1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* GTP according to GSM TS 09.60 / 3GPP TS 29.060
3 *
4 * (C) 2012-2014 by sysmocom - s.f.m.c. GmbH
5 * (C) 2016 by Pablo Neira Ayuso <pablo@netfilter.org>
6 *
7 * Author: Harald Welte <hwelte@sysmocom.de>
8 * Pablo Neira Ayuso <pablo@netfilter.org>
9 * Andreas Schultz <aschultz@travelping.com>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/module.h>
15 #include <linux/skbuff.h>
16 #include <linux/udp.h>
17 #include <linux/rculist.h>
18 #include <linux/jhash.h>
19 #include <linux/if_tunnel.h>
20 #include <linux/net.h>
21 #include <linux/file.h>
22 #include <linux/gtp.h>
23
24 #include <net/net_namespace.h>
25 #include <net/protocol.h>
26 #include <net/ip.h>
27 #include <net/udp.h>
28 #include <net/udp_tunnel.h>
29 #include <net/icmp.h>
30 #include <net/xfrm.h>
31 #include <net/genetlink.h>
32 #include <net/netns/generic.h>
33 #include <net/gtp.h>
34
35 /* An active session for the subscriber. */
36 struct pdp_ctx {
37 struct hlist_node hlist_tid;
38 struct hlist_node hlist_addr;
39
40 union {
41 struct {
42 u64 tid;
43 u16 flow;
44 } v0;
45 struct {
46 u32 i_tei;
47 u32 o_tei;
48 } v1;
49 } u;
50 u8 gtp_version;
51 u16 af;
52
53 struct in_addr ms_addr_ip4;
54 struct in_addr peer_addr_ip4;
55
56 struct sock *sk;
57 struct net_device *dev;
58
59 atomic_t tx_seq;
60 struct rcu_head rcu_head;
61 };
62
63 /* One instance of the GTP device. */
64 struct gtp_dev {
65 struct list_head list;
66
67 struct sock *sk0;
68 struct sock *sk1u;
69
70 struct net_device *dev;
71
72 unsigned int role;
73 unsigned int hash_size;
74 struct hlist_head *tid_hash;
75 struct hlist_head *addr_hash;
76 };
77
78 static unsigned int gtp_net_id __read_mostly;
79
80 struct gtp_net {
81 struct list_head gtp_dev_list;
82 };
83
84 static u32 gtp_h_initval;
85
86 static void pdp_context_delete(struct pdp_ctx *pctx);
87
gtp0_hashfn(u64 tid)88 static inline u32 gtp0_hashfn(u64 tid)
89 {
90 u32 *tid32 = (u32 *) &tid;
91 return jhash_2words(tid32[0], tid32[1], gtp_h_initval);
92 }
93
gtp1u_hashfn(u32 tid)94 static inline u32 gtp1u_hashfn(u32 tid)
95 {
96 return jhash_1word(tid, gtp_h_initval);
97 }
98
ipv4_hashfn(__be32 ip)99 static inline u32 ipv4_hashfn(__be32 ip)
100 {
101 return jhash_1word((__force u32)ip, gtp_h_initval);
102 }
103
104 /* Resolve a PDP context structure based on the 64bit TID. */
gtp0_pdp_find(struct gtp_dev * gtp,u64 tid)105 static struct pdp_ctx *gtp0_pdp_find(struct gtp_dev *gtp, u64 tid)
106 {
107 struct hlist_head *head;
108 struct pdp_ctx *pdp;
109
110 head = >p->tid_hash[gtp0_hashfn(tid) % gtp->hash_size];
111
112 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
113 if (pdp->gtp_version == GTP_V0 &&
114 pdp->u.v0.tid == tid)
115 return pdp;
116 }
117 return NULL;
118 }
119
120 /* Resolve a PDP context structure based on the 32bit TEI. */
gtp1_pdp_find(struct gtp_dev * gtp,u32 tid)121 static struct pdp_ctx *gtp1_pdp_find(struct gtp_dev *gtp, u32 tid)
122 {
123 struct hlist_head *head;
124 struct pdp_ctx *pdp;
125
126 head = >p->tid_hash[gtp1u_hashfn(tid) % gtp->hash_size];
127
128 hlist_for_each_entry_rcu(pdp, head, hlist_tid) {
129 if (pdp->gtp_version == GTP_V1 &&
130 pdp->u.v1.i_tei == tid)
131 return pdp;
132 }
133 return NULL;
134 }
135
136 /* Resolve a PDP context based on IPv4 address of MS. */
ipv4_pdp_find(struct gtp_dev * gtp,__be32 ms_addr)137 static struct pdp_ctx *ipv4_pdp_find(struct gtp_dev *gtp, __be32 ms_addr)
138 {
139 struct hlist_head *head;
140 struct pdp_ctx *pdp;
141
142 head = >p->addr_hash[ipv4_hashfn(ms_addr) % gtp->hash_size];
143
144 hlist_for_each_entry_rcu(pdp, head, hlist_addr) {
145 if (pdp->af == AF_INET &&
146 pdp->ms_addr_ip4.s_addr == ms_addr)
147 return pdp;
148 }
149
150 return NULL;
151 }
152
gtp_check_ms_ipv4(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)153 static bool gtp_check_ms_ipv4(struct sk_buff *skb, struct pdp_ctx *pctx,
154 unsigned int hdrlen, unsigned int role)
155 {
156 struct iphdr *iph;
157
158 if (!pskb_may_pull(skb, hdrlen + sizeof(struct iphdr)))
159 return false;
160
161 iph = (struct iphdr *)(skb->data + hdrlen);
162
163 if (role == GTP_ROLE_SGSN)
164 return iph->daddr == pctx->ms_addr_ip4.s_addr;
165 else
166 return iph->saddr == pctx->ms_addr_ip4.s_addr;
167 }
168
169 /* Check if the inner IP address in this packet is assigned to any
170 * existing mobile subscriber.
171 */
gtp_check_ms(struct sk_buff * skb,struct pdp_ctx * pctx,unsigned int hdrlen,unsigned int role)172 static bool gtp_check_ms(struct sk_buff *skb, struct pdp_ctx *pctx,
173 unsigned int hdrlen, unsigned int role)
174 {
175 switch (ntohs(skb->protocol)) {
176 case ETH_P_IP:
177 return gtp_check_ms_ipv4(skb, pctx, hdrlen, role);
178 }
179 return false;
180 }
181
gtp_rx(struct pdp_ctx * pctx,struct sk_buff * skb,unsigned int hdrlen,unsigned int role)182 static int gtp_rx(struct pdp_ctx *pctx, struct sk_buff *skb,
183 unsigned int hdrlen, unsigned int role)
184 {
185 if (!gtp_check_ms(skb, pctx, hdrlen, role)) {
186 netdev_dbg(pctx->dev, "No PDP ctx for this MS\n");
187 return 1;
188 }
189
190 /* Get rid of the GTP + UDP headers. */
191 if (iptunnel_pull_header(skb, hdrlen, skb->protocol,
192 !net_eq(sock_net(pctx->sk), dev_net(pctx->dev)))) {
193 pctx->dev->stats.rx_length_errors++;
194 goto err;
195 }
196
197 netdev_dbg(pctx->dev, "forwarding packet from GGSN to uplink\n");
198
199 /* Now that the UDP and the GTP header have been removed, set up the
200 * new network header. This is required by the upper layer to
201 * calculate the transport header.
