1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * NVMe over Fabrics TCP host.
4 * Copyright (c) 2018 Lightbits Labs. All rights reserved.
5 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 #include <linux/module.h>
8 #include <linux/init.h>
9 #include <linux/slab.h>
10 #include <linux/err.h>
11 #include <linux/nvme-tcp.h>
12 #include <net/sock.h>
13 #include <net/tcp.h>
14 #include <linux/blk-mq.h>
15 #include <crypto/hash.h>
16 #include <net/busy_poll.h>
17
18 #include "nvme.h"
19 #include "fabrics.h"
20
21 struct nvme_tcp_queue;
22
23 /* Define the socket priority to use for connections were it is desirable
24 * that the NIC consider performing optimized packet processing or filtering.
25 * A non-zero value being sufficient to indicate general consideration of any
26 * possible optimization. Making it a module param allows for alternative
27 * values that may be unique for some NIC implementations.
28 */
29 static int so_priority;
30 module_param(so_priority, int, 0644);
31 MODULE_PARM_DESC(so_priority, "nvme tcp socket optimize priority");
32
33 enum nvme_tcp_send_state {
34 NVME_TCP_SEND_CMD_PDU = 0,
35 NVME_TCP_SEND_H2C_PDU,
36 NVME_TCP_SEND_DATA,
37 NVME_TCP_SEND_DDGST,
38 };
39
40 struct nvme_tcp_request {
41 struct nvme_request req;
42 void *pdu;
43 struct nvme_tcp_queue *queue;
44 u32 data_len;
45 u32 pdu_len;
46 u32 pdu_sent;
47 u16 ttag;
48 __le16 status;
49 struct list_head entry;
50 struct llist_node lentry;
51 __le32 ddgst;
52
53 struct bio *curr_bio;
54 struct iov_iter iter;
55
56 /* send state */
57 size_t offset;
58 size_t data_sent;
59 enum nvme_tcp_send_state state;
60 };
61
62 enum nvme_tcp_queue_flags {
63 NVME_TCP_Q_ALLOCATED = 0,
64 NVME_TCP_Q_LIVE = 1,
65 NVME_TCP_Q_POLLING = 2,
66 };
67
68 enum nvme_tcp_recv_state {
69 NVME_TCP_RECV_PDU = 0,
70 NVME_TCP_RECV_DATA,
71 NVME_TCP_RECV_DDGST,
72 };
73
74 struct nvme_tcp_ctrl;
75 struct nvme_tcp_queue {
76 struct socket *sock;
77 struct work_struct io_work;
78 int io_cpu;
79
80 struct mutex queue_lock;
81 struct mutex send_mutex;
82 struct llist_head req_list;
83 struct list_head send_list;
84 bool more_requests;
85
86 /* recv state */
87 void *pdu;
88 int pdu_remaining;
89 int pdu_offset;
90 size_t data_remaining;
91 size_t ddgst_remaining;
92 unsigned int nr_cqe;
93
94 /* send state */
95 struct nvme_tcp_request *request;
96
97 int queue_size;
98 size_t cmnd_capsule_len;
99 struct nvme_tcp_ctrl *ctrl;
100 unsigned long flags;
101 bool rd_enabled;
102
103 bool hdr_digest;
104 bool data_digest;
105 struct ahash_request *rcv_hash;
106 struct ahash_request *snd_hash;
107 __le32 exp_ddgst;
108 __le32 recv_ddgst;
109
110 struct page_frag_cache pf_cache;
111
112 void (*state_change)(struct sock *);
113 void (*data_ready)(struct sock *);
114 void (*write_space)(struct sock *);
115 };
116
117 struct nvme_tcp_ctrl {
118 /* read only in the hot path */
119 struct nvme_tcp_queue *queues;
120 struct blk_mq_tag_set tag_set;
121
122 /* other member variables */
123 struct list_head list;
124 struct blk_mq_tag_set admin_tag_set;
125 struct sockaddr_storage addr;
126 struct sockaddr_storage src_addr;
127 struct nvme_ctrl ctrl;
128
129 struct work_struct err_work;
130 struct delayed_work connect_work;
131 struct nvme_tcp_request async_req;
132 u32 io_queues[HCTX_MAX_TYPES];
133 };
134
135 static LIST_HEAD(nvme_tcp_ctrl_list);
136 static DEFINE_MUTEX(nvme_tcp_ctrl_mutex);
137 static struct workqueue_struct *nvme_tcp_wq;
138 static const struct blk_mq_ops nvme_tcp_mq_ops;
139 static const struct blk_mq_ops nvme_tcp_admin_mq_ops;
140 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue);
141
to_tcp_ctrl(struct nvme_ctrl * ctrl)142 static inline struct nvme_tcp_ctrl *to_tcp_ctrl(struct nvme_ctrl *ctrl)
143 {
144 return container_of(ctrl, struct nvme_tcp_ctrl, ctrl);
145 }
146
nvme_tcp_queue_id(struct nvme_tcp_queue * queue)147 static inline int nvme_tcp_queue_id(struct nvme_tcp_queue *queue)
148 {
149 return queue - queue->ctrl->queues;
150 }
151
nvme_tcp_tagset(struct nvme_tcp_queue * queue)152 static inline struct blk_mq_tags *nvme_tcp_tagset(struct nvme_tcp_queue *queue)
153 {
154 u32 queue_idx = nvme_tcp_queue_id(queue);
155
156 if (queue_idx == 0)
157 return queue->ctrl->admin_tag_set.tags[queue_idx];
158 return queue->ctrl->tag_set.tags[queue_idx - 1];
159 }
160
nvme_tcp_hdgst_len(struct nvme_tcp_queue * queue)161 static inline u8 nvme_tcp_hdgst_len(struct nvme_tcp_queue *queue)
162 {
163 return queue->hdr_digest ? NVME_TCP_DIGEST_LENGTH : 0;
164 }
165
nvme_tcp_ddgst_len(struct nvme_tcp_queue * queue)166 static inline u8 nvme_tcp_ddgst_len(struct nvme_tcp_queue *queue)
167 {
168 return queue->data_digest ? NVME_TCP_DIGEST_LENGTH : 0;
169 }
170
nvme_tcp_inline_data_size(struct nvme_tcp_queue * queue)171 static inline size_t nvme_tcp_inline_data_size(struct nvme_tcp_queue *queue)
172 {
173 return queue->cmnd_capsule_len - sizeof(struct nvme_command);
174 }
175
nvme_tcp_async_req(struct nvme_tcp_request * req)176 static inline bool nvme_tcp_async_req(struct nvme_tcp_request *req)
177 {
178 return req == &req->queue->ctrl->async_req;
179 }
180
nvme_tcp_has_inline_data(struct nvme_tcp_request * req)181 static inline bool nvme_tcp_has_inline_data(struct nvme_tcp_request *req)
182 {
183 struct request *rq;
184
185 if (unlikely(nvme_tcp_async_req(req)))
186 return false; /* async events don't have a request */
187
188 rq = blk_mq_rq_from_pdu(req);
189
190 return rq_data_dir(rq) == WRITE && req->data_len &&
191 req->data_len <= nvme_tcp_inline_data_size(req->queue);
192 }
193
nvme_tcp_req_cur_page(struct nvme_tcp_request * req)194 static inline struct page *nvme_tcp_req_cur_page(struct nvme_tcp_request *req)
195 {
196 return req->iter.bvec->bv_page;
197 }
198
nvme_tcp_req_cur_offset(struct nvme_tcp_request * req)199 static inline size_t nvme_tcp_req_cur_offset(struct nvme_tcp_request *req)
200 {
201 return req->iter.bvec->bv_offset + req->iter.iov_offset;
202 }
203
nvme_tcp_req_cur_length(struct nvme_tcp_request * req)204 static inline size_t nvme_tcp_req_cur_length(struct nvme_tcp_request *req)
205 {
206 return min_t(size_t, iov_iter_single_seg_count(&req->iter),
207 req->pdu_len - req->pdu_sent);
208 }
209
nvme_tcp_pdu_data_left(struct nvme_tcp_request * req)210 static inline size_t nvme_tcp_pdu_data_left(struct nvme_tcp_request *req)
211 {
212 return rq_data_dir(blk_mq_rq_from_pdu(req)) == WRITE ?
213 req->pdu_len - req->pdu_sent : 0;
214 }
215
nvme_tcp_pdu_last_send(struct nvme_tcp_request * req,int len)216 static inline size_t nvme_tcp_pdu_last_send(struct nvme_tcp_request *req,
217 int len)
218 {
219 return nvme_tcp_pdu_data_left(req) <= len;
220 }
221
nvme_tcp_init_iter(struct nvme_tcp_request * req,unsigned int dir)222 static void nvme_tcp_init_iter(struct nvme_tcp_request *req,
223 unsigned int dir)
224 {
225 struct request *rq = blk_mq_rq_from_pdu(req);
226 struct bio_vec *vec;
227 unsigned int size;
228 int nr_bvec;
229 size_t offset;
230
231 if (rq->rq_flags & RQF_SPECIAL_PAYLOAD) {
232 vec = &rq->special_vec;
233 nr_bvec = 1;
234 size = blk_rq_payload_bytes(rq);
235 offset = 0;
236 } else {
237 struct bio *bio = req->curr_bio;
238 struct bvec_iter bi;
239 struct bio_vec bv;
240
241 vec = __bvec_iter_bvec(bio->bi_io_vec, bio->bi_iter);
242 nr_bvec = 0;
243 bio_for_each_bvec(bv, bio, bi) {
244 nr_bvec++;
245 }
246 size = bio->bi_iter.bi_size;
247 offset = bio->bi_iter.bi_bvec_done;
248 }
249
250 iov_iter_bvec(&req->iter, dir, vec, nr_bvec, size);
251 req->iter.iov_offset = offset;
252 }
253
nvme_tcp_advance_req(struct nvme_tcp_request * req,int len)254 static inline void nvme_tcp_advance_req(struct nvme_tcp_request *req,
255 int len)
256 {
257 req->data_sent += len;
258 req->pdu_sent += len;
259 iov_iter_advance(&req->iter, len);
260 if (!iov_iter_count(&req->iter) &&
261 req->data_sent < req->data_len) {
262 req->curr_bio = req->curr_bio->bi_next;
263 nvme_tcp_init_iter(req, WRITE);
264 }
265 }
266
nvme_tcp_send_all(struct nvme_tcp_queue * queue)267 static inline void nvme_tcp_send_all(struct nvme_tcp_queue *queue)
268 {
269 int ret;
270
271 /* drain the send queue as much as we can... */
272 do {
273 ret = nvme_tcp_try_send(queue);
274 } while (ret > 0);
275 }
276
nvme_tcp_queue_more(struct nvme_tcp_queue * queue)277 static inline bool nvme_tcp_queue_more(struct nvme_tcp_queue *queue)
278 {
279 return !list_empty(&queue->send_list) ||
280 !llist_empty(&queue->req_list) || queue->more_requests;
281 }
282
nvme_tcp_queue_request(struct nvme_tcp_request * req,bool sync,bool last)283 static inline void nvme_tcp_queue_request(struct nvme_tcp_request *req,
284 bool sync, bool last)
285 {
286 struct nvme_tcp_queue *queue = req->queue;
287 bool empty;
288
289 empty = llist_add(&req->lentry, &queue->req_list) &&
290 list_empty(&queue->send_list) && !queue->request;
291
292 /*
293 * if we're the first on the send_list and we can try to send
294 * directly, otherwise queue io_work. Also, only do that if we
295 * are on the same cpu, so we don't introduce contention.
