1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/sd.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/sizes.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15
16 #include <linux/mmc/host.h>
17 #include <linux/mmc/card.h>
18 #include <linux/mmc/mmc.h>
19 #include <linux/mmc/sd.h>
20
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26 #include "sd.h"
27 #include "sd_ops.h"
28
29 static const unsigned int tran_exp[] = {
30 10000, 100000, 1000000, 10000000,
31 0, 0, 0, 0
32 };
33
34 static const unsigned char tran_mant[] = {
35 0, 10, 12, 13, 15, 20, 25, 30,
36 35, 40, 45, 50, 55, 60, 70, 80,
37 };
38
39 static const unsigned int taac_exp[] = {
40 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
41 };
42
43 static const unsigned int taac_mant[] = {
44 0, 10, 12, 13, 15, 20, 25, 30,
45 35, 40, 45, 50, 55, 60, 70, 80,
46 };
47
48 static const unsigned int sd_au_size[] = {
49 0, SZ_16K / 512, SZ_32K / 512, SZ_64K / 512,
50 SZ_128K / 512, SZ_256K / 512, SZ_512K / 512, SZ_1M / 512,
51 SZ_2M / 512, SZ_4M / 512, SZ_8M / 512, (SZ_8M + SZ_4M) / 512,
52 SZ_16M / 512, (SZ_16M + SZ_8M) / 512, SZ_32M / 512, SZ_64M / 512,
53 };
54
55 #define UNSTUFF_BITS(resp,start,size) \
56 ({ \
57 const int __size = size; \
58 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
59 const int __off = 3 - ((start) / 32); \
60 const int __shft = (start) & 31; \
61 u32 __res; \
62 \
63 __res = resp[__off] >> __shft; \
64 if (__size + __shft > 32) \
65 __res |= resp[__off-1] << ((32 - __shft) % 32); \
66 __res & __mask; \
67 })
68
69 #define SD_POWEROFF_NOTIFY_TIMEOUT_MS 2000
70 #define SD_WRITE_EXTR_SINGLE_TIMEOUT_MS 1000
71
72 struct sd_busy_data {
73 struct mmc_card *card;
74 u8 *reg_buf;
75 };
76
77 /*
78 * Given the decoded CSD structure, decode the raw CID to our CID structure.
79 */
mmc_decode_cid(struct mmc_card * card)80 void mmc_decode_cid(struct mmc_card *card)
81 {
82 u32 *resp = card->raw_cid;
83
84 /*
85 * SD doesn't currently have a version field so we will
86 * have to assume we can parse this.
87 */
88 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
89 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
90 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
91 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
92 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
93 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
94 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
95 card->cid.hwrev = UNSTUFF_BITS(resp, 60, 4);
96 card->cid.fwrev = UNSTUFF_BITS(resp, 56, 4);
97 card->cid.serial = UNSTUFF_BITS(resp, 24, 32);
98 card->cid.year = UNSTUFF_BITS(resp, 12, 8);
99 card->cid.month = UNSTUFF_BITS(resp, 8, 4);
100
101 card->cid.year += 2000; /* SD cards year offset */
102 }
103
104 /*
105 * Given a 128-bit response, decode to our card CSD structure.
106 */
mmc_decode_csd(struct mmc_card * card)107 static int mmc_decode_csd(struct mmc_card *card)
108 {
109 struct mmc_csd *csd = &card->csd;
110 unsigned int e, m, csd_struct;
111 u32 *resp = card->raw_csd;
112
113 csd_struct = UNSTUFF_BITS(resp, 126, 2);
114
115 switch (csd_struct) {
116 case 0:
117 m = UNSTUFF_BITS(resp, 115, 4);
118 e = UNSTUFF_BITS(resp, 112, 3);
119 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
120 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
121
122 m = UNSTUFF_BITS(resp, 99, 4);
123 e = UNSTUFF_BITS(resp, 96, 3);
124 csd->max_dtr = tran_exp[e] * tran_mant[m];
125 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
126
127 e = UNSTUFF_BITS(resp, 47, 3);
128 m = UNSTUFF_BITS(resp, 62, 12);
129 csd->capacity = (1 + m) << (e + 2);
130
131 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
132 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
133 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
134 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
135 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
136 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
137 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
138 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
139
140 if (UNSTUFF_BITS(resp, 46, 1)) {
141 csd->erase_size = 1;
142 } else if (csd->write_blkbits >= 9) {
143 csd->erase_size = UNSTUFF_BITS(resp, 39, 7) + 1;
144 csd->erase_size <<= csd->write_blkbits - 9;
145 }
146
147 if (UNSTUFF_BITS(resp, 13, 1))
148 mmc_card_set_readonly(card);
149 break;
150 case 1:
151 /*
152 * This is a block-addressed SDHC or SDXC card. Most
153 * interesting fields are unused and have fixed
154 * values. To avoid getting tripped by buggy cards,
155 * we assume those fixed values ourselves.
156 */
157 mmc_card_set_blockaddr(card);
158
159 csd->taac_ns = 0; /* Unused */
160 csd->taac_clks = 0; /* Unused */
161
162 m = UNSTUFF_BITS(resp, 99, 4);
163 e = UNSTUFF_BITS(resp, 96, 3);
164 csd->max_dtr = tran_exp[e] * tran_mant[m];
165 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
166 csd->c_size = UNSTUFF_BITS(resp, 48, 22);
167
168 /* SDXC cards have a minimum C_SIZE of 0x00FFFF */
169 if (csd->c_size >= 0xFFFF)
170 mmc_card_set_ext_capacity(card);
171
172 m = UNSTUFF_BITS(resp, 48, 22);
173 csd->capacity = (1 + m) << 10;
174
175 csd->read_blkbits = 9;
176 csd->read_partial = 0;
177 csd->write_misalign = 0;
178 csd->read_misalign = 0;
179 csd->r2w_factor = 4; /* Unused */
180 csd->write_blkbits = 9;
181 csd->write_partial = 0;
182 csd->erase_size = 1;
183
184 if (UNSTUFF_BITS(resp, 13, 1))
185 mmc_card_set_readonly(card);
186 break;
187 default:
188 pr_err("%s: unrecognised CSD structure version %d\n",
189 mmc_hostname(card->host), csd_struct);
190 return -EINVAL;
191 }
192
193 card->erase_size = csd->erase_size;
194
195 return 0;
196 }
197
198 /*
199 * Given a 64-bit response, decode to our card SCR structure.
200 */
mmc_decode_scr(struct mmc_card * card)201 static int mmc_decode_scr(struct mmc_card *card)
202 {
203 struct sd_scr *scr = &card->scr;
204 unsigned int scr_struct;
205 u32 resp[4];
206
207 resp[3] = card->raw_scr[1];
208 resp[2] = card->raw_scr[0];
209
210 scr_struct = UNSTUFF_BITS(resp, 60, 4);
211 if (scr_struct != 0) {
212 pr_err("%s: unrecognised SCR structure version %d\n",
213 mmc_hostname(card->host), scr_struct);
214 return -EINVAL;
215 }
216
217 scr->sda_vsn = UNSTUFF_BITS(resp, 56, 4);
218 scr->bus_widths = UNSTUFF_BITS(resp, 48, 4);
219 if (scr->sda_vsn == SCR_SPEC_VER_2)
220 /* Check if Physical Layer Spec v3.0 is supported */
221 scr->sda_spec3 = UNSTUFF_BITS(resp, 47, 1);
222
223 if (scr->sda_spec3) {
224 scr->sda_spec4 = UNSTUFF_BITS(resp, 42, 1);
225 scr->sda_specx = UNSTUFF_BITS(resp, 38, 4);
226 }
227
228 if (UNSTUFF_BITS(resp, 55, 1))
229 card->erased_byte = 0xFF;
230 else
231 card->erased_byte = 0x0;
232
233 if (scr->sda_spec4)
234 scr->cmds = UNSTUFF_BITS(resp, 32, 4);
235 else if (scr->sda_spec3)
236 scr->cmds = UNSTUFF_BITS(resp, 32, 2);
237
238 /* SD Spec says: any SD Card shall set at least bits 0 and 2 */
239 if (!(scr->bus_widths & SD_SCR_BUS_WIDTH_1) ||
240 !(scr->bus_widths & SD_SCR_BUS_WIDTH_4)) {
241 pr_err("%s: invalid bus width\n", mmc_hostname(card->host));
242 return -EINVAL;
243 }
244
245 return 0;
246 }
247
248 /*
249 * Fetch and process SD Status register.
