1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3 *
4 * Copyright(c) 2003 - 2014, 2018 - 2021 Intel Corporation. All rights reserved.
5 * Copyright(c) 2015 Intel Deutschland GmbH
6 *
7 * Portions of this file are derived from the ipw3945 project, as well
8 * as portions of the ieee80211 subsystem header files.
9 *
10 * Contact Information:
11 * Intel Linux Wireless <linuxwifi@intel.com>
12 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
13 *
14 *****************************************************************************/
15
16 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/sched.h>
24 #include <linux/skbuff.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/if_arp.h>
28
29 #include <net/mac80211.h>
30
31 #include <asm/div64.h>
32
33 #include "iwl-eeprom-read.h"
34 #include "iwl-eeprom-parse.h"
35 #include "iwl-io.h"
36 #include "iwl-trans.h"
37 #include "iwl-op-mode.h"
38 #include "iwl-drv.h"
39 #include "iwl-modparams.h"
40 #include "iwl-prph.h"
41
42 #include "dev.h"
43 #include "calib.h"
44 #include "agn.h"
45
46
47 /******************************************************************************
48 *
49 * module boiler plate
50 *
51 ******************************************************************************/
52
53 #define DRV_DESCRIPTION "Intel(R) Wireless WiFi Link AGN driver for Linux"
54 MODULE_DESCRIPTION(DRV_DESCRIPTION);
55 MODULE_AUTHOR(DRV_AUTHOR);
56 MODULE_LICENSE("GPL");
57
58 /* Please keep this array *SORTED* by hex value.
59 * Access is done through binary search.
60 * A warning will be triggered on violation.
61 */
62 static const struct iwl_hcmd_names iwl_dvm_cmd_names[] = {
63 HCMD_NAME(REPLY_ALIVE),
64 HCMD_NAME(REPLY_ERROR),
65 HCMD_NAME(REPLY_ECHO),
66 HCMD_NAME(REPLY_RXON),
67 HCMD_NAME(REPLY_RXON_ASSOC),
68 HCMD_NAME(REPLY_QOS_PARAM),
69 HCMD_NAME(REPLY_RXON_TIMING),
70 HCMD_NAME(REPLY_ADD_STA),
71 HCMD_NAME(REPLY_REMOVE_STA),
72 HCMD_NAME(REPLY_REMOVE_ALL_STA),
73 HCMD_NAME(REPLY_TX),
74 HCMD_NAME(REPLY_TXFIFO_FLUSH),
75 HCMD_NAME(REPLY_WEPKEY),
76 HCMD_NAME(REPLY_LEDS_CMD),
77 HCMD_NAME(REPLY_TX_LINK_QUALITY_CMD),
78 HCMD_NAME(COEX_PRIORITY_TABLE_CMD),
79 HCMD_NAME(COEX_MEDIUM_NOTIFICATION),
80 HCMD_NAME(COEX_EVENT_CMD),
81 HCMD_NAME(TEMPERATURE_NOTIFICATION),
82 HCMD_NAME(CALIBRATION_CFG_CMD),
83 HCMD_NAME(CALIBRATION_RES_NOTIFICATION),
84 HCMD_NAME(CALIBRATION_COMPLETE_NOTIFICATION),
85 HCMD_NAME(REPLY_QUIET_CMD),
86 HCMD_NAME(REPLY_CHANNEL_SWITCH),
87 HCMD_NAME(CHANNEL_SWITCH_NOTIFICATION),
88 HCMD_NAME(REPLY_SPECTRUM_MEASUREMENT_CMD),
89 HCMD_NAME(SPECTRUM_MEASURE_NOTIFICATION),
90 HCMD_NAME(POWER_TABLE_CMD),
91 HCMD_NAME(PM_SLEEP_NOTIFICATION),
92 HCMD_NAME(PM_DEBUG_STATISTIC_NOTIFIC),
93 HCMD_NAME(REPLY_SCAN_CMD),
94 HCMD_NAME(REPLY_SCAN_ABORT_CMD),
95 HCMD_NAME(SCAN_START_NOTIFICATION),
96 HCMD_NAME(SCAN_RESULTS_NOTIFICATION),
97 HCMD_NAME(SCAN_COMPLETE_NOTIFICATION),
98 HCMD_NAME(BEACON_NOTIFICATION),
99 HCMD_NAME(REPLY_TX_BEACON),
100 HCMD_NAME(WHO_IS_AWAKE_NOTIFICATION),
101 HCMD_NAME(REPLY_TX_POWER_DBM_CMD),
102 HCMD_NAME(QUIET_NOTIFICATION),
103 HCMD_NAME(REPLY_TX_PWR_TABLE_CMD),
104 HCMD_NAME(REPLY_TX_POWER_DBM_CMD_V1),
105 HCMD_NAME(TX_ANT_CONFIGURATION_CMD),
106 HCMD_NAME(MEASURE_ABORT_NOTIFICATION),
107 HCMD_NAME(REPLY_BT_CONFIG),
108 HCMD_NAME(REPLY_STATISTICS_CMD),
109 HCMD_NAME(STATISTICS_NOTIFICATION),
110 HCMD_NAME(REPLY_CARD_STATE_CMD),
111 HCMD_NAME(CARD_STATE_NOTIFICATION),
112 HCMD_NAME(MISSED_BEACONS_NOTIFICATION),
113 HCMD_NAME(REPLY_CT_KILL_CONFIG_CMD),
114 HCMD_NAME(SENSITIVITY_CMD),
115 HCMD_NAME(REPLY_PHY_CALIBRATION_CMD),
116 HCMD_NAME(REPLY_WIPAN_PARAMS),
117 HCMD_NAME(REPLY_WIPAN_RXON),
118 HCMD_NAME(REPLY_WIPAN_RXON_TIMING),
119 HCMD_NAME(REPLY_WIPAN_RXON_ASSOC),
120 HCMD_NAME(REPLY_WIPAN_QOS_PARAM),
121 HCMD_NAME(REPLY_WIPAN_WEPKEY),
122 HCMD_NAME(REPLY_WIPAN_P2P_CHANNEL_SWITCH),
123 HCMD_NAME(REPLY_WIPAN_NOA_NOTIFICATION),
124 HCMD_NAME(REPLY_WIPAN_DEACTIVATION_COMPLETE),
125 HCMD_NAME(REPLY_RX_PHY_CMD),
126 HCMD_NAME(REPLY_RX_MPDU_CMD),
127 HCMD_NAME(REPLY_RX),
128 HCMD_NAME(REPLY_COMPRESSED_BA),
129 HCMD_NAME(REPLY_BT_COEX_PRIO_TABLE),
130 HCMD_NAME(REPLY_BT_COEX_PROT_ENV),
131 HCMD_NAME(REPLY_BT_COEX_PROFILE_NOTIF),
132 HCMD_NAME(REPLY_D3_CONFIG),
133 HCMD_NAME(REPLY_WOWLAN_PATTERNS),
134 HCMD_NAME(REPLY_WOWLAN_WAKEUP_FILTER),
135 HCMD_NAME(REPLY_WOWLAN_TSC_RSC_PARAMS),
136 HCMD_NAME(REPLY_WOWLAN_TKIP_PARAMS),
137 HCMD_NAME(REPLY_WOWLAN_KEK_KCK_MATERIAL),
138 HCMD_NAME(REPLY_WOWLAN_GET_STATUS),
139 };
140
141 static const struct iwl_hcmd_arr iwl_dvm_groups[] = {
142 [0x0] = HCMD_ARR(iwl_dvm_cmd_names),
143 };
144
145 static const struct iwl_op_mode_ops iwl_dvm_ops;
146
iwl_update_chain_flags(struct iwl_priv * priv)147 void iwl_update_chain_flags(struct iwl_priv *priv)
148 {
149 struct iwl_rxon_context *ctx;
150
151 for_each_context(priv, ctx) {
152 iwlagn_set_rxon_chain(priv, ctx);
153 if (ctx->active.rx_chain != ctx->staging.rx_chain)
154 iwlagn_commit_rxon(priv, ctx);
155 }
156 }
157
158 /* Parse the beacon frame to find the TIM element and set tim_idx & tim_size */
iwl_set_beacon_tim(struct iwl_priv * priv,struct iwl_tx_beacon_cmd * tx_beacon_cmd,u8 * beacon,u32 frame_size)159 static void iwl_set_beacon_tim(struct iwl_priv *priv,
160 struct iwl_tx_beacon_cmd *tx_beacon_cmd,
161 u8 *beacon, u32 frame_size)
162 {
163 u16 tim_idx;
164 struct ieee80211_mgmt *mgmt = (struct ieee80211_mgmt *)beacon;
165
166 /*
167 * The index is relative to frame start but we start looking at the
168 * variable-length part of the beacon.
169 */
170 tim_idx = mgmt->u.beacon.variable - beacon;
171
172 /* Parse variable-length elements of beacon to find WLAN_EID_TIM */
173 while ((tim_idx < (frame_size - 2)) &&
174 (beacon[tim_idx] != WLAN_EID_TIM))
175 tim_idx += beacon[tim_idx+1] + 2;
176
177 /* If TIM field was found, set variables */
178 if ((tim_idx < (frame_size - 1)) && (beacon[tim_idx] == WLAN_EID_TIM)) {
179 tx_beacon_cmd->tim_idx = cpu_to_le16(tim_idx);
180 tx_beacon_cmd->tim_size = beacon[tim_idx+1];
181 } else
182 IWL_WARN(priv, "Unable to find TIM Element in beacon\n");
183 }
184
iwlagn_send_beacon_cmd(struct iwl_priv * priv)185 int iwlagn_send_beacon_cmd(struct iwl_priv *priv)
186 {
187 struct iwl_tx_beacon_cmd *tx_beacon_cmd;
188 struct iwl_host_cmd cmd = {
189 .id = REPLY_TX_BEACON,
190 };
191 struct ieee80211_tx_info *info;
192 u32 frame_size;
193 u32 rate_flags;
194 u32 rate;
195
196 /*
197 * We have to set up the TX command, the TX Beacon command, and the
198 * beacon contents.
199 */
200
201 lockdep_assert_held(&priv->mutex);
202
203 if (!priv->beacon_ctx) {
204 IWL_ERR(priv, "trying to build beacon w/o beacon context!\n");
205 return 0;
206 }
207
208 if (WARN_ON(!priv->beacon_skb))
209 return -EINVAL;
210
211 /* Allocate beacon command */
212 if (!priv->beacon_cmd)
213 priv->beacon_cmd = kzalloc(sizeof(*tx_beacon_cmd), GFP_KERNEL);
214 tx_beacon_cmd = priv->beacon_cmd;
215 if (!tx_beacon_cmd)
216 return -ENOMEM;
217
218 frame_size = priv->beacon_skb->len;
219
220 /* Set up TX command fields */
221 tx_beacon_cmd->tx.len = cpu_to_le16((u16)frame_size);
222 tx_beacon_cmd->tx.sta_id = priv->beacon_ctx->bcast_sta_id;
223 tx_beacon_cmd->tx.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
224 tx_beacon_cmd->tx.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK |
225 TX_CMD_FLG_TSF_MSK | TX_CMD_FLG_STA_RATE_MSK;
226
227 /* Set up TX beacon command fields */
228 iwl_set_beacon_tim(priv, tx_beacon_cmd, priv->beacon_skb->data,
229 frame_size);
230
231 /* Set up packet rate and flags */
232 info = IEEE80211_SKB_CB(priv->beacon_skb);
233
234 /*
235 * Let's set up the rate at least somewhat correctly;
236 * it will currently not actually be used by the uCode,
237 * it uses the broadcast station's rate instead.