296 */
297 if (queue->io_cpu == raw_smp_processor_id() &&
298 sync && empty && mutex_trylock(&queue->send_mutex)) {
299 queue->more_requests = !last;
300 nvme_tcp_send_all(queue);
301 queue->more_requests = false;
302 mutex_unlock(&queue->send_mutex);
303 }
304
305 if (last && nvme_tcp_queue_more(queue))
306 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
307 }
308
nvme_tcp_process_req_list(struct nvme_tcp_queue * queue)309 static void nvme_tcp_process_req_list(struct nvme_tcp_queue *queue)
310 {
311 struct nvme_tcp_request *req;
312 struct llist_node *node;
313
314 for (node = llist_del_all(&queue->req_list); node; node = node->next) {
315 req = llist_entry(node, struct nvme_tcp_request, lentry);
316 list_add(&req->entry, &queue->send_list);
317 }
318 }
319
320 static inline struct nvme_tcp_request *
nvme_tcp_fetch_request(struct nvme_tcp_queue * queue)321 nvme_tcp_fetch_request(struct nvme_tcp_queue *queue)
322 {
323 struct nvme_tcp_request *req;
324
325 req = list_first_entry_or_null(&queue->send_list,
326 struct nvme_tcp_request, entry);
327 if (!req) {
328 nvme_tcp_process_req_list(queue);
329 req = list_first_entry_or_null(&queue->send_list,
330 struct nvme_tcp_request, entry);
331 if (unlikely(!req))
332 return NULL;
333 }
334
335 list_del(&req->entry);
336 return req;
337 }
338
nvme_tcp_ddgst_final(struct ahash_request * hash,__le32 * dgst)339 static inline void nvme_tcp_ddgst_final(struct ahash_request *hash,
340 __le32 *dgst)
341 {
342 ahash_request_set_crypt(hash, NULL, (u8 *)dgst, 0);
343 crypto_ahash_final(hash);
344 }
345
nvme_tcp_ddgst_update(struct ahash_request * hash,struct page * page,off_t off,size_t len)346 static inline void nvme_tcp_ddgst_update(struct ahash_request *hash,
347 struct page *page, off_t off, size_t len)
348 {
349 struct scatterlist sg;
350
351 sg_init_marker(&sg, 1);
352 sg_set_page(&sg, page, len, off);
353 ahash_request_set_crypt(hash, &sg, NULL, len);
354 crypto_ahash_update(hash);
355 }
356
nvme_tcp_hdgst(struct ahash_request * hash,void * pdu,size_t len)357 static inline void nvme_tcp_hdgst(struct ahash_request *hash,
358 void *pdu, size_t len)
359 {
360 struct scatterlist sg;
361
362 sg_init_one(&sg, pdu, len);
363 ahash_request_set_crypt(hash, &sg, pdu + len, len);
364 crypto_ahash_digest(hash);
365 }
366
nvme_tcp_verify_hdgst(struct nvme_tcp_queue * queue,void * pdu,size_t pdu_len)367 static int nvme_tcp_verify_hdgst(struct nvme_tcp_queue *queue,
368 void *pdu, size_t pdu_len)
369 {
370 struct nvme_tcp_hdr *hdr = pdu;
371 __le32 recv_digest;
372 __le32 exp_digest;
373
374 if (unlikely(!(hdr->flags & NVME_TCP_F_HDGST))) {
375 dev_err(queue->ctrl->ctrl.device,
376 "queue %d: header digest flag is cleared\n",
377 nvme_tcp_queue_id(queue));
378 return -EPROTO;
379 }
380
381 recv_digest = *(__le32 *)(pdu + hdr->hlen);
382 nvme_tcp_hdgst(queue->rcv_hash, pdu, pdu_len);
383 exp_digest = *(__le32 *)(pdu + hdr->hlen);
384 if (recv_digest != exp_digest) {
385 dev_err(queue->ctrl->ctrl.device,
386 "header digest error: recv %#x expected %#x\n",
387 le32_to_cpu(recv_digest), le32_to_cpu(exp_digest));
388 return -EIO;
389 }
390
391 return 0;
392 }
393
nvme_tcp_check_ddgst(struct nvme_tcp_queue * queue,void * pdu)394 static int nvme_tcp_check_ddgst(struct nvme_tcp_queue *queue, void *pdu)
395 {
396 struct nvme_tcp_hdr *hdr = pdu;
397 u8 digest_len = nvme_tcp_hdgst_len(queue);
398 u32 len;
399
400 len = le32_to_cpu(hdr->plen) - hdr->hlen -
401 ((hdr->flags & NVME_TCP_F_HDGST) ? digest_len : 0);
402
403 if (unlikely(len && !(hdr->flags & NVME_TCP_F_DDGST))) {
404 dev_err(queue->ctrl->ctrl.device,
405 "queue %d: data digest flag is cleared\n",
406 nvme_tcp_queue_id(queue));
407 return -EPROTO;
408 }
409 crypto_ahash_init(queue->rcv_hash);
410
411 return 0;
412 }
413
nvme_tcp_exit_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx)414 static void nvme_tcp_exit_request(struct blk_mq_tag_set *set,
415 struct request *rq, unsigned int hctx_idx)
416 {
417 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
418
419 page_frag_free(req->pdu);
420 }
421
nvme_tcp_init_request(struct blk_mq_tag_set * set,struct request * rq,unsigned int hctx_idx,unsigned int numa_node)422 static int nvme_tcp_init_request(struct blk_mq_tag_set *set,
423 struct request *rq, unsigned int hctx_idx,
424 unsigned int numa_node)
425 {
426 struct nvme_tcp_ctrl *ctrl = set->driver_data;
427 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
428 struct nvme_tcp_cmd_pdu *pdu;
429 int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
430 struct nvme_tcp_queue *queue = &ctrl->queues[queue_idx];
431 u8 hdgst = nvme_tcp_hdgst_len(queue);
432
433 req->pdu = page_frag_alloc(&queue->pf_cache,
434 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
435 GFP_KERNEL | __GFP_ZERO);
436 if (!req->pdu)
437 return -ENOMEM;
438
439 pdu = req->pdu;
440 req->queue = queue;
441 nvme_req(rq)->ctrl = &ctrl->ctrl;
442 nvme_req(rq)->cmd = &pdu->cmd;
443
444 return 0;
445 }
446
nvme_tcp_init_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)447 static int nvme_tcp_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
448 unsigned int hctx_idx)
449 {
450 struct nvme_tcp_ctrl *ctrl = data;
451 struct nvme_tcp_queue *queue = &ctrl->queues[hctx_idx + 1];
452
453 hctx->driver_data = queue;
454 return 0;
455 }
456
nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx * hctx,void * data,unsigned int hctx_idx)457 static int nvme_tcp_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
458 unsigned int hctx_idx)
459 {
460 struct nvme_tcp_ctrl *ctrl = data;
461 struct nvme_tcp_queue *queue = &ctrl->queues[0];
462
463 hctx->driver_data = queue;
464 return 0;
465 }
466
467 static enum nvme_tcp_recv_state
nvme_tcp_recv_state(struct nvme_tcp_queue * queue)468 nvme_tcp_recv_state(struct nvme_tcp_queue *queue)
469 {
470 return (queue->pdu_remaining) ? NVME_TCP_RECV_PDU :
471 (queue->ddgst_remaining) ? NVME_TCP_RECV_DDGST :
472 NVME_TCP_RECV_DATA;
473 }
474
nvme_tcp_init_recv_ctx(struct nvme_tcp_queue * queue)475 static void nvme_tcp_init_recv_ctx(struct nvme_tcp_queue *queue)
476 {
477 queue->pdu_remaining = sizeof(struct nvme_tcp_rsp_pdu) +
478 nvme_tcp_hdgst_len(queue);
479 queue->pdu_offset = 0;
480 queue->data_remaining = -1;
481 queue->ddgst_remaining = 0;
482 }
483
nvme_tcp_error_recovery(struct nvme_ctrl * ctrl)484 static void nvme_tcp_error_recovery(struct nvme_ctrl *ctrl)
485 {
486 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
487 return;
488
489 dev_warn(ctrl->device, "starting error recovery\n");
490 queue_work(nvme_reset_wq, &to_tcp_ctrl(ctrl)->err_work);
491 }
492
nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue * queue,struct nvme_completion * cqe)493 static int nvme_tcp_process_nvme_cqe(struct nvme_tcp_queue *queue,
494 struct nvme_completion *cqe)
495 {
496 struct nvme_tcp_request *req;
497 struct request *rq;
498
499 rq = nvme_find_rq(nvme_tcp_tagset(queue), cqe->command_id);
500 if (!rq) {
501 dev_err(queue->ctrl->ctrl.device,
502 "got bad cqe.command_id %#x on queue %d\n",
503 cqe->command_id, nvme_tcp_queue_id(queue));
504 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
505 return -EINVAL;
506 }
507
508 req = blk_mq_rq_to_pdu(rq);
509 if (req->status == cpu_to_le16(NVME_SC_SUCCESS))
510 req->status = cqe->status;
511
512 if (!nvme_try_complete_req(rq, req->status, cqe->result))
513 nvme_complete_rq(rq);
514 queue->nr_cqe++;
515
516 return 0;
517 }
518
nvme_tcp_handle_c2h_data(struct nvme_tcp_queue * queue,struct nvme_tcp_data_pdu * pdu)519 static int nvme_tcp_handle_c2h_data(struct nvme_tcp_queue *queue,
520 struct nvme_tcp_data_pdu *pdu)
521 {
522 struct request *rq;
523
524 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
525 if (!rq) {
526 dev_err(queue->ctrl->ctrl.device,
527 "got bad c2hdata.command_id %#x on queue %d\n",
528 pdu->command_id, nvme_tcp_queue_id(queue));
529 return -ENOENT;
530 }
531
532 if (!blk_rq_payload_bytes(rq)) {
533 dev_err(queue->ctrl->ctrl.device,
534 "queue %d tag %#x unexpected data\n",
535 nvme_tcp_queue_id(queue), rq->tag);
536 return -EIO;
537 }
538
539 queue->data_remaining = le32_to_cpu(pdu->data_length);
540
541 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS &&
542 unlikely(!(pdu->hdr.flags & NVME_TCP_F_DATA_LAST))) {
543 dev_err(queue->ctrl->ctrl.device,
544 "queue %d tag %#x SUCCESS set but not last PDU\n",
545 nvme_tcp_queue_id(queue), rq->tag);
546 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
547 return -EPROTO;
548 }
549
550 return 0;
551 }
552
nvme_tcp_handle_comp(struct nvme_tcp_queue * queue,struct nvme_tcp_rsp_pdu * pdu)553 static int nvme_tcp_handle_comp(struct nvme_tcp_queue *queue,
554 struct nvme_tcp_rsp_pdu *pdu)
555 {
556 struct nvme_completion *cqe = &pdu->cqe;
557 int ret = 0;
558
559 /*
560 * AEN requests are special as they don't time out and can
561 * survive any kind of queue freeze and often don't respond to
562 * aborts. We don't even bother to allocate a struct request
563 * for them but rather special case them here.
564 */
565 if (unlikely(nvme_is_aen_req(nvme_tcp_queue_id(queue),
566 cqe->command_id)))
567 nvme_complete_async_event(&queue->ctrl->ctrl, cqe->status,
568 &cqe->result);
569 else
570 ret = nvme_tcp_process_nvme_cqe(queue, cqe);
571
572 return ret;
573 }
574
nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request * req,struct nvme_tcp_r2t_pdu * pdu)575 static int nvme_tcp_setup_h2c_data_pdu(struct nvme_tcp_request *req,
576 struct nvme_tcp_r2t_pdu *pdu)
577 {
578 struct nvme_tcp_data_pdu *data = req->pdu;
579 struct nvme_tcp_queue *queue = req->queue;
580 struct request *rq = blk_mq_rq_from_pdu(req);
581 u8 hdgst = nvme_tcp_hdgst_len(queue);
582 u8 ddgst = nvme_tcp_ddgst_len(queue);
583
584 req->pdu_len = le32_to_cpu(pdu->r2t_length);
585 req->pdu_sent = 0;
586
587 if (unlikely(!req->pdu_len)) {
588 dev_err(queue->ctrl->ctrl.device,
589 "req %d r2t len is %u, probably a bug...\n",
590 rq->tag, req->pdu_len);
591 return -EPROTO;
592 }
593
594 if (unlikely(req->data_sent + req->pdu_len > req->data_len)) {
595 dev_err(queue->ctrl->ctrl.device,
596 "req %d r2t len %u exceeded data len %u (%zu sent)\n",
597 rq->tag, req->pdu_len, req->data_len,
598 req->data_sent);
599 return -EPROTO;
600 }
601
602 if (unlikely(le32_to_cpu(pdu->r2t_offset) < req->data_sent)) {
603 dev_err(queue->ctrl->ctrl.device,
604 "req %d unexpected r2t offset %u (expected %zu)\n",
605 rq->tag, le32_to_cpu(pdu->r2t_offset),
606 req->data_sent);
607 return -EPROTO;
608 }
609
610 memset(data, 0, sizeof(*data));
611 data->hdr.type = nvme_tcp_h2c_data;