250 */
mmc_read_ssr(struct mmc_card * card)251 static int mmc_read_ssr(struct mmc_card *card)
252 {
253 unsigned int au, es, et, eo;
254 __be32 *raw_ssr;
255 u32 resp[4] = {};
256 u8 discard_support;
257 int i;
258
259 if (!(card->csd.cmdclass & CCC_APP_SPEC)) {
260 pr_warn("%s: card lacks mandatory SD Status function\n",
261 mmc_hostname(card->host));
262 return 0;
263 }
264
265 raw_ssr = kmalloc(sizeof(card->raw_ssr), GFP_KERNEL);
266 if (!raw_ssr)
267 return -ENOMEM;
268
269 if (mmc_app_sd_status(card, raw_ssr)) {
270 pr_warn("%s: problem reading SD Status register\n",
271 mmc_hostname(card->host));
272 kfree(raw_ssr);
273 return 0;
274 }
275
276 for (i = 0; i < 16; i++)
277 card->raw_ssr[i] = be32_to_cpu(raw_ssr[i]);
278
279 kfree(raw_ssr);
280
281 /*
282 * UNSTUFF_BITS only works with four u32s so we have to offset the
283 * bitfield positions accordingly.
284 */
285 au = UNSTUFF_BITS(card->raw_ssr, 428 - 384, 4);
286 if (au) {
287 if (au <= 9 || card->scr.sda_spec3) {
288 card->ssr.au = sd_au_size[au];
289 es = UNSTUFF_BITS(card->raw_ssr, 408 - 384, 16);
290 et = UNSTUFF_BITS(card->raw_ssr, 402 - 384, 6);
291 if (es && et) {
292 eo = UNSTUFF_BITS(card->raw_ssr, 400 - 384, 2);
293 card->ssr.erase_timeout = (et * 1000) / es;
294 card->ssr.erase_offset = eo * 1000;
295 }
296 } else {
297 pr_warn("%s: SD Status: Invalid Allocation Unit size\n",
298 mmc_hostname(card->host));
299 }
300 }
301
302 /*
303 * starting SD5.1 discard is supported if DISCARD_SUPPORT (b313) is set
304 */
305 resp[3] = card->raw_ssr[6];
306 discard_support = UNSTUFF_BITS(resp, 313 - 288, 1);
307 card->erase_arg = (card->scr.sda_specx && discard_support) ?
308 SD_DISCARD_ARG : SD_ERASE_ARG;
309
310 return 0;
311 }
312
313 /*
314 * Fetches and decodes switch information
315 */
mmc_read_switch(struct mmc_card * card)316 static int mmc_read_switch(struct mmc_card *card)
317 {
318 int err;
319 u8 *status;
320
321 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
322 return 0;
323
324 if (!(card->csd.cmdclass & CCC_SWITCH)) {
325 pr_warn("%s: card lacks mandatory switch function, performance might suffer\n",
326 mmc_hostname(card->host));
327 return 0;
328 }
329
330 status = kmalloc(64, GFP_KERNEL);
331 if (!status)
332 return -ENOMEM;
333
334 /*
335 * Find out the card's support bits with a mode 0 operation.
336 * The argument does not matter, as the support bits do not
337 * change with the arguments.
338 */
339 err = mmc_sd_switch(card, 0, 0, 0, status);
340 if (err) {
341 /*
342 * If the host or the card can't do the switch,
343 * fail more gracefully.
344 */
345 if (err != -EINVAL && err != -ENOSYS && err != -EFAULT)
346 goto out;
347
348 pr_warn("%s: problem reading Bus Speed modes\n",
349 mmc_hostname(card->host));
350 err = 0;
351
352 goto out;
353 }
354
355 if (status[13] & SD_MODE_HIGH_SPEED)
356 card->sw_caps.hs_max_dtr = HIGH_SPEED_MAX_DTR;
357
358 if (card->scr.sda_spec3) {
359 card->sw_caps.sd3_bus_mode = status[13];
360 /* Driver Strengths supported by the card */
361 card->sw_caps.sd3_drv_type = status[9];
362 card->sw_caps.sd3_curr_limit = status[7] | status[6] << 8;
363 }
364
365 out:
366 kfree(status);
367
368 return err;
369 }
370
371 /*
372 * Test if the card supports high-speed mode and, if so, switch to it.
373 */
mmc_sd_switch_hs(struct mmc_card * card)374 int mmc_sd_switch_hs(struct mmc_card *card)
375 {
376 int err;
377 u8 *status;
378
379 if (card->scr.sda_vsn < SCR_SPEC_VER_1)
380 return 0;
381
382 if (!(card->csd.cmdclass & CCC_SWITCH))
383 return 0;
384
385 if (!(card->host->caps & MMC_CAP_SD_HIGHSPEED))
386 return 0;
387
388 if (card->sw_caps.hs_max_dtr == 0)
389 return 0;
390
391 status = kmalloc(64, GFP_KERNEL);
392 if (!status)
393 return -ENOMEM;
394
395 err = mmc_sd_switch(card, 1, 0, HIGH_SPEED_BUS_SPEED, status);
396 if (err)
397 goto out;
398
399 if ((status[16] & 0xF) != HIGH_SPEED_BUS_SPEED) {
400 pr_warn("%s: Problem switching card into high-speed mode!\n",
401 mmc_hostname(card->host));
402 err = 0;
403 } else {
404 err = 1;
405 }
406
407 out:
408 kfree(status);
409
410 return err;
411 }
412
sd_select_driver_type(struct mmc_card * card,u8 * status)413 static int sd_select_driver_type(struct mmc_card *card, u8 *status)
414 {
415 int card_drv_type, drive_strength, drv_type;
416 int err;
417
418 card->drive_strength = 0;
419
420 card_drv_type = card->sw_caps.sd3_drv_type | SD_DRIVER_TYPE_B;
421
422 drive_strength = mmc_select_drive_strength(card,
423 card->sw_caps.uhs_max_dtr,
424 card_drv_type, &drv_type);
425
426 if (drive_strength) {
427 err = mmc_sd_switch(card, 1, 2, drive_strength, status);
428 if (err)
429 return err;
430 if ((status[15] & 0xF) != drive_strength) {
431 pr_warn("%s: Problem setting drive strength!\n",
432 mmc_hostname(card->host));
433 return 0;
434 }
435 card->drive_strength = drive_strength;
436 }
437
438 if (drv_type)
439 mmc_set_driver_type(card->host, drv_type);
440
441 return 0;
442 }
443
sd_update_bus_speed_mode(struct mmc_card * card)444 static void sd_update_bus_speed_mode(struct mmc_card *card)
445 {
446 /*
447 * If the host doesn't support any of the UHS-I modes, fallback on
448 * default speed.