202 */
203 skb_reset_network_header(skb);
204 skb_reset_mac_header(skb);
205
206 skb->dev = pctx->dev;
207
208 dev_sw_netstats_rx_add(pctx->dev, skb->len);
209
210 netif_rx(skb);
211 return 0;
212
213 err:
214 pctx->dev->stats.rx_dropped++;
215 return -1;
216 }
217
218 /* 1 means pass up to the stack, -1 means drop and 0 means decapsulated. */
gtp0_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)219 static int gtp0_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
220 {
221 unsigned int hdrlen = sizeof(struct udphdr) +
222 sizeof(struct gtp0_header);
223 struct gtp0_header *gtp0;
224 struct pdp_ctx *pctx;
225
226 if (!pskb_may_pull(skb, hdrlen))
227 return -1;
228
229 gtp0 = (struct gtp0_header *)(skb->data + sizeof(struct udphdr));
230
231 if ((gtp0->flags >> 5) != GTP_V0)
232 return 1;
233
234 if (gtp0->type != GTP_TPDU)
235 return 1;
236
237 pctx = gtp0_pdp_find(gtp, be64_to_cpu(gtp0->tid));
238 if (!pctx) {
239 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
240 return 1;
241 }
242
243 return gtp_rx(pctx, skb, hdrlen, gtp->role);
244 }
245
gtp1u_udp_encap_recv(struct gtp_dev * gtp,struct sk_buff * skb)246 static int gtp1u_udp_encap_recv(struct gtp_dev *gtp, struct sk_buff *skb)
247 {
248 unsigned int hdrlen = sizeof(struct udphdr) +
249 sizeof(struct gtp1_header);
250 struct gtp1_header *gtp1;
251 struct pdp_ctx *pctx;
252
253 if (!pskb_may_pull(skb, hdrlen))
254 return -1;
255
256 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
257
258 if ((gtp1->flags >> 5) != GTP_V1)
259 return 1;
260
261 if (gtp1->type != GTP_TPDU)
262 return 1;
263
264 /* From 29.060: "This field shall be present if and only if any one or
265 * more of the S, PN and E flags are set.".
266 *
267 * If any of the bit is set, then the remaining ones also have to be
268 * set.
269 */
270 if (gtp1->flags & GTP1_F_MASK)
271 hdrlen += 4;
272
273 /* Make sure the header is larger enough, including extensions. */
274 if (!pskb_may_pull(skb, hdrlen))
275 return -1;
276
277 gtp1 = (struct gtp1_header *)(skb->data + sizeof(struct udphdr));
278
279 pctx = gtp1_pdp_find(gtp, ntohl(gtp1->tid));
280 if (!pctx) {
281 netdev_dbg(gtp->dev, "No PDP ctx to decap skb=%p\n", skb);
282 return 1;
283 }
284
285 return gtp_rx(pctx, skb, hdrlen, gtp->role);
286 }
287
__gtp_encap_destroy(struct sock * sk)288 static void __gtp_encap_destroy(struct sock *sk)
289 {
290 struct gtp_dev *gtp;
291
292 lock_sock(sk);
293 gtp = sk->sk_user_data;
294 if (gtp) {
295 if (gtp->sk0 == sk)
296 gtp->sk0 = NULL;
297 else
298 gtp->sk1u = NULL;
299 udp_sk(sk)->encap_type = 0;
300 rcu_assign_sk_user_data(sk, NULL);
301 sock_put(sk);
302 }
303 release_sock(sk);
304 }
305
gtp_encap_destroy(struct sock * sk)306 static void gtp_encap_destroy(struct sock *sk)
307 {
308 rtnl_lock();
309 __gtp_encap_destroy(sk);
310 rtnl_unlock();
311 }
312
gtp_encap_disable_sock(struct sock * sk)313 static void gtp_encap_disable_sock(struct sock *sk)
314 {
315 if (!sk)
316 return;
317
318 __gtp_encap_destroy(sk);
319 }
320
gtp_encap_disable(struct gtp_dev * gtp)321 static void gtp_encap_disable(struct gtp_dev *gtp)
322 {
323 gtp_encap_disable_sock(gtp->sk0);
324 gtp_encap_disable_sock(gtp->sk1u);
325 }
326
327 /* UDP encapsulation receive handler. See net/ipv4/udp.c.
328 * Return codes: 0: success, <0: error, >0: pass up to userspace UDP socket.
329 */
gtp_encap_recv(struct sock * sk,struct sk_buff * skb)330 static int gtp_encap_recv(struct sock *sk, struct sk_buff *skb)
331 {
332 struct gtp_dev *gtp;
333 int ret = 0;
334
335 gtp = rcu_dereference_sk_user_data(sk);
336 if (!gtp)
337 return 1;
338
339 netdev_dbg(gtp->dev, "encap_recv sk=%p\n", sk);
340
341 switch (udp_sk(sk)->encap_type) {
342 case UDP_ENCAP_GTP0:
343 netdev_dbg(gtp->dev, "received GTP0 packet\n");
344 ret = gtp0_udp_encap_recv(gtp, skb);
345 break;
346 case UDP_ENCAP_GTP1U:
347 netdev_dbg(gtp->dev, "received GTP1U packet\n");
348 ret = gtp1u_udp_encap_recv(gtp, skb);
349 break;
350 default:
351 ret = -1; /* Shouldn't happen. */
352 }
353
354 switch (ret) {
355 case 1:
356 netdev_dbg(gtp->dev, "pass up to the process\n");
357 break;
358 case 0:
359 break;
360 case -1:
361 netdev_dbg(gtp->dev, "GTP packet has been dropped\n");
362 kfree_skb(skb);
363 ret = 0;
364 break;
365 }
366
367 return ret;
368 }
369
gtp_dev_init(struct net_device * dev)370 static int gtp_dev_init(struct net_device *dev)
371 {
372 struct gtp_dev *gtp = netdev_priv(dev);
373
374 gtp->dev = dev;
375
376 dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
377 if (!dev->tstats)
378 return -ENOMEM;
379
380 return 0;
381 }
382
gtp_dev_uninit(struct net_device * dev)383 static void gtp_dev_uninit(struct net_device *dev)
384 {
385 struct gtp_dev *gtp = netdev_priv(dev);
386
387 gtp_encap_disable(gtp);
388 free_percpu(dev->tstats);
389 }
390
ip4_route_output_gtp(struct flowi4 * fl4,const struct sock * sk,__be32 daddr)391 static struct rtable *ip4_route_output_gtp(struct flowi4 *fl4,
392 const struct sock *sk,
393 __be32 daddr)
394 {
395 memset(fl4, 0, sizeof(*fl4));
396 fl4->flowi4_oif = sk->sk_bound_dev_if;
397 fl4->daddr = daddr;
398 fl4->saddr = inet_sk(sk)->inet_saddr;
399 fl4->flowi4_tos = RT_CONN_FLAGS(sk);
400 fl4->flowi4_proto = sk->sk_protocol;
401
402 return ip_route_output_key(sock_net(sk), fl4);
403 }
404
gtp0_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)405 static inline void gtp0_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
406 {
407 int payload_len = skb->len;
408 struct gtp0_header *gtp0;
409
410 gtp0 = skb_push(skb, sizeof(*gtp0));
411
412 gtp0->flags = 0x1e; /* v0, GTP-non-prime. */
413 gtp0->type = GTP_TPDU;
414 gtp0->length = htons(payload_len);
415 gtp0->seq = htons((atomic_inc_return(&pctx->tx_seq) - 1) % 0xffff);
416 gtp0->flow = htons(pctx->u.v0.flow);
417 gtp0->number = 0xff;
418 gtp0->spare[0] = gtp0->spare[1] = gtp0->spare[2] = 0xff;
419 gtp0->tid = cpu_to_be64(pctx->u.v0.tid);
420 }
421
gtp1_push_header(struct sk_buff * skb,struct pdp_ctx * pctx)422 static inline void gtp1_push_header(struct sk_buff *skb, struct pdp_ctx *pctx)
423 {
424 int payload_len = skb->len;
425 struct gtp1_header *gtp1;
426
427 gtp1 = skb_push(skb, sizeof(*gtp1));
428
429 /* Bits 8 7 6 5 4 3 2 1
430 * +--+--+--+--+--+--+--+--+
431 * |version |PT| 0| E| S|PN|
432 * +--+--+--+--+--+--+--+--+
433 * 0 0 1 1 1 0 0 0
434 */
435 gtp1->flags = 0x30; /* v1, GTP-non-prime. */
436 gtp1->type = GTP_TPDU;
437 gtp1->length = htons(payload_len);
438 gtp1->tid = htonl(pctx->u.v1.o_tei);
439
440 /* TODO: Support for extension header, sequence number and N-PDU.
