1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017-2018 Christoph Hellwig.
4  */
5 
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10 
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 	"turn on native support for multiple controllers per subsystem");
15 
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 	struct nvme_ns_head *h;
19 
20 	lockdep_assert_held(&subsys->lock);
21 	list_for_each_entry(h, &subsys->nsheads, entry)
22 		if (h->disk)
23 			blk_mq_unfreeze_queue(h->disk->queue);
24 }
25 
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 	struct nvme_ns_head *h;
29 
30 	lockdep_assert_held(&subsys->lock);
31 	list_for_each_entry(h, &subsys->nsheads, entry)
32 		if (h->disk)
33 			blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35 
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 	struct nvme_ns_head *h;
39 
40 	lockdep_assert_held(&subsys->lock);
41 	list_for_each_entry(h, &subsys->nsheads, entry)
42 		if (h->disk)
43 			blk_freeze_queue_start(h->disk->queue);
44 }
45 
46 /*
47  * If multipathing is enabled we need to always use the subsystem instance
48  * number for numbering our devices to avoid conflicts between subsystems that
49  * have multiple controllers and thus use the multipath-aware subsystem node
50  * and those that have a single controller and use the controller node
51  * directly.
52  */
nvme_mpath_set_disk_name(struct nvme_ns * ns,char * disk_name,int * flags)53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 	if (!multipath)
56 		return false;
57 	if (!ns->head->disk) {
58 		sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 			ns->head->instance);
60 		return true;
61 	}
62 	sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 		ns->ctrl->instance, ns->head->instance);
64 	*flags = GENHD_FL_HIDDEN;
65 	return true;
66 }
67 
nvme_failover_req(struct request * req)68 void nvme_failover_req(struct request *req)
69 {
70 	struct nvme_ns *ns = req->q->queuedata;
71 	u16 status = nvme_req(req)->status & 0x7ff;
72 	unsigned long flags;
73 	struct bio *bio;
74 
75 	nvme_mpath_clear_current_path(ns);
76 
77 	/*
78 	 * If we got back an ANA error, we know the controller is alive but not
79 	 * ready to serve this namespace.  Kick of a re-read of the ANA
80 	 * information page, and just try any other available path for now.
81 	 */
82 	if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 		set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 		queue_work(nvme_wq, &ns->ctrl->ana_work);
85 	}
86 
87 	spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 	for (bio = req->bio; bio; bio = bio->bi_next)
89 		bio_set_dev(bio, ns->head->disk->part0);
90 	blk_steal_bios(&ns->head->requeue_list, req);
91 	spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92 
93 	blk_mq_end_request(req, 0);
94 	kblockd_schedule_work(&ns->head->requeue_work);
95 }
96 
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99 	struct nvme_ns *ns;
100 
101 	down_read(&ctrl->namespaces_rwsem);
102 	list_for_each_entry(ns, &ctrl->namespaces, list) {
103 		if (ns->head->disk)
104 			kblockd_schedule_work(&ns->head->requeue_work);
105 	}
106 	up_read(&ctrl->namespaces_rwsem);
107 }
108 
109 static const char *nvme_ana_state_names[] = {
110 	[0]				= "invalid state",
111 	[NVME_ANA_OPTIMIZED]		= "optimized",
112 	[NVME_ANA_NONOPTIMIZED]		= "non-optimized",
113 	[NVME_ANA_INACCESSIBLE]		= "inaccessible",
114 	[NVME_ANA_PERSISTENT_LOSS]	= "persistent-loss",
115 	[NVME_ANA_CHANGE]		= "change",
116 };
117 
nvme_mpath_clear_current_path(struct nvme_ns * ns)118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120 	struct nvme_ns_head *head = ns->head;
121 	bool changed = false;
122 	int node;
123 
124 	if (!head)
125 		goto out;
126 
127 	for_each_node(node) {
128 		if (ns == rcu_access_pointer(head->current_path[node])) {
129 			rcu_assign_pointer(head->current_path[node], NULL);