449 */
450 if (!mmc_host_uhs(card->host)) {
451 card->sd_bus_speed = 0;
452 return;
453 }
454
455 if ((card->host->caps & MMC_CAP_UHS_SDR104) &&
456 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR104)) {
457 card->sd_bus_speed = UHS_SDR104_BUS_SPEED;
458 } else if ((card->host->caps & MMC_CAP_UHS_DDR50) &&
459 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_DDR50)) {
460 card->sd_bus_speed = UHS_DDR50_BUS_SPEED;
461 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
462 MMC_CAP_UHS_SDR50)) && (card->sw_caps.sd3_bus_mode &
463 SD_MODE_UHS_SDR50)) {
464 card->sd_bus_speed = UHS_SDR50_BUS_SPEED;
465 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
466 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25)) &&
467 (card->sw_caps.sd3_bus_mode & SD_MODE_UHS_SDR25)) {
468 card->sd_bus_speed = UHS_SDR25_BUS_SPEED;
469 } else if ((card->host->caps & (MMC_CAP_UHS_SDR104 |
470 MMC_CAP_UHS_SDR50 | MMC_CAP_UHS_SDR25 |
471 MMC_CAP_UHS_SDR12)) && (card->sw_caps.sd3_bus_mode &
472 SD_MODE_UHS_SDR12)) {
473 card->sd_bus_speed = UHS_SDR12_BUS_SPEED;
474 }
475 }
476
sd_set_bus_speed_mode(struct mmc_card * card,u8 * status)477 static int sd_set_bus_speed_mode(struct mmc_card *card, u8 *status)
478 {
479 int err;
480 unsigned int timing = 0;
481
482 switch (card->sd_bus_speed) {
483 case UHS_SDR104_BUS_SPEED:
484 timing = MMC_TIMING_UHS_SDR104;
485 card->sw_caps.uhs_max_dtr = UHS_SDR104_MAX_DTR;
486 break;
487 case UHS_DDR50_BUS_SPEED:
488 timing = MMC_TIMING_UHS_DDR50;
489 card->sw_caps.uhs_max_dtr = UHS_DDR50_MAX_DTR;
490 break;
491 case UHS_SDR50_BUS_SPEED:
492 timing = MMC_TIMING_UHS_SDR50;
493 card->sw_caps.uhs_max_dtr = UHS_SDR50_MAX_DTR;
494 break;
495 case UHS_SDR25_BUS_SPEED:
496 timing = MMC_TIMING_UHS_SDR25;
497 card->sw_caps.uhs_max_dtr = UHS_SDR25_MAX_DTR;
498 break;
499 case UHS_SDR12_BUS_SPEED:
500 timing = MMC_TIMING_UHS_SDR12;
501 card->sw_caps.uhs_max_dtr = UHS_SDR12_MAX_DTR;
502 break;
503 default:
504 return 0;
505 }
506
507 err = mmc_sd_switch(card, 1, 0, card->sd_bus_speed, status);
508 if (err)
509 return err;
510
511 if ((status[16] & 0xF) != card->sd_bus_speed)
512 pr_warn("%s: Problem setting bus speed mode!\n",
513 mmc_hostname(card->host));
514 else {
515 mmc_set_timing(card->host, timing);
516 mmc_set_clock(card->host, card->sw_caps.uhs_max_dtr);
517 }
518
519 return 0;
520 }
521
522 /* Get host's max current setting at its current voltage */
sd_get_host_max_current(struct mmc_host * host)523 static u32 sd_get_host_max_current(struct mmc_host *host)
524 {
525 u32 voltage, max_current;
526
527 voltage = 1 << host->ios.vdd;
528 switch (voltage) {
529 case MMC_VDD_165_195:
530 max_current = host->max_current_180;
531 break;
532 case MMC_VDD_29_30:
533 case MMC_VDD_30_31:
534 max_current = host->max_current_300;
535 break;
536 case MMC_VDD_32_33:
537 case MMC_VDD_33_34:
538 max_current = host->max_current_330;
539 break;
540 default:
541 max_current = 0;
542 }
543
544 return max_current;
545 }
546
sd_set_current_limit(struct mmc_card * card,u8 * status)547 static int sd_set_current_limit(struct mmc_card *card, u8 *status)
548 {
549 int current_limit = SD_SET_CURRENT_NO_CHANGE;
550 int err;
551 u32 max_current;
552
553 /*
554 * Current limit switch is only defined for SDR50, SDR104, and DDR50
555 * bus speed modes. For other bus speed modes, we do not change the
556 * current limit.
557 */
558 if ((card->sd_bus_speed != UHS_SDR50_BUS_SPEED) &&
559 (card->sd_bus_speed != UHS_SDR104_BUS_SPEED) &&
560 (card->sd_bus_speed != UHS_DDR50_BUS_SPEED))
561 return 0;
562
563 /*
564 * Host has different current capabilities when operating at
565 * different voltages, so find out its max current first.
566 */
567 max_current = sd_get_host_max_current(card->host);
568
569 /*
570 * We only check host's capability here, if we set a limit that is
571 * higher than the card's maximum current, the card will be using its
572 * maximum current, e.g. if the card's maximum current is 300ma, and
573 * when we set current limit to 200ma, the card will draw 200ma, and
574 * when we set current limit to 400/600/800ma, the card will draw its
575 * maximum 300ma from the host.
576 *
577 * The above is incorrect: if we try to set a current limit that is
578 * not supported by the card, the card can rightfully error out the
579 * attempt, and remain at the default current limit. This results
580 * in a 300mA card being limited to 200mA even though the host
581 * supports 800mA. Failures seen with SanDisk 8GB UHS cards with
582 * an iMX6 host. --rmk
583 */
584 if (max_current >= 800 &&
585 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_800)
586 current_limit = SD_SET_CURRENT_LIMIT_800;
587 else if (max_current >= 600 &&
588 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_600)
589 current_limit = SD_SET_CURRENT_LIMIT_600;
590 else if (max_current >= 400 &&
591 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_400)
592 current_limit = SD_SET_CURRENT_LIMIT_400;
593 else if (max_current >= 200 &&
594 card->sw_caps.sd3_curr_limit & SD_MAX_CURRENT_200)
595 current_limit = SD_SET_CURRENT_LIMIT_200;
596
597 if (current_limit != SD_SET_CURRENT_NO_CHANGE) {
598 err = mmc_sd_switch(card, 1, 3, current_limit, status);
599 if (err)
600 return err;
601
602 if (((status[15] >> 4) & 0x0F) != current_limit)
603 pr_warn("%s: Problem setting current limit!\n",
604 mmc_hostname(card->host));
605
606 }
607
608 return 0;
609 }
610
611 /*
612 * UHS-I specific initialization procedure
613 */
mmc_sd_init_uhs_card(struct mmc_card * card)614 static int mmc_sd_init_uhs_card(struct mmc_card *card)
615 {
616 int err;
617 u8 *status;
618
619 if (!(card->csd.cmdclass & CCC_SWITCH))
620 return 0;
621
622 status = kmalloc(64, GFP_KERNEL);
623 if (!status)
624 return -ENOMEM;
625
626 /* Set 4-bit bus width */
627 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
628 if (err)
629 goto out;
630
631 mmc_set_bus_width(card->host, MMC_BUS_WIDTH_4);
632
633 /*
634 * Select the bus speed mode depending on host
635 * and card capability.
636 */
637 sd_update_bus_speed_mode(card);
638
639 /* Set the driver strength for the card */
640 err = sd_select_driver_type(card, status);
641 if (err)
642 goto out;
643
644 /* Set current limit for the card */
645 err = sd_set_current_limit(card, status);
646 if (err)
647 goto out;
648
649 /* Set bus speed mode of the card */
650 err = sd_set_bus_speed_mode(card, status);
651 if (err)
652 goto out;
653
654 /*
655 * SPI mode doesn't define CMD19 and tuning is only valid for SDR50 and
656 * SDR104 mode SD-cards. Note that tuning is mandatory for SDR104.
657 */
658 if (!mmc_host_is_spi(card->host) &&
659 (card->host->ios.timing == MMC_TIMING_UHS_SDR50 ||
660 card->host->ios.timing == MMC_TIMING_UHS_DDR50 ||
661 card->host->ios.timing == MMC_TIMING_UHS_SDR104)) {
662 err = mmc_execute_tuning(card);
663
664 /*
665 * As SD Specifications Part1 Physical Layer Specification
666 * Version 3.01 says, CMD19 tuning is available for unlocked
667 * cards in transfer state of 1.8V signaling mode. The small
668 * difference between v3.00 and 3.01 spec means that CMD19
669 * tuning is also available for DDR50 mode.
