1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3 * Copyright (C) 2012-2014, 2018-2021 Intel Corporation
4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5 * Copyright (C) 2015-2017 Intel Deutschland GmbH
6 */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12
iwl_mvm_skb_get_hdr(struct sk_buff * skb)13 static void *iwl_mvm_skb_get_hdr(struct sk_buff *skb)
14 {
15 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
16 u8 *data = skb->data;
17
18 /* Alignment concerns */
19 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he) % 4);
20 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_he_mu) % 4);
21 BUILD_BUG_ON(sizeof(struct ieee80211_radiotap_lsig) % 4);
22 BUILD_BUG_ON(sizeof(struct ieee80211_vendor_radiotap) % 4);
23
24 if (rx_status->flag & RX_FLAG_RADIOTAP_HE)
25 data += sizeof(struct ieee80211_radiotap_he);
26 if (rx_status->flag & RX_FLAG_RADIOTAP_HE_MU)
27 data += sizeof(struct ieee80211_radiotap_he_mu);
28 if (rx_status->flag & RX_FLAG_RADIOTAP_LSIG)
29 data += sizeof(struct ieee80211_radiotap_lsig);
30 if (rx_status->flag & RX_FLAG_RADIOTAP_VENDOR_DATA) {
31 struct ieee80211_vendor_radiotap *radiotap = (void *)data;
32
33 data += sizeof(*radiotap) + radiotap->len + radiotap->pad;
34 }
35
36 return data;
37 }
38
iwl_mvm_check_pn(struct iwl_mvm * mvm,struct sk_buff * skb,int queue,struct ieee80211_sta * sta)39 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
40 int queue, struct ieee80211_sta *sta)
41 {
42 struct iwl_mvm_sta *mvmsta;
43 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
44 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
45 struct iwl_mvm_key_pn *ptk_pn;
46 int res;
47 u8 tid, keyidx;
48 u8 pn[IEEE80211_CCMP_PN_LEN];
49 u8 *extiv;
50
51 /* do PN checking */
52
53 /* multicast and non-data only arrives on default queue */
54 if (!ieee80211_is_data(hdr->frame_control) ||
55 is_multicast_ether_addr(hdr->addr1))
56 return 0;
57
58 /* do not check PN for open AP */
59 if (!(stats->flag & RX_FLAG_DECRYPTED))
60 return 0;
61
62 /*
63 * avoid checking for default queue - we don't want to replicate
64 * all the logic that's necessary for checking the PN on fragmented
65 * frames, leave that to mac80211
66 */
67 if (queue == 0)
68 return 0;
69
70 /* if we are here - this for sure is either CCMP or GCMP */
71 if (IS_ERR_OR_NULL(sta)) {
72 IWL_DEBUG_DROP(mvm,
73 "expected hw-decrypted unicast frame for station\n");
74 return -1;
75 }
76
77 mvmsta = iwl_mvm_sta_from_mac80211(sta);
78
79 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
80 keyidx = extiv[3] >> 6;
81
82 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
83 if (!ptk_pn)
84 return -1;
85
86 if (ieee80211_is_data_qos(hdr->frame_control))
87 tid = ieee80211_get_tid(hdr);
88 else
89 tid = 0;
90
91 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
92 if (tid >= IWL_MAX_TID_COUNT)
93 return -1;
94
95 /* load pn */
96 pn[0] = extiv[7];
97 pn[1] = extiv[6];
98 pn[2] = extiv[5];
99 pn[3] = extiv[4];
100 pn[4] = extiv[1];
101 pn[5] = extiv[0];
102
103 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
104 if (res < 0)
105 return -1;
106 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
107 return -1;
108
109 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
110 stats->flag |= RX_FLAG_PN_VALIDATED;
111
112 return 0;
113 }
114
115 /* iwl_mvm_create_skb Adds the rxb to a new skb */
iwl_mvm_create_skb(struct iwl_mvm * mvm,struct sk_buff * skb,struct ieee80211_hdr * hdr,u16 len,u8 crypt_len,struct iwl_rx_cmd_buffer * rxb)116 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
117 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
118 struct iwl_rx_cmd_buffer *rxb)
119 {
120 struct iwl_rx_packet *pkt = rxb_addr(rxb);
121 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
122 unsigned int headlen, fraglen, pad_len = 0;
123 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
124
125 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
126 len -= 2;
127 pad_len = 2;
128 }
129
130 /* If frame is small enough to fit in skb->head, pull it completely.
131 * If not, only pull ieee80211_hdr (including crypto if present, and
132 * an additional 8 bytes for SNAP/ethertype, see below) so that
133 * splice() or TCP coalesce are more efficient.
134 *
135 * Since, in addition, ieee80211_data_to_8023() always pull in at
136 * least 8 bytes (possibly more for mesh) we can do the same here
137 * to save the cost of doing it later. That still doesn't pull in
138 * the actual IP header since the typical case has a SNAP header.
139 * If the latter changes (there are efforts in the standards group
140 * to do so) we should revisit this and ieee80211_data_to_8023().
141 */
142 headlen = (len <= skb_tailroom(skb)) ? len :
143 hdrlen + crypt_len + 8;
144
145 /* The firmware may align the packet to DWORD.
146 * The padding is inserted after the IV.
147 * After copying the header + IV skip the padding if
148 * present before copying packet data.
149 */
150 hdrlen += crypt_len;
151
152 if (WARN_ONCE(headlen < hdrlen,
153 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
154 hdrlen, len, crypt_len)) {
155 /*
156 * We warn and trace because we want to be able to see
157 * it in trace-cmd as well.
158 */
159 IWL_DEBUG_RX(mvm,
160 "invalid packet lengths (hdrlen=%d, len=%d, crypt_len=%d)\n",
161 hdrlen, len, crypt_len);
162 return -EINVAL;
163 }
164
165 skb_put_data(skb, hdr, hdrlen);
166 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
167
168 /*
169 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
170 * certain cases and starts the checksum after the SNAP. Check if
171 * this is the case - it's easier to just bail out to CHECKSUM_NONE
172 * in the cases the hardware didn't handle, since it's rare to see
173 * such packets, even though the hardware did calculate the checksum
174 * in this case, just starting after the MAC header instead.
175 */
176 if (skb->ip_summed == CHECKSUM_COMPLETE) {
177 struct {
178 u8 hdr[6];
179 __be16 type;
180 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
181
182 if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
183 !ether_addr_equal(shdr->hdr, rfc1042_header) ||
184 (shdr->type != htons(ETH_P_IP) &&
185 shdr->type != htons(ETH_P_ARP) &&
186 shdr->type != htons(ETH_P_IPV6) &&
187 shdr->type != htons(ETH_P_8021Q) &&
188 shdr->type != htons(ETH_P_PAE) &&
189 shdr->type != htons(ETH_P_TDLS))))
190 skb->ip_summed = CHECKSUM_NONE;
191 }
192
193 fraglen = len - headlen;
194
195 if (fraglen) {
196 int offset = (void *)hdr + headlen + pad_len -
197 rxb_addr(rxb) + rxb_offset(rxb);
198
199 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
200 fraglen, rxb->truesize);
201 }
202
203 return 0;
204 }
205
iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm * mvm,struct sk_buff * skb)206 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
207 struct sk_buff *skb)
208 {
209 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
210 struct ieee80211_vendor_radiotap *radiotap;
211 const int size = sizeof(*radiotap) + sizeof(__le16);
212
213 if (!mvm->cur_aid)
214 return;
215
216 /* ensure alignment */
217 BUILD_BUG_ON((size + 2) % 4);
218
219 radiotap = skb_put(skb, size + 2);
220 radiotap->align = 1;
221 /* Intel OUI */
222 radiotap->oui[0] = 0xf6;
223 radiotap->oui[1] = 0x54;
224 radiotap->oui[2] = 0x25;
225 /* radiotap sniffer config sub-namespace */
226 radiotap->subns = 1;
227 radiotap->present = 0x1;
228 radiotap->len = size - sizeof(*radiotap);
229 radiotap->pad = 2;
230
231 /* fill the data now */
232 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
233 /* and clear the padding */
234 memset(radiotap->data + sizeof(__le16), 0, radiotap->pad);
235
236 rx_status->flag |= RX_FLAG_RADIOTAP_VENDOR_DATA;
237 }
238
239 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm * mvm,struct napi_struct * napi,struct sk_buff * skb,int queue,struct ieee80211_sta * sta,bool csi)240 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
241 struct napi_struct *napi,
242 struct sk_buff *skb, int queue,
243 struct ieee80211_sta *sta,
244 bool csi)
245 {
246 if (iwl_mvm_check_pn(mvm, skb, queue, sta))
247 kfree_skb(skb);
248 else
249 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
250 }
251
iwl_mvm_get_signal_strength(struct iwl_mvm * mvm,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int energy_a,int energy_b)252 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
253 struct ieee80211_rx_status *rx_status,
254 u32 rate_n_flags, int energy_a,
255 int energy_b)
256 {
257 int max_energy;
258 u32 rate_flags = rate_n_flags;
259
260 energy_a = energy_a ? -energy_a : S8_MIN;
261 energy_b = energy_b ? -energy_b : S8_MIN;
262 max_energy = max(energy_a, energy_b);
263
264 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
265 energy_a, energy_b, max_energy);
266
267 rx_status->signal = max_energy;
268 rx_status->chains =
269 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
270 rx_status->chain_signal[0] = energy_a;
271 rx_status->chain_signal[1] = energy_b;
272 rx_status->chain_signal[2] = S8_MIN;
273 }
274
iwl_mvm_rx_mgmt_prot(struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc,u32 status)275 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
276 struct ieee80211_hdr *hdr,
277 struct iwl_rx_mpdu_desc *desc,
278 u32 status)
279 {
280 struct iwl_mvm_sta *mvmsta;
281 struct iwl_mvm_vif *mvmvif;
282 u8 keyid;
283 struct ieee80211_key_conf *key;
284 u32 len = le16_to_cpu(desc->mpdu_len);
285 const u8 *frame = (void *)hdr;
286
287 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
288 return 0;
289
290 /*
291 * For non-beacon, we don't really care. But beacons may
292 * be filtered out, and we thus need the firmware's replay
293 * detection, otherwise beacons the firmware previously
294 * filtered could be replayed, or something like that, and
295 * it can filter a lot - though usually only if nothing has
296 * changed.