130 			changed = true;
131 		}
132 	}
133 out:
134 	return changed;
135 }
136 
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139 	struct nvme_ns *ns;
140 
141 	mutex_lock(&ctrl->scan_lock);
142 	down_read(&ctrl->namespaces_rwsem);
143 	list_for_each_entry(ns, &ctrl->namespaces, list)
144 		if (nvme_mpath_clear_current_path(ns))
145 			kblockd_schedule_work(&ns->head->requeue_work);
146 	up_read(&ctrl->namespaces_rwsem);
147 	mutex_unlock(&ctrl->scan_lock);
148 }
149 
nvme_mpath_revalidate_paths(struct nvme_ns * ns)150 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
151 {
152 	struct nvme_ns_head *head = ns->head;
153 	sector_t capacity = get_capacity(head->disk);
154 	int node;
155 
156 	list_for_each_entry_rcu(ns, &head->list, siblings) {
157 		if (capacity != get_capacity(ns->disk))
158 			clear_bit(NVME_NS_READY, &ns->flags);
159 	}
160 
161 	for_each_node(node)
162 		rcu_assign_pointer(head->current_path[node], NULL);
163 }
164 
nvme_path_is_disabled(struct nvme_ns * ns)165 static bool nvme_path_is_disabled(struct nvme_ns *ns)
166 {
167 	/*
168 	 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
169 	 * still be able to complete assuming that the controller is connected.
170 	 * Otherwise it will fail immediately and return to the requeue list.
171 	 */
172 	if (ns->ctrl->state != NVME_CTRL_LIVE &&
173 	    ns->ctrl->state != NVME_CTRL_DELETING)
174 		return true;
175 	if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
176 	    !test_bit(NVME_NS_READY, &ns->flags))
177 		return true;
178 	return false;
179 }
180 
__nvme_find_path(struct nvme_ns_head * head,int node)181 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
182 {
183 	int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
184 	struct nvme_ns *found = NULL, *fallback = NULL, *ns;
185 
186 	list_for_each_entry_rcu(ns, &head->list, siblings) {
187 		if (nvme_path_is_disabled(ns))
188 			continue;
189 
190 		if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
191 			distance = node_distance(node, ns->ctrl->numa_node);
192 		else
193 			distance = LOCAL_DISTANCE;
194 
195 		switch (ns->ana_state) {
196 		case NVME_ANA_OPTIMIZED:
197 			if (distance < found_distance) {
198 				found_distance = distance;
199 				found = ns;
200 			}
201 			break;
202 		case NVME_ANA_NONOPTIMIZED:
203 			if (distance < fallback_distance) {
204 				fallback_distance = distance;
205 				fallback = ns;
206 			}
207 			break;
208 		default:
209 			break;
210 		}
211 	}
212 
213 	if (!found)
214 		found = fallback;
215 	if (found)
216 		rcu_assign_pointer(head->current_path[node], found);
217 	return found;
218 }
219 
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)220 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
221 		struct nvme_ns *ns)
222 {
223 	ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
224 			siblings);
225 	if (ns)
226 		return ns;
227 	return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
228 }
229 
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)230 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
231 		int node, struct nvme_ns *old)
232 {
233 	struct nvme_ns *ns, *found = NULL;
234 
235 	if (list_is_singular(&head->list)) {
236 		if (nvme_path_is_disabled(old))
237 			return NULL;
238 		return old;
239 	}
240 
241 	for (ns = nvme_next_ns(head, old);
242 	     ns && ns != old;
243 	     ns = nvme_next_ns(head, ns)) {
244 		if (nvme_path_is_disabled(ns))
245 			continue;
246 
247 		if (ns->ana_state == NVME_ANA_OPTIMIZED) {
248 			found = ns;
249 			goto out;
250 		}
251 		if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
252 			found = ns;
253 	}
254 
255 	/*
256 	 * The loop above skips the current path for round-robin semantics.
257 	 * Fall back to the current path if either:
258 	 *  - no other optimized path found and current is optimized,
259 	 *  - no other usable path found and current is usable.
