1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (c) International Business Machines Corp., 2006
4 *
5 * Authors: Artem Bityutskiy (Битюцкий Артём), Thomas Gleixner
6 */
7
8 /*
9 * UBI wear-leveling sub-system.
10 *
11 * This sub-system is responsible for wear-leveling. It works in terms of
12 * physical eraseblocks and erase counters and knows nothing about logical
13 * eraseblocks, volumes, etc. From this sub-system's perspective all physical
14 * eraseblocks are of two types - used and free. Used physical eraseblocks are
15 * those that were "get" by the 'ubi_wl_get_peb()' function, and free physical
16 * eraseblocks are those that were put by the 'ubi_wl_put_peb()' function.
17 *
18 * Physical eraseblocks returned by 'ubi_wl_get_peb()' have only erase counter
19 * header. The rest of the physical eraseblock contains only %0xFF bytes.
20 *
21 * When physical eraseblocks are returned to the WL sub-system by means of the
22 * 'ubi_wl_put_peb()' function, they are scheduled for erasure. The erasure is
23 * done asynchronously in context of the per-UBI device background thread,
24 * which is also managed by the WL sub-system.
25 *
26 * The wear-leveling is ensured by means of moving the contents of used
27 * physical eraseblocks with low erase counter to free physical eraseblocks
28 * with high erase counter.
29 *
30 * If the WL sub-system fails to erase a physical eraseblock, it marks it as
31 * bad.
32 *
33 * This sub-system is also responsible for scrubbing. If a bit-flip is detected
34 * in a physical eraseblock, it has to be moved. Technically this is the same
35 * as moving it for wear-leveling reasons.
36 *
37 * As it was said, for the UBI sub-system all physical eraseblocks are either
38 * "free" or "used". Free eraseblock are kept in the @wl->free RB-tree, while
39 * used eraseblocks are kept in @wl->used, @wl->erroneous, or @wl->scrub
40 * RB-trees, as well as (temporarily) in the @wl->pq queue.
41 *
42 * When the WL sub-system returns a physical eraseblock, the physical
43 * eraseblock is protected from being moved for some "time". For this reason,
44 * the physical eraseblock is not directly moved from the @wl->free tree to the
45 * @wl->used tree. There is a protection queue in between where this
46 * physical eraseblock is temporarily stored (@wl->pq).
47 *
48 * All this protection stuff is needed because:
49 * o we don't want to move physical eraseblocks just after we have given them
50 * to the user; instead, we first want to let users fill them up with data;
51 *
52 * o there is a chance that the user will put the physical eraseblock very
53 * soon, so it makes sense not to move it for some time, but wait.
54 *
55 * Physical eraseblocks stay protected only for limited time. But the "time" is
56 * measured in erase cycles in this case. This is implemented with help of the
57 * protection queue. Eraseblocks are put to the tail of this queue when they
58 * are returned by the 'ubi_wl_get_peb()', and eraseblocks are removed from the
59 * head of the queue on each erase operation (for any eraseblock). So the
60 * length of the queue defines how may (global) erase cycles PEBs are protected.
61 *
62 * To put it differently, each physical eraseblock has 2 main states: free and
63 * used. The former state corresponds to the @wl->free tree. The latter state
64 * is split up on several sub-states:
65 * o the WL movement is allowed (@wl->used tree);
66 * o the WL movement is disallowed (@wl->erroneous) because the PEB is
67 * erroneous - e.g., there was a read error;
68 * o the WL movement is temporarily prohibited (@wl->pq queue);
69 * o scrubbing is needed (@wl->scrub tree).
70 *
71 * Depending on the sub-state, wear-leveling entries of the used physical
72 * eraseblocks may be kept in one of those structures.
73 *
74 * Note, in this implementation, we keep a small in-RAM object for each physical
75 * eraseblock. This is surely not a scalable solution. But it appears to be good
76 * enough for moderately large flashes and it is simple. In future, one may
77 * re-work this sub-system and make it more scalable.
78 *
79 * At the moment this sub-system does not utilize the sequence number, which
80 * was introduced relatively recently. But it would be wise to do this because
81 * the sequence number of a logical eraseblock characterizes how old is it. For
82 * example, when we move a PEB with low erase counter, and we need to pick the
83 * target PEB, we pick a PEB with the highest EC if our PEB is "old" and we
84 * pick target PEB with an average EC if our PEB is not very "old". This is a
85 * room for future re-works of the WL sub-system.
86 */
87
88 #include <linux/slab.h>
89 #include <linux/crc32.h>
90 #include <linux/freezer.h>
91 #include <linux/kthread.h>
92 #include "ubi.h"
93 #include "wl.h"
94
95 /* Number of physical eraseblocks reserved for wear-leveling purposes */
96 #define WL_RESERVED_PEBS 1
97
98 /*
99 * Maximum difference between two erase counters. If this threshold is
100 * exceeded, the WL sub-system starts moving data from used physical
101 * eraseblocks with low erase counter to free physical eraseblocks with high
102 * erase counter.
103 */
104 #define UBI_WL_THRESHOLD CONFIG_MTD_UBI_WL_THRESHOLD
105
106 /*
107 * When a physical eraseblock is moved, the WL sub-system has to pick the target
108 * physical eraseblock to move to. The simplest way would be just to pick the
109 * one with the highest erase counter. But in certain workloads this could lead
110 * to an unlimited wear of one or few physical eraseblock. Indeed, imagine a
111 * situation when the picked physical eraseblock is constantly erased after the
112 * data is written to it. So, we have a constant which limits the highest erase
113 * counter of the free physical eraseblock to pick. Namely, the WL sub-system
114 * does not pick eraseblocks with erase counter greater than the lowest erase
115 * counter plus %WL_FREE_MAX_DIFF.
116 */
117 #define WL_FREE_MAX_DIFF (2*UBI_WL_THRESHOLD)
118
119 /*
120 * Maximum number of consecutive background thread failures which is enough to
121 * switch to read-only mode.
122 */
123 #define WL_MAX_FAILURES 32
124
125 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec);
126 static int self_check_in_wl_tree(const struct ubi_device *ubi,
127 struct ubi_wl_entry *e, struct rb_root *root);
128 static int self_check_in_pq(const struct ubi_device *ubi,
129 struct ubi_wl_entry *e);
130
131 /**
132 * wl_tree_add - add a wear-leveling entry to a WL RB-tree.
133 * @e: the wear-leveling entry to add
134 * @root: the root of the tree
135 *
136 * Note, we use (erase counter, physical eraseblock number) pairs as keys in
137 * the @ubi->used and @ubi->free RB-trees.
138 */
wl_tree_add(struct ubi_wl_entry * e,struct rb_root * root)139 static void wl_tree_add(struct ubi_wl_entry *e, struct rb_root *root)
140 {
141 struct rb_node **p, *parent = NULL;
142
143 p = &root->rb_node;
144 while (*p) {
145 struct ubi_wl_entry *e1;
146
147 parent = *p;
148 e1 = rb_entry(parent, struct ubi_wl_entry, u.rb);
149
150 if (e->ec < e1->ec)
151 p = &(*p)->rb_left;
152 else if (e->ec > e1->ec)
153 p = &(*p)->rb_right;
154 else {
155 ubi_assert(e->pnum != e1->pnum);
156 if (e->pnum < e1->pnum)
157 p = &(*p)->rb_left;
158 else
159 p = &(*p)->rb_right;
160 }
161 }
162
163 rb_link_node(&e->u.rb, parent, p);
164 rb_insert_color(&e->u.rb, root);
165 }
166
167 /**
168 * wl_tree_destroy - destroy a wear-leveling entry.
169 * @ubi: UBI device description object
170 * @e: the wear-leveling entry to add
171 *
172 * This function destroys a wear leveling entry and removes
173 * the reference from the lookup table.
174 */
wl_entry_destroy(struct ubi_device * ubi,struct ubi_wl_entry * e)175 static void wl_entry_destroy(struct ubi_device *ubi, struct ubi_wl_entry *e)
176 {
177 ubi->lookuptbl[e->pnum] = NULL;
178 kmem_cache_free(ubi_wl_entry_slab, e);
179 }
180
181 /**
182 * do_work - do one pending work.
183 * @ubi: UBI device description object
184 *
185 * This function returns zero in case of success and a negative error code in
186 * case of failure.
187 */
do_work(struct ubi_device * ubi)188 static int do_work(struct ubi_device *ubi)
189 {
190 int err;
191 struct ubi_work *wrk;
192
193 cond_resched();
194
195 /*
196 * @ubi->work_sem is used to synchronize with the workers. Workers take
197 * it in read mode, so many of them may be doing works at a time. But
198 * the queue flush code has to be sure the whole queue of works is
199 * done, and it takes the mutex in write mode.
200 */
201 down_read(&ubi->work_sem);
202 spin_lock(&ubi->wl_lock);
203 if (list_empty(&ubi->works)) {
204 spin_unlock(&ubi->wl_lock);
205 up_read(&ubi->work_sem);
206 return 0;
207 }
208
209 wrk = list_entry(ubi->works.next, struct ubi_work, list);
210 list_del(&wrk->list);
211 ubi->works_count -= 1;
212 ubi_assert(ubi->works_count >= 0);
213 spin_unlock(&ubi->wl_lock);
214
215 /*
216 * Call the worker function. Do not touch the work structure
217 * after this call as it will have been freed or reused by that
218 * time by the worker function.
219 */
220 err = wrk->func(ubi, wrk, 0);
221 if (err)
222 ubi_err(ubi, "work failed with error code %d", err);
223 up_read(&ubi->work_sem);
224
225 return err;
226 }
227
228 /**
229 * in_wl_tree - check if wear-leveling entry is present in a WL RB-tree.
230 * @e: the wear-leveling entry to check
231 * @root: the root of the tree
232 *
233 * This function returns non-zero if @e is in the @root RB-tree and zero if it
234 * is not.