612 data->hdr.flags = NVME_TCP_F_DATA_LAST;
613 if (queue->hdr_digest)
614 data->hdr.flags |= NVME_TCP_F_HDGST;
615 if (queue->data_digest)
616 data->hdr.flags |= NVME_TCP_F_DDGST;
617 data->hdr.hlen = sizeof(*data);
618 data->hdr.pdo = data->hdr.hlen + hdgst;
619 data->hdr.plen =
620 cpu_to_le32(data->hdr.hlen + hdgst + req->pdu_len + ddgst);
621 data->ttag = pdu->ttag;
622 data->command_id = nvme_cid(rq);
623 data->data_offset = pdu->r2t_offset;
624 data->data_length = cpu_to_le32(req->pdu_len);
625 return 0;
626 }
627
nvme_tcp_handle_r2t(struct nvme_tcp_queue * queue,struct nvme_tcp_r2t_pdu * pdu)628 static int nvme_tcp_handle_r2t(struct nvme_tcp_queue *queue,
629 struct nvme_tcp_r2t_pdu *pdu)
630 {
631 struct nvme_tcp_request *req;
632 struct request *rq;
633 int ret;
634
635 rq = nvme_find_rq(nvme_tcp_tagset(queue), pdu->command_id);
636 if (!rq) {
637 dev_err(queue->ctrl->ctrl.device,
638 "got bad r2t.command_id %#x on queue %d\n",
639 pdu->command_id, nvme_tcp_queue_id(queue));
640 return -ENOENT;
641 }
642 req = blk_mq_rq_to_pdu(rq);
643
644 ret = nvme_tcp_setup_h2c_data_pdu(req, pdu);
645 if (unlikely(ret))
646 return ret;
647
648 req->state = NVME_TCP_SEND_H2C_PDU;
649 req->offset = 0;
650
651 nvme_tcp_queue_request(req, false, true);
652
653 return 0;
654 }
655
nvme_tcp_recv_pdu(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)656 static int nvme_tcp_recv_pdu(struct nvme_tcp_queue *queue, struct sk_buff *skb,
657 unsigned int *offset, size_t *len)
658 {
659 struct nvme_tcp_hdr *hdr;
660 char *pdu = queue->pdu;
661 size_t rcv_len = min_t(size_t, *len, queue->pdu_remaining);
662 int ret;
663
664 ret = skb_copy_bits(skb, *offset,
665 &pdu[queue->pdu_offset], rcv_len);
666 if (unlikely(ret))
667 return ret;
668
669 queue->pdu_remaining -= rcv_len;
670 queue->pdu_offset += rcv_len;
671 *offset += rcv_len;
672 *len -= rcv_len;
673 if (queue->pdu_remaining)
674 return 0;
675
676 hdr = queue->pdu;
677 if (queue->hdr_digest) {
678 ret = nvme_tcp_verify_hdgst(queue, queue->pdu, hdr->hlen);
679 if (unlikely(ret))
680 return ret;
681 }
682
683
684 if (queue->data_digest) {
685 ret = nvme_tcp_check_ddgst(queue, queue->pdu);
686 if (unlikely(ret))
687 return ret;
688 }
689
690 switch (hdr->type) {
691 case nvme_tcp_c2h_data:
692 return nvme_tcp_handle_c2h_data(queue, (void *)queue->pdu);
693 case nvme_tcp_rsp:
694 nvme_tcp_init_recv_ctx(queue);
695 return nvme_tcp_handle_comp(queue, (void *)queue->pdu);
696 case nvme_tcp_r2t:
697 nvme_tcp_init_recv_ctx(queue);
698 return nvme_tcp_handle_r2t(queue, (void *)queue->pdu);
699 default:
700 dev_err(queue->ctrl->ctrl.device,
701 "unsupported pdu type (%d)\n", hdr->type);
702 return -EINVAL;
703 }
704 }
705
nvme_tcp_end_request(struct request * rq,u16 status)706 static inline void nvme_tcp_end_request(struct request *rq, u16 status)
707 {
708 union nvme_result res = {};
709
710 if (!nvme_try_complete_req(rq, cpu_to_le16(status << 1), res))
711 nvme_complete_rq(rq);
712 }
713
nvme_tcp_recv_data(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)714 static int nvme_tcp_recv_data(struct nvme_tcp_queue *queue, struct sk_buff *skb,
715 unsigned int *offset, size_t *len)
716 {
717 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
718 struct request *rq =
719 nvme_cid_to_rq(nvme_tcp_tagset(queue), pdu->command_id);
720 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
721
722 while (true) {
723 int recv_len, ret;
724
725 recv_len = min_t(size_t, *len, queue->data_remaining);
726 if (!recv_len)
727 break;
728
729 if (!iov_iter_count(&req->iter)) {
730 req->curr_bio = req->curr_bio->bi_next;
731
732 /*
733 * If we don`t have any bios it means that controller
734 * sent more data than we requested, hence error
735 */
736 if (!req->curr_bio) {
737 dev_err(queue->ctrl->ctrl.device,
738 "queue %d no space in request %#x",
739 nvme_tcp_queue_id(queue), rq->tag);
740 nvme_tcp_init_recv_ctx(queue);
741 return -EIO;
742 }
743 nvme_tcp_init_iter(req, READ);
744 }
745
746 /* we can read only from what is left in this bio */
747 recv_len = min_t(size_t, recv_len,
748 iov_iter_count(&req->iter));
749
750 if (queue->data_digest)
751 ret = skb_copy_and_hash_datagram_iter(skb, *offset,
752 &req->iter, recv_len, queue->rcv_hash);
753 else
754 ret = skb_copy_datagram_iter(skb, *offset,
755 &req->iter, recv_len);
756 if (ret) {
757 dev_err(queue->ctrl->ctrl.device,
758 "queue %d failed to copy request %#x data",
759 nvme_tcp_queue_id(queue), rq->tag);
760 return ret;
761 }
762
763 *len -= recv_len;
764 *offset += recv_len;
765 queue->data_remaining -= recv_len;
766 }
767
768 if (!queue->data_remaining) {
769 if (queue->data_digest) {
770 nvme_tcp_ddgst_final(queue->rcv_hash, &queue->exp_ddgst);
771 queue->ddgst_remaining = NVME_TCP_DIGEST_LENGTH;
772 } else {
773 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
774 nvme_tcp_end_request(rq,
775 le16_to_cpu(req->status));
776 queue->nr_cqe++;
777 }
778 nvme_tcp_init_recv_ctx(queue);
779 }
780 }
781
782 return 0;
783 }
784
nvme_tcp_recv_ddgst(struct nvme_tcp_queue * queue,struct sk_buff * skb,unsigned int * offset,size_t * len)785 static int nvme_tcp_recv_ddgst(struct nvme_tcp_queue *queue,
786 struct sk_buff *skb, unsigned int *offset, size_t *len)
787 {
788 struct nvme_tcp_data_pdu *pdu = (void *)queue->pdu;
789 char *ddgst = (char *)&queue->recv_ddgst;
790 size_t recv_len = min_t(size_t, *len, queue->ddgst_remaining);
791 off_t off = NVME_TCP_DIGEST_LENGTH - queue->ddgst_remaining;
792 int ret;
793
794 ret = skb_copy_bits(skb, *offset, &ddgst[off], recv_len);
795 if (unlikely(ret))
796 return ret;
797
798 queue->ddgst_remaining -= recv_len;
799 *offset += recv_len;
800 *len -= recv_len;
801 if (queue->ddgst_remaining)
802 return 0;
803
804 if (queue->recv_ddgst != queue->exp_ddgst) {
805 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
806 pdu->command_id);
807 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
808
809 req->status = cpu_to_le16(NVME_SC_DATA_XFER_ERROR);
810
811 dev_err(queue->ctrl->ctrl.device,
812 "data digest error: recv %#x expected %#x\n",
813 le32_to_cpu(queue->recv_ddgst),
814 le32_to_cpu(queue->exp_ddgst));
815 }
816
817 if (pdu->hdr.flags & NVME_TCP_F_DATA_SUCCESS) {
818 struct request *rq = nvme_cid_to_rq(nvme_tcp_tagset(queue),
819 pdu->command_id);
820 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
821
822 nvme_tcp_end_request(rq, le16_to_cpu(req->status));
823 queue->nr_cqe++;
824 }
825
826 nvme_tcp_init_recv_ctx(queue);
827 return 0;
828 }
829
nvme_tcp_recv_skb(read_descriptor_t * desc,struct sk_buff * skb,unsigned int offset,size_t len)830 static int nvme_tcp_recv_skb(read_descriptor_t *desc, struct sk_buff *skb,
831 unsigned int offset, size_t len)
832 {
833 struct nvme_tcp_queue *queue = desc->arg.data;
834 size_t consumed = len;
835 int result;
836
837 while (len) {
838 switch (nvme_tcp_recv_state(queue)) {
839 case NVME_TCP_RECV_PDU:
840 result = nvme_tcp_recv_pdu(queue, skb, &offset, &len);
841 break;
842 case NVME_TCP_RECV_DATA:
843 result = nvme_tcp_recv_data(queue, skb, &offset, &len);
844 break;
845 case NVME_TCP_RECV_DDGST:
846 result = nvme_tcp_recv_ddgst(queue, skb, &offset, &len);
847 break;
848 default:
849 result = -EFAULT;
850 }
851 if (result) {
852 dev_err(queue->ctrl->ctrl.device,
853 "receive failed: %d\n", result);
854 queue->rd_enabled = false;
855 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
856 return result;
857 }
858 }
859
860 return consumed;
861 }
862
nvme_tcp_data_ready(struct sock * sk)863 static void nvme_tcp_data_ready(struct sock *sk)
864 {
865 struct nvme_tcp_queue *queue;
866
867 read_lock_bh(&sk->sk_callback_lock);
868 queue = sk->sk_user_data;
869 if (likely(queue && queue->rd_enabled) &&
870 !test_bit(NVME_TCP_Q_POLLING, &queue->flags))
871 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
872 read_unlock_bh(&sk->sk_callback_lock);
873 }
874
nvme_tcp_write_space(struct sock * sk)875 static void nvme_tcp_write_space(struct sock *sk)
876 {
877 struct nvme_tcp_queue *queue;
878
879 read_lock_bh(&sk->sk_callback_lock);
880 queue = sk->sk_user_data;
881 if (likely(queue && sk_stream_is_writeable(sk))) {
882 clear_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
883 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
884 }
885 read_unlock_bh(&sk->sk_callback_lock);
886 }
887
nvme_tcp_state_change(struct sock * sk)888 static void nvme_tcp_state_change(struct sock *sk)
889 {
890 struct nvme_tcp_queue *queue;
891
892 read_lock_bh(&sk->sk_callback_lock);
893 queue = sk->sk_user_data;
894 if (!queue)
895 goto done;
896
897 switch (sk->sk_state) {
898 case TCP_CLOSE:
899 case TCP_CLOSE_WAIT:
900 case TCP_LAST_ACK:
901 case TCP_FIN_WAIT1:
902 case TCP_FIN_WAIT2:
903 nvme_tcp_error_recovery(&queue->ctrl->ctrl);
904 break;
905 default:
906 dev_info(queue->ctrl->ctrl.device,
907 "queue %d socket state %d\n",
908 nvme_tcp_queue_id(queue), sk->sk_state);
909 }
910
911 queue->state_change(sk);
912 done:
913 read_unlock_bh(&sk->sk_callback_lock);
914 }
915
nvme_tcp_done_send_req(struct nvme_tcp_queue * queue)916 static inline void nvme_tcp_done_send_req(struct nvme_tcp_queue *queue)
917 {
918 queue->request = NULL;
919 }
920
nvme_tcp_fail_request(struct nvme_tcp_request * req)921 static void nvme_tcp_fail_request(struct nvme_tcp_request *req)
922 {
923 nvme_tcp_end_request(blk_mq_rq_from_pdu(req), NVME_SC_HOST_PATH_ERROR);
924 }
925
nvme_tcp_try_send_data(struct nvme_tcp_request * req)926 static int nvme_tcp_try_send_data(struct nvme_tcp_request *req)
927 {
928 struct nvme_tcp_queue *queue = req->queue;
929 int req_data_len = req->data_len;
930
931 while (true) {
932 struct page *page = nvme_tcp_req_cur_page(req);
933 size_t offset = nvme_tcp_req_cur_offset(req);
934 size_t len = nvme_tcp_req_cur_length(req);
935 bool last = nvme_tcp_pdu_last_send(req, len);
936 int req_data_sent = req->data_sent;
937 int ret, flags = MSG_DONTWAIT;
938
939 if (last && !queue->data_digest && !nvme_tcp_queue_more(queue))
940 flags |= MSG_EOR;
941 else
942 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
943
944 if (sendpage_ok(page)) {
945 ret = kernel_sendpage(queue->sock, page, offset, len,
946 flags);
947 } else {
948 ret = sock_no_sendpage(queue->sock, page, offset, len,
949 flags);
950 }
951 if (ret <= 0)
952 return ret;
953
954 if (queue->data_digest)
955 nvme_tcp_ddgst_update(queue->snd_hash, page,
956 offset, ret);
957
958 /*
959 * update the request iterator except for the last payload send
960 * in the request where we don't want to modify it as we may
961 * compete with the RX path completing the request.
