1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (c) 2017-2018 Christoph Hellwig.
4 */
5
6 #include <linux/backing-dev.h>
7 #include <linux/moduleparam.h>
8 #include <trace/events/block.h>
9 #include "nvme.h"
10
11 static bool multipath = true;
12 module_param(multipath, bool, 0444);
13 MODULE_PARM_DESC(multipath,
14 "turn on native support for multiple controllers per subsystem");
15
nvme_mpath_unfreeze(struct nvme_subsystem * subsys)16 void nvme_mpath_unfreeze(struct nvme_subsystem *subsys)
17 {
18 struct nvme_ns_head *h;
19
20 lockdep_assert_held(&subsys->lock);
21 list_for_each_entry(h, &subsys->nsheads, entry)
22 if (h->disk)
23 blk_mq_unfreeze_queue(h->disk->queue);
24 }
25
nvme_mpath_wait_freeze(struct nvme_subsystem * subsys)26 void nvme_mpath_wait_freeze(struct nvme_subsystem *subsys)
27 {
28 struct nvme_ns_head *h;
29
30 lockdep_assert_held(&subsys->lock);
31 list_for_each_entry(h, &subsys->nsheads, entry)
32 if (h->disk)
33 blk_mq_freeze_queue_wait(h->disk->queue);
34 }
35
nvme_mpath_start_freeze(struct nvme_subsystem * subsys)36 void nvme_mpath_start_freeze(struct nvme_subsystem *subsys)
37 {
38 struct nvme_ns_head *h;
39
40 lockdep_assert_held(&subsys->lock);
41 list_for_each_entry(h, &subsys->nsheads, entry)
42 if (h->disk)
43 blk_freeze_queue_start(h->disk->queue);
44 }
45
46 /*
47 * If multipathing is enabled we need to always use the subsystem instance
48 * number for numbering our devices to avoid conflicts between subsystems that
49 * have multiple controllers and thus use the multipath-aware subsystem node
50 * and those that have a single controller and use the controller node
51 * directly.
52 */
nvme_mpath_set_disk_name(struct nvme_ns * ns,char * disk_name,int * flags)53 bool nvme_mpath_set_disk_name(struct nvme_ns *ns, char *disk_name, int *flags)
54 {
55 if (!multipath)
56 return false;
57 if (!ns->head->disk) {
58 sprintf(disk_name, "nvme%dn%d", ns->ctrl->subsys->instance,
59 ns->head->instance);
60 return true;
61 }
62 sprintf(disk_name, "nvme%dc%dn%d", ns->ctrl->subsys->instance,
63 ns->ctrl->instance, ns->head->instance);
64 *flags = GENHD_FL_HIDDEN;
65 return true;
66 }
67
nvme_failover_req(struct request * req)68 void nvme_failover_req(struct request *req)
69 {
70 struct nvme_ns *ns = req->q->queuedata;
71 u16 status = nvme_req(req)->status & 0x7ff;
72 unsigned long flags;
73 struct bio *bio;
74
75 nvme_mpath_clear_current_path(ns);
76
77 /*
78 * If we got back an ANA error, we know the controller is alive but not
79 * ready to serve this namespace. Kick of a re-read of the ANA
80 * information page, and just try any other available path for now.
