvmem_np = of_get_next_parent(cell_np);
1232 if (!nvmem_np)
1233 return ERR_PTR(-EINVAL);
1234
1235 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1236 of_node_put(nvmem_np);
1237 if (IS_ERR(nvmem))
1238 return ERR_CAST(nvmem);
1239
1240 cell = nvmem_find_cell_by_node(nvmem, cell_np);
1241 if (!cell) {
1242 __nvmem_device_put(nvmem);
1243 return ERR_PTR(-ENOENT);
1244 }
1245
1246 return cell;
1247 }
1248 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1249 #endif
1250
1251 /**
1252 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1253 *
1254 * @dev: Device that requests the nvmem cell.
1255 * @id: nvmem cell name to get (this corresponds with the name from the
1256 * nvmem-cell-names property for DT systems and with the con_id from
1257 * the lookup entry for non-DT systems).
1258 *
1259 * Return: Will be an ERR_PTR() on error or a valid pointer
1260 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1261 * nvmem_cell_put().
1262 */
nvmem_cell_get(struct device * dev,const char * id)1263 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1264 {
1265 struct nvmem_cell *cell;
1266
1267 if (dev->of_node) { /* try dt first */
1268 cell = of_nvmem_cell_get(dev->of_node, id);
1269 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1270 return cell;
1271 }
1272
1273 /* NULL cell id only allowed for device tree; invalid otherwise */
1274 if (!id)
1275 return ERR_PTR(-EINVAL);
1276
1277 return nvmem_cell_get_from_lookup(dev, id);
1278 }
1279 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1280
devm_nvmem_cell_release(struct device * dev,void * res)1281 static void devm_nvmem_cell_release(struct device *dev, void *res)
1282 {
1283 nvmem_cell_put(*(struct nvmem_cell **)res);
1284 }
1285
1286 /**
1287 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1288 *
1289 * @dev: Device that requests the nvmem cell.
1290 * @id: nvmem cell name id to get.
1291 *
1292 * Return: Will be an ERR_PTR() on error or a valid pointer
1293 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1294 * automatically once the device is freed.
1295 */
devm_nvmem_cell_get(struct device * dev,const char * id)1296 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1297 {
1298 struct nvmem_cell **ptr, *cell;
1299
1300 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1301 if (!ptr)
1302 return ERR_PTR(-ENOMEM);
1303
1304 cell = nvmem_cell_get(dev, id);
1305 if (!IS_ERR(cell)) {
1306 *ptr = cell;
1307 devres_add(dev, ptr);
1308 } else {
1309 devres_free(ptr);
1310 }
1311
1312 return cell;
1313 }
1314 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1315
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1316 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1317 {
1318 struct nvmem_cell **c = res;
1319
1320 if (WARN_ON(!c || !*c))
1321 return 0;
1322
1323 return *c == data;
1324 }
1325
1326 /**
1327 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1328 * from devm_nvmem_cell_get.
1329 *
1330 * @dev: Device that requests the nvmem cell.
1331 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1332 */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1333 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1334 {
1335 int ret;
1336
1337 ret = devres_release(dev, devm_nvmem_cell_release,
1338 devm_nvmem_cell_match, cell);
1339
1340 WARN_ON(ret);
1341 }
1342 EXPORT_SYMBOL(devm_nvmem_cell_put);
1343
1344 /**
1345 * nvmem_cell_put() - Release previously allocated nvmem cell.