235 */
in_wl_tree(struct ubi_wl_entry * e,struct rb_root * root)236 static int in_wl_tree(struct ubi_wl_entry *e, struct rb_root *root)
237 {
238 struct rb_node *p;
239
240 p = root->rb_node;
241 while (p) {
242 struct ubi_wl_entry *e1;
243
244 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
245
246 if (e->pnum == e1->pnum) {
247 ubi_assert(e == e1);
248 return 1;
249 }
250
251 if (e->ec < e1->ec)
252 p = p->rb_left;
253 else if (e->ec > e1->ec)
254 p = p->rb_right;
255 else {
256 ubi_assert(e->pnum != e1->pnum);
257 if (e->pnum < e1->pnum)
258 p = p->rb_left;
259 else
260 p = p->rb_right;
261 }
262 }
263
264 return 0;
265 }
266
267 /**
268 * in_pq - check if a wear-leveling entry is present in the protection queue.
269 * @ubi: UBI device description object
270 * @e: the wear-leveling entry to check
271 *
272 * This function returns non-zero if @e is in the protection queue and zero
273 * if it is not.
274 */
in_pq(const struct ubi_device * ubi,struct ubi_wl_entry * e)275 static inline int in_pq(const struct ubi_device *ubi, struct ubi_wl_entry *e)
276 {
277 struct ubi_wl_entry *p;
278 int i;
279
280 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i)
281 list_for_each_entry(p, &ubi->pq[i], u.list)
282 if (p == e)
283 return 1;
284
285 return 0;
286 }
287
288 /**
289 * prot_queue_add - add physical eraseblock to the protection queue.
290 * @ubi: UBI device description object
291 * @e: the physical eraseblock to add
292 *
293 * This function adds @e to the tail of the protection queue @ubi->pq, where
294 * @e will stay for %UBI_PROT_QUEUE_LEN erase operations and will be
295 * temporarily protected from the wear-leveling worker. Note, @wl->lock has to
296 * be locked.
297 */
prot_queue_add(struct ubi_device * ubi,struct ubi_wl_entry * e)298 static void prot_queue_add(struct ubi_device *ubi, struct ubi_wl_entry *e)
299 {
300 int pq_tail = ubi->pq_head - 1;
301
302 if (pq_tail < 0)
303 pq_tail = UBI_PROT_QUEUE_LEN - 1;
304 ubi_assert(pq_tail >= 0 && pq_tail < UBI_PROT_QUEUE_LEN);
305 list_add_tail(&e->u.list, &ubi->pq[pq_tail]);
306 dbg_wl("added PEB %d EC %d to the protection queue", e->pnum, e->ec);
307 }
308
309 /**
310 * find_wl_entry - find wear-leveling entry closest to certain erase counter.
311 * @ubi: UBI device description object
312 * @root: the RB-tree where to look for
313 * @diff: maximum possible difference from the smallest erase counter
314 *
315 * This function looks for a wear leveling entry with erase counter closest to
316 * min + @diff, where min is the smallest erase counter.
317 */
find_wl_entry(struct ubi_device * ubi,struct rb_root * root,int diff)318 static struct ubi_wl_entry *find_wl_entry(struct ubi_device *ubi,
319 struct rb_root *root, int diff)
320 {
321 struct rb_node *p;
322 struct ubi_wl_entry *e;
323 int max;
324
325 e = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
326 max = e->ec + diff;
327
328 p = root->rb_node;
329 while (p) {
330 struct ubi_wl_entry *e1;
331
332 e1 = rb_entry(p, struct ubi_wl_entry, u.rb);
333 if (e1->ec >= max)
334 p = p->rb_left;
335 else {
336 p = p->rb_right;
337 e = e1;
338 }
339 }
340
341 return e;
342 }
343
344 /**
345 * find_mean_wl_entry - find wear-leveling entry with medium erase counter.
346 * @ubi: UBI device description object
347 * @root: the RB-tree where to look for
348 *
349 * This function looks for a wear leveling entry with medium erase counter,
350 * but not greater or equivalent than the lowest erase counter plus
351 * %WL_FREE_MAX_DIFF/2.
352 */
find_mean_wl_entry(struct ubi_device * ubi,struct rb_root * root)353 static struct ubi_wl_entry *find_mean_wl_entry(struct ubi_device *ubi,
354 struct rb_root *root)
355 {
356 struct ubi_wl_entry *e, *first, *last;
357
358 first = rb_entry(rb_first(root), struct ubi_wl_entry, u.rb);
359 last = rb_entry(rb_last(root), struct ubi_wl_entry, u.rb);
360
361 if (last->ec - first->ec < WL_FREE_MAX_DIFF) {
362 e = rb_entry(root->rb_node, struct ubi_wl_entry, u.rb);
363
364 /* If no fastmap has been written and this WL entry can be used
365 * as anchor PEB, hold it back and return the second best
366 * WL entry such that fastmap can use the anchor PEB later. */
367 e = may_reserve_for_fm(ubi, e, root);
368 } else
369 e = find_wl_entry(ubi, root, WL_FREE_MAX_DIFF/2);
370
371 return e;
372 }
373
374 /**
375 * wl_get_wle - get a mean wl entry to be used by ubi_wl_get_peb() or
376 * refill_wl_user_pool().
377 * @ubi: UBI device description object
378 *
379 * This function returns a a wear leveling entry in case of success and
380 * NULL in case of failure.
381 */
wl_get_wle(struct ubi_device * ubi)382 static struct ubi_wl_entry *wl_get_wle(struct ubi_device *ubi)
383 {
384 struct ubi_wl_entry *e;
385
386 e = find_mean_wl_entry(ubi, &ubi->free);
387 if (!e) {
388 ubi_err(ubi, "no free eraseblocks");
389 return NULL;
390 }
391
392 self_check_in_wl_tree(ubi, e, &ubi->free);
393
394 /*
395 * Move the physical eraseblock to the protection queue where it will
396 * be protected from being moved for some time.
397 */
398 rb_erase(&e->u.rb, &ubi->free);
399 ubi->free_count--;
400 dbg_wl("PEB %d EC %d", e->pnum, e->ec);
401
402 return e;
403 }
404
405 /**
406 * prot_queue_del - remove a physical eraseblock from the protection queue.
407 * @ubi: UBI device description object
408 * @pnum: the physical eraseblock to remove
409 *
410 * This function deletes PEB @pnum from the protection queue and returns zero
411 * in case of success and %-ENODEV if the PEB was not found.
412 */
prot_queue_del(struct ubi_device * ubi,int pnum)413 static int prot_queue_del(struct ubi_device *ubi, int pnum)
414 {
415 struct ubi_wl_entry *e;
416
417 e = ubi->lookuptbl[pnum];
418 if (!e)
419 return -ENODEV;
420
421 if (self_check_in_pq(ubi, e))
422 return -ENODEV;
423
424 list_del(&e->u.list);
425 dbg_wl("deleted PEB %d from the protection queue", e->pnum);
426 return 0;
427 }
428
429 /**
430 * sync_erase - synchronously erase a physical eraseblock.
431 * @ubi: UBI device description object
432 * @e: the the physical eraseblock to erase
433 * @torture: if the physical eraseblock has to be tortured
434 *
435 * This function returns zero in case of success and a negative error code in
436 * case of failure.
437 */
sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int torture)438 static int sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
439 int torture)
440 {
441 int err;
442 struct ubi_ec_hdr *ec_hdr;
443 unsigned long long ec = e->ec;
444
445 dbg_wl("erase PEB %d, old EC %llu", e->pnum, ec);
446
447 err = self_check_ec(ubi, e->pnum, e->ec);
448 if (err)
449 return -EINVAL;
450
451 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
452 if (!ec_hdr)
453 return -ENOMEM;
454
455 err = ubi_io_sync_erase(ubi, e->pnum, torture);
456 if (err < 0)
457 goto out_free;
458
459 ec += err;
460 if (ec > UBI_MAX_ERASECOUNTER) {
461 /*
462 * Erase counter overflow. Upgrade UBI and use 64-bit
463 * erase counters internally.
464 */
465 ubi_err(ubi, "erase counter overflow at PEB %d, EC %llu",
466 e->pnum, ec);
467 err = -EINVAL;
468 goto out_free;
469 }
470
471 dbg_wl("erased PEB %d, new EC %llu", e->pnum, ec);
472
473 ec_hdr->ec = cpu_to_be64(ec);
474
475 err = ubi_io_write_ec_hdr(ubi, e->pnum, ec_hdr);
476 if (err)
477 goto out_free;
478
479 e->ec = ec;
480 spin_lock(&ubi->wl_lock);
481 if (e->ec > ubi->max_ec)
482 ubi->max_ec = e->ec;
483 spin_unlock(&ubi->wl_lock);
484
485 out_free:
486 kfree(ec_hdr);
487 return err;
488 }
489
490 /**
491 * serve_prot_queue - check if it is time to stop protecting PEBs.
492 * @ubi: UBI device description object
493 *
494 * This function is called after each erase operation and removes PEBs from the
495 * tail of the protection queue. These PEBs have been protected for long enough
496 * and should be moved to the used tree.
497 */
serve_prot_queue(struct ubi_device * ubi)498 static void serve_prot_queue(struct ubi_device *ubi)
499 {
500 struct ubi_wl_entry *e, *tmp;
501 int count;
502
503 /*
504 * There may be several protected physical eraseblock to remove,
505 * process them all.
506 */
507 repeat:
508 count = 0;
509 spin_lock(&ubi->wl_lock);
510 list_for_each_entry_safe(e, tmp, &ubi->pq[ubi->pq_head], u.list) {
511 dbg_wl("PEB %d EC %d protection over, move to used tree",
512 e->pnum, e->ec);
513
514 list_del(&e->u.list);
515 wl_tree_add(e, &ubi->used);
516 if (count++ > 32) {
517 /*
518 * Let's be nice and avoid holding the spinlock for
519 * too long.
