1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright 2007-2008 Pierre Ossman
4 */
5
6 #include <linux/mmc/core.h>
7 #include <linux/mmc/card.h>
8 #include <linux/mmc/host.h>
9 #include <linux/mmc/mmc.h>
10 #include <linux/slab.h>
11
12 #include <linux/scatterlist.h>
13 #include <linux/swap.h> /* For nr_free_buffer_pages() */
14 #include <linux/list.h>
15
16 #include <linux/debugfs.h>
17 #include <linux/uaccess.h>
18 #include <linux/seq_file.h>
19 #include <linux/module.h>
20
21 #include "core.h"
22 #include "card.h"
23 #include "host.h"
24 #include "bus.h"
25 #include "mmc_ops.h"
26
27 #define RESULT_OK 0
28 #define RESULT_FAIL 1
29 #define RESULT_UNSUP_HOST 2
30 #define RESULT_UNSUP_CARD 3
31
32 #define BUFFER_ORDER 2
33 #define BUFFER_SIZE (PAGE_SIZE << BUFFER_ORDER)
34
35 #define TEST_ALIGN_END 8
36
37 /*
38 * Limit the test area size to the maximum MMC HC erase group size. Note that
39 * the maximum SD allocation unit size is just 4MiB.
40 */
41 #define TEST_AREA_MAX_SIZE (128 * 1024 * 1024)
42
43 /**
44 * struct mmc_test_pages - pages allocated by 'alloc_pages()'.
45 * @page: first page in the allocation
46 * @order: order of the number of pages allocated
47 */
48 struct mmc_test_pages {
49 struct page *page;
50 unsigned int order;
51 };
52
53 /**
54 * struct mmc_test_mem - allocated memory.
55 * @arr: array of allocations
56 * @cnt: number of allocations
57 */
58 struct mmc_test_mem {
59 struct mmc_test_pages *arr;
60 unsigned int cnt;
61 };
62
63 /**
64 * struct mmc_test_area - information for performance tests.
65 * @max_sz: test area size (in bytes)
66 * @dev_addr: address on card at which to do performance tests
67 * @max_tfr: maximum transfer size allowed by driver (in bytes)
68 * @max_segs: maximum segments allowed by driver in scatterlist @sg
69 * @max_seg_sz: maximum segment size allowed by driver
70 * @blocks: number of (512 byte) blocks currently mapped by @sg
71 * @sg_len: length of currently mapped scatterlist @sg
72 * @mem: allocated memory
73 * @sg: scatterlist
74 * @sg_areq: scatterlist for non-blocking request
75 */
76 struct mmc_test_area {
77 unsigned long max_sz;
78 unsigned int dev_addr;
79 unsigned int max_tfr;
80 unsigned int max_segs;
81 unsigned int max_seg_sz;
82 unsigned int blocks;
83 unsigned int sg_len;
84 struct mmc_test_mem *mem;
85 struct scatterlist *sg;
86 struct scatterlist *sg_areq;
87 };
88
89 /**
90 * struct mmc_test_transfer_result - transfer results for performance tests.
91 * @link: double-linked list
92 * @count: amount of group of sectors to check
93 * @sectors: amount of sectors to check in one group
94 * @ts: time values of transfer
95 * @rate: calculated transfer rate
96 * @iops: I/O operations per second (times 100)
97 */
98 struct mmc_test_transfer_result {
99 struct list_head link;
100 unsigned int count;
101 unsigned int sectors;
102 struct timespec64 ts;
103 unsigned int rate;
104 unsigned int iops;
105 };
106
107 /**
108 * struct mmc_test_general_result - results for tests.
109 * @link: double-linked list
110 * @card: card under test
111 * @testcase: number of test case
112 * @result: result of test run
113 * @tr_lst: transfer measurements if any as mmc_test_transfer_result
114 */
115 struct mmc_test_general_result {
116 struct list_head link;
117 struct mmc_card *card;
118 int testcase;
119 int result;
120 struct list_head tr_lst;
121 };
122
123 /**
124 * struct mmc_test_dbgfs_file - debugfs related file.
125 * @link: double-linked list
126 * @card: card under test
127 * @file: file created under debugfs
128 */
129 struct mmc_test_dbgfs_file {
130 struct list_head link;
131 struct mmc_card *card;
132 struct dentry *file;
133 };
134
135 /**
136 * struct mmc_test_card - test information.
