1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) STMicroelectronics 2018
4 * Author: Christophe Kerello <christophe.kerello@st.com>
5 */
6
7 #include <linux/bitfield.h>
8 #include <linux/clk.h>
9 #include <linux/dmaengine.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/interrupt.h>
13 #include <linux/iopoll.h>
14 #include <linux/mfd/syscon.h>
15 #include <linux/module.h>
16 #include <linux/mtd/rawnand.h>
17 #include <linux/of_address.h>
18 #include <linux/pinctrl/consumer.h>
19 #include <linux/platform_device.h>
20 #include <linux/regmap.h>
21 #include <linux/reset.h>
22
23 /* Bad block marker length */
24 #define FMC2_BBM_LEN 2
25
26 /* ECC step size */
27 #define FMC2_ECC_STEP_SIZE 512
28
29 /* BCHDSRx registers length */
30 #define FMC2_BCHDSRS_LEN 20
31
32 /* HECCR length */
33 #define FMC2_HECCR_LEN 4
34
35 /* Max requests done for a 8k nand page size */
36 #define FMC2_MAX_SG 16
37
38 /* Max chip enable */
39 #define FMC2_MAX_CE 2
40
41 /* Max ECC buffer length */
42 #define FMC2_MAX_ECC_BUF_LEN (FMC2_BCHDSRS_LEN * FMC2_MAX_SG)
43
44 #define FMC2_TIMEOUT_MS 5000
45
46 /* Timings */
47 #define FMC2_THIZ 1
48 #define FMC2_TIO 8000
49 #define FMC2_TSYNC 3000
50 #define FMC2_PCR_TIMING_MASK 0xf
51 #define FMC2_PMEM_PATT_TIMING_MASK 0xff
52
53 /* FMC2 Controller Registers */
54 #define FMC2_BCR1 0x0
55 #define FMC2_PCR 0x80
56 #define FMC2_SR 0x84
57 #define FMC2_PMEM 0x88
58 #define FMC2_PATT 0x8c
59 #define FMC2_HECCR 0x94
60 #define FMC2_ISR 0x184
61 #define FMC2_ICR 0x188
62 #define FMC2_CSQCR 0x200
63 #define FMC2_CSQCFGR1 0x204
64 #define FMC2_CSQCFGR2 0x208
65 #define FMC2_CSQCFGR3 0x20c
66 #define FMC2_CSQAR1 0x210
67 #define FMC2_CSQAR2 0x214
68 #define FMC2_CSQIER 0x220
69 #define FMC2_CSQISR 0x224
70 #define FMC2_CSQICR 0x228
71 #define FMC2_CSQEMSR 0x230
72 #define FMC2_BCHIER 0x250
73 #define FMC2_BCHISR 0x254
74 #define FMC2_BCHICR 0x258
75 #define FMC2_BCHPBR1 0x260
76 #define FMC2_BCHPBR2 0x264
77 #define FMC2_BCHPBR3 0x268
78 #define FMC2_BCHPBR4 0x26c
79 #define FMC2_BCHDSR0 0x27c
80 #define FMC2_BCHDSR1 0x280
81 #define FMC2_BCHDSR2 0x284
82 #define FMC2_BCHDSR3 0x288
83 #define FMC2_BCHDSR4 0x28c
84
85 /* Register: FMC2_BCR1 */
86 #define FMC2_BCR1_FMC2EN BIT(31)
87
88 /* Register: FMC2_PCR */
89 #define FMC2_PCR_PWAITEN BIT(1)
90 #define FMC2_PCR_PBKEN BIT(2)
91 #define FMC2_PCR_PWID GENMASK(5, 4)
92 #define FMC2_PCR_PWID_BUSWIDTH_8 0
93 #define FMC2_PCR_PWID_BUSWIDTH_16 1
94 #define FMC2_PCR_ECCEN BIT(6)
95 #define FMC2_PCR_ECCALG BIT(8)
96 #define FMC2_PCR_TCLR GENMASK(12, 9)
97 #define FMC2_PCR_TCLR_DEFAULT 0xf
98 #define FMC2_PCR_TAR GENMASK(16, 13)
99 #define FMC2_PCR_TAR_DEFAULT 0xf
100 #define FMC2_PCR_ECCSS GENMASK(19, 17)
101 #define FMC2_PCR_ECCSS_512 1
102 #define FMC2_PCR_ECCSS_2048 3
103 #define FMC2_PCR_BCHECC BIT(24)
104 #define FMC2_PCR_WEN BIT(25)
105
106 /* Register: FMC2_SR */
107 #define FMC2_SR_NWRF BIT(6)
108
109 /* Register: FMC2_PMEM */
110 #define FMC2_PMEM_MEMSET GENMASK(7, 0)
111 #define FMC2_PMEM_MEMWAIT GENMASK(15, 8)
112 #define FMC2_PMEM_MEMHOLD GENMASK(23, 16)
113 #define FMC2_PMEM_MEMHIZ GENMASK(31, 24)
114 #define FMC2_PMEM_DEFAULT 0x0a0a0a0a
115
116 /* Register: FMC2_PATT */
117 #define FMC2_PATT_ATTSET GENMASK(7, 0)
118 #define FMC2_PATT_ATTWAIT GENMASK(15, 8)
119 #define FMC2_PATT_ATTHOLD GENMASK(23, 16)
120 #define FMC2_PATT_ATTHIZ GENMASK(31, 24)
121 #define FMC2_PATT_DEFAULT 0x0a0a0a0a
122
123 /* Register: FMC2_ISR */
124 #define FMC2_ISR_IHLF BIT(1)
125
126 /* Register: FMC2_ICR */
127 #define FMC2_ICR_CIHLF BIT(1)
128
129 /* Register: FMC2_CSQCR */
130 #define FMC2_CSQCR_CSQSTART BIT(0)
131
132 /* Register: FMC2_CSQCFGR1 */
133 #define FMC2_CSQCFGR1_CMD2EN BIT(1)
134 #define FMC2_CSQCFGR1_DMADEN BIT(2)
135 #define FMC2_CSQCFGR1_ACYNBR GENMASK(6, 4)
136 #define FMC2_CSQCFGR1_CMD1 GENMASK(15, 8)
137 #define FMC2_CSQCFGR1_CMD2 GENMASK(23, 16)
138 #define FMC2_CSQCFGR1_CMD1T BIT(24)
139 #define FMC2_CSQCFGR1_CMD2T BIT(25)
140
141 /* Register: FMC2_CSQCFGR2 */
142 #define FMC2_CSQCFGR2_SQSDTEN BIT(0)
143 #define FMC2_CSQCFGR2_RCMD2EN BIT(1)
144 #define FMC2_CSQCFGR2_DMASEN BIT(2)
145 #define FMC2_CSQCFGR2_RCMD1 GENMASK(15, 8)
146 #define FMC2_CSQCFGR2_RCMD2 GENMASK(23, 16)
147 #define FMC2_CSQCFGR2_RCMD1T BIT(24)
148 #define FMC2_CSQCFGR2_RCMD2T BIT(25)
149
150 /* Register: FMC2_CSQCFGR3 */
151 #define FMC2_CSQCFGR3_SNBR GENMASK(13, 8)
152 #define FMC2_CSQCFGR3_AC1T BIT(16)
153 #define FMC2_CSQCFGR3_AC2T BIT(17)
154 #define FMC2_CSQCFGR3_AC3T BIT(18)
155 #define FMC2_CSQCFGR3_AC4T BIT(19)
156 #define FMC2_CSQCFGR3_AC5T BIT(20)
157 #define FMC2_CSQCFGR3_SDT BIT(21)
158 #define FMC2_CSQCFGR3_RAC1T BIT(22)
159 #define FMC2_CSQCFGR3_RAC2T BIT(23)
160
161 /* Register: FMC2_CSQCAR1 */
162 #define FMC2_CSQCAR1_ADDC1 GENMASK(7, 0)
163 #define FMC2_CSQCAR1_ADDC2 GENMASK(15, 8)
164 #define FMC2_CSQCAR1_ADDC3 GENMASK(23, 16)
165 #define FMC2_CSQCAR1_ADDC4 GENMASK(31, 24)
166
167 /* Register: FMC2_CSQCAR2 */
168 #define FMC2_CSQCAR2_ADDC5 GENMASK(7, 0)
169 #define FMC2_CSQCAR2_NANDCEN GENMASK(11, 10)
170 #define FMC2_CSQCAR2_SAO GENMASK(31, 16)
171
172 /* Register: FMC2_CSQIER */
173 #define FMC2_CSQIER_TCIE BIT(0)
174
175 /* Register: FMC2_CSQICR */
176 #define FMC2_CSQICR_CLEAR_IRQ GENMASK(4, 0)
177
178 /* Register: FMC2_CSQEMSR */
179 #define FMC2_CSQEMSR_SEM GENMASK(15, 0)
180
181 /* Register: FMC2_BCHIER */
182 #define FMC2_BCHIER_DERIE BIT(1)
183 #define FMC2_BCHIER_EPBRIE BIT(4)
184
185 /* Register: FMC2_BCHICR */
186 #define FMC2_BCHICR_CLEAR_IRQ GENMASK(4, 0)
187
188 /* Register: FMC2_BCHDSR0 */
189 #define FMC2_BCHDSR0_DUE BIT(0)
190 #define FMC2_BCHDSR0_DEF BIT(1)
191 #define FMC2_BCHDSR0_DEN GENMASK(7, 4)
192
193 /* Register: FMC2_BCHDSR1 */
194 #define FMC2_BCHDSR1_EBP1 GENMASK(12, 0)
195 #define FMC2_BCHDSR1_EBP2 GENMASK(28, 16)
196
197 /* Register: FMC2_BCHDSR2 */
198 #define FMC2_BCHDSR2_EBP3 GENMASK(12, 0)
199 #define FMC2_BCHDSR2_EBP4 GENMASK(28, 16)
200
201 /* Register: FMC2_BCHDSR3 */
202 #define FMC2_BCHDSR3_EBP5 GENMASK(12, 0)
203 #define FMC2_BCHDSR3_EBP6 GENMASK(28, 16)
204
205 /* Register: FMC2_BCHDSR4 */
206 #define FMC2_BCHDSR4_EBP7 GENMASK(12, 0)
207 #define FMC2_BCHDSR4_EBP8 GENMASK(28, 16)
208
209 enum stm32_fmc2_ecc {
210 FMC2_ECC_HAM = 1,
211 FMC2_ECC_BCH4 = 4,
212 FMC2_ECC_BCH8 = 8
213 };
214
215 enum stm32_fmc2_irq_state {
216 FMC2_IRQ_UNKNOWN = 0,
217 FMC2_IRQ_BCH,
218 FMC2_IRQ_SEQ
219 };
220
221 struct stm32_fmc2_timings {
222 u8 tclr;
223 u8 tar;
224 u8 thiz;
225 u8 twait;
226 u8 thold_mem;
227 u8 tset_mem;
228 u8 thold_att;
229 u8 tset_att;
230 };
231
232 struct stm32_fmc2_nand {
233 struct nand_chip chip;
234 struct stm32_fmc2_timings timings;
235 int ncs;
236 int cs_used[FMC2_MAX_CE];
237 };
238
to_fmc2_nand(struct nand_chip * chip)239 static inline struct stm32_fmc2_nand *to_fmc2_nand(struct nand_chip *chip)
240 {
241 return container_of(chip, struct stm32_fmc2_nand, chip);
242 }
243
244 struct stm32_fmc2_nfc {
245 struct nand_controller base;
246 struct stm32_fmc2_nand nand;
247 struct device *dev;
248 struct device *cdev;
249 struct regmap *regmap;
250 void __iomem *data_base[FMC2_MAX_CE];
251 void __iomem *cmd_base[FMC2_MAX_CE];
252 void __iomem *addr_base[FMC2_MAX_CE];
253 phys_addr_t io_phys_addr;
254 phys_addr_t data_phys_addr[FMC2_MAX_CE];
255 struct clk *clk;
256 u8 irq_state;
257
258 struct dma_chan *dma_tx_ch;
259 struct dma_chan *dma_rx_ch;
260 struct dma_chan *dma_ecc_ch;
261 struct sg_table dma_data_sg;
262 struct sg_table dma_ecc_sg;
263 u8 *ecc_buf;
264 int dma_ecc_len;
265
266 struct completion complete;
267 struct completion dma_data_complete;
268 struct completion dma_ecc_complete;
269
270 u8 cs_assigned;
271 int cs_sel;
272 };
273
to_stm32_nfc(struct nand_controller * base)274 static inline struct stm32_fmc2_nfc *to_stm32_nfc(struct nand_controller *base)
275 {
276 return container_of(base, struct stm32_fmc2_nfc, base);
277 }
278
stm32_fmc2_nfc_timings_init(struct nand_chip * chip)279 static void stm32_fmc2_nfc_timings_init(struct nand_chip *chip)
280 {
281 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
282 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
283 struct stm32_fmc2_timings *timings = &nand->timings;
284 u32 pmem, patt;
285
286 /* Set tclr/tar timings */
287 regmap_update_bits(nfc->regmap, FMC2_PCR,
288 FMC2_PCR_TCLR | FMC2_PCR_TAR,
289 FIELD_PREP(FMC2_PCR_TCLR, timings->tclr) |
290 FIELD_PREP(FMC2_PCR_TAR, timings->tar));
291
292 /* Set tset/twait/thold/thiz timings in common bank */