238 */
239 if (info->control.rates[0].idx < 0 ||
240 info->control.rates[0].flags & IEEE80211_TX_RC_MCS)
241 rate = 0;
242 else
243 rate = info->control.rates[0].idx;
244
245 priv->mgmt_tx_ant = iwl_toggle_tx_ant(priv, priv->mgmt_tx_ant,
246 priv->nvm_data->valid_tx_ant);
247 rate_flags = iwl_ant_idx_to_flags(priv->mgmt_tx_ant);
248
249 /* In mac80211, rates for 5 GHz start at 0 */
250 if (info->band == NL80211_BAND_5GHZ)
251 rate += IWL_FIRST_OFDM_RATE;
252 else if (rate >= IWL_FIRST_CCK_RATE && rate <= IWL_LAST_CCK_RATE)
253 rate_flags |= RATE_MCS_CCK_MSK;
254
255 tx_beacon_cmd->tx.rate_n_flags =
256 iwl_hw_set_rate_n_flags(rate, rate_flags);
257
258 /* Submit command */
259 cmd.len[0] = sizeof(*tx_beacon_cmd);
260 cmd.data[0] = tx_beacon_cmd;
261 cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
262 cmd.len[1] = frame_size;
263 cmd.data[1] = priv->beacon_skb->data;
264 cmd.dataflags[1] = IWL_HCMD_DFL_NOCOPY;
265
266 return iwl_dvm_send_cmd(priv, &cmd);
267 }
268
iwl_bg_beacon_update(struct work_struct * work)269 static void iwl_bg_beacon_update(struct work_struct *work)
270 {
271 struct iwl_priv *priv =
272 container_of(work, struct iwl_priv, beacon_update);
273 struct sk_buff *beacon;
274
275 mutex_lock(&priv->mutex);
276 if (!priv->beacon_ctx) {
277 IWL_ERR(priv, "updating beacon w/o beacon context!\n");
278 goto out;
279 }
280
281 if (priv->beacon_ctx->vif->type != NL80211_IFTYPE_AP) {
282 /*
283 * The ucode will send beacon notifications even in
284 * IBSS mode, but we don't want to process them. But
285 * we need to defer the type check to here due to
286 * requiring locking around the beacon_ctx access.
287 */
288 goto out;
289 }
290
291 /* Pull updated AP beacon from mac80211. will fail if not in AP mode */
292 beacon = ieee80211_beacon_get(priv->hw, priv->beacon_ctx->vif);
293 if (!beacon) {
294 IWL_ERR(priv, "update beacon failed -- keeping old\n");
295 goto out;
296 }
297
298 /* new beacon skb is allocated every time; dispose previous.*/
299 dev_kfree_skb(priv->beacon_skb);
300
301 priv->beacon_skb = beacon;
302
303 iwlagn_send_beacon_cmd(priv);
304 out:
305 mutex_unlock(&priv->mutex);
306 }
307
iwl_bg_bt_runtime_config(struct work_struct * work)308 static void iwl_bg_bt_runtime_config(struct work_struct *work)
309 {
310 struct iwl_priv *priv =
311 container_of(work, struct iwl_priv, bt_runtime_config);
312
313 mutex_lock(&priv->mutex);
314 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
315 goto out;
316
317 /* dont send host command if rf-kill is on */
318 if (!iwl_is_ready_rf(priv))
319 goto out;
320
321 iwlagn_send_advance_bt_config(priv);
322 out:
323 mutex_unlock(&priv->mutex);
324 }
325
iwl_bg_bt_full_concurrency(struct work_struct * work)326 static void iwl_bg_bt_full_concurrency(struct work_struct *work)
327 {
328 struct iwl_priv *priv =
329 container_of(work, struct iwl_priv, bt_full_concurrency);
330 struct iwl_rxon_context *ctx;
331
332 mutex_lock(&priv->mutex);
333
334 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
335 goto out;
336
337 /* dont send host command if rf-kill is on */
338 if (!iwl_is_ready_rf(priv))
339 goto out;
340
341 IWL_DEBUG_INFO(priv, "BT coex in %s mode\n",
342 priv->bt_full_concurrent ?
343 "full concurrency" : "3-wire");
344
345 /*
346 * LQ & RXON updated cmds must be sent before BT Config cmd
347 * to avoid 3-wire collisions
348 */
349 for_each_context(priv, ctx) {
350 iwlagn_set_rxon_chain(priv, ctx);
351 iwlagn_commit_rxon(priv, ctx);
352 }
353
354 iwlagn_send_advance_bt_config(priv);
355 out:
356 mutex_unlock(&priv->mutex);
357 }
358
iwl_send_statistics_request(struct iwl_priv * priv,u8 flags,bool clear)359 int iwl_send_statistics_request(struct iwl_priv *priv, u8 flags, bool clear)
360 {
361 struct iwl_statistics_cmd statistics_cmd = {
362 .configuration_flags =
363 clear ? IWL_STATS_CONF_CLEAR_STATS : 0,
364 };
365
366 if (flags & CMD_ASYNC)
367 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD,
368 CMD_ASYNC,
369 sizeof(struct iwl_statistics_cmd),
370 &statistics_cmd);
371 else
372 return iwl_dvm_send_cmd_pdu(priv, REPLY_STATISTICS_CMD, 0,
373 sizeof(struct iwl_statistics_cmd),
374 &statistics_cmd);
375 }
376
377 /*
378 * iwl_bg_statistics_periodic - Timer callback to queue statistics
379 *
380 * This callback is provided in order to send a statistics request.
381 *
382 * This timer function is continually reset to execute within
383 * REG_RECALIB_PERIOD seconds since the last STATISTICS_NOTIFICATION
384 * was received. We need to ensure we receive the statistics in order
385 * to update the temperature used for calibrating the TXPOWER.
386 */
iwl_bg_statistics_periodic(struct timer_list * t)387 static void iwl_bg_statistics_periodic(struct timer_list *t)
388 {
389 struct iwl_priv *priv = from_timer(priv, t, statistics_periodic);
390
391 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
392 return;
393
394 /* dont send host command if rf-kill is on */
395 if (!iwl_is_ready_rf(priv))
396 return;
397
398 iwl_send_statistics_request(priv, CMD_ASYNC, false);
399 }
400
401
iwl_print_cont_event_trace(struct iwl_priv * priv,u32 base,u32 start_idx,u32 num_events,u32 capacity,u32 mode)402 static void iwl_print_cont_event_trace(struct iwl_priv *priv, u32 base,
403 u32 start_idx, u32 num_events,
404 u32 capacity, u32 mode)
405 {
406 u32 i;
407 u32 ptr; /* SRAM byte address of log data */
408 u32 ev, time, data; /* event log data */
409
410 if (mode == 0)
411 ptr = base + (4 * sizeof(u32)) + (start_idx * 2 * sizeof(u32));
412 else
413 ptr = base + (4 * sizeof(u32)) + (start_idx * 3 * sizeof(u32));
414
415 /* Make sure device is powered up for SRAM reads */
416 if (!iwl_trans_grab_nic_access(priv->trans))
417 return;
418
419 /* Set starting address; reads will auto-increment */
420 iwl_write32(priv->trans, HBUS_TARG_MEM_RADDR, ptr);
421
422 /*
423 * Refuse to read more than would have fit into the log from
424 * the current start_idx. This used to happen due to the race
425 * described below, but now WARN because the code below should
426 * prevent it from happening here.
427 */
428 if (WARN_ON(num_events > capacity - start_idx))
429 num_events = capacity - start_idx;
430
431 /*
432 * "time" is actually "data" for mode 0 (no timestamp).
433 * place event id # at far right for easier visual parsing.
434 */
435 for (i = 0; i < num_events; i++) {
436 ev = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
437 time = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
438 if (mode == 0) {
439 trace_iwlwifi_dev_ucode_cont_event(
440 priv->trans->dev, 0, time, ev);
441 } else {
442 data = iwl_read32(priv->trans, HBUS_TARG_MEM_RDAT);
443 trace_iwlwifi_dev_ucode_cont_event(
444 priv->trans->dev, time, data, ev);
445 }
446 }
447 /* Allow device to power down */
448 iwl_trans_release_nic_access(priv->trans);
449 }
450
iwl_continuous_event_trace(struct iwl_priv * priv)451 static void iwl_continuous_event_trace(struct iwl_priv *priv)
452 {
453 u32 capacity; /* event log capacity in # entries */
454 struct {
455 u32 capacity;
456 u32 mode;
457 u32 wrap_counter;
458 u32 write_counter;
459 } __packed read;
460 u32 base; /* SRAM byte address of event log header */
461 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */
462 u32 num_wraps; /* # times uCode wrapped to top of log */
463 u32 next_entry; /* index of next entry to be written by uCode */
464
465 base = priv->device_pointers.log_event_table;
466 if (iwlagn_hw_valid_rtc_data_addr(base)) {
467 iwl_trans_read_mem_bytes(priv->trans, base,
468 &read, sizeof(read));
469 capacity = read.capacity;
470 mode = read.mode;
471 num_wraps = read.wrap_counter;
472 next_entry = read.write_counter;
473 } else
474 return;
475
476 /*
477 * Unfortunately, the uCode doesn't use temporary variables.
478 * Therefore, it can happen that we read next_entry == capacity,
479 * which really means next_entry == 0.
480 */
481 if (unlikely(next_entry == capacity))
482 next_entry = 0;
483 /*
484 * Additionally, the uCode increases the write pointer before
485 * the wraps counter, so if the write pointer is smaller than
486 * the old write pointer (wrap occurred) but we read that no
487 * wrap occurred, we actually read between the next_entry and
488 * num_wraps update (this does happen in practice!!) -- take
489 * that into account by increasing num_wraps.
490 */
491 if (unlikely(next_entry < priv->event_log.next_entry &&
492 num_wraps == priv->event_log.num_wraps))
493 num_wraps++;
494
495 if (num_wraps == priv->event_log.num_wraps) {
496 iwl_print_cont_event_trace(
497 priv, base, priv->event_log.next_entry,
498 next_entry - priv->event_log.next_entry,
499 capacity, mode);
500
501 priv->event_log.non_wraps_count++;
502 } else {
503 if (num_wraps - priv->event_log.num_wraps > 1)
504 priv->event_log.wraps_more_count++;
505 else
506 priv->event_log.wraps_once_count++;
507
508 trace_iwlwifi_dev_ucode_wrap_event(priv->trans->dev,
509 num_wraps - priv->event_log.num_wraps,
510 next_entry, priv->event_log.next_entry);
511
512 if (next_entry < priv->event_log.next_entry) {
513 iwl_print_cont_event_trace(
514 priv, base, priv->event_log.next_entry,
515 capacity - priv->event_log.next_entry,
516 capacity, mode);
517
518 iwl_print_cont_event_trace(
519 priv, base, 0, next_entry, capacity, mode);
520 } else {
521 iwl_print_cont_event_trace(
522 priv, base, next_entry,
523 capacity - next_entry,
524 capacity, mode);
525
526 iwl_print_cont_event_trace(
527 priv, base, 0, next_entry, capacity, mode);
528 }
529 }
530
531 priv->event_log.num_wraps = num_wraps;
532 priv->event_log.next_entry = next_entry;
533 }
534
535 /*
536 * iwl_bg_ucode_trace - Timer callback to log ucode event
537 *
538 * The timer is continually set to execute every
539 * UCODE_TRACE_PERIOD milliseconds after the last timer expired
540 * this function is to perform continuous uCode event logging operation
541 * if enabled
542 */
iwl_bg_ucode_trace(struct timer_list * t)543 static void iwl_bg_ucode_trace(struct timer_list *t)
544 {
545 struct iwl_priv *priv = from_timer(priv, t, ucode_trace);
546
547 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
548 return;
549
550 if (priv->event_log.ucode_trace) {
551 iwl_continuous_event_trace(priv);
552 /* Reschedule the timer to occur in UCODE_TRACE_PERIOD */
553 mod_timer(&priv->ucode_trace,
554 jiffies + msecs_to_jiffies(UCODE_TRACE_PERIOD));
555 }
556 }
557
iwl_bg_tx_flush(struct work_struct * work)558 static void iwl_bg_tx_flush(struct work_struct *work)
559 {
560 struct iwl_priv *priv =
561 container_of(work, struct iwl_priv, tx_flush);
562
563 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
564 return;
565
566 /* do nothing if rf-kill is on */
567 if (!iwl_is_ready_rf(priv))
568 return;
569
570 IWL_DEBUG_INFO(priv, "device request: flush all tx frames\n");
571 iwlagn_dev_txfifo_flush(priv);
572 }
573
574 /*
575 * queue/FIFO/AC mapping definitions
576 */
577
578 static const u8 iwlagn_bss_ac_to_fifo[] = {
579 IWL_TX_FIFO_VO,
580 IWL_TX_FIFO_VI,
581 IWL_TX_FIFO_BE,
582 IWL_TX_FIFO_BK,
583 };
584
585 static const u8 iwlagn_bss_ac_to_queue[] = {
586 0, 1, 2, 3,
587 };
588
589 static const u8 iwlagn_pan_ac_to_fifo[] = {
590 IWL_TX_FIFO_VO_IPAN,
591 IWL_TX_FIFO_VI_IPAN,
592 IWL_TX_FIFO_BE_IPAN,
593 IWL_TX_FIFO_BK_IPAN,
594 };
595
596 static const u8 iwlagn_pan_ac_to_queue[] = {
597 7, 6, 5, 4,
598 };
599
iwl_init_context(struct iwl_priv * priv,u32 ucode_flags)600 static void iwl_init_context(struct iwl_priv *priv, u32 ucode_flags)
601 {
602 int i;
603
604 /*
605 * The default context is always valid,
606 * the PAN context depends on uCode.