81 */
82 if (nvme_is_ana_error(status) && ns->ctrl->ana_log_buf) {
83 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
84 queue_work(nvme_wq, &ns->ctrl->ana_work);
85 }
86
87 spin_lock_irqsave(&ns->head->requeue_lock, flags);
88 for (bio = req->bio; bio; bio = bio->bi_next)
89 bio_set_dev(bio, ns->head->disk->part0);
90 blk_steal_bios(&ns->head->requeue_list, req);
91 spin_unlock_irqrestore(&ns->head->requeue_lock, flags);
92
93 blk_mq_end_request(req, 0);
94 kblockd_schedule_work(&ns->head->requeue_work);
95 }
96
nvme_kick_requeue_lists(struct nvme_ctrl * ctrl)97 void nvme_kick_requeue_lists(struct nvme_ctrl *ctrl)
98 {
99 struct nvme_ns *ns;
100
101 down_read(&ctrl->namespaces_rwsem);
102 list_for_each_entry(ns, &ctrl->namespaces, list) {
103 if (ns->head->disk)
104 kblockd_schedule_work(&ns->head->requeue_work);
105 }
106 up_read(&ctrl->namespaces_rwsem);
107 }
108
109 static const char *nvme_ana_state_names[] = {
110 [0] = "invalid state",
111 [NVME_ANA_OPTIMIZED] = "optimized",
112 [NVME_ANA_NONOPTIMIZED] = "non-optimized",
113 [NVME_ANA_INACCESSIBLE] = "inaccessible",
114 [NVME_ANA_PERSISTENT_LOSS] = "persistent-loss",
115 [NVME_ANA_CHANGE] = "change",
116 };
117
nvme_mpath_clear_current_path(struct nvme_ns * ns)118 bool nvme_mpath_clear_current_path(struct nvme_ns *ns)
119 {
120 struct nvme_ns_head *head = ns->head;
121 bool changed = false;
122 int node;
123
124 if (!head)
125 goto out;
126
127 for_each_node(node) {
128 if (ns == rcu_access_pointer(head->current_path[node])) {
129 rcu_assign_pointer(head->current_path[node], NULL);
130 changed = true;
131 }
132 }
133 out:
134 return changed;
135 }
136
nvme_mpath_clear_ctrl_paths(struct nvme_ctrl * ctrl)137 void nvme_mpath_clear_ctrl_paths(struct nvme_ctrl *ctrl)
138 {
139 struct nvme_ns *ns;
140
141 mutex_lock(&ctrl->scan_lock);
142 down_read(&ctrl->namespaces_rwsem);
143 list_for_each_entry(ns, &ctrl->namespaces, list)
144 if (nvme_mpath_clear_current_path(ns))
145 kblockd_schedule_work(&ns->head->requeue_work);
146 up_read(&ctrl->namespaces_rwsem);
147 mutex_unlock(&ctrl->scan_lock);
148 }
149
nvme_mpath_revalidate_paths(struct nvme_ns * ns)150 void nvme_mpath_revalidate_paths(struct nvme_ns *ns)
151 {
152 struct nvme_ns_head *head = ns->head;
153 sector_t capacity = get_capacity(head->disk);
154 int node;
155
156 list_for_each_entry_rcu(ns, &head->list, siblings) {
157 if (capacity != get_capacity(ns->disk))
158 clear_bit(NVME_NS_READY, &ns->flags);
159 }
160
161 for_each_node(node)
162 rcu_assign_pointer(head->current_path[node], NULL);
163 }
164
nvme_path_is_disabled(struct nvme_ns * ns)165 static bool nvme_path_is_disabled(struct nvme_ns *ns)
166 {
167 /*
168 * We don't treat NVME_CTRL_DELETING as a disabled path as I/O should
169 * still be able to complete assuming that the controller is connected.
170 * Otherwise it will fail immediately and return to the requeue list.
171 */
172 if (ns->ctrl->state != NVME_CTRL_LIVE &&
173 ns->ctrl->state != NVME_CTRL_DELETING)
174 return true;
175 if (test_bit(NVME_NS_ANA_PENDING, &ns->flags) ||
176 !test_bit(NVME_NS_READY, &ns->flags))
177 return true;
178 return false;
179 }
180
__nvme_find_path(struct nvme_ns_head * head,int node)181 static struct nvme_ns *__nvme_find_path(struct nvme_ns_head *head, int node)
182 {
183 int found_distance = INT_MAX, fallback_distance = INT_MAX, distance;
184 struct nvme_ns *found = NULL, *fallback = NULL, *ns;
185
186 list_for_each_entry_rcu(ns, &head->list, siblings) {
187 if (nvme_path_is_disabled(ns))
188 continue;
189
190 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_NUMA)
191 distance = node_distance(node, ns->ctrl->numa_node);
192 else
193 distance = LOCAL_DISTANCE;
194
195 switch (ns->ana_state) {
196 case NVME_ANA_OPTIMIZED:
197 if (distance < found_distance) {
198 found_distance = distance;
199 found = ns;
200 }
201 break;
202 case NVME_ANA_NONOPTIMIZED:
203 if (distance < fallback_distance) {
204 fallback_distance = distance;
205 fallback = ns;
206 }
207 break;
208 default:
209 break;
210 }
211 }
212
213 if (!found)
214 found = fallback;
215 if (found)
216 rcu_assign_pointer(head->current_path[node], found);
217 return found;
218 }
219
nvme_next_ns(struct nvme_ns_head * head,struct nvme_ns * ns)220 static struct nvme_ns *nvme_next_ns(struct nvme_ns_head *head,
221 struct nvme_ns *ns)
222 {
223 ns = list_next_or_null_rcu(&head->list, &ns->siblings, struct nvme_ns,
224 siblings);
225 if (ns)
226 return ns;
227 return list_first_or_null_rcu(&head->list, struct nvme_ns, siblings);
228 }
229
nvme_round_robin_path(struct nvme_ns_head * head,int node,struct nvme_ns * old)230 static struct nvme_ns *nvme_round_robin_path(struct nvme_ns_head *head,
231 int node, struct nvme_ns *old)
232 {
233 struct nvme_ns *ns, *found = NULL;
234
235 if (list_is_singular(&head->list)) {
236 if (nvme_path_is_disabled(old))
237 return NULL;
238 return old;
239 }
240
241 for (ns = nvme_next_ns(head, old);
242 ns && ns != old;
243 ns = nvme_next_ns(head, ns)) {
244 if (nvme_path_is_disabled(ns))
245 continue;
246
247 if (ns->ana_state == NVME_ANA_OPTIMIZED) {
248 found = ns;
249 goto out;
250 }
251 if (ns->ana_state == NVME_ANA_NONOPTIMIZED)
252 found = ns;
253 }
254
255 /*
256 * The loop above skips the current path for round-robin semantics.