962 */
963 if (req_data_sent + ret < req_data_len)
964 nvme_tcp_advance_req(req, ret);
965
966 /* fully successful last send in current PDU */
967 if (last && ret == len) {
968 if (queue->data_digest) {
969 nvme_tcp_ddgst_final(queue->snd_hash,
970 &req->ddgst);
971 req->state = NVME_TCP_SEND_DDGST;
972 req->offset = 0;
973 } else {
974 nvme_tcp_done_send_req(queue);
975 }
976 return 1;
977 }
978 }
979 return -EAGAIN;
980 }
981
nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request * req)982 static int nvme_tcp_try_send_cmd_pdu(struct nvme_tcp_request *req)
983 {
984 struct nvme_tcp_queue *queue = req->queue;
985 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
986 bool inline_data = nvme_tcp_has_inline_data(req);
987 u8 hdgst = nvme_tcp_hdgst_len(queue);
988 int len = sizeof(*pdu) + hdgst - req->offset;
989 int flags = MSG_DONTWAIT;
990 int ret;
991
992 if (inline_data || nvme_tcp_queue_more(queue))
993 flags |= MSG_MORE | MSG_SENDPAGE_NOTLAST;
994 else
995 flags |= MSG_EOR;
996
997 if (queue->hdr_digest && !req->offset)
998 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
999
1000 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1001 offset_in_page(pdu) + req->offset, len, flags);
1002 if (unlikely(ret <= 0))
1003 return ret;
1004
1005 len -= ret;
1006 if (!len) {
1007 if (inline_data) {
1008 req->state = NVME_TCP_SEND_DATA;
1009 if (queue->data_digest)
1010 crypto_ahash_init(queue->snd_hash);
1011 } else {
1012 nvme_tcp_done_send_req(queue);
1013 }
1014 return 1;
1015 }
1016 req->offset += ret;
1017
1018 return -EAGAIN;
1019 }
1020
nvme_tcp_try_send_data_pdu(struct nvme_tcp_request * req)1021 static int nvme_tcp_try_send_data_pdu(struct nvme_tcp_request *req)
1022 {
1023 struct nvme_tcp_queue *queue = req->queue;
1024 struct nvme_tcp_data_pdu *pdu = req->pdu;
1025 u8 hdgst = nvme_tcp_hdgst_len(queue);
1026 int len = sizeof(*pdu) - req->offset + hdgst;
1027 int ret;
1028
1029 if (queue->hdr_digest && !req->offset)
1030 nvme_tcp_hdgst(queue->snd_hash, pdu, sizeof(*pdu));
1031
1032 ret = kernel_sendpage(queue->sock, virt_to_page(pdu),
1033 offset_in_page(pdu) + req->offset, len,
1034 MSG_DONTWAIT | MSG_MORE | MSG_SENDPAGE_NOTLAST);
1035 if (unlikely(ret <= 0))
1036 return ret;
1037
1038 len -= ret;
1039 if (!len) {
1040 req->state = NVME_TCP_SEND_DATA;
1041 if (queue->data_digest)
1042 crypto_ahash_init(queue->snd_hash);
1043 return 1;
1044 }
1045 req->offset += ret;
1046
1047 return -EAGAIN;
1048 }
1049
nvme_tcp_try_send_ddgst(struct nvme_tcp_request * req)1050 static int nvme_tcp_try_send_ddgst(struct nvme_tcp_request *req)
1051 {
1052 struct nvme_tcp_queue *queue = req->queue;
1053 size_t offset = req->offset;
1054 int ret;
1055 struct msghdr msg = { .msg_flags = MSG_DONTWAIT };
1056 struct kvec iov = {
1057 .iov_base = (u8 *)&req->ddgst + req->offset,
1058 .iov_len = NVME_TCP_DIGEST_LENGTH - req->offset
1059 };
1060
1061 if (nvme_tcp_queue_more(queue))
1062 msg.msg_flags |= MSG_MORE;
1063 else
1064 msg.msg_flags |= MSG_EOR;
1065
1066 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1067 if (unlikely(ret <= 0))
1068 return ret;
1069
1070 if (offset + ret == NVME_TCP_DIGEST_LENGTH) {
1071 nvme_tcp_done_send_req(queue);
1072 return 1;
1073 }
1074
1075 req->offset += ret;
1076 return -EAGAIN;
1077 }
1078
nvme_tcp_try_send(struct nvme_tcp_queue * queue)1079 static int nvme_tcp_try_send(struct nvme_tcp_queue *queue)
1080 {
1081 struct nvme_tcp_request *req;
1082 int ret = 1;
1083
1084 if (!queue->request) {
1085 queue->request = nvme_tcp_fetch_request(queue);
1086 if (!queue->request)
1087 return 0;
1088 }
1089 req = queue->request;
1090
1091 if (req->state == NVME_TCP_SEND_CMD_PDU) {
1092 ret = nvme_tcp_try_send_cmd_pdu(req);
1093 if (ret <= 0)
1094 goto done;
1095 if (!nvme_tcp_has_inline_data(req))
1096 return ret;
1097 }
1098
1099 if (req->state == NVME_TCP_SEND_H2C_PDU) {
1100 ret = nvme_tcp_try_send_data_pdu(req);
1101 if (ret <= 0)
1102 goto done;
1103 }
1104
1105 if (req->state == NVME_TCP_SEND_DATA) {
1106 ret = nvme_tcp_try_send_data(req);
1107 if (ret <= 0)
1108 goto done;
1109 }
1110
1111 if (req->state == NVME_TCP_SEND_DDGST)
1112 ret = nvme_tcp_try_send_ddgst(req);
1113 done:
1114 if (ret == -EAGAIN) {
1115 ret = 0;
1116 } else if (ret < 0) {
1117 dev_err(queue->ctrl->ctrl.device,
1118 "failed to send request %d\n", ret);
1119 if (ret != -EPIPE && ret != -ECONNRESET)
1120 nvme_tcp_fail_request(queue->request);
1121 nvme_tcp_done_send_req(queue);
1122 }
1123 return ret;
1124 }
1125
nvme_tcp_try_recv(struct nvme_tcp_queue * queue)1126 static int nvme_tcp_try_recv(struct nvme_tcp_queue *queue)
1127 {
1128 struct socket *sock = queue->sock;
1129 struct sock *sk = sock->sk;
1130 read_descriptor_t rd_desc;
1131 int consumed;
1132
1133 rd_desc.arg.data = queue;
1134 rd_desc.count = 1;
1135 lock_sock(sk);
1136 queue->nr_cqe = 0;
1137 consumed = sock->ops->read_sock(sk, &rd_desc, nvme_tcp_recv_skb);
1138 release_sock(sk);
1139 return consumed;
1140 }
1141
nvme_tcp_io_work(struct work_struct * w)1142 static void nvme_tcp_io_work(struct work_struct *w)
1143 {
1144 struct nvme_tcp_queue *queue =
1145 container_of(w, struct nvme_tcp_queue, io_work);
1146 unsigned long deadline = jiffies + msecs_to_jiffies(1);
1147
1148 do {
1149 bool pending = false;
1150 int result;
1151
1152 if (mutex_trylock(&queue->send_mutex)) {
1153 result = nvme_tcp_try_send(queue);
1154 mutex_unlock(&queue->send_mutex);
1155 if (result > 0)
1156 pending = true;
1157 else if (unlikely(result < 0))
1158 break;
1159 }
1160
1161 result = nvme_tcp_try_recv(queue);
1162 if (result > 0)
1163 pending = true;
1164 else if (unlikely(result < 0))
1165 return;
1166
1167 if (!pending)
1168 return;
1169
1170 } while (!time_after(jiffies, deadline)); /* quota is exhausted */
1171
1172 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
1173 }
1174
nvme_tcp_free_crypto(struct nvme_tcp_queue * queue)1175 static void nvme_tcp_free_crypto(struct nvme_tcp_queue *queue)
1176 {
1177 struct crypto_ahash *tfm = crypto_ahash_reqtfm(queue->rcv_hash);
1178
1179 ahash_request_free(queue->rcv_hash);
1180 ahash_request_free(queue->snd_hash);
1181 crypto_free_ahash(tfm);
1182 }
1183
nvme_tcp_alloc_crypto(struct nvme_tcp_queue * queue)1184 static int nvme_tcp_alloc_crypto(struct nvme_tcp_queue *queue)
1185 {
1186 struct crypto_ahash *tfm;
1187
1188 tfm = crypto_alloc_ahash("crc32c", 0, CRYPTO_ALG_ASYNC);
1189 if (IS_ERR(tfm))
1190 return PTR_ERR(tfm);
1191
1192 queue->snd_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1193 if (!queue->snd_hash)
1194 goto free_tfm;
1195 ahash_request_set_callback(queue->snd_hash, 0, NULL, NULL);
1196
1197 queue->rcv_hash = ahash_request_alloc(tfm, GFP_KERNEL);
1198 if (!queue->rcv_hash)
1199 goto free_snd_hash;
1200 ahash_request_set_callback(queue->rcv_hash, 0, NULL, NULL);
1201
1202 return 0;
1203 free_snd_hash:
1204 ahash_request_free(queue->snd_hash);
1205 free_tfm:
1206 crypto_free_ahash(tfm);
1207 return -ENOMEM;
1208 }
1209
nvme_tcp_free_async_req(struct nvme_tcp_ctrl * ctrl)1210 static void nvme_tcp_free_async_req(struct nvme_tcp_ctrl *ctrl)
1211 {
1212 struct nvme_tcp_request *async = &ctrl->async_req;
1213
1214 page_frag_free(async->pdu);
1215 }
1216
nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl * ctrl)1217 static int nvme_tcp_alloc_async_req(struct nvme_tcp_ctrl *ctrl)
1218 {
1219 struct nvme_tcp_queue *queue = &ctrl->queues[0];
1220 struct nvme_tcp_request *async = &ctrl->async_req;
1221 u8 hdgst = nvme_tcp_hdgst_len(queue);
1222
1223 async->pdu = page_frag_alloc(&queue->pf_cache,
1224 sizeof(struct nvme_tcp_cmd_pdu) + hdgst,
1225 GFP_KERNEL | __GFP_ZERO);
1226 if (!async->pdu)
1227 return -ENOMEM;
1228
1229 async->queue = &ctrl->queues[0];
1230 return 0;
1231 }
1232
nvme_tcp_free_queue(struct nvme_ctrl * nctrl,int qid)1233 static void nvme_tcp_free_queue(struct nvme_ctrl *nctrl, int qid)
1234 {
1235 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1236 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1237
1238 if (!test_and_clear_bit(NVME_TCP_Q_ALLOCATED, &queue->flags))
1239 return;
1240
1241 if (queue->hdr_digest || queue->data_digest)
1242 nvme_tcp_free_crypto(queue);
1243
1244 sock_release(queue->sock);
1245 kfree(queue->pdu);
1246 mutex_destroy(&queue->send_mutex);
1247 mutex_destroy(&queue->queue_lock);
1248 }
1249
nvme_tcp_init_connection(struct nvme_tcp_queue * queue)1250 static int nvme_tcp_init_connection(struct nvme_tcp_queue *queue)
1251 {
1252 struct nvme_tcp_icreq_pdu *icreq;
1253 struct nvme_tcp_icresp_pdu *icresp;
1254 struct msghdr msg = {};
1255 struct kvec iov;
1256 bool ctrl_hdgst, ctrl_ddgst;
1257 int ret;
1258
1259 icreq = kzalloc(sizeof(*icreq), GFP_KERNEL);
1260 if (!icreq)
1261 return -ENOMEM;
1262
1263 icresp = kzalloc(sizeof(*icresp), GFP_KERNEL);
1264 if (!icresp) {
1265 ret = -ENOMEM;
1266 goto free_icreq;
1267 }
1268
1269 icreq->hdr.type = nvme_tcp_icreq;
1270 icreq->hdr.hlen = sizeof(*icreq);
1271 icreq->hdr.pdo = 0;
1272 icreq->hdr.plen = cpu_to_le32(icreq->hdr.hlen);
1273 icreq->pfv = cpu_to_le16(NVME_TCP_PFV_1_0);
1274 icreq->maxr2t = 0; /* single inflight r2t supported */
1275 icreq->hpda = 0; /* no alignment constraint */
1276 if (queue->hdr_digest)
1277 icreq->digest |= NVME_TCP_HDR_DIGEST_ENABLE;
1278 if (queue->data_digest)
1279 icreq->digest |= NVME_TCP_DATA_DIGEST_ENABLE;
1280
1281 iov.iov_base = icreq;
1282 iov.iov_len = sizeof(*icreq);
1283 ret = kernel_sendmsg(queue->sock, &msg, &iov, 1, iov.iov_len);
1284 if (ret < 0)
1285 goto free_icresp;
1286
1287 memset(&msg, 0, sizeof(msg));
1288 iov.iov_base = icresp;
1289 iov.iov_len = sizeof(*icresp);
1290 ret = kernel_recvmsg(queue->sock, &msg, &iov, 1,
1291 iov.iov_len, msg.msg_flags);
1292 if (ret < 0)
1293 goto free_icresp;
1294
1295 ret = -EINVAL;
1296 if (icresp->hdr.type != nvme_tcp_icresp) {
1297 pr_err("queue %d: bad type returned %d\n",
1298 nvme_tcp_queue_id(queue), icresp->hdr.type);
1299 goto free_icresp;
1300 }
1301
1302 if (le32_to_cpu(icresp->hdr.plen) != sizeof(*icresp)) {
1303 pr_err("queue %d: bad pdu length returned %d\n",
1304 nvme_tcp_queue_id(queue), icresp->hdr.plen);
1305 goto free_icresp;
1306 }
1307
1308 if (icresp->pfv != NVME_TCP_PFV_1_0) {
1309 pr_err("queue %d: bad pfv returned %d\n",
1310 nvme_tcp_queue_id(queue), icresp->pfv);
1311 goto free_icresp;
1312 }
1313
1314 ctrl_ddgst = !!(icresp->digest & NVME_TCP_DATA_DIGEST_ENABLE);
1315 if ((queue->data_digest && !ctrl_ddgst) ||
1316 (!queue->data_digest && ctrl_ddgst)) {
1317 pr_err("queue %d: data digest mismatch host: %s ctrl: %s\n",
1318 nvme_tcp_queue_id(queue),
1319 queue->data_digest ? "enabled" : "disabled",
1320 ctrl_ddgst ? "enabled" : "disabled");
1321 goto free_icresp;
1322 }
1323
1324 ctrl_hdgst = !!(icresp->digest & NVME_TCP_HDR_DIGEST_ENABLE);
1325 if ((queue->hdr_digest && !ctrl_hdgst) ||
1326 (!queue->hdr_digest && ctrl_hdgst)) {
1327 pr_err("queue %d: header digest mismatch host: %s ctrl: %s\n",
1328 nvme_tcp_queue_id(queue),
1329 queue->hdr_digest ? "enabled" : "disabled",
1330 ctrl_hdgst ? "enabled" : "disabled");
1331 goto free_icresp;
1332 }
1333
1334 if (icresp->cpda != 0) {
1335 pr_err("queue %d: unsupported cpda returned %d\n",
1336 nvme_tcp_queue_id(queue), icresp->cpda);
1337 goto free_icresp;
1338 }
1339
1340 ret = 0;
1341 free_icresp:
1342 kfree(icresp);
1343 free_icreq:
1344 kfree(icreq);
1345 return ret;
1346 }
1347
nvme_tcp_admin_queue(struct nvme_tcp_queue * queue)1348 static bool nvme_tcp_admin_queue(struct nvme_tcp_queue *queue)
1349 {
1350 return nvme_tcp_queue_id(queue) == 0;
1351 }
1352
nvme_tcp_default_queue(struct nvme_tcp_queue * queue)1353 static bool nvme_tcp_default_queue(struct nvme_tcp_queue *queue)
1354 {
1355 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1356 int qid = nvme_tcp_queue_id(queue);
1357
1358 return !nvme_tcp_admin_queue(queue) &&
1359 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT];
1360 }
1361
nvme_tcp_read_queue(struct nvme_tcp_queue * queue)1362 static bool nvme_tcp_read_queue(struct nvme_tcp_queue *queue)
1363 {
1364 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1365 int qid = nvme_tcp_queue_id(queue);
1366
1367 return !nvme_tcp_admin_queue(queue) &&
1368 !nvme_tcp_default_queue(queue) &&
1369 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1370 ctrl->io_queues[HCTX_TYPE_READ];
1371 }
1372
nvme_tcp_poll_queue(struct nvme_tcp_queue * queue)1373 static bool nvme_tcp_poll_queue(struct nvme_tcp_queue *queue)
1374 {
1375 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1376 int qid = nvme_tcp_queue_id(queue);
1377
1378 return !nvme_tcp_admin_queue(queue) &&
1379 !nvme_tcp_default_queue(queue) &&
1380 !nvme_tcp_read_queue(queue) &&
1381 qid < 1 + ctrl->io_queues[HCTX_TYPE_DEFAULT] +
1382 ctrl->io_queues[HCTX_TYPE_READ] +
1383 ctrl->io_queues[HCTX_TYPE_POLL];
1384 }
1385
nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue * queue)1386 static void nvme_tcp_set_queue_io_cpu(struct nvme_tcp_queue *queue)
1387 {
1388 struct nvme_tcp_ctrl *ctrl = queue->ctrl;
1389 int qid = nvme_tcp_queue_id(queue);
1390 int n = 0;
1391
1392 if (nvme_tcp_default_queue(queue))
1393 n = qid - 1;
1394 else if (nvme_tcp_read_queue(queue))
1395 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] - 1;
1396 else if (nvme_tcp_poll_queue(queue))
1397 n = qid - ctrl->io_queues[HCTX_TYPE_DEFAULT] -
1398 ctrl->io_queues[HCTX_TYPE_READ] - 1;
1399 queue->io_cpu = cpumask_next_wrap(n - 1, cpu_online_mask, -1, false);
1400 }
1401
nvme_tcp_alloc_queue(struct nvme_ctrl * nctrl,int qid,size_t queue_size)1402 static int nvme_tcp_alloc_queue(struct nvme_ctrl *nctrl,
1403 int qid, size_t queue_size)
1404 {
1405 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1406 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1407 int ret, rcv_pdu_size;
1408
1409 mutex_init(&queue->queue_lock);
1410 queue->ctrl = ctrl;
1411 init_llist_head(&queue->req_list);
1412 INIT_LIST_HEAD(&queue->send_list);
1413 mutex_init(&queue->send_mutex);
1414 INIT_WORK(&queue->io_work, nvme_tcp_io_work);
1415 queue->queue_size = queue_size;
1416
1417 if (qid > 0)
1418 queue->cmnd_capsule_len = nctrl->ioccsz * 16;
1419 else
1420 queue->cmnd_capsule_len = sizeof(struct nvme_command) +
1421 NVME_TCP_ADMIN_CCSZ;
1422
1423 ret = sock_create(ctrl->addr.ss_family, SOCK_STREAM,
1424 IPPROTO_TCP, &queue->sock);
1425 if (ret) {
1426 dev_err(nctrl->device,
1427 "failed to create socket: %d\n", ret);
1428 goto err_destroy_mutex;
1429 }
1430
1431 /* Single syn retry */
1432 tcp_sock_set_syncnt(queue->sock->sk, 1);
1433
1434 /* Set TCP no delay */
1435 tcp_sock_set_nodelay(queue->sock->sk);
1436
1437 /*
1438 * Cleanup whatever is sitting in the TCP transmit queue on socket
1439 * close. This is done to prevent stale data from being sent should
1440 * the network connection be restored before TCP times out.