137 * @card: card under test
138 * @scratch: transfer buffer
139 * @buffer: transfer buffer
140 * @highmem: buffer for highmem tests
141 * @area: information for performance tests
142 * @gr: pointer to results of current testcase
143 */
144 struct mmc_test_card {
145 struct mmc_card *card;
146
147 u8 scratch[BUFFER_SIZE];
148 u8 *buffer;
149 #ifdef CONFIG_HIGHMEM
150 struct page *highmem;
151 #endif
152 struct mmc_test_area area;
153 struct mmc_test_general_result *gr;
154 };
155
156 enum mmc_test_prep_media {
157 MMC_TEST_PREP_NONE = 0,
158 MMC_TEST_PREP_WRITE_FULL = 1 << 0,
159 MMC_TEST_PREP_ERASE = 1 << 1,
160 };
161
162 struct mmc_test_multiple_rw {
163 unsigned int *sg_len;
164 unsigned int *bs;
165 unsigned int len;
166 unsigned int size;
167 bool do_write;
168 bool do_nonblock_req;
169 enum mmc_test_prep_media prepare;
170 };
171
172 /*******************************************************************/
173 /* General helper functions */
174 /*******************************************************************/
175
176 /*
177 * Configure correct block size in card
178 */
mmc_test_set_blksize(struct mmc_test_card * test,unsigned size)179 static int mmc_test_set_blksize(struct mmc_test_card *test, unsigned size)
180 {
181 return mmc_set_blocklen(test->card, size);
182 }
183
mmc_test_card_cmd23(struct mmc_card * card)184 static bool mmc_test_card_cmd23(struct mmc_card *card)
185 {
186 return mmc_card_mmc(card) ||
187 (mmc_card_sd(card) && card->scr.cmds & SD_SCR_CMD23_SUPPORT);
188 }
189
mmc_test_prepare_sbc(struct mmc_test_card * test,struct mmc_request * mrq,unsigned int blocks)190 static void mmc_test_prepare_sbc(struct mmc_test_card *test,
191 struct mmc_request *mrq, unsigned int blocks)
192 {
193 struct mmc_card *card = test->card;
194
195 if (!mrq->sbc || !mmc_host_cmd23(card->host) ||
196 !mmc_test_card_cmd23(card) || !mmc_op_multi(mrq->cmd->opcode) ||
197 (card->quirks & MMC_QUIRK_BLK_NO_CMD23)) {
198 mrq->sbc = NULL;
199 return;
200 }
201
202 mrq->sbc->opcode = MMC_SET_BLOCK_COUNT;
203 mrq->sbc->arg = blocks;
204 mrq->sbc->flags = MMC_RSP_R1 | MMC_CMD_AC;
205 }
206
207 /*
208 * Fill in the mmc_request structure given a set of transfer parameters.
209 */
mmc_test_prepare_mrq(struct mmc_test_card * test,struct mmc_request * mrq,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)210 static void mmc_test_prepare_mrq(struct mmc_test_card *test,
211 struct mmc_request *mrq, struct scatterlist *sg, unsigned sg_len,
212 unsigned dev_addr, unsigned blocks, unsigned blksz, int write)
213 {
214 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data || !mrq->stop))
215 return;
216
217 if (blocks > 1) {
218 mrq->cmd->opcode = write ?
219 MMC_WRITE_MULTIPLE_BLOCK : MMC_READ_MULTIPLE_BLOCK;
220 } else {
221 mrq->cmd->opcode = write ?
222 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
223 }
224
225 mrq->cmd->arg = dev_addr;
226 if (!mmc_card_blockaddr(test->card))
227 mrq->cmd->arg <<= 9;
228
229 mrq->cmd->flags = MMC_RSP_R1 | MMC_CMD_ADTC;
230
231 if (blocks == 1)
232 mrq->stop = NULL;
233 else {
234 mrq->stop->opcode = MMC_STOP_TRANSMISSION;
235 mrq->stop->arg = 0;
236 mrq->stop->flags = MMC_RSP_R1B | MMC_CMD_AC;
237 }
238
239 mrq->data->blksz = blksz;
240 mrq->data->blocks = blocks;
241 mrq->data->flags = write ? MMC_DATA_WRITE : MMC_DATA_READ;
242 mrq->data->sg = sg;
243 mrq->data->sg_len = sg_len;
244
245 mmc_test_prepare_sbc(test, mrq, blocks);
246
247 mmc_set_data_timeout(mrq->data, test->card);
248 }
249
mmc_test_busy(struct mmc_command * cmd)250 static int mmc_test_busy(struct mmc_command *cmd)
251 {
252 return !(cmd->resp[0] & R1_READY_FOR_DATA) ||
253 (R1_CURRENT_STATE(cmd->resp[0]) == R1_STATE_PRG);
254 }
255
256 /*
257 * Wait for the card to finish the busy state
258 */
mmc_test_wait_busy(struct mmc_test_card * test)259 static int mmc_test_wait_busy(struct mmc_test_card *test)
260 {
261 int ret, busy;
262 struct mmc_command cmd = {};
263
264 busy = 0;
265 do {
266 memset(&cmd, 0, sizeof(struct mmc_command));
267
268 cmd.opcode = MMC_SEND_STATUS;
269 cmd.arg = test->card->rca << 16;
270 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
271
272 ret = mmc_wait_for_cmd(test->card->host, &cmd, 0);
273 if (ret)
274 break;
275
276 if (!busy && mmc_test_busy(&cmd)) {
277 busy = 1;
278 if (test->card->host->caps & MMC_CAP_WAIT_WHILE_BUSY)
279 pr_info("%s: Warning: Host did not wait for busy state to end.\n",
280 mmc_hostname(test->card->host));
281 }
282 } while (mmc_test_busy(&cmd));
283
284 return ret;
285 }
286
287 /*
288 * Transfer a single sector of kernel addressable data
289 */
mmc_test_buffer_transfer(struct mmc_test_card * test,u8 * buffer,unsigned addr,unsigned blksz,int write)290 static int mmc_test_buffer_transfer(struct mmc_test_card *test,
291 u8 *buffer, unsigned addr, unsigned blksz, int write)
292 {
293 struct mmc_request mrq = {};
294 struct mmc_command cmd = {};
295 struct mmc_command stop = {};
296 struct mmc_data data = {};
297
298 struct scatterlist sg;
299
300 mrq.cmd = &cmd;
301 mrq.data = &data;
302 mrq.stop = &stop;
303
304 sg_init_one(&sg, buffer, blksz);
305
306 mmc_test_prepare_mrq(test, &mrq, &sg, 1, addr, 1, blksz, write);
307
308 mmc_wait_for_req(test->card->host, &mrq);
309
310 if (cmd.error)
311 return cmd.error;
312 if (data.error)
313 return data.error;
314
315 return mmc_test_wait_busy(test);
316 }
317
mmc_test_free_mem(struct mmc_test_mem * mem)318 static void mmc_test_free_mem(struct mmc_test_mem *mem)
319 {
320 if (!mem)
321 return;
322 while (mem->cnt--)
323 __free_pages(mem->arr[mem->cnt].page,
324 mem->arr[mem->cnt].order);
325 kfree(mem->arr);
326 kfree(mem);
327 }
328
329 /*
330 * Allocate a lot of memory, preferably max_sz but at least min_sz. In case
331 * there isn't much memory do not exceed 1/16th total lowmem pages. Also do
332 * not exceed a maximum number of segments and try not to make segments much
333 * bigger than maximum segment size.