520 */
521 spin_unlock(&ubi->wl_lock);
522 cond_resched();
523 goto repeat;
524 }
525 }
526
527 ubi->pq_head += 1;
528 if (ubi->pq_head == UBI_PROT_QUEUE_LEN)
529 ubi->pq_head = 0;
530 ubi_assert(ubi->pq_head >= 0 && ubi->pq_head < UBI_PROT_QUEUE_LEN);
531 spin_unlock(&ubi->wl_lock);
532 }
533
534 /**
535 * __schedule_ubi_work - schedule a work.
536 * @ubi: UBI device description object
537 * @wrk: the work to schedule
538 *
539 * This function adds a work defined by @wrk to the tail of the pending works
540 * list. Can only be used if ubi->work_sem is already held in read mode!
541 */
__schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)542 static void __schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
543 {
544 spin_lock(&ubi->wl_lock);
545 list_add_tail(&wrk->list, &ubi->works);
546 ubi_assert(ubi->works_count >= 0);
547 ubi->works_count += 1;
548 if (ubi->thread_enabled && !ubi_dbg_is_bgt_disabled(ubi))
549 wake_up_process(ubi->bgt_thread);
550 spin_unlock(&ubi->wl_lock);
551 }
552
553 /**
554 * schedule_ubi_work - schedule a work.
555 * @ubi: UBI device description object
556 * @wrk: the work to schedule
557 *
558 * This function adds a work defined by @wrk to the tail of the pending works
559 * list.
560 */
schedule_ubi_work(struct ubi_device * ubi,struct ubi_work * wrk)561 static void schedule_ubi_work(struct ubi_device *ubi, struct ubi_work *wrk)
562 {
563 down_read(&ubi->work_sem);
564 __schedule_ubi_work(ubi, wrk);
565 up_read(&ubi->work_sem);
566 }
567
568 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
569 int shutdown);
570
571 /**
572 * schedule_erase - schedule an erase work.
573 * @ubi: UBI device description object
574 * @e: the WL entry of the physical eraseblock to erase
575 * @vol_id: the volume ID that last used this PEB
576 * @lnum: the last used logical eraseblock number for the PEB
577 * @torture: if the physical eraseblock has to be tortured
578 * @nested: denotes whether the work_sem is already held in read mode
579 *
580 * This function returns zero in case of success and a %-ENOMEM in case of
581 * failure.
582 */
schedule_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture,bool nested)583 static int schedule_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
584 int vol_id, int lnum, int torture, bool nested)
585 {
586 struct ubi_work *wl_wrk;
587
588 ubi_assert(e);
589
590 dbg_wl("schedule erasure of PEB %d, EC %d, torture %d",
591 e->pnum, e->ec, torture);
592
593 wl_wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
594 if (!wl_wrk)
595 return -ENOMEM;
596
597 wl_wrk->func = &erase_worker;
598 wl_wrk->e = e;
599 wl_wrk->vol_id = vol_id;
600 wl_wrk->lnum = lnum;
601 wl_wrk->torture = torture;
602
603 if (nested)
604 __schedule_ubi_work(ubi, wl_wrk);
605 else
606 schedule_ubi_work(ubi, wl_wrk);
607 return 0;
608 }
609
610 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk);
611 /**
612 * do_sync_erase - run the erase worker synchronously.
613 * @ubi: UBI device description object
614 * @e: the WL entry of the physical eraseblock to erase
615 * @vol_id: the volume ID that last used this PEB
616 * @lnum: the last used logical eraseblock number for the PEB
617 * @torture: if the physical eraseblock has to be tortured
618 *
619 */
do_sync_erase(struct ubi_device * ubi,struct ubi_wl_entry * e,int vol_id,int lnum,int torture)620 static int do_sync_erase(struct ubi_device *ubi, struct ubi_wl_entry *e,
621 int vol_id, int lnum, int torture)
622 {
623 struct ubi_work wl_wrk;
624
625 dbg_wl("sync erase of PEB %i", e->pnum);
626
627 wl_wrk.e = e;
628 wl_wrk.vol_id = vol_id;
629 wl_wrk.lnum = lnum;
630 wl_wrk.torture = torture;
631
632 return __erase_worker(ubi, &wl_wrk);
633 }
634
635 static int ensure_wear_leveling(struct ubi_device *ubi, int nested);
636 /**
637 * wear_leveling_worker - wear-leveling worker function.
638 * @ubi: UBI device description object
639 * @wrk: the work object
640 * @shutdown: non-zero if the worker has to free memory and exit
641 * because the WL-subsystem is shutting down
642 *
643 * This function copies a more worn out physical eraseblock to a less worn out
644 * one. Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
wear_leveling_worker(struct ubi_device * ubi,struct ubi_work * wrk,int shutdown)647 static int wear_leveling_worker(struct ubi_device *ubi, struct ubi_work *wrk,
648 int shutdown)
649 {
650 int err, scrubbing = 0, torture = 0, protect = 0, erroneous = 0;
651 int erase = 0, keep = 0, vol_id = -1, lnum = -1;
652 struct ubi_wl_entry *e1, *e2;
653 struct ubi_vid_io_buf *vidb;
654 struct ubi_vid_hdr *vid_hdr;
655 int dst_leb_clean = 0;
656
657 kfree(wrk);
658 if (shutdown)
659 return 0;
660
661 vidb = ubi_alloc_vid_buf(ubi, GFP_NOFS);
662 if (!vidb)
663 return -ENOMEM;
664
665 vid_hdr = ubi_get_vid_hdr(vidb);
666
667 down_read(&ubi->fm_eba_sem);
668 mutex_lock(&ubi->move_mutex);
669 spin_lock(&ubi->wl_lock);
670 ubi_assert(!ubi->move_from && !ubi->move_to);
671 ubi_assert(!ubi->move_to_put);
672
673 if (!ubi->free.rb_node ||
674 (!ubi->used.rb_node && !ubi->scrub.rb_node)) {
675 /*
676 * No free physical eraseblocks? Well, they must be waiting in
677 * the queue to be erased. Cancel movement - it will be
678 * triggered again when a free physical eraseblock appears.
679 *
680 * No used physical eraseblocks? They must be temporarily
681 * protected from being moved. They will be moved to the
682 * @ubi->used tree later and the wear-leveling will be
683 * triggered again.
684 */
685 dbg_wl("cancel WL, a list is empty: free %d, used %d",
686 !ubi->free.rb_node, !ubi->used.rb_node);
687 goto out_cancel;
688 }
689
690 #ifdef CONFIG_MTD_UBI_FASTMAP
691 e1 = find_anchor_wl_entry(&ubi->used);
692 if (e1 && ubi->fm_next_anchor &&
693 (ubi->fm_next_anchor->ec - e1->ec >= UBI_WL_THRESHOLD)) {
694 ubi->fm_do_produce_anchor = 1;
695 /* fm_next_anchor is no longer considered a good anchor
696 * candidate.
697 * NULL assignment also prevents multiple wear level checks
698 * of this PEB.
699 */
700 wl_tree_add(ubi->fm_next_anchor, &ubi->free);
701 ubi->fm_next_anchor = NULL;
702 ubi->free_count++;
703 }
704
705 if (ubi->fm_do_produce_anchor) {
706 if (!e1)
707 goto out_cancel;
708 e2 = get_peb_for_wl(ubi);
709 if (!e2)
710 goto out_cancel;
711
712 self_check_in_wl_tree(ubi, e1, &ubi->used);
713 rb_erase(&e1->u.rb, &ubi->used);
714 dbg_wl("anchor-move PEB %d to PEB %d", e1->pnum, e2->pnum);
715 ubi->fm_do_produce_anchor = 0;
716 } else if (!ubi->scrub.rb_node) {
717 #else
718 if (!ubi->scrub.rb_node) {
719 #endif
720 /*
721 * Now pick the least worn-out used physical eraseblock and a
722 * highly worn-out free physical eraseblock. If the erase
723 * counters differ much enough, start wear-leveling.
724 */
725 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
726 e2 = get_peb_for_wl(ubi);
727 if (!e2)
728 goto out_cancel;
729
730 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD)) {
731 dbg_wl("no WL needed: min used EC %d, max free EC %d",
732 e1->ec, e2->ec);
733
734 /* Give the unused PEB back */
735 wl_tree_add(e2, &ubi->free);
736 ubi->free_count++;
737 goto out_cancel;
738 }
739 self_check_in_wl_tree(ubi, e1, &ubi->used);
740 rb_erase(&e1->u.rb, &ubi->used);
741 dbg_wl("move PEB %d EC %d to PEB %d EC %d",
742 e1->pnum, e1->ec, e2->pnum, e2->ec);
743 } else {
744 /* Perform scrubbing */
745 scrubbing = 1;
746 e1 = rb_entry(rb_first(&ubi->scrub), struct ubi_wl_entry, u.rb);
747 e2 = get_peb_for_wl(ubi);
748 if (!e2)
749 goto out_cancel;
750
751 self_check_in_wl_tree(ubi, e1, &ubi->scrub);
752 rb_erase(&e1->u.rb, &ubi->scrub);
753 dbg_wl("scrub PEB %d to PEB %d", e1->pnum, e2->pnum);
754 }
755
756 ubi->move_from = e1;
757 ubi->move_to = e2;
758 spin_unlock(&ubi->wl_lock);
759
760 /*
761 * Now we are going to copy physical eraseblock @e1->pnum to @e2->pnum.
762 * We so far do not know which logical eraseblock our physical
763 * eraseblock (@e1) belongs to. We have to read the volume identifier
764 * header first.
765 *
766 * Note, we are protected from this PEB being unmapped and erased. The
767 * 'ubi_wl_put_peb()' would wait for moving to be finished if the PEB
768 * which is being moved was unmapped.
