1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * nvmem framework core.
4  *
5  * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6  * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/export.h>
11 #include <linux/fs.h>
12 #include <linux/idr.h>
13 #include <linux/init.h>
14 #include <linux/kref.h>
15 #include <linux/module.h>
16 #include <linux/nvmem-consumer.h>
17 #include <linux/nvmem-provider.h>
18 #include <linux/gpio/consumer.h>
19 #include <linux/of.h>
20 #include <linux/slab.h>
21 
22 struct nvmem_device {
23 	struct module		*owner;
24 	struct device		dev;
25 	int			stride;
26 	int			word_size;
27 	int			id;
28 	struct kref		refcnt;
29 	size_t			size;
30 	bool			read_only;
31 	bool			root_only;
32 	int			flags;
33 	enum nvmem_type		type;
34 	struct bin_attribute	eeprom;
35 	struct device		*base_dev;
36 	struct list_head	cells;
37 	const struct nvmem_keepout *keepout;
38 	unsigned int		nkeepout;
39 	nvmem_reg_read_t	reg_read;
40 	nvmem_reg_write_t	reg_write;
41 	struct gpio_desc	*wp_gpio;
42 	void *priv;
43 };
44 
45 #define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
46 
47 #define FLAG_COMPAT		BIT(0)
48 
49 struct nvmem_cell {
50 	const char		*name;
51 	int			offset;
52 	int			bytes;
53 	int			bit_offset;
54 	int			nbits;
55 	struct device_node	*np;
56 	struct nvmem_device	*nvmem;
57 	struct list_head	node;
58 };
59 
60 static DEFINE_MUTEX(nvmem_mutex);
61 static DEFINE_IDA(nvmem_ida);
62 
63 static DEFINE_MUTEX(nvmem_cell_mutex);
64 static LIST_HEAD(nvmem_cell_tables);
65 
66 static DEFINE_MUTEX(nvmem_lookup_mutex);
67 static LIST_HEAD(nvmem_lookup_list);
68 
69 static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
70 
__nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)71 static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
72 			    void *val, size_t bytes)
73 {
74 	if (nvmem->reg_read)
75 		return nvmem->reg_read(nvmem->priv, offset, val, bytes);
76 
77 	return -EINVAL;
78 }
79 
__nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)80 static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
81 			     void *val, size_t bytes)
82 {
83 	int ret;
84 
85 	if (nvmem->reg_write) {
86 		gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
87 		ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
88 		gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
89 		return ret;
90 	}
91 
92 	return -EINVAL;
93 }
94 
nvmem_access_with_keepouts(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes,int write)95 static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
96 				      unsigned int offset, void *val,
97 				      size_t bytes, int write)
98 {
99 
100 	unsigned int end = offset + bytes;
101 	unsigned int kend, ksize;
102 	const struct nvmem_keepout *keepout = nvmem->keepout;
103 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
104 	int rc;
105 
106 	/*
107 	 * Skip all keepouts before the range being accessed.
108 	 * Keepouts are sorted.
109 	 */
110 	while ((keepout < keepoutend) && (keepout->end <= offset))
111 		keepout++;
112 
113 	while ((offset < end) && (keepout < keepoutend)) {
114 		/* Access the valid portion before the keepout. */
115 		if (offset < keepout->start) {
116 			kend = min(end, keepout->start);
117 			ksize = kend - offset;
118 			if (write)
119 				rc = __nvmem_reg_write(nvmem, offset, val, ksize);
120 			else
121 				rc = __nvmem_reg_read(nvmem, offset, val, ksize);
122 
123 			if (rc)
124 				return rc;
125 
126 			offset += ksize;
127 			val += ksize;
128 		}
129 
130 		/*
131 		 * Now we're aligned to the start of this keepout zone. Go
132 		 * through it.
133 		 */
134 		kend = min(end, keepout->end);
135 		ksize = kend - offset;
136 		if (!write)
137 			memset(val, keepout->value, ksize);
138 
139 		val += ksize;
140 		offset += ksize;
141 		keepout++;
142 	}
143 
144 	/*
145 	 * If we ran out of keepouts but there's still stuff to do, send it
146 	 * down directly
147 	 */
148 	if (offset < end) {
149 		ksize = end - offset;
150 		if (write)
151 			return __nvmem_reg_write(nvmem, offset, val, ksize);
152 		else
153 			return __nvmem_reg_read(nvmem, offset, val, ksize);
154 	}
155 
156 	return 0;
157 }
158 
nvmem_reg_read(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)159 static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
160 			  void *val, size_t bytes)
161 {
162 	if (!nvmem->nkeepout)
163 		return __nvmem_reg_read(nvmem, offset, val, bytes);
164 
165 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
166 }
167 
nvmem_reg_write(struct nvmem_device * nvmem,unsigned int offset,void * val,size_t bytes)168 static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
169 			   void *val, size_t bytes)
170 {
171 	if (!nvmem->nkeepout)
172 		return __nvmem_reg_write(nvmem, offset, val, bytes);
173 
174 	return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
175 }
176 
177 #ifdef CONFIG_NVMEM_SYSFS
178 static const char * const nvmem_type_str[] = {
179 	[NVMEM_TYPE_UNKNOWN] = "Unknown",
180 	[NVMEM_TYPE_EEPROM] = "EEPROM",
181 	[NVMEM_TYPE_OTP] = "OTP",
182 	[NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
183 	[NVMEM_TYPE_FRAM] = "FRAM",
184 };
185 
186 #ifdef CONFIG_DEBUG_LOCK_ALLOC
187 static struct lock_class_key eeprom_lock_key;
188 #endif
189 
type_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t type_show(struct device *dev,
191 			 struct device_attribute *attr, char *buf)
192 {
193 	struct nvmem_device *nvmem = to_nvmem_device(dev);
194 
195 	return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
196 }
197 
198 static DEVICE_ATTR_RO(type);
199 
200 static struct attribute *nvmem_attrs[] = {
201 	&dev_attr_type.attr,
202 	NULL,
203 };
204 
bin_attr_nvmem_read(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)205 static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
206 				   struct bin_attribute *attr, char *buf,
207 				   loff_t pos, size_t count)
208 {
209 	struct device *dev;
210 	struct nvmem_device *nvmem;
211 	int rc;
212 
213 	if (attr->private)
214 		dev = attr->private;
215 	else
216 		dev = kobj_to_dev(kobj);
217 	nvmem = to_nvmem_device(dev);
218 
219 	/* Stop the user from reading */
220 	if (pos >= nvmem->size)
221 		return 0;
222 
223 	if (!IS_ALIGNED(pos, nvmem->stride))
224 		return -EINVAL;
225 
226 	if (count < nvmem->word_size)
227 		return -EINVAL;
228 
229 	if (pos + count > nvmem->size)
230 		count = nvmem->size - pos;
231 
232 	count = round_down(count, nvmem->word_size);
233 
234 	if (!nvmem->reg_read)
235 		return -EPERM;
236 
237 	rc = nvmem_reg_read(nvmem, pos, buf, count);
238 
239 	if (rc)
240 		return rc;
241 
242 	return count;
243 }
244 
bin_attr_nvmem_write(struct file * filp,struct kobject * kobj,struct bin_attribute * attr,char * buf,loff_t pos,size_t count)245 static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
246 				    struct bin_attribute *attr, char *buf,
247 				    loff_t pos, size_t count)
248 {
249 	struct device *dev;
250 	struct nvmem_device *nvmem;
251 	int rc;
252 
253 	if (attr->private)
254 		dev = attr->private;
255 	else