607 */
608 priv->valid_contexts = BIT(IWL_RXON_CTX_BSS);
609 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN)
610 priv->valid_contexts |= BIT(IWL_RXON_CTX_PAN);
611
612 for (i = 0; i < NUM_IWL_RXON_CTX; i++)
613 priv->contexts[i].ctxid = i;
614
615 priv->contexts[IWL_RXON_CTX_BSS].always_active = true;
616 priv->contexts[IWL_RXON_CTX_BSS].is_active = true;
617 priv->contexts[IWL_RXON_CTX_BSS].rxon_cmd = REPLY_RXON;
618 priv->contexts[IWL_RXON_CTX_BSS].rxon_timing_cmd = REPLY_RXON_TIMING;
619 priv->contexts[IWL_RXON_CTX_BSS].rxon_assoc_cmd = REPLY_RXON_ASSOC;
620 priv->contexts[IWL_RXON_CTX_BSS].qos_cmd = REPLY_QOS_PARAM;
621 priv->contexts[IWL_RXON_CTX_BSS].ap_sta_id = IWL_AP_ID;
622 priv->contexts[IWL_RXON_CTX_BSS].wep_key_cmd = REPLY_WEPKEY;
623 priv->contexts[IWL_RXON_CTX_BSS].bcast_sta_id = IWLAGN_BROADCAST_ID;
624 priv->contexts[IWL_RXON_CTX_BSS].exclusive_interface_modes =
625 BIT(NL80211_IFTYPE_ADHOC) | BIT(NL80211_IFTYPE_MONITOR);
626 priv->contexts[IWL_RXON_CTX_BSS].interface_modes =
627 BIT(NL80211_IFTYPE_STATION);
628 priv->contexts[IWL_RXON_CTX_BSS].ap_devtype = RXON_DEV_TYPE_AP;
629 priv->contexts[IWL_RXON_CTX_BSS].ibss_devtype = RXON_DEV_TYPE_IBSS;
630 priv->contexts[IWL_RXON_CTX_BSS].station_devtype = RXON_DEV_TYPE_ESS;
631 priv->contexts[IWL_RXON_CTX_BSS].unused_devtype = RXON_DEV_TYPE_ESS;
632 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_queue,
633 iwlagn_bss_ac_to_queue, sizeof(iwlagn_bss_ac_to_queue));
634 memcpy(priv->contexts[IWL_RXON_CTX_BSS].ac_to_fifo,
635 iwlagn_bss_ac_to_fifo, sizeof(iwlagn_bss_ac_to_fifo));
636
637 priv->contexts[IWL_RXON_CTX_PAN].rxon_cmd = REPLY_WIPAN_RXON;
638 priv->contexts[IWL_RXON_CTX_PAN].rxon_timing_cmd =
639 REPLY_WIPAN_RXON_TIMING;
640 priv->contexts[IWL_RXON_CTX_PAN].rxon_assoc_cmd =
641 REPLY_WIPAN_RXON_ASSOC;
642 priv->contexts[IWL_RXON_CTX_PAN].qos_cmd = REPLY_WIPAN_QOS_PARAM;
643 priv->contexts[IWL_RXON_CTX_PAN].ap_sta_id = IWL_AP_ID_PAN;
644 priv->contexts[IWL_RXON_CTX_PAN].wep_key_cmd = REPLY_WIPAN_WEPKEY;
645 priv->contexts[IWL_RXON_CTX_PAN].bcast_sta_id = IWLAGN_PAN_BCAST_ID;
646 priv->contexts[IWL_RXON_CTX_PAN].station_flags = STA_FLG_PAN_STATION;
647 priv->contexts[IWL_RXON_CTX_PAN].interface_modes =
648 BIT(NL80211_IFTYPE_STATION) | BIT(NL80211_IFTYPE_AP);
649
650 priv->contexts[IWL_RXON_CTX_PAN].ap_devtype = RXON_DEV_TYPE_CP;
651 priv->contexts[IWL_RXON_CTX_PAN].station_devtype = RXON_DEV_TYPE_2STA;
652 priv->contexts[IWL_RXON_CTX_PAN].unused_devtype = RXON_DEV_TYPE_P2P;
653 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_queue,
654 iwlagn_pan_ac_to_queue, sizeof(iwlagn_pan_ac_to_queue));
655 memcpy(priv->contexts[IWL_RXON_CTX_PAN].ac_to_fifo,
656 iwlagn_pan_ac_to_fifo, sizeof(iwlagn_pan_ac_to_fifo));
657 priv->contexts[IWL_RXON_CTX_PAN].mcast_queue = IWL_IPAN_MCAST_QUEUE;
658
659 BUILD_BUG_ON(NUM_IWL_RXON_CTX != 2);
660 }
661
iwl_rf_kill_ct_config(struct iwl_priv * priv)662 static void iwl_rf_kill_ct_config(struct iwl_priv *priv)
663 {
664 struct iwl_ct_kill_config cmd;
665 struct iwl_ct_kill_throttling_config adv_cmd;
666 int ret = 0;
667
668 iwl_write32(priv->trans, CSR_UCODE_DRV_GP1_CLR,
669 CSR_UCODE_DRV_GP1_REG_BIT_CT_KILL_EXIT);
670
671 priv->thermal_throttle.ct_kill_toggle = false;
672
673 if (priv->lib->support_ct_kill_exit) {
674 adv_cmd.critical_temperature_enter =
675 cpu_to_le32(priv->hw_params.ct_kill_threshold);
676 adv_cmd.critical_temperature_exit =
677 cpu_to_le32(priv->hw_params.ct_kill_exit_threshold);
678
679 ret = iwl_dvm_send_cmd_pdu(priv,
680 REPLY_CT_KILL_CONFIG_CMD,
681 0, sizeof(adv_cmd), &adv_cmd);
682 if (ret)
683 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
684 else
685 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
686 "succeeded, critical temperature enter is %d,"
687 "exit is %d\n",
688 priv->hw_params.ct_kill_threshold,
689 priv->hw_params.ct_kill_exit_threshold);
690 } else {
691 cmd.critical_temperature_R =
692 cpu_to_le32(priv->hw_params.ct_kill_threshold);
693
694 ret = iwl_dvm_send_cmd_pdu(priv,
695 REPLY_CT_KILL_CONFIG_CMD,
696 0, sizeof(cmd), &cmd);
697 if (ret)
698 IWL_ERR(priv, "REPLY_CT_KILL_CONFIG_CMD failed\n");
699 else
700 IWL_DEBUG_INFO(priv, "REPLY_CT_KILL_CONFIG_CMD "
701 "succeeded, "
702 "critical temperature is %d\n",
703 priv->hw_params.ct_kill_threshold);
704 }
705 }
706
iwlagn_send_calib_cfg_rt(struct iwl_priv * priv,u32 cfg)707 static int iwlagn_send_calib_cfg_rt(struct iwl_priv *priv, u32 cfg)
708 {
709 struct iwl_calib_cfg_cmd calib_cfg_cmd;
710 struct iwl_host_cmd cmd = {
711 .id = CALIBRATION_CFG_CMD,
712 .len = { sizeof(struct iwl_calib_cfg_cmd), },
713 .data = { &calib_cfg_cmd, },
714 };
715
716 memset(&calib_cfg_cmd, 0, sizeof(calib_cfg_cmd));
717 calib_cfg_cmd.ucd_calib_cfg.once.is_enable = IWL_CALIB_RT_CFG_ALL;
718 calib_cfg_cmd.ucd_calib_cfg.once.start = cpu_to_le32(cfg);
719
720 return iwl_dvm_send_cmd(priv, &cmd);
721 }
722
723
iwlagn_send_tx_ant_config(struct iwl_priv * priv,u8 valid_tx_ant)724 static int iwlagn_send_tx_ant_config(struct iwl_priv *priv, u8 valid_tx_ant)
725 {
726 struct iwl_tx_ant_config_cmd tx_ant_cmd = {
727 .valid = cpu_to_le32(valid_tx_ant),
728 };
729
730 if (IWL_UCODE_API(priv->fw->ucode_ver) > 1) {
731 IWL_DEBUG_HC(priv, "select valid tx ant: %u\n", valid_tx_ant);
732 return iwl_dvm_send_cmd_pdu(priv, TX_ANT_CONFIGURATION_CMD, 0,
733 sizeof(struct iwl_tx_ant_config_cmd),
734 &tx_ant_cmd);
735 } else {
736 IWL_DEBUG_HC(priv, "TX_ANT_CONFIGURATION_CMD not supported\n");
737 return -EOPNOTSUPP;
738 }
739 }
740
iwl_send_bt_config(struct iwl_priv * priv)741 static void iwl_send_bt_config(struct iwl_priv *priv)
742 {
743 struct iwl_bt_cmd bt_cmd = {
744 .lead_time = BT_LEAD_TIME_DEF,
745 .max_kill = BT_MAX_KILL_DEF,
746 .kill_ack_mask = 0,
747 .kill_cts_mask = 0,
748 };
749
750 if (!iwlwifi_mod_params.bt_coex_active)
751 bt_cmd.flags = BT_COEX_DISABLE;
752 else
753 bt_cmd.flags = BT_COEX_ENABLE;
754
755 priv->bt_enable_flag = bt_cmd.flags;
756 IWL_DEBUG_INFO(priv, "BT coex %s\n",
757 (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
758
759 if (iwl_dvm_send_cmd_pdu(priv, REPLY_BT_CONFIG,
760 0, sizeof(struct iwl_bt_cmd), &bt_cmd))
761 IWL_ERR(priv, "failed to send BT Coex Config\n");
762 }
763
764 /*
765 * iwl_alive_start - called after REPLY_ALIVE notification received
766 * from protocol/runtime uCode (initialization uCode's
767 * Alive gets handled by iwl_init_alive_start()).