297 */
298 if (!ieee80211_is_beacon(hdr->frame_control))
299 return 0;
300
301 /* key mismatch - will also report !MIC_OK but we shouldn't count it */
302 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
303 return -1;
304
305 /* good cases */
306 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
307 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)))
308 return 0;
309
310 if (!sta)
311 return -1;
312
313 mvmsta = iwl_mvm_sta_from_mac80211(sta);
314
315 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
316
317 /*
318 * both keys will have the same cipher and MIC length, use
319 * whichever one is available
320 */
321 key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
322 if (!key) {
323 key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
324 if (!key)
325 return -1;
326 }
327
328 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
329 return -1;
330
331 /* get the real key ID */
332 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
333 /* and if that's the other key, look it up */
334 if (keyid != key->keyidx) {
335 /*
336 * shouldn't happen since firmware checked, but be safe
337 * in case the MIC length is wrong too, for example
338 */
339 if (keyid != 6 && keyid != 7)
340 return -1;
341 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
342 if (!key)
343 return -1;
344 }
345
346 /* Report status to mac80211 */
347 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
348 ieee80211_key_mic_failure(key);
349 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
350 ieee80211_key_replay(key);
351
352 return -1;
353 }
354
iwl_mvm_rx_crypto(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct ieee80211_hdr * hdr,struct ieee80211_rx_status * stats,u16 phy_info,struct iwl_rx_mpdu_desc * desc,u32 pkt_flags,int queue,u8 * crypt_len)355 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
356 struct ieee80211_hdr *hdr,
357 struct ieee80211_rx_status *stats, u16 phy_info,
358 struct iwl_rx_mpdu_desc *desc,
359 u32 pkt_flags, int queue, u8 *crypt_len)
360 {
361 u32 status = le32_to_cpu(desc->status);
362
363 /*
364 * Drop UNKNOWN frames in aggregation, unless in monitor mode
365 * (where we don't have the keys).
366 * We limit this to aggregation because in TKIP this is a valid
367 * scenario, since we may not have the (correct) TTAK (phase 1
368 * key) in the firmware.
369 */
370 if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
371 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
372 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
373 return -1;
374
375 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
376 !ieee80211_has_protected(hdr->frame_control)))
377 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status);
378
379 if (!ieee80211_has_protected(hdr->frame_control) ||
380 (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
381 IWL_RX_MPDU_STATUS_SEC_NONE)
382 return 0;
383
384 /* TODO: handle packets encrypted with unknown alg */
385
386 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
387 case IWL_RX_MPDU_STATUS_SEC_CCM:
388 case IWL_RX_MPDU_STATUS_SEC_GCM:
389 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
390 /* alg is CCM: check MIC only */
391 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
392 return -1;
393
394 stats->flag |= RX_FLAG_DECRYPTED;
395 if (pkt_flags & FH_RSCSR_RADA_EN)
396 stats->flag |= RX_FLAG_MIC_STRIPPED;
397 *crypt_len = IEEE80211_CCMP_HDR_LEN;
398 return 0;
399 case IWL_RX_MPDU_STATUS_SEC_TKIP:
400 /* Don't drop the frame and decrypt it in SW */
401 if (!fw_has_api(&mvm->fw->ucode_capa,
402 IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
403 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
404 return 0;
405
406 if (mvm->trans->trans_cfg->gen2 &&
407 !(status & RX_MPDU_RES_STATUS_MIC_OK))
408 stats->flag |= RX_FLAG_MMIC_ERROR;
409
410 *crypt_len = IEEE80211_TKIP_IV_LEN;
411 fallthrough;
412 case IWL_RX_MPDU_STATUS_SEC_WEP:
413 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
414 return -1;
415
416 stats->flag |= RX_FLAG_DECRYPTED;
417 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
418 IWL_RX_MPDU_STATUS_SEC_WEP)
419 *crypt_len = IEEE80211_WEP_IV_LEN;
420
421 if (pkt_flags & FH_RSCSR_RADA_EN) {
422 stats->flag |= RX_FLAG_ICV_STRIPPED;
423 if (mvm->trans->trans_cfg->gen2)
424 stats->flag |= RX_FLAG_MMIC_STRIPPED;
425 }
426
427 return 0;
428 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
429 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
430 return -1;
431 stats->flag |= RX_FLAG_DECRYPTED;
432 return 0;
433 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
434 break;
435 default:
436 /*
437 * Sometimes we can get frames that were not decrypted
438 * because the firmware didn't have the keys yet. This can
439 * happen after connection where we can get multicast frames
440 * before the GTK is installed.
441 * Silently drop those frames.
442 * Also drop un-decrypted frames in monitor mode.
443 */
444 if (!is_multicast_ether_addr(hdr->addr1) &&
445 !mvm->monitor_on && net_ratelimit())
446 IWL_ERR(mvm, "Unhandled alg: 0x%x\n", status);
447 }
448
449 return 0;
450 }
451
iwl_mvm_rx_csum(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_packet * pkt)452 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
453 struct ieee80211_sta *sta,
454 struct sk_buff *skb,
455 struct iwl_rx_packet *pkt)
456 {
457 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
458
459 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
460 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
461 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
462
463 skb->ip_summed = CHECKSUM_COMPLETE;
464 skb->csum = csum_unfold(~(__force __sum16)hwsum);
465 }
466 } else {
467 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
468 struct iwl_mvm_vif *mvmvif;
469 u16 flags = le16_to_cpu(desc->l3l4_flags);
470 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
471 IWL_RX_L3_PROTO_POS);
472
473 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
474
475 if (mvmvif->features & NETIF_F_RXCSUM &&
476 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
477 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
478 l3_prot == IWL_RX_L3_TYPE_IPV6 ||
479 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
480 skb->ip_summed = CHECKSUM_UNNECESSARY;
481 }
482 }
483
484 /*
485 * returns true if a packet is a duplicate and should be dropped.
486 * Updates AMSDU PN tracking info
487 */
iwl_mvm_is_dup(struct ieee80211_sta * sta,int queue,struct ieee80211_rx_status * rx_status,struct ieee80211_hdr * hdr,struct iwl_rx_mpdu_desc * desc)488 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
489 struct ieee80211_rx_status *rx_status,
490 struct ieee80211_hdr *hdr,
491 struct iwl_rx_mpdu_desc *desc)
492 {
493 struct iwl_mvm_sta *mvm_sta;
494 struct iwl_mvm_rxq_dup_data *dup_data;
495 u8 tid, sub_frame_idx;
496
497 if (WARN_ON(IS_ERR_OR_NULL(sta)))
498 return false;
499
500 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
501 dup_data = &mvm_sta->dup_data[queue];
502
503 /*
504 * Drop duplicate 802.11 retransmissions
505 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
506 */
507 if (ieee80211_is_ctl(hdr->frame_control) ||
508 ieee80211_is_qos_nullfunc(hdr->frame_control) ||
509 is_multicast_ether_addr(hdr->addr1)) {
510 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
511 return false;
512 }
513
514 if (ieee80211_is_data_qos(hdr->frame_control))
515 /* frame has qos control */
516 tid = ieee80211_get_tid(hdr);
517 else
518 tid = IWL_MAX_TID_COUNT;
519
520 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
521 sub_frame_idx = desc->amsdu_info &
522 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
523
524 if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
525 dup_data->last_seq[tid] == hdr->seq_ctrl &&
526 dup_data->last_sub_frame[tid] >= sub_frame_idx))
527 return true;
528
529 /* Allow same PN as the first subframe for following sub frames */
530 if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
531 sub_frame_idx > dup_data->last_sub_frame[tid] &&
532 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
533 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
534
535 dup_data->last_seq[tid] = hdr->seq_ctrl;
536 dup_data->last_sub_frame[tid] = sub_frame_idx;
537
538 rx_status->flag |= RX_FLAG_DUP_VALIDATED;
539
540 return false;
541 }
542
543 /*
544 * Returns true if sn2 - buffer_size < sn1 < sn2.