257 * Fall back to the current path if either:
258 * - no other optimized path found and current is optimized,
259 * - no other usable path found and current is usable.
260 */
261 if (!nvme_path_is_disabled(old) &&
262 (old->ana_state == NVME_ANA_OPTIMIZED ||
263 (!found && old->ana_state == NVME_ANA_NONOPTIMIZED)))
264 return old;
265
266 if (!found)
267 return NULL;
268 out:
269 rcu_assign_pointer(head->current_path[node], found);
270 return found;
271 }
272
nvme_path_is_optimized(struct nvme_ns * ns)273 static inline bool nvme_path_is_optimized(struct nvme_ns *ns)
274 {
275 return ns->ctrl->state == NVME_CTRL_LIVE &&
276 ns->ana_state == NVME_ANA_OPTIMIZED;
277 }
278
nvme_find_path(struct nvme_ns_head * head)279 inline struct nvme_ns *nvme_find_path(struct nvme_ns_head *head)
280 {
281 int node = numa_node_id();
282 struct nvme_ns *ns;
283
284 ns = srcu_dereference(head->current_path[node], &head->srcu);
285 if (unlikely(!ns))
286 return __nvme_find_path(head, node);
287
288 if (READ_ONCE(head->subsys->iopolicy) == NVME_IOPOLICY_RR)
289 return nvme_round_robin_path(head, node, ns);
290 if (unlikely(!nvme_path_is_optimized(ns)))
291 return __nvme_find_path(head, node);
292 return ns;
293 }
294
nvme_available_path(struct nvme_ns_head * head)295 static bool nvme_available_path(struct nvme_ns_head *head)
296 {
297 struct nvme_ns *ns;
298
299 list_for_each_entry_rcu(ns, &head->list, siblings) {
300 if (test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ns->ctrl->flags))
301 continue;
302 switch (ns->ctrl->state) {
303 case NVME_CTRL_LIVE:
304 case NVME_CTRL_RESETTING:
305 case NVME_CTRL_CONNECTING:
306 /* fallthru */
307 return true;
308 default:
309 break;
310 }
311 }
312 return false;
313 }
314
nvme_ns_head_submit_bio(struct bio * bio)315 static blk_qc_t nvme_ns_head_submit_bio(struct bio *bio)
316 {
317 struct nvme_ns_head *head = bio->bi_bdev->bd_disk->private_data;
318 struct device *dev = disk_to_dev(head->disk);
319 struct nvme_ns *ns;
320 blk_qc_t ret = BLK_QC_T_NONE;
321 int srcu_idx;
322
323 /*
324 * The namespace might be going away and the bio might be moved to a
325 * different queue via blk_steal_bios(), so we need to use the bio_split
326 * pool from the original queue to allocate the bvecs from.