768 */
iwl_alive_start(struct iwl_priv * priv)769 int iwl_alive_start(struct iwl_priv *priv)
770 {
771 int ret = 0;
772 struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
773
774 IWL_DEBUG_INFO(priv, "Runtime Alive received.\n");
775
776 /* After the ALIVE response, we can send host commands to the uCode */
777 set_bit(STATUS_ALIVE, &priv->status);
778
779 if (iwl_is_rfkill(priv))
780 return -ERFKILL;
781
782 if (priv->event_log.ucode_trace) {
783 /* start collecting data now */
784 mod_timer(&priv->ucode_trace, jiffies);
785 }
786
787 /* download priority table before any calibration request */
788 if (priv->lib->bt_params &&
789 priv->lib->bt_params->advanced_bt_coexist) {
790 /* Configure Bluetooth device coexistence support */
791 if (priv->lib->bt_params->bt_sco_disable)
792 priv->bt_enable_pspoll = false;
793 else
794 priv->bt_enable_pspoll = true;
795
796 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
797 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
798 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
799 iwlagn_send_advance_bt_config(priv);
800 priv->bt_valid = IWLAGN_BT_VALID_ENABLE_FLAGS;
801 priv->cur_rssi_ctx = NULL;
802
803 iwl_send_prio_tbl(priv);
804
805 /* FIXME: w/a to force change uCode BT state machine */
806 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_OPEN,
807 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
808 if (ret)
809 return ret;
810 ret = iwl_send_bt_env(priv, IWL_BT_COEX_ENV_CLOSE,
811 BT_COEX_PRIO_TBL_EVT_INIT_CALIB2);
812 if (ret)
813 return ret;
814 } else if (priv->lib->bt_params) {
815 /*
816 * default is 2-wire BT coexexistence support
817 */
818 iwl_send_bt_config(priv);
819 }
820
821 /*
822 * Perform runtime calibrations, including DC calibration.
823 */
824 iwlagn_send_calib_cfg_rt(priv, IWL_CALIB_CFG_DC_IDX);
825
826 ieee80211_wake_queues(priv->hw);
827
828 /* Configure Tx antenna selection based on H/W config */
829 iwlagn_send_tx_ant_config(priv, priv->nvm_data->valid_tx_ant);
830
831 if (iwl_is_associated_ctx(ctx) && !priv->wowlan) {
832 struct iwl_rxon_cmd *active_rxon =
833 (struct iwl_rxon_cmd *)&ctx->active;
834 /* apply any changes in staging */
835 ctx->staging.filter_flags |= RXON_FILTER_ASSOC_MSK;
836 active_rxon->filter_flags &= ~RXON_FILTER_ASSOC_MSK;
837 } else {
838 struct iwl_rxon_context *tmp;
839 /* Initialize our rx_config data */
840 for_each_context(priv, tmp)
841 iwl_connection_init_rx_config(priv, tmp);
842
843 iwlagn_set_rxon_chain(priv, ctx);
844 }
845
846 if (!priv->wowlan) {
847 /* WoWLAN ucode will not reply in the same way, skip it */
848 iwl_reset_run_time_calib(priv);
849 }
850
851 set_bit(STATUS_READY, &priv->status);
852
853 /* Configure the adapter for unassociated operation */
854 ret = iwlagn_commit_rxon(priv, ctx);
855 if (ret)
856 return ret;
857
858 /* At this point, the NIC is initialized and operational */
859 iwl_rf_kill_ct_config(priv);
860
861 IWL_DEBUG_INFO(priv, "ALIVE processing complete.\n");
862
863 return iwl_power_update_mode(priv, true);
864 }
865
866 /**
867 * iwl_clear_driver_stations - clear knowledge of all stations from driver
868 * @priv: iwl priv struct
869 *
870 * This is called during iwl_down() to make sure that in the case
871 * we're coming there from a hardware restart mac80211 will be
872 * able to reconfigure stations -- if we're getting there in the
873 * normal down flow then the stations will already be cleared.
874 */
iwl_clear_driver_stations(struct iwl_priv * priv)875 static void iwl_clear_driver_stations(struct iwl_priv *priv)
876 {
877 struct iwl_rxon_context *ctx;
878
879 spin_lock_bh(&priv->sta_lock);
880 memset(priv->stations, 0, sizeof(priv->stations));
881 priv->num_stations = 0;
882
883 priv->ucode_key_table = 0;
884
885 for_each_context(priv, ctx) {
886 /*
887 * Remove all key information that is not stored as part
888 * of station information since mac80211 may not have had
889 * a chance to remove all the keys. When device is
890 * reconfigured by mac80211 after an error all keys will
891 * be reconfigured.
892 */
893 memset(ctx->wep_keys, 0, sizeof(ctx->wep_keys));
894 ctx->key_mapping_keys = 0;
895 }
896
897 spin_unlock_bh(&priv->sta_lock);
898 }
899
iwl_down(struct iwl_priv * priv)900 void iwl_down(struct iwl_priv *priv)
901 {
902 int exit_pending;
903
904 IWL_DEBUG_INFO(priv, DRV_NAME " is going down\n");
905
906 lockdep_assert_held(&priv->mutex);
907
908 iwl_scan_cancel_timeout(priv, 200);
909
910 exit_pending =
911 test_and_set_bit(STATUS_EXIT_PENDING, &priv->status);
912
913 iwl_clear_ucode_stations(priv, NULL);
914 iwl_dealloc_bcast_stations(priv);
915 iwl_clear_driver_stations(priv);
916
917 /* reset BT coex data */
918 priv->bt_status = 0;
919 priv->cur_rssi_ctx = NULL;
920 priv->bt_is_sco = 0;
921 if (priv->lib->bt_params)
922 priv->bt_traffic_load =
923 priv->lib->bt_params->bt_init_traffic_load;
924 else
925 priv->bt_traffic_load = 0;
926 priv->bt_full_concurrent = false;
927 priv->bt_ci_compliance = 0;
928
929 /* Wipe out the EXIT_PENDING status bit if we are not actually
930 * exiting the module */
931 if (!exit_pending)
932 clear_bit(STATUS_EXIT_PENDING, &priv->status);
933
934 if (priv->mac80211_registered)
935 ieee80211_stop_queues(priv->hw);
936
937 priv->ucode_loaded = false;
938 iwl_trans_stop_device(priv->trans);
939
940 /* Set num_aux_in_flight must be done after the transport is stopped */
941 atomic_set(&priv->num_aux_in_flight, 0);
942
943 /* Clear out all status bits but a few that are stable across reset */
944 priv->status &= test_bit(STATUS_RF_KILL_HW, &priv->status) <<
945 STATUS_RF_KILL_HW |
946 test_bit(STATUS_FW_ERROR, &priv->status) <<
947 STATUS_FW_ERROR |
948 test_bit(STATUS_EXIT_PENDING, &priv->status) <<
949 STATUS_EXIT_PENDING;
950
951 dev_kfree_skb(priv->beacon_skb);
952 priv->beacon_skb = NULL;
953 }
954
955 /*****************************************************************************
956 *
957 * Workqueue callbacks
958 *
959 *****************************************************************************/
960
iwl_bg_run_time_calib_work(struct work_struct * work)961 static void iwl_bg_run_time_calib_work(struct work_struct *work)
962 {
963 struct iwl_priv *priv = container_of(work, struct iwl_priv,
964 run_time_calib_work);
965
966 mutex_lock(&priv->mutex);
967
968 if (test_bit(STATUS_EXIT_PENDING, &priv->status) ||
969 test_bit(STATUS_SCANNING, &priv->status)) {
970 mutex_unlock(&priv->mutex);
971 return;
972 }
973
974 if (priv->start_calib) {
975 iwl_chain_noise_calibration(priv);
976 iwl_sensitivity_calibration(priv);
977 }
978
979 mutex_unlock(&priv->mutex);
980 }
981
iwlagn_prepare_restart(struct iwl_priv * priv)982 void iwlagn_prepare_restart(struct iwl_priv *priv)
983 {
984 bool bt_full_concurrent;
985 u8 bt_ci_compliance;
986 u8 bt_load;
987 u8 bt_status;
988 bool bt_is_sco;
989 int i;
990
991 lockdep_assert_held(&priv->mutex);
992
993 priv->is_open = 0;
994
995 /*
996 * __iwl_down() will clear the BT status variables,
997 * which is correct, but when we restart we really
998 * want to keep them so restore them afterwards.
999 *
1000 * The restart process will later pick them up and
1001 * re-configure the hw when we reconfigure the BT
1002 * command.
1003 */
1004 bt_full_concurrent = priv->bt_full_concurrent;
1005 bt_ci_compliance = priv->bt_ci_compliance;
1006 bt_load = priv->bt_traffic_load;
1007 bt_status = priv->bt_status;
1008 bt_is_sco = priv->bt_is_sco;
1009
1010 iwl_down(priv);
1011
1012 priv->bt_full_concurrent = bt_full_concurrent;
1013 priv->bt_ci_compliance = bt_ci_compliance;
1014 priv->bt_traffic_load = bt_load;
1015 priv->bt_status = bt_status;
1016 priv->bt_is_sco = bt_is_sco;
1017
1018 /* reset aggregation queues */
1019 for (i = IWLAGN_FIRST_AMPDU_QUEUE; i < IWL_MAX_HW_QUEUES; i++)
1020 priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1021 /* and stop counts */
1022 for (i = 0; i < IWL_MAX_HW_QUEUES; i++)
1023 atomic_set(&priv->queue_stop_count[i], 0);
1024
1025 memset(priv->agg_q_alloc, 0, sizeof(priv->agg_q_alloc));
1026 }
1027
iwl_bg_restart(struct work_struct * data)1028 static void iwl_bg_restart(struct work_struct *data)
1029 {
1030 struct iwl_priv *priv = container_of(data, struct iwl_priv, restart);
1031
1032 if (test_bit(STATUS_EXIT_PENDING, &priv->status))
1033 return;
1034
1035 if (test_and_clear_bit(STATUS_FW_ERROR, &priv->status)) {
1036 mutex_lock(&priv->mutex);
1037 iwlagn_prepare_restart(priv);
1038 mutex_unlock(&priv->mutex);
1039 iwl_cancel_deferred_work(priv);
1040 if (priv->mac80211_registered)
1041 ieee80211_restart_hw(priv->hw);