670 */
671 if (err && card->host->ios.timing == MMC_TIMING_UHS_DDR50) {
672 pr_warn("%s: ddr50 tuning failed\n",
673 mmc_hostname(card->host));
674 err = 0;
675 }
676 }
677
678 out:
679 kfree(status);
680
681 return err;
682 }
683
684 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
685 card->raw_cid[2], card->raw_cid[3]);
686 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
687 card->raw_csd[2], card->raw_csd[3]);
688 MMC_DEV_ATTR(scr, "%08x%08x\n", card->raw_scr[0], card->raw_scr[1]);
689 MMC_DEV_ATTR(ssr,
690 "%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x\n",
691 card->raw_ssr[0], card->raw_ssr[1], card->raw_ssr[2],
692 card->raw_ssr[3], card->raw_ssr[4], card->raw_ssr[5],
693 card->raw_ssr[6], card->raw_ssr[7], card->raw_ssr[8],
694 card->raw_ssr[9], card->raw_ssr[10], card->raw_ssr[11],
695 card->raw_ssr[12], card->raw_ssr[13], card->raw_ssr[14],
696 card->raw_ssr[15]);
697 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
698 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
699 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
700 MMC_DEV_ATTR(fwrev, "0x%x\n", card->cid.fwrev);
701 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
702 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
703 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
704 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
705 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
706 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
707 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
708
709
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)710 static ssize_t mmc_dsr_show(struct device *dev,
711 struct device_attribute *attr,
712 char *buf)
713 {
714 struct mmc_card *card = mmc_dev_to_card(dev);
715 struct mmc_host *host = card->host;
716
717 if (card->csd.dsr_imp && host->dsr_req)
718 return sprintf(buf, "0x%x\n", host->dsr);
719 else
720 /* return default DSR value */
721 return sprintf(buf, "0x%x\n", 0x404);
722 }
723
724 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
725
726 MMC_DEV_ATTR(vendor, "0x%04x\n", card->cis.vendor);
727 MMC_DEV_ATTR(device, "0x%04x\n", card->cis.device);
728 MMC_DEV_ATTR(revision, "%u.%u\n", card->major_rev, card->minor_rev);
729
730 #define sdio_info_attr(num) \
731 static ssize_t info##num##_show(struct device *dev, struct device_attribute *attr, char *buf) \
732 { \
733 struct mmc_card *card = mmc_dev_to_card(dev); \
734 \
735 if (num > card->num_info) \
736 return -ENODATA; \
737 if (!card->info[num-1][0]) \
738 return 0; \
739 return sprintf(buf, "%s\n", card->info[num-1]); \
740 } \
741 static DEVICE_ATTR_RO(info##num)
742
743 sdio_info_attr(1);
744 sdio_info_attr(2);
745 sdio_info_attr(3);
746 sdio_info_attr(4);
747
748 static struct attribute *sd_std_attrs[] = {
749 &dev_attr_vendor.attr,
750 &dev_attr_device.attr,
751 &dev_attr_revision.attr,
752 &dev_attr_info1.attr,
753 &dev_attr_info2.attr,
754 &dev_attr_info3.attr,
755 &dev_attr_info4.attr,
756 &dev_attr_cid.attr,
757 &dev_attr_csd.attr,
758 &dev_attr_scr.attr,
759 &dev_attr_ssr.attr,
760 &dev_attr_date.attr,
761 &dev_attr_erase_size.attr,
762 &dev_attr_preferred_erase_size.attr,
763 &dev_attr_fwrev.attr,
764 &dev_attr_hwrev.attr,
765 &dev_attr_manfid.attr,
766 &dev_attr_name.attr,
767 &dev_attr_oemid.attr,
768 &dev_attr_serial.attr,
769 &dev_attr_ocr.attr,
770 &dev_attr_rca.attr,
771 &dev_attr_dsr.attr,
772 NULL,
773 };
774
sd_std_is_visible(struct kobject * kobj,struct attribute * attr,int index)775 static umode_t sd_std_is_visible(struct kobject *kobj, struct attribute *attr,
776 int index)
777 {
778 struct device *dev = kobj_to_dev(kobj);
779 struct mmc_card *card = mmc_dev_to_card(dev);
780
781 /* CIS vendor and device ids, revision and info string are available only for Combo cards */
782 if ((attr == &dev_attr_vendor.attr ||
783 attr == &dev_attr_device.attr ||
784 attr == &dev_attr_revision.attr ||
785 attr == &dev_attr_info1.attr ||
786 attr == &dev_attr_info2.attr ||
787 attr == &dev_attr_info3.attr ||
788 attr == &dev_attr_info4.attr
789 ) && card->type != MMC_TYPE_SD_COMBO)
790 return 0;
791
792 return attr->mode;
793 }
794
795 static const struct attribute_group sd_std_group = {
796 .attrs = sd_std_attrs,
797 .is_visible = sd_std_is_visible,
798 };
799 __ATTRIBUTE_GROUPS(sd_std);
800
801 struct device_type sd_type = {
802 .groups = sd_std_groups,
803 };
804
805 /*
806 * Fetch CID from card.
807 */
mmc_sd_get_cid(struct mmc_host * host,u32 ocr,u32 * cid,u32 * rocr)808 int mmc_sd_get_cid(struct mmc_host *host, u32 ocr, u32 *cid, u32 *rocr)
809 {
810 int err;
811 u32 max_current;
812 int retries = 10;
813 u32 pocr = ocr;
814
815 try_again:
816 if (!retries) {
817 ocr &= ~SD_OCR_S18R;
818 pr_warn("%s: Skipping voltage switch\n", mmc_hostname(host));
819 }
820
821 /*
822 * Since we're changing the OCR value, we seem to
823 * need to tell some cards to go back to the idle
824 * state. We wait 1ms to give cards time to
825 * respond.
826 */
827 mmc_go_idle(host);
828
829 /*
830 * If SD_SEND_IF_COND indicates an SD 2.0
831 * compliant card and we should set bit 30
832 * of the ocr to indicate that we can handle
833 * block-addressed SDHC cards.
834 */
835 err = mmc_send_if_cond(host, ocr);
836 if (!err)
837 ocr |= SD_OCR_CCS;
838
839 /*
840 * If the host supports one of UHS-I modes, request the card
841 * to switch to 1.8V signaling level. If the card has failed
842 * repeatedly to switch however, skip this.
843 */
844 if (retries && mmc_host_uhs(host))
845 ocr |= SD_OCR_S18R;
846
847 /*
848 * If the host can supply more than 150mA at current voltage,
849 * XPC should be set to 1.
850 */
851 max_current = sd_get_host_max_current(host);
852 if (max_current > 150)
853 ocr |= SD_OCR_XPC;
854
855 err = mmc_send_app_op_cond(host, ocr, rocr);
856 if (err)
857 return err;
858
859 /*
860 * In case the S18A bit is set in the response, let's start the signal
861 * voltage switch procedure. SPI mode doesn't support CMD11.
862 * Note that, according to the spec, the S18A bit is not valid unless
863 * the CCS bit is set as well. We deliberately deviate from the spec in
864 * regards to this, which allows UHS-I to be supported for SDSC cards.
865 */
866 if (!mmc_host_is_spi(host) && rocr && (*rocr & 0x01000000)) {
867 err = mmc_set_uhs_voltage(host, pocr);
868 if (err == -EAGAIN) {
869 retries--;
870 goto try_again;
871 } else if (err) {
872 retries = 0;
873 goto try_again;
874 }
875 }
876
877 err = mmc_send_cid(host, cid);
878 return err;
879 }
880
mmc_sd_get_csd(struct mmc_card * card)881 int mmc_sd_get_csd(struct mmc_card *card)
882 {
883 int err;
884
885 /*
886 * Fetch CSD from card.
887 */
888 err = mmc_send_csd(card, card->raw_csd);
889 if (err)
890 return err;
891
892 err = mmc_decode_csd(card);
893 if (err)
894 return err;
895
896 return 0;
897 }
898
mmc_sd_get_ro(struct mmc_host * host)899 static int mmc_sd_get_ro(struct mmc_host *host)
900 {
901 int ro;
902
903 /*
904 * Some systems don't feature a write-protect pin and don't need one.
905 * E.g. because they only have micro-SD card slot. For those systems
906 * assume that the SD card is always read-write.
907 */
908 if (host->caps2 & MMC_CAP2_NO_WRITE_PROTECT)
909 return 0;
910
911 if (!host->ops->get_ro)
912 return -1;
913
914 ro = host->ops->get_ro(host);
915
916 return ro;
917 }
918
mmc_sd_setup_card(struct mmc_host * host,struct mmc_card * card,bool reinit)919 int mmc_sd_setup_card(struct mmc_host *host, struct mmc_card *card,
920 bool reinit)
921 {
922 int err;
923
924 if (!reinit) {
925 /*
926 * Fetch SCR from card.