256 		dev = kobj_to_dev(kobj);
257 	nvmem = to_nvmem_device(dev);
258 
259 	/* Stop the user from writing */
260 	if (pos >= nvmem->size)
261 		return -EFBIG;
262 
263 	if (!IS_ALIGNED(pos, nvmem->stride))
264 		return -EINVAL;
265 
266 	if (count < nvmem->word_size)
267 		return -EINVAL;
268 
269 	if (pos + count > nvmem->size)
270 		count = nvmem->size - pos;
271 
272 	count = round_down(count, nvmem->word_size);
273 
274 	if (!nvmem->reg_write)
275 		return -EPERM;
276 
277 	rc = nvmem_reg_write(nvmem, pos, buf, count);
278 
279 	if (rc)
280 		return rc;
281 
282 	return count;
283 }
284 
nvmem_bin_attr_get_umode(struct nvmem_device * nvmem)285 static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
286 {
287 	umode_t mode = 0400;
288 
289 	if (!nvmem->root_only)
290 		mode |= 0044;
291 
292 	if (!nvmem->read_only)
293 		mode |= 0200;
294 
295 	if (!nvmem->reg_write)
296 		mode &= ~0200;
297 
298 	if (!nvmem->reg_read)
299 		mode &= ~0444;
300 
301 	return mode;
302 }
303 
nvmem_bin_attr_is_visible(struct kobject * kobj,struct bin_attribute * attr,int i)304 static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
305 					 struct bin_attribute *attr, int i)
306 {
307 	struct device *dev = kobj_to_dev(kobj);
308 	struct nvmem_device *nvmem = to_nvmem_device(dev);
309 
310 	return nvmem_bin_attr_get_umode(nvmem);
311 }
312 
313 /* default read/write permissions */
314 static struct bin_attribute bin_attr_rw_nvmem = {
315 	.attr	= {
316 		.name	= "nvmem",
317 		.mode	= 0644,
318 	},
319 	.read	= bin_attr_nvmem_read,
320 	.write	= bin_attr_nvmem_write,
321 };
322 
323 static struct bin_attribute *nvmem_bin_attributes[] = {
324 	&bin_attr_rw_nvmem,
325 	NULL,
326 };
327 
328 static const struct attribute_group nvmem_bin_group = {
329 	.bin_attrs	= nvmem_bin_attributes,
330 	.attrs		= nvmem_attrs,
331 	.is_bin_visible = nvmem_bin_attr_is_visible,
332 };
333 
334 static const struct attribute_group *nvmem_dev_groups[] = {
335 	&nvmem_bin_group,
336 	NULL,
337 };
338 
339 static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
340 	.attr	= {
341 		.name	= "eeprom",
342 	},
343 	.read	= bin_attr_nvmem_read,
344 	.write	= bin_attr_nvmem_write,
345 };
346 
347 /*
348  * nvmem_setup_compat() - Create an additional binary entry in
349  * drivers sys directory, to be backwards compatible with the older
350  * drivers/misc/eeprom drivers.
351  */
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)352 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
353 				    const struct nvmem_config *config)
354 {
355 	int rval;
356 
357 	if (!config->compat)
358 		return 0;
359 
360 	if (!config->base_dev)
361 		return -EINVAL;
362 
363 	if (config->type == NVMEM_TYPE_FRAM)
364 		bin_attr_nvmem_eeprom_compat.attr.name = "fram";
365 
366 	nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
367 	nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
368 	nvmem->eeprom.size = nvmem->size;
369 #ifdef CONFIG_DEBUG_LOCK_ALLOC
370 	nvmem->eeprom.attr.key = &eeprom_lock_key;
371 #endif
372 	nvmem->eeprom.private = &nvmem->dev;
373 	nvmem->base_dev = config->base_dev;
374 
375 	rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
376 	if (rval) {
377 		dev_err(&nvmem->dev,
378 			"Failed to create eeprom binary file %d\n", rval);
379 		return rval;
380 	}
381 
382 	nvmem->flags |= FLAG_COMPAT;
383 
384 	return 0;
385 }
386 
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)387 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
388 			      const struct nvmem_config *config)
389 {
390 	if (config->compat)
391 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
392 }
393 
394 #else /* CONFIG_NVMEM_SYSFS */
395 
nvmem_sysfs_setup_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)396 static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
397 				    const struct nvmem_config *config)
398 {
399 	return -ENOSYS;
400 }
nvmem_sysfs_remove_compat(struct nvmem_device * nvmem,const struct nvmem_config * config)401 static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
402 				      const struct nvmem_config *config)
403 {
404 }
405 
406 #endif /* CONFIG_NVMEM_SYSFS */
407 
nvmem_release(struct device * dev)408 static void nvmem_release(struct device *dev)
409 {
410 	struct nvmem_device *nvmem = to_nvmem_device(dev);
411 
412 	ida_free(&nvmem_ida, nvmem->id);
413 	gpiod_put(nvmem->wp_gpio);
414 	kfree(nvmem);
415 }
416 
417 static const struct device_type nvmem_provider_type = {
418 	.release	= nvmem_release,
419 };
420 
421 static struct bus_type nvmem_bus_type = {
422 	.name		= "nvmem",
423 };
424 
nvmem_cell_drop(struct nvmem_cell * cell)425 static void nvmem_cell_drop(struct nvmem_cell *cell)
426 {
427 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
428 	mutex_lock(&nvmem_mutex);
429 	list_del(&cell->node);
430 	mutex_unlock(&nvmem_mutex);
431 	of_node_put(cell->np);
432 	kfree_const(cell->name);
433 	kfree(cell);
434 }
435 
nvmem_device_remove_all_cells(const struct nvmem_device * nvmem)436 static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
437 {
438 	struct nvmem_cell *cell, *p;
439 
440 	list_for_each_entry_safe(cell, p, &nvmem->cells, node)
441 		nvmem_cell_drop(cell);
442 }
443 
nvmem_cell_add(struct nvmem_cell * cell)444 static void nvmem_cell_add(struct nvmem_cell *cell)
445 {
446 	mutex_lock(&nvmem_mutex);
447 	list_add_tail(&cell->node, &cell->nvmem->cells);
448 	mutex_unlock(&nvmem_mutex);
449 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
450 }
451 
nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)452 static int nvmem_cell_info_to_nvmem_cell_nodup(struct nvmem_device *nvmem,
453 					const struct nvmem_cell_info *info,
454 					struct nvmem_cell *cell)
455 {
456 	cell->nvmem = nvmem;
457 	cell->offset = info->offset;
458 	cell->bytes = info->bytes;
459 	cell->name = info->name;
460 
461 	cell->bit_offset = info->bit_offset;
462 	cell->nbits = info->nbits;
463 
464 	if (cell->nbits)
465 		cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
466 					   BITS_PER_BYTE);
467 
468 	if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
469 		dev_err(&nvmem->dev,
470 			"cell %s unaligned to nvmem stride %d\n",
471 			cell->name ?: "<unknown>", nvmem->stride);
472 		return -EINVAL;
473 	}
474 
475 	return 0;
476 }
477 
nvmem_cell_info_to_nvmem_cell(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,struct nvmem_cell * cell)478 static int nvmem_cell_info_to_nvmem_cell(struct nvmem_device *nvmem,
479 				const struct nvmem_cell_info *info,
480 				struct nvmem_cell *cell)
481 {
482 	int err;
483 
484 	err = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, cell);
485 	if (err)
486 		return err;
487 
488 	cell->name = kstrdup_const(info->name, GFP_KERNEL);
489 	if (!cell->name)
490 		return -ENOMEM;
491 
492 	return 0;
493 }
494 
495 /**
496  * nvmem_add_cells() - Add cell information to an nvmem device
497  *
498  * @nvmem: nvmem device to add cells to.
499  * @info: nvmem cell info to add to the device
500  * @ncells: number of cells in info
501  *
502  * Return: 0 or negative error code on failure.