1441 */
1442 sock_no_linger(queue->sock->sk);
1443
1444 if (so_priority > 0)
1445 sock_set_priority(queue->sock->sk, so_priority);
1446
1447 /* Set socket type of service */
1448 if (nctrl->opts->tos >= 0)
1449 ip_sock_set_tos(queue->sock->sk, nctrl->opts->tos);
1450
1451 /* Set 10 seconds timeout for icresp recvmsg */
1452 queue->sock->sk->sk_rcvtimeo = 10 * HZ;
1453
1454 queue->sock->sk->sk_allocation = GFP_ATOMIC;
1455 nvme_tcp_set_queue_io_cpu(queue);
1456 queue->request = NULL;
1457 queue->data_remaining = 0;
1458 queue->ddgst_remaining = 0;
1459 queue->pdu_remaining = 0;
1460 queue->pdu_offset = 0;
1461 sk_set_memalloc(queue->sock->sk);
1462
1463 if (nctrl->opts->mask & NVMF_OPT_HOST_TRADDR) {
1464 ret = kernel_bind(queue->sock, (struct sockaddr *)&ctrl->src_addr,
1465 sizeof(ctrl->src_addr));
1466 if (ret) {
1467 dev_err(nctrl->device,
1468 "failed to bind queue %d socket %d\n",
1469 qid, ret);
1470 goto err_sock;
1471 }
1472 }
1473
1474 if (nctrl->opts->mask & NVMF_OPT_HOST_IFACE) {
1475 char *iface = nctrl->opts->host_iface;
1476 sockptr_t optval = KERNEL_SOCKPTR(iface);
1477
1478 ret = sock_setsockopt(queue->sock, SOL_SOCKET, SO_BINDTODEVICE,
1479 optval, strlen(iface));
1480 if (ret) {
1481 dev_err(nctrl->device,
1482 "failed to bind to interface %s queue %d err %d\n",
1483 iface, qid, ret);
1484 goto err_sock;
1485 }
1486 }
1487
1488 queue->hdr_digest = nctrl->opts->hdr_digest;
1489 queue->data_digest = nctrl->opts->data_digest;
1490 if (queue->hdr_digest || queue->data_digest) {
1491 ret = nvme_tcp_alloc_crypto(queue);
1492 if (ret) {
1493 dev_err(nctrl->device,
1494 "failed to allocate queue %d crypto\n", qid);
1495 goto err_sock;
1496 }
1497 }
1498
1499 rcv_pdu_size = sizeof(struct nvme_tcp_rsp_pdu) +
1500 nvme_tcp_hdgst_len(queue);
1501 queue->pdu = kmalloc(rcv_pdu_size, GFP_KERNEL);
1502 if (!queue->pdu) {
1503 ret = -ENOMEM;
1504 goto err_crypto;
1505 }
1506
1507 dev_dbg(nctrl->device, "connecting queue %d\n",
1508 nvme_tcp_queue_id(queue));
1509
1510 ret = kernel_connect(queue->sock, (struct sockaddr *)&ctrl->addr,
1511 sizeof(ctrl->addr), 0);
1512 if (ret) {
1513 dev_err(nctrl->device,
1514 "failed to connect socket: %d\n", ret);
1515 goto err_rcv_pdu;
1516 }
1517
1518 ret = nvme_tcp_init_connection(queue);
1519 if (ret)
1520 goto err_init_connect;
1521
1522 queue->rd_enabled = true;
1523 set_bit(NVME_TCP_Q_ALLOCATED, &queue->flags);
1524 nvme_tcp_init_recv_ctx(queue);
1525
1526 write_lock_bh(&queue->sock->sk->sk_callback_lock);
1527 queue->sock->sk->sk_user_data = queue;
1528 queue->state_change = queue->sock->sk->sk_state_change;
1529 queue->data_ready = queue->sock->sk->sk_data_ready;
1530 queue->write_space = queue->sock->sk->sk_write_space;
1531 queue->sock->sk->sk_data_ready = nvme_tcp_data_ready;
1532 queue->sock->sk->sk_state_change = nvme_tcp_state_change;
1533 queue->sock->sk->sk_write_space = nvme_tcp_write_space;
1534 #ifdef CONFIG_NET_RX_BUSY_POLL
1535 queue->sock->sk->sk_ll_usec = 1;
1536 #endif
1537 write_unlock_bh(&queue->sock->sk->sk_callback_lock);
1538
1539 return 0;
1540
1541 err_init_connect:
1542 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1543 err_rcv_pdu:
1544 kfree(queue->pdu);
1545 err_crypto:
1546 if (queue->hdr_digest || queue->data_digest)
1547 nvme_tcp_free_crypto(queue);
1548 err_sock:
1549 sock_release(queue->sock);
1550 queue->sock = NULL;
1551 err_destroy_mutex:
1552 mutex_destroy(&queue->send_mutex);
1553 mutex_destroy(&queue->queue_lock);
1554 return ret;
1555 }
1556
nvme_tcp_restore_sock_calls(struct nvme_tcp_queue * queue)1557 static void nvme_tcp_restore_sock_calls(struct nvme_tcp_queue *queue)
1558 {
1559 struct socket *sock = queue->sock;
1560
1561 write_lock_bh(&sock->sk->sk_callback_lock);
1562 sock->sk->sk_user_data = NULL;
1563 sock->sk->sk_data_ready = queue->data_ready;
1564 sock->sk->sk_state_change = queue->state_change;
1565 sock->sk->sk_write_space = queue->write_space;
1566 write_unlock_bh(&sock->sk->sk_callback_lock);
1567 }
1568
__nvme_tcp_stop_queue(struct nvme_tcp_queue * queue)1569 static void __nvme_tcp_stop_queue(struct nvme_tcp_queue *queue)
1570 {
1571 kernel_sock_shutdown(queue->sock, SHUT_RDWR);
1572 nvme_tcp_restore_sock_calls(queue);
1573 cancel_work_sync(&queue->io_work);
1574 }
1575
nvme_tcp_stop_queue(struct nvme_ctrl * nctrl,int qid)1576 static void nvme_tcp_stop_queue(struct nvme_ctrl *nctrl, int qid)
1577 {
1578 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1579 struct nvme_tcp_queue *queue = &ctrl->queues[qid];
1580
1581 mutex_lock(&queue->queue_lock);
1582 if (test_and_clear_bit(NVME_TCP_Q_LIVE, &queue->flags))
1583 __nvme_tcp_stop_queue(queue);
1584 mutex_unlock(&queue->queue_lock);
1585 }
1586
nvme_tcp_start_queue(struct nvme_ctrl * nctrl,int idx)1587 static int nvme_tcp_start_queue(struct nvme_ctrl *nctrl, int idx)
1588 {
1589 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1590 int ret;
1591
1592 if (idx)
1593 ret = nvmf_connect_io_queue(nctrl, idx);
1594 else
1595 ret = nvmf_connect_admin_queue(nctrl);
1596
1597 if (!ret) {
1598 set_bit(NVME_TCP_Q_LIVE, &ctrl->queues[idx].flags);
1599 } else {
1600 if (test_bit(NVME_TCP_Q_ALLOCATED, &ctrl->queues[idx].flags))
1601 __nvme_tcp_stop_queue(&ctrl->queues[idx]);
1602 dev_err(nctrl->device,
1603 "failed to connect queue: %d ret=%d\n", idx, ret);
1604 }
1605 return ret;
1606 }
1607
nvme_tcp_alloc_tagset(struct nvme_ctrl * nctrl,bool admin)1608 static struct blk_mq_tag_set *nvme_tcp_alloc_tagset(struct nvme_ctrl *nctrl,
1609 bool admin)
1610 {
1611 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1612 struct blk_mq_tag_set *set;
1613 int ret;
1614
1615 if (admin) {
1616 set = &ctrl->admin_tag_set;
1617 memset(set, 0, sizeof(*set));
1618 set->ops = &nvme_tcp_admin_mq_ops;
1619 set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
1620 set->reserved_tags = NVMF_RESERVED_TAGS;
1621 set->numa_node = nctrl->numa_node;
1622 set->flags = BLK_MQ_F_BLOCKING;
1623 set->cmd_size = sizeof(struct nvme_tcp_request);
1624 set->driver_data = ctrl;
1625 set->nr_hw_queues = 1;
1626 set->timeout = NVME_ADMIN_TIMEOUT;
1627 } else {
1628 set = &ctrl->tag_set;
1629 memset(set, 0, sizeof(*set));
1630 set->ops = &nvme_tcp_mq_ops;
1631 set->queue_depth = nctrl->sqsize + 1;
1632 set->reserved_tags = NVMF_RESERVED_TAGS;
1633 set->numa_node = nctrl->numa_node;
1634 set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
1635 set->cmd_size = sizeof(struct nvme_tcp_request);
1636 set->driver_data = ctrl;
1637 set->nr_hw_queues = nctrl->queue_count - 1;
1638 set->timeout = NVME_IO_TIMEOUT;
1639 set->nr_maps = nctrl->opts->nr_poll_queues ? HCTX_MAX_TYPES : 2;
1640 }
1641
1642 ret = blk_mq_alloc_tag_set(set);
1643 if (ret)
1644 return ERR_PTR(ret);
1645
1646 return set;
1647 }
1648
nvme_tcp_free_admin_queue(struct nvme_ctrl * ctrl)1649 static void nvme_tcp_free_admin_queue(struct nvme_ctrl *ctrl)
1650 {
1651 if (to_tcp_ctrl(ctrl)->async_req.pdu) {
1652 cancel_work_sync(&ctrl->async_event_work);
1653 nvme_tcp_free_async_req(to_tcp_ctrl(ctrl));
1654 to_tcp_ctrl(ctrl)->async_req.pdu = NULL;
1655 }
1656
1657 nvme_tcp_free_queue(ctrl, 0);
1658 }
1659
nvme_tcp_free_io_queues(struct nvme_ctrl * ctrl)1660 static void nvme_tcp_free_io_queues(struct nvme_ctrl *ctrl)
1661 {
1662 int i;
1663
1664 for (i = 1; i < ctrl->queue_count; i++)
1665 nvme_tcp_free_queue(ctrl, i);
1666 }
1667
nvme_tcp_stop_io_queues(struct nvme_ctrl * ctrl)1668 static void nvme_tcp_stop_io_queues(struct nvme_ctrl *ctrl)
1669 {
1670 int i;
1671
1672 for (i = 1; i < ctrl->queue_count; i++)
1673 nvme_tcp_stop_queue(ctrl, i);
1674 }
1675
nvme_tcp_start_io_queues(struct nvme_ctrl * ctrl)1676 static int nvme_tcp_start_io_queues(struct nvme_ctrl *ctrl)
1677 {
1678 int i, ret = 0;
1679
1680 for (i = 1; i < ctrl->queue_count; i++) {
1681 ret = nvme_tcp_start_queue(ctrl, i);
1682 if (ret)
1683 goto out_stop_queues;
1684 }
1685
1686 return 0;
1687
1688 out_stop_queues:
1689 for (i--; i >= 1; i--)
1690 nvme_tcp_stop_queue(ctrl, i);
1691 return ret;
1692 }
1693
nvme_tcp_alloc_admin_queue(struct nvme_ctrl * ctrl)1694 static int nvme_tcp_alloc_admin_queue(struct nvme_ctrl *ctrl)
1695 {
1696 int ret;
1697
1698 ret = nvme_tcp_alloc_queue(ctrl, 0, NVME_AQ_DEPTH);
1699 if (ret)
1700 return ret;
1701
1702 ret = nvme_tcp_alloc_async_req(to_tcp_ctrl(ctrl));
1703 if (ret)
1704 goto out_free_queue;
1705
1706 return 0;
1707
1708 out_free_queue:
1709 nvme_tcp_free_queue(ctrl, 0);
1710 return ret;
1711 }
1712
__nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1713 static int __nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1714 {
1715 int i, ret;
1716
1717 for (i = 1; i < ctrl->queue_count; i++) {
1718 ret = nvme_tcp_alloc_queue(ctrl, i,
1719 ctrl->sqsize + 1);
1720 if (ret)
1721 goto out_free_queues;
1722 }
1723
1724 return 0;
1725
1726 out_free_queues:
1727 for (i--; i >= 1; i--)
1728 nvme_tcp_free_queue(ctrl, i);
1729
1730 return ret;
1731 }
1732
nvme_tcp_nr_io_queues(struct nvme_ctrl * ctrl)1733 static unsigned int nvme_tcp_nr_io_queues(struct nvme_ctrl *ctrl)
1734 {
1735 unsigned int nr_io_queues;
1736
1737 nr_io_queues = min(ctrl->opts->nr_io_queues, num_online_cpus());
1738 nr_io_queues += min(ctrl->opts->nr_write_queues, num_online_cpus());
1739 nr_io_queues += min(ctrl->opts->nr_poll_queues, num_online_cpus());
1740
1741 return nr_io_queues;
1742 }
1743
nvme_tcp_set_io_queues(struct nvme_ctrl * nctrl,unsigned int nr_io_queues)1744 static void nvme_tcp_set_io_queues(struct nvme_ctrl *nctrl,
1745 unsigned int nr_io_queues)
1746 {
1747 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
1748 struct nvmf_ctrl_options *opts = nctrl->opts;
1749
1750 if (opts->nr_write_queues && opts->nr_io_queues < nr_io_queues) {
1751 /*
1752 * separate read/write queues
1753 * hand out dedicated default queues only after we have
1754 * sufficient read queues.