327 */
328 blk_queue_split(&bio);
329
330 srcu_idx = srcu_read_lock(&head->srcu);
331 ns = nvme_find_path(head);
332 if (likely(ns)) {
333 bio_set_dev(bio, ns->disk->part0);
334 bio->bi_opf |= REQ_NVME_MPATH;
335 trace_block_bio_remap(bio, disk_devt(ns->head->disk),
336 bio->bi_iter.bi_sector);
337 ret = submit_bio_noacct(bio);
338 } else if (nvme_available_path(head)) {
339 dev_warn_ratelimited(dev, "no usable path - requeuing I/O\n");
340
341 spin_lock_irq(&head->requeue_lock);
342 bio_list_add(&head->requeue_list, bio);
343 spin_unlock_irq(&head->requeue_lock);
344 } else {
345 dev_warn_ratelimited(dev, "no available path - failing I/O\n");
346
347 bio->bi_status = BLK_STS_IOERR;
348 bio_endio(bio);
349 }
350
351 srcu_read_unlock(&head->srcu, srcu_idx);
352 return ret;
353 }
354
nvme_ns_head_open(struct block_device * bdev,fmode_t mode)355 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
356 {
357 if (!nvme_tryget_ns_head(bdev->bd_disk->private_data))
358 return -ENXIO;
359 return 0;
360 }
361
nvme_ns_head_release(struct gendisk * disk,fmode_t mode)362 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
363 {
364 nvme_put_ns_head(disk->private_data);
365 }
366
367 #ifdef CONFIG_BLK_DEV_ZONED
nvme_ns_head_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)368 static int nvme_ns_head_report_zones(struct gendisk *disk, sector_t sector,
369 unsigned int nr_zones, report_zones_cb cb, void *data)
370 {
371 struct nvme_ns_head *head = disk->private_data;
372 struct nvme_ns *ns;
373 int srcu_idx, ret = -EWOULDBLOCK;
374
375 srcu_idx = srcu_read_lock(&head->srcu);
376 ns = nvme_find_path(head);
377 if (ns)
378 ret = nvme_ns_report_zones(ns, sector, nr_zones, cb, data);
379 srcu_read_unlock(&head->srcu, srcu_idx);
380 return ret;
381 }
382 #else
383 #define nvme_ns_head_report_zones NULL
384 #endif /* CONFIG_BLK_DEV_ZONED */
385
386 const struct block_device_operations nvme_ns_head_ops = {
387 .owner = THIS_MODULE,
388 .submit_bio = nvme_ns_head_submit_bio,
389 .open = nvme_ns_head_open,
390 .release = nvme_ns_head_release,
391 .ioctl = nvme_ns_head_ioctl,
392 .getgeo = nvme_getgeo,
393 .report_zones = nvme_ns_head_report_zones,
394 .pr_ops = &nvme_pr_ops,
395 };
396
cdev_to_ns_head(struct cdev * cdev)397 static inline struct nvme_ns_head *cdev_to_ns_head(struct cdev *cdev)
398 {
399 return container_of(cdev, struct nvme_ns_head, cdev);
400 }
401
nvme_ns_head_chr_open(struct inode * inode,struct file * file)402 static int nvme_ns_head_chr_open(struct inode *inode, struct file *file)
403 {
404 if (!nvme_tryget_ns_head(cdev_to_ns_head(inode->i_cdev)))
405 return -ENXIO;
406 return 0;
407 }
408
nvme_ns_head_chr_release(struct inode * inode,struct file * file)409 static int nvme_ns_head_chr_release(struct inode *inode, struct file *file)
410 {
411 nvme_put_ns_head(cdev_to_ns_head(inode->i_cdev));
412 return 0;
413 }
414
415 static const struct file_operations nvme_ns_head_chr_fops = {
416 .owner = THIS_MODULE,
417 .open = nvme_ns_head_chr_open,
418 .release = nvme_ns_head_chr_release,
419 .unlocked_ioctl = nvme_ns_head_chr_ioctl,
420 .compat_ioctl = compat_ptr_ioctl,
421 };
422
nvme_add_ns_head_cdev(struct nvme_ns_head * head)423 static int nvme_add_ns_head_cdev(struct nvme_ns_head *head)
424 {
425 int ret;
426
427 head->cdev_device.parent = &head->subsys->dev;
428 ret = dev_set_name(&head->cdev_device, "ng%dn%d",
429 head->subsys->instance, head->instance);
430 if (ret)
431 return ret;
432 ret = nvme_cdev_add(&head->cdev, &head->cdev_device,
433 &nvme_ns_head_chr_fops, THIS_MODULE);
434 return ret;
435 }
436
nvme_requeue_work(struct work_struct * work)437 static void nvme_requeue_work(struct work_struct *work)
438 {
439 struct nvme_ns_head *head =
440 container_of(work, struct nvme_ns_head, requeue_work);
441 struct bio *bio, *next;
442
443 spin_lock_irq(&head->requeue_lock);
444 next = bio_list_get(&head->requeue_list);
445 spin_unlock_irq(&head->requeue_lock);
446
447 while ((bio = next) != NULL) {
448 next = bio->bi_next;
449 bio->bi_next = NULL;
450
451 submit_bio_noacct(bio);
452 }
453 }
454
nvme_mpath_alloc_disk(struct nvme_ctrl * ctrl,struct nvme_ns_head * head)455 int nvme_mpath_alloc_disk(struct nvme_ctrl *ctrl, struct nvme_ns_head *head)
456 {
457 bool vwc = false;
458
459 mutex_init(&head->lock);
460 bio_list_init(&head->requeue_list);
461 spin_lock_init(&head->requeue_lock);
462 INIT_WORK(&head->requeue_work, nvme_requeue_work);
463
464 /*
465 * Add a multipath node if the subsystems supports multiple controllers.