545 * To be used only in order to compare reorder buffer head with NSSN.
546 * We fully trust NSSN unless it is behind us due to reorder timeout.
547 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
548 */
iwl_mvm_is_sn_less(u16 sn1,u16 sn2,u16 buffer_size)549 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
550 {
551 return ieee80211_sn_less(sn1, sn2) &&
552 !ieee80211_sn_less(sn1, sn2 - buffer_size);
553 }
554
iwl_mvm_sync_nssn(struct iwl_mvm * mvm,u8 baid,u16 nssn)555 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
556 {
557 if (IWL_MVM_USE_NSSN_SYNC) {
558 struct iwl_mvm_nssn_sync_data notif = {
559 .baid = baid,
560 .nssn = nssn,
561 };
562
563 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
564 ¬if, sizeof(notif));
565 }
566 }
567
568 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
569
570 enum iwl_mvm_release_flags {
571 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
572 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
573 };
574
iwl_mvm_release_frames(struct iwl_mvm * mvm,struct ieee80211_sta * sta,struct napi_struct * napi,struct iwl_mvm_baid_data * baid_data,struct iwl_mvm_reorder_buffer * reorder_buf,u16 nssn,u32 flags)575 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
576 struct ieee80211_sta *sta,
577 struct napi_struct *napi,
578 struct iwl_mvm_baid_data *baid_data,
579 struct iwl_mvm_reorder_buffer *reorder_buf,
580 u16 nssn, u32 flags)
581 {
582 struct iwl_mvm_reorder_buf_entry *entries =
583 &baid_data->entries[reorder_buf->queue *
584 baid_data->entries_per_queue];
585 u16 ssn = reorder_buf->head_sn;
586
587 lockdep_assert_held(&reorder_buf->lock);
588
589 /*
590 * We keep the NSSN not too far behind, if we are sync'ing it and it
591 * is more than 2048 ahead of us, it must be behind us. Discard it.
592 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
593 * behind and this queue already processed packets. The next if
594 * would have caught cases where this queue would have processed less
595 * than 64 packets, but it may have processed more than 64 packets.
596 */
597 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
598 ieee80211_sn_less(nssn, ssn))
599 goto set_timer;
600
601 /* ignore nssn smaller than head sn - this can happen due to timeout */
602 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
603 goto set_timer;
604
605 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
606 int index = ssn % reorder_buf->buf_size;
607 struct sk_buff_head *skb_list = &entries[index].e.frames;
608 struct sk_buff *skb;
609
610 ssn = ieee80211_sn_inc(ssn);
611 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
612 (ssn == 2048 || ssn == 0))
613 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
614
615 /*
616 * Empty the list. Will have more than one frame for A-MSDU.
617 * Empty list is valid as well since nssn indicates frames were
618 * received.
619 */
620 while ((skb = __skb_dequeue(skb_list))) {
621 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
622 reorder_buf->queue,
623 sta, false);
624 reorder_buf->num_stored--;
625 }
626 }
627 reorder_buf->head_sn = nssn;
628
629 set_timer:
630 if (reorder_buf->num_stored && !reorder_buf->removed) {
631 u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
632
633 while (skb_queue_empty(&entries[index].e.frames))
634 index = (index + 1) % reorder_buf->buf_size;
635 /* modify timer to match next frame's expiration time */
636 mod_timer(&reorder_buf->reorder_timer,
637 entries[index].e.reorder_time + 1 +
638 RX_REORDER_BUF_TIMEOUT_MQ);
639 } else {
640 del_timer(&reorder_buf->reorder_timer);
641 }
642 }
643
iwl_mvm_reorder_timer_expired(struct timer_list * t)644 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
645 {
646 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
647 struct iwl_mvm_baid_data *baid_data =
648 iwl_mvm_baid_data_from_reorder_buf(buf);
649 struct iwl_mvm_reorder_buf_entry *entries =
650 &baid_data->entries[buf->queue * baid_data->entries_per_queue];
651 int i;
652 u16 sn = 0, index = 0;
653 bool expired = false;
654 bool cont = false;
655
656 spin_lock(&buf->lock);
657
658 if (!buf->num_stored || buf->removed) {
659 spin_unlock(&buf->lock);
660 return;
661 }
662
663 for (i = 0; i < buf->buf_size ; i++) {
664 index = (buf->head_sn + i) % buf->buf_size;
665
666 if (skb_queue_empty(&entries[index].e.frames)) {
667 /*
668 * If there is a hole and the next frame didn't expire
669 * we want to break and not advance SN
670 */
671 cont = false;
672 continue;
673 }
674 if (!cont &&
675 !time_after(jiffies, entries[index].e.reorder_time +
676 RX_REORDER_BUF_TIMEOUT_MQ))
677 break;
678
679 expired = true;
680 /* continue until next hole after this expired frames */
681 cont = true;
682 sn = ieee80211_sn_add(buf->head_sn, i + 1);
683 }
684
685 if (expired) {
686 struct ieee80211_sta *sta;
687 struct iwl_mvm_sta *mvmsta;
688 u8 sta_id = baid_data->sta_id;
689
690 rcu_read_lock();
691 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
692 mvmsta = iwl_mvm_sta_from_mac80211(sta);
693
694 /* SN is set to the last expired frame + 1 */
695 IWL_DEBUG_HT(buf->mvm,
696 "Releasing expired frames for sta %u, sn %d\n",
697 sta_id, sn);
698 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
699 sta, baid_data->tid);
700 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
701 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
702 rcu_read_unlock();
703 } else {
704 /*
705 * If no frame expired and there are stored frames, index is now
706 * pointing to the first unexpired frame - modify timer
707 * accordingly to this frame.
708 */
709 mod_timer(&buf->reorder_timer,
710 entries[index].e.reorder_time +
711 1 + RX_REORDER_BUF_TIMEOUT_MQ);
712 }
713 spin_unlock(&buf->lock);
714 }
715
iwl_mvm_del_ba(struct iwl_mvm * mvm,int queue,struct iwl_mvm_delba_data * data)716 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
717 struct iwl_mvm_delba_data *data)
718 {
719 struct iwl_mvm_baid_data *ba_data;
720 struct ieee80211_sta *sta;
721 struct iwl_mvm_reorder_buffer *reorder_buf;
722 u8 baid = data->baid;
723
724 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
725 return;
726
727 rcu_read_lock();
728
729 ba_data = rcu_dereference(mvm->baid_map[baid]);
730 if (WARN_ON_ONCE(!ba_data))
731 goto out;
732
733 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
734 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
735 goto out;
736
737 reorder_buf = &ba_data->reorder_buf[queue];
738
739 /* release all frames that are in the reorder buffer to the stack */
740 spin_lock_bh(&reorder_buf->lock);
741 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
742 ieee80211_sn_add(reorder_buf->head_sn,
743 reorder_buf->buf_size),
744 0);
745 spin_unlock_bh(&reorder_buf->lock);
746 del_timer_sync(&reorder_buf->reorder_timer);
747
748 out:
749 rcu_read_unlock();
750 }
751
iwl_mvm_release_frames_from_notif(struct iwl_mvm * mvm,struct napi_struct * napi,u8 baid,u16 nssn,int queue,u32 flags)752 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
753 struct napi_struct *napi,
754 u8 baid, u16 nssn, int queue,
755 u32 flags)
756 {
757 struct ieee80211_sta *sta;
758 struct iwl_mvm_reorder_buffer *reorder_buf;
759 struct iwl_mvm_baid_data *ba_data;
760
761 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
762 baid, nssn);
763
764 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
765 baid >= ARRAY_SIZE(mvm->baid_map)))
766 return;
767
768 rcu_read_lock();
769
770 ba_data = rcu_dereference(mvm->baid_map[baid]);
771 if (WARN_ON_ONCE(!ba_data))
772 goto out;
773
774 sta = rcu_dereference(mvm->fw_id_to_mac_id[ba_data->sta_id]);
775 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
776 goto out;
777
778 reorder_buf = &ba_data->reorder_buf[queue];
779
780 spin_lock_bh(&reorder_buf->lock);
781 iwl_mvm_release_frames(mvm, sta, napi, ba_data,
782 reorder_buf, nssn, flags);
783 spin_unlock_bh(&reorder_buf->lock);
784
785 out:
786 rcu_read_unlock();
787 }
788
iwl_mvm_nssn_sync(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,const struct iwl_mvm_nssn_sync_data * data)789 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
790 struct napi_struct *napi, int queue,
791 const struct iwl_mvm_nssn_sync_data *data)
792 {
793 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
794 data->nssn, queue,
795 IWL_MVM_RELEASE_FROM_RSS_SYNC);
796 }
797
iwl_mvm_rx_queue_notif(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)798 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
799 struct iwl_rx_cmd_buffer *rxb, int queue)
800 {
801 struct iwl_rx_packet *pkt = rxb_addr(rxb);
802 struct iwl_rxq_sync_notification *notif;
803 struct iwl_mvm_internal_rxq_notif *internal_notif;
804 u32 len = iwl_rx_packet_payload_len(pkt);
805
806 notif = (void *)pkt->data;
807 internal_notif = (void *)notif->payload;
808