334 */
mmc_test_alloc_mem(unsigned long min_sz,unsigned long max_sz,unsigned int max_segs,unsigned int max_seg_sz)335 static struct mmc_test_mem *mmc_test_alloc_mem(unsigned long min_sz,
336 unsigned long max_sz,
337 unsigned int max_segs,
338 unsigned int max_seg_sz)
339 {
340 unsigned long max_page_cnt = DIV_ROUND_UP(max_sz, PAGE_SIZE);
341 unsigned long min_page_cnt = DIV_ROUND_UP(min_sz, PAGE_SIZE);
342 unsigned long max_seg_page_cnt = DIV_ROUND_UP(max_seg_sz, PAGE_SIZE);
343 unsigned long page_cnt = 0;
344 unsigned long limit = nr_free_buffer_pages() >> 4;
345 struct mmc_test_mem *mem;
346
347 if (max_page_cnt > limit)
348 max_page_cnt = limit;
349 if (min_page_cnt > max_page_cnt)
350 min_page_cnt = max_page_cnt;
351
352 if (max_seg_page_cnt > max_page_cnt)
353 max_seg_page_cnt = max_page_cnt;
354
355 if (max_segs > max_page_cnt)
356 max_segs = max_page_cnt;
357
358 mem = kzalloc(sizeof(*mem), GFP_KERNEL);
359 if (!mem)
360 return NULL;
361
362 mem->arr = kcalloc(max_segs, sizeof(*mem->arr), GFP_KERNEL);
363 if (!mem->arr)
364 goto out_free;
365
366 while (max_page_cnt) {
367 struct page *page;
368 unsigned int order;
369 gfp_t flags = GFP_KERNEL | GFP_DMA | __GFP_NOWARN |
370 __GFP_NORETRY;
371
372 order = get_order(max_seg_page_cnt << PAGE_SHIFT);
373 while (1) {
374 page = alloc_pages(flags, order);
375 if (page || !order)
376 break;
377 order -= 1;
378 }
379 if (!page) {
380 if (page_cnt < min_page_cnt)
381 goto out_free;
382 break;
383 }
384 mem->arr[mem->cnt].page = page;
385 mem->arr[mem->cnt].order = order;
386 mem->cnt += 1;
387 if (max_page_cnt <= (1UL << order))
388 break;
389 max_page_cnt -= 1UL << order;
390 page_cnt += 1UL << order;
391 if (mem->cnt >= max_segs) {
392 if (page_cnt < min_page_cnt)
393 goto out_free;
394 break;
395 }
396 }
397
398 return mem;
399
400 out_free:
401 mmc_test_free_mem(mem);
402 return NULL;
403 }
404
405 /*
406 * Map memory into a scatterlist. Optionally allow the same memory to be
407 * mapped more than once.
408 */
mmc_test_map_sg(struct mmc_test_mem * mem,unsigned long size,struct scatterlist * sglist,int repeat,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len,int min_sg_len)409 static int mmc_test_map_sg(struct mmc_test_mem *mem, unsigned long size,
410 struct scatterlist *sglist, int repeat,
411 unsigned int max_segs, unsigned int max_seg_sz,
412 unsigned int *sg_len, int min_sg_len)
413 {
414 struct scatterlist *sg = NULL;
415 unsigned int i;
416 unsigned long sz = size;
417
418 sg_init_table(sglist, max_segs);
419 if (min_sg_len > max_segs)
420 min_sg_len = max_segs;
421
422 *sg_len = 0;
423 do {
424 for (i = 0; i < mem->cnt; i++) {
425 unsigned long len = PAGE_SIZE << mem->arr[i].order;
426
427 if (min_sg_len && (size / min_sg_len < len))
428 len = ALIGN(size / min_sg_len, 512);
429 if (len > sz)
430 len = sz;
431 if (len > max_seg_sz)
432 len = max_seg_sz;
433 if (sg)
434 sg = sg_next(sg);
435 else
436 sg = sglist;
437 if (!sg)
438 return -EINVAL;
439 sg_set_page(sg, mem->arr[i].page, len, 0);
440 sz -= len;
441 *sg_len += 1;
442 if (!sz)
443 break;
444 }
445 } while (sz && repeat);
446
447 if (sz)
448 return -EINVAL;
449
450 if (sg)
451 sg_mark_end(sg);
452
453 return 0;
454 }
455
456 /*
457 * Map memory into a scatterlist so that no pages are contiguous. Allow the
458 * same memory to be mapped more than once.