293 pmem = FIELD_PREP(FMC2_PMEM_MEMSET, timings->tset_mem);
294 pmem |= FIELD_PREP(FMC2_PMEM_MEMWAIT, timings->twait);
295 pmem |= FIELD_PREP(FMC2_PMEM_MEMHOLD, timings->thold_mem);
296 pmem |= FIELD_PREP(FMC2_PMEM_MEMHIZ, timings->thiz);
297 regmap_write(nfc->regmap, FMC2_PMEM, pmem);
298
299 /* Set tset/twait/thold/thiz timings in attribut bank */
300 patt = FIELD_PREP(FMC2_PATT_ATTSET, timings->tset_att);
301 patt |= FIELD_PREP(FMC2_PATT_ATTWAIT, timings->twait);
302 patt |= FIELD_PREP(FMC2_PATT_ATTHOLD, timings->thold_att);
303 patt |= FIELD_PREP(FMC2_PATT_ATTHIZ, timings->thiz);
304 regmap_write(nfc->regmap, FMC2_PATT, patt);
305 }
306
stm32_fmc2_nfc_setup(struct nand_chip * chip)307 static void stm32_fmc2_nfc_setup(struct nand_chip *chip)
308 {
309 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
310 u32 pcr = 0, pcr_mask;
311
312 /* Configure ECC algorithm (default configuration is Hamming) */
313 pcr_mask = FMC2_PCR_ECCALG;
314 pcr_mask |= FMC2_PCR_BCHECC;
315 if (chip->ecc.strength == FMC2_ECC_BCH8) {
316 pcr |= FMC2_PCR_ECCALG;
317 pcr |= FMC2_PCR_BCHECC;
318 } else if (chip->ecc.strength == FMC2_ECC_BCH4) {
319 pcr |= FMC2_PCR_ECCALG;
320 }
321
322 /* Set buswidth */
323 pcr_mask |= FMC2_PCR_PWID;
324 if (chip->options & NAND_BUSWIDTH_16)
325 pcr |= FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16);
326
327 /* Set ECC sector size */
328 pcr_mask |= FMC2_PCR_ECCSS;
329 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_512);
330
331 regmap_update_bits(nfc->regmap, FMC2_PCR, pcr_mask, pcr);
332 }
333
stm32_fmc2_nfc_select_chip(struct nand_chip * chip,int chipnr)334 static int stm32_fmc2_nfc_select_chip(struct nand_chip *chip, int chipnr)
335 {
336 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
337 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
338 struct dma_slave_config dma_cfg;
339 int ret;
340
341 if (nand->cs_used[chipnr] == nfc->cs_sel)
342 return 0;
343
344 nfc->cs_sel = nand->cs_used[chipnr];
345 stm32_fmc2_nfc_setup(chip);
346 stm32_fmc2_nfc_timings_init(chip);
347
348 if (nfc->dma_tx_ch && nfc->dma_rx_ch) {
349 memset(&dma_cfg, 0, sizeof(dma_cfg));
350 dma_cfg.src_addr = nfc->data_phys_addr[nfc->cs_sel];
351 dma_cfg.dst_addr = nfc->data_phys_addr[nfc->cs_sel];
352 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
353 dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
354 dma_cfg.src_maxburst = 32;
355 dma_cfg.dst_maxburst = 32;
356
357 ret = dmaengine_slave_config(nfc->dma_tx_ch, &dma_cfg);
358 if (ret) {
359 dev_err(nfc->dev, "tx DMA engine slave config failed\n");
360 return ret;
361 }
362
363 ret = dmaengine_slave_config(nfc->dma_rx_ch, &dma_cfg);
364 if (ret) {
365 dev_err(nfc->dev, "rx DMA engine slave config failed\n");
366 return ret;
367 }
368 }
369
370 if (nfc->dma_ecc_ch) {
371 /*
372 * Hamming: we read HECCR register
373 * BCH4/BCH8: we read BCHDSRSx registers
374 */
375 memset(&dma_cfg, 0, sizeof(dma_cfg));
376 dma_cfg.src_addr = nfc->io_phys_addr;
377 dma_cfg.src_addr += chip->ecc.strength == FMC2_ECC_HAM ?
378 FMC2_HECCR : FMC2_BCHDSR0;
379 dma_cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
380
381 ret = dmaengine_slave_config(nfc->dma_ecc_ch, &dma_cfg);
382 if (ret) {
383 dev_err(nfc->dev, "ECC DMA engine slave config failed\n");
384 return ret;
385 }
386
387 /* Calculate ECC length needed for one sector */
388 nfc->dma_ecc_len = chip->ecc.strength == FMC2_ECC_HAM ?
389 FMC2_HECCR_LEN : FMC2_BCHDSRS_LEN;
390 }
391
392 return 0;
393 }
394
stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc * nfc,bool set)395 static void stm32_fmc2_nfc_set_buswidth_16(struct stm32_fmc2_nfc *nfc, bool set)
396 {
397 u32 pcr;
398
399 pcr = set ? FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_16) :
400 FIELD_PREP(FMC2_PCR_PWID, FMC2_PCR_PWID_BUSWIDTH_8);
401
402 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_PWID, pcr);
403 }
404
stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc * nfc,bool enable)405 static void stm32_fmc2_nfc_set_ecc(struct stm32_fmc2_nfc *nfc, bool enable)
406 {
407 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_ECCEN,
408 enable ? FMC2_PCR_ECCEN : 0);
409 }
410
stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc * nfc)411 static void stm32_fmc2_nfc_enable_seq_irq(struct stm32_fmc2_nfc *nfc)
412 {
413 nfc->irq_state = FMC2_IRQ_SEQ;
414
415 regmap_update_bits(nfc->regmap, FMC2_CSQIER,
416 FMC2_CSQIER_TCIE, FMC2_CSQIER_TCIE);
417 }
418
stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc * nfc)419 static void stm32_fmc2_nfc_disable_seq_irq(struct stm32_fmc2_nfc *nfc)
420 {
421 regmap_update_bits(nfc->regmap, FMC2_CSQIER, FMC2_CSQIER_TCIE, 0);
422
423 nfc->irq_state = FMC2_IRQ_UNKNOWN;
424 }
425
stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc * nfc)426 static void stm32_fmc2_nfc_clear_seq_irq(struct stm32_fmc2_nfc *nfc)
427 {
428 regmap_write(nfc->regmap, FMC2_CSQICR, FMC2_CSQICR_CLEAR_IRQ);
429 }
430
stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc * nfc,int mode)431 static void stm32_fmc2_nfc_enable_bch_irq(struct stm32_fmc2_nfc *nfc, int mode)
432 {
433 nfc->irq_state = FMC2_IRQ_BCH;
434
435 if (mode == NAND_ECC_WRITE)
436 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
437 FMC2_BCHIER_EPBRIE, FMC2_BCHIER_EPBRIE);
438 else
439 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
440 FMC2_BCHIER_DERIE, FMC2_BCHIER_DERIE);
441 }
442
stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc * nfc)443 static void stm32_fmc2_nfc_disable_bch_irq(struct stm32_fmc2_nfc *nfc)
444 {
445 regmap_update_bits(nfc->regmap, FMC2_BCHIER,
446 FMC2_BCHIER_DERIE | FMC2_BCHIER_EPBRIE, 0);
447
448 nfc->irq_state = FMC2_IRQ_UNKNOWN;
449 }
450
stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc * nfc)451 static void stm32_fmc2_nfc_clear_bch_irq(struct stm32_fmc2_nfc *nfc)
452 {
453 regmap_write(nfc->regmap, FMC2_BCHICR, FMC2_BCHICR_CLEAR_IRQ);
454 }
455
456 /*
457 * Enable ECC logic and reset syndrome/parity bits previously calculated
458 * Syndrome/parity bits is cleared by setting the ECCEN bit to 0
459 */
stm32_fmc2_nfc_hwctl(struct nand_chip * chip,int mode)460 static void stm32_fmc2_nfc_hwctl(struct nand_chip *chip, int mode)
461 {
462 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
463
464 stm32_fmc2_nfc_set_ecc(nfc, false);
465
466 if (chip->ecc.strength != FMC2_ECC_HAM) {
467 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
468 mode == NAND_ECC_WRITE ? FMC2_PCR_WEN : 0);
469
470 reinit_completion(&nfc->complete);
471 stm32_fmc2_nfc_clear_bch_irq(nfc);
472 stm32_fmc2_nfc_enable_bch_irq(nfc, mode);
473 }
474
475 stm32_fmc2_nfc_set_ecc(nfc, true);
476 }
477
478 /*
479 * ECC Hamming calculation
480 * ECC is 3 bytes for 512 bytes of data (supports error correction up to
481 * max of 1-bit)
482 */
stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta,u8 * ecc)483 static void stm32_fmc2_nfc_ham_set_ecc(const u32 ecc_sta, u8 *ecc)
484 {
485 ecc[0] = ecc_sta;
486 ecc[1] = ecc_sta >> 8;
487 ecc[2] = ecc_sta >> 16;
488 }
489
stm32_fmc2_nfc_ham_calculate(struct nand_chip * chip,const u8 * data,u8 * ecc)490 static int stm32_fmc2_nfc_ham_calculate(struct nand_chip *chip, const u8 *data,
491 u8 *ecc)
492 {
493 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
494 u32 sr, heccr;
495 int ret;
496
497 ret = regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
498 sr & FMC2_SR_NWRF, 1,
499 1000 * FMC2_TIMEOUT_MS);
500 if (ret) {
501 dev_err(nfc->dev, "ham timeout\n");
502 return ret;
503 }
504
505 regmap_read(nfc->regmap, FMC2_HECCR, &heccr);
506 stm32_fmc2_nfc_ham_set_ecc(heccr, ecc);
507 stm32_fmc2_nfc_set_ecc(nfc, false);
508
509 return 0;
510 }
511
stm32_fmc2_nfc_ham_correct(struct nand_chip * chip,u8 * dat,u8 * read_ecc,u8 * calc_ecc)512 static int stm32_fmc2_nfc_ham_correct(struct nand_chip *chip, u8 *dat,
513 u8 *read_ecc, u8 *calc_ecc)
514 {
515 u8 bit_position = 0, b0, b1, b2;
516 u32 byte_addr = 0, b;
517 u32 i, shifting = 1;
518
519 /* Indicate which bit and byte is faulty (if any) */
520 b0 = read_ecc[0] ^ calc_ecc[0];
521 b1 = read_ecc[1] ^ calc_ecc[1];
522 b2 = read_ecc[2] ^ calc_ecc[2];
523 b = b0 | (b1 << 8) | (b2 << 16);
524
525 /* No errors */
526 if (likely(!b))
527 return 0;
528
529 /* Calculate bit position */
530 for (i = 0; i < 3; i++) {
531 switch (b % 4) {
532 case 2:
533 bit_position += shifting;
534 break;
535 case 1:
536 break;
537 default:
538 return -EBADMSG;
539 }
540 shifting <<= 1;
541 b >>= 2;
542 }
543