809 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
810 "invalid notification size %d (%d)",
811 len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
812 return;
813 len -= sizeof(*notif) + sizeof(*internal_notif);
814
815 if (internal_notif->sync &&
816 mvm->queue_sync_cookie != internal_notif->cookie) {
817 WARN_ONCE(1, "Received expired RX queue sync message\n");
818 return;
819 }
820
821 switch (internal_notif->type) {
822 case IWL_MVM_RXQ_EMPTY:
823 WARN_ONCE(len, "invalid empty notification size %d", len);
824 break;
825 case IWL_MVM_RXQ_NOTIF_DEL_BA:
826 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
827 "invalid delba notification size %d (%d)",
828 len, (int)sizeof(struct iwl_mvm_delba_data)))
829 break;
830 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
831 break;
832 case IWL_MVM_RXQ_NSSN_SYNC:
833 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
834 "invalid nssn sync notification size %d (%d)",
835 len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
836 break;
837 iwl_mvm_nssn_sync(mvm, napi, queue,
838 (void *)internal_notif->data);
839 break;
840 default:
841 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
842 }
843
844 if (internal_notif->sync) {
845 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
846 "queue sync: queue %d responded a second time!\n",
847 queue);
848 if (READ_ONCE(mvm->queue_sync_state) == 0)
849 wake_up(&mvm->rx_sync_waitq);
850 }
851 }
852
iwl_mvm_oldsn_workaround(struct iwl_mvm * mvm,struct ieee80211_sta * sta,int tid,struct iwl_mvm_reorder_buffer * buffer,u32 reorder,u32 gp2,int queue)853 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
854 struct ieee80211_sta *sta, int tid,
855 struct iwl_mvm_reorder_buffer *buffer,
856 u32 reorder, u32 gp2, int queue)
857 {
858 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
859
860 if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
861 /* we have a new (A-)MPDU ... */
862
863 /*
864 * reset counter to 0 if we didn't have any oldsn in
865 * the last A-MPDU (as detected by GP2 being identical)
866 */
867 if (!buffer->consec_oldsn_prev_drop)
868 buffer->consec_oldsn_drops = 0;
869
870 /* either way, update our tracking state */
871 buffer->consec_oldsn_ampdu_gp2 = gp2;
872 } else if (buffer->consec_oldsn_prev_drop) {
873 /*
874 * tracking state didn't change, and we had an old SN
875 * indication before - do nothing in this case, we
876 * already noted this one down and are waiting for the
877 * next A-MPDU (by GP2)
878 */
879 return;
880 }
881
882 /* return unless this MPDU has old SN */
883 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
884 return;
885
886 /* update state */
887 buffer->consec_oldsn_prev_drop = 1;
888 buffer->consec_oldsn_drops++;
889
890 /* if limit is reached, send del BA and reset state */
891 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
892 IWL_WARN(mvm,
893 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
894 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
895 sta->addr, queue, tid);
896 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
897 buffer->consec_oldsn_prev_drop = 0;
898 buffer->consec_oldsn_drops = 0;
899 }
900 }
901
902 /*
903 * Returns true if the MPDU was buffered\dropped, false if it should be passed
904 * to upper layer.
905 */
iwl_mvm_reorder(struct iwl_mvm * mvm,struct napi_struct * napi,int queue,struct ieee80211_sta * sta,struct sk_buff * skb,struct iwl_rx_mpdu_desc * desc)906 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
907 struct napi_struct *napi,
908 int queue,
909 struct ieee80211_sta *sta,
910 struct sk_buff *skb,
911 struct iwl_rx_mpdu_desc *desc)
912 {
913 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
914 struct ieee80211_hdr *hdr = iwl_mvm_skb_get_hdr(skb);
915 struct iwl_mvm_sta *mvm_sta;
916 struct iwl_mvm_baid_data *baid_data;
917 struct iwl_mvm_reorder_buffer *buffer;
918 struct sk_buff *tail;
919 u32 reorder = le32_to_cpu(desc->reorder_data);
920 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
921 bool last_subframe =
922 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
923 u8 tid = ieee80211_get_tid(hdr);
924 u8 sub_frame_idx = desc->amsdu_info &
925 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
926 struct iwl_mvm_reorder_buf_entry *entries;
927 int index;
928 u16 nssn, sn;
929 u8 baid;
930
931 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
932 IWL_RX_MPDU_REORDER_BAID_SHIFT;
933
934 /*
935 * This also covers the case of receiving a Block Ack Request
936 * outside a BA session; we'll pass it to mac80211 and that
937 * then sends a delBA action frame.
938 * This also covers pure monitor mode, in which case we won't
939 * have any BA sessions.
940 */
941 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
942 return false;
943
944 /* no sta yet */
945 if (WARN_ONCE(IS_ERR_OR_NULL(sta),
946 "Got valid BAID without a valid station assigned\n"))
947 return false;
948
949 mvm_sta = iwl_mvm_sta_from_mac80211(sta);
950
951 /* not a data packet or a bar */
952 if (!ieee80211_is_back_req(hdr->frame_control) &&
953 (!ieee80211_is_data_qos(hdr->frame_control) ||
954 is_multicast_ether_addr(hdr->addr1)))
955 return false;
956
957 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
958 return false;
959
960 baid_data = rcu_dereference(mvm->baid_map[baid]);
961 if (!baid_data) {
962 IWL_DEBUG_RX(mvm,
963 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
964 baid, reorder);
965 return false;
966 }
967
968 if (WARN(tid != baid_data->tid || mvm_sta->sta_id != baid_data->sta_id,
969 "baid 0x%x is mapped to sta:%d tid:%d, but was received for sta:%d tid:%d\n",
970 baid, baid_data->sta_id, baid_data->tid, mvm_sta->sta_id,
971 tid))
972 return false;
973
974 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
975 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
976 IWL_RX_MPDU_REORDER_SN_SHIFT;
977
978 buffer = &baid_data->reorder_buf[queue];
979 entries = &baid_data->entries[queue * baid_data->entries_per_queue];
980
981 spin_lock_bh(&buffer->lock);
982
983 if (!buffer->valid) {
984 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
985 spin_unlock_bh(&buffer->lock);
986 return false;
987 }
988 buffer->valid = true;
989 }
990
991 if (ieee80211_is_back_req(hdr->frame_control)) {
992 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
993 buffer, nssn, 0);
994 goto drop;
995 }
996
997 /*
998 * If there was a significant jump in the nssn - adjust.
999 * If the SN is smaller than the NSSN it might need to first go into
1000 * the reorder buffer, in which case we just release up to it and the
1001 * rest of the function will take care of storing it and releasing up to
1002 * the nssn.
1003 * This should not happen. This queue has been lagging and it should
1004 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1005 * and update the other queues.
1006 */
1007 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1008 buffer->buf_size) ||
1009 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1010 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1011
1012 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1013 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1014 }
1015
1016 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1017 rx_status->device_timestamp, queue);
1018
1019 /* drop any oudated packets */
1020 if (ieee80211_sn_less(sn, buffer->head_sn))
1021 goto drop;
1022
1023 /* release immediately if allowed by nssn and no stored frames */
1024 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1025 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1026 buffer->buf_size) &&
1027 (!amsdu || last_subframe)) {
1028 /*
1029 * If we crossed the 2048 or 0 SN, notify all the
1030 * queues. This is done in order to avoid having a
1031 * head_sn that lags behind for too long. When that
1032 * happens, we can get to a situation where the head_sn
1033 * is within the interval [nssn - buf_size : nssn]
1034 * which will make us think that the nssn is a packet
1035 * that we already freed because of the reordering
1036 * buffer and we will ignore it. So maintain the
1037 * head_sn somewhat updated across all the queues:
1038 * when it crosses 0 and 2048.
1039 */
1040 if (sn == 2048 || sn == 0)
1041 iwl_mvm_sync_nssn(mvm, baid, sn);
1042 buffer->head_sn = nssn;
1043 }
1044 /* No need to update AMSDU last SN - we are moving the head */
1045 spin_unlock_bh(&buffer->lock);
1046 return false;
1047 }
1048
1049 /*
1050 * release immediately if there are no stored frames, and the sn is
1051 * equal to the head.
1052 * This can happen due to reorder timer, where NSSN is behind head_sn.
1053 * When we released everything, and we got the next frame in the
1054 * sequence, according to the NSSN we can't release immediately,
1055 * while technically there is no hole and we can move forward.