441 * Update the length field if any of them is available.
442 */
443 }
444
445 struct gtp_pktinfo {
446 struct sock *sk;
447 struct iphdr *iph;
448 struct flowi4 fl4;
449 struct rtable *rt;
450 struct pdp_ctx *pctx;
451 struct net_device *dev;
452 __be16 gtph_port;
453 };
454
gtp_push_header(struct sk_buff * skb,struct gtp_pktinfo * pktinfo)455 static void gtp_push_header(struct sk_buff *skb, struct gtp_pktinfo *pktinfo)
456 {
457 switch (pktinfo->pctx->gtp_version) {
458 case GTP_V0:
459 pktinfo->gtph_port = htons(GTP0_PORT);
460 gtp0_push_header(skb, pktinfo->pctx);
461 break;
462 case GTP_V1:
463 pktinfo->gtph_port = htons(GTP1U_PORT);
464 gtp1_push_header(skb, pktinfo->pctx);
465 break;
466 }
467 }
468
gtp_set_pktinfo_ipv4(struct gtp_pktinfo * pktinfo,struct sock * sk,struct iphdr * iph,struct pdp_ctx * pctx,struct rtable * rt,struct flowi4 * fl4,struct net_device * dev)469 static inline void gtp_set_pktinfo_ipv4(struct gtp_pktinfo *pktinfo,
470 struct sock *sk, struct iphdr *iph,
471 struct pdp_ctx *pctx, struct rtable *rt,
472 struct flowi4 *fl4,
473 struct net_device *dev)
474 {
475 pktinfo->sk = sk;
476 pktinfo->iph = iph;
477 pktinfo->pctx = pctx;
478 pktinfo->rt = rt;
479 pktinfo->fl4 = *fl4;
480 pktinfo->dev = dev;
481 }
482
gtp_build_skb_ip4(struct sk_buff * skb,struct net_device * dev,struct gtp_pktinfo * pktinfo)483 static int gtp_build_skb_ip4(struct sk_buff *skb, struct net_device *dev,
484 struct gtp_pktinfo *pktinfo)
485 {
486 struct gtp_dev *gtp = netdev_priv(dev);
487 struct pdp_ctx *pctx;
488 struct rtable *rt;
489 struct flowi4 fl4;
490 struct iphdr *iph;
491 __be16 df;
492 int mtu;
493
494 /* Read the IP destination address and resolve the PDP context.
495 * Prepend PDP header with TEI/TID from PDP ctx.
496 */
497 iph = ip_hdr(skb);
498 if (gtp->role == GTP_ROLE_SGSN)
499 pctx = ipv4_pdp_find(gtp, iph->saddr);
500 else
501 pctx = ipv4_pdp_find(gtp, iph->daddr);
502
503 if (!pctx) {
504 netdev_dbg(dev, "no PDP ctx found for %pI4, skip\n",
505 &iph->daddr);
506 return -ENOENT;
507 }
508 netdev_dbg(dev, "found PDP context %p\n", pctx);
509
510 rt = ip4_route_output_gtp(&fl4, pctx->sk, pctx->peer_addr_ip4.s_addr);
511 if (IS_ERR(rt)) {
512 netdev_dbg(dev, "no route to SSGN %pI4\n",
513 &pctx->peer_addr_ip4.s_addr);
514 dev->stats.tx_carrier_errors++;
515 goto err;
516 }
517
518 if (rt->dst.dev == dev) {
519 netdev_dbg(dev, "circular route to SSGN %pI4\n",
520 &pctx->peer_addr_ip4.s_addr);
521 dev->stats.collisions++;
522 goto err_rt;
523 }
524
525 /* This is similar to tnl_update_pmtu(). */
526 df = iph->frag_off;
527 if (df) {
528 mtu = dst_mtu(&rt->dst) - dev->hard_header_len -
529 sizeof(struct iphdr) - sizeof(struct udphdr);
530 switch (pctx->gtp_version) {
531 case GTP_V0:
532 mtu -= sizeof(struct gtp0_header);
533 break;
534 case GTP_V1:
535 mtu -= sizeof(struct gtp1_header);
536 break;
537 }
538 } else {
539 mtu = dst_mtu(&rt->dst);
540 }
541
542 rt->dst.ops->update_pmtu(&rt->dst, NULL, skb, mtu, false);
543
544 if (!skb_is_gso(skb) && (iph->frag_off & htons(IP_DF)) &&
545 mtu < ntohs(iph->tot_len)) {
546 netdev_dbg(dev, "packet too big, fragmentation needed\n");
547 icmp_ndo_send(skb, ICMP_DEST_UNREACH, ICMP_FRAG_NEEDED,
548 htonl(mtu));
549 goto err_rt;
550 }
551
552 gtp_set_pktinfo_ipv4(pktinfo, pctx->sk, iph, pctx, rt, &fl4, dev);
553 gtp_push_header(skb, pktinfo);
554
555 return 0;
556 err_rt:
557 ip_rt_put(rt);
558 err:
559 return -EBADMSG;
560 }
561
gtp_dev_xmit(struct sk_buff * skb,struct net_device * dev)562 static netdev_tx_t gtp_dev_xmit(struct sk_buff *skb, struct net_device *dev)
563 {
564 unsigned int proto = ntohs(skb->protocol);
565 struct gtp_pktinfo pktinfo;
566 int err;
567
568 /* Ensure there is sufficient headroom. */
569 if (skb_cow_head(skb, dev->needed_headroom))
570 goto tx_err;
571
572 skb_reset_inner_headers(skb);
573
574 /* PDP context lookups in gtp_build_skb_*() need rcu read-side lock. */
575 rcu_read_lock();
576 switch (proto) {
577 case ETH_P_IP:
578 err = gtp_build_skb_ip4(skb, dev, &pktinfo);
579 break;
580 default:
581 err = -EOPNOTSUPP;
582 break;
583 }
584 rcu_read_unlock();
585
586 if (err < 0)
587 goto tx_err;
588
589 switch (proto) {
590 case ETH_P_IP:
591 netdev_dbg(pktinfo.dev, "gtp -> IP src: %pI4 dst: %pI4\n",
592 &pktinfo.iph->saddr, &pktinfo.iph->daddr);
593 udp_tunnel_xmit_skb(pktinfo.rt, pktinfo.sk, skb,
594 pktinfo.fl4.saddr, pktinfo.fl4.daddr,
595 pktinfo.iph->tos,
596 ip4_dst_hoplimit(&pktinfo.rt->dst),
597 0,
598 pktinfo.gtph_port, pktinfo.gtph_port,