769 */
770
771 err = ubi_io_read_vid_hdr(ubi, e1->pnum, vidb, 0);
772 if (err && err != UBI_IO_BITFLIPS) {
773 dst_leb_clean = 1;
774 if (err == UBI_IO_FF) {
775 /*
776 * We are trying to move PEB without a VID header. UBI
777 * always write VID headers shortly after the PEB was
778 * given, so we have a situation when it has not yet
779 * had a chance to write it, because it was preempted.
780 * So add this PEB to the protection queue so far,
781 * because presumably more data will be written there
782 * (including the missing VID header), and then we'll
783 * move it.
784 */
785 dbg_wl("PEB %d has no VID header", e1->pnum);
786 protect = 1;
787 goto out_not_moved;
788 } else if (err == UBI_IO_FF_BITFLIPS) {
789 /*
790 * The same situation as %UBI_IO_FF, but bit-flips were
791 * detected. It is better to schedule this PEB for
792 * scrubbing.
793 */
794 dbg_wl("PEB %d has no VID header but has bit-flips",
795 e1->pnum);
796 scrubbing = 1;
797 goto out_not_moved;
798 } else if (ubi->fast_attach && err == UBI_IO_BAD_HDR_EBADMSG) {
799 /*
800 * While a full scan would detect interrupted erasures
801 * at attach time we can face them here when attached from
802 * Fastmap.
803 */
804 dbg_wl("PEB %d has ECC errors, maybe from an interrupted erasure",
805 e1->pnum);
806 erase = 1;
807 goto out_not_moved;
808 }
809
810 ubi_err(ubi, "error %d while reading VID header from PEB %d",
811 err, e1->pnum);
812 goto out_error;
813 }
814
815 vol_id = be32_to_cpu(vid_hdr->vol_id);
816 lnum = be32_to_cpu(vid_hdr->lnum);
817
818 err = ubi_eba_copy_leb(ubi, e1->pnum, e2->pnum, vidb);
819 if (err) {
820 if (err == MOVE_CANCEL_RACE) {
821 /*
822 * The LEB has not been moved because the volume is
823 * being deleted or the PEB has been put meanwhile. We
824 * should prevent this PEB from being selected for
825 * wear-leveling movement again, so put it to the
826 * protection queue.
827 */
828 protect = 1;
829 dst_leb_clean = 1;
830 goto out_not_moved;
831 }
832 if (err == MOVE_RETRY) {
833 scrubbing = 1;
834 dst_leb_clean = 1;
835 goto out_not_moved;
836 }
837 if (err == MOVE_TARGET_BITFLIPS || err == MOVE_TARGET_WR_ERR ||
838 err == MOVE_TARGET_RD_ERR) {
839 /*
840 * Target PEB had bit-flips or write error - torture it.
841 */
842 torture = 1;
843 keep = 1;
844 goto out_not_moved;
845 }
846
847 if (err == MOVE_SOURCE_RD_ERR) {
848 /*
849 * An error happened while reading the source PEB. Do
850 * not switch to R/O mode in this case, and give the
851 * upper layers a possibility to recover from this,
852 * e.g. by unmapping corresponding LEB. Instead, just
853 * put this PEB to the @ubi->erroneous list to prevent
854 * UBI from trying to move it over and over again.
855 */
856 if (ubi->erroneous_peb_count > ubi->max_erroneous) {
857 ubi_err(ubi, "too many erroneous eraseblocks (%d)",
858 ubi->erroneous_peb_count);
859 goto out_error;
860 }
861 dst_leb_clean = 1;
862 erroneous = 1;
863 goto out_not_moved;
864 }
865
866 if (err < 0)
867 goto out_error;
868
869 ubi_assert(0);
870 }
871
872 /* The PEB has been successfully moved */
873 if (scrubbing)
874 ubi_msg(ubi, "scrubbed PEB %d (LEB %d:%d), data moved to PEB %d",
875 e1->pnum, vol_id, lnum, e2->pnum);
876 ubi_free_vid_buf(vidb);
877
878 spin_lock(&ubi->wl_lock);
879 if (!ubi->move_to_put) {
880 wl_tree_add(e2, &ubi->used);
881 e2 = NULL;
882 }
883 ubi->move_from = ubi->move_to = NULL;
884 ubi->move_to_put = ubi->wl_scheduled = 0;
885 spin_unlock(&ubi->wl_lock);
886
887 err = do_sync_erase(ubi, e1, vol_id, lnum, 0);
888 if (err) {
889 if (e2)
890 wl_entry_destroy(ubi, e2);
891 goto out_ro;
892 }
893
894 if (e2) {
895 /*
896 * Well, the target PEB was put meanwhile, schedule it for
897 * erasure.
898 */
899 dbg_wl("PEB %d (LEB %d:%d) was put meanwhile, erase",
900 e2->pnum, vol_id, lnum);
901 err = do_sync_erase(ubi, e2, vol_id, lnum, 0);
902 if (err)
903 goto out_ro;
904 }
905
906 dbg_wl("done");
907 mutex_unlock(&ubi->move_mutex);
908 up_read(&ubi->fm_eba_sem);
909 return 0;
910
911 /*
912 * For some reasons the LEB was not moved, might be an error, might be
913 * something else. @e1 was not changed, so return it back. @e2 might
914 * have been changed, schedule it for erasure.
915 */
916 out_not_moved:
917 if (vol_id != -1)
918 dbg_wl("cancel moving PEB %d (LEB %d:%d) to PEB %d (%d)",
919 e1->pnum, vol_id, lnum, e2->pnum, err);
920 else
921 dbg_wl("cancel moving PEB %d to PEB %d (%d)",
922 e1->pnum, e2->pnum, err);
923 spin_lock(&ubi->wl_lock);
924 if (protect)
925 prot_queue_add(ubi, e1);
926 else if (erroneous) {
927 wl_tree_add(e1, &ubi->erroneous);
928 ubi->erroneous_peb_count += 1;
929 } else if (scrubbing)
930 wl_tree_add(e1, &ubi->scrub);
931 else if (keep)
932 wl_tree_add(e1, &ubi->used);
933 if (dst_leb_clean) {
934 wl_tree_add(e2, &ubi->free);
935 ubi->free_count++;
936 }
937
938 ubi_assert(!ubi->move_to_put);
939 ubi->move_from = ubi->move_to = NULL;
940 ubi->wl_scheduled = 0;
941 spin_unlock(&ubi->wl_lock);
942
943 ubi_free_vid_buf(vidb);
944 if (dst_leb_clean) {
945 ensure_wear_leveling(ubi, 1);
946 } else {
947 err = do_sync_erase(ubi, e2, vol_id, lnum, torture);
948 if (err)
949 goto out_ro;
950 }
951
952 if (erase) {
953 err = do_sync_erase(ubi, e1, vol_id, lnum, 1);
954 if (err)
955 goto out_ro;
956 }
957
958 mutex_unlock(&ubi->move_mutex);
959 up_read(&ubi->fm_eba_sem);
960 return 0;
961
962 out_error:
963 if (vol_id != -1)
964 ubi_err(ubi, "error %d while moving PEB %d to PEB %d",
965 err, e1->pnum, e2->pnum);
966 else
967 ubi_err(ubi, "error %d while moving PEB %d (LEB %d:%d) to PEB %d",
968 err, e1->pnum, vol_id, lnum, e2->pnum);
969 spin_lock(&ubi->wl_lock);
970 ubi->move_from = ubi->move_to = NULL;
971 ubi->move_to_put = ubi->wl_scheduled = 0;
972 spin_unlock(&ubi->wl_lock);
973
974 ubi_free_vid_buf(vidb);
975 wl_entry_destroy(ubi, e1);
976 wl_entry_destroy(ubi, e2);
977
978 out_ro:
979 ubi_ro_mode(ubi);
980 mutex_unlock(&ubi->move_mutex);
981 up_read(&ubi->fm_eba_sem);
982 ubi_assert(err != 0);
983 return err < 0 ? err : -EIO;
984
985 out_cancel:
986 ubi->wl_scheduled = 0;
987 spin_unlock(&ubi->wl_lock);
988 mutex_unlock(&ubi->move_mutex);
989 up_read(&ubi->fm_eba_sem);
990 ubi_free_vid_buf(vidb);
991 return 0;
992 }
993
994 /**
995 * ensure_wear_leveling - schedule wear-leveling if it is needed.
996 * @ubi: UBI device description object
997 * @nested: set to non-zero if this function is called from UBI worker
998 *
999 * This function checks if it is time to start wear-leveling and schedules it
1000 * if yes. This function returns zero in case of success and a negative error
1001 * code in case of failure.
1002 */
1003 static int ensure_wear_leveling(struct ubi_device *ubi, int nested)
1004 {
1005 int err = 0;
1006 struct ubi_wl_entry *e1;
1007 struct ubi_wl_entry *e2;
1008 struct ubi_work *wrk;
1009
1010 spin_lock(&ubi->wl_lock);
1011 if (ubi->wl_scheduled)
1012 /* Wear-leveling is already in the work queue */
1013 goto out_unlock;
1014
1015 /*
1016 * If the ubi->scrub tree is not empty, scrubbing is needed, and the
1017 * the WL worker has to be scheduled anyway.
1018 */
1019 if (!ubi->scrub.rb_node) {
1020 if (!ubi->used.rb_node || !ubi->free.rb_node)
1021 /* No physical eraseblocks - no deal */
1022 goto out_unlock;
1023
1024 /*
1025 * We schedule wear-leveling only if the difference between the
1026 * lowest erase counter of used physical eraseblocks and a high
1027 * erase counter of free physical eraseblocks is greater than
1028 * %UBI_WL_THRESHOLD.