1042 else
1043 IWL_ERR(priv,
1044 "Cannot request restart before registering with mac80211\n");
1045 } else {
1046 WARN_ON(1);
1047 }
1048 }
1049
1050 /*****************************************************************************
1051 *
1052 * driver setup and teardown
1053 *
1054 *****************************************************************************/
1055
iwl_setup_deferred_work(struct iwl_priv * priv)1056 static void iwl_setup_deferred_work(struct iwl_priv *priv)
1057 {
1058 priv->workqueue = alloc_ordered_workqueue(DRV_NAME, 0);
1059
1060 INIT_WORK(&priv->restart, iwl_bg_restart);
1061 INIT_WORK(&priv->beacon_update, iwl_bg_beacon_update);
1062 INIT_WORK(&priv->run_time_calib_work, iwl_bg_run_time_calib_work);
1063 INIT_WORK(&priv->tx_flush, iwl_bg_tx_flush);
1064 INIT_WORK(&priv->bt_full_concurrency, iwl_bg_bt_full_concurrency);
1065 INIT_WORK(&priv->bt_runtime_config, iwl_bg_bt_runtime_config);
1066
1067 iwl_setup_scan_deferred_work(priv);
1068
1069 if (priv->lib->bt_params)
1070 iwlagn_bt_setup_deferred_work(priv);
1071
1072 timer_setup(&priv->statistics_periodic, iwl_bg_statistics_periodic, 0);
1073
1074 timer_setup(&priv->ucode_trace, iwl_bg_ucode_trace, 0);
1075 }
1076
iwl_cancel_deferred_work(struct iwl_priv * priv)1077 void iwl_cancel_deferred_work(struct iwl_priv *priv)
1078 {
1079 if (priv->lib->bt_params)
1080 iwlagn_bt_cancel_deferred_work(priv);
1081
1082 cancel_work_sync(&priv->run_time_calib_work);
1083 cancel_work_sync(&priv->beacon_update);
1084
1085 iwl_cancel_scan_deferred_work(priv);
1086
1087 cancel_work_sync(&priv->bt_full_concurrency);
1088 cancel_work_sync(&priv->bt_runtime_config);
1089
1090 del_timer_sync(&priv->statistics_periodic);
1091 del_timer_sync(&priv->ucode_trace);
1092 }
1093
iwl_init_drv(struct iwl_priv * priv)1094 static int iwl_init_drv(struct iwl_priv *priv)
1095 {
1096 spin_lock_init(&priv->sta_lock);
1097
1098 mutex_init(&priv->mutex);
1099
1100 INIT_LIST_HEAD(&priv->calib_results);
1101
1102 priv->band = NL80211_BAND_2GHZ;
1103
1104 priv->plcp_delta_threshold = priv->lib->plcp_delta_threshold;
1105
1106 priv->iw_mode = NL80211_IFTYPE_STATION;
1107 priv->current_ht_config.smps = IEEE80211_SMPS_STATIC;
1108 priv->missed_beacon_threshold = IWL_MISSED_BEACON_THRESHOLD_DEF;
1109 priv->agg_tids_count = 0;
1110
1111 priv->rx_statistics_jiffies = jiffies;
1112
1113 /* Choose which receivers/antennas to use */
1114 iwlagn_set_rxon_chain(priv, &priv->contexts[IWL_RXON_CTX_BSS]);
1115
1116 iwl_init_scan_params(priv);
1117
1118 /* init bt coex */
1119 if (priv->lib->bt_params &&
1120 priv->lib->bt_params->advanced_bt_coexist) {
1121 priv->kill_ack_mask = IWLAGN_BT_KILL_ACK_MASK_DEFAULT;
1122 priv->kill_cts_mask = IWLAGN_BT_KILL_CTS_MASK_DEFAULT;
1123 priv->bt_valid = IWLAGN_BT_ALL_VALID_MSK;
1124 priv->bt_on_thresh = BT_ON_THRESHOLD_DEF;
1125 priv->bt_duration = BT_DURATION_LIMIT_DEF;
1126 priv->dynamic_frag_thresh = BT_FRAG_THRESHOLD_DEF;
1127 }
1128
1129 return 0;
1130 }
1131
iwl_uninit_drv(struct iwl_priv * priv)1132 static void iwl_uninit_drv(struct iwl_priv *priv)
1133 {
1134 kfree(priv->scan_cmd);
1135 kfree(priv->beacon_cmd);
1136 kfree(rcu_dereference_raw(priv->noa_data));
1137 iwl_calib_free_results(priv);
1138 #ifdef CONFIG_IWLWIFI_DEBUGFS
1139 kfree(priv->wowlan_sram);
1140 #endif
1141 }
1142
iwl_set_hw_params(struct iwl_priv * priv)1143 static void iwl_set_hw_params(struct iwl_priv *priv)
1144 {
1145 if (priv->cfg->ht_params)
1146 priv->hw_params.use_rts_for_aggregation =
1147 priv->cfg->ht_params->use_rts_for_aggregation;
1148
1149 /* Device-specific setup */
1150 priv->lib->set_hw_params(priv);
1151 }
1152
1153
1154
1155 /* show what optional capabilities we have */
iwl_option_config(struct iwl_priv * priv)1156 static void iwl_option_config(struct iwl_priv *priv)
1157 {
1158 #ifdef CONFIG_IWLWIFI_DEBUG
1159 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG enabled\n");
1160 #else
1161 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUG disabled\n");
1162 #endif
1163
1164 #ifdef CONFIG_IWLWIFI_DEBUGFS
1165 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS enabled\n");
1166 #else
1167 IWL_INFO(priv, "CONFIG_IWLWIFI_DEBUGFS disabled\n");
1168 #endif
1169
1170 #ifdef CONFIG_IWLWIFI_DEVICE_TRACING
1171 IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING enabled\n");
1172 #else
1173 IWL_INFO(priv, "CONFIG_IWLWIFI_DEVICE_TRACING disabled\n");
1174 #endif
1175 }
1176
iwl_eeprom_init_hw_params(struct iwl_priv * priv)1177 static int iwl_eeprom_init_hw_params(struct iwl_priv *priv)
1178 {
1179 struct iwl_nvm_data *data = priv->nvm_data;
1180
1181 if (data->sku_cap_11n_enable &&
1182 !priv->cfg->ht_params) {
1183 IWL_ERR(priv, "Invalid 11n configuration\n");
1184 return -EINVAL;
1185 }
1186
1187 if (!data->sku_cap_11n_enable && !data->sku_cap_band_24ghz_enable &&
1188 !data->sku_cap_band_52ghz_enable) {
1189 IWL_ERR(priv, "Invalid device sku\n");
1190 return -EINVAL;
1191 }
1192
1193 IWL_DEBUG_INFO(priv,
1194 "Device SKU: 24GHz %s %s, 52GHz %s %s, 11.n %s %s\n",
1195 data->sku_cap_band_24ghz_enable ? "" : "NOT", "enabled",
1196 data->sku_cap_band_52ghz_enable ? "" : "NOT", "enabled",
1197 data->sku_cap_11n_enable ? "" : "NOT", "enabled");
1198
1199 priv->hw_params.tx_chains_num =
1200 num_of_ant(data->valid_tx_ant);
1201 if (priv->cfg->rx_with_siso_diversity)
1202 priv->hw_params.rx_chains_num = 1;
1203 else
1204 priv->hw_params.rx_chains_num =
1205 num_of_ant(data->valid_rx_ant);
1206
1207 IWL_DEBUG_INFO(priv, "Valid Tx ant: 0x%X, Valid Rx ant: 0x%X\n",
1208 data->valid_tx_ant,
1209 data->valid_rx_ant);
1210
1211 return 0;
1212 }
1213
iwl_nvm_check_version(struct iwl_nvm_data * data,struct iwl_trans * trans)1214 static int iwl_nvm_check_version(struct iwl_nvm_data *data,
1215 struct iwl_trans *trans)
1216 {
1217 if (data->nvm_version >= trans->cfg->nvm_ver ||
1218 data->calib_version >= trans->cfg->nvm_calib_ver) {
1219 IWL_DEBUG_INFO(trans, "device EEPROM VER=0x%x, CALIB=0x%x\n",
1220 data->nvm_version, data->calib_version);
1221 return 0;
1222 }
1223
1224 IWL_ERR(trans,
1225 "Unsupported (too old) EEPROM VER=0x%x < 0x%x CALIB=0x%x < 0x%x\n",
1226 data->nvm_version, trans->cfg->nvm_ver,
1227 data->calib_version, trans->cfg->nvm_calib_ver);
1228 return -EINVAL;
1229 }
1230
iwl_op_mode_dvm_start(struct iwl_trans * trans,const struct iwl_cfg * cfg,const struct iwl_fw * fw,struct dentry * dbgfs_dir)1231 static struct iwl_op_mode *iwl_op_mode_dvm_start(struct iwl_trans *trans,
1232 const struct iwl_cfg *cfg,
1233 const struct iwl_fw *fw,
1234 struct dentry *dbgfs_dir)
1235 {
1236 struct iwl_priv *priv;
1237 struct ieee80211_hw *hw;
1238 struct iwl_op_mode *op_mode;
1239 u16 num_mac;
1240 u32 ucode_flags;
1241 struct iwl_trans_config trans_cfg = {};
1242 static const u8 no_reclaim_cmds[] = {
1243 REPLY_RX_PHY_CMD,
1244 REPLY_RX_MPDU_CMD,
1245 REPLY_COMPRESSED_BA,
1246 STATISTICS_NOTIFICATION,
1247 REPLY_TX,
1248 };
1249 int i;
1250
1251 /************************
1252 * 1. Allocating HW data
1253 ************************/
1254 hw = iwl_alloc_all();
1255 if (!hw) {
1256 pr_err("%s: Cannot allocate network device\n", trans->name);
1257 goto out;
1258 }
1259
1260 op_mode = hw->priv;
1261 op_mode->ops = &iwl_dvm_ops;
1262 priv = IWL_OP_MODE_GET_DVM(op_mode);
1263 priv->trans = trans;
1264 priv->dev = trans->dev;
1265 priv->cfg = cfg;
1266 priv->fw = fw;
1267
1268 switch (priv->trans->trans_cfg->device_family) {
1269 case IWL_DEVICE_FAMILY_1000:
1270 case IWL_DEVICE_FAMILY_100:
1271 priv->lib = &iwl_dvm_1000_cfg;
1272 break;
1273 case IWL_DEVICE_FAMILY_2000:
1274 priv->lib = &iwl_dvm_2000_cfg;
1275 break;
1276 case IWL_DEVICE_FAMILY_105:
1277 priv->lib = &iwl_dvm_105_cfg;
1278 break;
1279 case IWL_DEVICE_FAMILY_2030:
1280 case IWL_DEVICE_FAMILY_135:
1281 priv->lib = &iwl_dvm_2030_cfg;
1282 break;
1283 case IWL_DEVICE_FAMILY_5000:
1284 priv->lib = &iwl_dvm_5000_cfg;
1285 break;
1286 case IWL_DEVICE_FAMILY_5150:
1287 priv->lib = &iwl_dvm_5150_cfg;
1288 break;
1289 case IWL_DEVICE_FAMILY_6000:
1290 case IWL_DEVICE_FAMILY_6000i:
1291 priv->lib = &iwl_dvm_6000_cfg;
1292 break;
1293 case IWL_DEVICE_FAMILY_6005:
1294 priv->lib = &iwl_dvm_6005_cfg;
1295 break;
1296 case IWL_DEVICE_FAMILY_6050:
1297 case IWL_DEVICE_FAMILY_6150:
1298 priv->lib = &iwl_dvm_6050_cfg;
1299 break;
1300 case IWL_DEVICE_FAMILY_6030:
1301 priv->lib = &iwl_dvm_6030_cfg;
1302 break;
1303 default:
1304 break;
1305 }
1306
1307 if (WARN_ON(!priv->lib))
1308 goto out_free_hw;
1309
1310 /*
1311 * Populate the state variables that the transport layer needs
1312 * to know about.