599 !net_eq(sock_net(pktinfo.pctx->sk),
600 dev_net(dev)),
601 false);
602 break;
603 }
604
605 return NETDEV_TX_OK;
606 tx_err:
607 dev->stats.tx_errors++;
608 dev_kfree_skb(skb);
609 return NETDEV_TX_OK;
610 }
611
612 static const struct net_device_ops gtp_netdev_ops = {
613 .ndo_init = gtp_dev_init,
614 .ndo_uninit = gtp_dev_uninit,
615 .ndo_start_xmit = gtp_dev_xmit,
616 .ndo_get_stats64 = dev_get_tstats64,
617 };
618
619 static const struct device_type gtp_type = {
620 .name = "gtp",
621 };
622
gtp_link_setup(struct net_device * dev)623 static void gtp_link_setup(struct net_device *dev)
624 {
625 unsigned int max_gtp_header_len = sizeof(struct iphdr) +
626 sizeof(struct udphdr) +
627 sizeof(struct gtp0_header);
628
629 dev->netdev_ops = >p_netdev_ops;
630 dev->needs_free_netdev = true;
631 SET_NETDEV_DEVTYPE(dev, >p_type);
632
633 dev->hard_header_len = 0;
634 dev->addr_len = 0;
635 dev->mtu = ETH_DATA_LEN - max_gtp_header_len;
636
637 /* Zero header length. */
638 dev->type = ARPHRD_NONE;
639 dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
640
641 dev->priv_flags |= IFF_NO_QUEUE;
642 dev->features |= NETIF_F_LLTX;
643 netif_keep_dst(dev);
644
645 dev->needed_headroom = LL_MAX_HEADER + max_gtp_header_len;
646 }
647
648 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize);
649 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[]);
650
gtp_destructor(struct net_device * dev)651 static void gtp_destructor(struct net_device *dev)
652 {
653 struct gtp_dev *gtp = netdev_priv(dev);
654
655 kfree(gtp->addr_hash);
656 kfree(gtp->tid_hash);
657 }
658
gtp_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)659 static int gtp_newlink(struct net *src_net, struct net_device *dev,
660 struct nlattr *tb[], struct nlattr *data[],
661 struct netlink_ext_ack *extack)
662 {
663 struct gtp_dev *gtp;
664 struct gtp_net *gn;
665 int hashsize, err;
666
667 if (!data[IFLA_GTP_FD0] && !data[IFLA_GTP_FD1])
668 return -EINVAL;
669
670 gtp = netdev_priv(dev);
671
672 if (!data[IFLA_GTP_PDP_HASHSIZE]) {
673 hashsize = 1024;
674 } else {
675 hashsize = nla_get_u32(data[IFLA_GTP_PDP_HASHSIZE]);
676 if (!hashsize)
677 hashsize = 1024;
678 }
679
680 err = gtp_hashtable_new(gtp, hashsize);
681 if (err < 0)
682 return err;
683
684 err = gtp_encap_enable(gtp, data);
685 if (err < 0)
686 goto out_hashtable;
687
688 err = register_netdevice(dev);
689 if (err < 0) {
690 netdev_dbg(dev, "failed to register new netdev %d\n", err);
691 goto out_encap;
692 }
693
694 gn = net_generic(dev_net(dev), gtp_net_id);
695 list_add_rcu(>p->list, &gn->gtp_dev_list);
696 dev->priv_destructor = gtp_destructor;
697
698 netdev_dbg(dev, "registered new GTP interface\n");
699
700 return 0;
701
702 out_encap:
703 gtp_encap_disable(gtp);
704 out_hashtable:
705 kfree(gtp->addr_hash);
706 kfree(gtp->tid_hash);
707 return err;
708 }
709
gtp_dellink(struct net_device * dev,struct list_head * head)710 static void gtp_dellink(struct net_device *dev, struct list_head *head)
711 {
712 struct gtp_dev *gtp = netdev_priv(dev);
713 struct pdp_ctx *pctx;
714 int i;
715
716 for (i = 0; i < gtp->hash_size; i++)
717 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i], hlist_tid)
718 pdp_context_delete(pctx);
719
720 list_del_rcu(>p->list);
721 unregister_netdevice_queue(dev, head);
722 }
723
724 static const struct nla_policy gtp_policy[IFLA_GTP_MAX + 1] = {
725 [IFLA_GTP_FD0] = { .type = NLA_U32 },
726 [IFLA_GTP_FD1] = { .type = NLA_U32 },
727 [IFLA_GTP_PDP_HASHSIZE] = { .type = NLA_U32 },
728 [IFLA_GTP_ROLE] = { .type = NLA_U32 },
729 };
730
gtp_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)731 static int gtp_validate(struct nlattr *tb[], struct nlattr *data[],
732 struct netlink_ext_ack *extack)
733 {
734 if (!data)
735 return -EINVAL;
736
737 return 0;
738 }
739
gtp_get_size(const struct net_device * dev)740 static size_t gtp_get_size(const struct net_device *dev)
741 {
742 return nla_total_size(sizeof(__u32)) + /* IFLA_GTP_PDP_HASHSIZE */
743 nla_total_size(sizeof(__u32)); /* IFLA_GTP_ROLE */
744 }
745
gtp_fill_info(struct sk_buff * skb,const struct net_device * dev)746 static int gtp_fill_info(struct sk_buff *skb, const struct net_device *dev)
747 {
748 struct gtp_dev *gtp = netdev_priv(dev);
749
750 if (nla_put_u32(skb, IFLA_GTP_PDP_HASHSIZE, gtp->hash_size))
751 goto nla_put_failure;
752 if (nla_put_u32(skb, IFLA_GTP_ROLE, gtp->role))
753 goto nla_put_failure;
754
755 return 0;
756
757 nla_put_failure:
758 return -EMSGSIZE;
759 }
760
761 static struct rtnl_link_ops gtp_link_ops __read_mostly = {