1346 *
1347 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1348 */
nvmem_cell_put(struct nvmem_cell * cell)1349 void nvmem_cell_put(struct nvmem_cell *cell)
1350 {
1351 struct nvmem_device *nvmem = cell->nvmem;
1352
1353 __nvmem_device_put(nvmem);
1354 }
1355 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1356
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1357 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1358 {
1359 u8 *p, *b;
1360 int i, extra, bit_offset = cell->bit_offset;
1361
1362 p = b = buf;
1363 if (bit_offset) {
1364 /* First shift */
1365 *b++ >>= bit_offset;
1366
1367 /* setup rest of the bytes if any */
1368 for (i = 1; i < cell->bytes; i++) {
1369 /* Get bits from next byte and shift them towards msb */
1370 *p |= *b << (BITS_PER_BYTE - bit_offset);
1371
1372 p = b;
1373 *b++ >>= bit_offset;
1374 }
1375 } else {
1376 /* point to the msb */
1377 p += cell->bytes - 1;
1378 }
1379
1380 /* result fits in less bytes */
1381 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1382 while (--extra >= 0)
1383 *p-- = 0;
1384
1385 /* clear msb bits if any leftover in the last byte */
1386 if (cell->nbits % BITS_PER_BYTE)
1387 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1388 }
1389
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1390 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1391 struct nvmem_cell *cell,
1392 void *buf, size_t *len)
1393 {
1394 int rc;
1395
1396 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1397
1398 if (rc)
1399 return rc;
1400
1401 /* shift bits in-place */
1402 if (cell->bit_offset || cell->nbits)
1403 nvmem_shift_read_buffer_in_place(cell, buf);
1404
1405 if (len)
1406 *len = cell->bytes;
1407
1408 return 0;
1409 }
1410
1411 /**
1412 * nvmem_cell_read() - Read a given nvmem cell
1413 *
1414 * @cell: nvmem cell to be read.
1415 * @len: pointer to length of cell which will be populated on successful read;
1416 * can be NULL.
1417 *
1418 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1419 * buffer should be freed by the consumer with a kfree().
1420 */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1421 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1422 {
1423 struct nvmem_device *nvmem = cell->nvmem;
1424 u8 *buf;
1425 int rc;
1426
1427 if (!nvmem)
1428 return ERR_PTR(-EINVAL);
1429
1430 buf = kzalloc(cell->bytes, GFP_KERNEL);
1431 if (!buf)
1432 return ERR_PTR(-ENOMEM);
1433
1434 rc = __nvmem_cell_read(nvmem, cell, buf, len);
1435 if (rc) {
1436 kfree(buf);
1437 return ERR_PTR(rc);
1438 }
1439
1440 return buf;
1441 }
1442 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1443
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1444 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1445 u8 *_buf, int len)
1446 {
1447 struct nvmem_device *nvmem = cell->nvmem;
1448 int i, rc, nbits, bit_offset = cell->bit_offset;
1449 u8 v, *p, *buf, *b, pbyte, pbits;
1450
1451 nbits = cell->nbits;
1452 buf = kzalloc(cell->bytes, GFP_KERNEL);
1453 if (!buf)
1454 return ERR_PTR(-ENOMEM);
1455
1456 memcpy(buf, _buf, len);
1457 p = b = buf;
1458
1459 if (bit_offset) {
1460 pbyte = *b;
1461 *b <<= bit_offset;
1462
1463 /* setup the first byte with lsb bits from nvmem */
1464 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1465 if (rc)
1466 goto err;
1467 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1468
1469 /* setup rest of the byte if any */
1470 for (i = 1; i < cell->bytes; i++) {
1471 /* Get last byte bits and shift them towards lsb */
1472 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1473 pbyte = *b;
1474 p = b;
1475 *b <<= bit_offset;
1476 *b++ |= pbits;
1477 }
1478 }
1479
1480 /* if it's not end on byte boundary */
1481 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1482 /* setup the last byte with msb bits from nvmem */
1483 rc = nvmem_reg_read(nvmem,
1484 cell->offset + cell->bytes - 1, &v, 1);
1485 if (rc)
1486 goto err;
1487 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1488
1489 }
1490
1491 return buf;
1492 err:
1493 kfree(buf);
1494 return ERR_PTR(rc);
1495 }
1496
1497 /**
1498 * nvmem_cell_write() - Write to a given nvmem cell
1499 *
1500 * @cell: nvmem cell to be written.