927 */
928 err = mmc_app_send_scr(card);
929 if (err)
930 return err;
931
932 err = mmc_decode_scr(card);
933 if (err)
934 return err;
935
936 /*
937 * Fetch and process SD Status register.
938 */
939 err = mmc_read_ssr(card);
940 if (err)
941 return err;
942
943 /* Erase init depends on CSD and SSR */
944 mmc_init_erase(card);
945
946 /*
947 * Fetch switch information from card.
948 */
949 err = mmc_read_switch(card);
950 if (err)
951 return err;
952 }
953
954 /*
955 * For SPI, enable CRC as appropriate.
956 * This CRC enable is located AFTER the reading of the
957 * card registers because some SDHC cards are not able
958 * to provide valid CRCs for non-512-byte blocks.
959 */
960 if (mmc_host_is_spi(host)) {
961 err = mmc_spi_set_crc(host, use_spi_crc);
962 if (err)
963 return err;
964 }
965
966 /*
967 * Check if read-only switch is active.
968 */
969 if (!reinit) {
970 int ro = mmc_sd_get_ro(host);
971
972 if (ro < 0) {
973 pr_warn("%s: host does not support reading read-only switch, assuming write-enable\n",
974 mmc_hostname(host));
975 } else if (ro > 0) {
976 mmc_card_set_readonly(card);
977 }
978 }
979
980 return 0;
981 }
982
mmc_sd_get_max_clock(struct mmc_card * card)983 unsigned mmc_sd_get_max_clock(struct mmc_card *card)
984 {
985 unsigned max_dtr = (unsigned int)-1;
986
987 if (mmc_card_hs(card)) {
988 if (max_dtr > card->sw_caps.hs_max_dtr)
989 max_dtr = card->sw_caps.hs_max_dtr;
990 } else if (max_dtr > card->csd.max_dtr) {
991 max_dtr = card->csd.max_dtr;
992 }
993
994 return max_dtr;
995 }
996
mmc_sd_card_using_v18(struct mmc_card * card)997 static bool mmc_sd_card_using_v18(struct mmc_card *card)
998 {
999 /*
1000 * According to the SD spec., the Bus Speed Mode (function group 1) bits
1001 * 2 to 4 are zero if the card is initialized at 3.3V signal level. Thus
1002 * they can be used to determine if the card has already switched to
1003 * 1.8V signaling.
1004 */
1005 return card->sw_caps.sd3_bus_mode &
1006 (SD_MODE_UHS_SDR50 | SD_MODE_UHS_SDR104 | SD_MODE_UHS_DDR50);
1007 }
1008
sd_write_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u8 reg_data)1009 static int sd_write_ext_reg(struct mmc_card *card, u8 fno, u8 page, u16 offset,
1010 u8 reg_data)
1011 {
1012 struct mmc_host *host = card->host;
1013 struct mmc_request mrq = {};
1014 struct mmc_command cmd = {};
1015 struct mmc_data data = {};
1016 struct scatterlist sg;
1017 u8 *reg_buf;
1018
1019 reg_buf = kzalloc(512, GFP_KERNEL);
1020 if (!reg_buf)
1021 return -ENOMEM;
1022
1023 mrq.cmd = &cmd;
1024 mrq.data = &data;
1025
1026 /*
1027 * Arguments of CMD49:
1028 * [31:31] MIO (0 = memory).
1029 * [30:27] FNO (function number).
1030 * [26:26] MW - mask write mode (0 = disable).
1031 * [25:18] page number.
1032 * [17:9] offset address.
1033 * [8:0] length (0 = 1 byte).
1034 */
1035 cmd.arg = fno << 27 | page << 18 | offset << 9;
1036
1037 /* The first byte in the buffer is the data to be written. */
1038 reg_buf[0] = reg_data;
1039
1040 data.flags = MMC_DATA_WRITE;
1041 data.blksz = 512;
1042 data.blocks = 1;
1043 data.sg = &sg;
1044 data.sg_len = 1;
1045 sg_init_one(&sg, reg_buf, 512);
1046
1047 cmd.opcode = SD_WRITE_EXTR_SINGLE;
1048 cmd.flags = MMC_RSP_R1 | MMC_CMD_ADTC;
1049
1050 mmc_set_data_timeout(&data, card);
1051 mmc_wait_for_req(host, &mrq);
1052
1053 kfree(reg_buf);
1054
1055 /*
1056 * Note that, the SD card is allowed to signal busy on DAT0 up to 1s
1057 * after the CMD49. Although, let's leave this to be managed by the
1058 * caller.
1059 */
1060
1061 if (cmd.error)
1062 return cmd.error;
1063 if (data.error)
1064 return data.error;
1065
1066 return 0;
1067 }
1068
sd_read_ext_reg(struct mmc_card * card,u8 fno,u8 page,u16 offset,u16 len,u8 * reg_buf)1069 static int sd_read_ext_reg(struct mmc_card *card, u8 fno, u8 page,
1070 u16 offset, u16 len, u8 *reg_buf)
1071 {
1072 u32 cmd_args;
1073
1074 /*
1075 * Command arguments of CMD48:
1076 * [31:31] MIO (0 = memory).
1077 * [30:27] FNO (function number).
1078 * [26:26] reserved (0).
1079 * [25:18] page number.
1080 * [17:9] offset address.
1081 * [8:0] length (0 = 1 byte, 1ff = 512 bytes).
1082 */
1083 cmd_args = fno << 27 | page << 18 | offset << 9 | (len -1);
1084
1085 return mmc_send_adtc_data(card, card->host, SD_READ_EXTR_SINGLE,
1086 cmd_args, reg_buf, 512);
1087 }
1088
sd_parse_ext_reg_power(struct mmc_card * card,u8 fno,u8 page,u16 offset)1089 static int sd_parse_ext_reg_power(struct mmc_card *card, u8 fno, u8 page,
1090 u16 offset)
1091 {
1092 int err;
1093 u8 *reg_buf;
1094
1095 reg_buf = kzalloc(512, GFP_KERNEL);
1096 if (!reg_buf)
1097 return -ENOMEM;
1098
1099 /* Read the extension register for power management function. */
1100 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1101 if (err) {
1102 pr_warn("%s: error %d reading PM func of ext reg\n",
1103 mmc_hostname(card->host), err);
1104 goto out;
1105 }
1106
1107 /* PM revision consists of 4 bits. */
1108 card->ext_power.rev = reg_buf[0] & 0xf;
1109
1110 /* Power Off Notification support at bit 4. */
1111 if (reg_buf[1] & BIT(4))
1112 card->ext_power.feature_support |= SD_EXT_POWER_OFF_NOTIFY;
1113
1114 /* Power Sustenance support at bit 5. */
1115 if (reg_buf[1] & BIT(5))
1116 card->ext_power.feature_support |= SD_EXT_POWER_SUSTENANCE;
1117
1118 /* Power Down Mode support at bit 6. */
1119 if (reg_buf[1] & BIT(6))
1120 card->ext_power.feature_support |= SD_EXT_POWER_DOWN_MODE;
1121
1122 card->ext_power.fno = fno;
1123 card->ext_power.page = page;
1124 card->ext_power.offset = offset;
1125
1126 out:
1127 kfree(reg_buf);
1128 return err;
1129 }
1130
sd_parse_ext_reg_perf(struct mmc_card * card,u8 fno,u8 page,u16 offset)1131 static int sd_parse_ext_reg_perf(struct mmc_card *card, u8 fno, u8 page,
1132 u16 offset)
1133 {
1134 int err;
1135 u8 *reg_buf;
1136
1137 reg_buf = kzalloc(512, GFP_KERNEL);
1138 if (!reg_buf)
1139 return -ENOMEM;
1140
1141 err = sd_read_ext_reg(card, fno, page, offset, 512, reg_buf);
1142 if (err) {
1143 pr_warn("%s: error %d reading PERF func of ext reg\n",
1144 mmc_hostname(card->host), err);
1145 goto out;
1146 }
1147
1148 /* PERF revision. */
1149 card->ext_perf.rev = reg_buf[0];
1150
1151 /* FX_EVENT support at bit 0. */
1152 if (reg_buf[1] & BIT(0))
1153 card->ext_perf.feature_support |= SD_EXT_PERF_FX_EVENT;
1154
1155 /* Card initiated self-maintenance support at bit 0. */
1156 if (reg_buf[2] & BIT(0))
1157 card->ext_perf.feature_support |= SD_EXT_PERF_CARD_MAINT;
1158
1159 /* Host initiated self-maintenance support at bit 1. */
1160 if (reg_buf[2] & BIT(1))
1161 card->ext_perf.feature_support |= SD_EXT_PERF_HOST_MAINT;
1162
1163 /* Cache support at bit 0. */
1164 if (reg_buf[4] & BIT(0))
1165 card->ext_perf.feature_support |= SD_EXT_PERF_CACHE;
1166
1167 /* Command queue support indicated via queue depth bits (0 to 4). */
1168 if (reg_buf[6] & 0x1f)
1169 card->ext_perf.feature_support |= SD_EXT_PERF_CMD_QUEUE;
1170
1171 card->ext_perf.fno = fno;
1172 card->ext_perf.page = page;
1173 card->ext_perf.offset = offset;
1174
1175 out:
1176 kfree(reg_buf);
1177 return err;
1178 }
1179
sd_parse_ext_reg(struct mmc_card * card,u8 * gen_info_buf,u16 * next_ext_addr)1180 static int sd_parse_ext_reg(struct mmc_card *card, u8 *gen_info_buf,
1181 u16 *next_ext_addr)
1182 {
1183 u8 num_regs, fno, page;
1184 u16 sfc, offset, ext = *next_ext_addr;
1185 u32 reg_addr;
1186
1187 /*
1188 * Parse only one register set per extension, as that is sufficient to
1189 * support the standard functions. This means another 48 bytes in the
1190 * buffer must be available.