1029 */
1030 e1 = rb_entry(rb_first(&ubi->used), struct ubi_wl_entry, u.rb);
1031 e2 = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
1032
1033 if (!(e2->ec - e1->ec >= UBI_WL_THRESHOLD))
1034 goto out_unlock;
1035 dbg_wl("schedule wear-leveling");
1036 } else
1037 dbg_wl("schedule scrubbing");
1038
1039 ubi->wl_scheduled = 1;
1040 spin_unlock(&ubi->wl_lock);
1041
1042 wrk = kmalloc(sizeof(struct ubi_work), GFP_NOFS);
1043 if (!wrk) {
1044 err = -ENOMEM;
1045 goto out_cancel;
1046 }
1047
1048 wrk->func = &wear_leveling_worker;
1049 if (nested)
1050 __schedule_ubi_work(ubi, wrk);
1051 else
1052 schedule_ubi_work(ubi, wrk);
1053 return err;
1054
1055 out_cancel:
1056 spin_lock(&ubi->wl_lock);
1057 ubi->wl_scheduled = 0;
1058 out_unlock:
1059 spin_unlock(&ubi->wl_lock);
1060 return err;
1061 }
1062
1063 /**
1064 * __erase_worker - physical eraseblock erase worker function.
1065 * @ubi: UBI device description object
1066 * @wl_wrk: the work object
1067 *
1068 * This function erases a physical eraseblock and perform torture testing if
1069 * needed. It also takes care about marking the physical eraseblock bad if
1070 * needed. Returns zero in case of success and a negative error code in case of
1071 * failure.
1072 */
1073 static int __erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk)
1074 {
1075 struct ubi_wl_entry *e = wl_wrk->e;
1076 int pnum = e->pnum;
1077 int vol_id = wl_wrk->vol_id;
1078 int lnum = wl_wrk->lnum;
1079 int err, available_consumed = 0;
1080
1081 dbg_wl("erase PEB %d EC %d LEB %d:%d",
1082 pnum, e->ec, wl_wrk->vol_id, wl_wrk->lnum);
1083
1084 err = sync_erase(ubi, e, wl_wrk->torture);
1085 if (!err) {
1086 spin_lock(&ubi->wl_lock);
1087
1088 if (!ubi->fm_disabled && !ubi->fm_next_anchor &&
1089 e->pnum < UBI_FM_MAX_START) {
1090 /* Abort anchor production, if needed it will be
1091 * enabled again in the wear leveling started below.
1092 */
1093 ubi->fm_next_anchor = e;
1094 ubi->fm_do_produce_anchor = 0;
1095 } else {
1096 wl_tree_add(e, &ubi->free);
1097 ubi->free_count++;
1098 }
1099
1100 spin_unlock(&ubi->wl_lock);
1101
1102 /*
1103 * One more erase operation has happened, take care about
1104 * protected physical eraseblocks.
1105 */
1106 serve_prot_queue(ubi);
1107
1108 /* And take care about wear-leveling */
1109 err = ensure_wear_leveling(ubi, 1);
1110 return err;
1111 }
1112
1113 ubi_err(ubi, "failed to erase PEB %d, error %d", pnum, err);
1114
1115 if (err == -EINTR || err == -ENOMEM || err == -EAGAIN ||
1116 err == -EBUSY) {
1117 int err1;
1118
1119 /* Re-schedule the LEB for erasure */
1120 err1 = schedule_erase(ubi, e, vol_id, lnum, 0, false);
1121 if (err1) {
1122 wl_entry_destroy(ubi, e);
1123 err = err1;
1124 goto out_ro;
1125 }
1126 return err;
1127 }
1128
1129 wl_entry_destroy(ubi, e);
1130 if (err != -EIO)
1131 /*
1132 * If this is not %-EIO, we have no idea what to do. Scheduling
1133 * this physical eraseblock for erasure again would cause
1134 * errors again and again. Well, lets switch to R/O mode.
1135 */
1136 goto out_ro;
1137
1138 /* It is %-EIO, the PEB went bad */
1139
1140 if (!ubi->bad_allowed) {
1141 ubi_err(ubi, "bad physical eraseblock %d detected", pnum);
1142 goto out_ro;
1143 }
1144
1145 spin_lock(&ubi->volumes_lock);
1146 if (ubi->beb_rsvd_pebs == 0) {
1147 if (ubi->avail_pebs == 0) {
1148 spin_unlock(&ubi->volumes_lock);
1149 ubi_err(ubi, "no reserved/available physical eraseblocks");
1150 goto out_ro;
1151 }
1152 ubi->avail_pebs -= 1;
1153 available_consumed = 1;
1154 }
1155 spin_unlock(&ubi->volumes_lock);
1156
1157 ubi_msg(ubi, "mark PEB %d as bad", pnum);
1158 err = ubi_io_mark_bad(ubi, pnum);
1159 if (err)
1160 goto out_ro;
1161
1162 spin_lock(&ubi->volumes_lock);
1163 if (ubi->beb_rsvd_pebs > 0) {
1164 if (available_consumed) {
1165 /*
1166 * The amount of reserved PEBs increased since we last
1167 * checked.
1168 */
1169 ubi->avail_pebs += 1;
1170 available_consumed = 0;
1171 }
1172 ubi->beb_rsvd_pebs -= 1;
1173 }
1174 ubi->bad_peb_count += 1;
1175 ubi->good_peb_count -= 1;
1176 ubi_calculate_reserved(ubi);
1177 if (available_consumed)
1178 ubi_warn(ubi, "no PEBs in the reserved pool, used an available PEB");
1179 else if (ubi->beb_rsvd_pebs)
1180 ubi_msg(ubi, "%d PEBs left in the reserve",
1181 ubi->beb_rsvd_pebs);
1182 else
1183 ubi_warn(ubi, "last PEB from the reserve was used");
1184 spin_unlock(&ubi->volumes_lock);
1185
1186 return err;
1187
1188 out_ro:
1189 if (available_consumed) {
1190 spin_lock(&ubi->volumes_lock);
1191 ubi->avail_pebs += 1;
1192 spin_unlock(&ubi->volumes_lock);
1193 }
1194 ubi_ro_mode(ubi);
1195 return err;
1196 }
1197
1198 static int erase_worker(struct ubi_device *ubi, struct ubi_work *wl_wrk,
1199 int shutdown)
1200 {
1201 int ret;
1202
1203 if (shutdown) {
1204 struct ubi_wl_entry *e = wl_wrk->e;
1205
1206 dbg_wl("cancel erasure of PEB %d EC %d", e->pnum, e->ec);
1207 kfree(wl_wrk);
1208 wl_entry_destroy(ubi, e);
1209 return 0;
1210 }
1211
1212 ret = __erase_worker(ubi, wl_wrk);
1213 kfree(wl_wrk);
1214 return ret;
1215 }
1216
1217 /**
1218 * ubi_wl_put_peb - return a PEB to the wear-leveling sub-system.
1219 * @ubi: UBI device description object
1220 * @vol_id: the volume ID that last used this PEB
1221 * @lnum: the last used logical eraseblock number for the PEB
1222 * @pnum: physical eraseblock to return
1223 * @torture: if this physical eraseblock has to be tortured
1224 *
1225 * This function is called to return physical eraseblock @pnum to the pool of
1226 * free physical eraseblocks. The @torture flag has to be set if an I/O error
1227 * occurred to this @pnum and it has to be tested. This function returns zero
1228 * in case of success, and a negative error code in case of failure.
1229 */
1230 int ubi_wl_put_peb(struct ubi_device *ubi, int vol_id, int lnum,
1231 int pnum, int torture)
1232 {
1233 int err;
1234 struct ubi_wl_entry *e;
1235
1236 dbg_wl("PEB %d", pnum);
1237 ubi_assert(pnum >= 0);
1238 ubi_assert(pnum < ubi->peb_count);
1239
1240 down_read(&ubi->fm_protect);
1241
1242 retry:
1243 spin_lock(&ubi->wl_lock);
1244 e = ubi->lookuptbl[pnum];
1245 if (e == ubi->move_from) {
1246 /*
1247 * User is putting the physical eraseblock which was selected to
1248 * be moved. It will be scheduled for erasure in the
1249 * wear-leveling worker.
1250 */
1251 dbg_wl("PEB %d is being moved, wait", pnum);
1252 spin_unlock(&ubi->wl_lock);
1253
1254 /* Wait for the WL worker by taking the @ubi->move_mutex */
1255 mutex_lock(&ubi->move_mutex);
1256 mutex_unlock(&ubi->move_mutex);
1257 goto retry;
1258 } else if (e == ubi->move_to) {
1259 /*
1260 * User is putting the physical eraseblock which was selected
1261 * as the target the data is moved to. It may happen if the EBA
1262 * sub-system already re-mapped the LEB in 'ubi_eba_copy_leb()'
1263 * but the WL sub-system has not put the PEB to the "used" tree
1264 * yet, but it is about to do this. So we just set a flag which
1265 * will tell the WL worker that the PEB is not needed anymore
1266 * and should be scheduled for erasure.
1267 */
1268 dbg_wl("PEB %d is the target of data moving", pnum);
1269 ubi_assert(!ubi->move_to_put);
1270 ubi->move_to_put = 1;
1271 spin_unlock(&ubi->wl_lock);
1272 up_read(&ubi->fm_protect);
1273 return 0;
1274 } else {
1275 if (in_wl_tree(e, &ubi->used)) {
1276 self_check_in_wl_tree(ubi, e, &ubi->used);
1277 rb_erase(&e->u.rb, &ubi->used);
1278 } else if (in_wl_tree(e, &ubi->scrub)) {
1279 self_check_in_wl_tree(ubi, e, &ubi->scrub);
1280 rb_erase(&e->u.rb, &ubi->scrub);
1281 } else if (in_wl_tree(e, &ubi->erroneous)) {
1282 self_check_in_wl_tree(ubi, e, &ubi->erroneous);
1283 rb_erase(&e->u.rb, &ubi->erroneous);
1284 ubi->erroneous_peb_count -= 1;
1285 ubi_assert(ubi->erroneous_peb_count >= 0);
1286 /* Erroneous PEBs should be tortured */
1287 torture = 1;
1288 } else {
1289 err = prot_queue_del(ubi, e->pnum);
1290 if (err) {
1291 ubi_err(ubi, "PEB %d not found", pnum);
1292 ubi_ro_mode(ubi);
1293 spin_unlock(&ubi->wl_lock);
1294 up_read(&ubi->fm_protect);
1295 return err;
1296 }
1297 }
1298 }
1299 spin_unlock(&ubi->wl_lock);
1300
1301 err = schedule_erase(ubi, e, vol_id, lnum, torture, false);
1302 if (err) {
1303 spin_lock(&ubi->wl_lock);
1304 wl_tree_add(e, &ubi->used);
1305 spin_unlock(&ubi->wl_lock);
1306 }
1307
1308 up_read(&ubi->fm_protect);
1309 return err;
1310 }
1311
1312 /**
1313 * ubi_wl_scrub_peb - schedule a physical eraseblock for scrubbing.