459 */
mmc_test_map_sg_max_scatter(struct mmc_test_mem * mem,unsigned long sz,struct scatterlist * sglist,unsigned int max_segs,unsigned int max_seg_sz,unsigned int * sg_len)460 static int mmc_test_map_sg_max_scatter(struct mmc_test_mem *mem,
461 unsigned long sz,
462 struct scatterlist *sglist,
463 unsigned int max_segs,
464 unsigned int max_seg_sz,
465 unsigned int *sg_len)
466 {
467 struct scatterlist *sg = NULL;
468 unsigned int i = mem->cnt, cnt;
469 unsigned long len;
470 void *base, *addr, *last_addr = NULL;
471
472 sg_init_table(sglist, max_segs);
473
474 *sg_len = 0;
475 while (sz) {
476 base = page_address(mem->arr[--i].page);
477 cnt = 1 << mem->arr[i].order;
478 while (sz && cnt) {
479 addr = base + PAGE_SIZE * --cnt;
480 if (last_addr && last_addr + PAGE_SIZE == addr)
481 continue;
482 last_addr = addr;
483 len = PAGE_SIZE;
484 if (len > max_seg_sz)
485 len = max_seg_sz;
486 if (len > sz)
487 len = sz;
488 if (sg)
489 sg = sg_next(sg);
490 else
491 sg = sglist;
492 if (!sg)
493 return -EINVAL;
494 sg_set_page(sg, virt_to_page(addr), len, 0);
495 sz -= len;
496 *sg_len += 1;
497 }
498 if (i == 0)
499 i = mem->cnt;
500 }
501
502 if (sg)
503 sg_mark_end(sg);
504
505 return 0;
506 }
507
508 /*
509 * Calculate transfer rate in bytes per second.
510 */
mmc_test_rate(uint64_t bytes,struct timespec64 * ts)511 static unsigned int mmc_test_rate(uint64_t bytes, struct timespec64 *ts)
512 {
513 uint64_t ns;
514
515 ns = timespec64_to_ns(ts);
516 bytes *= 1000000000;
517
518 while (ns > UINT_MAX) {
519 bytes >>= 1;
520 ns >>= 1;
521 }
522
523 if (!ns)
524 return 0;
525
526 do_div(bytes, (uint32_t)ns);
527
528 return bytes;
529 }
530
531 /*
532 * Save transfer results for future usage
533 */
mmc_test_save_transfer_result(struct mmc_test_card * test,unsigned int count,unsigned int sectors,struct timespec64 ts,unsigned int rate,unsigned int iops)534 static void mmc_test_save_transfer_result(struct mmc_test_card *test,
535 unsigned int count, unsigned int sectors, struct timespec64 ts,
536 unsigned int rate, unsigned int iops)
537 {
538 struct mmc_test_transfer_result *tr;
539
540 if (!test->gr)
541 return;
542
543 tr = kmalloc(sizeof(*tr), GFP_KERNEL);
544 if (!tr)
545 return;
546
547 tr->count = count;
548 tr->sectors = sectors;
549 tr->ts = ts;
550 tr->rate = rate;
551 tr->iops = iops;
552
553 list_add_tail(&tr->link, &test->gr->tr_lst);
554 }
555
556 /*
557 * Print the transfer rate.
558 */
mmc_test_print_rate(struct mmc_test_card * test,uint64_t bytes,struct timespec64 * ts1,struct timespec64 * ts2)559 static void mmc_test_print_rate(struct mmc_test_card *test, uint64_t bytes,
560 struct timespec64 *ts1, struct timespec64 *ts2)
561 {
562 unsigned int rate, iops, sectors = bytes >> 9;
563 struct timespec64 ts;
564
565 ts = timespec64_sub(*ts2, *ts1);
566
567 rate = mmc_test_rate(bytes, &ts);
568 iops = mmc_test_rate(100, &ts); /* I/O ops per sec x 100 */
569
570 pr_info("%s: Transfer of %u sectors (%u%s KiB) took %llu.%09u "
571 "seconds (%u kB/s, %u KiB/s, %u.%02u IOPS)\n",
572 mmc_hostname(test->card->host), sectors, sectors >> 1,
573 (sectors & 1 ? ".5" : ""), (u64)ts.tv_sec,
574 (u32)ts.tv_nsec, rate / 1000, rate / 1024,
575 iops / 100, iops % 100);
576
577 mmc_test_save_transfer_result(test, 1, sectors, ts, rate, iops);
578 }
579
580 /*
581 * Print the average transfer rate.
582 */
mmc_test_print_avg_rate(struct mmc_test_card * test,uint64_t bytes,unsigned int count,struct timespec64 * ts1,struct timespec64 * ts2)583 static void mmc_test_print_avg_rate(struct mmc_test_card *test, uint64_t bytes,
584 unsigned int count, struct timespec64 *ts1,
585 struct timespec64 *ts2)
586 {
587 unsigned int rate, iops, sectors = bytes >> 9;
588 uint64_t tot = bytes * count;
589 struct timespec64 ts;
590
591 ts = timespec64_sub(*ts2, *ts1);
592
593 rate = mmc_test_rate(tot, &ts);
594 iops = mmc_test_rate(count * 100, &ts); /* I/O ops per sec x 100 */
595
596 pr_info("%s: Transfer of %u x %u sectors (%u x %u%s KiB) took "
597 "%llu.%09u seconds (%u kB/s, %u KiB/s, "
598 "%u.%02u IOPS, sg_len %d)\n",
599 mmc_hostname(test->card->host), count, sectors, count,
600 sectors >> 1, (sectors & 1 ? ".5" : ""),
601 (u64)ts.tv_sec, (u32)ts.tv_nsec,
602 rate / 1000, rate / 1024, iops / 100, iops % 100,
603 test->area.sg_len);
604
605 mmc_test_save_transfer_result(test, count, sectors, ts, rate, iops);
606 }
607
608 /*
609 * Return the card size in sectors.