1191 */
1192 if (ext + 48 > 512)
1193 return -EFAULT;
1194
1195 /* Standard Function Code */
1196 memcpy(&sfc, &gen_info_buf[ext], 2);
1197
1198 /* Address to the next extension. */
1199 memcpy(next_ext_addr, &gen_info_buf[ext + 40], 2);
1200
1201 /* Number of registers for this extension. */
1202 num_regs = gen_info_buf[ext + 42];
1203
1204 /* We support only one register per extension. */
1205 if (num_regs != 1)
1206 return 0;
1207
1208 /* Extension register address. */
1209 memcpy(®_addr, &gen_info_buf[ext + 44], 4);
1210
1211 /* 9 bits (0 to 8) contains the offset address. */
1212 offset = reg_addr & 0x1ff;
1213
1214 /* 8 bits (9 to 16) contains the page number. */
1215 page = reg_addr >> 9 & 0xff ;
1216
1217 /* 4 bits (18 to 21) contains the function number. */
1218 fno = reg_addr >> 18 & 0xf;
1219
1220 /* Standard Function Code for power management. */
1221 if (sfc == 0x1)
1222 return sd_parse_ext_reg_power(card, fno, page, offset);
1223
1224 /* Standard Function Code for performance enhancement. */
1225 if (sfc == 0x2)
1226 return sd_parse_ext_reg_perf(card, fno, page, offset);
1227
1228 return 0;
1229 }
1230
sd_read_ext_regs(struct mmc_card * card)1231 static int sd_read_ext_regs(struct mmc_card *card)
1232 {
1233 int err, i;
1234 u8 num_ext, *gen_info_buf;
1235 u16 rev, len, next_ext_addr;
1236
1237 if (mmc_host_is_spi(card->host))
1238 return 0;
1239
1240 if (!(card->scr.cmds & SD_SCR_CMD48_SUPPORT))
1241 return 0;
1242
1243 gen_info_buf = kzalloc(512, GFP_KERNEL);
1244 if (!gen_info_buf)
1245 return -ENOMEM;
1246
1247 /*
1248 * Read 512 bytes of general info, which is found at function number 0,
1249 * at page 0 and with no offset.
1250 */
1251 err = sd_read_ext_reg(card, 0, 0, 0, 512, gen_info_buf);
1252 if (err) {
1253 pr_warn("%s: error %d reading general info of SD ext reg\n",
1254 mmc_hostname(card->host), err);
1255 goto out;
1256 }
1257
1258 /* General info structure revision. */
1259 memcpy(&rev, &gen_info_buf[0], 2);
1260
1261 /* Length of general info in bytes. */
1262 memcpy(&len, &gen_info_buf[2], 2);
1263
1264 /* Number of extensions to be find. */
1265 num_ext = gen_info_buf[4];
1266
1267 /* We support revision 0, but limit it to 512 bytes for simplicity. */
1268 if (rev != 0 || len > 512) {
1269 pr_warn("%s: non-supported SD ext reg layout\n",
1270 mmc_hostname(card->host));
1271 goto out;
1272 }
1273
1274 /*
1275 * Parse the extension registers. The first extension should start
1276 * immediately after the general info header (16 bytes).
1277 */
1278 next_ext_addr = 16;
1279 for (i = 0; i < num_ext; i++) {
1280 err = sd_parse_ext_reg(card, gen_info_buf, &next_ext_addr);
1281 if (err) {
1282 pr_warn("%s: error %d parsing SD ext reg\n",
1283 mmc_hostname(card->host), err);
1284 goto out;
1285 }
1286 }
1287
1288 out:
1289 kfree(gen_info_buf);
1290 return err;
1291 }
1292
sd_cache_enabled(struct mmc_host * host)1293 static bool sd_cache_enabled(struct mmc_host *host)
1294 {
1295 return host->card->ext_perf.feature_enabled & SD_EXT_PERF_CACHE;
1296 }
1297
sd_flush_cache(struct mmc_host * host)1298 static int sd_flush_cache(struct mmc_host *host)
1299 {
1300 struct mmc_card *card = host->card;
1301 u8 *reg_buf, fno, page;
1302 u16 offset;
1303 int err;
1304
1305 if (!sd_cache_enabled(host))
1306 return 0;
1307
1308 reg_buf = kzalloc(512, GFP_KERNEL);
1309 if (!reg_buf)
1310 return -ENOMEM;
1311
1312 /*
1313 * Set Flush Cache at bit 0 in the performance enhancement register at
1314 * 261 bytes offset.
1315 */
1316 fno = card->ext_perf.fno;
1317 page = card->ext_perf.page;
1318 offset = card->ext_perf.offset + 261;
1319
1320 err = sd_write_ext_reg(card, fno, page, offset, BIT(0));
1321 if (err) {
1322 pr_warn("%s: error %d writing Cache Flush bit\n",
1323 mmc_hostname(host), err);
1324 goto out;
1325 }
1326
1327 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1328 MMC_BUSY_EXTR_SINGLE);
1329 if (err)
1330 goto out;
1331
1332 /*
1333 * Read the Flush Cache bit. The card shall reset it, to confirm that
1334 * it's has completed the flushing of the cache.
1335 */
1336 err = sd_read_ext_reg(card, fno, page, offset, 1, reg_buf);
1337 if (err) {
1338 pr_warn("%s: error %d reading Cache Flush bit\n",
1339 mmc_hostname(host), err);
1340 goto out;
1341 }
1342
1343 if (reg_buf[0] & BIT(0))
1344 err = -ETIMEDOUT;
1345 out:
1346 kfree(reg_buf);
1347 return err;
1348 }
1349
sd_enable_cache(struct mmc_card * card)1350 static int sd_enable_cache(struct mmc_card *card)
1351 {
1352 u8 *reg_buf;
1353 int err;
1354
1355 card->ext_perf.feature_enabled &= ~SD_EXT_PERF_CACHE;
1356
1357 reg_buf = kzalloc(512, GFP_KERNEL);
1358 if (!reg_buf)
1359 return -ENOMEM;
1360
1361 /*
1362 * Set Cache Enable at bit 0 in the performance enhancement register at
1363 * 260 bytes offset.