544 /* Calculate byte position */
545 shifting = 1;
546 for (i = 0; i < 9; i++) {
547 switch (b % 4) {
548 case 2:
549 byte_addr += shifting;
550 break;
551 case 1:
552 break;
553 default:
554 return -EBADMSG;
555 }
556 shifting <<= 1;
557 b >>= 2;
558 }
559
560 /* Flip the bit */
561 dat[byte_addr] ^= (1 << bit_position);
562
563 return 1;
564 }
565
566 /*
567 * ECC BCH calculation and correction
568 * ECC is 7/13 bytes for 512 bytes of data (supports error correction up to
569 * max of 4-bit/8-bit)
570 */
stm32_fmc2_nfc_bch_calculate(struct nand_chip * chip,const u8 * data,u8 * ecc)571 static int stm32_fmc2_nfc_bch_calculate(struct nand_chip *chip, const u8 *data,
572 u8 *ecc)
573 {
574 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
575 u32 bchpbr;
576
577 /* Wait until the BCH code is ready */
578 if (!wait_for_completion_timeout(&nfc->complete,
579 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
580 dev_err(nfc->dev, "bch timeout\n");
581 stm32_fmc2_nfc_disable_bch_irq(nfc);
582 return -ETIMEDOUT;
583 }
584
585 /* Read parity bits */
586 regmap_read(nfc->regmap, FMC2_BCHPBR1, &bchpbr);
587 ecc[0] = bchpbr;
588 ecc[1] = bchpbr >> 8;
589 ecc[2] = bchpbr >> 16;
590 ecc[3] = bchpbr >> 24;
591
592 regmap_read(nfc->regmap, FMC2_BCHPBR2, &bchpbr);
593 ecc[4] = bchpbr;
594 ecc[5] = bchpbr >> 8;
595 ecc[6] = bchpbr >> 16;
596
597 if (chip->ecc.strength == FMC2_ECC_BCH8) {
598 ecc[7] = bchpbr >> 24;
599
600 regmap_read(nfc->regmap, FMC2_BCHPBR3, &bchpbr);
601 ecc[8] = bchpbr;
602 ecc[9] = bchpbr >> 8;
603 ecc[10] = bchpbr >> 16;
604 ecc[11] = bchpbr >> 24;
605
606 regmap_read(nfc->regmap, FMC2_BCHPBR4, &bchpbr);
607 ecc[12] = bchpbr;
608 }
609
610 stm32_fmc2_nfc_set_ecc(nfc, false);
611
612 return 0;
613 }
614
stm32_fmc2_nfc_bch_decode(int eccsize,u8 * dat,u32 * ecc_sta)615 static int stm32_fmc2_nfc_bch_decode(int eccsize, u8 *dat, u32 *ecc_sta)
616 {
617 u32 bchdsr0 = ecc_sta[0];
618 u32 bchdsr1 = ecc_sta[1];
619 u32 bchdsr2 = ecc_sta[2];
620 u32 bchdsr3 = ecc_sta[3];
621 u32 bchdsr4 = ecc_sta[4];
622 u16 pos[8];
623 int i, den;
624 unsigned int nb_errs = 0;
625
626 /* No errors found */
627 if (likely(!(bchdsr0 & FMC2_BCHDSR0_DEF)))
628 return 0;
629
630 /* Too many errors detected */
631 if (unlikely(bchdsr0 & FMC2_BCHDSR0_DUE))
632 return -EBADMSG;
633
634 pos[0] = FIELD_GET(FMC2_BCHDSR1_EBP1, bchdsr1);
635 pos[1] = FIELD_GET(FMC2_BCHDSR1_EBP2, bchdsr1);
636 pos[2] = FIELD_GET(FMC2_BCHDSR2_EBP3, bchdsr2);
637 pos[3] = FIELD_GET(FMC2_BCHDSR2_EBP4, bchdsr2);
638 pos[4] = FIELD_GET(FMC2_BCHDSR3_EBP5, bchdsr3);
639 pos[5] = FIELD_GET(FMC2_BCHDSR3_EBP6, bchdsr3);
640 pos[6] = FIELD_GET(FMC2_BCHDSR4_EBP7, bchdsr4);
641 pos[7] = FIELD_GET(FMC2_BCHDSR4_EBP8, bchdsr4);
642
643 den = FIELD_GET(FMC2_BCHDSR0_DEN, bchdsr0);
644 for (i = 0; i < den; i++) {
645 if (pos[i] < eccsize * 8) {
646 change_bit(pos[i], (unsigned long *)dat);
647 nb_errs++;
648 }
649 }
650
651 return nb_errs;
652 }
653
stm32_fmc2_nfc_bch_correct(struct nand_chip * chip,u8 * dat,u8 * read_ecc,u8 * calc_ecc)654 static int stm32_fmc2_nfc_bch_correct(struct nand_chip *chip, u8 *dat,
655 u8 *read_ecc, u8 *calc_ecc)
656 {
657 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
658 u32 ecc_sta[5];
659
660 /* Wait until the decoding error is ready */
661 if (!wait_for_completion_timeout(&nfc->complete,
662 msecs_to_jiffies(FMC2_TIMEOUT_MS))) {
663 dev_err(nfc->dev, "bch timeout\n");
664 stm32_fmc2_nfc_disable_bch_irq(nfc);
665 return -ETIMEDOUT;
666 }
667
668 regmap_bulk_read(nfc->regmap, FMC2_BCHDSR0, ecc_sta, 5);
669
670 stm32_fmc2_nfc_set_ecc(nfc, false);
671
672 return stm32_fmc2_nfc_bch_decode(chip->ecc.size, dat, ecc_sta);
673 }
674
stm32_fmc2_nfc_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)675 static int stm32_fmc2_nfc_read_page(struct nand_chip *chip, u8 *buf,
676 int oob_required, int page)
677 {
678 struct mtd_info *mtd = nand_to_mtd(chip);
679 int ret, i, s, stat, eccsize = chip->ecc.size;
680 int eccbytes = chip->ecc.bytes;
681 int eccsteps = chip->ecc.steps;
682 int eccstrength = chip->ecc.strength;
683 u8 *p = buf;
684 u8 *ecc_calc = chip->ecc.calc_buf;
685 u8 *ecc_code = chip->ecc.code_buf;
686 unsigned int max_bitflips = 0;
687
688 ret = nand_read_page_op(chip, page, 0, NULL, 0);
689 if (ret)
690 return ret;
691
692 for (i = mtd->writesize + FMC2_BBM_LEN, s = 0; s < eccsteps;
693 s++, i += eccbytes, p += eccsize) {
694 chip->ecc.hwctl(chip, NAND_ECC_READ);
695
696 /* Read the nand page sector (512 bytes) */
697 ret = nand_change_read_column_op(chip, s * eccsize, p,
698 eccsize, false);
699 if (ret)
700 return ret;
701
702 /* Read the corresponding ECC bytes */
703 ret = nand_change_read_column_op(chip, i, ecc_code,
704 eccbytes, false);
705 if (ret)
706 return ret;
707
708 /* Correct the data */
709 stat = chip->ecc.correct(chip, p, ecc_code, ecc_calc);
710 if (stat == -EBADMSG)
711 /* Check for empty pages with bitflips */
712 stat = nand_check_erased_ecc_chunk(p, eccsize,
713 ecc_code, eccbytes,
714 NULL, 0,
715 eccstrength);
716
717 if (stat < 0) {
718 mtd->ecc_stats.failed++;
719 } else {
720 mtd->ecc_stats.corrected += stat;
721 max_bitflips = max_t(unsigned int, max_bitflips, stat);
722 }
723 }
724
725 /* Read oob */
726 if (oob_required) {
727 ret = nand_change_read_column_op(chip, mtd->writesize,
728 chip->oob_poi, mtd->oobsize,
729 false);
730 if (ret)
731 return ret;
732 }
733
734 return max_bitflips;
735 }
736
737 /* Sequencer read/write configuration */
stm32_fmc2_nfc_rw_page_init(struct nand_chip * chip,int page,int raw,bool write_data)738 static void stm32_fmc2_nfc_rw_page_init(struct nand_chip *chip, int page,
739 int raw, bool write_data)
740 {
741 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
742 struct mtd_info *mtd = nand_to_mtd(chip);
743 u32 ecc_offset = mtd->writesize + FMC2_BBM_LEN;
744 /*
745 * cfg[0] => csqcfgr1, cfg[1] => csqcfgr2, cfg[2] => csqcfgr3
746 * cfg[3] => csqar1, cfg[4] => csqar2
747 */
748 u32 cfg[5];
749
750 regmap_update_bits(nfc->regmap, FMC2_PCR, FMC2_PCR_WEN,
751 write_data ? FMC2_PCR_WEN : 0);
752
753 /*
754 * - Set Program Page/Page Read command
755 * - Enable DMA request data
756 * - Set timings
757 */
758 cfg[0] = FMC2_CSQCFGR1_DMADEN | FMC2_CSQCFGR1_CMD1T;
759 if (write_data)
760 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_SEQIN);
761 else
762 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_CMD1, NAND_CMD_READ0) |
763 FMC2_CSQCFGR1_CMD2EN |
764 FIELD_PREP(FMC2_CSQCFGR1_CMD2, NAND_CMD_READSTART) |
765 FMC2_CSQCFGR1_CMD2T;
766
767 /*
768 * - Set Random Data Input/Random Data Read command
769 * - Enable the sequencer to access the Spare data area
770 * - Enable DMA request status decoding for read
771 * - Set timings
772 */
773 if (write_data)
774 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDIN);
775 else
776 cfg[1] = FIELD_PREP(FMC2_CSQCFGR2_RCMD1, NAND_CMD_RNDOUT) |
777 FMC2_CSQCFGR2_RCMD2EN |
778 FIELD_PREP(FMC2_CSQCFGR2_RCMD2, NAND_CMD_RNDOUTSTART) |
779 FMC2_CSQCFGR2_RCMD1T |
780 FMC2_CSQCFGR2_RCMD2T;
781 if (!raw) {
782 cfg[1] |= write_data ? 0 : FMC2_CSQCFGR2_DMASEN;
783 cfg[1] |= FMC2_CSQCFGR2_SQSDTEN;
784 }
785
786 /*
787 * - Set the number of sectors to be written
788 * - Set timings
789 */
790 cfg[2] = FIELD_PREP(FMC2_CSQCFGR3_SNBR, chip->ecc.steps - 1);
791 if (write_data) {
792 cfg[2] |= FMC2_CSQCFGR3_RAC2T;
793 if (chip->options & NAND_ROW_ADDR_3)
794 cfg[2] |= FMC2_CSQCFGR3_AC5T;
795 else
796 cfg[2] |= FMC2_CSQCFGR3_AC4T;
797 }
798
799 /*
800 * Set the fourth first address cycles
801 * Byte 1 and byte 2 => column, we start at 0x0
802 * Byte 3 and byte 4 => page
803 */
804 cfg[3] = FIELD_PREP(FMC2_CSQCAR1_ADDC3, page);
805 cfg[3] |= FIELD_PREP(FMC2_CSQCAR1_ADDC4, page >> 8);
806
807 /*
808 * - Set chip enable number
809 * - Set ECC byte offset in the spare area
810 * - Calculate the number of address cycles to be issued
811 * - Set byte 5 of address cycle if needed
812 */
813 cfg[4] = FIELD_PREP(FMC2_CSQCAR2_NANDCEN, nfc->cs_sel);
814 if (chip->options & NAND_BUSWIDTH_16)
815 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset >> 1);
816 else
817 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_SAO, ecc_offset);
818 if (chip->options & NAND_ROW_ADDR_3) {
819 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 5);
820 cfg[4] |= FIELD_PREP(FMC2_CSQCAR2_ADDC5, page >> 16);
821 } else {
822 cfg[0] |= FIELD_PREP(FMC2_CSQCFGR1_ACYNBR, 4);
823 }
824
825 regmap_bulk_write(nfc->regmap, FMC2_CSQCFGR1, cfg, 5);
826 }
827