466 * We also do this for private namespaces as the namespace sharing data could
467 * change after a rescan.
468 */
469 if (!(ctrl->subsys->cmic & NVME_CTRL_CMIC_MULTI_CTRL) || !multipath)
470 return 0;
471
472 head->disk = blk_alloc_disk(ctrl->numa_node);
473 if (!head->disk)
474 return -ENOMEM;
475 head->disk->fops = &nvme_ns_head_ops;
476 head->disk->private_data = head;
477 sprintf(head->disk->disk_name, "nvme%dn%d",
478 ctrl->subsys->instance, head->instance);
479
480 blk_queue_flag_set(QUEUE_FLAG_NONROT, head->disk->queue);
481 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, head->disk->queue);
482
483 /* set to a default value of 512 until the disk is validated */
484 blk_queue_logical_block_size(head->disk->queue, 512);
485 blk_set_stacking_limits(&head->disk->queue->limits);
486
487 /* we need to propagate up the VMC settings */
488 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
489 vwc = true;
490 blk_queue_write_cache(head->disk->queue, vwc, vwc);
491 return 0;
492 }
493
nvme_mpath_set_live(struct nvme_ns * ns)494 static void nvme_mpath_set_live(struct nvme_ns *ns)
495 {
496 struct nvme_ns_head *head = ns->head;
497
498 if (!head->disk)
499 return;
500
501 if (!test_and_set_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
502 device_add_disk(&head->subsys->dev, head->disk,
503 nvme_ns_id_attr_groups);
504 nvme_add_ns_head_cdev(head);
505 }
506
507 mutex_lock(&head->lock);
508 if (nvme_path_is_optimized(ns)) {
509 int node, srcu_idx;
510
511 srcu_idx = srcu_read_lock(&head->srcu);
512 for_each_node(node)
513 __nvme_find_path(head, node);
514 srcu_read_unlock(&head->srcu, srcu_idx);
515 }
516 mutex_unlock(&head->lock);
517
518 synchronize_srcu(&head->srcu);
519 kblockd_schedule_work(&head->requeue_work);
520 }
521
nvme_parse_ana_log(struct nvme_ctrl * ctrl,void * data,int (* cb)(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc *,void *))522 static int nvme_parse_ana_log(struct nvme_ctrl *ctrl, void *data,
523 int (*cb)(struct nvme_ctrl *ctrl, struct nvme_ana_group_desc *,
524 void *))
525 {
526 void *base = ctrl->ana_log_buf;
527 size_t offset = sizeof(struct nvme_ana_rsp_hdr);
528 int error, i;
529
530 lockdep_assert_held(&ctrl->ana_lock);
531
532 for (i = 0; i < le16_to_cpu(ctrl->ana_log_buf->ngrps); i++) {
533 struct nvme_ana_group_desc *desc = base + offset;
534 u32 nr_nsids;
535 size_t nsid_buf_size;
536
537 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - sizeof(*desc)))
538 return -EINVAL;
539
540 nr_nsids = le32_to_cpu(desc->nnsids);
541 nsid_buf_size = nr_nsids * sizeof(__le32);
542
543 if (WARN_ON_ONCE(desc->grpid == 0))
544 return -EINVAL;
545 if (WARN_ON_ONCE(le32_to_cpu(desc->grpid) > ctrl->anagrpmax))
546 return -EINVAL;
547 if (WARN_ON_ONCE(desc->state == 0))
548 return -EINVAL;
549 if (WARN_ON_ONCE(desc->state > NVME_ANA_CHANGE))
550 return -EINVAL;
551
552 offset += sizeof(*desc);