610 */
mmc_test_capacity(struct mmc_card * card)611 static unsigned int mmc_test_capacity(struct mmc_card *card)
612 {
613 if (!mmc_card_sd(card) && mmc_card_blockaddr(card))
614 return card->ext_csd.sectors;
615 else
616 return card->csd.capacity << (card->csd.read_blkbits - 9);
617 }
618
619 /*******************************************************************/
620 /* Test preparation and cleanup */
621 /*******************************************************************/
622
623 /*
624 * Fill the first couple of sectors of the card with known data
625 * so that bad reads/writes can be detected
626 */
__mmc_test_prepare(struct mmc_test_card * test,int write,int val)627 static int __mmc_test_prepare(struct mmc_test_card *test, int write, int val)
628 {
629 int ret, i;
630
631 ret = mmc_test_set_blksize(test, 512);
632 if (ret)
633 return ret;
634
635 if (write)
636 memset(test->buffer, val, 512);
637 else {
638 for (i = 0; i < 512; i++)
639 test->buffer[i] = i;
640 }
641
642 for (i = 0; i < BUFFER_SIZE / 512; i++) {
643 ret = mmc_test_buffer_transfer(test, test->buffer, i, 512, 1);
644 if (ret)
645 return ret;
646 }
647
648 return 0;
649 }
650
mmc_test_prepare_write(struct mmc_test_card * test)651 static int mmc_test_prepare_write(struct mmc_test_card *test)
652 {
653 return __mmc_test_prepare(test, 1, 0xDF);
654 }
655
mmc_test_prepare_read(struct mmc_test_card * test)656 static int mmc_test_prepare_read(struct mmc_test_card *test)
657 {
658 return __mmc_test_prepare(test, 0, 0);
659 }
660
mmc_test_cleanup(struct mmc_test_card * test)661 static int mmc_test_cleanup(struct mmc_test_card *test)
662 {
663 return __mmc_test_prepare(test, 1, 0);
664 }
665
666 /*******************************************************************/
667 /* Test execution helpers */
668 /*******************************************************************/
669
670 /*
671 * Modifies the mmc_request to perform the "short transfer" tests
672 */
mmc_test_prepare_broken_mrq(struct mmc_test_card * test,struct mmc_request * mrq,int write)673 static void mmc_test_prepare_broken_mrq(struct mmc_test_card *test,
674 struct mmc_request *mrq, int write)
675 {
676 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
677 return;
678
679 if (mrq->data->blocks > 1) {
680 mrq->cmd->opcode = write ?
681 MMC_WRITE_BLOCK : MMC_READ_SINGLE_BLOCK;
682 mrq->stop = NULL;
683 } else {
684 mrq->cmd->opcode = MMC_SEND_STATUS;
685 mrq->cmd->arg = test->card->rca << 16;
686 }
687 }
688
689 /*
690 * Checks that a normal transfer didn't have any errors
691 */
mmc_test_check_result(struct mmc_test_card * test,struct mmc_request * mrq)692 static int mmc_test_check_result(struct mmc_test_card *test,
693 struct mmc_request *mrq)
694 {
695 int ret;
696
697 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
698 return -EINVAL;
699
700 ret = 0;
701
702 if (mrq->sbc && mrq->sbc->error)
703 ret = mrq->sbc->error;
704 if (!ret && mrq->cmd->error)
705 ret = mrq->cmd->error;
706 if (!ret && mrq->data->error)
707 ret = mrq->data->error;
708 if (!ret && mrq->stop && mrq->stop->error)
709 ret = mrq->stop->error;
710 if (!ret && mrq->data->bytes_xfered !=
711 mrq->data->blocks * mrq->data->blksz)
712 ret = RESULT_FAIL;
713
714 if (ret == -EINVAL)
715 ret = RESULT_UNSUP_HOST;
716
717 return ret;
718 }
719
720 /*
721 * Checks that a "short transfer" behaved as expected
722 */
mmc_test_check_broken_result(struct mmc_test_card * test,struct mmc_request * mrq)723 static int mmc_test_check_broken_result(struct mmc_test_card *test,
724 struct mmc_request *mrq)
725 {
726 int ret;
727
728 if (WARN_ON(!mrq || !mrq->cmd || !mrq->data))
729 return -EINVAL;
730
731 ret = 0;
732
733 if (!ret && mrq->cmd->error)
734 ret = mrq->cmd->error;
735 if (!ret && mrq->data->error == 0)
736 ret = RESULT_FAIL;
737 if (!ret && mrq->data->error != -ETIMEDOUT)
738 ret = mrq->data->error;
739 if (!ret && mrq->stop && mrq->stop->error)
740 ret = mrq->stop->error;
741 if (mrq->data->blocks > 1) {
742 if (!ret && mrq->data->bytes_xfered > mrq->data->blksz)
743 ret = RESULT_FAIL;
744 } else {
745 if (!ret && mrq->data->bytes_xfered > 0)
746 ret = RESULT_FAIL;
747 }
748
749 if (ret == -EINVAL)
750 ret = RESULT_UNSUP_HOST;
751
752 return ret;
753 }
754
755 struct mmc_test_req {
756 struct mmc_request mrq;
757 struct mmc_command sbc;
758 struct mmc_command cmd;
759 struct mmc_command stop;
760 struct mmc_command status;
761 struct mmc_data data;
762 };
763
764 /*
765 * Tests nonblock transfer with certain parameters
766 */