1314 * @ubi: UBI device description object
1315 * @pnum: the physical eraseblock to schedule
1316 *
1317 * If a bit-flip in a physical eraseblock is detected, this physical eraseblock
1318 * needs scrubbing. This function schedules a physical eraseblock for
1319 * scrubbing which is done in background. This function returns zero in case of
1320 * success and a negative error code in case of failure.
1321 */
1322 int ubi_wl_scrub_peb(struct ubi_device *ubi, int pnum)
1323 {
1324 struct ubi_wl_entry *e;
1325
1326 ubi_msg(ubi, "schedule PEB %d for scrubbing", pnum);
1327
1328 retry:
1329 spin_lock(&ubi->wl_lock);
1330 e = ubi->lookuptbl[pnum];
1331 if (e == ubi->move_from || in_wl_tree(e, &ubi->scrub) ||
1332 in_wl_tree(e, &ubi->erroneous)) {
1333 spin_unlock(&ubi->wl_lock);
1334 return 0;
1335 }
1336
1337 if (e == ubi->move_to) {
1338 /*
1339 * This physical eraseblock was used to move data to. The data
1340 * was moved but the PEB was not yet inserted to the proper
1341 * tree. We should just wait a little and let the WL worker
1342 * proceed.
1343 */
1344 spin_unlock(&ubi->wl_lock);
1345 dbg_wl("the PEB %d is not in proper tree, retry", pnum);
1346 yield();
1347 goto retry;
1348 }
1349
1350 if (in_wl_tree(e, &ubi->used)) {
1351 self_check_in_wl_tree(ubi, e, &ubi->used);
1352 rb_erase(&e->u.rb, &ubi->used);
1353 } else {
1354 int err;
1355
1356 err = prot_queue_del(ubi, e->pnum);
1357 if (err) {
1358 ubi_err(ubi, "PEB %d not found", pnum);
1359 ubi_ro_mode(ubi);
1360 spin_unlock(&ubi->wl_lock);
1361 return err;
1362 }
1363 }
1364
1365 wl_tree_add(e, &ubi->scrub);
1366 spin_unlock(&ubi->wl_lock);
1367
1368 /*
1369 * Technically scrubbing is the same as wear-leveling, so it is done
1370 * by the WL worker.
1371 */
1372 return ensure_wear_leveling(ubi, 0);
1373 }
1374
1375 /**
1376 * ubi_wl_flush - flush all pending works.
1377 * @ubi: UBI device description object
1378 * @vol_id: the volume id to flush for
1379 * @lnum: the logical eraseblock number to flush for
1380 *
1381 * This function executes all pending works for a particular volume id /
1382 * logical eraseblock number pair. If either value is set to %UBI_ALL, then it
1383 * acts as a wildcard for all of the corresponding volume numbers or logical
1384 * eraseblock numbers. It returns zero in case of success and a negative error
1385 * code in case of failure.
1386 */
1387 int ubi_wl_flush(struct ubi_device *ubi, int vol_id, int lnum)
1388 {
1389 int err = 0;
1390 int found = 1;
1391
1392 /*
1393 * Erase while the pending works queue is not empty, but not more than
1394 * the number of currently pending works.
1395 */
1396 dbg_wl("flush pending work for LEB %d:%d (%d pending works)",
1397 vol_id, lnum, ubi->works_count);
1398
1399 while (found) {
1400 struct ubi_work *wrk, *tmp;
1401 found = 0;
1402
1403 down_read(&ubi->work_sem);
1404 spin_lock(&ubi->wl_lock);
1405 list_for_each_entry_safe(wrk, tmp, &ubi->works, list) {
1406 if ((vol_id == UBI_ALL || wrk->vol_id == vol_id) &&
1407 (lnum == UBI_ALL || wrk->lnum == lnum)) {
1408 list_del(&wrk->list);
1409 ubi->works_count -= 1;
1410 ubi_assert(ubi->works_count >= 0);
1411 spin_unlock(&ubi->wl_lock);
1412
1413 err = wrk->func(ubi, wrk, 0);
1414 if (err) {
1415 up_read(&ubi->work_sem);
1416 return err;
1417 }
1418
1419 spin_lock(&ubi->wl_lock);
1420 found = 1;
1421 break;
1422 }
1423 }
1424 spin_unlock(&ubi->wl_lock);
1425 up_read(&ubi->work_sem);
1426 }
1427
1428 /*
1429 * Make sure all the works which have been done in parallel are
1430 * finished.
1431 */
1432 down_write(&ubi->work_sem);
1433 up_write(&ubi->work_sem);
1434
1435 return err;
1436 }
1437
1438 static bool scrub_possible(struct ubi_device *ubi, struct ubi_wl_entry *e)
1439 {
1440 if (in_wl_tree(e, &ubi->scrub))
1441 return false;
1442 else if (in_wl_tree(e, &ubi->erroneous))
1443 return false;
1444 else if (ubi->move_from == e)
1445 return false;
1446 else if (ubi->move_to == e)
1447 return false;
1448
1449 return true;
1450 }
1451
1452 /**
1453 * ubi_bitflip_check - Check an eraseblock for bitflips and scrub it if needed.
1454 * @ubi: UBI device description object
1455 * @pnum: the physical eraseblock to schedule
1456 * @force: dont't read the block, assume bitflips happened and take action.
1457 *
1458 * This function reads the given eraseblock and checks if bitflips occured.
1459 * In case of bitflips, the eraseblock is scheduled for scrubbing.
1460 * If scrubbing is forced with @force, the eraseblock is not read,
1461 * but scheduled for scrubbing right away.
1462 *
1463 * Returns:
1464 * %EINVAL, PEB is out of range
1465 * %ENOENT, PEB is no longer used by UBI
1466 * %EBUSY, PEB cannot be checked now or a check is currently running on it
1467 * %EAGAIN, bit flips happened but scrubbing is currently not possible
1468 * %EUCLEAN, bit flips happened and PEB is scheduled for scrubbing
1469 * %0, no bit flips detected
1470 */
1471 int ubi_bitflip_check(struct ubi_device *ubi, int pnum, int force)
1472 {
1473 int err = 0;
1474 struct ubi_wl_entry *e;
1475
1476 if (pnum < 0 || pnum >= ubi->peb_count) {
1477 err = -EINVAL;
1478 goto out;
1479 }
1480
1481 /*
1482 * Pause all parallel work, otherwise it can happen that the
1483 * erase worker frees a wl entry under us.
1484 */
1485 down_write(&ubi->work_sem);
1486
1487 /*
1488 * Make sure that the wl entry does not change state while
1489 * inspecting it.
1490 */
1491 spin_lock(&ubi->wl_lock);
1492 e = ubi->lookuptbl[pnum];
1493 if (!e) {
1494 spin_unlock(&ubi->wl_lock);
1495 err = -ENOENT;
1496 goto out_resume;
1497 }
1498
1499 /*
1500 * Does it make sense to check this PEB?
1501 */
1502 if (!scrub_possible(ubi, e)) {
1503 spin_unlock(&ubi->wl_lock);
1504 err = -EBUSY;
1505 goto out_resume;
1506 }
1507 spin_unlock(&ubi->wl_lock);
1508
1509 if (!force) {
1510 mutex_lock(&ubi->buf_mutex);
1511 err = ubi_io_read(ubi, ubi->peb_buf, pnum, 0, ubi->peb_size);
1512 mutex_unlock(&ubi->buf_mutex);
1513 }
1514
1515 if (force || err == UBI_IO_BITFLIPS) {
1516 /*
1517 * Okay, bit flip happened, let's figure out what we can do.
1518 */
1519 spin_lock(&ubi->wl_lock);
1520
1521 /*
1522 * Recheck. We released wl_lock, UBI might have killed the
1523 * wl entry under us.
1524 */
1525 e = ubi->lookuptbl[pnum];
1526 if (!e) {
1527 spin_unlock(&ubi->wl_lock);
1528 err = -ENOENT;
1529 goto out_resume;
1530 }
1531
1532 /*
1533 * Need to re-check state
1534 */
1535 if (!scrub_possible(ubi, e)) {
1536 spin_unlock(&ubi->wl_lock);
1537 err = -EBUSY;
1538 goto out_resume;
1539 }
1540
1541 if (in_pq(ubi, e)) {
1542 prot_queue_del(ubi, e->pnum);
1543 wl_tree_add(e, &ubi->scrub);
1544 spin_unlock(&ubi->wl_lock);
1545
1546 err = ensure_wear_leveling(ubi, 1);
1547 } else if (in_wl_tree(e, &ubi->used)) {
1548 rb_erase(&e->u.rb, &ubi->used);
1549 wl_tree_add(e, &ubi->scrub);
1550 spin_unlock(&ubi->wl_lock);
1551
1552 err = ensure_wear_leveling(ubi, 1);
1553 } else if (in_wl_tree(e, &ubi->free)) {
1554 rb_erase(&e->u.rb, &ubi->free);
1555 ubi->free_count--;
1556 spin_unlock(&ubi->wl_lock);
1557
1558 /*
1559 * This PEB is empty we can schedule it for
1560 * erasure right away. No wear leveling needed.