503  */
nvmem_add_cells(struct nvmem_device * nvmem,const struct nvmem_cell_info * info,int ncells)504 static int nvmem_add_cells(struct nvmem_device *nvmem,
505 		    const struct nvmem_cell_info *info,
506 		    int ncells)
507 {
508 	struct nvmem_cell **cells;
509 	int i, rval;
510 
511 	cells = kcalloc(ncells, sizeof(*cells), GFP_KERNEL);
512 	if (!cells)
513 		return -ENOMEM;
514 
515 	for (i = 0; i < ncells; i++) {
516 		cells[i] = kzalloc(sizeof(**cells), GFP_KERNEL);
517 		if (!cells[i]) {
518 			rval = -ENOMEM;
519 			goto err;
520 		}
521 
522 		rval = nvmem_cell_info_to_nvmem_cell(nvmem, &info[i], cells[i]);
523 		if (rval) {
524 			kfree(cells[i]);
525 			goto err;
526 		}
527 
528 		nvmem_cell_add(cells[i]);
529 	}
530 
531 	/* remove tmp array */
532 	kfree(cells);
533 
534 	return 0;
535 err:
536 	while (i--)
537 		nvmem_cell_drop(cells[i]);
538 
539 	kfree(cells);
540 
541 	return rval;
542 }
543 
544 /**
545  * nvmem_register_notifier() - Register a notifier block for nvmem events.
546  *
547  * @nb: notifier block to be called on nvmem events.
548  *
549  * Return: 0 on success, negative error number on failure.
550  */
nvmem_register_notifier(struct notifier_block * nb)551 int nvmem_register_notifier(struct notifier_block *nb)
552 {
553 	return blocking_notifier_chain_register(&nvmem_notifier, nb);
554 }
555 EXPORT_SYMBOL_GPL(nvmem_register_notifier);
556 
557 /**
558  * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
559  *
560  * @nb: notifier block to be unregistered.
561  *
562  * Return: 0 on success, negative error number on failure.
563  */
nvmem_unregister_notifier(struct notifier_block * nb)564 int nvmem_unregister_notifier(struct notifier_block *nb)
565 {
566 	return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
567 }
568 EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
569 
nvmem_add_cells_from_table(struct nvmem_device * nvmem)570 static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
571 {
572 	const struct nvmem_cell_info *info;
573 	struct nvmem_cell_table *table;
574 	struct nvmem_cell *cell;
575 	int rval = 0, i;
576 
577 	mutex_lock(&nvmem_cell_mutex);
578 	list_for_each_entry(table, &nvmem_cell_tables, node) {
579 		if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
580 			for (i = 0; i < table->ncells; i++) {
581 				info = &table->cells[i];
582 
583 				cell = kzalloc(sizeof(*cell), GFP_KERNEL);
584 				if (!cell) {
585 					rval = -ENOMEM;
586 					goto out;
587 				}
588 
589 				rval = nvmem_cell_info_to_nvmem_cell(nvmem,
590 								     info,
591 								     cell);
592 				if (rval) {
593 					kfree(cell);
594 					goto out;
595 				}
596 
597 				nvmem_cell_add(cell);
598 			}
599 		}
600 	}
601 
602 out:
603 	mutex_unlock(&nvmem_cell_mutex);
604 	return rval;
605 }
606 
607 static struct nvmem_cell *
nvmem_find_cell_by_name(struct nvmem_device * nvmem,const char * cell_id)608 nvmem_find_cell_by_name(struct nvmem_device *nvmem, const char *cell_id)
609 {
610 	struct nvmem_cell *iter, *cell = NULL;
611 
612 	mutex_lock(&nvmem_mutex);
613 	list_for_each_entry(iter, &nvmem->cells, node) {
614 		if (strcmp(cell_id, iter->name) == 0) {
615 			cell = iter;
616 			break;
617 		}
618 	}
619 	mutex_unlock(&nvmem_mutex);
620 
621 	return cell;
622 }
623 
nvmem_validate_keepouts(struct nvmem_device * nvmem)624 static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
625 {
626 	unsigned int cur = 0;
627 	const struct nvmem_keepout *keepout = nvmem->keepout;
628 	const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
629 
630 	while (keepout < keepoutend) {
631 		/* Ensure keepouts are sorted and don't overlap. */
632 		if (keepout->start < cur) {
633 			dev_err(&nvmem->dev,
634 				"Keepout regions aren't sorted or overlap.\n");
635 
636 			return -ERANGE;
637 		}
638 
639 		if (keepout->end < keepout->start) {
640 			dev_err(&nvmem->dev,
641 				"Invalid keepout region.\n");
642 
643 			return -EINVAL;
644 		}
645 
646 		/*
647 		 * Validate keepouts (and holes between) don't violate
648 		 * word_size constraints.
649 		 */
650 		if ((keepout->end - keepout->start < nvmem->word_size) ||
651 		    ((keepout->start != cur) &&
652 		     (keepout->start - cur < nvmem->word_size))) {
653 
654 			dev_err(&nvmem->dev,
655 				"Keepout regions violate word_size constraints.\n");
656 
657 			return -ERANGE;
658 		}
659 
660 		/* Validate keepouts don't violate stride (alignment). */
661 		if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
662 		    !IS_ALIGNED(keepout->end, nvmem->stride)) {
663 
664 			dev_err(&nvmem->dev,
665 				"Keepout regions violate stride.\n");
666 
667 			return -EINVAL;
668 		}
669 
670 		cur = keepout->end;
671 		keepout++;
672 	}
673 
674 	return 0;
675 }
676 
nvmem_add_cells_from_of(struct nvmem_device * nvmem)677 static int nvmem_add_cells_from_of(struct nvmem_device *nvmem)
678 {
679 	struct device_node *parent, *child;
680 	struct device *dev = &nvmem->dev;
681 	struct nvmem_cell *cell;
682 	const __be32 *addr;
683 	int len;
684 
685 	parent = dev->of_node;
686 
687 	for_each_child_of_node(parent, child) {
688 		addr = of_get_property(child, "reg", &len);
689 		if (!addr)
690 			continue;
691 		if (len < 2 * sizeof(u32)) {
692 			dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
693 			of_node_put(child);
694 			return -EINVAL;
695 		}
696 
697 		cell = kzalloc(sizeof(*cell), GFP_KERNEL);
698 		if (!cell) {
699 			of_node_put(child);
700 			return -ENOMEM;
701 		}
702 
703 		cell->nvmem = nvmem;
704 		cell->offset = be32_to_cpup(addr++);
705 		cell->bytes = be32_to_cpup(addr);
706 		cell->name = kasprintf(GFP_KERNEL, "%pOFn", child);
707 
708 		addr = of_get_property(child, "bits", &len);
709 		if (addr && len == (2 * sizeof(u32))) {
710 			cell->bit_offset = be32_to_cpup(addr++);
711 			cell->nbits = be32_to_cpup(addr);
712 		}
713 
714 		if (cell->nbits)
715 			cell->bytes = DIV_ROUND_UP(
716 					cell->nbits + cell->bit_offset,
717 					BITS_PER_BYTE);
718 
719 		if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
720 			dev_err(dev, "cell %s unaligned to nvmem stride %d\n",
721 				cell->name, nvmem->stride);
722 			/* Cells already added will be freed later. */
723 			kfree_const(cell->name);
724 			kfree(cell);
725 			of_node_put(child);
726 			return -EINVAL;
727 		}
728 
729 		cell->np = of_node_get(child);
730 		nvmem_cell_add(cell);
731 	}
732 
733 	return 0;
734 }
735 
736 /**
737  * nvmem_register() - Register a nvmem device for given nvmem_config.
738  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
739  *
740  * @config: nvmem device configuration with which nvmem device is created.
741  *
742  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
743  * on success.