mmc_test_req_reset(struct mmc_test_req * rq)767 static void mmc_test_req_reset(struct mmc_test_req *rq)
768 {
769 memset(rq, 0, sizeof(struct mmc_test_req));
770
771 rq->mrq.cmd = &rq->cmd;
772 rq->mrq.data = &rq->data;
773 rq->mrq.stop = &rq->stop;
774 }
775
mmc_test_req_alloc(void)776 static struct mmc_test_req *mmc_test_req_alloc(void)
777 {
778 struct mmc_test_req *rq = kmalloc(sizeof(*rq), GFP_KERNEL);
779
780 if (rq)
781 mmc_test_req_reset(rq);
782
783 return rq;
784 }
785
mmc_test_wait_done(struct mmc_request * mrq)786 static void mmc_test_wait_done(struct mmc_request *mrq)
787 {
788 complete(&mrq->completion);
789 }
790
mmc_test_start_areq(struct mmc_test_card * test,struct mmc_request * mrq,struct mmc_request * prev_mrq)791 static int mmc_test_start_areq(struct mmc_test_card *test,
792 struct mmc_request *mrq,
793 struct mmc_request *prev_mrq)
794 {
795 struct mmc_host *host = test->card->host;
796 int err = 0;
797
798 if (mrq) {
799 init_completion(&mrq->completion);
800 mrq->done = mmc_test_wait_done;
801 mmc_pre_req(host, mrq);
802 }
803
804 if (prev_mrq) {
805 wait_for_completion(&prev_mrq->completion);
806 err = mmc_test_wait_busy(test);
807 if (!err)
808 err = mmc_test_check_result(test, prev_mrq);
809 }
810
811 if (!err && mrq) {
812 err = mmc_start_request(host, mrq);
813 if (err)
814 mmc_retune_release(host);
815 }
816
817 if (prev_mrq)
818 mmc_post_req(host, prev_mrq, 0);
819
820 if (err && mrq)
821 mmc_post_req(host, mrq, err);
822
823 return err;
824 }
825
mmc_test_nonblock_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write,int count)826 static int mmc_test_nonblock_transfer(struct mmc_test_card *test,
827 unsigned int dev_addr, int write,
828 int count)
829 {
830 struct mmc_test_req *rq1, *rq2;
831 struct mmc_request *mrq, *prev_mrq;
832 int i;
833 int ret = RESULT_OK;
834 struct mmc_test_area *t = &test->area;
835 struct scatterlist *sg = t->sg;
836 struct scatterlist *sg_areq = t->sg_areq;
837
838 rq1 = mmc_test_req_alloc();
839 rq2 = mmc_test_req_alloc();
840 if (!rq1 || !rq2) {
841 ret = RESULT_FAIL;
842 goto err;
843 }
844
845 mrq = &rq1->mrq;
846 prev_mrq = NULL;
847
848 for (i = 0; i < count; i++) {
849 mmc_test_req_reset(container_of(mrq, struct mmc_test_req, mrq));
850 mmc_test_prepare_mrq(test, mrq, sg, t->sg_len, dev_addr,
851 t->blocks, 512, write);
852 ret = mmc_test_start_areq(test, mrq, prev_mrq);
853 if (ret)
854 goto err;
855
856 if (!prev_mrq)
857 prev_mrq = &rq2->mrq;
858
859 swap(mrq, prev_mrq);
860 swap(sg, sg_areq);
861 dev_addr += t->blocks;
862 }
863
864 ret = mmc_test_start_areq(test, NULL, prev_mrq);
865 err:
866 kfree(rq1);
867 kfree(rq2);
868 return ret;
869 }
870
871 /*
872 * Tests a basic transfer with certain parameters
873 */
mmc_test_simple_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)874 static int mmc_test_simple_transfer(struct mmc_test_card *test,
875 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
876 unsigned blocks, unsigned blksz, int write)
877 {
878 struct mmc_request mrq = {};
879 struct mmc_command cmd = {};
880 struct mmc_command stop = {};
881 struct mmc_data data = {};
882
883 mrq.cmd = &cmd;
884 mrq.data = &data;
885 mrq.stop = &stop;
886
887 mmc_test_prepare_mrq(test, &mrq, sg, sg_len, dev_addr,
888 blocks, blksz, write);
889
890 mmc_wait_for_req(test->card->host, &mrq);
891
892 mmc_test_wait_busy(test);
893
894 return mmc_test_check_result(test, &mrq);
895 }
896
897 /*
898 * Tests a transfer where the card will fail completely or partly
899 */
mmc_test_broken_transfer(struct mmc_test_card * test,unsigned blocks,unsigned blksz,int write)900 static int mmc_test_broken_transfer(struct mmc_test_card *test,
901 unsigned blocks, unsigned blksz, int write)
902 {
903 struct mmc_request mrq = {};
904 struct mmc_command cmd = {};
905 struct mmc_command stop = {};
906 struct mmc_data data = {};
907
908 struct scatterlist sg;
909
910 mrq.cmd = &cmd;
911 mrq.data = &data;
912 mrq.stop = &stop;
913
914 sg_init_one(&sg, test->buffer, blocks * blksz);
915
916 mmc_test_prepare_mrq(test, &mrq, &sg, 1, 0, blocks, blksz, write);
917 mmc_test_prepare_broken_mrq(test, &mrq, write);
918
919 mmc_wait_for_req(test->card->host, &mrq);
920
921 mmc_test_wait_busy(test);
922
923 return mmc_test_check_broken_result(test, &mrq);
924 }
925
926 /*
927 * Does a complete transfer test where data is also validated
928 *
929 * Note: mmc_test_prepare() must have been done before this call
930 */
mmc_test_transfer(struct mmc_test_card * test,struct scatterlist * sg,unsigned sg_len,unsigned dev_addr,unsigned blocks,unsigned blksz,int write)931 static int mmc_test_transfer(struct mmc_test_card *test,