1501 * @buf: Buffer to be written.
1502 * @len: length of buffer to be written to nvmem cell.
1503 *
1504 * Return: length of bytes written or negative on failure.
1505 */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1506 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1507 {
1508 struct nvmem_device *nvmem = cell->nvmem;
1509 int rc;
1510
1511 if (!nvmem || nvmem->read_only ||
1512 (cell->bit_offset == 0 && len != cell->bytes))
1513 return -EINVAL;
1514
1515 if (cell->bit_offset || cell->nbits) {
1516 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1517 if (IS_ERR(buf))
1518 return PTR_ERR(buf);
1519 }
1520
1521 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1522
1523 /* free the tmp buffer */
1524 if (cell->bit_offset || cell->nbits)
1525 kfree(buf);
1526
1527 if (rc)
1528 return rc;
1529
1530 return len;
1531 }
1532 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1533
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1534 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1535 void *val, size_t count)
1536 {
1537 struct nvmem_cell *cell;
1538 void *buf;
1539 size_t len;
1540
1541 cell = nvmem_cell_get(dev, cell_id);
1542 if (IS_ERR(cell))
1543 return PTR_ERR(cell);
1544
1545 buf = nvmem_cell_read(cell, &len);
1546 if (IS_ERR(buf)) {
1547 nvmem_cell_put(cell);
1548 return PTR_ERR(buf);
1549 }
1550 if (len != count) {
1551 kfree(buf);
1552 nvmem_cell_put(cell);
1553 return -EINVAL;
1554 }
1555 memcpy(val, buf, count);
1556 kfree(buf);
1557 nvmem_cell_put(cell);
1558
1559 return 0;
1560 }
1561
1562 /**
1563 * nvmem_cell_read_u8() - Read a cell value as a u8
1564 *
1565 * @dev: Device that requests the nvmem cell.
1566 * @cell_id: Name of nvmem cell to read.
1567 * @val: pointer to output value.
1568 *
1569 * Return: 0 on success or negative errno.
1570 */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1571 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1572 {
1573 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1574 }
1575 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1576
1577 /**
1578 * nvmem_cell_read_u16() - Read a cell value as a u16
1579 *
1580 * @dev: Device that requests the nvmem cell.
1581 * @cell_id: Name of nvmem cell to read.
1582 * @val: pointer to output value.
1583 *
1584 * Return: 0 on success or negative errno.
1585 */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1586 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1587 {
1588 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1589 }
1590 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1591
1592 /**
1593 * nvmem_cell_read_u32() - Read a cell value as a u32
1594 *
1595 * @dev: Device that requests the nvmem cell.
1596 * @cell_id: Name of nvmem cell to read.
1597 * @val: pointer to output value.
1598 *
1599 * Return: 0 on success or negative errno.
1600 */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1601 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1602 {
1603 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1604 }
1605 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1606
1607 /**
1608 * nvmem_cell_read_u64() - Read a cell value as a u64
1609 *
1610 * @dev: Device that requests the nvmem cell.
1611 * @cell_id: Name of nvmem cell to read.
1612 * @val: pointer to output value.
1613 *
1614 * Return: 0 on success or negative errno.
1615 */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1616 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1617 {
1618 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1619 }
1620 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1621
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1622 static const void *nvmem_cell_read_variable_common(struct device *dev,
1623 const char *cell_id,
1624 size_t max_len, size_t *len)
1625 {
1626 struct nvmem_cell *cell;
1627 int nbits;
1628 void *buf;
1629
1630 cell = nvmem_cell_get(dev, cell_id);
1631 if (IS_ERR(cell))
1632 return cell;
1633
1634 nbits = cell->nbits;
1635 buf = nvmem_cell_read(cell, len);
1636 nvmem_cell_put(cell);
1637 if (IS_ERR(buf))
1638 return buf;
1639
1640 /*
1641 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1642 * the length of the real data. Throw away the extra junk.