1056 */
1057 if (!buffer->num_stored && sn == buffer->head_sn) {
1058 if (!amsdu || last_subframe) {
1059 if (sn == 2048 || sn == 0)
1060 iwl_mvm_sync_nssn(mvm, baid, sn);
1061 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1062 }
1063 /* No need to update AMSDU last SN - we are moving the head */
1064 spin_unlock_bh(&buffer->lock);
1065 return false;
1066 }
1067
1068 index = sn % buffer->buf_size;
1069
1070 /*
1071 * Check if we already stored this frame
1072 * As AMSDU is either received or not as whole, logic is simple:
1073 * If we have frames in that position in the buffer and the last frame
1074 * originated from AMSDU had a different SN then it is a retransmission.
1075 * If it is the same SN then if the subframe index is incrementing it
1076 * is the same AMSDU - otherwise it is a retransmission.
1077 */
1078 tail = skb_peek_tail(&entries[index].e.frames);
1079 if (tail && !amsdu)
1080 goto drop;
1081 else if (tail && (sn != buffer->last_amsdu ||
1082 buffer->last_sub_index >= sub_frame_idx))
1083 goto drop;
1084
1085 /* put in reorder buffer */
1086 __skb_queue_tail(&entries[index].e.frames, skb);
1087 buffer->num_stored++;
1088 entries[index].e.reorder_time = jiffies;
1089
1090 if (amsdu) {
1091 buffer->last_amsdu = sn;
1092 buffer->last_sub_index = sub_frame_idx;
1093 }
1094
1095 /*
1096 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1097 * The reason is that NSSN advances on the first sub-frame, and may
1098 * cause the reorder buffer to advance before all the sub-frames arrive.
1099 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1100 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1101 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1102 * already ahead and it will be dropped.
1103 * If the last sub-frame is not on this queue - we will get frame
1104 * release notification with up to date NSSN.
1105 */
1106 if (!amsdu || last_subframe)
1107 iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1108 buffer, nssn,
1109 IWL_MVM_RELEASE_SEND_RSS_SYNC);
1110
1111 spin_unlock_bh(&buffer->lock);
1112 return true;
1113
1114 drop:
1115 kfree_skb(skb);
1116 spin_unlock_bh(&buffer->lock);
1117 return true;
1118 }
1119
iwl_mvm_agg_rx_received(struct iwl_mvm * mvm,u32 reorder_data,u8 baid)1120 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1121 u32 reorder_data, u8 baid)
1122 {
1123 unsigned long now = jiffies;
1124 unsigned long timeout;
1125 struct iwl_mvm_baid_data *data;
1126
1127 rcu_read_lock();
1128
1129 data = rcu_dereference(mvm->baid_map[baid]);
1130 if (!data) {
1131 IWL_DEBUG_RX(mvm,
1132 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1133 baid, reorder_data);
1134 goto out;
1135 }
1136
1137 if (!data->timeout)
1138 goto out;
1139
1140 timeout = data->timeout;
1141 /*
1142 * Do not update last rx all the time to avoid cache bouncing
1143 * between the rx queues.
1144 * Update it every timeout. Worst case is the session will
1145 * expire after ~ 2 * timeout, which doesn't matter that much.
1146 */
1147 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1148 /* Update is atomic */
1149 data->last_rx = now;
1150
1151 out:
1152 rcu_read_unlock();
1153 }
1154
iwl_mvm_flip_address(u8 * addr)1155 static void iwl_mvm_flip_address(u8 *addr)
1156 {
1157 int i;
1158 u8 mac_addr[ETH_ALEN];
1159
1160 for (i = 0; i < ETH_ALEN; i++)
1161 mac_addr[i] = addr[ETH_ALEN - i - 1];
1162 ether_addr_copy(addr, mac_addr);
1163 }
1164
1165 struct iwl_mvm_rx_phy_data {
1166 enum iwl_rx_phy_info_type info_type;
1167 __le32 d0, d1, d2, d3;
1168 __le16 d4;
1169 };
1170
iwl_mvm_decode_he_mu_ext(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he_mu * he_mu)1171 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1172 struct iwl_mvm_rx_phy_data *phy_data,
1173 u32 rate_n_flags,
1174 struct ieee80211_radiotap_he_mu *he_mu)
1175 {
1176 u32 phy_data2 = le32_to_cpu(phy_data->d2);
1177 u32 phy_data3 = le32_to_cpu(phy_data->d3);
1178 u16 phy_data4 = le16_to_cpu(phy_data->d4);
1179
1180 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1181 he_mu->flags1 |=
1182 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1183 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1184
1185 he_mu->flags1 |=
1186 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1187 phy_data4),
1188 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1189
1190 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1191 phy_data2);
1192 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1193 phy_data3);
1194 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1195 phy_data2);
1196 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1197 phy_data3);
1198 }
1199
1200 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1201 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) != RATE_MCS_CHAN_WIDTH_20) {
1202 he_mu->flags1 |=
1203 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1204 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1205
1206 he_mu->flags2 |=
1207 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1208 phy_data4),
1209 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1210
1211 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1212 phy_data2);
1213 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1214 phy_data3);
1215 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1216 phy_data2);
1217 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1218 phy_data3);
1219 }
1220 }
1221
1222 static void
iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status)1223 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1224 u32 rate_n_flags,
1225 struct ieee80211_radiotap_he *he,
1226 struct ieee80211_radiotap_he_mu *he_mu,
1227 struct ieee80211_rx_status *rx_status)
1228 {
1229 /*
1230 * Unfortunately, we have to leave the mac80211 data
1231 * incorrect for the case that we receive an HE-MU
1232 * transmission and *don't* have the HE phy data (due
1233 * to the bits being used for TSF). This shouldn't
1234 * happen though as management frames where we need
1235 * the TSF/timers are not be transmitted in HE-MU.
1236 */
1237 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1238 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1239 u8 offs = 0;
1240
1241 rx_status->bw = RATE_INFO_BW_HE_RU;
1242
1243 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1244
1245 switch (ru) {
1246 case 0 ... 36:
1247 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1248 offs = ru;
1249 break;
1250 case 37 ... 52:
1251 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1252 offs = ru - 37;
1253 break;
1254 case 53 ... 60:
1255 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1256 offs = ru - 53;
1257 break;
1258 case 61 ... 64:
1259 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1260 offs = ru - 61;
1261 break;
1262 case 65 ... 66:
1263 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1264 offs = ru - 65;
1265 break;
1266 case 67:
1267 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1268 break;
1269 case 68:
1270 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1271 break;
1272 }
1273 he->data2 |= le16_encode_bits(offs,
1274 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1275 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1276 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1277 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1278 he->data2 |=
1279 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1280
1281 #define CHECK_BW(bw) \
1282 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1283 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1284 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1285 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1286 CHECK_BW(20);
1287 CHECK_BW(40);
1288 CHECK_BW(80);
1289 CHECK_BW(160);
1290
1291 if (he_mu)
1292 he_mu->flags2 |=
1293 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1294 rate_n_flags),
1295 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1296 else if (he_type == RATE_MCS_HE_TYPE_TRIG)
1297 he->data6 |=
1298 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1299 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK,
1300 rate_n_flags),
1301 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1302 }
1303
iwl_mvm_decode_he_phy_data(struct iwl_mvm * mvm,struct iwl_mvm_rx_phy_data * phy_data,struct ieee80211_radiotap_he * he,struct ieee80211_radiotap_he_mu * he_mu,struct ieee80211_rx_status * rx_status,u32 rate_n_flags,int queue)1304 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1305 struct iwl_mvm_rx_phy_data *phy_data,
1306 struct ieee80211_radiotap_he *he,
1307 struct ieee80211_radiotap_he_mu *he_mu,
1308 struct ieee80211_rx_status *rx_status,
1309 u32 rate_n_flags, int queue)
1310 {
1311 switch (phy_data->info_type) {
1312 case IWL_RX_PHY_INFO_TYPE_NONE:
1313 case IWL_RX_PHY_INFO_TYPE_CCK:
1314 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1315 case IWL_RX_PHY_INFO_TYPE_HT:
1316 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1317 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1318 return;
1319 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1320 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1321 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1322 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1323 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1324 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1325 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1326 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1327 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1328 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1329 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1330 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1331 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1332 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1333 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1334 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1335 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1336 fallthrough;
1337 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1338 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1339 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1340 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1341 /* HE common */
1342 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1343 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1344 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1345 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1346 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1347 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1348 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1349 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1350 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1351 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1352 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1353 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1354 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1355 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1356 IWL_RX_PHY_DATA0_HE_UPLINK),
1357 IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1358 }
1359 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1360 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1361 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1362 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1363 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1364 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1365 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1366 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1367 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1368 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1369 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1370 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1371 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1372 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1373 IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1374 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1375 IWL_RX_PHY_DATA0_HE_DOPPLER),
1376 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1377 break;
1378 }
1379
1380 switch (phy_data->info_type) {