stm32_fmc2_nfc_dma_callback(void * arg)828 static void stm32_fmc2_nfc_dma_callback(void *arg)
829 {
830 complete((struct completion *)arg);
831 }
832
833 /* Read/write data from/to a page */
stm32_fmc2_nfc_xfer(struct nand_chip * chip,const u8 * buf,int raw,bool write_data)834 static int stm32_fmc2_nfc_xfer(struct nand_chip *chip, const u8 *buf,
835 int raw, bool write_data)
836 {
837 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
838 struct dma_async_tx_descriptor *desc_data, *desc_ecc;
839 struct scatterlist *sg;
840 struct dma_chan *dma_ch = nfc->dma_rx_ch;
841 enum dma_data_direction dma_data_dir = DMA_FROM_DEVICE;
842 enum dma_transfer_direction dma_transfer_dir = DMA_DEV_TO_MEM;
843 int eccsteps = chip->ecc.steps;
844 int eccsize = chip->ecc.size;
845 unsigned long timeout = msecs_to_jiffies(FMC2_TIMEOUT_MS);
846 const u8 *p = buf;
847 int s, ret;
848
849 /* Configure DMA data */
850 if (write_data) {
851 dma_data_dir = DMA_TO_DEVICE;
852 dma_transfer_dir = DMA_MEM_TO_DEV;
853 dma_ch = nfc->dma_tx_ch;
854 }
855
856 for_each_sg(nfc->dma_data_sg.sgl, sg, eccsteps, s) {
857 sg_set_buf(sg, p, eccsize);
858 p += eccsize;
859 }
860
861 ret = dma_map_sg(nfc->dev, nfc->dma_data_sg.sgl,
862 eccsteps, dma_data_dir);
863 if (ret < 0)
864 return ret;
865
866 desc_data = dmaengine_prep_slave_sg(dma_ch, nfc->dma_data_sg.sgl,
867 eccsteps, dma_transfer_dir,
868 DMA_PREP_INTERRUPT);
869 if (!desc_data) {
870 ret = -ENOMEM;
871 goto err_unmap_data;
872 }
873
874 reinit_completion(&nfc->dma_data_complete);
875 reinit_completion(&nfc->complete);
876 desc_data->callback = stm32_fmc2_nfc_dma_callback;
877 desc_data->callback_param = &nfc->dma_data_complete;
878 ret = dma_submit_error(dmaengine_submit(desc_data));
879 if (ret)
880 goto err_unmap_data;
881
882 dma_async_issue_pending(dma_ch);
883
884 if (!write_data && !raw) {
885 /* Configure DMA ECC status */
886 p = nfc->ecc_buf;
887 for_each_sg(nfc->dma_ecc_sg.sgl, sg, eccsteps, s) {
888 sg_set_buf(sg, p, nfc->dma_ecc_len);
889 p += nfc->dma_ecc_len;
890 }
891
892 ret = dma_map_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
893 eccsteps, dma_data_dir);
894 if (ret < 0)
895 goto err_unmap_data;
896
897 desc_ecc = dmaengine_prep_slave_sg(nfc->dma_ecc_ch,
898 nfc->dma_ecc_sg.sgl,
899 eccsteps, dma_transfer_dir,
900 DMA_PREP_INTERRUPT);
901 if (!desc_ecc) {
902 ret = -ENOMEM;
903 goto err_unmap_ecc;
904 }
905
906 reinit_completion(&nfc->dma_ecc_complete);
907 desc_ecc->callback = stm32_fmc2_nfc_dma_callback;
908 desc_ecc->callback_param = &nfc->dma_ecc_complete;
909 ret = dma_submit_error(dmaengine_submit(desc_ecc));
910 if (ret)
911 goto err_unmap_ecc;
912
913 dma_async_issue_pending(nfc->dma_ecc_ch);
914 }
915
916 stm32_fmc2_nfc_clear_seq_irq(nfc);
917 stm32_fmc2_nfc_enable_seq_irq(nfc);
918
919 /* Start the transfer */
920 regmap_update_bits(nfc->regmap, FMC2_CSQCR,
921 FMC2_CSQCR_CSQSTART, FMC2_CSQCR_CSQSTART);
922
923 /* Wait end of sequencer transfer */
924 if (!wait_for_completion_timeout(&nfc->complete, timeout)) {
925 dev_err(nfc->dev, "seq timeout\n");
926 stm32_fmc2_nfc_disable_seq_irq(nfc);
927 dmaengine_terminate_all(dma_ch);
928 if (!write_data && !raw)
929 dmaengine_terminate_all(nfc->dma_ecc_ch);
930 ret = -ETIMEDOUT;
931 goto err_unmap_ecc;
932 }
933
934 /* Wait DMA data transfer completion */
935 if (!wait_for_completion_timeout(&nfc->dma_data_complete, timeout)) {
936 dev_err(nfc->dev, "data DMA timeout\n");
937 dmaengine_terminate_all(dma_ch);
938 ret = -ETIMEDOUT;
939 }
940
941 /* Wait DMA ECC transfer completion */
942 if (!write_data && !raw) {
943 if (!wait_for_completion_timeout(&nfc->dma_ecc_complete,
944 timeout)) {
945 dev_err(nfc->dev, "ECC DMA timeout\n");
946 dmaengine_terminate_all(nfc->dma_ecc_ch);
947 ret = -ETIMEDOUT;
948 }
949 }
950
951 err_unmap_ecc:
952 if (!write_data && !raw)
953 dma_unmap_sg(nfc->dev, nfc->dma_ecc_sg.sgl,
954 eccsteps, dma_data_dir);
955
956 err_unmap_data:
957 dma_unmap_sg(nfc->dev, nfc->dma_data_sg.sgl, eccsteps, dma_data_dir);
958
959 return ret;
960 }
961
stm32_fmc2_nfc_seq_write(struct nand_chip * chip,const u8 * buf,int oob_required,int page,int raw)962 static int stm32_fmc2_nfc_seq_write(struct nand_chip *chip, const u8 *buf,
963 int oob_required, int page, int raw)
964 {
965 struct mtd_info *mtd = nand_to_mtd(chip);
966 int ret;
967
968 /* Configure the sequencer */
969 stm32_fmc2_nfc_rw_page_init(chip, page, raw, true);
970
971 /* Write the page */
972 ret = stm32_fmc2_nfc_xfer(chip, buf, raw, true);
973 if (ret)
974 return ret;
975
976 /* Write oob */
977 if (oob_required) {
978 ret = nand_change_write_column_op(chip, mtd->writesize,
979 chip->oob_poi, mtd->oobsize,
980 false);
981 if (ret)
982 return ret;
983 }
984
985 return nand_prog_page_end_op(chip);
986 }
987
stm32_fmc2_nfc_seq_write_page(struct nand_chip * chip,const u8 * buf,int oob_required,int page)988 static int stm32_fmc2_nfc_seq_write_page(struct nand_chip *chip, const u8 *buf,
989 int oob_required, int page)
990 {
991 int ret;
992
993 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
994 if (ret)
995 return ret;
996
997 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, false);
998 }
999
stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip * chip,const u8 * buf,int oob_required,int page)1000 static int stm32_fmc2_nfc_seq_write_page_raw(struct nand_chip *chip,
1001 const u8 *buf, int oob_required,
1002 int page)
1003 {
1004 int ret;
1005
1006 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1007 if (ret)
1008 return ret;
1009
1010 return stm32_fmc2_nfc_seq_write(chip, buf, oob_required, page, true);
1011 }
1012
1013 /* Get a status indicating which sectors have errors */
stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc * nfc)1014 static u16 stm32_fmc2_nfc_get_mapping_status(struct stm32_fmc2_nfc *nfc)
1015 {
1016 u32 csqemsr;
1017
1018 regmap_read(nfc->regmap, FMC2_CSQEMSR, &csqemsr);
1019
1020 return FIELD_GET(FMC2_CSQEMSR_SEM, csqemsr);
1021 }
1022
stm32_fmc2_nfc_seq_correct(struct nand_chip * chip,u8 * dat,u8 * read_ecc,u8 * calc_ecc)1023 static int stm32_fmc2_nfc_seq_correct(struct nand_chip *chip, u8 *dat,
1024 u8 *read_ecc, u8 *calc_ecc)
1025 {
1026 struct mtd_info *mtd = nand_to_mtd(chip);
1027 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1028 int eccbytes = chip->ecc.bytes;
1029 int eccsteps = chip->ecc.steps;
1030 int eccstrength = chip->ecc.strength;
1031 int i, s, eccsize = chip->ecc.size;
1032 u32 *ecc_sta = (u32 *)nfc->ecc_buf;
1033 u16 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1034 unsigned int max_bitflips = 0;
1035
1036 for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, dat += eccsize) {
1037 int stat = 0;
1038
1039 if (eccstrength == FMC2_ECC_HAM) {
1040 /* Ecc_sta = FMC2_HECCR */
1041 if (sta_map & BIT(s)) {
1042 stm32_fmc2_nfc_ham_set_ecc(*ecc_sta,
1043 &calc_ecc[i]);
1044 stat = stm32_fmc2_nfc_ham_correct(chip, dat,
1045 &read_ecc[i],
1046 &calc_ecc[i]);
1047 }
1048 ecc_sta++;
1049 } else {
1050 /*
1051 * Ecc_sta[0] = FMC2_BCHDSR0
1052 * Ecc_sta[1] = FMC2_BCHDSR1
1053 * Ecc_sta[2] = FMC2_BCHDSR2
1054 * Ecc_sta[3] = FMC2_BCHDSR3
1055 * Ecc_sta[4] = FMC2_BCHDSR4
1056 */
1057 if (sta_map & BIT(s))
1058 stat = stm32_fmc2_nfc_bch_decode(eccsize, dat,
1059 ecc_sta);
1060 ecc_sta += 5;
1061 }
1062
1063 if (stat == -EBADMSG)
1064 /* Check for empty pages with bitflips */
1065 stat = nand_check_erased_ecc_chunk(dat, eccsize,
1066 &read_ecc[i],
1067 eccbytes,
1068 NULL, 0,
1069 eccstrength);
1070
1071 if (stat < 0) {
1072 mtd->ecc_stats.failed++;
1073 } else {
1074 mtd->ecc_stats.corrected += stat;
1075 max_bitflips = max_t(unsigned int, max_bitflips, stat);
1076 }
1077 }
1078
1079 return max_bitflips;
1080 }
1081
stm32_fmc2_nfc_seq_read_page(struct nand_chip * chip,u8 * buf,int oob_required,int page)1082 static int stm32_fmc2_nfc_seq_read_page(struct nand_chip *chip, u8 *buf,
1083 int oob_required, int page)
1084 {
1085 struct mtd_info *mtd = nand_to_mtd(chip);
1086 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1087 u8 *ecc_calc = chip->ecc.calc_buf;
1088 u8 *ecc_code = chip->ecc.code_buf;
1089 u16 sta_map;
1090 int ret;
1091
1092 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1093 if (ret)
1094 return ret;
1095
1096 /* Configure the sequencer */
1097 stm32_fmc2_nfc_rw_page_init(chip, page, 0, false);
1098
1099 /* Read the page */
1100 ret = stm32_fmc2_nfc_xfer(chip, buf, 0, false);
1101 if (ret)
1102 return ret;
1103
1104 sta_map = stm32_fmc2_nfc_get_mapping_status(nfc);