260 	 */
261 	if (!nvme_path_is_disabled(old) &&
262 	    (old->ana_state == NVME_ANA_OPTIMIZED ||
263 	     (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
264 		return old;
265 
266 	if (!found)
267 		return NULL;
268 out:
269 	rcu_assign_pointer(head->current_path[node], found);
270 	return found;
271 }
272 
nvme_path_is_optimized(struct nvme_ns * ns)273 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
274 {
275 	return ns->ctrl->state == NVME_CTRL_LIVE &&
276 		ns->ana_state == NVME_ANA_OPTIMIZED;
277 }
278 
nvme_find_path(struct nvme_ns_head * head)279 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
280 {
281 	int node = numa_node_id();
282 	struct nvme_ns *ns;
283 
284 	ns = srcu_dereference(head->current_path[node], &head->srcu);
285 	if (unlikely(!ns))
286 		return __nvme_find_path(head, node);
287 
288 	if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
289 		return nvme_round_robin_path(head, node, ns);
290 	if (unlikely(!nvme_path_is_optimized(ns)))
291 		return __nvme_find_path(head, node);
292 	return ns;
293 }
294 
nvme_available_path(struct nvme_ns_head * head)295 static bool nvme_available_path(struct nvme_ns_head *head)
296 {
297 	struct nvme_ns *ns;
298 
299 	list_for_each_entry_rcu(ns, &head->list, siblings) {
300 		if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
301 			continue;
302 		switch (ns->ctrl->state) {
303 		case NVME_CTRL_LIVE:
304 		case NVME_CTRL_RESETTING:
305 		case NVME_CTRL_CONNECTING:
306 			/* fallthru */
307 			return true;
308 		default:
309 			break;
310 		}
311 	}
312 	return false;
313 }
314 
nvme_ns_head_submit_bio(struct bio * bio)315 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
316 {
317 	struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
318 	struct device *dev = disk_to_dev(head->disk);
319 	struct nvme_ns *ns;
320 	blk_qc_t ret = BLK_QC_T_NONE;
321 	int srcu_idx;
322 
323 	/*
324 	 * The namespace might be going away and the bio might be moved to a
325 	 * different queue via blk_steal_bios(), so we need to use the bio_split
326 	 * pool from the original queue to allocate the bvecs from.
327 	 */
328 	blk_queue_split(&bio);
329 
330 	srcu_idx = srcu_read_lock(&head->srcu);
331 	ns = nvme_find_path(head);
332 	if (likely(ns)) {
333 		bio_set_dev(bio, ns->disk->part0);
334 		bio->bi_opf |= REQ_NVME_MPATH;
335 		trace_block_bio_remap(bio, disk_devt(ns->head->disk),
336 				      bio->bi_iter.bi_sector);
337 		ret = submit_bio_noacct(bio);
338 	} else if (nvme_available_path(head)) {
339 		dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
340 
341 		spin_lock_irq(&head->requeue_lock);
342 		bio_list_add(&head->requeue_list, bio);
343 		spin_unlock_irq(&head->requeue_lock);
344 	} else {
345 		dev_warn_ratelimited(dev, "no available path - failing I/O\n");
346 
347 		bio->bi_status = BLK_STS_IOERR;
348 		bio_endio(bio);
349 	}
350 
351 	srcu_read_unlock(&head->srcu, srcu_idx);
352 	return ret;
353 }
354 
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)355 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
356 {
357 	if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
358 		return -ENXIO;
359 	return 0;
360 }
361 
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)362 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
363 {
364 	nvme_put_ns_head(disk->private_data);
365 }
366 