932 struct scatterlist *sg, unsigned sg_len, unsigned dev_addr,
933 unsigned blocks, unsigned blksz, int write)
934 {
935 int ret, i;
936 unsigned long flags;
937
938 if (write) {
939 for (i = 0; i < blocks * blksz; i++)
940 test->scratch[i] = i;
941 } else {
942 memset(test->scratch, 0, BUFFER_SIZE);
943 }
944 local_irq_save(flags);
945 sg_copy_from_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
946 local_irq_restore(flags);
947
948 ret = mmc_test_set_blksize(test, blksz);
949 if (ret)
950 return ret;
951
952 ret = mmc_test_simple_transfer(test, sg, sg_len, dev_addr,
953 blocks, blksz, write);
954 if (ret)
955 return ret;
956
957 if (write) {
958 int sectors;
959
960 ret = mmc_test_set_blksize(test, 512);
961 if (ret)
962 return ret;
963
964 sectors = (blocks * blksz + 511) / 512;
965 if ((sectors * 512) == (blocks * blksz))
966 sectors++;
967
968 if ((sectors * 512) > BUFFER_SIZE)
969 return -EINVAL;
970
971 memset(test->buffer, 0, sectors * 512);
972
973 for (i = 0; i < sectors; i++) {
974 ret = mmc_test_buffer_transfer(test,
975 test->buffer + i * 512,
976 dev_addr + i, 512, 0);
977 if (ret)
978 return ret;
979 }
980
981 for (i = 0; i < blocks * blksz; i++) {
982 if (test->buffer[i] != (u8)i)
983 return RESULT_FAIL;
984 }
985
986 for (; i < sectors * 512; i++) {
987 if (test->buffer[i] != 0xDF)
988 return RESULT_FAIL;
989 }
990 } else {
991 local_irq_save(flags);
992 sg_copy_to_buffer(sg, sg_len, test->scratch, BUFFER_SIZE);
993 local_irq_restore(flags);
994 for (i = 0; i < blocks * blksz; i++) {
995 if (test->scratch[i] != (u8)i)
996 return RESULT_FAIL;
997 }
998 }
999
1000 return 0;
1001 }
1002
1003 /*******************************************************************/
1004 /* Tests */
1005 /*******************************************************************/
1006
1007 struct mmc_test_case {
1008 const char *name;
1009
1010 int (*prepare)(struct mmc_test_card *);
1011 int (*run)(struct mmc_test_card *);
1012 int (*cleanup)(struct mmc_test_card *);
1013 };
1014
mmc_test_basic_write(struct mmc_test_card * test)1015 static int mmc_test_basic_write(struct mmc_test_card *test)
1016 {
1017 int ret;
1018 struct scatterlist sg;
1019
1020 ret = mmc_test_set_blksize(test, 512);
1021 if (ret)
1022 return ret;
1023
1024 sg_init_one(&sg, test->buffer, 512);
1025
1026 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 1);
1027 }
1028
mmc_test_basic_read(struct mmc_test_card * test)1029 static int mmc_test_basic_read(struct mmc_test_card *test)
1030 {
1031 int ret;
1032 struct scatterlist sg;
1033
1034 ret = mmc_test_set_blksize(test, 512);
1035 if (ret)
1036 return ret;
1037
1038 sg_init_one(&sg, test->buffer, 512);
1039
1040 return mmc_test_simple_transfer(test, &sg, 1, 0, 1, 512, 0);
1041 }
1042
mmc_test_verify_write(struct mmc_test_card * test)1043 static int mmc_test_verify_write(struct mmc_test_card *test)
1044 {
1045 struct scatterlist sg;
1046
1047 sg_init_one(&sg, test->buffer, 512);
1048
1049 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1050 }
1051
mmc_test_verify_read(struct mmc_test_card * test)1052 static int mmc_test_verify_read(struct mmc_test_card *test)
1053 {
1054 struct scatterlist sg;
1055
1056 sg_init_one(&sg, test->buffer, 512);
1057
1058 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1059 }
1060
mmc_test_multi_write(struct mmc_test_card * test)1061 static int mmc_test_multi_write(struct mmc_test_card *test)
1062 {
1063 unsigned int size;
1064 struct scatterlist sg;
1065
1066 if (test->card->host->max_blk_count == 1)
1067 return RESULT_UNSUP_HOST;
1068
1069 size = PAGE_SIZE * 2;
1070 size = min(size, test->card->host->max_req_size);
1071 size = min(size, test->card->host->max_seg_size);
1072 size = min(size, test->card->host->max_blk_count * 512);
1073
1074 if (size < 1024)
1075 return RESULT_UNSUP_HOST;
1076
1077 sg_init_one(&sg, test->buffer, size);
1078
1079 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1080 }
1081
mmc_test_multi_read(struct mmc_test_card * test)1082 static int mmc_test_multi_read(struct mmc_test_card *test)
1083 {
1084 unsigned int size;
1085 struct scatterlist sg;
1086
1087 if (test->card->host->max_blk_count == 1)
1088 return RESULT_UNSUP_HOST;
1089
1090 size = PAGE_SIZE * 2;
1091 size = min(size, test->card->host->max_req_size);
1092 size = min(size, test->card->host->max_seg_size);
1093 size = min(size, test->card->host->max_blk_count * 512);
1094
1095 if (size < 1024)
1096 return RESULT_UNSUP_HOST;
1097
1098 sg_init_one(&sg, test->buffer, size);