1105
1106 /* Check if errors happen */
1107 if (likely(!sta_map)) {
1108 if (oob_required)
1109 return nand_change_read_column_op(chip, mtd->writesize,
1110 chip->oob_poi,
1111 mtd->oobsize, false);
1112
1113 return 0;
1114 }
1115
1116 /* Read oob */
1117 ret = nand_change_read_column_op(chip, mtd->writesize,
1118 chip->oob_poi, mtd->oobsize, false);
1119 if (ret)
1120 return ret;
1121
1122 ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
1123 chip->ecc.total);
1124 if (ret)
1125 return ret;
1126
1127 /* Correct data */
1128 return chip->ecc.correct(chip, buf, ecc_code, ecc_calc);
1129 }
1130
stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip * chip,u8 * buf,int oob_required,int page)1131 static int stm32_fmc2_nfc_seq_read_page_raw(struct nand_chip *chip, u8 *buf,
1132 int oob_required, int page)
1133 {
1134 struct mtd_info *mtd = nand_to_mtd(chip);
1135 int ret;
1136
1137 ret = stm32_fmc2_nfc_select_chip(chip, chip->cur_cs);
1138 if (ret)
1139 return ret;
1140
1141 /* Configure the sequencer */
1142 stm32_fmc2_nfc_rw_page_init(chip, page, 1, false);
1143
1144 /* Read the page */
1145 ret = stm32_fmc2_nfc_xfer(chip, buf, 1, false);
1146 if (ret)
1147 return ret;
1148
1149 /* Read oob */
1150 if (oob_required)
1151 return nand_change_read_column_op(chip, mtd->writesize,
1152 chip->oob_poi, mtd->oobsize,
1153 false);
1154
1155 return 0;
1156 }
1157
stm32_fmc2_nfc_irq(int irq,void * dev_id)1158 static irqreturn_t stm32_fmc2_nfc_irq(int irq, void *dev_id)
1159 {
1160 struct stm32_fmc2_nfc *nfc = (struct stm32_fmc2_nfc *)dev_id;
1161
1162 if (nfc->irq_state == FMC2_IRQ_SEQ)
1163 /* Sequencer is used */
1164 stm32_fmc2_nfc_disable_seq_irq(nfc);
1165 else if (nfc->irq_state == FMC2_IRQ_BCH)
1166 /* BCH is used */
1167 stm32_fmc2_nfc_disable_bch_irq(nfc);
1168
1169 complete(&nfc->complete);
1170
1171 return IRQ_HANDLED;
1172 }
1173
stm32_fmc2_nfc_read_data(struct nand_chip * chip,void * buf,unsigned int len,bool force_8bit)1174 static void stm32_fmc2_nfc_read_data(struct nand_chip *chip, void *buf,
1175 unsigned int len, bool force_8bit)
1176 {
1177 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1178 void __iomem *io_addr_r = nfc->data_base[nfc->cs_sel];
1179
1180 if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1181 /* Reconfigure bus width to 8-bit */
1182 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1183
1184 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1185 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1186 *(u8 *)buf = readb_relaxed(io_addr_r);
1187 buf += sizeof(u8);
1188 len -= sizeof(u8);
1189 }
1190
1191 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1192 len >= sizeof(u16)) {
1193 *(u16 *)buf = readw_relaxed(io_addr_r);
1194 buf += sizeof(u16);
1195 len -= sizeof(u16);
1196 }
1197 }
1198
1199 /* Buf is aligned */
1200 while (len >= sizeof(u32)) {
1201 *(u32 *)buf = readl_relaxed(io_addr_r);
1202 buf += sizeof(u32);
1203 len -= sizeof(u32);
1204 }
1205
1206 /* Read remaining bytes */
1207 if (len >= sizeof(u16)) {
1208 *(u16 *)buf = readw_relaxed(io_addr_r);
1209 buf += sizeof(u16);
1210 len -= sizeof(u16);
1211 }
1212
1213 if (len)
1214 *(u8 *)buf = readb_relaxed(io_addr_r);
1215
1216 if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1217 /* Reconfigure bus width to 16-bit */
1218 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1219 }
1220
stm32_fmc2_nfc_write_data(struct nand_chip * chip,const void * buf,unsigned int len,bool force_8bit)1221 static void stm32_fmc2_nfc_write_data(struct nand_chip *chip, const void *buf,
1222 unsigned int len, bool force_8bit)
1223 {
1224 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1225 void __iomem *io_addr_w = nfc->data_base[nfc->cs_sel];
1226
1227 if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1228 /* Reconfigure bus width to 8-bit */
1229 stm32_fmc2_nfc_set_buswidth_16(nfc, false);
1230
1231 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32))) {
1232 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u16)) && len) {
1233 writeb_relaxed(*(u8 *)buf, io_addr_w);
1234 buf += sizeof(u8);
1235 len -= sizeof(u8);
1236 }
1237
1238 if (!IS_ALIGNED((uintptr_t)buf, sizeof(u32)) &&
1239 len >= sizeof(u16)) {
1240 writew_relaxed(*(u16 *)buf, io_addr_w);
1241 buf += sizeof(u16);
1242 len -= sizeof(u16);
1243 }
1244 }
1245
1246 /* Buf is aligned */
1247 while (len >= sizeof(u32)) {
1248 writel_relaxed(*(u32 *)buf, io_addr_w);
1249 buf += sizeof(u32);
1250 len -= sizeof(u32);
1251 }
1252
1253 /* Write remaining bytes */
1254 if (len >= sizeof(u16)) {
1255 writew_relaxed(*(u16 *)buf, io_addr_w);
1256 buf += sizeof(u16);
1257 len -= sizeof(u16);
1258 }
1259
1260 if (len)
1261 writeb_relaxed(*(u8 *)buf, io_addr_w);
1262
1263 if (force_8bit && chip->options & NAND_BUSWIDTH_16)
1264 /* Reconfigure bus width to 16-bit */
1265 stm32_fmc2_nfc_set_buswidth_16(nfc, true);
1266 }
1267
stm32_fmc2_nfc_waitrdy(struct nand_chip * chip,unsigned long timeout_ms)1268 static int stm32_fmc2_nfc_waitrdy(struct nand_chip *chip,
1269 unsigned long timeout_ms)
1270 {
1271 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1272 const struct nand_sdr_timings *timings;
1273 u32 isr, sr;
1274
1275 /* Check if there is no pending requests to the NAND flash */
1276 if (regmap_read_poll_timeout(nfc->regmap, FMC2_SR, sr,
1277 sr & FMC2_SR_NWRF, 1,
1278 1000 * FMC2_TIMEOUT_MS))
1279 dev_warn(nfc->dev, "Waitrdy timeout\n");
1280
1281 /* Wait tWB before R/B# signal is low */
1282 timings = nand_get_sdr_timings(nand_get_interface_config(chip));
1283 ndelay(PSEC_TO_NSEC(timings->tWB_max));
1284
1285 /* R/B# signal is low, clear high level flag */
1286 regmap_write(nfc->regmap, FMC2_ICR, FMC2_ICR_CIHLF);
1287
1288 /* Wait R/B# signal is high */
1289 return regmap_read_poll_timeout(nfc->regmap, FMC2_ISR, isr,
1290 isr & FMC2_ISR_IHLF, 5,
1291 1000 * FMC2_TIMEOUT_MS);
1292 }
1293
stm32_fmc2_nfc_exec_op(struct nand_chip * chip,const struct nand_operation * op,bool check_only)1294 static int stm32_fmc2_nfc_exec_op(struct nand_chip *chip,
1295 const struct nand_operation *op,
1296 bool check_only)
1297 {
1298 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1299 const struct nand_op_instr *instr = NULL;
1300 unsigned int op_id, i, timeout;
1301 int ret;
1302
1303 if (check_only)
1304 return 0;
1305
1306 ret = stm32_fmc2_nfc_select_chip(chip, op->cs);
1307 if (ret)
1308 return ret;
1309
1310 for (op_id = 0; op_id < op->ninstrs; op_id++) {
1311 instr = &op->instrs[op_id];
1312
1313 switch (instr->type) {
1314 case NAND_OP_CMD_INSTR:
1315 writeb_relaxed(instr->ctx.cmd.opcode,
1316 nfc->cmd_base[nfc->cs_sel]);
1317 break;
1318
1319 case NAND_OP_ADDR_INSTR:
1320 for (i = 0; i < instr->ctx.addr.naddrs; i++)
1321 writeb_relaxed(instr->ctx.addr.addrs[i],
1322 nfc->addr_base[nfc->cs_sel]);
1323 break;
1324
1325 case NAND_OP_DATA_IN_INSTR:
1326 stm32_fmc2_nfc_read_data(chip, instr->ctx.data.buf.in,
1327 instr->ctx.data.len,
1328 instr->ctx.data.force_8bit);
1329 break;
1330
1331 case NAND_OP_DATA_OUT_INSTR:
1332 stm32_fmc2_nfc_write_data(chip, instr->ctx.data.buf.out,
1333 instr->ctx.data.len,
1334 instr->ctx.data.force_8bit);
1335 break;
1336
1337 case NAND_OP_WAITRDY_INSTR:
1338 timeout = instr->ctx.waitrdy.timeout_ms;
1339 ret = stm32_fmc2_nfc_waitrdy(chip, timeout);
1340 break;
1341 }
1342 }
1343
1344 return ret;
1345 }
1346
stm32_fmc2_nfc_init(struct stm32_fmc2_nfc * nfc)1347 static void stm32_fmc2_nfc_init(struct stm32_fmc2_nfc *nfc)
1348 {
1349 u32 pcr;
1350
1351 regmap_read(nfc->regmap, FMC2_PCR, &pcr);
1352
1353 /* Set CS used to undefined */
1354 nfc->cs_sel = -1;
1355
1356 /* Enable wait feature and nand flash memory bank */
1357 pcr |= FMC2_PCR_PWAITEN;
1358 pcr |= FMC2_PCR_PBKEN;
1359
1360 /* Set buswidth to 8 bits mode for identification */
1361 pcr &= ~FMC2_PCR_PWID;
1362
1363 /* ECC logic is disabled */
1364 pcr &= ~FMC2_PCR_ECCEN;
1365
1366 /* Default mode */
1367 pcr &= ~FMC2_PCR_ECCALG;
1368 pcr &= ~FMC2_PCR_BCHECC;
1369 pcr &= ~FMC2_PCR_WEN;
1370
1371 /* Set default ECC sector size */
1372 pcr &= ~FMC2_PCR_ECCSS;
1373 pcr |= FIELD_PREP(FMC2_PCR_ECCSS, FMC2_PCR_ECCSS_2048);
1374
1375 /* Set default tclr/tar timings */
1376 pcr &= ~FMC2_PCR_TCLR;
1377 pcr |= FIELD_PREP(FMC2_PCR_TCLR, FMC2_PCR_TCLR_DEFAULT);
1378 pcr &= ~FMC2_PCR_TAR;
1379 pcr |= FIELD_PREP(FMC2_PCR_TAR, FMC2_PCR_TAR_DEFAULT);
1380
1381 /* Enable FMC2 controller */
1382 if (nfc->dev == nfc->cdev)
1383 regmap_update_bits(nfc->regmap, FMC2_BCR1,