744  */
745 
nvmem_register(const struct nvmem_config * config)746 struct nvmem_device *nvmem_register(const struct nvmem_config *config)
747 {
748 	struct nvmem_device *nvmem;
749 	int rval;
750 
751 	if (!config->dev)
752 		return ERR_PTR(-EINVAL);
753 
754 	if (!config->reg_read && !config->reg_write)
755 		return ERR_PTR(-EINVAL);
756 
757 	nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
758 	if (!nvmem)
759 		return ERR_PTR(-ENOMEM);
760 
761 	rval  = ida_alloc(&nvmem_ida, GFP_KERNEL);
762 	if (rval < 0) {
763 		kfree(nvmem);
764 		return ERR_PTR(rval);
765 	}
766 
767 	if (config->wp_gpio)
768 		nvmem->wp_gpio = config->wp_gpio;
769 	else
770 		nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
771 						    GPIOD_OUT_HIGH);
772 	if (IS_ERR(nvmem->wp_gpio)) {
773 		ida_free(&nvmem_ida, nvmem->id);
774 		rval = PTR_ERR(nvmem->wp_gpio);
775 		kfree(nvmem);
776 		return ERR_PTR(rval);
777 	}
778 
779 	kref_init(&nvmem->refcnt);
780 	INIT_LIST_HEAD(&nvmem->cells);
781 
782 	nvmem->id = rval;
783 	nvmem->owner = config->owner;
784 	if (!nvmem->owner && config->dev->driver)
785 		nvmem->owner = config->dev->driver->owner;
786 	nvmem->stride = config->stride ?: 1;
787 	nvmem->word_size = config->word_size ?: 1;
788 	nvmem->size = config->size;
789 	nvmem->dev.type = &nvmem_provider_type;
790 	nvmem->dev.bus = &nvmem_bus_type;
791 	nvmem->dev.parent = config->dev;
792 	nvmem->root_only = config->root_only;
793 	nvmem->priv = config->priv;
794 	nvmem->type = config->type;
795 	nvmem->reg_read = config->reg_read;
796 	nvmem->reg_write = config->reg_write;
797 	nvmem->keepout = config->keepout;
798 	nvmem->nkeepout = config->nkeepout;
799 	if (config->of_node)
800 		nvmem->dev.of_node = config->of_node;
801 	else if (!config->no_of_node)
802 		nvmem->dev.of_node = config->dev->of_node;
803 
804 	switch (config->id) {
805 	case NVMEM_DEVID_NONE:
806 		dev_set_name(&nvmem->dev, "%s", config->name);
807 		break;
808 	case NVMEM_DEVID_AUTO:
809 		dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
810 		break;
811 	default:
812 		dev_set_name(&nvmem->dev, "%s%d",
813 			     config->name ? : "nvmem",
814 			     config->name ? config->id : nvmem->id);
815 		break;
816 	}
817 
818 	nvmem->read_only = device_property_present(config->dev, "read-only") ||
819 			   config->read_only || !nvmem->reg_write;
820 
821 #ifdef CONFIG_NVMEM_SYSFS
822 	nvmem->dev.groups = nvmem_dev_groups;
823 #endif
824 
825 	if (nvmem->nkeepout) {
826 		rval = nvmem_validate_keepouts(nvmem);
827 		if (rval) {
828 			ida_free(&nvmem_ida, nvmem->id);
829 			kfree(nvmem);
830 			return ERR_PTR(rval);
831 		}
832 	}
833 
834 	dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
835 
836 	rval = device_register(&nvmem->dev);
837 	if (rval)
838 		goto err_put_device;
839 
840 	if (config->compat) {
841 		rval = nvmem_sysfs_setup_compat(nvmem, config);
842 		if (rval)
843 			goto err_device_del;
844 	}
845 
846 	if (config->cells) {
847 		rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
848 		if (rval)
849 			goto err_teardown_compat;
850 	}
851 
852 	rval = nvmem_add_cells_from_table(nvmem);
853 	if (rval)
854 		goto err_remove_cells;
855 
856 	rval = nvmem_add_cells_from_of(nvmem);
857 	if (rval)
858 		goto err_remove_cells;
859 
860 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
861 
862 	return nvmem;
863 
864 err_remove_cells:
865 	nvmem_device_remove_all_cells(nvmem);
866 err_teardown_compat:
867 	if (config->compat)
868 		nvmem_sysfs_remove_compat(nvmem, config);
869 err_device_del:
870 	device_del(&nvmem->dev);
871 err_put_device:
872 	put_device(&nvmem->dev);
873 
874 	return ERR_PTR(rval);
875 }
876 EXPORT_SYMBOL_GPL(nvmem_register);
877 
nvmem_device_release(struct kref * kref)878 static void nvmem_device_release(struct kref *kref)
879 {
880 	struct nvmem_device *nvmem;
881 
882 	nvmem = container_of(kref, struct nvmem_device, refcnt);
883 
884 	blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
885 
886 	if (nvmem->flags & FLAG_COMPAT)
887 		device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
888 
889 	nvmem_device_remove_all_cells(nvmem);
890 	device_unregister(&nvmem->dev);
891 }
892 
893 /**
894  * nvmem_unregister() - Unregister previously registered nvmem device
895  *
896  * @nvmem: Pointer to previously registered nvmem device.
897  */
nvmem_unregister(struct nvmem_device * nvmem)898 void nvmem_unregister(struct nvmem_device *nvmem)
899 {
900 	kref_put(&nvmem->refcnt, nvmem_device_release);
901 }
902 EXPORT_SYMBOL_GPL(nvmem_unregister);
903 
devm_nvmem_release(struct device * dev,void * res)904 static void devm_nvmem_release(struct device *dev, void *res)
905 {
906 	nvmem_unregister(*(struct nvmem_device **)res);
907 }
908 
909 /**
910  * devm_nvmem_register() - Register a managed nvmem device for given
911  * nvmem_config.
912  * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
913  *
914  * @dev: Device that uses the nvmem device.
915  * @config: nvmem device configuration with which nvmem device is created.
916  *
917  * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
918  * on success.
919  */
devm_nvmem_register(struct device * dev,const struct nvmem_config * config)920 struct nvmem_device *devm_nvmem_register(struct device *dev,
921 					 const struct nvmem_config *config)
922 {
923 	struct nvmem_device **ptr, *nvmem;
924 
925 	ptr = devres_alloc(devm_nvmem_release, sizeof(*ptr), GFP_KERNEL);
926 	if (!ptr)
927 		return ERR_PTR(-ENOMEM);
928 
929 	nvmem = nvmem_register(config);
930 
931 	if (!IS_ERR(nvmem)) {
932 		*ptr = nvmem;
933 		devres_add(dev, ptr);
934 	} else {
935 		devres_free(ptr);
936 	}
937 
938 	return nvmem;
939 }
940 EXPORT_SYMBOL_GPL(devm_nvmem_register);
941 
devm_nvmem_match(struct device * dev,void * res,void * data)942 static int devm_nvmem_match(struct device *dev, void *res, void *data)
943 {
944 	struct nvmem_device **r = res;
945 
946 	return *r == data;
947 }
948 
949 /**
950  * devm_nvmem_unregister() - Unregister previously registered managed nvmem
951  * device.
952  *
953  * @dev: Device that uses the nvmem device.
954  * @nvmem: Pointer to previously registered nvmem device.
955  *
956  * Return: Will be negative on error or zero on success.
957  */
devm_nvmem_unregister(struct device * dev,struct nvmem_device * nvmem)958 int devm_nvmem_unregister(struct device *dev, struct nvmem_device *nvmem)
959 {
960 	return devres_release(dev, devm_nvmem_release, devm_nvmem_match, nvmem);
961 }
962 EXPORT_SYMBOL(devm_nvmem_unregister);
963 
__nvmem_device_get(void * data,int (* match)(struct device * dev,const void * data))964 static struct nvmem_device *__nvmem_device_get(void *data,
965 			int (*match)(struct device *dev, const void *data))
966 {
967 	struct nvmem_device *nvmem = NULL;
968 	struct device *dev;
969 
970 	mutex_lock(&nvmem_mutex);
971 	dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
972 	if (dev)
973 		nvmem = to_nvmem_device(dev);
974 	mutex_unlock(&nvmem_mutex);
975 	if (!nvmem)
976 		return ERR_PTR(-EPROBE_DEFER);
977 
978 	if (!try_module_get(nvmem->owner)) {
979 		dev_err(&nvmem->dev,
980 			"could not increase module refcount for cell %s\n",
981 			nvmem_dev_name(nvmem));
982 
983 		put_device(&nvmem->dev);
984 		return ERR_PTR(-EINVAL);
985 	}
986 
987 	kref_get(&nvmem->refcnt);
988 
989 	return nvmem;
990 }
991 
__nvmem_device_put(struct nvmem_device * nvmem)992 static void __nvmem_device_put(struct nvmem_device *nvmem)
993 {
994 	put_device(&nvmem->dev);
995 	module_put(nvmem->owner);
996 	kref_put(&nvmem->refcnt, nvmem_device_release);
997 }
998 
999 #if IS_ENABLED(CONFIG_OF)
1000 /**
1001  * of_nvmem_device_get() - Get nvmem device from a given id
1002  *
1003  * @np: Device tree node that uses the nvmem device.