1313 */
1314 trans_cfg.op_mode = op_mode;
1315 trans_cfg.no_reclaim_cmds = no_reclaim_cmds;
1316 trans_cfg.n_no_reclaim_cmds = ARRAY_SIZE(no_reclaim_cmds);
1317
1318 switch (iwlwifi_mod_params.amsdu_size) {
1319 case IWL_AMSDU_DEF:
1320 case IWL_AMSDU_4K:
1321 trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1322 break;
1323 case IWL_AMSDU_8K:
1324 trans_cfg.rx_buf_size = IWL_AMSDU_8K;
1325 break;
1326 case IWL_AMSDU_12K:
1327 default:
1328 trans_cfg.rx_buf_size = IWL_AMSDU_4K;
1329 pr_err("Unsupported amsdu_size: %d\n",
1330 iwlwifi_mod_params.amsdu_size);
1331 }
1332
1333 trans_cfg.cmd_q_wdg_timeout = IWL_WATCHDOG_DISABLED;
1334
1335 trans_cfg.command_groups = iwl_dvm_groups;
1336 trans_cfg.command_groups_size = ARRAY_SIZE(iwl_dvm_groups);
1337
1338 trans_cfg.cmd_fifo = IWLAGN_CMD_FIFO_NUM;
1339 trans_cfg.cb_data_offs = offsetof(struct ieee80211_tx_info,
1340 driver_data[2]);
1341
1342 WARN_ON(sizeof(priv->transport_queue_stop) * BITS_PER_BYTE <
1343 priv->trans->trans_cfg->base_params->num_of_queues);
1344
1345 ucode_flags = fw->ucode_capa.flags;
1346
1347 if (ucode_flags & IWL_UCODE_TLV_FLAGS_PAN) {
1348 priv->sta_key_max_num = STA_KEY_MAX_NUM_PAN;
1349 trans_cfg.cmd_queue = IWL_IPAN_CMD_QUEUE_NUM;
1350 } else {
1351 priv->sta_key_max_num = STA_KEY_MAX_NUM;
1352 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1353 }
1354
1355 /* Configure transport layer */
1356 iwl_trans_configure(priv->trans, &trans_cfg);
1357
1358 trans->rx_mpdu_cmd = REPLY_RX_MPDU_CMD;
1359 trans->rx_mpdu_cmd_hdr_size = sizeof(struct iwl_rx_mpdu_res_start);
1360 trans->command_groups = trans_cfg.command_groups;
1361 trans->command_groups_size = trans_cfg.command_groups_size;
1362
1363 /* At this point both hw and priv are allocated. */
1364
1365 SET_IEEE80211_DEV(priv->hw, priv->trans->dev);
1366
1367 iwl_option_config(priv);
1368
1369 IWL_DEBUG_INFO(priv, "*** LOAD DRIVER ***\n");
1370
1371 /* bt channel inhibition enabled*/
1372 priv->bt_ch_announce = true;
1373 IWL_DEBUG_INFO(priv, "BT channel inhibition is %s\n",
1374 (priv->bt_ch_announce) ? "On" : "Off");
1375
1376 /* these spin locks will be used in apm_ops.init and EEPROM access
1377 * we should init now
1378 */
1379 spin_lock_init(&priv->statistics.lock);
1380
1381 /***********************
1382 * 2. Read REV register
1383 ***********************/
1384 IWL_INFO(priv, "Detected %s, REV=0x%X\n",
1385 priv->trans->name, priv->trans->hw_rev);
1386
1387 if (iwl_trans_start_hw(priv->trans))
1388 goto out_free_hw;
1389
1390 /* Read the EEPROM */
1391 if (iwl_read_eeprom(priv->trans, &priv->eeprom_blob,
1392 &priv->eeprom_blob_size)) {
1393 IWL_ERR(priv, "Unable to init EEPROM\n");
1394 goto out_free_hw;
1395 }
1396
1397 /* Reset chip to save power until we load uCode during "up". */
1398 iwl_trans_stop_device(priv->trans);
1399
1400 priv->nvm_data = iwl_parse_eeprom_data(priv->trans, priv->cfg,
1401 priv->eeprom_blob,
1402 priv->eeprom_blob_size);
1403 if (!priv->nvm_data)
1404 goto out_free_eeprom_blob;
1405
1406 if (iwl_nvm_check_version(priv->nvm_data, priv->trans))
1407 goto out_free_eeprom;
1408
1409 if (iwl_eeprom_init_hw_params(priv))
1410 goto out_free_eeprom;
1411
1412 /* extract MAC Address */
1413 memcpy(priv->addresses[0].addr, priv->nvm_data->hw_addr, ETH_ALEN);
1414 IWL_DEBUG_INFO(priv, "MAC address: %pM\n", priv->addresses[0].addr);
1415 priv->hw->wiphy->addresses = priv->addresses;
1416 priv->hw->wiphy->n_addresses = 1;
1417 num_mac = priv->nvm_data->n_hw_addrs;
1418 if (num_mac > 1) {
1419 memcpy(priv->addresses[1].addr, priv->addresses[0].addr,
1420 ETH_ALEN);
1421 priv->addresses[1].addr[5]++;
1422 priv->hw->wiphy->n_addresses++;
1423 }
1424
1425 /************************
1426 * 4. Setup HW constants
1427 ************************/
1428 iwl_set_hw_params(priv);
1429
1430 if (!(priv->nvm_data->sku_cap_ipan_enable)) {
1431 IWL_DEBUG_INFO(priv, "Your EEPROM disabled PAN\n");
1432 ucode_flags &= ~IWL_UCODE_TLV_FLAGS_PAN;
1433 /*
1434 * if not PAN, then don't support P2P -- might be a uCode
1435 * packaging bug or due to the eeprom check above
1436 */
1437 priv->sta_key_max_num = STA_KEY_MAX_NUM;
1438 trans_cfg.cmd_queue = IWL_DEFAULT_CMD_QUEUE_NUM;
1439
1440 /* Configure transport layer again*/
1441 iwl_trans_configure(priv->trans, &trans_cfg);
1442 }
1443
1444 /*******************
1445 * 5. Setup priv
1446 *******************/
1447 for (i = 0; i < IWL_MAX_HW_QUEUES; i++) {
1448 priv->queue_to_mac80211[i] = IWL_INVALID_MAC80211_QUEUE;
1449 if (i < IWLAGN_FIRST_AMPDU_QUEUE &&
1450 i != IWL_DEFAULT_CMD_QUEUE_NUM &&
1451 i != IWL_IPAN_CMD_QUEUE_NUM)
1452 priv->queue_to_mac80211[i] = i;
1453 atomic_set(&priv->queue_stop_count[i], 0);
1454 }
1455
1456 if (iwl_init_drv(priv))
1457 goto out_free_eeprom;
1458
1459 /* At this point both hw and priv are initialized. */
1460
1461 /********************
1462 * 6. Setup services
1463 ********************/
1464 iwl_setup_deferred_work(priv);
1465 iwl_setup_rx_handlers(priv);
1466
1467 iwl_power_initialize(priv);
1468 iwl_tt_initialize(priv);
1469
1470 snprintf(priv->hw->wiphy->fw_version,
1471 sizeof(priv->hw->wiphy->fw_version),
1472 "%s", fw->fw_version);
1473
1474 priv->new_scan_threshold_behaviour =
1475 !!(ucode_flags & IWL_UCODE_TLV_FLAGS_NEWSCAN);
1476
1477 priv->phy_calib_chain_noise_reset_cmd =
1478 fw->ucode_capa.standard_phy_calibration_size;
1479 priv->phy_calib_chain_noise_gain_cmd =
1480 fw->ucode_capa.standard_phy_calibration_size + 1;
1481
1482 /* initialize all valid contexts */
1483 iwl_init_context(priv, ucode_flags);
1484
1485 /**************************************************
1486 * This is still part of probe() in a sense...
1487 *
1488 * 7. Setup and register with mac80211 and debugfs
1489 **************************************************/
1490 if (iwlagn_mac_setup_register(priv, &fw->ucode_capa))
1491 goto out_destroy_workqueue;
1492
1493 iwl_dbgfs_register(priv, dbgfs_dir);
1494
1495 return op_mode;
1496
1497 out_destroy_workqueue:
1498 iwl_tt_exit(priv);
1499 iwl_cancel_deferred_work(priv);
1500 destroy_workqueue(priv->workqueue);
1501 priv->workqueue = NULL;
1502 iwl_uninit_drv(priv);
1503 out_free_eeprom_blob:
1504 kfree(priv->eeprom_blob);
1505 out_free_eeprom:
1506 kfree(priv->nvm_data);
1507 out_free_hw:
1508 ieee80211_free_hw(priv->hw);
1509 out:
1510 op_mode = NULL;
1511 return op_mode;
1512 }
1513
iwl_op_mode_dvm_stop(struct iwl_op_mode * op_mode)1514 static void iwl_op_mode_dvm_stop(struct iwl_op_mode *op_mode)
1515 {
1516 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1517
1518 IWL_DEBUG_INFO(priv, "*** UNLOAD DRIVER ***\n");
1519
1520 iwlagn_mac_unregister(priv);
1521
1522 iwl_tt_exit(priv);
1523
1524 kfree(priv->eeprom_blob);
1525 kfree(priv->nvm_data);
1526
1527 /*netif_stop_queue(dev); */
1528 flush_workqueue(priv->workqueue);
1529
1530 /* ieee80211_unregister_hw calls iwlagn_mac_stop, which flushes
1531 * priv->workqueue... so we can't take down the workqueue
1532 * until now... */
1533 destroy_workqueue(priv->workqueue);
1534 priv->workqueue = NULL;
1535
1536 iwl_uninit_drv(priv);
1537
1538 dev_kfree_skb(priv->beacon_skb);
1539
1540 iwl_trans_op_mode_leave(priv->trans);
1541 ieee80211_free_hw(priv->hw);
1542 }
1543
1544 static const char * const desc_lookup_text[] = {
1545 "OK",
1546 "FAIL",
1547 "BAD_PARAM",
1548 "BAD_CHECKSUM",
1549 "NMI_INTERRUPT_WDG",
1550 "SYSASSERT",
1551 "FATAL_ERROR",
1552 "BAD_COMMAND",
1553 "HW_ERROR_TUNE_LOCK",
1554 "HW_ERROR_TEMPERATURE",
1555 "ILLEGAL_CHAN_FREQ",
1556 "VCC_NOT_STABLE",
1557 "FH_ERROR",
1558 "NMI_INTERRUPT_HOST",
1559 "NMI_INTERRUPT_ACTION_PT",
1560 "NMI_INTERRUPT_UNKNOWN",
1561 "UCODE_VERSION_MISMATCH",
1562 "HW_ERROR_ABS_LOCK",
1563 "HW_ERROR_CAL_LOCK_FAIL",
1564 "NMI_INTERRUPT_INST_ACTION_PT",
1565 "NMI_INTERRUPT_DATA_ACTION_PT",
1566 "NMI_TRM_HW_ER",
1567 "NMI_INTERRUPT_TRM",
1568 "NMI_INTERRUPT_BREAK_POINT",
1569 "DEBUG_0",
1570 "DEBUG_1",
1571 "DEBUG_2",
1572 "DEBUG_3",
1573 };
1574
1575 static struct { char *name; u8 num; } advanced_lookup[] = {
1576 { "NMI_INTERRUPT_WDG", 0x34 },
1577 { "SYSASSERT", 0x35 },
1578 { "UCODE_VERSION_MISMATCH", 0x37 },
1579 { "BAD_COMMAND", 0x38 },
1580 { "NMI_INTERRUPT_DATA_ACTION_PT", 0x3C },
1581 { "FATAL_ERROR", 0x3D },
1582 { "NMI_TRM_HW_ERR", 0x46 },
1583 { "NMI_INTERRUPT_TRM", 0x4C },
1584 { "NMI_INTERRUPT_BREAK_POINT", 0x54 },
1585 { "NMI_INTERRUPT_WDG_RXF_FULL", 0x5C },
1586 { "NMI_INTERRUPT_WDG_NO_RBD_RXF_FULL", 0x64 },
1587 { "NMI_INTERRUPT_HOST", 0x66 },
1588 { "NMI_INTERRUPT_ACTION_PT", 0x7C },
1589 { "NMI_INTERRUPT_UNKNOWN", 0x84 },
1590 { "NMI_INTERRUPT_INST_ACTION_PT", 0x86 },
1591 { "ADVANCED_SYSASSERT", 0 },
1592 };
1593
desc_lookup(u32 num)1594 static const char *desc_lookup(u32 num)
1595 {
1596 int i;
1597 int max = ARRAY_SIZE(desc_lookup_text);
1598
1599 if (num < max)
1600 return desc_lookup_text[num];
1601
1602 max = ARRAY_SIZE(advanced_lookup) - 1;
1603 for (i = 0; i < max; i++) {
1604 if (advanced_lookup[i].num == num)
1605 break;
1606 }
1607 return advanced_lookup[i].name;
1608 }
1609
1610 #define ERROR_START_OFFSET (1 * sizeof(u32))
1611 #define ERROR_ELEM_SIZE (7 * sizeof(u32))
1612
iwl_dump_nic_error_log(struct iwl_priv * priv)1613 static void iwl_dump_nic_error_log(struct iwl_priv *priv)
1614 {
1615 struct iwl_trans *trans = priv->trans;