1381 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1382 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1383 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1384 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1385 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1386 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1387 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1388 break;
1389 default:
1390 /* nothing here */
1391 break;
1392 }
1393
1394 switch (phy_data->info_type) {
1395 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1396 he_mu->flags1 |=
1397 le16_encode_bits(le16_get_bits(phy_data->d4,
1398 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1399 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1400 he_mu->flags1 |=
1401 le16_encode_bits(le16_get_bits(phy_data->d4,
1402 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1403 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1404 he_mu->flags2 |=
1405 le16_encode_bits(le16_get_bits(phy_data->d4,
1406 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1407 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1408 iwl_mvm_decode_he_mu_ext(mvm, phy_data, rate_n_flags, he_mu);
1409 fallthrough;
1410 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1411 he_mu->flags2 |=
1412 le16_encode_bits(le32_get_bits(phy_data->d1,
1413 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1414 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1415 he_mu->flags2 |=
1416 le16_encode_bits(le32_get_bits(phy_data->d1,
1417 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1418 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1419 fallthrough;
1420 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1421 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1422 iwl_mvm_decode_he_phy_ru_alloc(phy_data, rate_n_flags,
1423 he, he_mu, rx_status);
1424 break;
1425 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1426 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1427 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1428 IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1429 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1430 break;
1431 default:
1432 /* nothing */
1433 break;
1434 }
1435 }
1436
iwl_mvm_rx_he(struct iwl_mvm * mvm,struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data,u32 rate_n_flags,u16 phy_info,int queue)1437 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
1438 struct iwl_mvm_rx_phy_data *phy_data,
1439 u32 rate_n_flags, u16 phy_info, int queue)
1440 {
1441 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1442 struct ieee80211_radiotap_he *he = NULL;
1443 struct ieee80211_radiotap_he_mu *he_mu = NULL;
1444 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1445 u8 stbc, ltf;
1446 static const struct ieee80211_radiotap_he known = {
1447 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
1448 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
1449 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
1450 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
1451 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
1452 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
1453 };
1454 static const struct ieee80211_radiotap_he_mu mu_known = {
1455 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
1456 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
1457 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
1458 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
1459 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
1460 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
1461 };
1462
1463 he = skb_put_data(skb, &known, sizeof(known));
1464 rx_status->flag |= RX_FLAG_RADIOTAP_HE;
1465
1466 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
1467 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
1468 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
1469 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
1470 }
1471
1472 /* report the AMPDU-EOF bit on single frames */
1473 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1474 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1475 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1476 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1477 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1478 }
1479
1480 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1481 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
1482 rate_n_flags, queue);
1483
1484 /* update aggregation data for monitor sake on default queue */
1485 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1486 (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1487 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1488
1489 /* toggle is switched whenever new aggregation starts */
1490 if (toggle_bit != mvm->ampdu_toggle) {
1491 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1492 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
1493 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1494 }
1495 }
1496
1497 if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
1498 rate_n_flags & RATE_MCS_HE_106T_MSK) {
1499 rx_status->bw = RATE_INFO_BW_HE_RU;
1500 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1501 }
1502
1503 /* actually data is filled in mac80211 */
1504 if (he_type == RATE_MCS_HE_TYPE_SU ||
1505 he_type == RATE_MCS_HE_TYPE_EXT_SU)
1506 he->data1 |=
1507 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1508
1509 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >> RATE_MCS_STBC_POS;
1510 rx_status->nss =
1511 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1512 RATE_VHT_MCS_NSS_POS) + 1;
1513 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1514 rx_status->encoding = RX_ENC_HE;
1515 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1516 if (rate_n_flags & RATE_MCS_BF_MSK)
1517 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1518
1519 rx_status->he_dcm =
1520 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
1521
1522 #define CHECK_TYPE(F) \
1523 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \
1524 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1525
1526 CHECK_TYPE(SU);
1527 CHECK_TYPE(EXT_SU);
1528 CHECK_TYPE(MU);
1529 CHECK_TYPE(TRIG);
1530
1531 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
1532
1533 if (rate_n_flags & RATE_MCS_BF_MSK)
1534 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
1535
1536 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
1537 RATE_MCS_HE_GI_LTF_POS) {
1538 case 0:
1539 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1540 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1541 else
1542 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1543 if (he_type == RATE_MCS_HE_TYPE_MU)
1544 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1545 else
1546 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1547 break;
1548 case 1:
1549 if (he_type == RATE_MCS_HE_TYPE_TRIG)
1550 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1551 else
1552 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1553 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1554 break;
1555 case 2:
1556 if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1557 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1558 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1559 } else {
1560 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
1561 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1562 }
1563 break;
1564 case 3:
1565 if ((he_type == RATE_MCS_HE_TYPE_SU ||
1566 he_type == RATE_MCS_HE_TYPE_EXT_SU) &&
1567 rate_n_flags & RATE_MCS_SGI_MSK)
1568 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
1569 else
1570 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
1571 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1572 break;
1573 }
1574
1575 he->data5 |= le16_encode_bits(ltf,
1576 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
1577 }
1578
iwl_mvm_decode_lsig(struct sk_buff * skb,struct iwl_mvm_rx_phy_data * phy_data)1579 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
1580 struct iwl_mvm_rx_phy_data *phy_data)
1581 {
1582 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1583 struct ieee80211_radiotap_lsig *lsig;
1584
1585 switch (phy_data->info_type) {
1586 case IWL_RX_PHY_INFO_TYPE_HT:
1587 case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1588 case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1589 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1590 case IWL_RX_PHY_INFO_TYPE_HE_SU:
1591 case IWL_RX_PHY_INFO_TYPE_HE_MU:
1592 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1593 case IWL_RX_PHY_INFO_TYPE_HE_TB:
1594 lsig = skb_put(skb, sizeof(*lsig));
1595 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
1596 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
1597 IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
1598 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
1599 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
1600 break;
1601 default:
1602 break;
1603 }
1604 }
1605
iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)1606 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
1607 {
1608 switch (phy_band) {
1609 case PHY_BAND_24:
1610 return NL80211_BAND_2GHZ;
1611 case PHY_BAND_5:
1612 return NL80211_BAND_5GHZ;
1613 case PHY_BAND_6:
1614 return NL80211_BAND_6GHZ;
1615 default:
1616 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
1617 return NL80211_BAND_5GHZ;
1618 }
1619 }
1620
1621 struct iwl_rx_sta_csa {
1622 bool all_sta_unblocked;
1623 struct ieee80211_vif *vif;
1624 };
1625
iwl_mvm_rx_get_sta_block_tx(void * data,struct ieee80211_sta * sta)1626 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
1627 {
1628 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1629 struct iwl_rx_sta_csa *rx_sta_csa = data;
1630
1631 if (mvmsta->vif != rx_sta_csa->vif)
1632 return;
1633
1634 if (mvmsta->disable_tx)
1635 rx_sta_csa->all_sta_unblocked = false;
1636 }
1637
iwl_mvm_rx_mpdu_mq(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)1638 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
1639 struct iwl_rx_cmd_buffer *rxb, int queue)
1640 {
1641 struct ieee80211_rx_status *rx_status;
1642 struct iwl_rx_packet *pkt = rxb_addr(rxb);
1643 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
1644 struct ieee80211_hdr *hdr;
1645 u32 len;
1646 u32 pkt_len = iwl_rx_packet_payload_len(pkt);
1647 u32 rate_n_flags, gp2_on_air_rise;
1648 u16 phy_info;
1649 struct ieee80211_sta *sta = NULL;
1650 struct sk_buff *skb;
1651 u8 crypt_len = 0, channel, energy_a, energy_b;
1652 size_t desc_size;
1653 struct iwl_mvm_rx_phy_data phy_data = {
1654 .info_type = IWL_RX_PHY_INFO_TYPE_NONE,
1655 };
1656 bool csi = false;
1657
1658 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
1659 return;
1660
1661 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
1662 desc_size = sizeof(*desc);
1663 else
1664 desc_size = IWL_RX_DESC_SIZE_V1;
1665
1666 if (unlikely(pkt_len < desc_size)) {
1667 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
1668 return;
1669 }
1670
1671 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
1672 rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
1673 channel = desc->v3.channel;
1674 gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
1675 energy_a = desc->v3.energy_a;
1676 energy_b = desc->v3.energy_b;
1677
1678 phy_data.d0 = desc->v3.phy_data0;
1679 phy_data.d1 = desc->v3.phy_data1;
1680 phy_data.d2 = desc->v3.phy_data2;
1681 phy_data.d3 = desc->v3.phy_data3;
1682 } else {
1683 rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
1684 channel = desc->v1.channel;
1685 gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
1686 energy_a = desc->v1.energy_a;
1687 energy_b = desc->v1.energy_b;
1688
1689 phy_data.d0 = desc->v1.phy_data0;
1690 phy_data.d1 = desc->v1.phy_data1;
1691 phy_data.d2 = desc->v1.phy_data2;
1692 phy_data.d3 = desc->v1.phy_data3;
1693 }
1694
1695 len = le16_to_cpu(desc->mpdu_len);
1696
1697 if (unlikely(len + desc_size > pkt_len)) {
1698 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
1699 return;
1700 }
1701
1702 phy_info = le16_to_cpu(desc->phy_info);
1703 phy_data.d4 = desc->phy_data4;
1704
1705 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1706 phy_data.info_type =
1707 le32_get_bits(phy_data.d1,
1708 IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
1709
1710 hdr = (void *)(pkt->data + desc_size);
1711 /* Dont use dev_alloc_skb(), we'll have enough headroom once
1712 * ieee80211_hdr pulled.