762 .kind = "gtp",
763 .maxtype = IFLA_GTP_MAX,
764 .policy = gtp_policy,
765 .priv_size = sizeof(struct gtp_dev),
766 .setup = gtp_link_setup,
767 .validate = gtp_validate,
768 .newlink = gtp_newlink,
769 .dellink = gtp_dellink,
770 .get_size = gtp_get_size,
771 .fill_info = gtp_fill_info,
772 };
773
gtp_hashtable_new(struct gtp_dev * gtp,int hsize)774 static int gtp_hashtable_new(struct gtp_dev *gtp, int hsize)
775 {
776 int i;
777
778 gtp->addr_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
779 GFP_KERNEL | __GFP_NOWARN);
780 if (gtp->addr_hash == NULL)
781 return -ENOMEM;
782
783 gtp->tid_hash = kmalloc_array(hsize, sizeof(struct hlist_head),
784 GFP_KERNEL | __GFP_NOWARN);
785 if (gtp->tid_hash == NULL)
786 goto err1;
787
788 gtp->hash_size = hsize;
789
790 for (i = 0; i < hsize; i++) {
791 INIT_HLIST_HEAD(>p->addr_hash[i]);
792 INIT_HLIST_HEAD(>p->tid_hash[i]);
793 }
794 return 0;
795 err1:
796 kfree(gtp->addr_hash);
797 return -ENOMEM;
798 }
799
gtp_encap_enable_socket(int fd,int type,struct gtp_dev * gtp)800 static struct sock *gtp_encap_enable_socket(int fd, int type,
801 struct gtp_dev *gtp)
802 {
803 struct udp_tunnel_sock_cfg tuncfg = {NULL};
804 struct socket *sock;
805 struct sock *sk;
806 int err;
807
808 pr_debug("enable gtp on %d, %d\n", fd, type);
809
810 sock = sockfd_lookup(fd, &err);
811 if (!sock) {
812 pr_debug("gtp socket fd=%d not found\n", fd);
813 return NULL;
814 }
815
816 sk = sock->sk;
817 if (sk->sk_protocol != IPPROTO_UDP ||
818 sk->sk_type != SOCK_DGRAM ||
819 (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)) {
820 pr_debug("socket fd=%d not UDP\n", fd);
821 sk = ERR_PTR(-EINVAL);
822 goto out_sock;
823 }
824
825 lock_sock(sk);
826 if (sk->sk_user_data) {
827 sk = ERR_PTR(-EBUSY);
828 goto out_rel_sock;
829 }
830
831 sock_hold(sk);
832
833 tuncfg.sk_user_data = gtp;
834 tuncfg.encap_type = type;
835 tuncfg.encap_rcv = gtp_encap_recv;
836 tuncfg.encap_destroy = gtp_encap_destroy;
837
838 setup_udp_tunnel_sock(sock_net(sock->sk), sock, &tuncfg);
839
840 out_rel_sock:
841 release_sock(sock->sk);
842 out_sock:
843 sockfd_put(sock);
844 return sk;
845 }
846
gtp_encap_enable(struct gtp_dev * gtp,struct nlattr * data[])847 static int gtp_encap_enable(struct gtp_dev *gtp, struct nlattr *data[])
848 {
849 struct sock *sk1u = NULL;
850 struct sock *sk0 = NULL;
851 unsigned int role = GTP_ROLE_GGSN;
852
853 if (data[IFLA_GTP_FD0]) {
854 u32 fd0 = nla_get_u32(data[IFLA_GTP_FD0]);
855
856 sk0 = gtp_encap_enable_socket(fd0, UDP_ENCAP_GTP0, gtp);
857 if (IS_ERR(sk0))
858 return PTR_ERR(sk0);
859 }
860
861 if (data[IFLA_GTP_FD1]) {
862 u32 fd1 = nla_get_u32(data[IFLA_GTP_FD1]);
863
864 sk1u = gtp_encap_enable_socket(fd1, UDP_ENCAP_GTP1U, gtp);
865 if (IS_ERR(sk1u)) {
866 gtp_encap_disable_sock(sk0);
867 return PTR_ERR(sk1u);
868 }
869 }
870
871 if (data[IFLA_GTP_ROLE]) {
872 role = nla_get_u32(data[IFLA_GTP_ROLE]);
873 if (role > GTP_ROLE_SGSN) {
874 gtp_encap_disable_sock(sk0);
875 gtp_encap_disable_sock(sk1u);
876 return -EINVAL;
877 }
878 }
879
880 gtp->sk0 = sk0;
881 gtp->sk1u = sk1u;
882 gtp->role = role;
883
884 return 0;
885 }
886
gtp_find_dev(struct net * src_net,struct nlattr * nla[])887 static struct gtp_dev *gtp_find_dev(struct net *src_net, struct nlattr *nla[])
888 {
889 struct gtp_dev *gtp = NULL;
890 struct net_device *dev;
891 struct net *net;
892
893 /* Examine the link attributes and figure out which network namespace
894 * we are talking about.
895 */
896 if (nla[GTPA_NET_NS_FD])
897 net = get_net_ns_by_fd(nla_get_u32(nla[GTPA_NET_NS_FD]));
898 else
899 net = get_net(src_net);
900
901 if (IS_ERR(net))
902 return NULL;
903
904 /* Check if there's an existing gtpX device to configure */
905 dev = dev_get_by_index_rcu(net, nla_get_u32(nla[GTPA_LINK]));
906 if (dev && dev->netdev_ops == >p_netdev_ops)
907 gtp = netdev_priv(dev);
908
909 put_net(net);
910 return gtp;
911 }
912
ipv4_pdp_fill(struct pdp_ctx * pctx,struct genl_info * info)913 static void ipv4_pdp_fill(struct pdp_ctx *pctx, struct genl_info *info)
914 {
915 pctx->gtp_version = nla_get_u32(info->attrs[GTPA_VERSION]);
916 pctx->af = AF_INET;
917 pctx->peer_addr_ip4.s_addr =
918 nla_get_be32(info->attrs[GTPA_PEER_ADDRESS]);
919 pctx->ms_addr_ip4.s_addr =
920 nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
921
922 switch (pctx->gtp_version) {
923 case GTP_V0:
924 /* According to TS 09.60, sections 7.5.1 and 7.5.2, the flow
925 * label needs to be the same for uplink and downlink packets,
926 * so let's annotate this.