1616 u32 base;
1617 struct iwl_error_event_table table;
1618
1619 base = priv->device_pointers.error_event_table;
1620 if (priv->cur_ucode == IWL_UCODE_INIT) {
1621 if (!base)
1622 base = priv->fw->init_errlog_ptr;
1623 } else {
1624 if (!base)
1625 base = priv->fw->inst_errlog_ptr;
1626 }
1627
1628 if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1629 IWL_ERR(priv,
1630 "Not valid error log pointer 0x%08X for %s uCode\n",
1631 base,
1632 (priv->cur_ucode == IWL_UCODE_INIT)
1633 ? "Init" : "RT");
1634 return;
1635 }
1636
1637 /*TODO: Update dbgfs with ISR error stats obtained below */
1638 iwl_trans_read_mem_bytes(trans, base, &table, sizeof(table));
1639
1640 if (ERROR_START_OFFSET <= table.valid * ERROR_ELEM_SIZE) {
1641 IWL_ERR(trans, "Start IWL Error Log Dump:\n");
1642 IWL_ERR(trans, "Status: 0x%08lX, count: %d\n",
1643 priv->status, table.valid);
1644 }
1645
1646 IWL_ERR(priv, "0x%08X | %-28s\n", table.error_id,
1647 desc_lookup(table.error_id));
1648 IWL_ERR(priv, "0x%08X | uPc\n", table.pc);
1649 IWL_ERR(priv, "0x%08X | branchlink1\n", table.blink1);
1650 IWL_ERR(priv, "0x%08X | branchlink2\n", table.blink2);
1651 IWL_ERR(priv, "0x%08X | interruptlink1\n", table.ilink1);
1652 IWL_ERR(priv, "0x%08X | interruptlink2\n", table.ilink2);
1653 IWL_ERR(priv, "0x%08X | data1\n", table.data1);
1654 IWL_ERR(priv, "0x%08X | data2\n", table.data2);
1655 IWL_ERR(priv, "0x%08X | line\n", table.line);
1656 IWL_ERR(priv, "0x%08X | beacon time\n", table.bcon_time);
1657 IWL_ERR(priv, "0x%08X | tsf low\n", table.tsf_low);
1658 IWL_ERR(priv, "0x%08X | tsf hi\n", table.tsf_hi);
1659 IWL_ERR(priv, "0x%08X | time gp1\n", table.gp1);
1660 IWL_ERR(priv, "0x%08X | time gp2\n", table.gp2);
1661 IWL_ERR(priv, "0x%08X | time gp3\n", table.gp3);
1662 IWL_ERR(priv, "0x%08X | uCode version\n", table.ucode_ver);
1663 IWL_ERR(priv, "0x%08X | hw version\n", table.hw_ver);
1664 IWL_ERR(priv, "0x%08X | board version\n", table.brd_ver);
1665 IWL_ERR(priv, "0x%08X | hcmd\n", table.hcmd);
1666 IWL_ERR(priv, "0x%08X | isr0\n", table.isr0);
1667 IWL_ERR(priv, "0x%08X | isr1\n", table.isr1);
1668 IWL_ERR(priv, "0x%08X | isr2\n", table.isr2);
1669 IWL_ERR(priv, "0x%08X | isr3\n", table.isr3);
1670 IWL_ERR(priv, "0x%08X | isr4\n", table.isr4);
1671 IWL_ERR(priv, "0x%08X | isr_pref\n", table.isr_pref);
1672 IWL_ERR(priv, "0x%08X | wait_event\n", table.wait_event);
1673 IWL_ERR(priv, "0x%08X | l2p_control\n", table.l2p_control);
1674 IWL_ERR(priv, "0x%08X | l2p_duration\n", table.l2p_duration);
1675 IWL_ERR(priv, "0x%08X | l2p_mhvalid\n", table.l2p_mhvalid);
1676 IWL_ERR(priv, "0x%08X | l2p_addr_match\n", table.l2p_addr_match);
1677 IWL_ERR(priv, "0x%08X | lmpm_pmg_sel\n", table.lmpm_pmg_sel);
1678 IWL_ERR(priv, "0x%08X | timestamp\n", table.u_timestamp);
1679 IWL_ERR(priv, "0x%08X | flow_handler\n", table.flow_handler);
1680 }
1681
1682 #define EVENT_START_OFFSET (4 * sizeof(u32))
1683
1684 /*
1685 * iwl_print_event_log - Dump error event log to syslog
1686 */
iwl_print_event_log(struct iwl_priv * priv,u32 start_idx,u32 num_events,u32 mode,int pos,char ** buf,size_t bufsz)1687 static int iwl_print_event_log(struct iwl_priv *priv, u32 start_idx,
1688 u32 num_events, u32 mode,
1689 int pos, char **buf, size_t bufsz)
1690 {
1691 u32 i;
1692 u32 base; /* SRAM byte address of event log header */
1693 u32 event_size; /* 2 u32s, or 3 u32s if timestamp recorded */
1694 u32 ptr; /* SRAM byte address of log data */
1695 u32 ev, time, data; /* event log data */
1696
1697 struct iwl_trans *trans = priv->trans;
1698
1699 if (num_events == 0)
1700 return pos;
1701
1702 base = priv->device_pointers.log_event_table;
1703 if (priv->cur_ucode == IWL_UCODE_INIT) {
1704 if (!base)
1705 base = priv->fw->init_evtlog_ptr;
1706 } else {
1707 if (!base)
1708 base = priv->fw->inst_evtlog_ptr;
1709 }
1710
1711 if (mode == 0)
1712 event_size = 2 * sizeof(u32);
1713 else
1714 event_size = 3 * sizeof(u32);
1715
1716 ptr = base + EVENT_START_OFFSET + (start_idx * event_size);
1717
1718 /* Make sure device is powered up for SRAM reads */
1719 if (!iwl_trans_grab_nic_access(trans))
1720 return pos;
1721
1722 /* Set starting address; reads will auto-increment */
1723 iwl_write32(trans, HBUS_TARG_MEM_RADDR, ptr);
1724
1725 /* "time" is actually "data" for mode 0 (no timestamp).
1726 * place event id # at far right for easier visual parsing. */
1727 for (i = 0; i < num_events; i++) {
1728 ev = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1729 time = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1730 if (mode == 0) {
1731 /* data, ev */
1732 if (bufsz) {
1733 pos += scnprintf(*buf + pos, bufsz - pos,
1734 "EVT_LOG:0x%08x:%04u\n",
1735 time, ev);
1736 } else {
1737 trace_iwlwifi_dev_ucode_event(trans->dev, 0,
1738 time, ev);
1739 IWL_ERR(priv, "EVT_LOG:0x%08x:%04u\n",
1740 time, ev);
1741 }
1742 } else {
1743 data = iwl_read32(trans, HBUS_TARG_MEM_RDAT);
1744 if (bufsz) {
1745 pos += scnprintf(*buf + pos, bufsz - pos,
1746 "EVT_LOGT:%010u:0x%08x:%04u\n",
1747 time, data, ev);
1748 } else {
1749 IWL_ERR(priv, "EVT_LOGT:%010u:0x%08x:%04u\n",
1750 time, data, ev);
1751 trace_iwlwifi_dev_ucode_event(trans->dev, time,
1752 data, ev);
1753 }
1754 }
1755 }
1756
1757 /* Allow device to power down */
1758 iwl_trans_release_nic_access(trans);
1759 return pos;
1760 }
1761
1762 /*
1763 * iwl_print_last_event_logs - Dump the newest # of event log to syslog
1764 */
iwl_print_last_event_logs(struct iwl_priv * priv,u32 capacity,u32 num_wraps,u32 next_entry,u32 size,u32 mode,int pos,char ** buf,size_t bufsz)1765 static int iwl_print_last_event_logs(struct iwl_priv *priv, u32 capacity,
1766 u32 num_wraps, u32 next_entry,
1767 u32 size, u32 mode,
1768 int pos, char **buf, size_t bufsz)
1769 {
1770 /*
1771 * display the newest DEFAULT_LOG_ENTRIES entries
1772 * i.e the entries just before the next ont that uCode would fill.
1773 */
1774 if (num_wraps) {
1775 if (next_entry < size) {
1776 pos = iwl_print_event_log(priv,
1777 capacity - (size - next_entry),
1778 size - next_entry, mode,
1779 pos, buf, bufsz);
1780 pos = iwl_print_event_log(priv, 0,
1781 next_entry, mode,
1782 pos, buf, bufsz);
1783 } else
1784 pos = iwl_print_event_log(priv, next_entry - size,
1785 size, mode, pos, buf, bufsz);
1786 } else {
1787 if (next_entry < size) {
1788 pos = iwl_print_event_log(priv, 0, next_entry,
1789 mode, pos, buf, bufsz);
1790 } else {
1791 pos = iwl_print_event_log(priv, next_entry - size,
1792 size, mode, pos, buf, bufsz);
1793 }
1794 }
1795 return pos;
1796 }
1797
1798 #define DEFAULT_DUMP_EVENT_LOG_ENTRIES (20)
1799
iwl_dump_nic_event_log(struct iwl_priv * priv,bool full_log,char ** buf)1800 int iwl_dump_nic_event_log(struct iwl_priv *priv, bool full_log,
1801 char **buf)
1802 {
1803 u32 base; /* SRAM byte address of event log header */
1804 u32 capacity; /* event log capacity in # entries */
1805 u32 mode; /* 0 - no timestamp, 1 - timestamp recorded */
1806 u32 num_wraps; /* # times uCode wrapped to top of log */
1807 u32 next_entry; /* index of next entry to be written by uCode */
1808 u32 size; /* # entries that we'll print */
1809 u32 logsize;
1810 int pos = 0;
1811 size_t bufsz = 0;
1812 struct iwl_trans *trans = priv->trans;
1813
1814 base = priv->device_pointers.log_event_table;
1815 if (priv->cur_ucode == IWL_UCODE_INIT) {
1816 logsize = priv->fw->init_evtlog_size;
1817 if (!base)
1818 base = priv->fw->init_evtlog_ptr;
1819 } else {
1820 logsize = priv->fw->inst_evtlog_size;
1821 if (!base)
1822 base = priv->fw->inst_evtlog_ptr;
1823 }
1824
1825 if (!iwlagn_hw_valid_rtc_data_addr(base)) {
1826 IWL_ERR(priv,
1827 "Invalid event log pointer 0x%08X for %s uCode\n",
1828 base,
1829 (priv->cur_ucode == IWL_UCODE_INIT)
1830 ? "Init" : "RT");
1831 return -EINVAL;
1832 }
1833
1834 /* event log header */
1835 capacity = iwl_trans_read_mem32(trans, base);
1836 mode = iwl_trans_read_mem32(trans, base + (1 * sizeof(u32)));
1837 num_wraps = iwl_trans_read_mem32(trans, base + (2 * sizeof(u32)));
1838 next_entry = iwl_trans_read_mem32(trans, base + (3 * sizeof(u32)));
1839
1840 if (capacity > logsize) {
1841 IWL_ERR(priv, "Log capacity %d is bogus, limit to %d "
1842 "entries\n", capacity, logsize);
1843 capacity = logsize;
1844 }
1845
1846 if (next_entry > logsize) {
1847 IWL_ERR(priv, "Log write index %d is bogus, limit to %d\n",
1848 next_entry, logsize);
1849 next_entry = logsize;
1850 }
1851
1852 size = num_wraps ? capacity : next_entry;
1853
1854 /* bail out if nothing in log */
1855 if (size == 0) {
1856 IWL_ERR(trans, "Start IWL Event Log Dump: nothing in log\n");
1857 return pos;
1858 }
1859
1860 if (!(iwl_have_debug_level(IWL_DL_FW)) && !full_log)
1861 size = (size > DEFAULT_DUMP_EVENT_LOG_ENTRIES)
1862 ? DEFAULT_DUMP_EVENT_LOG_ENTRIES : size;
1863 IWL_ERR(priv, "Start IWL Event Log Dump: display last %u entries\n",
1864 size);
1865
1866 #ifdef CONFIG_IWLWIFI_DEBUG
1867 if (buf) {
1868 if (full_log)
1869 bufsz = capacity * 48;
1870 else
1871 bufsz = size * 48;
1872 *buf = kmalloc(bufsz, GFP_KERNEL);
1873 if (!*buf)
1874 return -ENOMEM;
1875 }
1876 if (iwl_have_debug_level(IWL_DL_FW) || full_log) {
1877 /*
1878 * if uCode has wrapped back to top of log,
1879 * start at the oldest entry,
1880 * i.e the next one that uCode would fill.