1384 FMC2_BCR1_FMC2EN, FMC2_BCR1_FMC2EN);
1385
1386 regmap_write(nfc->regmap, FMC2_PCR, pcr);
1387 regmap_write(nfc->regmap, FMC2_PMEM, FMC2_PMEM_DEFAULT);
1388 regmap_write(nfc->regmap, FMC2_PATT, FMC2_PATT_DEFAULT);
1389 }
1390
stm32_fmc2_nfc_calc_timings(struct nand_chip * chip,const struct nand_sdr_timings * sdrt)1391 static void stm32_fmc2_nfc_calc_timings(struct nand_chip *chip,
1392 const struct nand_sdr_timings *sdrt)
1393 {
1394 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1395 struct stm32_fmc2_nand *nand = to_fmc2_nand(chip);
1396 struct stm32_fmc2_timings *tims = &nand->timings;
1397 unsigned long hclk = clk_get_rate(nfc->clk);
1398 unsigned long hclkp = NSEC_PER_SEC / (hclk / 1000);
1399 unsigned long timing, tar, tclr, thiz, twait;
1400 unsigned long tset_mem, tset_att, thold_mem, thold_att;
1401
1402 tar = max_t(unsigned long, hclkp, sdrt->tAR_min);
1403 timing = DIV_ROUND_UP(tar, hclkp) - 1;
1404 tims->tar = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1405
1406 tclr = max_t(unsigned long, hclkp, sdrt->tCLR_min);
1407 timing = DIV_ROUND_UP(tclr, hclkp) - 1;
1408 tims->tclr = min_t(unsigned long, timing, FMC2_PCR_TIMING_MASK);
1409
1410 tims->thiz = FMC2_THIZ;
1411 thiz = (tims->thiz + 1) * hclkp;
1412
1413 /*
1414 * tWAIT > tRP
1415 * tWAIT > tWP
1416 * tWAIT > tREA + tIO
1417 */
1418 twait = max_t(unsigned long, hclkp, sdrt->tRP_min);
1419 twait = max_t(unsigned long, twait, sdrt->tWP_min);
1420 twait = max_t(unsigned long, twait, sdrt->tREA_max + FMC2_TIO);
1421 timing = DIV_ROUND_UP(twait, hclkp);
1422 tims->twait = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1423
1424 /*
1425 * tSETUP_MEM > tCS - tWAIT
1426 * tSETUP_MEM > tALS - tWAIT
1427 * tSETUP_MEM > tDS - (tWAIT - tHIZ)
1428 */
1429 tset_mem = hclkp;
1430 if (sdrt->tCS_min > twait && (tset_mem < sdrt->tCS_min - twait))
1431 tset_mem = sdrt->tCS_min - twait;
1432 if (sdrt->tALS_min > twait && (tset_mem < sdrt->tALS_min - twait))
1433 tset_mem = sdrt->tALS_min - twait;
1434 if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1435 (tset_mem < sdrt->tDS_min - (twait - thiz)))
1436 tset_mem = sdrt->tDS_min - (twait - thiz);
1437 timing = DIV_ROUND_UP(tset_mem, hclkp);
1438 tims->tset_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1439
1440 /*
1441 * tHOLD_MEM > tCH
1442 * tHOLD_MEM > tREH - tSETUP_MEM
1443 * tHOLD_MEM > max(tRC, tWC) - (tSETUP_MEM + tWAIT)
1444 */
1445 thold_mem = max_t(unsigned long, hclkp, sdrt->tCH_min);
1446 if (sdrt->tREH_min > tset_mem &&
1447 (thold_mem < sdrt->tREH_min - tset_mem))
1448 thold_mem = sdrt->tREH_min - tset_mem;
1449 if ((sdrt->tRC_min > tset_mem + twait) &&
1450 (thold_mem < sdrt->tRC_min - (tset_mem + twait)))
1451 thold_mem = sdrt->tRC_min - (tset_mem + twait);
1452 if ((sdrt->tWC_min > tset_mem + twait) &&
1453 (thold_mem < sdrt->tWC_min - (tset_mem + twait)))
1454 thold_mem = sdrt->tWC_min - (tset_mem + twait);
1455 timing = DIV_ROUND_UP(thold_mem, hclkp);
1456 tims->thold_mem = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1457
1458 /*
1459 * tSETUP_ATT > tCS - tWAIT
1460 * tSETUP_ATT > tCLS - tWAIT
1461 * tSETUP_ATT > tALS - tWAIT
1462 * tSETUP_ATT > tRHW - tHOLD_MEM
1463 * tSETUP_ATT > tDS - (tWAIT - tHIZ)
1464 */
1465 tset_att = hclkp;
1466 if (sdrt->tCS_min > twait && (tset_att < sdrt->tCS_min - twait))
1467 tset_att = sdrt->tCS_min - twait;
1468 if (sdrt->tCLS_min > twait && (tset_att < sdrt->tCLS_min - twait))
1469 tset_att = sdrt->tCLS_min - twait;
1470 if (sdrt->tALS_min > twait && (tset_att < sdrt->tALS_min - twait))
1471 tset_att = sdrt->tALS_min - twait;
1472 if (sdrt->tRHW_min > thold_mem &&
1473 (tset_att < sdrt->tRHW_min - thold_mem))
1474 tset_att = sdrt->tRHW_min - thold_mem;
1475 if (twait > thiz && (sdrt->tDS_min > twait - thiz) &&
1476 (tset_att < sdrt->tDS_min - (twait - thiz)))
1477 tset_att = sdrt->tDS_min - (twait - thiz);
1478 timing = DIV_ROUND_UP(tset_att, hclkp);
1479 tims->tset_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1480
1481 /*
1482 * tHOLD_ATT > tALH
1483 * tHOLD_ATT > tCH
1484 * tHOLD_ATT > tCLH
1485 * tHOLD_ATT > tCOH
1486 * tHOLD_ATT > tDH
1487 * tHOLD_ATT > tWB + tIO + tSYNC - tSETUP_MEM
1488 * tHOLD_ATT > tADL - tSETUP_MEM
1489 * tHOLD_ATT > tWH - tSETUP_MEM
1490 * tHOLD_ATT > tWHR - tSETUP_MEM
1491 * tHOLD_ATT > tRC - (tSETUP_ATT + tWAIT)
1492 * tHOLD_ATT > tWC - (tSETUP_ATT + tWAIT)
1493 */
1494 thold_att = max_t(unsigned long, hclkp, sdrt->tALH_min);
1495 thold_att = max_t(unsigned long, thold_att, sdrt->tCH_min);
1496 thold_att = max_t(unsigned long, thold_att, sdrt->tCLH_min);
1497 thold_att = max_t(unsigned long, thold_att, sdrt->tCOH_min);
1498 thold_att = max_t(unsigned long, thold_att, sdrt->tDH_min);
1499 if ((sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC > tset_mem) &&
1500 (thold_att < sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem))
1501 thold_att = sdrt->tWB_max + FMC2_TIO + FMC2_TSYNC - tset_mem;
1502 if (sdrt->tADL_min > tset_mem &&
1503 (thold_att < sdrt->tADL_min - tset_mem))
1504 thold_att = sdrt->tADL_min - tset_mem;
1505 if (sdrt->tWH_min > tset_mem &&
1506 (thold_att < sdrt->tWH_min - tset_mem))
1507 thold_att = sdrt->tWH_min - tset_mem;
1508 if (sdrt->tWHR_min > tset_mem &&
1509 (thold_att < sdrt->tWHR_min - tset_mem))
1510 thold_att = sdrt->tWHR_min - tset_mem;
1511 if ((sdrt->tRC_min > tset_att + twait) &&
1512 (thold_att < sdrt->tRC_min - (tset_att + twait)))
1513 thold_att = sdrt->tRC_min - (tset_att + twait);
1514 if ((sdrt->tWC_min > tset_att + twait) &&
1515 (thold_att < sdrt->tWC_min - (tset_att + twait)))
1516 thold_att = sdrt->tWC_min - (tset_att + twait);
1517 timing = DIV_ROUND_UP(thold_att, hclkp);
1518 tims->thold_att = clamp_val(timing, 1, FMC2_PMEM_PATT_TIMING_MASK);
1519 }
1520
stm32_fmc2_nfc_setup_interface(struct nand_chip * chip,int chipnr,const struct nand_interface_config * conf)1521 static int stm32_fmc2_nfc_setup_interface(struct nand_chip *chip, int chipnr,
1522 const struct nand_interface_config *conf)
1523 {
1524 const struct nand_sdr_timings *sdrt;
1525
1526 sdrt = nand_get_sdr_timings(conf);
1527 if (IS_ERR(sdrt))
1528 return PTR_ERR(sdrt);
1529
1530 if (chipnr == NAND_DATA_IFACE_CHECK_ONLY)
1531 return 0;
1532
1533 stm32_fmc2_nfc_calc_timings(chip, sdrt);
1534 stm32_fmc2_nfc_timings_init(chip);
1535
1536 return 0;
1537 }
1538
stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc * nfc)1539 static int stm32_fmc2_nfc_dma_setup(struct stm32_fmc2_nfc *nfc)
1540 {
1541 int ret = 0;
1542
1543 nfc->dma_tx_ch = dma_request_chan(nfc->dev, "tx");
1544 if (IS_ERR(nfc->dma_tx_ch)) {
1545 ret = PTR_ERR(nfc->dma_tx_ch);
1546 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1547 dev_err(nfc->dev,
1548 "failed to request tx DMA channel: %d\n", ret);
1549 nfc->dma_tx_ch = NULL;
1550 goto err_dma;
1551 }
1552
1553 nfc->dma_rx_ch = dma_request_chan(nfc->dev, "rx");
1554 if (IS_ERR(nfc->dma_rx_ch)) {
1555 ret = PTR_ERR(nfc->dma_rx_ch);
1556 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1557 dev_err(nfc->dev,
1558 "failed to request rx DMA channel: %d\n", ret);
1559 nfc->dma_rx_ch = NULL;
1560 goto err_dma;
1561 }
1562
1563 nfc->dma_ecc_ch = dma_request_chan(nfc->dev, "ecc");
1564 if (IS_ERR(nfc->dma_ecc_ch)) {
1565 ret = PTR_ERR(nfc->dma_ecc_ch);
1566 if (ret != -ENODEV && ret != -EPROBE_DEFER)
1567 dev_err(nfc->dev,
1568 "failed to request ecc DMA channel: %d\n", ret);
1569 nfc->dma_ecc_ch = NULL;
1570 goto err_dma;
1571 }
1572
1573 ret = sg_alloc_table(&nfc->dma_ecc_sg, FMC2_MAX_SG, GFP_KERNEL);
1574 if (ret)
1575 return ret;
1576
1577 /* Allocate a buffer to store ECC status registers */
1578 nfc->ecc_buf = devm_kzalloc(nfc->dev, FMC2_MAX_ECC_BUF_LEN, GFP_KERNEL);
1579 if (!nfc->ecc_buf)
1580 return -ENOMEM;
1581
1582 ret = sg_alloc_table(&nfc->dma_data_sg, FMC2_MAX_SG, GFP_KERNEL);
1583 if (ret)
1584 return ret;
1585
1586 init_completion(&nfc->dma_data_complete);
1587 init_completion(&nfc->dma_ecc_complete);
1588
1589 return 0;
1590
1591 err_dma:
1592 if (ret == -ENODEV) {
1593 dev_warn(nfc->dev,
1594 "DMAs not defined in the DT, polling mode is used\n");
1595 ret = 0;
1596 }
1597
1598 return ret;
1599 }
1600
stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip * chip)1601 static void stm32_fmc2_nfc_nand_callbacks_setup(struct nand_chip *chip)
1602 {
1603 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1604
1605 /*
1606 * Specific callbacks to read/write a page depending on
1607 * the mode (polling/sequencer) and the algo used (Hamming, BCH).