1004  * @id: nvmem name from nvmem-names property.
1005  *
1006  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1007  * on success.
1008  */
of_nvmem_device_get(struct device_node * np,const char * id)1009 struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1010 {
1011 
1012 	struct device_node *nvmem_np;
1013 	struct nvmem_device *nvmem;
1014 	int index = 0;
1015 
1016 	if (id)
1017 		index = of_property_match_string(np, "nvmem-names", id);
1018 
1019 	nvmem_np = of_parse_phandle(np, "nvmem", index);
1020 	if (!nvmem_np)
1021 		return ERR_PTR(-ENOENT);
1022 
1023 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1024 	of_node_put(nvmem_np);
1025 	return nvmem;
1026 }
1027 EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1028 #endif
1029 
1030 /**
1031  * nvmem_device_get() - Get nvmem device from a given id
1032  *
1033  * @dev: Device that uses the nvmem device.
1034  * @dev_name: name of the requested nvmem device.
1035  *
1036  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1037  * on success.
1038  */
nvmem_device_get(struct device * dev,const char * dev_name)1039 struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1040 {
1041 	if (dev->of_node) { /* try dt first */
1042 		struct nvmem_device *nvmem;
1043 
1044 		nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1045 
1046 		if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1047 			return nvmem;
1048 
1049 	}
1050 
1051 	return __nvmem_device_get((void *)dev_name, device_match_name);
1052 }
1053 EXPORT_SYMBOL_GPL(nvmem_device_get);
1054 
1055 /**
1056  * nvmem_device_find() - Find nvmem device with matching function
1057  *
1058  * @data: Data to pass to match function
1059  * @match: Callback function to check device
1060  *
1061  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1062  * on success.
1063  */
nvmem_device_find(void * data,int (* match)(struct device * dev,const void * data))1064 struct nvmem_device *nvmem_device_find(void *data,
1065 			int (*match)(struct device *dev, const void *data))
1066 {
1067 	return __nvmem_device_get(data, match);
1068 }
1069 EXPORT_SYMBOL_GPL(nvmem_device_find);
1070 
devm_nvmem_device_match(struct device * dev,void * res,void * data)1071 static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1072 {
1073 	struct nvmem_device **nvmem = res;
1074 
1075 	if (WARN_ON(!nvmem || !*nvmem))
1076 		return 0;
1077 
1078 	return *nvmem == data;
1079 }
1080 
devm_nvmem_device_release(struct device * dev,void * res)1081 static void devm_nvmem_device_release(struct device *dev, void *res)
1082 {
1083 	nvmem_device_put(*(struct nvmem_device **)res);
1084 }
1085 
1086 /**
1087  * devm_nvmem_device_put() - put alredy got nvmem device
1088  *
1089  * @dev: Device that uses the nvmem device.
1090  * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1091  * that needs to be released.
1092  */
devm_nvmem_device_put(struct device * dev,struct nvmem_device * nvmem)1093 void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1094 {
1095 	int ret;
1096 
1097 	ret = devres_release(dev, devm_nvmem_device_release,
1098 			     devm_nvmem_device_match, nvmem);
1099 
1100 	WARN_ON(ret);
1101 }
1102 EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1103 
1104 /**
1105  * nvmem_device_put() - put alredy got nvmem device
1106  *
1107  * @nvmem: pointer to nvmem device that needs to be released.
1108  */
nvmem_device_put(struct nvmem_device * nvmem)1109 void nvmem_device_put(struct nvmem_device *nvmem)
1110 {
1111 	__nvmem_device_put(nvmem);
1112 }
1113 EXPORT_SYMBOL_GPL(nvmem_device_put);
1114 
1115 /**
1116  * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1117  *
1118  * @dev: Device that requests the nvmem device.
1119  * @id: name id for the requested nvmem device.
1120  *
1121  * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1122  * on success.  The nvmem_cell will be freed by the automatically once the
1123  * device is freed.
1124  */
devm_nvmem_device_get(struct device * dev,const char * id)1125 struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1126 {
1127 	struct nvmem_device **ptr, *nvmem;
1128 
1129 	ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1130 	if (!ptr)
1131 		return ERR_PTR(-ENOMEM);
1132 
1133 	nvmem = nvmem_device_get(dev, id);
1134 	if (!IS_ERR(nvmem)) {
1135 		*ptr = nvmem;
1136 		devres_add(dev, ptr);
1137 	} else {
1138 		devres_free(ptr);
1139 	}
1140 
1141 	return nvmem;
1142 }
1143 EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1144 
1145 static struct nvmem_cell *
nvmem_cell_get_from_lookup(struct device * dev,const char * con_id)1146 nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1147 {
1148 	struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1149 	struct nvmem_cell_lookup *lookup;
1150 	struct nvmem_device *nvmem;
1151 	const char *dev_id;
1152 
1153 	if (!dev)
1154 		return ERR_PTR(-EINVAL);
1155 
1156 	dev_id = dev_name(dev);
1157 
1158 	mutex_lock(&nvmem_lookup_mutex);
1159 
1160 	list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1161 		if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1162 		    (strcmp(lookup->con_id, con_id) == 0)) {
1163 			/* This is the right entry. */
1164 			nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1165 						   device_match_name);
1166 			if (IS_ERR(nvmem)) {
1167 				/* Provider may not be registered yet. */
1168 				cell = ERR_CAST(nvmem);
1169 				break;
1170 			}
1171 
1172 			cell = nvmem_find_cell_by_name(nvmem,
1173 						       lookup->cell_name);
1174 			if (!cell) {
1175 				__nvmem_device_put(nvmem);
1176 				cell = ERR_PTR(-ENOENT);
1177 			}
1178 			break;
1179 		}
1180 	}
1181 
1182 	mutex_unlock(&nvmem_lookup_mutex);
1183 	return cell;
1184 }
1185 
1186 #if IS_ENABLED(CONFIG_OF)
1187 static struct nvmem_cell *
nvmem_find_cell_by_node(struct nvmem_device * nvmem,struct device_node * np)1188 nvmem_find_cell_by_node(struct nvmem_device *nvmem, struct device_node *np)
1189 {
1190 	struct nvmem_cell *iter, *cell = NULL;
1191 
1192 	mutex_lock(&nvmem_mutex);
1193 	list_for_each_entry(iter, &nvmem->cells, node) {
1194 		if (np == iter->np) {
1195 			cell = iter;
1196 			break;
1197 		}
1198 	}
1199 	mutex_unlock(&nvmem_mutex);
1200 
1201 	return cell;
1202 }
1203 
1204 /**
1205  * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1206  *
1207  * @np: Device tree node that uses the nvmem cell.
1208  * @id: nvmem cell name from nvmem-cell-names property, or NULL
1209  *      for the cell at index 0 (the lone cell with no accompanying
1210  *      nvmem-cell-names property).
1211  *
1212  * Return: Will be an ERR_PTR() on error or a valid pointer
1213  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1214  * nvmem_cell_put().