367 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)368 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
369 		unsigned int nr_zones, report_zones_cb cb, void *data)
370 {
371 	struct nvme_ns_head *head = disk->private_data;
372 	struct nvme_ns *ns;
373 	int srcu_idx, ret = -EWOULDBLOCK;
374 
375 	srcu_idx = srcu_read_lock(&head->srcu);
376 	ns = nvme_find_path(head);
377 	if (ns)
378 		ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
379 	srcu_read_unlock(&head->srcu, srcu_idx);
380 	return ret;
381 }
382 #else
383 #define nvme_ns_head_report_zones	NULL
384 #endif /* CONFIG_BLK_DEV_ZONED */
385 
386 const struct block_device_operations nvme_ns_head_ops = {
387 	.owner		= THIS_MODULE,
388 	.submit_bio	= nvme_ns_head_submit_bio,
389 	.open		= nvme_ns_head_open,
390 	.release	= nvme_ns_head_release,
391 	.ioctl		= nvme_ns_head_ioctl,
392 	.getgeo		= nvme_getgeo,
393 	.report_zones	= nvme_ns_head_report_zones,
394 	.pr_ops		= &nvme_pr_ops,
395 };
396 
cdev_to_ns_head(struct cdev * cdev)397 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
398 {
399 	return container_of(cdev, struct nvme_ns_head, cdev);
400 }
401 
nvme_ns_head_chr_open(struct inode * inode,struct file * file)402 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
403 {
404 	if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
405 		return -ENXIO;
406 	return 0;
407 }
408 
nvme_ns_head_chr_release(struct inode * inode,struct file * file)409 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
410 {
411 	nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
412 	return 0;
413 }
414 
415 static const struct file_operations nvme_ns_head_chr_fops = {
416 	.owner		= THIS_MODULE,
417 	.open		= nvme_ns_head_chr_open,
418 	.release	= nvme_ns_head_chr_release,
419 	.unlocked_ioctl	= nvme_ns_head_chr_ioctl,
420 	.compat_ioctl	= compat_ptr_ioctl,
421 };
422 
nvme_add_ns_head_cdev(struct nvme_ns_head * head)423 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
424 {
425 	int ret;
426 
427 	head->cdev_device.parent = &head->subsys->dev;
428 	ret = dev_set_name(&head->cdev_device, "ng%dn%d",
429 			   head->subsys->instance, head->instance);
430 	if (ret)
431 		return ret;
432 	ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
433 			    &nvme_ns_head_chr_fops, THIS_MODULE);
434 	return ret;
435 }
436 
nvme_requeue_work(struct work_struct * work)437 static void nvme_requeue_work(struct work_struct *work)
438 {
439 	struct nvme_ns_head *head =
440 		container_of(work, struct nvme_ns_head, requeue_work);
441 	struct bio *bio, *next;
442 
443 	spin_lock_irq(&head->requeue_lock);
444 	next = bio_list_get(&head->requeue_list);
445 	spin_unlock_irq(&head->requeue_lock);
446 
447 	while ((bio = next) != NULL) {
448 		next = bio->bi_next;
449 		bio->bi_next = NULL;
450 
451 		submit_bio_noacct(bio);
452 	}
453 }
454 
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)455 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
456 {
457 	bool vwc = false;
458 
459 	mutex_init(&head->lock);
460 	bio_list_init(&head->requeue_list);
461 	spin_lock_init(&head->requeue_lock);
462 	INIT_WORK(&head->requeue_work, nvme_requeue_work);
463 
464 	/*
465 	 * Add a multipath node if the subsystems supports multiple controllers.
466 	 * We also do this for private namespaces as the namespace sharing data could
467 	 * change after a rescan.