1608 */
1609 if (nfc->dma_tx_ch && nfc->dma_rx_ch && nfc->dma_ecc_ch) {
1610 /* DMA => use sequencer mode callbacks */
1611 chip->ecc.correct = stm32_fmc2_nfc_seq_correct;
1612 chip->ecc.write_page = stm32_fmc2_nfc_seq_write_page;
1613 chip->ecc.read_page = stm32_fmc2_nfc_seq_read_page;
1614 chip->ecc.write_page_raw = stm32_fmc2_nfc_seq_write_page_raw;
1615 chip->ecc.read_page_raw = stm32_fmc2_nfc_seq_read_page_raw;
1616 } else {
1617 /* No DMA => use polling mode callbacks */
1618 chip->ecc.hwctl = stm32_fmc2_nfc_hwctl;
1619 if (chip->ecc.strength == FMC2_ECC_HAM) {
1620 /* Hamming is used */
1621 chip->ecc.calculate = stm32_fmc2_nfc_ham_calculate;
1622 chip->ecc.correct = stm32_fmc2_nfc_ham_correct;
1623 chip->ecc.options |= NAND_ECC_GENERIC_ERASED_CHECK;
1624 } else {
1625 /* BCH is used */
1626 chip->ecc.calculate = stm32_fmc2_nfc_bch_calculate;
1627 chip->ecc.correct = stm32_fmc2_nfc_bch_correct;
1628 chip->ecc.read_page = stm32_fmc2_nfc_read_page;
1629 }
1630 }
1631
1632 /* Specific configurations depending on the algo used */
1633 if (chip->ecc.strength == FMC2_ECC_HAM)
1634 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 4 : 3;
1635 else if (chip->ecc.strength == FMC2_ECC_BCH8)
1636 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 14 : 13;
1637 else
1638 chip->ecc.bytes = chip->options & NAND_BUSWIDTH_16 ? 8 : 7;
1639 }
1640
stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1641 static int stm32_fmc2_nfc_ooblayout_ecc(struct mtd_info *mtd, int section,
1642 struct mtd_oob_region *oobregion)
1643 {
1644 struct nand_chip *chip = mtd_to_nand(mtd);
1645 struct nand_ecc_ctrl *ecc = &chip->ecc;
1646
1647 if (section)
1648 return -ERANGE;
1649
1650 oobregion->length = ecc->total;
1651 oobregion->offset = FMC2_BBM_LEN;
1652
1653 return 0;
1654 }
1655
stm32_fmc2_nfc_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobregion)1656 static int stm32_fmc2_nfc_ooblayout_free(struct mtd_info *mtd, int section,
1657 struct mtd_oob_region *oobregion)
1658 {
1659 struct nand_chip *chip = mtd_to_nand(mtd);
1660 struct nand_ecc_ctrl *ecc = &chip->ecc;
1661
1662 if (section)
1663 return -ERANGE;
1664
1665 oobregion->length = mtd->oobsize - ecc->total - FMC2_BBM_LEN;
1666 oobregion->offset = ecc->total + FMC2_BBM_LEN;
1667
1668 return 0;
1669 }
1670
1671 static const struct mtd_ooblayout_ops stm32_fmc2_nfc_ooblayout_ops = {
1672 .ecc = stm32_fmc2_nfc_ooblayout_ecc,
1673 .free = stm32_fmc2_nfc_ooblayout_free,
1674 };
1675
stm32_fmc2_nfc_calc_ecc_bytes(int step_size,int strength)1676 static int stm32_fmc2_nfc_calc_ecc_bytes(int step_size, int strength)
1677 {
1678 /* Hamming */
1679 if (strength == FMC2_ECC_HAM)
1680 return 4;
1681
1682 /* BCH8 */
1683 if (strength == FMC2_ECC_BCH8)
1684 return 14;
1685
1686 /* BCH4 */
1687 return 8;
1688 }
1689
1690 NAND_ECC_CAPS_SINGLE(stm32_fmc2_nfc_ecc_caps, stm32_fmc2_nfc_calc_ecc_bytes,
1691 FMC2_ECC_STEP_SIZE,
1692 FMC2_ECC_HAM, FMC2_ECC_BCH4, FMC2_ECC_BCH8);
1693
stm32_fmc2_nfc_attach_chip(struct nand_chip * chip)1694 static int stm32_fmc2_nfc_attach_chip(struct nand_chip *chip)
1695 {
1696 struct stm32_fmc2_nfc *nfc = to_stm32_nfc(chip->controller);
1697 struct mtd_info *mtd = nand_to_mtd(chip);
1698 int ret;
1699
1700 /*
1701 * Only NAND_ECC_ENGINE_TYPE_ON_HOST mode is actually supported
1702 * Hamming => ecc.strength = 1
1703 * BCH4 => ecc.strength = 4
1704 * BCH8 => ecc.strength = 8
1705 * ECC sector size = 512
1706 */
1707 if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) {
1708 dev_err(nfc->dev,
1709 "nand_ecc_engine_type is not well defined in the DT\n");
1710 return -EINVAL;
1711 }
1712
1713 /* Default ECC settings in case they are not set in the device tree */
1714 if (!chip->ecc.size)
1715 chip->ecc.size = FMC2_ECC_STEP_SIZE;
1716
1717 if (!chip->ecc.strength)
1718 chip->ecc.strength = FMC2_ECC_BCH8;
1719
1720 ret = nand_ecc_choose_conf(chip, &stm32_fmc2_nfc_ecc_caps,
1721 mtd->oobsize - FMC2_BBM_LEN);
1722 if (ret) {
1723 dev_err(nfc->dev, "no valid ECC settings set\n");
1724 return ret;
1725 }
1726
1727 if (mtd->writesize / chip->ecc.size > FMC2_MAX_SG) {
1728 dev_err(nfc->dev, "nand page size is not supported\n");
1729 return -EINVAL;
1730 }
1731
1732 if (chip->bbt_options & NAND_BBT_USE_FLASH)
1733 chip->bbt_options |= NAND_BBT_NO_OOB;
1734
1735 stm32_fmc2_nfc_nand_callbacks_setup(chip);
1736
1737 mtd_set_ooblayout(mtd, &stm32_fmc2_nfc_ooblayout_ops);
1738
1739 stm32_fmc2_nfc_setup(chip);
1740
1741 return 0;
1742 }
1743
1744 static const struct nand_controller_ops stm32_fmc2_nfc_controller_ops = {
1745 .attach_chip = stm32_fmc2_nfc_attach_chip,
1746 .exec_op = stm32_fmc2_nfc_exec_op,
1747 .setup_interface = stm32_fmc2_nfc_setup_interface,
1748 };
1749
stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc * nfc,struct device_node * dn)1750 static int stm32_fmc2_nfc_parse_child(struct stm32_fmc2_nfc *nfc,
1751 struct device_node *dn)
1752 {
1753 struct stm32_fmc2_nand *nand = &nfc->nand;
1754 u32 cs;
1755 int ret, i;
1756
1757 if (!of_get_property(dn, "reg", &nand->ncs))
1758 return -EINVAL;
1759
1760 nand->ncs /= sizeof(u32);
1761 if (!nand->ncs) {
1762 dev_err(nfc->dev, "invalid reg property size\n");
1763 return -EINVAL;
1764 }
1765
1766 for (i = 0; i < nand->ncs; i++) {
1767 ret = of_property_read_u32_index(dn, "reg", i, &cs);
1768 if (ret) {
1769 dev_err(nfc->dev, "could not retrieve reg property: %d\n",
1770 ret);
1771 return ret;
1772 }
1773
1774 if (cs >= FMC2_MAX_CE) {
1775 dev_err(nfc->dev, "invalid reg value: %d\n", cs);
1776 return -EINVAL;
1777 }
1778
1779 if (nfc->cs_assigned & BIT(cs)) {
1780 dev_err(nfc->dev, "cs already assigned: %d\n", cs);
1781 return -EINVAL;
1782 }
1783
1784 nfc->cs_assigned |= BIT(cs);
1785 nand->cs_used[i] = cs;
1786 }
1787
1788 nand_set_flash_node(&nand->chip, dn);
1789
1790 return 0;
1791 }
1792
stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc * nfc)1793 static int stm32_fmc2_nfc_parse_dt(struct stm32_fmc2_nfc *nfc)
1794 {
1795 struct device_node *dn = nfc->dev->of_node;
1796 struct device_node *child;
1797 int nchips = of_get_child_count(dn);
1798 int ret = 0;
1799
1800 if (!nchips) {
1801 dev_err(nfc->dev, "NAND chip not defined\n");
1802 return -EINVAL;
1803 }
1804
1805 if (nchips > 1) {
1806 dev_err(nfc->dev, "too many NAND chips defined\n");
1807 return -EINVAL;
1808 }
1809
1810 for_each_child_of_node(dn, child) {
1811 ret = stm32_fmc2_nfc_parse_child(nfc, child);
1812 if (ret < 0) {
1813 of_node_put(child);
1814 return ret;
1815 }
1816 }
1817
1818 return ret;
1819 }
1820
stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc * nfc)1821 static int stm32_fmc2_nfc_set_cdev(struct stm32_fmc2_nfc *nfc)
1822 {
1823 struct device *dev = nfc->dev;
1824 bool ebi_found = false;
1825
1826 if (dev->parent && of_device_is_compatible(dev->parent->of_node,
1827 "st,stm32mp1-fmc2-ebi"))
1828 ebi_found = true;
1829