1755 */
1756 ctrl->io_queues[HCTX_TYPE_READ] = opts->nr_io_queues;
1757 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_READ];
1758 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1759 min(opts->nr_write_queues, nr_io_queues);
1760 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1761 } else {
1762 /*
1763 * shared read/write queues
1764 * either no write queues were requested, or we don't have
1765 * sufficient queue count to have dedicated default queues.
1766 */
1767 ctrl->io_queues[HCTX_TYPE_DEFAULT] =
1768 min(opts->nr_io_queues, nr_io_queues);
1769 nr_io_queues -= ctrl->io_queues[HCTX_TYPE_DEFAULT];
1770 }
1771
1772 if (opts->nr_poll_queues && nr_io_queues) {
1773 /* map dedicated poll queues only if we have queues left */
1774 ctrl->io_queues[HCTX_TYPE_POLL] =
1775 min(opts->nr_poll_queues, nr_io_queues);
1776 }
1777 }
1778
nvme_tcp_alloc_io_queues(struct nvme_ctrl * ctrl)1779 static int nvme_tcp_alloc_io_queues(struct nvme_ctrl *ctrl)
1780 {
1781 unsigned int nr_io_queues;
1782 int ret;
1783
1784 nr_io_queues = nvme_tcp_nr_io_queues(ctrl);
1785 ret = nvme_set_queue_count(ctrl, &nr_io_queues);
1786 if (ret)
1787 return ret;
1788
1789 if (nr_io_queues == 0) {
1790 dev_err(ctrl->device,
1791 "unable to set any I/O queues\n");
1792 return -ENOMEM;
1793 }
1794
1795 ctrl->queue_count = nr_io_queues + 1;
1796 dev_info(ctrl->device,
1797 "creating %d I/O queues.\n", nr_io_queues);
1798
1799 nvme_tcp_set_io_queues(ctrl, nr_io_queues);
1800
1801 return __nvme_tcp_alloc_io_queues(ctrl);
1802 }
1803
nvme_tcp_destroy_io_queues(struct nvme_ctrl * ctrl,bool remove)1804 static void nvme_tcp_destroy_io_queues(struct nvme_ctrl *ctrl, bool remove)
1805 {
1806 nvme_tcp_stop_io_queues(ctrl);
1807 if (remove) {
1808 blk_cleanup_queue(ctrl->connect_q);
1809 blk_mq_free_tag_set(ctrl->tagset);
1810 }
1811 nvme_tcp_free_io_queues(ctrl);
1812 }
1813
nvme_tcp_configure_io_queues(struct nvme_ctrl * ctrl,bool new)1814 static int nvme_tcp_configure_io_queues(struct nvme_ctrl *ctrl, bool new)
1815 {
1816 int ret;
1817
1818 ret = nvme_tcp_alloc_io_queues(ctrl);
1819 if (ret)
1820 return ret;
1821
1822 if (new) {
1823 ctrl->tagset = nvme_tcp_alloc_tagset(ctrl, false);
1824 if (IS_ERR(ctrl->tagset)) {
1825 ret = PTR_ERR(ctrl->tagset);
1826 goto out_free_io_queues;
1827 }
1828
1829 ctrl->connect_q = blk_mq_init_queue(ctrl->tagset);
1830 if (IS_ERR(ctrl->connect_q)) {
1831 ret = PTR_ERR(ctrl->connect_q);
1832 goto out_free_tag_set;
1833 }
1834 }
1835
1836 ret = nvme_tcp_start_io_queues(ctrl);
1837 if (ret)
1838 goto out_cleanup_connect_q;
1839
1840 if (!new) {
1841 nvme_start_queues(ctrl);
1842 if (!nvme_wait_freeze_timeout(ctrl, NVME_IO_TIMEOUT)) {
1843 /*
1844 * If we timed out waiting for freeze we are likely to
1845 * be stuck. Fail the controller initialization just
1846 * to be safe.
1847 */
1848 ret = -ENODEV;
1849 goto out_wait_freeze_timed_out;
1850 }
1851 blk_mq_update_nr_hw_queues(ctrl->tagset,
1852 ctrl->queue_count - 1);
1853 nvme_unfreeze(ctrl);
1854 }
1855
1856 return 0;
1857
1858 out_wait_freeze_timed_out:
1859 nvme_stop_queues(ctrl);
1860 nvme_sync_io_queues(ctrl);
1861 nvme_tcp_stop_io_queues(ctrl);
1862 out_cleanup_connect_q:
1863 nvme_cancel_tagset(ctrl);
1864 if (new)
1865 blk_cleanup_queue(ctrl->connect_q);
1866 out_free_tag_set:
1867 if (new)
1868 blk_mq_free_tag_set(ctrl->tagset);
1869 out_free_io_queues:
1870 nvme_tcp_free_io_queues(ctrl);
1871 return ret;
1872 }
1873
nvme_tcp_destroy_admin_queue(struct nvme_ctrl * ctrl,bool remove)1874 static void nvme_tcp_destroy_admin_queue(struct nvme_ctrl *ctrl, bool remove)
1875 {
1876 nvme_tcp_stop_queue(ctrl, 0);
1877 if (remove) {
1878 blk_cleanup_queue(ctrl->admin_q);
1879 blk_cleanup_queue(ctrl->fabrics_q);
1880 blk_mq_free_tag_set(ctrl->admin_tagset);
1881 }
1882 nvme_tcp_free_admin_queue(ctrl);
1883 }
1884
nvme_tcp_configure_admin_queue(struct nvme_ctrl * ctrl,bool new)1885 static int nvme_tcp_configure_admin_queue(struct nvme_ctrl *ctrl, bool new)
1886 {
1887 int error;
1888
1889 error = nvme_tcp_alloc_admin_queue(ctrl);
1890 if (error)
1891 return error;
1892
1893 if (new) {
1894 ctrl->admin_tagset = nvme_tcp_alloc_tagset(ctrl, true);
1895 if (IS_ERR(ctrl->admin_tagset)) {
1896 error = PTR_ERR(ctrl->admin_tagset);
1897 goto out_free_queue;
1898 }
1899
1900 ctrl->fabrics_q = blk_mq_init_queue(ctrl->admin_tagset);
1901 if (IS_ERR(ctrl->fabrics_q)) {
1902 error = PTR_ERR(ctrl->fabrics_q);
1903 goto out_free_tagset;
1904 }
1905
1906 ctrl->admin_q = blk_mq_init_queue(ctrl->admin_tagset);
1907 if (IS_ERR(ctrl->admin_q)) {
1908 error = PTR_ERR(ctrl->admin_q);
1909 goto out_cleanup_fabrics_q;
1910 }
1911 }
1912
1913 error = nvme_tcp_start_queue(ctrl, 0);
1914 if (error)
1915 goto out_cleanup_queue;
1916
1917 error = nvme_enable_ctrl(ctrl);
1918 if (error)
1919 goto out_stop_queue;
1920
1921 blk_mq_unquiesce_queue(ctrl->admin_q);
1922
1923 error = nvme_init_ctrl_finish(ctrl);
1924 if (error)
1925 goto out_quiesce_queue;
1926
1927 return 0;
1928
1929 out_quiesce_queue:
1930 blk_mq_quiesce_queue(ctrl->admin_q);
1931 blk_sync_queue(ctrl->admin_q);
1932 out_stop_queue:
1933 nvme_tcp_stop_queue(ctrl, 0);
1934 nvme_cancel_admin_tagset(ctrl);
1935 out_cleanup_queue:
1936 if (new)
1937 blk_cleanup_queue(ctrl->admin_q);
1938 out_cleanup_fabrics_q:
1939 if (new)
1940 blk_cleanup_queue(ctrl->fabrics_q);
1941 out_free_tagset:
1942 if (new)
1943 blk_mq_free_tag_set(ctrl->admin_tagset);
1944 out_free_queue:
1945 nvme_tcp_free_admin_queue(ctrl);
1946 return error;
1947 }
1948
nvme_tcp_teardown_admin_queue(struct nvme_ctrl * ctrl,bool remove)1949 static void nvme_tcp_teardown_admin_queue(struct nvme_ctrl *ctrl,
1950 bool remove)
1951 {
1952 blk_mq_quiesce_queue(ctrl->admin_q);
1953 blk_sync_queue(ctrl->admin_q);
1954 nvme_tcp_stop_queue(ctrl, 0);
1955 nvme_cancel_admin_tagset(ctrl);
1956 if (remove)
1957 blk_mq_unquiesce_queue(ctrl->admin_q);
1958 nvme_tcp_destroy_admin_queue(ctrl, remove);
1959 }
1960
nvme_tcp_teardown_io_queues(struct nvme_ctrl * ctrl,bool remove)1961 static void nvme_tcp_teardown_io_queues(struct nvme_ctrl *ctrl,
1962 bool remove)
1963 {
1964 if (ctrl->queue_count <= 1)
1965 return;
1966 blk_mq_quiesce_queue(ctrl->admin_q);
1967 nvme_start_freeze(ctrl);
1968 nvme_stop_queues(ctrl);
1969 nvme_sync_io_queues(ctrl);
1970 nvme_tcp_stop_io_queues(ctrl);
1971 nvme_cancel_tagset(ctrl);
1972 if (remove)
1973 nvme_start_queues(ctrl);
1974 nvme_tcp_destroy_io_queues(ctrl, remove);
1975 }
1976
nvme_tcp_reconnect_or_remove(struct nvme_ctrl * ctrl)1977 static void nvme_tcp_reconnect_or_remove(struct nvme_ctrl *ctrl)
1978 {
1979 /* If we are resetting/deleting then do nothing */
1980 if (ctrl->state != NVME_CTRL_CONNECTING) {
1981 WARN_ON_ONCE(ctrl->state == NVME_CTRL_NEW ||
1982 ctrl->state == NVME_CTRL_LIVE);
1983 return;
1984 }
1985
1986 if (nvmf_should_reconnect(ctrl)) {
1987 dev_info(ctrl->device, "Reconnecting in %d seconds...\n",
1988 ctrl->opts->reconnect_delay);
1989 queue_delayed_work(nvme_wq, &to_tcp_ctrl(ctrl)->connect_work,
1990 ctrl->opts->reconnect_delay * HZ);
1991 } else {
1992 dev_info(ctrl->device, "Removing controller...\n");
1993 nvme_delete_ctrl(ctrl);
1994 }
1995 }
1996
nvme_tcp_setup_ctrl(struct nvme_ctrl * ctrl,bool new)1997 static int nvme_tcp_setup_ctrl(struct nvme_ctrl *ctrl, bool new)
1998 {
1999 struct nvmf_ctrl_options *opts = ctrl->opts;
2000 int ret;
2001
2002 ret = nvme_tcp_configure_admin_queue(ctrl, new);
2003 if (ret)
2004 return ret;
2005
2006 if (ctrl->icdoff) {
2007 ret = -EOPNOTSUPP;
2008 dev_err(ctrl->device, "icdoff is not supported!\n");
2009 goto destroy_admin;
2010 }
2011
2012 if (!nvme_ctrl_sgl_supported(ctrl)) {
2013 ret = -EOPNOTSUPP;
2014 dev_err(ctrl->device, "Mandatory sgls are not supported!\n");
2015 goto destroy_admin;
2016 }
2017
2018 if (opts->queue_size > ctrl->sqsize + 1)
2019 dev_warn(ctrl->device,
2020 "queue_size %zu > ctrl sqsize %u, clamping down\n",
2021 opts->queue_size, ctrl->sqsize + 1);
2022
2023 if (ctrl->sqsize + 1 > ctrl->maxcmd) {
2024 dev_warn(ctrl->device,
2025 "sqsize %u > ctrl maxcmd %u, clamping down\n",
2026 ctrl->sqsize + 1, ctrl->maxcmd);
2027 ctrl->sqsize = ctrl->maxcmd - 1;
2028 }
2029
2030 if (ctrl->queue_count > 1) {
2031 ret = nvme_tcp_configure_io_queues(ctrl, new);
2032 if (ret)
2033 goto destroy_admin;
2034 }
2035
2036 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE)) {
2037 /*
2038 * state change failure is ok if we started ctrl delete,
2039 * unless we're during creation of a new controller to
2040 * avoid races with teardown flow.