1713 */
1714 skb = alloc_skb(128, GFP_ATOMIC);
1715 if (!skb) {
1716 IWL_ERR(mvm, "alloc_skb failed\n");
1717 return;
1718 }
1719
1720 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
1721 /*
1722 * If the device inserted padding it means that (it thought)
1723 * the 802.11 header wasn't a multiple of 4 bytes long. In
1724 * this case, reserve two bytes at the start of the SKB to
1725 * align the payload properly in case we end up copying it.
1726 */
1727 skb_reserve(skb, 2);
1728 }
1729
1730 rx_status = IEEE80211_SKB_RXCB(skb);
1731
1732 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
1733 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
1734 case RATE_MCS_CHAN_WIDTH_20:
1735 break;
1736 case RATE_MCS_CHAN_WIDTH_40:
1737 rx_status->bw = RATE_INFO_BW_40;
1738 break;
1739 case RATE_MCS_CHAN_WIDTH_80:
1740 rx_status->bw = RATE_INFO_BW_80;
1741 break;
1742 case RATE_MCS_CHAN_WIDTH_160:
1743 rx_status->bw = RATE_INFO_BW_160;
1744 break;
1745 }
1746
1747 if (rate_n_flags & RATE_MCS_HE_MSK)
1748 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
1749 phy_info, queue);
1750
1751 iwl_mvm_decode_lsig(skb, &phy_data);
1752
1753 /*
1754 * Keep packets with CRC errors (and with overrun) for monitor mode
1755 * (otherwise the firmware discards them) but mark them as bad.
1756 */
1757 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
1758 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
1759 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
1760 le32_to_cpu(desc->status));
1761 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
1762 }
1763 /* set the preamble flag if appropriate */
1764 if (rate_n_flags & RATE_MCS_CCK_MSK &&
1765 phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
1766 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
1767
1768 if (likely(!(phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
1769 u64 tsf_on_air_rise;
1770
1771 if (mvm->trans->trans_cfg->device_family >=
1772 IWL_DEVICE_FAMILY_AX210)
1773 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
1774 else
1775 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
1776
1777 rx_status->mactime = tsf_on_air_rise;
1778 /* TSF as indicated by the firmware is at INA time */
1779 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
1780 }
1781
1782 rx_status->device_timestamp = gp2_on_air_rise;
1783 if (iwl_mvm_is_band_in_rx_supported(mvm)) {
1784 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
1785
1786 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
1787 } else {
1788 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
1789 NL80211_BAND_2GHZ;
1790 }
1791 rx_status->freq = ieee80211_channel_to_frequency(channel,
1792 rx_status->band);
1793 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
1794 energy_b);
1795
1796 /* update aggregation data for monitor sake on default queue */
1797 if (!queue && (phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1798 bool toggle_bit = phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
1799
1800 rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1801 /*
1802 * Toggle is switched whenever new aggregation starts. Make
1803 * sure ampdu_reference is never 0 so we can later use it to
1804 * see if the frame was really part of an A-MPDU or not.
1805 */
1806 if (toggle_bit != mvm->ampdu_toggle) {
1807 mvm->ampdu_ref++;
1808 if (mvm->ampdu_ref == 0)
1809 mvm->ampdu_ref++;
1810 mvm->ampdu_toggle = toggle_bit;
1811 }
1812 rx_status->ampdu_reference = mvm->ampdu_ref;
1813 }
1814
1815 if (unlikely(mvm->monitor_on))
1816 iwl_mvm_add_rtap_sniffer_config(mvm, skb);
1817
1818 rcu_read_lock();
1819
1820 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
1821 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
1822
1823 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
1824 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
1825 if (IS_ERR(sta))
1826 sta = NULL;
1827 }
1828 } else if (!is_multicast_ether_addr(hdr->addr2)) {
1829 /*
1830 * This is fine since we prevent two stations with the same
1831 * address from being added.
1832 */
1833 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
1834 }
1835
1836 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_info, desc,
1837 le32_to_cpu(pkt->len_n_flags), queue,
1838 &crypt_len)) {
1839 kfree_skb(skb);
1840 goto out;
1841 }
1842
1843 if (sta) {
1844 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
1845 struct ieee80211_vif *tx_blocked_vif =
1846 rcu_dereference(mvm->csa_tx_blocked_vif);
1847 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
1848 IWL_RX_MPDU_REORDER_BAID_MASK) >>
1849 IWL_RX_MPDU_REORDER_BAID_SHIFT);
1850 struct iwl_fw_dbg_trigger_tlv *trig;
1851 struct ieee80211_vif *vif = mvmsta->vif;
1852
1853 if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
1854 !is_multicast_ether_addr(hdr->addr1) &&
1855 ieee80211_is_data(hdr->frame_control) &&
1856 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
1857 schedule_delayed_work(&mvm->tcm.work, 0);
1858
1859 /*
1860 * We have tx blocked stations (with CS bit). If we heard
1861 * frames from a blocked station on a new channel we can
1862 * TX to it again.
1863 */
1864 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
1865 struct iwl_mvm_vif *mvmvif =
1866 iwl_mvm_vif_from_mac80211(tx_blocked_vif);
1867 struct iwl_rx_sta_csa rx_sta_csa = {
1868 .all_sta_unblocked = true,
1869 .vif = tx_blocked_vif,
1870 };
1871
1872 if (mvmvif->csa_target_freq == rx_status->freq)
1873 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
1874 false);
1875 ieee80211_iterate_stations_atomic(mvm->hw,
1876 iwl_mvm_rx_get_sta_block_tx,
1877 &rx_sta_csa);
1878
1879 if (rx_sta_csa.all_sta_unblocked) {
1880 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
1881 /* Unblock BCAST / MCAST station */
1882 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
1883 cancel_delayed_work_sync(&mvm->cs_tx_unblock_dwork);
1884 }
1885 }
1886
1887 rs_update_last_rssi(mvm, mvmsta, rx_status);
1888
1889 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
1890 ieee80211_vif_to_wdev(vif),
1891 FW_DBG_TRIGGER_RSSI);
1892
1893 if (trig && ieee80211_is_beacon(hdr->frame_control)) {
1894 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
1895 s32 rssi;
1896
1897 rssi_trig = (void *)trig->data;
1898 rssi = le32_to_cpu(rssi_trig->rssi);
1899
1900 if (rx_status->signal < rssi)
1901 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
1902 NULL);
1903 }
1904
1905 if (ieee80211_is_data(hdr->frame_control))
1906 iwl_mvm_rx_csum(mvm, sta, skb, pkt);
1907
1908 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
1909 kfree_skb(skb);
1910 goto out;
1911 }
1912
1913 /*
1914 * Our hardware de-aggregates AMSDUs but copies the mac header
1915 * as it to the de-aggregated MPDUs. We need to turn off the
1916 * AMSDU bit in the QoS control ourselves.
1917 * In addition, HW reverses addr3 and addr4 - reverse it back.