927 */
928 pctx->u.v0.tid = nla_get_u64(info->attrs[GTPA_TID]);
929 pctx->u.v0.flow = nla_get_u16(info->attrs[GTPA_FLOW]);
930 break;
931 case GTP_V1:
932 pctx->u.v1.i_tei = nla_get_u32(info->attrs[GTPA_I_TEI]);
933 pctx->u.v1.o_tei = nla_get_u32(info->attrs[GTPA_O_TEI]);
934 break;
935 default:
936 break;
937 }
938 }
939
gtp_pdp_add(struct gtp_dev * gtp,struct sock * sk,struct genl_info * info)940 static struct pdp_ctx *gtp_pdp_add(struct gtp_dev *gtp, struct sock *sk,
941 struct genl_info *info)
942 {
943 struct pdp_ctx *pctx, *pctx_tid = NULL;
944 struct net_device *dev = gtp->dev;
945 u32 hash_ms, hash_tid = 0;
946 unsigned int version;
947 bool found = false;
948 __be32 ms_addr;
949
950 ms_addr = nla_get_be32(info->attrs[GTPA_MS_ADDRESS]);
951 hash_ms = ipv4_hashfn(ms_addr) % gtp->hash_size;
952 version = nla_get_u32(info->attrs[GTPA_VERSION]);
953
954 pctx = ipv4_pdp_find(gtp, ms_addr);
955 if (pctx)
956 found = true;
957 if (version == GTP_V0)
958 pctx_tid = gtp0_pdp_find(gtp,
959 nla_get_u64(info->attrs[GTPA_TID]));
960 else if (version == GTP_V1)
961 pctx_tid = gtp1_pdp_find(gtp,
962 nla_get_u32(info->attrs[GTPA_I_TEI]));
963 if (pctx_tid)
964 found = true;
965
966 if (found) {
967 if (info->nlhdr->nlmsg_flags & NLM_F_EXCL)
968 return ERR_PTR(-EEXIST);
969 if (info->nlhdr->nlmsg_flags & NLM_F_REPLACE)
970 return ERR_PTR(-EOPNOTSUPP);
971
972 if (pctx && pctx_tid)
973 return ERR_PTR(-EEXIST);
974 if (!pctx)
975 pctx = pctx_tid;
976
977 ipv4_pdp_fill(pctx, info);
978
979 if (pctx->gtp_version == GTP_V0)
980 netdev_dbg(dev, "GTPv0-U: update tunnel id = %llx (pdp %p)\n",
981 pctx->u.v0.tid, pctx);
982 else if (pctx->gtp_version == GTP_V1)
983 netdev_dbg(dev, "GTPv1-U: update tunnel id = %x/%x (pdp %p)\n",
984 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
985
986 return pctx;
987
988 }
989
990 pctx = kmalloc(sizeof(*pctx), GFP_ATOMIC);
991 if (pctx == NULL)
992 return ERR_PTR(-ENOMEM);
993
994 sock_hold(sk);
995 pctx->sk = sk;
996 pctx->dev = gtp->dev;
997 ipv4_pdp_fill(pctx, info);
998 atomic_set(&pctx->tx_seq, 0);
999
1000 switch (pctx->gtp_version) {
1001 case GTP_V0:
1002 /* TS 09.60: "The flow label identifies unambiguously a GTP
1003 * flow.". We use the tid for this instead, I cannot find a
1004 * situation in which this doesn't unambiguosly identify the
1005 * PDP context.
1006 */
1007 hash_tid = gtp0_hashfn(pctx->u.v0.tid) % gtp->hash_size;
1008 break;
1009 case GTP_V1:
1010 hash_tid = gtp1u_hashfn(pctx->u.v1.i_tei) % gtp->hash_size;
1011 break;
1012 }
1013
1014 hlist_add_head_rcu(&pctx->hlist_addr, >p->addr_hash[hash_ms]);
1015 hlist_add_head_rcu(&pctx->hlist_tid, >p->tid_hash[hash_tid]);
1016
1017 switch (pctx->gtp_version) {
1018 case GTP_V0:
1019 netdev_dbg(dev, "GTPv0-U: new PDP ctx id=%llx ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1020 pctx->u.v0.tid, &pctx->peer_addr_ip4,
1021 &pctx->ms_addr_ip4, pctx);
1022 break;
1023 case GTP_V1:
1024 netdev_dbg(dev, "GTPv1-U: new PDP ctx id=%x/%x ssgn=%pI4 ms=%pI4 (pdp=%p)\n",
1025 pctx->u.v1.i_tei, pctx->u.v1.o_tei,
1026 &pctx->peer_addr_ip4, &pctx->ms_addr_ip4, pctx);
1027 break;
1028 }
1029
1030 return pctx;
1031 }
1032
pdp_context_free(struct rcu_head * head)1033 static void pdp_context_free(struct rcu_head *head)
1034 {
1035 struct pdp_ctx *pctx = container_of(head, struct pdp_ctx, rcu_head);
1036
1037 sock_put(pctx->sk);
1038 kfree(pctx);
1039 }
1040
pdp_context_delete(struct pdp_ctx * pctx)1041 static void pdp_context_delete(struct pdp_ctx *pctx)
1042 {
1043 hlist_del_rcu(&pctx->hlist_tid);
1044 hlist_del_rcu(&pctx->hlist_addr);
1045 call_rcu(&pctx->rcu_head, pdp_context_free);
1046 }
1047
1048 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation);
1049
gtp_genl_new_pdp(struct sk_buff * skb,struct genl_info * info)1050 static int gtp_genl_new_pdp(struct sk_buff *skb, struct genl_info *info)
1051 {
1052 unsigned int version;
1053 struct pdp_ctx *pctx;
1054 struct gtp_dev *gtp;
1055 struct sock *sk;
1056 int err;
1057
1058 if (!info->attrs[GTPA_VERSION] ||
1059 !info->attrs[GTPA_LINK] ||
1060 !info->attrs[GTPA_PEER_ADDRESS] ||
1061 !info->attrs[GTPA_MS_ADDRESS])
1062 return -EINVAL;
1063
1064 version = nla_get_u32(info->attrs[GTPA_VERSION]);
1065
1066 switch (version) {
1067 case GTP_V0:
1068 if (!info->attrs[GTPA_TID] ||
1069 !info->attrs[GTPA_FLOW])
1070 return -EINVAL;
1071 break;
1072 case GTP_V1:
1073 if (!info->attrs[GTPA_I_TEI] ||
1074 !info->attrs[GTPA_O_TEI])
1075 return -EINVAL;
1076 break;
1077
1078 default:
1079 return -EINVAL;
1080 }
1081
1082 rtnl_lock();
1083
1084 gtp = gtp_find_dev(sock_net(skb->sk), info->attrs);
1085 if (!gtp) {
1086 err = -ENODEV;
1087 goto out_unlock;
1088 }
1089
1090 if (version == GTP_V0)
1091 sk = gtp->sk0;
1092 else if (version == GTP_V1)
1093 sk = gtp->sk1u;
1094 else
1095 sk = NULL;
1096
1097 if (!sk) {
1098 err = -ENODEV;
1099 goto out_unlock;
1100 }
1101
1102 pctx = gtp_pdp_add(gtp, sk, info);
1103 if (IS_ERR(pctx)) {
1104 err = PTR_ERR(pctx);
1105 } else {