2041 */
2042 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2043 ctrl->state != NVME_CTRL_DELETING_NOIO);
2044 WARN_ON_ONCE(new);
2045 ret = -EINVAL;
2046 goto destroy_io;
2047 }
2048
2049 nvme_start_ctrl(ctrl);
2050 return 0;
2051
2052 destroy_io:
2053 if (ctrl->queue_count > 1) {
2054 nvme_stop_queues(ctrl);
2055 nvme_sync_io_queues(ctrl);
2056 nvme_tcp_stop_io_queues(ctrl);
2057 nvme_cancel_tagset(ctrl);
2058 nvme_tcp_destroy_io_queues(ctrl, new);
2059 }
2060 destroy_admin:
2061 blk_mq_quiesce_queue(ctrl->admin_q);
2062 blk_sync_queue(ctrl->admin_q);
2063 nvme_tcp_stop_queue(ctrl, 0);
2064 nvme_cancel_admin_tagset(ctrl);
2065 nvme_tcp_destroy_admin_queue(ctrl, new);
2066 return ret;
2067 }
2068
nvme_tcp_reconnect_ctrl_work(struct work_struct * work)2069 static void nvme_tcp_reconnect_ctrl_work(struct work_struct *work)
2070 {
2071 struct nvme_tcp_ctrl *tcp_ctrl = container_of(to_delayed_work(work),
2072 struct nvme_tcp_ctrl, connect_work);
2073 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2074
2075 ++ctrl->nr_reconnects;
2076
2077 if (nvme_tcp_setup_ctrl(ctrl, false))
2078 goto requeue;
2079
2080 dev_info(ctrl->device, "Successfully reconnected (%d attempt)\n",
2081 ctrl->nr_reconnects);
2082
2083 ctrl->nr_reconnects = 0;
2084
2085 return;
2086
2087 requeue:
2088 dev_info(ctrl->device, "Failed reconnect attempt %d\n",
2089 ctrl->nr_reconnects);
2090 nvme_tcp_reconnect_or_remove(ctrl);
2091 }
2092
nvme_tcp_error_recovery_work(struct work_struct * work)2093 static void nvme_tcp_error_recovery_work(struct work_struct *work)
2094 {
2095 struct nvme_tcp_ctrl *tcp_ctrl = container_of(work,
2096 struct nvme_tcp_ctrl, err_work);
2097 struct nvme_ctrl *ctrl = &tcp_ctrl->ctrl;
2098
2099 nvme_stop_keep_alive(ctrl);
2100 nvme_tcp_teardown_io_queues(ctrl, false);
2101 /* unquiesce to fail fast pending requests */
2102 nvme_start_queues(ctrl);
2103 nvme_tcp_teardown_admin_queue(ctrl, false);
2104 blk_mq_unquiesce_queue(ctrl->admin_q);
2105
2106 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2107 /* state change failure is ok if we started ctrl delete */
2108 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2109 ctrl->state != NVME_CTRL_DELETING_NOIO);
2110 return;
2111 }
2112
2113 nvme_tcp_reconnect_or_remove(ctrl);
2114 }
2115
nvme_tcp_teardown_ctrl(struct nvme_ctrl * ctrl,bool shutdown)2116 static void nvme_tcp_teardown_ctrl(struct nvme_ctrl *ctrl, bool shutdown)
2117 {
2118 cancel_work_sync(&to_tcp_ctrl(ctrl)->err_work);
2119 cancel_delayed_work_sync(&to_tcp_ctrl(ctrl)->connect_work);
2120
2121 nvme_tcp_teardown_io_queues(ctrl, shutdown);
2122 blk_mq_quiesce_queue(ctrl->admin_q);
2123 if (shutdown)
2124 nvme_shutdown_ctrl(ctrl);
2125 else
2126 nvme_disable_ctrl(ctrl);
2127 nvme_tcp_teardown_admin_queue(ctrl, shutdown);
2128 }
2129
nvme_tcp_delete_ctrl(struct nvme_ctrl * ctrl)2130 static void nvme_tcp_delete_ctrl(struct nvme_ctrl *ctrl)
2131 {
2132 nvme_tcp_teardown_ctrl(ctrl, true);
2133 }
2134
nvme_reset_ctrl_work(struct work_struct * work)2135 static void nvme_reset_ctrl_work(struct work_struct *work)
2136 {
2137 struct nvme_ctrl *ctrl =
2138 container_of(work, struct nvme_ctrl, reset_work);
2139
2140 nvme_stop_ctrl(ctrl);
2141 nvme_tcp_teardown_ctrl(ctrl, false);
2142
2143 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_CONNECTING)) {
2144 /* state change failure is ok if we started ctrl delete */
2145 WARN_ON_ONCE(ctrl->state != NVME_CTRL_DELETING &&
2146 ctrl->state != NVME_CTRL_DELETING_NOIO);
2147 return;
2148 }
2149
2150 if (nvme_tcp_setup_ctrl(ctrl, false))
2151 goto out_fail;
2152
2153 return;
2154
2155 out_fail:
2156 ++ctrl->nr_reconnects;
2157 nvme_tcp_reconnect_or_remove(ctrl);
2158 }
2159
nvme_tcp_free_ctrl(struct nvme_ctrl * nctrl)2160 static void nvme_tcp_free_ctrl(struct nvme_ctrl *nctrl)
2161 {
2162 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(nctrl);
2163
2164 if (list_empty(&ctrl->list))
2165 goto free_ctrl;
2166
2167 mutex_lock(&nvme_tcp_ctrl_mutex);
2168 list_del(&ctrl->list);
2169 mutex_unlock(&nvme_tcp_ctrl_mutex);
2170
2171 nvmf_free_options(nctrl->opts);
2172 free_ctrl:
2173 kfree(ctrl->queues);
2174 kfree(ctrl);
2175 }
2176
nvme_tcp_set_sg_null(struct nvme_command * c)2177 static void nvme_tcp_set_sg_null(struct nvme_command *c)
2178 {
2179 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2180
2181 sg->addr = 0;
2182 sg->length = 0;
2183 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2184 NVME_SGL_FMT_TRANSPORT_A;
2185 }
2186
nvme_tcp_set_sg_inline(struct nvme_tcp_queue * queue,struct nvme_command * c,u32 data_len)2187 static void nvme_tcp_set_sg_inline(struct nvme_tcp_queue *queue,
2188 struct nvme_command *c, u32 data_len)
2189 {
2190 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2191
2192 sg->addr = cpu_to_le64(queue->ctrl->ctrl.icdoff);
2193 sg->length = cpu_to_le32(data_len);
2194 sg->type = (NVME_SGL_FMT_DATA_DESC << 4) | NVME_SGL_FMT_OFFSET;
2195 }
2196
nvme_tcp_set_sg_host_data(struct nvme_command * c,u32 data_len)2197 static void nvme_tcp_set_sg_host_data(struct nvme_command *c,
2198 u32 data_len)
2199 {
2200 struct nvme_sgl_desc *sg = &c->common.dptr.sgl;
2201
2202 sg->addr = 0;
2203 sg->length = cpu_to_le32(data_len);
2204 sg->type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2205 NVME_SGL_FMT_TRANSPORT_A;
2206 }
2207
nvme_tcp_submit_async_event(struct nvme_ctrl * arg)2208 static void nvme_tcp_submit_async_event(struct nvme_ctrl *arg)
2209 {
2210 struct nvme_tcp_ctrl *ctrl = to_tcp_ctrl(arg);
2211 struct nvme_tcp_queue *queue = &ctrl->queues[0];
2212 struct nvme_tcp_cmd_pdu *pdu = ctrl->async_req.pdu;
2213 struct nvme_command *cmd = &pdu->cmd;
2214 u8 hdgst = nvme_tcp_hdgst_len(queue);
2215
2216 memset(pdu, 0, sizeof(*pdu));
2217 pdu->hdr.type = nvme_tcp_cmd;
2218 if (queue->hdr_digest)
2219 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2220 pdu->hdr.hlen = sizeof(*pdu);
2221 pdu->hdr.plen = cpu_to_le32(pdu->hdr.hlen + hdgst);
2222
2223 cmd->common.opcode = nvme_admin_async_event;
2224 cmd->common.command_id = NVME_AQ_BLK_MQ_DEPTH;
2225 cmd->common.flags |= NVME_CMD_SGL_METABUF;
2226 nvme_tcp_set_sg_null(cmd);
2227
2228 ctrl->async_req.state = NVME_TCP_SEND_CMD_PDU;
2229 ctrl->async_req.offset = 0;
2230 ctrl->async_req.curr_bio = NULL;
2231 ctrl->async_req.data_len = 0;
2232
2233 nvme_tcp_queue_request(&ctrl->async_req, true, true);
2234 }
2235
nvme_tcp_complete_timed_out(struct request * rq)2236 static void nvme_tcp_complete_timed_out(struct request *rq)
2237 {
2238 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2239 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2240
2241 nvme_tcp_stop_queue(ctrl, nvme_tcp_queue_id(req->queue));
2242 if (blk_mq_request_started(rq) && !blk_mq_request_completed(rq)) {
2243 nvme_req(rq)->status = NVME_SC_HOST_ABORTED_CMD;
2244 blk_mq_complete_request(rq);
2245 }
2246 }
2247
2248 static enum blk_eh_timer_return
nvme_tcp_timeout(struct request * rq,bool reserved)2249 nvme_tcp_timeout(struct request *rq, bool reserved)
2250 {
2251 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2252 struct nvme_ctrl *ctrl = &req->queue->ctrl->ctrl;
2253 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2254
2255 dev_warn(ctrl->device,
2256 "queue %d: timeout request %#x type %d\n",
2257 nvme_tcp_queue_id(req->queue), rq->tag, pdu->hdr.type);
2258
2259 if (ctrl->state != NVME_CTRL_LIVE) {
2260 /*
2261 * If we are resetting, connecting or deleting we should
2262 * complete immediately because we may block controller
2263 * teardown or setup sequence
2264 * - ctrl disable/shutdown fabrics requests
2265 * - connect requests
2266 * - initialization admin requests
2267 * - I/O requests that entered after unquiescing and
2268 * the controller stopped responding
2269 *
2270 * All other requests should be cancelled by the error
2271 * recovery work, so it's fine that we fail it here.
2272 */
2273 nvme_tcp_complete_timed_out(rq);
2274 return BLK_EH_DONE;
2275 }
2276
2277 /*
2278 * LIVE state should trigger the normal error recovery which will
2279 * handle completing this request.
2280 */
2281 nvme_tcp_error_recovery(ctrl);
2282 return BLK_EH_RESET_TIMER;
2283 }
2284
nvme_tcp_map_data(struct nvme_tcp_queue * queue,struct request * rq)2285 static blk_status_t nvme_tcp_map_data(struct nvme_tcp_queue *queue,
2286 struct request *rq)
2287 {
2288 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2289 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2290 struct nvme_command *c = &pdu->cmd;
2291
2292 c->common.flags |= NVME_CMD_SGL_METABUF;
2293
2294 if (!blk_rq_nr_phys_segments(rq))
2295 nvme_tcp_set_sg_null(c);
2296 else if (rq_data_dir(rq) == WRITE &&
2297 req->data_len <= nvme_tcp_inline_data_size(queue))
2298 nvme_tcp_set_sg_inline(queue, c, req->data_len);
2299 else
2300 nvme_tcp_set_sg_host_data(c, req->data_len);
2301
2302 return 0;
2303 }
2304
nvme_tcp_setup_cmd_pdu(struct nvme_ns * ns,struct request * rq)2305 static blk_status_t nvme_tcp_setup_cmd_pdu(struct nvme_ns *ns,
2306 struct request *rq)
2307 {
2308 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2309 struct nvme_tcp_cmd_pdu *pdu = req->pdu;
2310 struct nvme_tcp_queue *queue = req->queue;
2311 u8 hdgst = nvme_tcp_hdgst_len(queue), ddgst = 0;
2312 blk_status_t ret;
2313
2314 ret = nvme_setup_cmd(ns, rq);
2315 if (ret)
2316 return ret;
2317
2318 req->state = NVME_TCP_SEND_CMD_PDU;
2319 req->status = cpu_to_le16(NVME_SC_SUCCESS);
2320 req->offset = 0;
2321 req->data_sent = 0;
2322 req->pdu_len = 0;
2323 req->pdu_sent = 0;
2324 req->data_len = blk_rq_nr_phys_segments(rq) ?