1215  */
of_nvmem_cell_get(struct device_node * np,const char * id)1216 struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1217 {
1218 	struct device_node *cell_np, *nvmem_np;
1219 	struct nvmem_device *nvmem;
1220 	struct nvmem_cell *cell;
1221 	int index = 0;
1222 
1223 	/* if cell name exists, find index to the name */
1224 	if (id)
1225 		index = of_property_match_string(np, "nvmem-cell-names", id);
1226 
1227 	cell_np = of_parse_phandle(np, "nvmem-cells", index);
1228 	if (!cell_np)
1229 		return ERR_PTR(-ENOENT);
1230 
1231 	nvmem_np = of_get_next_parent(cell_np);
1232 	if (!nvmem_np)
1233 		return ERR_PTR(-EINVAL);
1234 
1235 	nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1236 	of_node_put(nvmem_np);
1237 	if (IS_ERR(nvmem))
1238 		return ERR_CAST(nvmem);
1239 
1240 	cell = nvmem_find_cell_by_node(nvmem, cell_np);
1241 	if (!cell) {
1242 		__nvmem_device_put(nvmem);
1243 		return ERR_PTR(-ENOENT);
1244 	}
1245 
1246 	return cell;
1247 }
1248 EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1249 #endif
1250 
1251 /**
1252  * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1253  *
1254  * @dev: Device that requests the nvmem cell.
1255  * @id: nvmem cell name to get (this corresponds with the name from the
1256  *      nvmem-cell-names property for DT systems and with the con_id from
1257  *      the lookup entry for non-DT systems).
1258  *
1259  * Return: Will be an ERR_PTR() on error or a valid pointer
1260  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1261  * nvmem_cell_put().
1262  */
nvmem_cell_get(struct device * dev,const char * id)1263 struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1264 {
1265 	struct nvmem_cell *cell;
1266 
1267 	if (dev->of_node) { /* try dt first */
1268 		cell = of_nvmem_cell_get(dev->of_node, id);
1269 		if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1270 			return cell;
1271 	}
1272 
1273 	/* NULL cell id only allowed for device tree; invalid otherwise */
1274 	if (!id)
1275 		return ERR_PTR(-EINVAL);
1276 
1277 	return nvmem_cell_get_from_lookup(dev, id);
1278 }
1279 EXPORT_SYMBOL_GPL(nvmem_cell_get);
1280 
devm_nvmem_cell_release(struct device * dev,void * res)1281 static void devm_nvmem_cell_release(struct device *dev, void *res)
1282 {
1283 	nvmem_cell_put(*(struct nvmem_cell **)res);
1284 }
1285 
1286 /**
1287  * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1288  *
1289  * @dev: Device that requests the nvmem cell.
1290  * @id: nvmem cell name id to get.
1291  *
1292  * Return: Will be an ERR_PTR() on error or a valid pointer
1293  * to a struct nvmem_cell.  The nvmem_cell will be freed by the
1294  * automatically once the device is freed.
1295  */
devm_nvmem_cell_get(struct device * dev,const char * id)1296 struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1297 {
1298 	struct nvmem_cell **ptr, *cell;
1299 
1300 	ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1301 	if (!ptr)
1302 		return ERR_PTR(-ENOMEM);
1303 
1304 	cell = nvmem_cell_get(dev, id);
1305 	if (!IS_ERR(cell)) {
1306 		*ptr = cell;
1307 		devres_add(dev, ptr);
1308 	} else {
1309 		devres_free(ptr);
1310 	}
1311 
1312 	return cell;
1313 }
1314 EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1315 
devm_nvmem_cell_match(struct device * dev,void * res,void * data)1316 static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1317 {
1318 	struct nvmem_cell **c = res;
1319 
1320 	if (WARN_ON(!c || !*c))
1321 		return 0;
1322 
1323 	return *c == data;
1324 }
1325 
1326 /**
1327  * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1328  * from devm_nvmem_cell_get.
1329  *
1330  * @dev: Device that requests the nvmem cell.
1331  * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1332  */
devm_nvmem_cell_put(struct device * dev,struct nvmem_cell * cell)1333 void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1334 {
1335 	int ret;
1336 
1337 	ret = devres_release(dev, devm_nvmem_cell_release,
1338 				devm_nvmem_cell_match, cell);
1339 
1340 	WARN_ON(ret);
1341 }
1342 EXPORT_SYMBOL(devm_nvmem_cell_put);
1343 
1344 /**
1345  * nvmem_cell_put() - Release previously allocated nvmem cell.
1346  *
1347  * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1348  */
nvmem_cell_put(struct nvmem_cell * cell)1349 void nvmem_cell_put(struct nvmem_cell *cell)
1350 {
1351 	struct nvmem_device *nvmem = cell->nvmem;
1352 
1353 	__nvmem_device_put(nvmem);
1354 }
1355 EXPORT_SYMBOL_GPL(nvmem_cell_put);
1356 
nvmem_shift_read_buffer_in_place(struct nvmem_cell * cell,void * buf)1357 static void nvmem_shift_read_buffer_in_place(struct nvmem_cell *cell, void *buf)
1358 {
1359 	u8 *p, *b;
1360 	int i, extra, bit_offset = cell->bit_offset;
1361 
1362 	p = b = buf;
1363 	if (bit_offset) {
1364 		/* First shift */
1365 		*b++ >>= bit_offset;
1366 
1367 		/* setup rest of the bytes if any */
1368 		for (i = 1; i < cell->bytes; i++) {
1369 			/* Get bits from next byte and shift them towards msb */
1370 			*p |= *b << (BITS_PER_BYTE - bit_offset);
1371 
1372 			p = b;
1373 			*b++ >>= bit_offset;
1374 		}
1375 	} else {
1376 		/* point to the msb */
1377 		p += cell->bytes - 1;
1378 	}
1379 
1380 	/* result fits in less bytes */
1381 	extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1382 	while (--extra >= 0)
1383 		*p-- = 0;
1384 
1385 	/* clear msb bits if any leftover in the last byte */
1386 	if (cell->nbits % BITS_PER_BYTE)
1387 		*p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1388 }
1389 
__nvmem_cell_read(struct nvmem_device * nvmem,struct nvmem_cell * cell,void * buf,size_t * len)1390 static int __nvmem_cell_read(struct nvmem_device *nvmem,
1391 		      struct nvmem_cell *cell,
1392 		      void *buf, size_t *len)
1393 {
1394 	int rc;
1395 
1396 	rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->bytes);
1397 
1398 	if (rc)
1399 		return rc;
1400 
1401 	/* shift bits in-place */
1402 	if (cell->bit_offset || cell->nbits)
1403 		nvmem_shift_read_buffer_in_place(cell, buf);
1404 
1405 	if (len)
1406 		*len = cell->bytes;
1407 
1408 	return 0;
1409 }
1410 
1411 /**
1412  * nvmem_cell_read() - Read a given nvmem cell
1413  *
1414  * @cell: nvmem cell to be read.
1415  * @len: pointer to length of cell which will be populated on successful read;
1416  *	 can be NULL.
1417  *
1418  * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1419  * buffer should be freed by the consumer with a kfree().