468 	 */
469 	if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
470 		return 0;
471 
472 	head->disk = blk_alloc_disk(ctrl->numa_node);
473 	if (!head->disk)
474 		return -ENOMEM;
475 	head->disk->fops = &nvme_ns_head_ops;
476 	head->disk->private_data = head;
477 	sprintf(head->disk->disk_name, "nvme%dn%d",
478 			ctrl->subsys->instance, head->instance);
479 
480 	blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
481 	blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
482 
483 	/* set to a default value of 512 until the disk is validated */
484 	blk_queue_logical_block_size(head->disk->queue, 512);
485 	blk_set_stacking_limits(&head->disk->queue->limits);
486 
487 	/* we need to propagate up the VMC settings */
488 	if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
489 		vwc = true;
490 	blk_queue_write_cache(head->disk->queue, vwc, vwc);
491 	return 0;
492 }
493 
nvme_mpath_set_live(struct nvme_ns * ns)494 static void nvme_mpath_set_live(struct nvme_ns *ns)
495 {
496 	struct nvme_ns_head *head = ns->head;
497 
498 	if (!head->disk)
499 		return;
500 
501 	if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
502 		device_add_disk(&head->subsys->dev, head->disk,
503 				nvme_ns_id_attr_groups);
504 		nvme_add_ns_head_cdev(head);
505 	}
506 
507 	mutex_lock(&head->lock);
508 	if (nvme_path_is_optimized(ns)) {
509 		int node, srcu_idx;
510 
511 		srcu_idx = srcu_read_lock(&head->srcu);
512 		for_each_node(node)
513 			__nvme_find_path(head, node);
514 		srcu_read_unlock(&head->srcu, srcu_idx);
515 	}
516 	mutex_unlock(&head->lock);
517 
518 	synchronize_srcu(&head->srcu);
519 	kblockd_schedule_work(&head->requeue_work);
520 }
521 
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))522 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
523 		int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
524 			void *))
525 {
526 	void *base = ctrl->ana_log_buf;
527 	size_t offset = sizeof(struct nvme_ana_rsp_hdr);
528 	int error, i;
529 
530 	lockdep_assert_held(&ctrl->ana_lock);
531 
532 	for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
533 		struct nvme_ana_group_desc *desc = base + offset;
534 		u32 nr_nsids;
535 		size_t nsid_buf_size;
536 
537 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
538 			return -EINVAL;
539 
540 		nr_nsids = le32_to_cpu(desc->nnsids);
541 		nsid_buf_size = nr_nsids * sizeof(__le32);
542 
543 		if (WARN_ON_ONCE(desc->grpid == 0))
544 			return -EINVAL;
545 		if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
546 			return -EINVAL;
547 		if (WARN_ON_ONCE(desc->state == 0))
548 			return -EINVAL;
549 		if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
550 			return -EINVAL;
551 
552 		offset += sizeof(*desc);
553 		if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
554 			return -EINVAL;
555 
556 		error = cb(ctrl, desc, data);
557 		if (error)
558 			return error;
559 
560 		offset += nsid_buf_size;
561 	}
562 
563 	return 0;
564 }
565 
nvme_state_is_live(enum nvme_ana_state state)566 static inline bool nvme_state_is_live(enum nvme_ana_state state)
567 {
568 	return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
569 }
570 
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)571 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
572 		struct nvme_ns *ns)
573 {
574 	ns->ana_grpid = le32_to_cpu(desc->grpid);
575 	ns->ana_state = desc->state;
576 	clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
577 
578 	if (nvme_state_is_live(ns->ana_state))
579 		nvme_mpath_set_live(ns);
580 }
581 
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)582 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
583 		struct nvme_ana_group_desc *desc, void *data)
584 {
585 	u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
586 	unsigned *nr_change_groups = data;
587 	struct nvme_ns *ns;
588 
589 	dev_dbg(ctrl->device, "ANA group %d: %s.\n",
590 			le32_to_cpu(desc->grpid),
591 			nvme_ana_state_names[desc->state]);
592 
593 	if (desc->state == NVME_ANA_CHANGE)
594 		(*nr_change_groups)++;
595 
596 	if (!nr_nsids)
597 		return 0;
598 
599 	down_read(&ctrl->namespaces_rwsem);
600 	list_for_each_entry(ns, &ctrl->namespaces, list) {
601 		unsigned nsid;
602 again:
603 		nsid = le32_to_cpu(desc->nsids[n]);
604 		if (ns->head->ns_id < nsid)
605 			continue;
606 		if (ns->head->ns_id == nsid)
607 			nvme_update_ns_ana_state(desc, ns);
608 		if (++n == nr_nsids)
609 			break;
610 		if (ns->head->ns_id > nsid)
611 			goto again;
612 	}
613 	up_read(&ctrl->namespaces_rwsem);
614 	return 0;
615 }
616 
nvme_read_ana_log(struct nvme_ctrl * ctrl)617 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
618 {
619 	u32 nr_change_groups = 0;
620 	int error;
621 
622 	mutex_lock(&ctrl->ana_lock);
623 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
624 			ctrl->ana_log_buf, ctrl->ana_log_size, 0);
625 	if (error) {
626 		dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
627 		goto out_unlock;
628 	}
629 
630 	error = nvme_parse_ana_log(ctrl, &nr_change_groups,
631 			nvme_update_ana_state);
632 	if (error)
633 		goto out_unlock;
634 
635 	/*
636 	 * In theory we should have an ANATT timer per group as they might enter
637 	 * the change state at different times.  But that is a lot of overhead
638 	 * just to protect against a target that keeps entering new changes
639 	 * states while never finishing previous ones.  But we'll still
640 	 * eventually time out once all groups are in change state, so this
641 	 * isn't a big deal.