1561 */
1562 err = schedule_erase(ubi, e, UBI_UNKNOWN, UBI_UNKNOWN,
1563 force ? 0 : 1, true);
1564 } else {
1565 spin_unlock(&ubi->wl_lock);
1566 err = -EAGAIN;
1567 }
1568
1569 if (!err && !force)
1570 err = -EUCLEAN;
1571 } else {
1572 err = 0;
1573 }
1574
1575 out_resume:
1576 up_write(&ubi->work_sem);
1577 out:
1578
1579 return err;
1580 }
1581
1582 /**
1583 * tree_destroy - destroy an RB-tree.
1584 * @ubi: UBI device description object
1585 * @root: the root of the tree to destroy
1586 */
1587 static void tree_destroy(struct ubi_device *ubi, struct rb_root *root)
1588 {
1589 struct rb_node *rb;
1590 struct ubi_wl_entry *e;
1591
1592 rb = root->rb_node;
1593 while (rb) {
1594 if (rb->rb_left)
1595 rb = rb->rb_left;
1596 else if (rb->rb_right)
1597 rb = rb->rb_right;
1598 else {
1599 e = rb_entry(rb, struct ubi_wl_entry, u.rb);
1600
1601 rb = rb_parent(rb);
1602 if (rb) {
1603 if (rb->rb_left == &e->u.rb)
1604 rb->rb_left = NULL;
1605 else
1606 rb->rb_right = NULL;
1607 }
1608
1609 wl_entry_destroy(ubi, e);
1610 }
1611 }
1612 }
1613
1614 /**
1615 * ubi_thread - UBI background thread.
1616 * @u: the UBI device description object pointer
1617 */
1618 int ubi_thread(void *u)
1619 {
1620 int failures = 0;
1621 struct ubi_device *ubi = u;
1622
1623 ubi_msg(ubi, "background thread \"%s\" started, PID %d",
1624 ubi->bgt_name, task_pid_nr(current));
1625
1626 set_freezable();
1627 for (;;) {
1628 int err;
1629
1630 if (kthread_should_stop())
1631 break;
1632
1633 if (try_to_freeze())
1634 continue;
1635
1636 spin_lock(&ubi->wl_lock);
1637 if (list_empty(&ubi->works) || ubi->ro_mode ||
1638 !ubi->thread_enabled || ubi_dbg_is_bgt_disabled(ubi)) {
1639 set_current_state(TASK_INTERRUPTIBLE);
1640 spin_unlock(&ubi->wl_lock);
1641
1642 /*
1643 * Check kthread_should_stop() after we set the task
1644 * state to guarantee that we either see the stop bit
1645 * and exit or the task state is reset to runnable such
1646 * that it's not scheduled out indefinitely and detects
1647 * the stop bit at kthread_should_stop().
1648 */
1649 if (kthread_should_stop()) {
1650 set_current_state(TASK_RUNNING);
1651 break;
1652 }
1653
1654 schedule();
1655 continue;
1656 }
1657 spin_unlock(&ubi->wl_lock);
1658
1659 err = do_work(ubi);
1660 if (err) {
1661 ubi_err(ubi, "%s: work failed with error code %d",
1662 ubi->bgt_name, err);
1663 if (failures++ > WL_MAX_FAILURES) {
1664 /*
1665 * Too many failures, disable the thread and
1666 * switch to read-only mode.
1667 */
1668 ubi_msg(ubi, "%s: %d consecutive failures",
1669 ubi->bgt_name, WL_MAX_FAILURES);
1670 ubi_ro_mode(ubi);
1671 ubi->thread_enabled = 0;
1672 continue;
1673 }
1674 } else
1675 failures = 0;
1676
1677 cond_resched();
1678 }
1679
1680 dbg_wl("background thread \"%s\" is killed", ubi->bgt_name);
1681 ubi->thread_enabled = 0;
1682 return 0;
1683 }
1684
1685 /**
1686 * shutdown_work - shutdown all pending works.
1687 * @ubi: UBI device description object
1688 */
1689 static void shutdown_work(struct ubi_device *ubi)
1690 {
1691 while (!list_empty(&ubi->works)) {
1692 struct ubi_work *wrk;
1693
1694 wrk = list_entry(ubi->works.next, struct ubi_work, list);
1695 list_del(&wrk->list);
1696 wrk->func(ubi, wrk, 1);
1697 ubi->works_count -= 1;
1698 ubi_assert(ubi->works_count >= 0);
1699 }
1700 }
1701
1702 /**
1703 * erase_aeb - erase a PEB given in UBI attach info PEB
1704 * @ubi: UBI device description object
1705 * @aeb: UBI attach info PEB
1706 * @sync: If true, erase synchronously. Otherwise schedule for erasure
1707 */
1708 static int erase_aeb(struct ubi_device *ubi, struct ubi_ainf_peb *aeb, bool sync)
1709 {
1710 struct ubi_wl_entry *e;
1711 int err;
1712
1713 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1714 if (!e)
1715 return -ENOMEM;
1716
1717 e->pnum = aeb->pnum;
1718 e->ec = aeb->ec;
1719 ubi->lookuptbl[e->pnum] = e;
1720
1721 if (sync) {
1722 err = sync_erase(ubi, e, false);
1723 if (err)
1724 goto out_free;
1725
1726 wl_tree_add(e, &ubi->free);
1727 ubi->free_count++;
1728 } else {
1729 err = schedule_erase(ubi, e, aeb->vol_id, aeb->lnum, 0, false);
1730 if (err)
1731 goto out_free;
1732 }
1733
1734 return 0;
1735
1736 out_free:
1737 wl_entry_destroy(ubi, e);
1738
1739 return err;
1740 }
1741
1742 /**
1743 * ubi_wl_init - initialize the WL sub-system using attaching information.
1744 * @ubi: UBI device description object
1745 * @ai: attaching information
1746 *
1747 * This function returns zero in case of success, and a negative error code in
1748 * case of failure.
1749 */
1750 int ubi_wl_init(struct ubi_device *ubi, struct ubi_attach_info *ai)
1751 {
1752 int err, i, reserved_pebs, found_pebs = 0;
1753 struct rb_node *rb1, *rb2;
1754 struct ubi_ainf_volume *av;
1755 struct ubi_ainf_peb *aeb, *tmp;
1756 struct ubi_wl_entry *e;
1757
1758 ubi->used = ubi->erroneous = ubi->free = ubi->scrub = RB_ROOT;
1759 spin_lock_init(&ubi->wl_lock);
1760 mutex_init(&ubi->move_mutex);
1761 init_rwsem(&ubi->work_sem);
1762 ubi->max_ec = ai->max_ec;
1763 INIT_LIST_HEAD(&ubi->works);
1764
1765 sprintf(ubi->bgt_name, UBI_BGT_NAME_PATTERN, ubi->ubi_num);
1766
1767 err = -ENOMEM;
1768 ubi->lookuptbl = kcalloc(ubi->peb_count, sizeof(void *), GFP_KERNEL);
1769 if (!ubi->lookuptbl)
1770 return err;
1771
1772 for (i = 0; i < UBI_PROT_QUEUE_LEN; i++)
1773 INIT_LIST_HEAD(&ubi->pq[i]);
1774 ubi->pq_head = 0;
1775
1776 ubi->free_count = 0;
1777 list_for_each_entry_safe(aeb, tmp, &ai->erase, u.list) {
1778 cond_resched();
1779
1780 err = erase_aeb(ubi, aeb, false);
1781 if (err)
1782 goto out_free;
1783
1784 found_pebs++;
1785 }
1786
1787 list_for_each_entry(aeb, &ai->free, u.list) {
1788 cond_resched();
1789
1790 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1791 if (!e) {
1792 err = -ENOMEM;
1793 goto out_free;
1794 }
1795
1796 e->pnum = aeb->pnum;
1797 e->ec = aeb->ec;
1798 ubi_assert(e->ec >= 0);
1799
1800 wl_tree_add(e, &ubi->free);
1801 ubi->free_count++;
1802
1803 ubi->lookuptbl[e->pnum] = e;
1804
1805 found_pebs++;
1806 }
1807
1808 ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1809 ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1810 cond_resched();
1811
1812 e = kmem_cache_alloc(ubi_wl_entry_slab, GFP_KERNEL);
1813 if (!e) {
1814 err = -ENOMEM;
1815 goto out_free;
1816 }
1817
1818 e->pnum = aeb->pnum;
1819 e->ec = aeb->ec;
1820 ubi->lookuptbl[e->pnum] = e;
1821
1822 if (!aeb->scrub) {
1823 dbg_wl("add PEB %d EC %d to the used tree",
1824 e->pnum, e->ec);
1825 wl_tree_add(e, &ubi->used);
1826 } else {
1827 dbg_wl("add PEB %d EC %d to the scrub tree",
1828 e->pnum, e->ec);
1829 wl_tree_add(e, &ubi->scrub);
1830 }
1831
1832 found_pebs++;
1833 }
1834 }
1835
1836 list_for_each_entry(aeb, &ai->fastmap, u.list) {
1837 cond_resched();
1838
1839 e = ubi_find_fm_block(ubi, aeb->pnum);
1840
1841 if (e) {
1842 ubi_assert(!ubi->lookuptbl[e->pnum]);
1843 ubi->lookuptbl[e->pnum] = e;
1844 } else {
1845 bool sync = false;
1846
1847 /*
1848 * Usually old Fastmap PEBs are scheduled for erasure
1849 * and we don't have to care about them but if we face
1850 * an power cut before scheduling them we need to
1851 * take care of them here.