553 if (WARN_ON_ONCE(offset > ctrl->ana_log_size - nsid_buf_size))
554 return -EINVAL;
555
556 error = cb(ctrl, desc, data);
557 if (error)
558 return error;
559
560 offset += nsid_buf_size;
561 }
562
563 return 0;
564 }
565
nvme_state_is_live(enum nvme_ana_state state)566 static inline bool nvme_state_is_live(enum nvme_ana_state state)
567 {
568 return state == NVME_ANA_OPTIMIZED || state == NVME_ANA_NONOPTIMIZED;
569 }
570
nvme_update_ns_ana_state(struct nvme_ana_group_desc * desc,struct nvme_ns * ns)571 static void nvme_update_ns_ana_state(struct nvme_ana_group_desc *desc,
572 struct nvme_ns *ns)
573 {
574 ns->ana_grpid = le32_to_cpu(desc->grpid);
575 ns->ana_state = desc->state;
576 clear_bit(NVME_NS_ANA_PENDING, &ns->flags);
577
578 if (nvme_state_is_live(ns->ana_state))
579 nvme_mpath_set_live(ns);
580 }
581
nvme_update_ana_state(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)582 static int nvme_update_ana_state(struct nvme_ctrl *ctrl,
583 struct nvme_ana_group_desc *desc, void *data)
584 {
585 u32 nr_nsids = le32_to_cpu(desc->nnsids), n = 0;
586 unsigned *nr_change_groups = data;
587 struct nvme_ns *ns;
588
589 dev_dbg(ctrl->device, "ANA group %d: %s.\n",
590 le32_to_cpu(desc->grpid),
591 nvme_ana_state_names[desc->state]);
592
593 if (desc->state == NVME_ANA_CHANGE)
594 (*nr_change_groups)++;
595
596 if (!nr_nsids)
597 return 0;
598
599 down_read(&ctrl->namespaces_rwsem);
600 list_for_each_entry(ns, &ctrl->namespaces, list) {
601 unsigned nsid;
602 again:
603 nsid = le32_to_cpu(desc->nsids[n]);
604 if (ns->head->ns_id < nsid)
605 continue;
606 if (ns->head->ns_id == nsid)
607 nvme_update_ns_ana_state(desc, ns);
608 if (++n == nr_nsids)
609 break;
610 if (ns->head->ns_id > nsid)
611 goto again;
612 }
613 up_read(&ctrl->namespaces_rwsem);
614 return 0;
615 }
616
nvme_read_ana_log(struct nvme_ctrl * ctrl)617 static int nvme_read_ana_log(struct nvme_ctrl *ctrl)
618 {
619 u32 nr_change_groups = 0;
620 int error;
621
622 mutex_lock(&ctrl->ana_lock);
623 error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_ANA, 0, NVME_CSI_NVM,
624 ctrl->ana_log_buf, ctrl->ana_log_size, 0);
625 if (error) {
626 dev_warn(ctrl->device, "Failed to get ANA log: %d\n", error);
627 goto out_unlock;
628 }
629
630 error = nvme_parse_ana_log(ctrl, &nr_change_groups,
631 nvme_update_ana_state);
632 if (error)
633 goto out_unlock;
634
635 /*
636 * In theory we should have an ANATT timer per group as they might enter
637 * the change state at different times. But that is a lot of overhead
638 * just to protect against a target that keeps entering new changes
639 * states while never finishing previous ones. But we'll still
640 * eventually time out once all groups are in change state, so this
641 * isn't a big deal.
642 *
643 * We also double the ANATT value to provide some slack for transports
644 * or AEN processing overhead.