642 	 *
643 	 * We also double the ANATT value to provide some slack for transports
644 	 * or AEN processing overhead.
645 	 */
646 	if (nr_change_groups)
647 		mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
648 	else
649 		del_timer_sync(&ctrl->anatt_timer);
650 out_unlock:
651 	mutex_unlock(&ctrl->ana_lock);
652 	return error;
653 }
654 
nvme_ana_work(struct work_struct * work)655 static void nvme_ana_work(struct work_struct *work)
656 {
657 	struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
658 
659 	if (ctrl->state != NVME_CTRL_LIVE)
660 		return;
661 
662 	nvme_read_ana_log(ctrl);
663 }
664 
nvme_anatt_timeout(struct timer_list * t)665 static void nvme_anatt_timeout(struct timer_list *t)
666 {
667 	struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
668 
669 	dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
670 	nvme_reset_ctrl(ctrl);
671 }
672 
nvme_mpath_stop(struct nvme_ctrl * ctrl)673 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
674 {
675 	if (!nvme_ctrl_use_ana(ctrl))
676 		return;
677 	del_timer_sync(&ctrl->anatt_timer);
678 	cancel_work_sync(&ctrl->ana_work);
679 }
680 
681 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store)  \
682 	struct device_attribute subsys_attr_##_name =	\
683 		__ATTR(_name, _mode, _show, _store)
684 
685 static const char *nvme_iopolicy_names[] = {
686 	[NVME_IOPOLICY_NUMA]	= "numa",
687 	[NVME_IOPOLICY_RR]	= "round-robin",
688 };
689 
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)690 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
691 		struct device_attribute *attr, char *buf)
692 {
693 	struct nvme_subsystem *subsys =
694 		container_of(dev, struct nvme_subsystem, dev);
695 
696 	return sysfs_emit(buf, "%s\n",
697 			  nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
698 }
699 
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)700 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
701 		struct device_attribute *attr, const char *buf, size_t count)
702 {
703 	struct nvme_subsystem *subsys =
704 		container_of(dev, struct nvme_subsystem, dev);
705 	int i;
706 
707 	for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
708 		if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
709 			WRITE_ONCE(subsys->iopolicy, i);
710 			return count;
711 		}
712 	}
713 
714 	return -EINVAL;
715 }
716 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
717 		      nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
718 
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
720 		char *buf)
721 {
722 	return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
723 }
724 DEVICE_ATTR_RO(ana_grpid);
725 
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)726 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
727 		char *buf)
728 {
729 	struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
730 
731 	return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
732 }
733 DEVICE_ATTR_RO(ana_state);
734 
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)735 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
736 		struct nvme_ana_group_desc *desc, void *data)
737 {
738 	struct nvme_ana_group_desc *dst = data;
739 
740 	if (desc->grpid != dst->grpid)
741 		return 0;
742 
743 	*dst = *desc;
744 	return -ENXIO; /* just break out of the loop */
745 }
746 
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)747 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
748 {
749 	if (nvme_ctrl_use_ana(ns->ctrl)) {
750 		struct nvme_ana_group_desc desc = {
751 			.grpid = id->anagrpid,
752 			.state = 0,
753 		};
754 
755 		mutex_lock(&ns->ctrl->ana_lock);
756 		ns->ana_grpid = le32_to_cpu(id->anagrpid);