1420  */
nvmem_cell_read(struct nvmem_cell * cell,size_t * len)1421 void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1422 {
1423 	struct nvmem_device *nvmem = cell->nvmem;
1424 	u8 *buf;
1425 	int rc;
1426 
1427 	if (!nvmem)
1428 		return ERR_PTR(-EINVAL);
1429 
1430 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1431 	if (!buf)
1432 		return ERR_PTR(-ENOMEM);
1433 
1434 	rc = __nvmem_cell_read(nvmem, cell, buf, len);
1435 	if (rc) {
1436 		kfree(buf);
1437 		return ERR_PTR(rc);
1438 	}
1439 
1440 	return buf;
1441 }
1442 EXPORT_SYMBOL_GPL(nvmem_cell_read);
1443 
nvmem_cell_prepare_write_buffer(struct nvmem_cell * cell,u8 * _buf,int len)1444 static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell *cell,
1445 					     u8 *_buf, int len)
1446 {
1447 	struct nvmem_device *nvmem = cell->nvmem;
1448 	int i, rc, nbits, bit_offset = cell->bit_offset;
1449 	u8 v, *p, *buf, *b, pbyte, pbits;
1450 
1451 	nbits = cell->nbits;
1452 	buf = kzalloc(cell->bytes, GFP_KERNEL);
1453 	if (!buf)
1454 		return ERR_PTR(-ENOMEM);
1455 
1456 	memcpy(buf, _buf, len);
1457 	p = b = buf;
1458 
1459 	if (bit_offset) {
1460 		pbyte = *b;
1461 		*b <<= bit_offset;
1462 
1463 		/* setup the first byte with lsb bits from nvmem */
1464 		rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1465 		if (rc)
1466 			goto err;
1467 		*b++ |= GENMASK(bit_offset - 1, 0) & v;
1468 
1469 		/* setup rest of the byte if any */
1470 		for (i = 1; i < cell->bytes; i++) {
1471 			/* Get last byte bits and shift them towards lsb */
1472 			pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1473 			pbyte = *b;
1474 			p = b;
1475 			*b <<= bit_offset;
1476 			*b++ |= pbits;
1477 		}
1478 	}
1479 
1480 	/* if it's not end on byte boundary */
1481 	if ((nbits + bit_offset) % BITS_PER_BYTE) {
1482 		/* setup the last byte with msb bits from nvmem */
1483 		rc = nvmem_reg_read(nvmem,
1484 				    cell->offset + cell->bytes - 1, &v, 1);
1485 		if (rc)
1486 			goto err;
1487 		*p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1488 
1489 	}
1490 
1491 	return buf;
1492 err:
1493 	kfree(buf);
1494 	return ERR_PTR(rc);
1495 }
1496 
1497 /**
1498  * nvmem_cell_write() - Write to a given nvmem cell
1499  *
1500  * @cell: nvmem cell to be written.
1501  * @buf: Buffer to be written.
1502  * @len: length of buffer to be written to nvmem cell.
1503  *
1504  * Return: length of bytes written or negative on failure.
1505  */
nvmem_cell_write(struct nvmem_cell * cell,void * buf,size_t len)1506 int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1507 {
1508 	struct nvmem_device *nvmem = cell->nvmem;
1509 	int rc;
1510 
1511 	if (!nvmem || nvmem->read_only ||
1512 	    (cell->bit_offset == 0 && len != cell->bytes))
1513 		return -EINVAL;
1514 
1515 	if (cell->bit_offset || cell->nbits) {
1516 		buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1517 		if (IS_ERR(buf))
1518 			return PTR_ERR(buf);
1519 	}
1520 
1521 	rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1522 
1523 	/* free the tmp buffer */
1524 	if (cell->bit_offset || cell->nbits)
1525 		kfree(buf);
1526 
1527 	if (rc)
1528 		return rc;
1529 
1530 	return len;
1531 }
1532 EXPORT_SYMBOL_GPL(nvmem_cell_write);
1533 
nvmem_cell_read_common(struct device * dev,const char * cell_id,void * val,size_t count)1534 static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1535 				  void *val, size_t count)
1536 {
1537 	struct nvmem_cell *cell;
1538 	void *buf;
1539 	size_t len;
1540 
1541 	cell = nvmem_cell_get(dev, cell_id);
1542 	if (IS_ERR(cell))
1543 		return PTR_ERR(cell);
1544 
1545 	buf = nvmem_cell_read(cell, &len);
1546 	if (IS_ERR(buf)) {
1547 		nvmem_cell_put(cell);
1548 		return PTR_ERR(buf);
1549 	}
1550 	if (len != count) {
1551 		kfree(buf);
1552 		nvmem_cell_put(cell);
1553 		return -EINVAL;
1554 	}
1555 	memcpy(val, buf, count);
1556 	kfree(buf);
1557 	nvmem_cell_put(cell);
1558 
1559 	return 0;
1560 }
1561 
1562 /**
1563  * nvmem_cell_read_u8() - Read a cell value as a u8
1564  *
1565  * @dev: Device that requests the nvmem cell.
1566  * @cell_id: Name of nvmem cell to read.
1567  * @val: pointer to output value.
1568  *
1569  * Return: 0 on success or negative errno.
1570  */
nvmem_cell_read_u8(struct device * dev,const char * cell_id,u8 * val)1571 int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1572 {
1573 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1574 }
1575 EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1576 
1577 /**
1578  * nvmem_cell_read_u16() - Read a cell value as a u16
1579  *
1580  * @dev: Device that requests the nvmem cell.
1581  * @cell_id: Name of nvmem cell to read.
1582  * @val: pointer to output value.
1583  *
1584  * Return: 0 on success or negative errno.
1585  */
nvmem_cell_read_u16(struct device * dev,const char * cell_id,u16 * val)1586 int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1587 {
1588 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1589 }
1590 EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1591 
1592 /**
1593  * nvmem_cell_read_u32() - Read a cell value as a u32
1594  *
1595  * @dev: Device that requests the nvmem cell.
1596  * @cell_id: Name of nvmem cell to read.
1597  * @val: pointer to output value.
1598  *
1599  * Return: 0 on success or negative errno.
1600  */
nvmem_cell_read_u32(struct device * dev,const char * cell_id,u32 * val)1601 int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1602 {
1603 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1604 }
1605 EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1606 
1607 /**
1608  * nvmem_cell_read_u64() - Read a cell value as a u64
1609  *
1610  * @dev: Device that requests the nvmem cell.
1611  * @cell_id: Name of nvmem cell to read.
1612  * @val: pointer to output value.
1613  *
1614  * Return: 0 on success or negative errno.
1615  */
nvmem_cell_read_u64(struct device * dev,const char * cell_id,u64 * val)1616 int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1617 {
1618 	return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1619 }
1620 EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1621 
nvmem_cell_read_variable_common(struct device * dev,const char * cell_id,size_t max_len,size_t * len)1622 static const void *nvmem_cell_read_variable_common(struct device *dev,
1623 						   const char *cell_id,
1624 						   size_t max_len, size_t *len)
1625 {
1626 	struct nvmem_cell *cell;
1627 	int nbits;
1628 	void *buf;
1629 
1630 	cell = nvmem_cell_get(dev, cell_id);
1631 	if (IS_ERR(cell))
1632 		return cell;
1633 
1634 	nbits = cell->nbits;
1635 	buf = nvmem_cell_read(cell, len);
1636 	nvmem_cell_put(cell);
1637 	if (IS_ERR(buf))
1638 		return buf;
1639 
1640 	/*
1641 	 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1642 	 * the length of the real data. Throw away the extra junk.
1643 	 */
1644 	if (nbits)
1645 		*len = DIV_ROUND_UP(nbits, 8);
1646 
1647 	if (*len > max_len) {
1648 		kfree(buf);
1649 		return ERR_PTR(-ERANGE);
1650 	}
1651 
1652 	return buf;
1653 }
1654 
1655 /**
1656  * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1657  *
1658  * @dev: Device that requests the nvmem cell.
1659  * @cell_id: Name of nvmem cell to read.
1660  * @val: pointer to output value.
1661  *
1662  * Return: 0 on success or negative errno.
1663  */
nvmem_cell_read_variable_le_u32(struct device * dev,const char * cell_id,u32 * val)1664 int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1665 				    u32 *val)
1666 {
1667 	size_t len;
1668 	const u8 *buf;
1669 	int i;
1670 
1671 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1672 	if (IS_ERR(buf))
1673 		return PTR_ERR(buf);
1674 
1675 	/* Copy w/ implicit endian conversion */
1676 	*val = 0;
1677 	for (i = 0; i < len; i++)
1678 		*val |= buf[i] << (8 * i);
1679 
1680 	kfree(buf);
1681 
1682 	return 0;
1683 }
1684 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1685 
1686 /**
1687  * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1688  *
1689  * @dev: Device that requests the nvmem cell.
1690  * @cell_id: Name of nvmem cell to read.
1691  * @val: pointer to output value.