1852 */
1853 if (ubi->lookuptbl[aeb->pnum])
1854 continue;
1855
1856 /*
1857 * The fastmap update code might not find a free PEB for
1858 * writing the fastmap anchor to and then reuses the
1859 * current fastmap anchor PEB. When this PEB gets erased
1860 * and a power cut happens before it is written again we
1861 * must make sure that the fastmap attach code doesn't
1862 * find any outdated fastmap anchors, hence we erase the
1863 * outdated fastmap anchor PEBs synchronously here.
1864 */
1865 if (aeb->vol_id == UBI_FM_SB_VOLUME_ID)
1866 sync = true;
1867
1868 err = erase_aeb(ubi, aeb, sync);
1869 if (err)
1870 goto out_free;
1871 }
1872
1873 found_pebs++;
1874 }
1875
1876 dbg_wl("found %i PEBs", found_pebs);
1877
1878 ubi_assert(ubi->good_peb_count == found_pebs);
1879
1880 reserved_pebs = WL_RESERVED_PEBS;
1881 ubi_fastmap_init(ubi, &reserved_pebs);
1882
1883 if (ubi->avail_pebs < reserved_pebs) {
1884 ubi_err(ubi, "no enough physical eraseblocks (%d, need %d)",
1885 ubi->avail_pebs, reserved_pebs);
1886 if (ubi->corr_peb_count)
1887 ubi_err(ubi, "%d PEBs are corrupted and not used",
1888 ubi->corr_peb_count);
1889 err = -ENOSPC;
1890 goto out_free;
1891 }
1892 ubi->avail_pebs -= reserved_pebs;
1893 ubi->rsvd_pebs += reserved_pebs;
1894
1895 /* Schedule wear-leveling if needed */
1896 err = ensure_wear_leveling(ubi, 0);
1897 if (err)
1898 goto out_free;
1899
1900 #ifdef CONFIG_MTD_UBI_FASTMAP
1901 if (!ubi->ro_mode && !ubi->fm_disabled)
1902 ubi_ensure_anchor_pebs(ubi);
1903 #endif
1904 return 0;
1905
1906 out_free:
1907 shutdown_work(ubi);
1908 tree_destroy(ubi, &ubi->used);
1909 tree_destroy(ubi, &ubi->free);
1910 tree_destroy(ubi, &ubi->scrub);
1911 kfree(ubi->lookuptbl);
1912 return err;
1913 }
1914
1915 /**
1916 * protection_queue_destroy - destroy the protection queue.
1917 * @ubi: UBI device description object
1918 */
1919 static void protection_queue_destroy(struct ubi_device *ubi)
1920 {
1921 int i;
1922 struct ubi_wl_entry *e, *tmp;
1923
1924 for (i = 0; i < UBI_PROT_QUEUE_LEN; ++i) {
1925 list_for_each_entry_safe(e, tmp, &ubi->pq[i], u.list) {
1926 list_del(&e->u.list);
1927 wl_entry_destroy(ubi, e);
1928 }
1929 }
1930 }
1931
1932 /**
1933 * ubi_wl_close - close the wear-leveling sub-system.
1934 * @ubi: UBI device description object
1935 */
1936 void ubi_wl_close(struct ubi_device *ubi)
1937 {
1938 dbg_wl("close the WL sub-system");
1939 ubi_fastmap_close(ubi);
1940 shutdown_work(ubi);
1941 protection_queue_destroy(ubi);
1942 tree_destroy(ubi, &ubi->used);
1943 tree_destroy(ubi, &ubi->erroneous);
1944 tree_destroy(ubi, &ubi->free);
1945 tree_destroy(ubi, &ubi->scrub);
1946 kfree(ubi->lookuptbl);
1947 }
1948
1949 /**
1950 * self_check_ec - make sure that the erase counter of a PEB is correct.
1951 * @ubi: UBI device description object
1952 * @pnum: the physical eraseblock number to check
1953 * @ec: the erase counter to check
1954 *
1955 * This function returns zero if the erase counter of physical eraseblock @pnum
1956 * is equivalent to @ec, and a negative error code if not or if an error
1957 * occurred.
1958 */
1959 static int self_check_ec(struct ubi_device *ubi, int pnum, int ec)
1960 {
1961 int err;
1962 long long read_ec;
1963 struct ubi_ec_hdr *ec_hdr;
1964
1965 if (!ubi_dbg_chk_gen(ubi))
1966 return 0;
1967
1968 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
1969 if (!ec_hdr)
1970 return -ENOMEM;
1971
1972 err = ubi_io_read_ec_hdr(ubi, pnum, ec_hdr, 0);
1973 if (err && err != UBI_IO_BITFLIPS) {
1974 /* The header does not have to exist */
1975 err = 0;
1976 goto out_free;
1977 }
1978
1979 read_ec = be64_to_cpu(ec_hdr->ec);
1980 if (ec != read_ec && read_ec - ec > 1) {
1981 ubi_err(ubi, "self-check failed for PEB %d", pnum);
1982 ubi_err(ubi, "read EC is %lld, should be %d", read_ec, ec);
1983 dump_stack();
1984 err = 1;
1985 } else
1986 err = 0;
1987
1988 out_free:
1989 kfree(ec_hdr);
1990 return err;
1991 }
1992
1993 /**
1994 * self_check_in_wl_tree - check that wear-leveling entry is in WL RB-tree.
1995 * @ubi: UBI device description object
1996 * @e: the wear-leveling entry to check
1997 * @root: the root of the tree
1998 *
1999 * This function returns zero if @e is in the @root RB-tree and %-EINVAL if it
2000 * is not.
2001 */
2002 static int self_check_in_wl_tree(const struct ubi_device *ubi,
2003 struct ubi_wl_entry *e, struct rb_root *root)
2004 {
2005 if (!ubi_dbg_chk_gen(ubi))
2006 return 0;
2007
2008 if (in_wl_tree(e, root))
2009 return 0;
2010
2011 ubi_err(ubi, "self-check failed for PEB %d, EC %d, RB-tree %p ",
2012 e->pnum, e->ec, root);
2013 dump_stack();
2014 return -EINVAL;
2015 }
2016
2017 /**
2018 * self_check_in_pq - check if wear-leveling entry is in the protection
2019 * queue.
2020 * @ubi: UBI device description object
2021 * @e: the wear-leveling entry to check
2022 *
2023 * This function returns zero if @e is in @ubi->pq and %-EINVAL if it is not.
2024 */
2025 static int self_check_in_pq(const struct ubi_device *ubi,
2026 struct ubi_wl_entry *e)
2027 {
2028 if (!ubi_dbg_chk_gen(ubi))
2029 return 0;
2030
2031 if (in_pq(ubi, e))
2032 return 0;
2033
2034 ubi_err(ubi, "self-check failed for PEB %d, EC %d, Protect queue",
2035 e->pnum, e->ec);
2036 dump_stack();
2037 return -EINVAL;
2038 }
2039 #ifndef CONFIG_MTD_UBI_FASTMAP
2040 static struct ubi_wl_entry *get_peb_for_wl(struct ubi_device *ubi)
2041 {
2042 struct ubi_wl_entry *e;
2043
2044 e = find_wl_entry(ubi, &ubi->free, WL_FREE_MAX_DIFF);
2045 self_check_in_wl_tree(ubi, e, &ubi->free);
2046 ubi->free_count--;
2047 ubi_assert(ubi->free_count >= 0);
2048 rb_erase(&e->u.rb, &ubi->free);
2049
2050 return e;
2051 }
2052
2053 /**
2054 * produce_free_peb - produce a free physical eraseblock.
2055 * @ubi: UBI device description object
2056 *
2057 * This function tries to make a free PEB by means of synchronous execution of
2058 * pending works. This may be needed if, for example the background thread is
2059 * disabled. Returns zero in case of success and a negative error code in case
2060 * of failure.
2061 */
2062 static int produce_free_peb(struct ubi_device *ubi)
2063 {
2064 int err;
2065
2066 while (!ubi->free.rb_node && ubi->works_count) {
2067 spin_unlock(&ubi->wl_lock);
2068
2069 dbg_wl("do one work synchronously");
2070 err = do_work(ubi);
2071
2072 spin_lock(&ubi->wl_lock);
2073 if (err)
2074 return err;
2075 }
2076
2077 return 0;
2078 }
2079
2080 /**
2081 * ubi_wl_get_peb - get a physical eraseblock.
2082 * @ubi: UBI device description object
2083 *
2084 * This function returns a physical eraseblock in case of success and a
2085 * negative error code in case of failure.
2086 * Returns with ubi->fm_eba_sem held in read mode!
2087 */
2088 int ubi_wl_get_peb(struct ubi_device *ubi)
2089 {
2090 int err;
2091 struct ubi_wl_entry *e;
2092
2093 retry:
2094 down_read(&ubi->fm_eba_sem);
2095 spin_lock(&ubi->wl_lock);
2096 if (!ubi->free.rb_node) {
2097 if (ubi->works_count == 0) {
2098 ubi_err(ubi, "no free eraseblocks");
2099 ubi_assert(list_empty(&ubi->works));
2100 spin_unlock(&ubi->wl_lock);
2101 return -ENOSPC;
2102 }
2103
2104 err = produce_free_peb(ubi);
2105 if (err < 0) {
2106 spin_unlock(&ubi->wl_lock);
2107 return err;
2108 }
2109 spin_unlock(&ubi->wl_lock);
2110 up_read(&ubi->fm_eba_sem);
2111 goto retry;
2112
2113 }
2114 e = wl_get_wle(ubi);
2115 prot_queue_add(ubi, e);
2116 spin_unlock(&ubi->wl_lock);
2117
2118 err = ubi_self_check_all_ff(ubi, e->pnum, ubi->vid_hdr_aloffset,
2119 ubi->peb_size - ubi->vid_hdr_aloffset);
2120 if (err) {
2121 ubi_err(ubi, "new PEB %d does not contain all 0xFF bytes", e->pnum);
2122 return err;
2123 }
2124
2125 return e->pnum;
2126 }
2127 #else
2128 #include "fastmap-wl.c"
2129 #endif
2130