1643 */
1644 if (nbits)
1645 *len = DIV_ROUND_UP(nbits, 8);
1646
1647 if (*len > max_len) {
1648 kfree(buf);
1649 return ERR_PTR(-ERANGE);
1650 }
1651
1652 return buf;
1653 }
1654
1655 /**
1656 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1657 *
1658 * @dev: Device that requests the nvmem cell.
1659 * @cell_id: Name of nvmem cell to read.
1660 * @val: pointer to output value.
1661 *
1662 * Return: 0 on success or negative errno.
1663 */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1664 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1665 u32 *val)
1666 {
1667 size_t len;
1668 const u8 *buf;
1669 int i;
1670
1671 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1672 if (IS_ERR(buf))
1673 return PTR_ERR(buf);
1674
1675 /* Copy w/ implicit endian conversion */
1676 *val = 0;
1677 for (i = 0; i < len; i++)
1678 *val |= buf[i] << (8 * i);
1679
1680 kfree(buf);
1681
1682 return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1685
1686 /**
1687 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1688 *
1689 * @dev: Device that requests the nvmem cell.
1690 * @cell_id: Name of nvmem cell to read.
1691 * @val: pointer to output value.
1692 *
1693 * Return: 0 on success or negative errno.
1694 */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1695 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1696 u64 *val)
1697 {
1698 size_t len;
1699 const u8 *buf;
1700 int i;
1701
1702 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1703 if (IS_ERR(buf))
1704 return PTR_ERR(buf);
1705
1706 /* Copy w/ implicit endian conversion */
1707 *val = 0;
1708 for (i = 0; i < len; i++)
1709 *val |= (uint64_t)buf[i] << (8 * i);
1710
1711 kfree(buf);
1712
1713 return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1716
1717 /**
1718 * nvmem_device_cell_read() - Read a given nvmem device and cell
1719 *
1720 * @nvmem: nvmem device to read from.
1721 * @info: nvmem cell info to be read.
1722 * @buf: buffer pointer which will be populated on successful read.
1723 *
1724 * Return: length of successful bytes read on success and negative
1725 * error code on error.
1726 */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1727 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1728 struct nvmem_cell_info *info, void *buf)
1729 {
1730 struct nvmem_cell cell;
1731 int rc;
1732 ssize_t len;
1733
1734 if (!nvmem)
1735 return -EINVAL;
1736
1737 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1738 if (rc)
1739 return rc;
1740
1741 rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1742 if (rc)
1743 return rc;
1744
1745 return len;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1748
1749 /**
1750 * nvmem_device_cell_write() - Write cell to a given nvmem device
1751 *
1752 * @nvmem: nvmem device to be written to.
1753 * @info: nvmem cell info to be written.
1754 * @buf: buffer to be written to cell.
1755 *
1756 * Return: length of bytes written or negative error code on failure.
1757 */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1758 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1759 struct nvmem_cell_info *info, void *buf)
1760 {
1761 struct nvmem_cell cell;
1762 int rc;
1763
1764 if (!nvmem)
1765 return -EINVAL;
1766
1767 rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1768 if (rc)
1769 return rc;
1770
1771 return nvmem_cell_write(&cell, buf, cell.bytes);
1772 }
1773 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1774
1775 /**
1776 * nvmem_device_read() - Read from a given nvmem device
1777 *
1778 * @nvmem: nvmem device to read from.
1779 * @offset: offset in nvmem device.
1780 * @bytes: number of bytes to read.
1781 * @buf: buffer pointer which will be populated on successful read.
1782 *
1783 * Return: length of successful bytes read on success and negative
1784 * error code on error.