1364 */
1365 err = sd_write_ext_reg(card, card->ext_perf.fno, card->ext_perf.page,
1366 card->ext_perf.offset + 260, BIT(0));
1367 if (err) {
1368 pr_warn("%s: error %d writing Cache Enable bit\n",
1369 mmc_hostname(card->host), err);
1370 goto out;
1371 }
1372
1373 err = mmc_poll_for_busy(card, SD_WRITE_EXTR_SINGLE_TIMEOUT_MS, false,
1374 MMC_BUSY_EXTR_SINGLE);
1375 if (!err)
1376 card->ext_perf.feature_enabled |= SD_EXT_PERF_CACHE;
1377
1378 out:
1379 kfree(reg_buf);
1380 return err;
1381 }
1382
1383 /*
1384 * Handle the detection and initialisation of a card.
1385 *
1386 * In the case of a resume, "oldcard" will contain the card
1387 * we're trying to reinitialise.
1388 */
mmc_sd_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1389 static int mmc_sd_init_card(struct mmc_host *host, u32 ocr,
1390 struct mmc_card *oldcard)
1391 {
1392 struct mmc_card *card;
1393 int err;
1394 u32 cid[4];
1395 u32 rocr = 0;
1396 bool v18_fixup_failed = false;
1397
1398 WARN_ON(!host->claimed);
1399 retry:
1400 err = mmc_sd_get_cid(host, ocr, cid, &rocr);
1401 if (err)
1402 return err;
1403
1404 if (oldcard) {
1405 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1406 pr_debug("%s: Perhaps the card was replaced\n",
1407 mmc_hostname(host));
1408 return -ENOENT;
1409 }
1410
1411 card = oldcard;
1412 } else {
1413 /*
1414 * Allocate card structure.
1415 */
1416 card = mmc_alloc_card(host, &sd_type);
1417 if (IS_ERR(card))
1418 return PTR_ERR(card);
1419
1420 card->ocr = ocr;
1421 card->type = MMC_TYPE_SD;
1422 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1423 }
1424
1425 /*
1426 * Call the optional HC's init_card function to handle quirks.
1427 */
1428 if (host->ops->init_card)
1429 host->ops->init_card(host, card);
1430
1431 /*
1432 * For native busses: get card RCA and quit open drain mode.
1433 */
1434 if (!mmc_host_is_spi(host)) {
1435 err = mmc_send_relative_addr(host, &card->rca);
1436 if (err)
1437 goto free_card;
1438 }
1439
1440 if (!oldcard) {
1441 err = mmc_sd_get_csd(card);
1442 if (err)
1443 goto free_card;
1444
1445 mmc_decode_cid(card);
1446 }
1447
1448 /*
1449 * handling only for cards supporting DSR and hosts requesting
1450 * DSR configuration
1451 */
1452 if (card->csd.dsr_imp && host->dsr_req)
1453 mmc_set_dsr(host);
1454
1455 /*
1456 * Select card, as all following commands rely on that.
1457 */
1458 if (!mmc_host_is_spi(host)) {
1459 err = mmc_select_card(card);
1460 if (err)
1461 goto free_card;
1462 }
1463
1464 err = mmc_sd_setup_card(host, card, oldcard != NULL);
1465 if (err)
1466 goto free_card;
1467
1468 /*
1469 * If the card has not been power cycled, it may still be using 1.8V
1470 * signaling. Detect that situation and try to initialize a UHS-I (1.8V)
1471 * transfer mode.
1472 */
1473 if (!v18_fixup_failed && !mmc_host_is_spi(host) && mmc_host_uhs(host) &&
1474 mmc_sd_card_using_v18(card) &&
1475 host->ios.signal_voltage != MMC_SIGNAL_VOLTAGE_180) {
1476 /*
1477 * Re-read switch information in case it has changed since
1478 * oldcard was initialized.
1479 */
1480 if (oldcard) {
1481 err = mmc_read_switch(card);
1482 if (err)
1483 goto free_card;
1484 }
1485 if (mmc_sd_card_using_v18(card)) {
1486 if (mmc_host_set_uhs_voltage(host) ||
1487 mmc_sd_init_uhs_card(card)) {
1488 v18_fixup_failed = true;
1489 mmc_power_cycle(host, ocr);
1490 if (!oldcard)
1491 mmc_remove_card(card);
1492 goto retry;
1493 }
1494 goto done;
1495 }
1496 }
1497
1498 /* Initialization sequence for UHS-I cards */
1499 if (rocr & SD_ROCR_S18A && mmc_host_uhs(host)) {
1500 err = mmc_sd_init_uhs_card(card);
1501 if (err)
1502 goto free_card;
1503 } else {
1504 /*
1505 * Attempt to change to high-speed (if supported)
1506 */
1507 err = mmc_sd_switch_hs(card);
1508 if (err > 0)
1509 mmc_set_timing(card->host, MMC_TIMING_SD_HS);
1510 else if (err)
1511 goto free_card;
1512
1513 /*
1514 * Set bus speed.
1515 */
1516 mmc_set_clock(host, mmc_sd_get_max_clock(card));
1517
1518 /*
1519 * Switch to wider bus (if supported).
1520 */
1521 if ((host->caps & MMC_CAP_4_BIT_DATA) &&
1522 (card->scr.bus_widths & SD_SCR_BUS_WIDTH_4)) {
1523 err = mmc_app_set_bus_width(card, MMC_BUS_WIDTH_4);
1524 if (err)
1525 goto free_card;
1526
1527 mmc_set_bus_width(host, MMC_BUS_WIDTH_4);
1528 }
1529 }
1530
1531 if (!oldcard) {
1532 /* Read/parse the extension registers. */
1533 err = sd_read_ext_regs(card);
1534 if (err)
1535 goto free_card;
1536 }
1537
1538 /* Enable internal SD cache if supported. */
1539 if (card->ext_perf.feature_support & SD_EXT_PERF_CACHE) {
1540 err = sd_enable_cache(card);
1541 if (err)
1542 goto free_card;
1543 }
1544
1545 if (host->cqe_ops && !host->cqe_enabled) {
1546 err = host->cqe_ops->cqe_enable(host, card);
1547 if (!err) {
1548 host->cqe_enabled = true;
1549 host->hsq_enabled = true;
1550 pr_info("%s: Host Software Queue enabled\n",
1551 mmc_hostname(host));
1552 }
1553 }
1554
1555 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1556 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1557 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1558 mmc_hostname(host));
1559 err = -EINVAL;
1560 goto free_card;
1561 }
1562 done:
1563 host->card = card;
1564 return 0;
1565
1566 free_card:
1567 if (!oldcard)
1568 mmc_remove_card(card);
1569
1570 return err;
1571 }
1572
1573 /*
1574 * Host is being removed. Free up the current card.
1575 */
mmc_sd_remove(struct mmc_host * host)1576 static void mmc_sd_remove(struct mmc_host *host)
1577 {
1578 mmc_remove_card(host->card);
1579 host->card = NULL;
1580 }
1581
1582 /*
1583 * Card detection - card is alive.
1584 */
mmc_sd_alive(struct mmc_host * host)1585 static int mmc_sd_alive(struct mmc_host *host)
1586 {
1587 return mmc_send_status(host->card, NULL);
1588 }
1589
1590 /*
1591 * Card detection callback from host.
1592 */
mmc_sd_detect(struct mmc_host * host)1593 static void mmc_sd_detect(struct mmc_host *host)
1594 {
1595 int err;
1596
1597 mmc_get_card(host->card, NULL);
1598
1599 /*
1600 * Just check if our card has been removed.
1601 */
1602 err = _mmc_detect_card_removed(host);
1603
1604 mmc_put_card(host->card, NULL);
1605
1606 if (err) {
1607 mmc_sd_remove(host);
1608
1609 mmc_claim_host(host);
1610 mmc_detach_bus(host);
1611 mmc_power_off(host);
1612 mmc_release_host(host);
1613 }
1614 }
1615
sd_can_poweroff_notify(struct mmc_card * card)1616 static int sd_can_poweroff_notify(struct mmc_card *card)
1617 {
1618 return card->ext_power.feature_support & SD_EXT_POWER_OFF_NOTIFY;
1619 }
1620
sd_busy_poweroff_notify_cb(void * cb_data,bool * busy)1621 static int sd_busy_poweroff_notify_cb(void *cb_data, bool *busy)
1622 {
1623 struct sd_busy_data *data = cb_data;
1624 struct mmc_card *card = data->card;
1625 int err;
1626
1627 /*
1628 * Read the status register for the power management function. It's at
1629 * one byte offset and is one byte long. The Power Off Notification
1630 * Ready is bit 0.