2325 blk_rq_payload_bytes(rq) : 0;
2326 req->curr_bio = rq->bio;
2327 if (req->curr_bio && req->data_len)
2328 nvme_tcp_init_iter(req, rq_data_dir(rq));
2329
2330 if (rq_data_dir(rq) == WRITE &&
2331 req->data_len <= nvme_tcp_inline_data_size(queue))
2332 req->pdu_len = req->data_len;
2333
2334 pdu->hdr.type = nvme_tcp_cmd;
2335 pdu->hdr.flags = 0;
2336 if (queue->hdr_digest)
2337 pdu->hdr.flags |= NVME_TCP_F_HDGST;
2338 if (queue->data_digest && req->pdu_len) {
2339 pdu->hdr.flags |= NVME_TCP_F_DDGST;
2340 ddgst = nvme_tcp_ddgst_len(queue);
2341 }
2342 pdu->hdr.hlen = sizeof(*pdu);
2343 pdu->hdr.pdo = req->pdu_len ? pdu->hdr.hlen + hdgst : 0;
2344 pdu->hdr.plen =
2345 cpu_to_le32(pdu->hdr.hlen + hdgst + req->pdu_len + ddgst);
2346
2347 ret = nvme_tcp_map_data(queue, rq);
2348 if (unlikely(ret)) {
2349 nvme_cleanup_cmd(rq);
2350 dev_err(queue->ctrl->ctrl.device,
2351 "Failed to map data (%d)\n", ret);
2352 return ret;
2353 }
2354
2355 return 0;
2356 }
2357
nvme_tcp_commit_rqs(struct blk_mq_hw_ctx * hctx)2358 static void nvme_tcp_commit_rqs(struct blk_mq_hw_ctx *hctx)
2359 {
2360 struct nvme_tcp_queue *queue = hctx->driver_data;
2361
2362 if (!llist_empty(&queue->req_list))
2363 queue_work_on(queue->io_cpu, nvme_tcp_wq, &queue->io_work);
2364 }
2365
nvme_tcp_queue_rq(struct blk_mq_hw_ctx * hctx,const struct blk_mq_queue_data * bd)2366 static blk_status_t nvme_tcp_queue_rq(struct blk_mq_hw_ctx *hctx,
2367 const struct blk_mq_queue_data *bd)
2368 {
2369 struct nvme_ns *ns = hctx->queue->queuedata;
2370 struct nvme_tcp_queue *queue = hctx->driver_data;
2371 struct request *rq = bd->rq;
2372 struct nvme_tcp_request *req = blk_mq_rq_to_pdu(rq);
2373 bool queue_ready = test_bit(NVME_TCP_Q_LIVE, &queue->flags);
2374 blk_status_t ret;
2375
2376 if (!nvme_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2377 return nvme_fail_nonready_command(&queue->ctrl->ctrl, rq);
2378
2379 ret = nvme_tcp_setup_cmd_pdu(ns, rq);
2380 if (unlikely(ret))
2381 return ret;
2382
2383 blk_mq_start_request(rq);
2384
2385 nvme_tcp_queue_request(req, true, bd->last);
2386
2387 return BLK_STS_OK;
2388 }
2389
nvme_tcp_map_queues(struct blk_mq_tag_set * set)2390 static int nvme_tcp_map_queues(struct blk_mq_tag_set *set)
2391 {
2392 struct nvme_tcp_ctrl *ctrl = set->driver_data;
2393 struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2394
2395 if (opts->nr_write_queues && ctrl->io_queues[HCTX_TYPE_READ]) {
2396 /* separate read/write queues */
2397 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2398 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2399 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2400 set->map[HCTX_TYPE_READ].nr_queues =
2401 ctrl->io_queues[HCTX_TYPE_READ];
2402 set->map[HCTX_TYPE_READ].queue_offset =
2403 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2404 } else {
2405 /* shared read/write queues */
2406 set->map[HCTX_TYPE_DEFAULT].nr_queues =
2407 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2408 set->map[HCTX_TYPE_DEFAULT].queue_offset = 0;
2409 set->map[HCTX_TYPE_READ].nr_queues =
2410 ctrl->io_queues[HCTX_TYPE_DEFAULT];
2411 set->map[HCTX_TYPE_READ].queue_offset = 0;
2412 }
2413 blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
2414 blk_mq_map_queues(&set->map[HCTX_TYPE_READ]);
2415
2416 if (opts->nr_poll_queues && ctrl->io_queues[HCTX_TYPE_POLL]) {
2417 /* map dedicated poll queues only if we have queues left */
2418 set->map[HCTX_TYPE_POLL].nr_queues =
2419 ctrl->io_queues[HCTX_TYPE_POLL];
2420 set->map[HCTX_TYPE_POLL].queue_offset =
2421 ctrl->io_queues[HCTX_TYPE_DEFAULT] +
2422 ctrl->io_queues[HCTX_TYPE_READ];
2423 blk_mq_map_queues(&set->map[HCTX_TYPE_POLL]);
2424 }
2425
2426 dev_info(ctrl->ctrl.device,
2427 "mapped %d/%d/%d default/read/poll queues.\n",
2428 ctrl->io_queues[HCTX_TYPE_DEFAULT],
2429 ctrl->io_queues[HCTX_TYPE_READ],
2430 ctrl->io_queues[HCTX_TYPE_POLL]);
2431
2432 return 0;
2433 }
2434
nvme_tcp_poll(struct blk_mq_hw_ctx * hctx)2435 static int nvme_tcp_poll(struct blk_mq_hw_ctx *hctx)
2436 {
2437 struct nvme_tcp_queue *queue = hctx->driver_data;
2438 struct sock *sk = queue->sock->sk;
2439
2440 if (!test_bit(NVME_TCP_Q_LIVE, &queue->flags))
2441 return 0;
2442
2443 set_bit(NVME_TCP_Q_POLLING, &queue->flags);
2444 if (sk_can_busy_loop(sk) && skb_queue_empty_lockless(&sk->sk_receive_queue))
2445 sk_busy_loop(sk, true);
2446 nvme_tcp_try_recv(queue);
2447 clear_bit(NVME_TCP_Q_POLLING, &queue->flags);
2448 return queue->nr_cqe;
2449 }
2450
2451 static const struct blk_mq_ops nvme_tcp_mq_ops = {
2452 .queue_rq = nvme_tcp_queue_rq,
2453 .commit_rqs = nvme_tcp_commit_rqs,
2454 .complete = nvme_complete_rq,
2455 .init_request = nvme_tcp_init_request,
2456 .exit_request = nvme_tcp_exit_request,
2457 .init_hctx = nvme_tcp_init_hctx,
2458 .timeout = nvme_tcp_timeout,
2459 .map_queues = nvme_tcp_map_queues,
2460 .poll = nvme_tcp_poll,
2461 };
2462
2463 static const struct blk_mq_ops nvme_tcp_admin_mq_ops = {
2464 .queue_rq = nvme_tcp_queue_rq,
2465 .complete = nvme_complete_rq,
2466 .init_request = nvme_tcp_init_request,
2467 .exit_request = nvme_tcp_exit_request,
2468 .init_hctx = nvme_tcp_init_admin_hctx,
2469 .timeout = nvme_tcp_timeout,
2470 };
2471
2472 static const struct nvme_ctrl_ops nvme_tcp_ctrl_ops = {
2473 .name = "tcp",
2474 .module = THIS_MODULE,
2475 .flags = NVME_F_FABRICS,
2476 .reg_read32 = nvmf_reg_read32,
2477 .reg_read64 = nvmf_reg_read64,
2478 .reg_write32 = nvmf_reg_write32,
2479 .free_ctrl = nvme_tcp_free_ctrl,
2480 .submit_async_event = nvme_tcp_submit_async_event,
2481 .delete_ctrl = nvme_tcp_delete_ctrl,
2482 .get_address = nvmf_get_address,
2483 };
2484
2485 static bool
nvme_tcp_existing_controller(struct nvmf_ctrl_options * opts)2486 nvme_tcp_existing_controller(struct nvmf_ctrl_options *opts)
2487 {
2488 struct nvme_tcp_ctrl *ctrl;
2489 bool found = false;
2490
2491 mutex_lock(&nvme_tcp_ctrl_mutex);
2492 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list) {
2493 found = nvmf_ip_options_match(&ctrl->ctrl, opts);
2494 if (found)
2495 break;
2496 }
2497 mutex_unlock(&nvme_tcp_ctrl_mutex);
2498
2499 return found;
2500 }
2501
nvme_tcp_create_ctrl(struct device * dev,struct nvmf_ctrl_options * opts)2502 static struct nvme_ctrl *nvme_tcp_create_ctrl(struct device *dev,
2503 struct nvmf_ctrl_options *opts)
2504 {
2505 struct nvme_tcp_ctrl *ctrl;
2506 int ret;
2507
2508 ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
2509 if (!ctrl)
2510 return ERR_PTR(-ENOMEM);
2511
2512 INIT_LIST_HEAD(&ctrl->list);
2513 ctrl->ctrl.opts = opts;
2514 ctrl->ctrl.queue_count = opts->nr_io_queues + opts->nr_write_queues +
2515 opts->nr_poll_queues + 1;
2516 ctrl->ctrl.sqsize = opts->queue_size - 1;
2517 ctrl->ctrl.kato = opts->kato;
2518
2519 INIT_DELAYED_WORK(&ctrl->connect_work,
2520 nvme_tcp_reconnect_ctrl_work);
2521 INIT_WORK(&ctrl->err_work, nvme_tcp_error_recovery_work);
2522 INIT_WORK(&ctrl->ctrl.reset_work, nvme_reset_ctrl_work);
2523
2524 if (!(opts->mask & NVMF_OPT_TRSVCID)) {
2525 opts->trsvcid =
2526 kstrdup(__stringify(NVME_TCP_DISC_PORT), GFP_KERNEL);
2527 if (!opts->trsvcid) {
2528 ret = -ENOMEM;
2529 goto out_free_ctrl;
2530 }
2531 opts->mask |= NVMF_OPT_TRSVCID;
2532 }
2533
2534 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2535 opts->traddr, opts->trsvcid, &ctrl->addr);
2536 if (ret) {
2537 pr_err("malformed address passed: %s:%s\n",
2538 opts->traddr, opts->trsvcid);
2539 goto out_free_ctrl;
2540 }
2541
2542 if (opts->mask & NVMF_OPT_HOST_TRADDR) {
2543 ret = inet_pton_with_scope(&init_net, AF_UNSPEC,
2544 opts->host_traddr, NULL, &ctrl->src_addr);
2545 if (ret) {
2546 pr_err("malformed src address passed: %s\n",
2547 opts->host_traddr);
2548 goto out_free_ctrl;
2549 }
2550 }
2551
2552 if (opts->mask & NVMF_OPT_HOST_IFACE) {
2553 if (!__dev_get_by_name(&init_net, opts->host_iface)) {
2554 pr_err("invalid interface passed: %s\n",
2555 opts->host_iface);
2556 ret = -ENODEV;
2557 goto out_free_ctrl;
2558 }
2559 }
2560
2561 if (!opts->duplicate_connect && nvme_tcp_existing_controller(opts)) {
2562 ret = -EALREADY;
2563 goto out_free_ctrl;
2564 }
2565
2566 ctrl->queues = kcalloc(ctrl->ctrl.queue_count, sizeof(*ctrl->queues),
2567 GFP_KERNEL);
2568 if (!ctrl->queues) {
2569 ret = -ENOMEM;
2570 goto out_free_ctrl;
2571 }
2572
2573 ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_tcp_ctrl_ops, 0);
2574 if (ret)
2575 goto out_kfree_queues;
2576
2577 if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
2578 WARN_ON_ONCE(1);
2579 ret = -EINTR;
2580 goto out_uninit_ctrl;
2581 }
2582
2583 ret = nvme_tcp_setup_ctrl(&ctrl->ctrl, true);
2584 if (ret)
2585 goto out_uninit_ctrl;
2586
2587 dev_info(ctrl->ctrl.device, "new ctrl: NQN \"%s\", addr %pISp\n",
2588 ctrl->ctrl.opts->subsysnqn, &ctrl->addr);
2589
2590 mutex_lock(&nvme_tcp_ctrl_mutex);
2591 list_add_tail(&ctrl->list, &nvme_tcp_ctrl_list);
2592 mutex_unlock(&nvme_tcp_ctrl_mutex);
2593
2594 return &ctrl->ctrl;
2595
2596 out_uninit_ctrl:
2597 nvme_uninit_ctrl(&ctrl->ctrl);
2598 nvme_put_ctrl(&ctrl->ctrl);
2599 if (ret > 0)
2600 ret = -EIO;
2601 return ERR_PTR(ret);
2602 out_kfree_queues:
2603 kfree(ctrl->queues);
2604 out_free_ctrl:
2605 kfree(ctrl);
2606 return ERR_PTR(ret);
2607 }
2608
2609 static struct nvmf_transport_ops nvme_tcp_transport = {
2610 .name = "tcp",
2611 .module = THIS_MODULE,
2612 .required_opts = NVMF_OPT_TRADDR,
2613 .allowed_opts = NVMF_OPT_TRSVCID | NVMF_OPT_RECONNECT_DELAY |
2614 NVMF_OPT_HOST_TRADDR | NVMF_OPT_CTRL_LOSS_TMO |
2615 NVMF_OPT_HDR_DIGEST | NVMF_OPT_DATA_DIGEST |
2616 NVMF_OPT_NR_WRITE_QUEUES | NVMF_OPT_NR_POLL_QUEUES |
2617 NVMF_OPT_TOS | NVMF_OPT_HOST_IFACE,
2618 .create_ctrl = nvme_tcp_create_ctrl,
2619 };
2620
nvme_tcp_init_module(void)2621 static int __init nvme_tcp_init_module(void)
2622 {
2623 nvme_tcp_wq = alloc_workqueue("nvme_tcp_wq",
2624 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2625 if (!nvme_tcp_wq)
2626 return -ENOMEM;
2627
2628 nvmf_register_transport(&nvme_tcp_transport);
2629 return 0;
2630 }
2631
nvme_tcp_cleanup_module(void)2632 static void __exit nvme_tcp_cleanup_module(void)
2633 {
2634 struct nvme_tcp_ctrl *ctrl;
2635
2636 nvmf_unregister_transport(&nvme_tcp_transport);
2637
2638 mutex_lock(&nvme_tcp_ctrl_mutex);
2639 list_for_each_entry(ctrl, &nvme_tcp_ctrl_list, list)
2640 nvme_delete_ctrl(&ctrl->ctrl);
2641 mutex_unlock(&nvme_tcp_ctrl_mutex);
2642 flush_workqueue(nvme_delete_wq);
2643
2644 destroy_workqueue(nvme_tcp_wq);
2645 }
2646
2647 module_init(nvme_tcp_init_module);
2648 module_exit(nvme_tcp_cleanup_module);
2649
2650 MODULE_LICENSE("GPL v2");
2651