1106 gtp_tunnel_notify(pctx, GTP_CMD_NEWPDP, GFP_KERNEL);
1107 err = 0;
1108 }
1109
1110 out_unlock:
1111 rtnl_unlock();
1112 return err;
1113 }
1114
gtp_find_pdp_by_link(struct net * net,struct nlattr * nla[])1115 static struct pdp_ctx *gtp_find_pdp_by_link(struct net *net,
1116 struct nlattr *nla[])
1117 {
1118 struct gtp_dev *gtp;
1119
1120 gtp = gtp_find_dev(net, nla);
1121 if (!gtp)
1122 return ERR_PTR(-ENODEV);
1123
1124 if (nla[GTPA_MS_ADDRESS]) {
1125 __be32 ip = nla_get_be32(nla[GTPA_MS_ADDRESS]);
1126
1127 return ipv4_pdp_find(gtp, ip);
1128 } else if (nla[GTPA_VERSION]) {
1129 u32 gtp_version = nla_get_u32(nla[GTPA_VERSION]);
1130
1131 if (gtp_version == GTP_V0 && nla[GTPA_TID])
1132 return gtp0_pdp_find(gtp, nla_get_u64(nla[GTPA_TID]));
1133 else if (gtp_version == GTP_V1 && nla[GTPA_I_TEI])
1134 return gtp1_pdp_find(gtp, nla_get_u32(nla[GTPA_I_TEI]));
1135 }
1136
1137 return ERR_PTR(-EINVAL);
1138 }
1139
gtp_find_pdp(struct net * net,struct nlattr * nla[])1140 static struct pdp_ctx *gtp_find_pdp(struct net *net, struct nlattr *nla[])
1141 {
1142 struct pdp_ctx *pctx;
1143
1144 if (nla[GTPA_LINK])
1145 pctx = gtp_find_pdp_by_link(net, nla);
1146 else
1147 pctx = ERR_PTR(-EINVAL);
1148
1149 if (!pctx)
1150 pctx = ERR_PTR(-ENOENT);
1151
1152 return pctx;
1153 }
1154
gtp_genl_del_pdp(struct sk_buff * skb,struct genl_info * info)1155 static int gtp_genl_del_pdp(struct sk_buff *skb, struct genl_info *info)
1156 {
1157 struct pdp_ctx *pctx;
1158 int err = 0;
1159
1160 if (!info->attrs[GTPA_VERSION])
1161 return -EINVAL;
1162
1163 rcu_read_lock();
1164
1165 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1166 if (IS_ERR(pctx)) {
1167 err = PTR_ERR(pctx);
1168 goto out_unlock;
1169 }
1170
1171 if (pctx->gtp_version == GTP_V0)
1172 netdev_dbg(pctx->dev, "GTPv0-U: deleting tunnel id = %llx (pdp %p)\n",
1173 pctx->u.v0.tid, pctx);
1174 else if (pctx->gtp_version == GTP_V1)
1175 netdev_dbg(pctx->dev, "GTPv1-U: deleting tunnel id = %x/%x (pdp %p)\n",
1176 pctx->u.v1.i_tei, pctx->u.v1.o_tei, pctx);
1177
1178 gtp_tunnel_notify(pctx, GTP_CMD_DELPDP, GFP_ATOMIC);
1179 pdp_context_delete(pctx);
1180
1181 out_unlock:
1182 rcu_read_unlock();
1183 return err;
1184 }
1185
1186 static struct genl_family gtp_genl_family;
1187
1188 enum gtp_multicast_groups {
1189 GTP_GENL_MCGRP,
1190 };
1191
1192 static const struct genl_multicast_group gtp_genl_mcgrps[] = {
1193 [GTP_GENL_MCGRP] = { .name = GTP_GENL_MCGRP_NAME },
1194 };
1195
gtp_genl_fill_info(struct sk_buff * skb,u32 snd_portid,u32 snd_seq,int flags,u32 type,struct pdp_ctx * pctx)1196 static int gtp_genl_fill_info(struct sk_buff *skb, u32 snd_portid, u32 snd_seq,
1197 int flags, u32 type, struct pdp_ctx *pctx)
1198 {
1199 void *genlh;
1200
1201 genlh = genlmsg_put(skb, snd_portid, snd_seq, >p_genl_family, flags,
1202 type);
1203 if (genlh == NULL)
1204 goto nlmsg_failure;
1205
1206 if (nla_put_u32(skb, GTPA_VERSION, pctx->gtp_version) ||
1207 nla_put_u32(skb, GTPA_LINK, pctx->dev->ifindex) ||
1208 nla_put_be32(skb, GTPA_PEER_ADDRESS, pctx->peer_addr_ip4.s_addr) ||
1209 nla_put_be32(skb, GTPA_MS_ADDRESS, pctx->ms_addr_ip4.s_addr))
1210 goto nla_put_failure;
1211
1212 switch (pctx->gtp_version) {
1213 case GTP_V0:
1214 if (nla_put_u64_64bit(skb, GTPA_TID, pctx->u.v0.tid, GTPA_PAD) ||
1215 nla_put_u16(skb, GTPA_FLOW, pctx->u.v0.flow))
1216 goto nla_put_failure;
1217 break;
1218 case GTP_V1:
1219 if (nla_put_u32(skb, GTPA_I_TEI, pctx->u.v1.i_tei) ||
1220 nla_put_u32(skb, GTPA_O_TEI, pctx->u.v1.o_tei))
1221 goto nla_put_failure;
1222 break;
1223 }
1224 genlmsg_end(skb, genlh);
1225 return 0;
1226
1227 nlmsg_failure:
1228 nla_put_failure:
1229 genlmsg_cancel(skb, genlh);
1230 return -EMSGSIZE;
1231 }
1232
gtp_tunnel_notify(struct pdp_ctx * pctx,u8 cmd,gfp_t allocation)1233 static int gtp_tunnel_notify(struct pdp_ctx *pctx, u8 cmd, gfp_t allocation)
1234 {
1235 struct sk_buff *msg;
1236 int ret;
1237
1238 msg = nlmsg_new(NLMSG_DEFAULT_SIZE, allocation);
1239 if (!msg)
1240 return -ENOMEM;
1241
1242 ret = gtp_genl_fill_info(msg, 0, 0, 0, cmd, pctx);
1243 if (ret < 0) {
1244 nlmsg_free(msg);
1245 return ret;
1246 }
1247
1248 ret = genlmsg_multicast_netns(>p_genl_family, dev_net(pctx->dev), msg,
1249 0, GTP_GENL_MCGRP, GFP_ATOMIC);
1250 return ret;
1251 }
1252
gtp_genl_get_pdp(struct sk_buff * skb,struct genl_info * info)1253 static int gtp_genl_get_pdp(struct sk_buff *skb, struct genl_info *info)
1254 {
1255 struct pdp_ctx *pctx = NULL;
1256 struct sk_buff *skb2;
1257 int err;
1258
1259 if (!info->attrs[GTPA_VERSION])
1260 return -EINVAL;
1261
1262 rcu_read_lock();
1263
1264 pctx = gtp_find_pdp(sock_net(skb->sk), info->attrs);
1265 if (IS_ERR(pctx)) {
1266 err = PTR_ERR(pctx);
1267 goto err_unlock;
1268 }
1269
1270 skb2 = genlmsg_new(NLMSG_GOODSIZE, GFP_ATOMIC);
1271 if (skb2 == NULL) {
1272 err = -ENOMEM;
1273 goto err_unlock;
1274 }
1275
1276 err = gtp_genl_fill_info(skb2, NETLINK_CB(skb).portid, info->snd_seq,
1277 0, info->nlhdr->nlmsg_type, pctx);
1278 if (err < 0)
1279 goto err_unlock_free;