757 		nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
758 		mutex_unlock(&ns->ctrl->ana_lock);
759 		if (desc.state) {
760 			/* found the group desc: update */
761 			nvme_update_ns_ana_state(&desc, ns);
762 		} else {
763 			/* group desc not found: trigger a re-read */
764 			set_bit(NVME_NS_ANA_PENDING, &ns->flags);
765 			queue_work(nvme_wq, &ns->ctrl->ana_work);
766 		}
767 	} else {
768 		ns->ana_state = NVME_ANA_OPTIMIZED;
769 		nvme_mpath_set_live(ns);
770 	}
771 
772 	if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
773 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
774 				   ns->head->disk->queue);
775 #ifdef CONFIG_BLK_DEV_ZONED
776 	if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
777 		ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
778 #endif
779 }
780 
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)781 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
782 {
783 	if (!head->disk)
784 		return;
785 	kblockd_schedule_work(&head->requeue_work);
786 	if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
787 		nvme_cdev_del(&head->cdev, &head->cdev_device);
788 		del_gendisk(head->disk);
789 	}
790 }
791 
nvme_mpath_remove_disk(struct nvme_ns_head * head)792 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
793 {
794 	if (!head->disk)
795 		return;
796 	blk_set_queue_dying(head->disk->queue);
797 	/* make sure all pending bios are cleaned up */
798 	kblockd_schedule_work(&head->requeue_work);
799 	flush_work(&head->requeue_work);
800 	blk_cleanup_disk(head->disk);
801 }
802 
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)803 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
804 {
805 	mutex_init(&ctrl->ana_lock);
806 	timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
807 	INIT_WORK(&ctrl->ana_work, nvme_ana_work);
808 }
809 
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)810 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
811 {
812 	size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
813 	size_t ana_log_size;
814 	int error = 0;
815 
816 	/* check if multipath is enabled and we have the capability */
817 	if (!multipath || !ctrl->subsys ||
818 	    !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
819 		return 0;
820 
821 	if (!ctrl->max_namespaces ||
822 	    ctrl->max_namespaces > le32_to_cpu(id->nn)) {
823 		dev_err(ctrl->device,
824 			"Invalid MNAN value %u\n", ctrl->max_namespaces);
825 		return -EINVAL;
826 	}
827 
828 	ctrl->anacap = id->anacap;
829 	ctrl->anatt = id->anatt;
830 	ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
831 	ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
832 
833 	ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
834 		ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
835 		ctrl->max_namespaces * sizeof(__le32);
836 	if (ana_log_size > max_transfer_size) {
837 		dev_err(ctrl->device,
838 			"ANA log page size (%zd) larger than MDTS (%zd).\n",
839 			ana_log_size, max_transfer_size);
840 		dev_err(ctrl->device, "disabling ANA support.\n");
841 		goto out_uninit;
842 	}
843 	if (ana_log_size > ctrl->ana_log_size) {
844 		nvme_mpath_stop(ctrl);
845 		kfree(ctrl->ana_log_buf);
846 		ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
847 		if (!ctrl->ana_log_buf)
848 			return -ENOMEM;
849 	}
850 	ctrl->ana_log_size = ana_log_size;
851 	error = nvme_read_ana_log(ctrl);
852 	if (error)
853 		goto out_uninit;
854 	return 0;
855 
856 out_uninit:
857 	nvme_mpath_uninit(ctrl);
858 	return error;
859 }
860 
nvme_mpath_uninit(struct nvme_ctrl * ctrl)861 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
862 {
863 	kfree(ctrl->ana_log_buf);
864 	ctrl->ana_log_buf = NULL;
865 }
866