1918 */
1919 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
1920 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
1921 u8 *qc = ieee80211_get_qos_ctl(hdr);
1922
1923 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
1924
1925 if (mvm->trans->trans_cfg->device_family ==
1926 IWL_DEVICE_FAMILY_9000) {
1927 iwl_mvm_flip_address(hdr->addr3);
1928
1929 if (ieee80211_has_a4(hdr->frame_control))
1930 iwl_mvm_flip_address(hdr->addr4);
1931 }
1932 }
1933 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
1934 u32 reorder_data = le32_to_cpu(desc->reorder_data);
1935
1936 iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
1937 }
1938 }
1939
1940 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
1941 rate_n_flags & RATE_MCS_SGI_MSK)
1942 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
1943 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
1944 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
1945 if (rate_n_flags & RATE_MCS_LDPC_MSK)
1946 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
1947 if (rate_n_flags & RATE_MCS_HT_MSK) {
1948 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1949 RATE_MCS_STBC_POS;
1950 rx_status->encoding = RX_ENC_HT;
1951 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
1952 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1953 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
1954 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
1955 RATE_MCS_STBC_POS;
1956 rx_status->nss =
1957 ((rate_n_flags & RATE_VHT_MCS_NSS_MSK) >>
1958 RATE_VHT_MCS_NSS_POS) + 1;
1959 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
1960 rx_status->encoding = RX_ENC_VHT;
1961 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
1962 if (rate_n_flags & RATE_MCS_BF_MSK)
1963 rx_status->enc_flags |= RX_ENC_FLAG_BF;
1964 } else if (!(rate_n_flags & RATE_MCS_HE_MSK)) {
1965 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
1966 rx_status->band);
1967
1968 if (WARN(rate < 0 || rate > 0xFF,
1969 "Invalid rate flags 0x%x, band %d,\n",
1970 rate_n_flags, rx_status->band)) {
1971 kfree_skb(skb);
1972 goto out;
1973 }
1974 rx_status->rate_idx = rate;
1975 }
1976
1977 /* management stuff on default queue */
1978 if (!queue) {
1979 if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
1980 ieee80211_is_probe_resp(hdr->frame_control)) &&
1981 mvm->sched_scan_pass_all ==
1982 SCHED_SCAN_PASS_ALL_ENABLED))
1983 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
1984
1985 if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
1986 ieee80211_is_probe_resp(hdr->frame_control)))
1987 rx_status->boottime_ns = ktime_get_boottime_ns();
1988 }
1989
1990 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
1991 kfree_skb(skb);
1992 goto out;
1993 }
1994
1995 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc))
1996 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue,
1997 sta, csi);
1998 out:
1999 rcu_read_unlock();
2000 }
2001
iwl_mvm_rx_monitor_no_data(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2002 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2003 struct iwl_rx_cmd_buffer *rxb, int queue)
2004 {
2005 struct ieee80211_rx_status *rx_status;
2006 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2007 struct iwl_rx_no_data *desc = (void *)pkt->data;
2008 u32 rate_n_flags = le32_to_cpu(desc->rate);
2009 u32 gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2010 u32 rssi = le32_to_cpu(desc->rssi);
2011 u32 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2012 u16 phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2013 struct ieee80211_sta *sta = NULL;
2014 struct sk_buff *skb;
2015 u8 channel, energy_a, energy_b;
2016 struct iwl_mvm_rx_phy_data phy_data = {
2017 .info_type = le32_get_bits(desc->phy_info[1],
2018 IWL_RX_PHY_DATA1_INFO_TYPE_MASK),
2019 .d0 = desc->phy_info[0],
2020 .d1 = desc->phy_info[1],
2021 };
2022
2023 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*desc)))
2024 return;
2025
2026 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2027 return;
2028
2029 energy_a = (rssi & RX_NO_DATA_CHAIN_A_MSK) >> RX_NO_DATA_CHAIN_A_POS;
2030 energy_b = (rssi & RX_NO_DATA_CHAIN_B_MSK) >> RX_NO_DATA_CHAIN_B_POS;
2031 channel = (rssi & RX_NO_DATA_CHANNEL_MSK) >> RX_NO_DATA_CHANNEL_POS;
2032
2033 /* Dont use dev_alloc_skb(), we'll have enough headroom once
2034 * ieee80211_hdr pulled.
2035 */
2036 skb = alloc_skb(128, GFP_ATOMIC);
2037 if (!skb) {
2038 IWL_ERR(mvm, "alloc_skb failed\n");
2039 return;
2040 }
2041
2042 rx_status = IEEE80211_SKB_RXCB(skb);
2043
2044 /* 0-length PSDU */
2045 rx_status->flag |= RX_FLAG_NO_PSDU;
2046
2047 switch (info_type) {
2048 case RX_NO_DATA_INFO_TYPE_NDP:
2049 rx_status->zero_length_psdu_type =
2050 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2051 break;
2052 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2053 case RX_NO_DATA_INFO_TYPE_HE_TB_UNMATCHED:
2054 rx_status->zero_length_psdu_type =
2055 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2056 break;
2057 default:
2058 rx_status->zero_length_psdu_type =
2059 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2060 break;
2061 }
2062
2063 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2064 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2065 case RATE_MCS_CHAN_WIDTH_20:
2066 break;
2067 case RATE_MCS_CHAN_WIDTH_40:
2068 rx_status->bw = RATE_INFO_BW_40;
2069 break;
2070 case RATE_MCS_CHAN_WIDTH_80:
2071 rx_status->bw = RATE_INFO_BW_80;
2072 break;
2073 case RATE_MCS_CHAN_WIDTH_160:
2074 rx_status->bw = RATE_INFO_BW_160;
2075 break;
2076 }
2077
2078 if (rate_n_flags & RATE_MCS_HE_MSK)
2079 iwl_mvm_rx_he(mvm, skb, &phy_data, rate_n_flags,
2080 phy_info, queue);
2081
2082 iwl_mvm_decode_lsig(skb, &phy_data);
2083
2084 rx_status->device_timestamp = gp2_on_air_rise;
2085 rx_status->band = channel > 14 ? NL80211_BAND_5GHZ :
2086 NL80211_BAND_2GHZ;
2087 rx_status->freq = ieee80211_channel_to_frequency(channel,
2088 rx_status->band);
2089 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, energy_a,
2090 energy_b);
2091
2092 rcu_read_lock();
2093
2094 if (!(rate_n_flags & RATE_MCS_CCK_MSK) &&
2095 rate_n_flags & RATE_MCS_SGI_MSK)
2096 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2097 if (rate_n_flags & RATE_HT_MCS_GF_MSK)
2098 rx_status->enc_flags |= RX_ENC_FLAG_HT_GF;
2099 if (rate_n_flags & RATE_MCS_LDPC_MSK)
2100 rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2101 if (rate_n_flags & RATE_MCS_HT_MSK) {
2102 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2103 RATE_MCS_STBC_POS;
2104 rx_status->encoding = RX_ENC_HT;
2105 rx_status->rate_idx = rate_n_flags & RATE_HT_MCS_INDEX_MSK;
2106 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2107 } else if (rate_n_flags & RATE_MCS_VHT_MSK) {
2108 u8 stbc = (rate_n_flags & RATE_MCS_STBC_MSK) >>
2109 RATE_MCS_STBC_POS;
2110 rx_status->rate_idx = rate_n_flags & RATE_VHT_MCS_RATE_CODE_MSK;
2111 rx_status->encoding = RX_ENC_VHT;
2112 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2113 if (rate_n_flags & RATE_MCS_BF_MSK)
2114 rx_status->enc_flags |= RX_ENC_FLAG_BF;
2115 /*
2116 * take the nss from the rx_vec since the rate_n_flags has
2117 * only 2 bits for the nss which gives a max of 4 ss but
2118 * there may be up to 8 spatial streams
2119 */
2120 rx_status->nss =
2121 le32_get_bits(desc->rx_vec[0],
2122 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2123 } else if (rate_n_flags & RATE_MCS_HE_MSK) {
2124 rx_status->nss =
2125 le32_get_bits(desc->rx_vec[0],
2126 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2127 } else {
2128 int rate = iwl_mvm_legacy_rate_to_mac80211_idx(rate_n_flags,
2129 rx_status->band);
2130
2131 if (WARN(rate < 0 || rate > 0xFF,
2132 "Invalid rate flags 0x%x, band %d,\n",
2133 rate_n_flags, rx_status->band)) {
2134 kfree_skb(skb);
2135 goto out;
2136 }
2137 rx_status->rate_idx = rate;
2138 }
2139
2140 ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2141 out:
2142 rcu_read_unlock();
2143 }
2144
iwl_mvm_rx_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2145 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2146 struct iwl_rx_cmd_buffer *rxb, int queue)
2147 {
2148 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2149 struct iwl_frame_release *release = (void *)pkt->data;
2150
2151 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2152 return;
2153
2154 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2155 le16_to_cpu(release->nssn),
2156 queue, 0);
2157 }
2158
iwl_mvm_rx_bar_frame_release(struct iwl_mvm * mvm,struct napi_struct * napi,struct iwl_rx_cmd_buffer * rxb,int queue)2159 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2160 struct iwl_rx_cmd_buffer *rxb, int queue)
2161 {
2162 struct iwl_rx_packet *pkt = rxb_addr(rxb);
2163 struct iwl_bar_frame_release *release = (void *)pkt->data;
2164 unsigned int baid = le32_get_bits(release->ba_info,
2165 IWL_BAR_FRAME_RELEASE_BAID_MASK);
2166 unsigned int nssn = le32_get_bits(release->ba_info,
2167 IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2168 unsigned int sta_id = le32_get_bits(release->sta_tid,
2169 IWL_BAR_FRAME_RELEASE_STA_MASK);
2170 unsigned int tid = le32_get_bits(release->sta_tid,
2171 IWL_BAR_FRAME_RELEASE_TID_MASK);
2172 struct iwl_mvm_baid_data *baid_data;
2173
2174 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2175 return;
2176
2177 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2178 baid >= ARRAY_SIZE(mvm->baid_map)))
2179 return;
2180
2181 rcu_read_lock();
2182 baid_data = rcu_dereference(mvm->baid_map[baid]);
2183 if (!baid_data) {
2184 IWL_DEBUG_RX(mvm,
2185 "Got valid BAID %d but not allocated, invalid BAR release!\n",
2186 baid);
2187 goto out;
2188 }
2189
2190 if (WARN(tid != baid_data->tid || sta_id != baid_data->sta_id,
2191 "baid 0x%x is mapped to sta:%d tid:%d, but BAR release received for sta:%d tid:%d\n",
2192 baid, baid_data->sta_id, baid_data->tid, sta_id,
2193 tid))
2194 goto out;
2195
2196 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2197 out:
2198 rcu_read_unlock();
2199 }
2200