645 */
646 if (nr_change_groups)
647 mod_timer(&ctrl->anatt_timer, ctrl->anatt * HZ * 2 + jiffies);
648 else
649 del_timer_sync(&ctrl->anatt_timer);
650 out_unlock:
651 mutex_unlock(&ctrl->ana_lock);
652 return error;
653 }
654
nvme_ana_work(struct work_struct * work)655 static void nvme_ana_work(struct work_struct *work)
656 {
657 struct nvme_ctrl *ctrl = container_of(work, struct nvme_ctrl, ana_work);
658
659 if (ctrl->state != NVME_CTRL_LIVE)
660 return;
661
662 nvme_read_ana_log(ctrl);
663 }
664
nvme_anatt_timeout(struct timer_list * t)665 static void nvme_anatt_timeout(struct timer_list *t)
666 {
667 struct nvme_ctrl *ctrl = from_timer(ctrl, t, anatt_timer);
668
669 dev_info(ctrl->device, "ANATT timeout, resetting controller.\n");
670 nvme_reset_ctrl(ctrl);
671 }
672
nvme_mpath_stop(struct nvme_ctrl * ctrl)673 void nvme_mpath_stop(struct nvme_ctrl *ctrl)
674 {
675 if (!nvme_ctrl_use_ana(ctrl))
676 return;
677 del_timer_sync(&ctrl->anatt_timer);
678 cancel_work_sync(&ctrl->ana_work);
679 }
680
681 #define SUBSYS_ATTR_RW(_name, _mode, _show, _store) \
682 struct device_attribute subsys_attr_##_name = \
683 __ATTR(_name, _mode, _show, _store)
684
685 static const char *nvme_iopolicy_names[] = {
686 [NVME_IOPOLICY_NUMA] = "numa",
687 [NVME_IOPOLICY_RR] = "round-robin",
688 };
689
nvme_subsys_iopolicy_show(struct device * dev,struct device_attribute * attr,char * buf)690 static ssize_t nvme_subsys_iopolicy_show(struct device *dev,
691 struct device_attribute *attr, char *buf)
692 {
693 struct nvme_subsystem *subsys =
694 container_of(dev, struct nvme_subsystem, dev);
695
696 return sysfs_emit(buf, "%s\n",
697 nvme_iopolicy_names[READ_ONCE(subsys->iopolicy)]);
698 }
699
nvme_subsys_iopolicy_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)700 static ssize_t nvme_subsys_iopolicy_store(struct device *dev,
701 struct device_attribute *attr, const char *buf, size_t count)
702 {
703 struct nvme_subsystem *subsys =
704 container_of(dev, struct nvme_subsystem, dev);
705 int i;
706
707 for (i = 0; i < ARRAY_SIZE(nvme_iopolicy_names); i++) {
708 if (sysfs_streq(buf, nvme_iopolicy_names[i])) {
709 WRITE_ONCE(subsys->iopolicy, i);
710 return count;
711 }
712 }
713
714 return -EINVAL;
715 }
716 SUBSYS_ATTR_RW(iopolicy, S_IRUGO | S_IWUSR,
717 nvme_subsys_iopolicy_show, nvme_subsys_iopolicy_store);
718
ana_grpid_show(struct device * dev,struct device_attribute * attr,char * buf)719 static ssize_t ana_grpid_show(struct device *dev, struct device_attribute *attr,
720 char *buf)
721 {
722 return sysfs_emit(buf, "%d\n", nvme_get_ns_from_dev(dev)->ana_grpid);
723 }
724 DEVICE_ATTR_RO(ana_grpid);
725
ana_state_show(struct device * dev,struct device_attribute * attr,char * buf)726 static ssize_t ana_state_show(struct device *dev, struct device_attribute *attr,
727 char *buf)
728 {
729 struct nvme_ns *ns = nvme_get_ns_from_dev(dev);
730
731 return sysfs_emit(buf, "%s\n", nvme_ana_state_names[ns->ana_state]);
732 }
733 DEVICE_ATTR_RO(ana_state);
734
nvme_lookup_ana_group_desc(struct nvme_ctrl * ctrl,struct nvme_ana_group_desc * desc,void * data)735 static int nvme_lookup_ana_group_desc(struct nvme_ctrl *ctrl,
736 struct nvme_ana_group_desc *desc, void *data)
737 {
738 struct nvme_ana_group_desc *dst = data;
739
740 if (desc->grpid != dst->grpid)
741 return 0;
742
743 *dst = *desc;
744 return -ENXIO; /* just break out of the loop */
745 }
746
nvme_mpath_add_disk(struct nvme_ns * ns,struct nvme_id_ns * id)747 void nvme_mpath_add_disk(struct nvme_ns *ns, struct nvme_id_ns *id)
748 {
749 if (nvme_ctrl_use_ana(ns->ctrl)) {
750 struct nvme_ana_group_desc desc = {
751 .grpid = id->anagrpid,
752 .state = 0,
753 };