1631 */
1632 err = sd_read_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1633 card->ext_power.offset + 1, 1, data->reg_buf);
1634 if (err) {
1635 pr_warn("%s: error %d reading status reg of PM func\n",
1636 mmc_hostname(card->host), err);
1637 return err;
1638 }
1639
1640 *busy = !(data->reg_buf[0] & BIT(0));
1641 return 0;
1642 }
1643
sd_poweroff_notify(struct mmc_card * card)1644 static int sd_poweroff_notify(struct mmc_card *card)
1645 {
1646 struct sd_busy_data cb_data;
1647 u8 *reg_buf;
1648 int err;
1649
1650 reg_buf = kzalloc(512, GFP_KERNEL);
1651 if (!reg_buf)
1652 return -ENOMEM;
1653
1654 /*
1655 * Set the Power Off Notification bit in the power management settings
1656 * register at 2 bytes offset.
1657 */
1658 err = sd_write_ext_reg(card, card->ext_power.fno, card->ext_power.page,
1659 card->ext_power.offset + 2, BIT(0));
1660 if (err) {
1661 pr_warn("%s: error %d writing Power Off Notify bit\n",
1662 mmc_hostname(card->host), err);
1663 goto out;
1664 }
1665
1666 cb_data.card = card;
1667 cb_data.reg_buf = reg_buf;
1668 err = __mmc_poll_for_busy(card, SD_POWEROFF_NOTIFY_TIMEOUT_MS,
1669 &sd_busy_poweroff_notify_cb, &cb_data);
1670
1671 out:
1672 kfree(reg_buf);
1673 return err;
1674 }
1675
_mmc_sd_suspend(struct mmc_host * host)1676 static int _mmc_sd_suspend(struct mmc_host *host)
1677 {
1678 struct mmc_card *card = host->card;
1679 int err = 0;
1680
1681 mmc_claim_host(host);
1682
1683 if (mmc_card_suspended(card))
1684 goto out;
1685
1686 if (sd_can_poweroff_notify(card))
1687 err = sd_poweroff_notify(card);
1688 else if (!mmc_host_is_spi(host))
1689 err = mmc_deselect_cards(host);
1690
1691 if (!err) {
1692 mmc_power_off(host);
1693 mmc_card_set_suspended(card);
1694 }
1695
1696 out:
1697 mmc_release_host(host);
1698 return err;
1699 }
1700
1701 /*
1702 * Callback for suspend
1703 */
mmc_sd_suspend(struct mmc_host * host)1704 static int mmc_sd_suspend(struct mmc_host *host)
1705 {
1706 int err;
1707
1708 err = _mmc_sd_suspend(host);
1709 if (!err) {
1710 pm_runtime_disable(&host->card->dev);
1711 pm_runtime_set_suspended(&host->card->dev);
1712 }
1713
1714 return err;
1715 }
1716
1717 /*
1718 * This function tries to determine if the same card is still present
1719 * and, if so, restore all state to it.
1720 */
_mmc_sd_resume(struct mmc_host * host)1721 static int _mmc_sd_resume(struct mmc_host *host)
1722 {
1723 int err = 0;
1724
1725 mmc_claim_host(host);
1726
1727 if (!mmc_card_suspended(host->card))
1728 goto out;
1729
1730 mmc_power_up(host, host->card->ocr);
1731 err = mmc_sd_init_card(host, host->card->ocr, host->card);
1732 mmc_card_clr_suspended(host->card);
1733
1734 out:
1735 mmc_release_host(host);
1736 return err;
1737 }
1738
1739 /*
1740 * Callback for resume
1741 */
mmc_sd_resume(struct mmc_host * host)1742 static int mmc_sd_resume(struct mmc_host *host)
1743 {
1744 pm_runtime_enable(&host->card->dev);
1745 return 0;
1746 }
1747
1748 /*
1749 * Callback for runtime_suspend.
1750 */
mmc_sd_runtime_suspend(struct mmc_host * host)1751 static int mmc_sd_runtime_suspend(struct mmc_host *host)
1752 {
1753 int err;
1754
1755 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
1756 return 0;
1757
1758 err = _mmc_sd_suspend(host);
1759 if (err)
1760 pr_err("%s: error %d doing aggressive suspend\n",
1761 mmc_hostname(host), err);
1762
1763 return err;
1764 }
1765
1766 /*
1767 * Callback for runtime_resume.
1768 */
mmc_sd_runtime_resume(struct mmc_host * host)1769 static int mmc_sd_runtime_resume(struct mmc_host *host)
1770 {
1771 int err;
1772
1773 err = _mmc_sd_resume(host);
1774 if (err && err != -ENOMEDIUM)
1775 pr_err("%s: error %d doing runtime resume\n",
1776 mmc_hostname(host), err);
1777
1778 return 0;
1779 }
1780
mmc_sd_hw_reset(struct mmc_host * host)1781 static int mmc_sd_hw_reset(struct mmc_host *host)
1782 {
1783 mmc_power_cycle(host, host->card->ocr);
1784 return mmc_sd_init_card(host, host->card->ocr, host->card);
1785 }
1786
1787 static const struct mmc_bus_ops mmc_sd_ops = {
1788 .remove = mmc_sd_remove,
1789 .detect = mmc_sd_detect,
1790 .runtime_suspend = mmc_sd_runtime_suspend,
1791 .runtime_resume = mmc_sd_runtime_resume,
1792 .suspend = mmc_sd_suspend,
1793 .resume = mmc_sd_resume,
1794 .alive = mmc_sd_alive,
1795 .shutdown = mmc_sd_suspend,
1796 .hw_reset = mmc_sd_hw_reset,
1797 .cache_enabled = sd_cache_enabled,
1798 .flush_cache = sd_flush_cache,
1799 };
1800
1801 /*
1802 * Starting point for SD card init.
1803 */
mmc_attach_sd(struct mmc_host * host)1804 int mmc_attach_sd(struct mmc_host *host)
1805 {
1806 int err;
1807 u32 ocr, rocr;
1808
1809 WARN_ON(!host->claimed);
1810
1811 err = mmc_send_app_op_cond(host, 0, &ocr);
1812 if (err)
1813 return err;
1814
1815 mmc_attach_bus(host, &mmc_sd_ops);
1816 if (host->ocr_avail_sd)
1817 host->ocr_avail = host->ocr_avail_sd;
1818
1819 /*
1820 * We need to get OCR a different way for SPI.
1821 */
1822 if (mmc_host_is_spi(host)) {
1823 mmc_go_idle(host);
1824
1825 err = mmc_spi_read_ocr(host, 0, &ocr);
1826 if (err)
1827 goto err;
1828 }
1829
1830 /*
1831 * Some SD cards claims an out of spec VDD voltage range. Let's treat
1832 * these bits as being in-valid and especially also bit7.
1833 */
1834 ocr &= ~0x7FFF;
1835
1836 rocr = mmc_select_voltage(host, ocr);
1837
1838 /*
1839 * Can we support the voltage(s) of the card(s)?
1840 */
1841 if (!rocr) {
1842 err = -EINVAL;
1843 goto err;
1844 }
1845
1846 /*
1847 * Detect and init the card.
1848 */
1849 err = mmc_sd_init_card(host, rocr, NULL);
1850 if (err)
1851 goto err;
1852
1853 mmc_release_host(host);
1854 err = mmc_add_card(host->card);
1855 if (err)
1856 goto remove_card;
1857
1858 mmc_claim_host(host);
1859 return 0;
1860
1861 remove_card:
1862 mmc_remove_card(host->card);
1863 host->card = NULL;
1864 mmc_claim_host(host);
1865 err:
1866 mmc_detach_bus(host);
1867
1868 pr_err("%s: error %d whilst initialising SD card\n",
1869 mmc_hostname(host), err);
1870
1871 return err;
1872 }
1873