1785 */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1786 int nvmem_device_read(struct nvmem_device *nvmem,
1787 unsigned int offset,
1788 size_t bytes, void *buf)
1789 {
1790 int rc;
1791
1792 if (!nvmem)
1793 return -EINVAL;
1794
1795 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1796
1797 if (rc)
1798 return rc;
1799
1800 return bytes;
1801 }
1802 EXPORT_SYMBOL_GPL(nvmem_device_read);
1803
1804 /**
1805 * nvmem_device_write() - Write cell to a given nvmem device
1806 *
1807 * @nvmem: nvmem device to be written to.
1808 * @offset: offset in nvmem device.
1809 * @bytes: number of bytes to write.
1810 * @buf: buffer to be written.
1811 *
1812 * Return: length of bytes written or negative error code on failure.
1813 */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1814 int nvmem_device_write(struct nvmem_device *nvmem,
1815 unsigned int offset,
1816 size_t bytes, void *buf)
1817 {
1818 int rc;
1819
1820 if (!nvmem)
1821 return -EINVAL;
1822
1823 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1824
1825 if (rc)
1826 return rc;
1827
1828
1829 return bytes;
1830 }
1831 EXPORT_SYMBOL_GPL(nvmem_device_write);
1832
1833 /**
1834 * nvmem_add_cell_table() - register a table of cell info entries
1835 *
1836 * @table: table of cell info entries
1837 */
nvmem_add_cell_table(struct nvmem_cell_table * table)1838 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1839 {
1840 mutex_lock(&nvmem_cell_mutex);
1841 list_add_tail(&table->node, &nvmem_cell_tables);
1842 mutex_unlock(&nvmem_cell_mutex);
1843 }
1844 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1845
1846 /**
1847 * nvmem_del_cell_table() - remove a previously registered cell info table
1848 *
1849 * @table: table of cell info entries
1850 */
nvmem_del_cell_table(struct nvmem_cell_table * table)1851 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1852 {
1853 mutex_lock(&nvmem_cell_mutex);
1854 list_del(&table->node);
1855 mutex_unlock(&nvmem_cell_mutex);
1856 }
1857 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1858
1859 /**
1860 * nvmem_add_cell_lookups() - register a list of cell lookup entries
1861 *
1862 * @entries: array of cell lookup entries
1863 * @nentries: number of cell lookup entries in the array
1864 */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1865 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1866 {
1867 int i;
1868
1869 mutex_lock(&nvmem_lookup_mutex);
1870 for (i = 0; i < nentries; i++)
1871 list_add_tail(&entries[i].node, &nvmem_lookup_list);
1872 mutex_unlock(&nvmem_lookup_mutex);
1873 }
1874 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1875
1876 /**
1877 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1878 * entries
1879 *
1880 * @entries: array of cell lookup entries
1881 * @nentries: number of cell lookup entries in the array
1882 */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1883 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1884 {
1885 int i;
1886
1887 mutex_lock(&nvmem_lookup_mutex);
1888 for (i = 0; i < nentries; i++)
1889 list_del(&entries[i].node);
1890 mutex_unlock(&nvmem_lookup_mutex);
1891 }
1892 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1893
1894 /**
1895 * nvmem_dev_name() - Get the name of a given nvmem device.
1896 *
1897 * @nvmem: nvmem device.
1898 *
1899 * Return: name of the nvmem device.
1900 */
nvmem_dev_name(struct nvmem_device * nvmem)1901 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1902 {
1903 return dev_name(&nvmem->dev);
1904 }
1905 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1906
nvmem_init(void)1907 static int __init nvmem_init(void)
1908 {
1909 return bus_register(&nvmem_bus_type);
1910 }
1911
nvmem_exit(void)1912 static void __exit nvmem_exit(void)
1913 {
1914 bus_unregister(&nvmem_bus_type);
1915 }
1916
1917 subsys_initcall(nvmem_init);
1918 module_exit(nvmem_exit);
1919
1920 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1921 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1922 MODULE_DESCRIPTION("nvmem Driver Core");
1923 MODULE_LICENSE("GPL v2");
1924