754
755 mutex_lock(&ns->ctrl->ana_lock);
756 ns->ana_grpid = le32_to_cpu(id->anagrpid);
757 nvme_parse_ana_log(ns->ctrl, &desc, nvme_lookup_ana_group_desc);
758 mutex_unlock(&ns->ctrl->ana_lock);
759 if (desc.state) {
760 /* found the group desc: update */
761 nvme_update_ns_ana_state(&desc, ns);
762 } else {
763 /* group desc not found: trigger a re-read */
764 set_bit(NVME_NS_ANA_PENDING, &ns->flags);
765 queue_work(nvme_wq, &ns->ctrl->ana_work);
766 }
767 } else {
768 ns->ana_state = NVME_ANA_OPTIMIZED;
769 nvme_mpath_set_live(ns);
770 }
771
772 if (blk_queue_stable_writes(ns->queue) && ns->head->disk)
773 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES,
774 ns->head->disk->queue);
775 #ifdef CONFIG_BLK_DEV_ZONED
776 if (blk_queue_is_zoned(ns->queue) && ns->head->disk)
777 ns->head->disk->queue->nr_zones = ns->queue->nr_zones;
778 #endif
779 }
780
nvme_mpath_shutdown_disk(struct nvme_ns_head * head)781 void nvme_mpath_shutdown_disk(struct nvme_ns_head *head)
782 {
783 if (!head->disk)
784 return;
785 kblockd_schedule_work(&head->requeue_work);
786 if (test_bit(NVME_NSHEAD_DISK_LIVE, &head->flags)) {
787 nvme_cdev_del(&head->cdev, &head->cdev_device);
788 del_gendisk(head->disk);
789 }
790 }
791
nvme_mpath_remove_disk(struct nvme_ns_head * head)792 void nvme_mpath_remove_disk(struct nvme_ns_head *head)
793 {
794 if (!head->disk)
795 return;
796 blk_set_queue_dying(head->disk->queue);
797 /* make sure all pending bios are cleaned up */
798 kblockd_schedule_work(&head->requeue_work);
799 flush_work(&head->requeue_work);
800 blk_cleanup_disk(head->disk);
801 }
802
nvme_mpath_init_ctrl(struct nvme_ctrl * ctrl)803 void nvme_mpath_init_ctrl(struct nvme_ctrl *ctrl)
804 {
805 mutex_init(&ctrl->ana_lock);
806 timer_setup(&ctrl->anatt_timer, nvme_anatt_timeout, 0);
807 INIT_WORK(&ctrl->ana_work, nvme_ana_work);
808 }
809
nvme_mpath_init_identify(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)810 int nvme_mpath_init_identify(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
811 {
812 size_t max_transfer_size = ctrl->max_hw_sectors << SECTOR_SHIFT;
813 size_t ana_log_size;
814 int error = 0;
815
816 /* check if multipath is enabled and we have the capability */
817 if (!multipath || !ctrl->subsys ||
818 !(ctrl->subsys->cmic & NVME_CTRL_CMIC_ANA))
819 return 0;
820
821 if (!ctrl->max_namespaces ||
822 ctrl->max_namespaces > le32_to_cpu(id->nn)) {
823 dev_err(ctrl->device,
824 "Invalid MNAN value %u\n", ctrl->max_namespaces);
825 return -EINVAL;
826 }
827
828 ctrl->anacap = id->anacap;
829 ctrl->anatt = id->anatt;
830 ctrl->nanagrpid = le32_to_cpu(id->nanagrpid);
831 ctrl->anagrpmax = le32_to_cpu(id->anagrpmax);
832
833 ana_log_size = sizeof(struct nvme_ana_rsp_hdr) +
834 ctrl->nanagrpid * sizeof(struct nvme_ana_group_desc) +
835 ctrl->max_namespaces * sizeof(__le32);
836 if (ana_log_size > max_transfer_size) {
837 dev_err(ctrl->device,
838 "ANA log page size (%zd) larger than MDTS (%zd).\n",
839 ana_log_size, max_transfer_size);
840 dev_err(ctrl->device, "disabling ANA support.\n");
841 goto out_uninit;
842 }
843 if (ana_log_size > ctrl->ana_log_size) {
844 nvme_mpath_stop(ctrl);
845 kfree(ctrl->ana_log_buf);
846 ctrl->ana_log_buf = kmalloc(ana_log_size, GFP_KERNEL);
847 if (!ctrl->ana_log_buf)
848 return -ENOMEM;
849 }
850 ctrl->ana_log_size = ana_log_size;
851 error = nvme_read_ana_log(ctrl);
852 if (error)
853 goto out_uninit;
854 return 0;
855
856 out_uninit:
857 nvme_mpath_uninit(ctrl);
858 return error;
859 }
860
nvme_mpath_uninit(struct nvme_ctrl * ctrl)861 void nvme_mpath_uninit(struct nvme_ctrl *ctrl)
862 {
863 kfree(ctrl->ana_log_buf);
864 ctrl->ana_log_buf = NULL;
865 }
866