1280
1281 rcu_read_unlock();
1282 return genlmsg_unicast(genl_info_net(info), skb2, info->snd_portid);
1283
1284 err_unlock_free:
1285 kfree_skb(skb2);
1286 err_unlock:
1287 rcu_read_unlock();
1288 return err;
1289 }
1290
gtp_genl_dump_pdp(struct sk_buff * skb,struct netlink_callback * cb)1291 static int gtp_genl_dump_pdp(struct sk_buff *skb,
1292 struct netlink_callback *cb)
1293 {
1294 struct gtp_dev *last_gtp = (struct gtp_dev *)cb->args[2], *gtp;
1295 int i, j, bucket = cb->args[0], skip = cb->args[1];
1296 struct net *net = sock_net(skb->sk);
1297 struct pdp_ctx *pctx;
1298 struct gtp_net *gn;
1299
1300 gn = net_generic(net, gtp_net_id);
1301
1302 if (cb->args[4])
1303 return 0;
1304
1305 rcu_read_lock();
1306 list_for_each_entry_rcu(gtp, &gn->gtp_dev_list, list) {
1307 if (last_gtp && last_gtp != gtp)
1308 continue;
1309 else
1310 last_gtp = NULL;
1311
1312 for (i = bucket; i < gtp->hash_size; i++) {
1313 j = 0;
1314 hlist_for_each_entry_rcu(pctx, >p->tid_hash[i],
1315 hlist_tid) {
1316 if (j >= skip &&
1317 gtp_genl_fill_info(skb,
1318 NETLINK_CB(cb->skb).portid,
1319 cb->nlh->nlmsg_seq,
1320 NLM_F_MULTI,
1321 cb->nlh->nlmsg_type, pctx)) {
1322 cb->args[0] = i;
1323 cb->args[1] = j;
1324 cb->args[2] = (unsigned long)gtp;
1325 goto out;
1326 }
1327 j++;
1328 }
1329 skip = 0;
1330 }
1331 bucket = 0;
1332 }
1333 cb->args[4] = 1;
1334 out:
1335 rcu_read_unlock();
1336 return skb->len;
1337 }
1338
1339 static const struct nla_policy gtp_genl_policy[GTPA_MAX + 1] = {
1340 [GTPA_LINK] = { .type = NLA_U32, },
1341 [GTPA_VERSION] = { .type = NLA_U32, },
1342 [GTPA_TID] = { .type = NLA_U64, },
1343 [GTPA_PEER_ADDRESS] = { .type = NLA_U32, },
1344 [GTPA_MS_ADDRESS] = { .type = NLA_U32, },
1345 [GTPA_FLOW] = { .type = NLA_U16, },
1346 [GTPA_NET_NS_FD] = { .type = NLA_U32, },
1347 [GTPA_I_TEI] = { .type = NLA_U32, },
1348 [GTPA_O_TEI] = { .type = NLA_U32, },
1349 };
1350
1351 static const struct genl_small_ops gtp_genl_ops[] = {
1352 {
1353 .cmd = GTP_CMD_NEWPDP,
1354 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1355 .doit = gtp_genl_new_pdp,
1356 .flags = GENL_ADMIN_PERM,
1357 },
1358 {
1359 .cmd = GTP_CMD_DELPDP,
1360 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1361 .doit = gtp_genl_del_pdp,
1362 .flags = GENL_ADMIN_PERM,
1363 },
1364 {
1365 .cmd = GTP_CMD_GETPDP,
1366 .validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
1367 .doit = gtp_genl_get_pdp,
1368 .dumpit = gtp_genl_dump_pdp,
1369 .flags = GENL_ADMIN_PERM,
1370 },
1371 };
1372
1373 static struct genl_family gtp_genl_family __ro_after_init = {
1374 .name = "gtp",
1375 .version = 0,
1376 .hdrsize = 0,
1377 .maxattr = GTPA_MAX,
1378 .policy = gtp_genl_policy,
1379 .netnsok = true,
1380 .module = THIS_MODULE,
1381 .small_ops = gtp_genl_ops,
1382 .n_small_ops = ARRAY_SIZE(gtp_genl_ops),
1383 .mcgrps = gtp_genl_mcgrps,
1384 .n_mcgrps = ARRAY_SIZE(gtp_genl_mcgrps),
1385 };
1386
gtp_net_init(struct net * net)1387 static int __net_init gtp_net_init(struct net *net)
1388 {
1389 struct gtp_net *gn = net_generic(net, gtp_net_id);
1390
1391 INIT_LIST_HEAD(&gn->gtp_dev_list);
1392 return 0;
1393 }
1394
gtp_net_exit(struct net * net)1395 static void __net_exit gtp_net_exit(struct net *net)
1396 {
1397 struct gtp_net *gn = net_generic(net, gtp_net_id);
1398 struct gtp_dev *gtp;
1399 LIST_HEAD(list);
1400
1401 rtnl_lock();
1402 list_for_each_entry(gtp, &gn->gtp_dev_list, list)
1403 gtp_dellink(gtp->dev, &list);
1404
1405 unregister_netdevice_many(&list);
1406 rtnl_unlock();
1407 }
1408
1409 static struct pernet_operations gtp_net_ops = {
1410 .init = gtp_net_init,
1411 .exit = gtp_net_exit,
1412 .id = >p_net_id,
1413 .size = sizeof(struct gtp_net),
1414 };
1415
gtp_init(void)1416 static int __init gtp_init(void)
1417 {
1418 int err;
1419
1420 get_random_bytes(>p_h_initval, sizeof(gtp_h_initval));
1421
1422 err = rtnl_link_register(>p_link_ops);
1423 if (err < 0)
1424 goto error_out;
1425
1426 err = genl_register_family(>p_genl_family);
1427 if (err < 0)
1428 goto unreg_rtnl_link;
1429
1430 err = register_pernet_subsys(>p_net_ops);
1431 if (err < 0)
1432 goto unreg_genl_family;
1433
1434 pr_info("GTP module loaded (pdp ctx size %zd bytes)\n",
1435 sizeof(struct pdp_ctx));
1436 return 0;
1437
1438 unreg_genl_family:
1439 genl_unregister_family(>p_genl_family);
1440 unreg_rtnl_link:
1441 rtnl_link_unregister(>p_link_ops);
1442 error_out:
1443 pr_err("error loading GTP module loaded\n");
1444 return err;
1445 }
1446 late_initcall(gtp_init);
1447
gtp_fini(void)1448 static void __exit gtp_fini(void)
1449 {
1450 genl_unregister_family(>p_genl_family);
1451 rtnl_link_unregister(>p_link_ops);
1452 unregister_pernet_subsys(>p_net_ops);
1453
1454 pr_info("GTP module unloaded\n");
1455 }
1456 module_exit(gtp_fini);
1457
1458 MODULE_LICENSE("GPL");
1459 MODULE_AUTHOR("Harald Welte <hwelte@sysmocom.de>");
1460 MODULE_DESCRIPTION("Interface driver for GTP encapsulated traffic");
1461 MODULE_ALIAS_RTNL_LINK("gtp");
1462 MODULE_ALIAS_GENL_FAMILY("gtp");
1463