1692  *
1693  * Return: 0 on success or negative errno.
1694  */
nvmem_cell_read_variable_le_u64(struct device * dev,const char * cell_id,u64 * val)1695 int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1696 				    u64 *val)
1697 {
1698 	size_t len;
1699 	const u8 *buf;
1700 	int i;
1701 
1702 	buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1703 	if (IS_ERR(buf))
1704 		return PTR_ERR(buf);
1705 
1706 	/* Copy w/ implicit endian conversion */
1707 	*val = 0;
1708 	for (i = 0; i < len; i++)
1709 		*val |= (uint64_t)buf[i] << (8 * i);
1710 
1711 	kfree(buf);
1712 
1713 	return 0;
1714 }
1715 EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1716 
1717 /**
1718  * nvmem_device_cell_read() - Read a given nvmem device and cell
1719  *
1720  * @nvmem: nvmem device to read from.
1721  * @info: nvmem cell info to be read.
1722  * @buf: buffer pointer which will be populated on successful read.
1723  *
1724  * Return: length of successful bytes read on success and negative
1725  * error code on error.
1726  */
nvmem_device_cell_read(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1727 ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1728 			   struct nvmem_cell_info *info, void *buf)
1729 {
1730 	struct nvmem_cell cell;
1731 	int rc;
1732 	ssize_t len;
1733 
1734 	if (!nvmem)
1735 		return -EINVAL;
1736 
1737 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1738 	if (rc)
1739 		return rc;
1740 
1741 	rc = __nvmem_cell_read(nvmem, &cell, buf, &len);
1742 	if (rc)
1743 		return rc;
1744 
1745 	return len;
1746 }
1747 EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1748 
1749 /**
1750  * nvmem_device_cell_write() - Write cell to a given nvmem device
1751  *
1752  * @nvmem: nvmem device to be written to.
1753  * @info: nvmem cell info to be written.
1754  * @buf: buffer to be written to cell.
1755  *
1756  * Return: length of bytes written or negative error code on failure.
1757  */
nvmem_device_cell_write(struct nvmem_device * nvmem,struct nvmem_cell_info * info,void * buf)1758 int nvmem_device_cell_write(struct nvmem_device *nvmem,
1759 			    struct nvmem_cell_info *info, void *buf)
1760 {
1761 	struct nvmem_cell cell;
1762 	int rc;
1763 
1764 	if (!nvmem)
1765 		return -EINVAL;
1766 
1767 	rc = nvmem_cell_info_to_nvmem_cell_nodup(nvmem, info, &cell);
1768 	if (rc)
1769 		return rc;
1770 
1771 	return nvmem_cell_write(&cell, buf, cell.bytes);
1772 }
1773 EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1774 
1775 /**
1776  * nvmem_device_read() - Read from a given nvmem device
1777  *
1778  * @nvmem: nvmem device to read from.
1779  * @offset: offset in nvmem device.
1780  * @bytes: number of bytes to read.
1781  * @buf: buffer pointer which will be populated on successful read.
1782  *
1783  * Return: length of successful bytes read on success and negative
1784  * error code on error.
1785  */
nvmem_device_read(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1786 int nvmem_device_read(struct nvmem_device *nvmem,
1787 		      unsigned int offset,
1788 		      size_t bytes, void *buf)
1789 {
1790 	int rc;
1791 
1792 	if (!nvmem)
1793 		return -EINVAL;
1794 
1795 	rc = nvmem_reg_read(nvmem, offset, buf, bytes);
1796 
1797 	if (rc)
1798 		return rc;
1799 
1800 	return bytes;
1801 }
1802 EXPORT_SYMBOL_GPL(nvmem_device_read);
1803 
1804 /**
1805  * nvmem_device_write() - Write cell to a given nvmem device
1806  *
1807  * @nvmem: nvmem device to be written to.
1808  * @offset: offset in nvmem device.
1809  * @bytes: number of bytes to write.
1810  * @buf: buffer to be written.
1811  *
1812  * Return: length of bytes written or negative error code on failure.
1813  */
nvmem_device_write(struct nvmem_device * nvmem,unsigned int offset,size_t bytes,void * buf)1814 int nvmem_device_write(struct nvmem_device *nvmem,
1815 		       unsigned int offset,
1816 		       size_t bytes, void *buf)
1817 {
1818 	int rc;
1819 
1820 	if (!nvmem)
1821 		return -EINVAL;
1822 
1823 	rc = nvmem_reg_write(nvmem, offset, buf, bytes);
1824 
1825 	if (rc)
1826 		return rc;
1827 
1828 
1829 	return bytes;
1830 }
1831 EXPORT_SYMBOL_GPL(nvmem_device_write);
1832 
1833 /**
1834  * nvmem_add_cell_table() - register a table of cell info entries
1835  *
1836  * @table: table of cell info entries
1837  */
nvmem_add_cell_table(struct nvmem_cell_table * table)1838 void nvmem_add_cell_table(struct nvmem_cell_table *table)
1839 {
1840 	mutex_lock(&nvmem_cell_mutex);
1841 	list_add_tail(&table->node, &nvmem_cell_tables);
1842 	mutex_unlock(&nvmem_cell_mutex);
1843 }
1844 EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
1845 
1846 /**
1847  * nvmem_del_cell_table() - remove a previously registered cell info table
1848  *
1849  * @table: table of cell info entries
1850  */
nvmem_del_cell_table(struct nvmem_cell_table * table)1851 void nvmem_del_cell_table(struct nvmem_cell_table *table)
1852 {
1853 	mutex_lock(&nvmem_cell_mutex);
1854 	list_del(&table->node);
1855 	mutex_unlock(&nvmem_cell_mutex);
1856 }
1857 EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
1858 
1859 /**
1860  * nvmem_add_cell_lookups() - register a list of cell lookup entries
1861  *
1862  * @entries: array of cell lookup entries
1863  * @nentries: number of cell lookup entries in the array
1864  */
nvmem_add_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1865 void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1866 {
1867 	int i;
1868 
1869 	mutex_lock(&nvmem_lookup_mutex);
1870 	for (i = 0; i < nentries; i++)
1871 		list_add_tail(&entries[i].node, &nvmem_lookup_list);
1872 	mutex_unlock(&nvmem_lookup_mutex);
1873 }
1874 EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
1875 
1876 /**
1877  * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
1878  *                            entries
1879  *
1880  * @entries: array of cell lookup entries
1881  * @nentries: number of cell lookup entries in the array
1882  */
nvmem_del_cell_lookups(struct nvmem_cell_lookup * entries,size_t nentries)1883 void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
1884 {
1885 	int i;
1886 
1887 	mutex_lock(&nvmem_lookup_mutex);
1888 	for (i = 0; i < nentries; i++)
1889 		list_del(&entries[i].node);
1890 	mutex_unlock(&nvmem_lookup_mutex);
1891 }
1892 EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
1893 
1894 /**
1895  * nvmem_dev_name() - Get the name of a given nvmem device.
1896  *
1897  * @nvmem: nvmem device.
1898  *
1899  * Return: name of the nvmem device.
1900  */
nvmem_dev_name(struct nvmem_device * nvmem)1901 const char *nvmem_dev_name(struct nvmem_device *nvmem)
1902 {
1903 	return dev_name(&nvmem->dev);
1904 }
1905 EXPORT_SYMBOL_GPL(nvmem_dev_name);
1906 
nvmem_init(void)1907 static int __init nvmem_init(void)
1908 {
1909 	return bus_register(&nvmem_bus_type);
1910 }
1911 
nvmem_exit(void)1912 static void __exit nvmem_exit(void)
1913 {
1914 	bus_unregister(&nvmem_bus_type);
1915 }
1916 
1917 subsys_initcall(nvmem_init);
1918 module_exit(nvmem_exit);
1919 
1920 MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
1921 MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
1922 MODULE_DESCRIPTION("nvmem Driver Core");
1923 MODULE_LICENSE("GPL v2");
1924