1830 if (of_device_is_compatible(dev->of_node, "st,stm32mp1-fmc2-nfc")) {
1831 if (ebi_found) {
1832 nfc->cdev = dev->parent;
1833
1834 return 0;
1835 }
1836
1837 return -EINVAL;
1838 }
1839
1840 if (ebi_found)
1841 return -EINVAL;
1842
1843 nfc->cdev = dev;
1844
1845 return 0;
1846 }
1847
stm32_fmc2_nfc_probe(struct platform_device * pdev)1848 static int stm32_fmc2_nfc_probe(struct platform_device *pdev)
1849 {
1850 struct device *dev = &pdev->dev;
1851 struct reset_control *rstc;
1852 struct stm32_fmc2_nfc *nfc;
1853 struct stm32_fmc2_nand *nand;
1854 struct resource *res;
1855 struct mtd_info *mtd;
1856 struct nand_chip *chip;
1857 struct resource cres;
1858 int chip_cs, mem_region, ret, irq;
1859 int start_region = 0;
1860
1861 nfc = devm_kzalloc(dev, sizeof(*nfc), GFP_KERNEL);
1862 if (!nfc)
1863 return -ENOMEM;
1864
1865 nfc->dev = dev;
1866 nand_controller_init(&nfc->base);
1867 nfc->base.ops = &stm32_fmc2_nfc_controller_ops;
1868
1869 ret = stm32_fmc2_nfc_set_cdev(nfc);
1870 if (ret)
1871 return ret;
1872
1873 ret = stm32_fmc2_nfc_parse_dt(nfc);
1874 if (ret)
1875 return ret;
1876
1877 ret = of_address_to_resource(nfc->cdev->of_node, 0, &cres);
1878 if (ret)
1879 return ret;
1880
1881 nfc->io_phys_addr = cres.start;
1882
1883 nfc->regmap = device_node_to_regmap(nfc->cdev->of_node);
1884 if (IS_ERR(nfc->regmap))
1885 return PTR_ERR(nfc->regmap);
1886
1887 if (nfc->dev == nfc->cdev)
1888 start_region = 1;
1889
1890 for (chip_cs = 0, mem_region = start_region; chip_cs < FMC2_MAX_CE;
1891 chip_cs++, mem_region += 3) {
1892 if (!(nfc->cs_assigned & BIT(chip_cs)))
1893 continue;
1894
1895 res = platform_get_resource(pdev, IORESOURCE_MEM, mem_region);
1896 nfc->data_base[chip_cs] = devm_ioremap_resource(dev, res);
1897 if (IS_ERR(nfc->data_base[chip_cs]))
1898 return PTR_ERR(nfc->data_base[chip_cs]);
1899
1900 nfc->data_phys_addr[chip_cs] = res->start;
1901
1902 res = platform_get_resource(pdev, IORESOURCE_MEM,
1903 mem_region + 1);
1904 nfc->cmd_base[chip_cs] = devm_ioremap_resource(dev, res);
1905 if (IS_ERR(nfc->cmd_base[chip_cs]))
1906 return PTR_ERR(nfc->cmd_base[chip_cs]);
1907
1908 res = platform_get_resource(pdev, IORESOURCE_MEM,
1909 mem_region + 2);
1910 nfc->addr_base[chip_cs] = devm_ioremap_resource(dev, res);
1911 if (IS_ERR(nfc->addr_base[chip_cs]))
1912 return PTR_ERR(nfc->addr_base[chip_cs]);
1913 }
1914
1915 irq = platform_get_irq(pdev, 0);
1916 if (irq < 0)
1917 return irq;
1918
1919 ret = devm_request_irq(dev, irq, stm32_fmc2_nfc_irq, 0,
1920 dev_name(dev), nfc);
1921 if (ret) {
1922 dev_err(dev, "failed to request irq\n");
1923 return ret;
1924 }
1925
1926 init_completion(&nfc->complete);
1927
1928 nfc->clk = devm_clk_get(nfc->cdev, NULL);
1929 if (IS_ERR(nfc->clk))
1930 return PTR_ERR(nfc->clk);
1931
1932 ret = clk_prepare_enable(nfc->clk);
1933 if (ret) {
1934 dev_err(dev, "can not enable the clock\n");
1935 return ret;
1936 }
1937
1938 rstc = devm_reset_control_get(dev, NULL);
1939 if (IS_ERR(rstc)) {
1940 ret = PTR_ERR(rstc);
1941 if (ret == -EPROBE_DEFER)
1942 goto err_clk_disable;
1943 } else {
1944 reset_control_assert(rstc);
1945 reset_control_deassert(rstc);
1946 }
1947
1948 ret = stm32_fmc2_nfc_dma_setup(nfc);
1949 if (ret)
1950 goto err_release_dma;
1951
1952 stm32_fmc2_nfc_init(nfc);
1953
1954 nand = &nfc->nand;
1955 chip = &nand->chip;
1956 mtd = nand_to_mtd(chip);
1957 mtd->dev.parent = dev;
1958
1959 chip->controller = &nfc->base;
1960 chip->options |= NAND_BUSWIDTH_AUTO | NAND_NO_SUBPAGE_WRITE |
1961 NAND_USES_DMA;
1962
1963 /* Scan to find existence of the device */
1964 ret = nand_scan(chip, nand->ncs);
1965 if (ret)
1966 goto err_release_dma;
1967
1968 ret = mtd_device_register(mtd, NULL, 0);
1969 if (ret)
1970 goto err_nand_cleanup;
1971
1972 platform_set_drvdata(pdev, nfc);
1973
1974 return 0;
1975
1976 err_nand_cleanup:
1977 nand_cleanup(chip);
1978
1979 err_release_dma:
1980 if (nfc->dma_ecc_ch)
1981 dma_release_channel(nfc->dma_ecc_ch);
1982 if (nfc->dma_tx_ch)
1983 dma_release_channel(nfc->dma_tx_ch);
1984 if (nfc->dma_rx_ch)
1985 dma_release_channel(nfc->dma_rx_ch);
1986
1987 sg_free_table(&nfc->dma_data_sg);
1988 sg_free_table(&nfc->dma_ecc_sg);
1989
1990 err_clk_disable:
1991 clk_disable_unprepare(nfc->clk);
1992
1993 return ret;
1994 }
1995
stm32_fmc2_nfc_remove(struct platform_device * pdev)1996 static int stm32_fmc2_nfc_remove(struct platform_device *pdev)
1997 {
1998 struct stm32_fmc2_nfc *nfc = platform_get_drvdata(pdev);
1999 struct stm32_fmc2_nand *nand = &nfc->nand;
2000 struct nand_chip *chip = &nand->chip;
2001 int ret;
2002
2003 ret = mtd_device_unregister(nand_to_mtd(chip));
2004 WARN_ON(ret);
2005 nand_cleanup(chip);
2006
2007 if (nfc->dma_ecc_ch)
2008 dma_release_channel(nfc->dma_ecc_ch);
2009 if (nfc->dma_tx_ch)
2010 dma_release_channel(nfc->dma_tx_ch);
2011 if (nfc->dma_rx_ch)
2012 dma_release_channel(nfc->dma_rx_ch);
2013
2014 sg_free_table(&nfc->dma_data_sg);
2015 sg_free_table(&nfc->dma_ecc_sg);
2016
2017 clk_disable_unprepare(nfc->clk);
2018
2019 return 0;
2020 }
2021
stm32_fmc2_nfc_suspend(struct device * dev)2022 static int __maybe_unused stm32_fmc2_nfc_suspend(struct device *dev)
2023 {
2024 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2025
2026 clk_disable_unprepare(nfc->clk);
2027
2028 pinctrl_pm_select_sleep_state(dev);
2029
2030 return 0;
2031 }
2032
stm32_fmc2_nfc_resume(struct device * dev)2033 static int __maybe_unused stm32_fmc2_nfc_resume(struct device *dev)
2034 {
2035 struct stm32_fmc2_nfc *nfc = dev_get_drvdata(dev);
2036 struct stm32_fmc2_nand *nand = &nfc->nand;
2037 int chip_cs, ret;
2038
2039 pinctrl_pm_select_default_state(dev);
2040
2041 ret = clk_prepare_enable(nfc->clk);
2042 if (ret) {
2043 dev_err(dev, "can not enable the clock\n");
2044 return ret;
2045 }
2046
2047 stm32_fmc2_nfc_init(nfc);
2048
2049 for (chip_cs = 0; chip_cs < FMC2_MAX_CE; chip_cs++) {
2050 if (!(nfc->cs_assigned & BIT(chip_cs)))
2051 continue;
2052
2053 nand_reset(&nand->chip, chip_cs);
2054 }
2055
2056 return 0;
2057 }
2058
2059 static SIMPLE_DEV_PM_OPS(stm32_fmc2_nfc_pm_ops, stm32_fmc2_nfc_suspend,
2060 stm32_fmc2_nfc_resume);
2061
2062 static const struct of_device_id stm32_fmc2_nfc_match[] = {
2063 {.compatible = "st,stm32mp15-fmc2"},
2064 {.compatible = "st,stm32mp1-fmc2-nfc"},
2065 {}
2066 };
2067 MODULE_DEVICE_TABLE(of, stm32_fmc2_nfc_match);
2068
2069 static struct platform_driver stm32_fmc2_nfc_driver = {
2070 .probe = stm32_fmc2_nfc_probe,
2071 .remove = stm32_fmc2_nfc_remove,
2072 .driver = {
2073 .name = "stm32_fmc2_nfc",
2074 .of_match_table = stm32_fmc2_nfc_match,
2075 .pm = &stm32_fmc2_nfc_pm_ops,
2076 },
2077 };
2078 module_platform_driver(stm32_fmc2_nfc_driver);
2079
2080 MODULE_ALIAS("platform:stm32_fmc2_nfc");
2081 MODULE_AUTHOR("Christophe Kerello <christophe.kerello@st.com>");
2082 MODULE_DESCRIPTION("STMicroelectronics STM32 FMC2 NFC driver");
2083 MODULE_LICENSE("GPL v2");
2084