1881 */
1882 if (num_wraps)
1883 pos = iwl_print_event_log(priv, next_entry,
1884 capacity - next_entry, mode,
1885 pos, buf, bufsz);
1886 /* (then/else) start at top of log */
1887 pos = iwl_print_event_log(priv, 0,
1888 next_entry, mode, pos, buf, bufsz);
1889 } else
1890 pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1891 next_entry, size, mode,
1892 pos, buf, bufsz);
1893 #else
1894 pos = iwl_print_last_event_logs(priv, capacity, num_wraps,
1895 next_entry, size, mode,
1896 pos, buf, bufsz);
1897 #endif
1898 return pos;
1899 }
1900
iwlagn_fw_error(struct iwl_priv * priv,bool ondemand)1901 static void iwlagn_fw_error(struct iwl_priv *priv, bool ondemand)
1902 {
1903 unsigned int reload_msec;
1904 unsigned long reload_jiffies;
1905
1906 if (iwl_have_debug_level(IWL_DL_FW))
1907 iwl_print_rx_config_cmd(priv, IWL_RXON_CTX_BSS);
1908
1909 /* uCode is no longer loaded. */
1910 priv->ucode_loaded = false;
1911
1912 /* Set the FW error flag -- cleared on iwl_down */
1913 set_bit(STATUS_FW_ERROR, &priv->status);
1914
1915 iwl_abort_notification_waits(&priv->notif_wait);
1916
1917 /* Keep the restart process from trying to send host
1918 * commands by clearing the ready bit */
1919 clear_bit(STATUS_READY, &priv->status);
1920
1921 if (!ondemand) {
1922 /*
1923 * If firmware keep reloading, then it indicate something
1924 * serious wrong and firmware having problem to recover
1925 * from it. Instead of keep trying which will fill the syslog
1926 * and hang the system, let's just stop it
1927 */
1928 reload_jiffies = jiffies;
1929 reload_msec = jiffies_to_msecs((long) reload_jiffies -
1930 (long) priv->reload_jiffies);
1931 priv->reload_jiffies = reload_jiffies;
1932 if (reload_msec <= IWL_MIN_RELOAD_DURATION) {
1933 priv->reload_count++;
1934 if (priv->reload_count >= IWL_MAX_CONTINUE_RELOAD_CNT) {
1935 IWL_ERR(priv, "BUG_ON, Stop restarting\n");
1936 return;
1937 }
1938 } else
1939 priv->reload_count = 0;
1940 }
1941
1942 if (!test_bit(STATUS_EXIT_PENDING, &priv->status)) {
1943 if (iwlwifi_mod_params.fw_restart) {
1944 IWL_DEBUG_FW(priv,
1945 "Restarting adapter due to uCode error.\n");
1946 queue_work(priv->workqueue, &priv->restart);
1947 } else
1948 IWL_DEBUG_FW(priv,
1949 "Detected FW error, but not restarting\n");
1950 }
1951 }
1952
iwl_nic_error(struct iwl_op_mode * op_mode,bool sync)1953 static void iwl_nic_error(struct iwl_op_mode *op_mode, bool sync)
1954 {
1955 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1956
1957 IWL_ERR(priv, "Loaded firmware version: %s\n",
1958 priv->fw->fw_version);
1959
1960 iwl_dump_nic_error_log(priv);
1961 iwl_dump_nic_event_log(priv, false, NULL);
1962
1963 iwlagn_fw_error(priv, false);
1964 }
1965
iwl_cmd_queue_full(struct iwl_op_mode * op_mode)1966 static void iwl_cmd_queue_full(struct iwl_op_mode *op_mode)
1967 {
1968 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1969
1970 if (!iwl_check_for_ct_kill(priv)) {
1971 IWL_ERR(priv, "Restarting adapter queue is full\n");
1972 iwlagn_fw_error(priv, false);
1973 }
1974 }
1975
1976 #define EEPROM_RF_CONFIG_TYPE_MAX 0x3
1977
iwl_nic_config(struct iwl_op_mode * op_mode)1978 static void iwl_nic_config(struct iwl_op_mode *op_mode)
1979 {
1980 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
1981
1982 /* SKU Control */
1983 iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
1984 CSR_HW_IF_CONFIG_REG_MSK_MAC_DASH |
1985 CSR_HW_IF_CONFIG_REG_MSK_MAC_STEP,
1986 (CSR_HW_REV_STEP(priv->trans->hw_rev) <<
1987 CSR_HW_IF_CONFIG_REG_POS_MAC_STEP) |
1988 (CSR_HW_REV_DASH(priv->trans->hw_rev) <<
1989 CSR_HW_IF_CONFIG_REG_POS_MAC_DASH));
1990
1991 /* write radio config values to register */
1992 if (priv->nvm_data->radio_cfg_type <= EEPROM_RF_CONFIG_TYPE_MAX) {
1993 u32 reg_val =
1994 priv->nvm_data->radio_cfg_type <<
1995 CSR_HW_IF_CONFIG_REG_POS_PHY_TYPE |
1996 priv->nvm_data->radio_cfg_step <<
1997 CSR_HW_IF_CONFIG_REG_POS_PHY_STEP |
1998 priv->nvm_data->radio_cfg_dash <<
1999 CSR_HW_IF_CONFIG_REG_POS_PHY_DASH;
2000
2001 iwl_trans_set_bits_mask(priv->trans, CSR_HW_IF_CONFIG_REG,
2002 CSR_HW_IF_CONFIG_REG_MSK_PHY_TYPE |
2003 CSR_HW_IF_CONFIG_REG_MSK_PHY_STEP |
2004 CSR_HW_IF_CONFIG_REG_MSK_PHY_DASH,
2005 reg_val);
2006
2007 IWL_INFO(priv, "Radio type=0x%x-0x%x-0x%x\n",
2008 priv->nvm_data->radio_cfg_type,
2009 priv->nvm_data->radio_cfg_step,
2010 priv->nvm_data->radio_cfg_dash);
2011 } else {
2012 WARN_ON(1);
2013 }
2014
2015 /* set CSR_HW_CONFIG_REG for uCode use */
2016 iwl_set_bit(priv->trans, CSR_HW_IF_CONFIG_REG,
2017 CSR_HW_IF_CONFIG_REG_BIT_RADIO_SI |
2018 CSR_HW_IF_CONFIG_REG_BIT_MAC_SI);
2019
2020 /* W/A : NIC is stuck in a reset state after Early PCIe power off
2021 * (PCIe power is lost before PERST# is asserted),
2022 * causing ME FW to lose ownership and not being able to obtain it back.
2023 */
2024 iwl_set_bits_mask_prph(priv->trans, APMG_PS_CTRL_REG,
2025 APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS,
2026 ~APMG_PS_CTRL_EARLY_PWR_OFF_RESET_DIS);
2027
2028 if (priv->lib->nic_config)
2029 priv->lib->nic_config(priv);
2030 }
2031
iwl_wimax_active(struct iwl_op_mode * op_mode)2032 static void iwl_wimax_active(struct iwl_op_mode *op_mode)
2033 {
2034 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2035
2036 clear_bit(STATUS_READY, &priv->status);
2037 IWL_ERR(priv, "RF is used by WiMAX\n");
2038 }
2039
iwl_stop_sw_queue(struct iwl_op_mode * op_mode,int queue)2040 static void iwl_stop_sw_queue(struct iwl_op_mode *op_mode, int queue)
2041 {
2042 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2043 int mq = priv->queue_to_mac80211[queue];
2044
2045 if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2046 return;
2047
2048 if (atomic_inc_return(&priv->queue_stop_count[mq]) > 1) {
2049 IWL_DEBUG_TX_QUEUES(priv,
2050 "queue %d (mac80211 %d) already stopped\n",
2051 queue, mq);
2052 return;
2053 }
2054
2055 set_bit(mq, &priv->transport_queue_stop);
2056 ieee80211_stop_queue(priv->hw, mq);
2057 }
2058
iwl_wake_sw_queue(struct iwl_op_mode * op_mode,int queue)2059 static void iwl_wake_sw_queue(struct iwl_op_mode *op_mode, int queue)
2060 {
2061 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2062 int mq = priv->queue_to_mac80211[queue];
2063
2064 if (WARN_ON_ONCE(mq == IWL_INVALID_MAC80211_QUEUE))
2065 return;
2066
2067 if (atomic_dec_return(&priv->queue_stop_count[mq]) > 0) {
2068 IWL_DEBUG_TX_QUEUES(priv,
2069 "queue %d (mac80211 %d) already awake\n",
2070 queue, mq);
2071 return;
2072 }
2073
2074 clear_bit(mq, &priv->transport_queue_stop);
2075
2076 if (!priv->passive_no_rx)
2077 ieee80211_wake_queue(priv->hw, mq);
2078 }
2079
iwlagn_lift_passive_no_rx(struct iwl_priv * priv)2080 void iwlagn_lift_passive_no_rx(struct iwl_priv *priv)
2081 {
2082 int mq;
2083
2084 if (!priv->passive_no_rx)
2085 return;
2086
2087 for (mq = 0; mq < IWLAGN_FIRST_AMPDU_QUEUE; mq++) {
2088 if (!test_bit(mq, &priv->transport_queue_stop)) {
2089 IWL_DEBUG_TX_QUEUES(priv, "Wake queue %d\n", mq);
2090 ieee80211_wake_queue(priv->hw, mq);
2091 } else {
2092 IWL_DEBUG_TX_QUEUES(priv, "Don't wake queue %d\n", mq);
2093 }
2094 }
2095
2096 priv->passive_no_rx = false;
2097 }
2098
iwl_free_skb(struct iwl_op_mode * op_mode,struct sk_buff * skb)2099 static void iwl_free_skb(struct iwl_op_mode *op_mode, struct sk_buff *skb)
2100 {
2101 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2102 struct ieee80211_tx_info *info;
2103
2104 info = IEEE80211_SKB_CB(skb);
2105 iwl_trans_free_tx_cmd(priv->trans, info->driver_data[1]);
2106 ieee80211_free_txskb(priv->hw, skb);
2107 }
2108
iwl_set_hw_rfkill_state(struct iwl_op_mode * op_mode,bool state)2109 static bool iwl_set_hw_rfkill_state(struct iwl_op_mode *op_mode, bool state)
2110 {
2111 struct iwl_priv *priv = IWL_OP_MODE_GET_DVM(op_mode);
2112
2113 if (state)
2114 set_bit(STATUS_RF_KILL_HW, &priv->status);
2115 else
2116 clear_bit(STATUS_RF_KILL_HW, &priv->status);
2117
2118 wiphy_rfkill_set_hw_state(priv->hw->wiphy, state);
2119
2120 return false;
2121 }
2122
2123 static const struct iwl_op_mode_ops iwl_dvm_ops = {
2124 .start = iwl_op_mode_dvm_start,
2125 .stop = iwl_op_mode_dvm_stop,
2126 .rx = iwl_rx_dispatch,
2127 .queue_full = iwl_stop_sw_queue,
2128 .queue_not_full = iwl_wake_sw_queue,
2129 .hw_rf_kill = iwl_set_hw_rfkill_state,
2130 .free_skb = iwl_free_skb,
2131 .nic_error = iwl_nic_error,
2132 .cmd_queue_full = iwl_cmd_queue_full,
2133 .nic_config = iwl_nic_config,
2134 .wimax_active = iwl_wimax_active,
2135 };
2136
2137 /*****************************************************************************
2138 *
2139 * driver and module entry point
2140 *
2141 *****************************************************************************/
iwl_init(void)2142 static int __init iwl_init(void)
2143 {
2144
2145 int ret;
2146
2147 ret = iwlagn_rate_control_register();
2148 if (ret) {
2149 pr_err("Unable to register rate control algorithm: %d\n", ret);
2150 return ret;
2151 }
2152
2153 ret = iwl_opmode_register("iwldvm", &iwl_dvm_ops);
2154 if (ret) {
2155 pr_err("Unable to register op_mode: %d\n", ret);
2156 iwlagn_rate_control_unregister();
2157 }
2158
2159 return ret;
2160 }
2161 module_init(iwl_init);
2162
iwl_exit(void)2163 static void __exit iwl_exit(void)
2164 {
2165 iwl_opmode_deregister("iwldvm");
2166 iwlagn_rate_control_unregister();
2167 }
2168 module_exit(iwl_exit);
2169