1099
1100 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1101 }
1102
mmc_test_pow2_write(struct mmc_test_card * test)1103 static int mmc_test_pow2_write(struct mmc_test_card *test)
1104 {
1105 int ret, i;
1106 struct scatterlist sg;
1107
1108 if (!test->card->csd.write_partial)
1109 return RESULT_UNSUP_CARD;
1110
1111 for (i = 1; i < 512; i <<= 1) {
1112 sg_init_one(&sg, test->buffer, i);
1113 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1114 if (ret)
1115 return ret;
1116 }
1117
1118 return 0;
1119 }
1120
mmc_test_pow2_read(struct mmc_test_card * test)1121 static int mmc_test_pow2_read(struct mmc_test_card *test)
1122 {
1123 int ret, i;
1124 struct scatterlist sg;
1125
1126 if (!test->card->csd.read_partial)
1127 return RESULT_UNSUP_CARD;
1128
1129 for (i = 1; i < 512; i <<= 1) {
1130 sg_init_one(&sg, test->buffer, i);
1131 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1132 if (ret)
1133 return ret;
1134 }
1135
1136 return 0;
1137 }
1138
mmc_test_weird_write(struct mmc_test_card * test)1139 static int mmc_test_weird_write(struct mmc_test_card *test)
1140 {
1141 int ret, i;
1142 struct scatterlist sg;
1143
1144 if (!test->card->csd.write_partial)
1145 return RESULT_UNSUP_CARD;
1146
1147 for (i = 3; i < 512; i += 7) {
1148 sg_init_one(&sg, test->buffer, i);
1149 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 1);
1150 if (ret)
1151 return ret;
1152 }
1153
1154 return 0;
1155 }
1156
mmc_test_weird_read(struct mmc_test_card * test)1157 static int mmc_test_weird_read(struct mmc_test_card *test)
1158 {
1159 int ret, i;
1160 struct scatterlist sg;
1161
1162 if (!test->card->csd.read_partial)
1163 return RESULT_UNSUP_CARD;
1164
1165 for (i = 3; i < 512; i += 7) {
1166 sg_init_one(&sg, test->buffer, i);
1167 ret = mmc_test_transfer(test, &sg, 1, 0, 1, i, 0);
1168 if (ret)
1169 return ret;
1170 }
1171
1172 return 0;
1173 }
1174
mmc_test_align_write(struct mmc_test_card * test)1175 static int mmc_test_align_write(struct mmc_test_card *test)
1176 {
1177 int ret, i;
1178 struct scatterlist sg;
1179
1180 for (i = 1; i < TEST_ALIGN_END; i++) {
1181 sg_init_one(&sg, test->buffer + i, 512);
1182 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1183 if (ret)
1184 return ret;
1185 }
1186
1187 return 0;
1188 }
1189
mmc_test_align_read(struct mmc_test_card * test)1190 static int mmc_test_align_read(struct mmc_test_card *test)
1191 {
1192 int ret, i;
1193 struct scatterlist sg;
1194
1195 for (i = 1; i < TEST_ALIGN_END; i++) {
1196 sg_init_one(&sg, test->buffer + i, 512);
1197 ret = mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1198 if (ret)
1199 return ret;
1200 }
1201
1202 return 0;
1203 }
1204
mmc_test_align_multi_write(struct mmc_test_card * test)1205 static int mmc_test_align_multi_write(struct mmc_test_card *test)
1206 {
1207 int ret, i;
1208 unsigned int size;
1209 struct scatterlist sg;
1210
1211 if (test->card->host->max_blk_count == 1)
1212 return RESULT_UNSUP_HOST;
1213
1214 size = PAGE_SIZE * 2;
1215 size = min(size, test->card->host->max_req_size);
1216 size = min(size, test->card->host->max_seg_size);
1217 size = min(size, test->card->host->max_blk_count * 512);
1218
1219 if (size < 1024)
1220 return RESULT_UNSUP_HOST;
1221
1222 for (i = 1; i < TEST_ALIGN_END; i++) {
1223 sg_init_one(&sg, test->buffer + i, size);
1224 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1225 if (ret)
1226 return ret;
1227 }
1228
1229 return 0;
1230 }
1231
mmc_test_align_multi_read(struct mmc_test_card * test)1232 static int mmc_test_align_multi_read(struct mmc_test_card *test)
1233 {
1234 int ret, i;
1235 unsigned int size;
1236 struct scatterlist sg;
1237
1238 if (test->card->host->max_blk_count == 1)
1239 return RESULT_UNSUP_HOST;
1240
1241 size = PAGE_SIZE * 2;
1242 size = min(size, test->card->host->max_req_size);
1243 size = min(size, test->card->host->max_seg_size);
1244 size = min(size, test->card->host->max_blk_count * 512);
1245
1246 if (size < 1024)
1247 return RESULT_UNSUP_HOST;
1248
1249 for (i = 1; i < TEST_ALIGN_END; i++) {
1250 sg_init_one(&sg, test->buffer + i, size);
1251 ret = mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1252 if (ret)
1253 return ret;
1254 }
1255
1256 return 0;
1257 }
1258
mmc_test_xfersize_write(struct mmc_test_card * test)1259 static int mmc_test_xfersize_write(struct mmc_test_card *test)
1260 {
1261 int ret;
1262
1263 ret = mmc_test_set_blksize(test, 512);
1264 if (ret)
1265 return ret;
1266
1267 return mmc_test_broken_transfer(test, 1, 512, 1);
1268 }
1269
mmc_test_xfersize_read(struct mmc_test_card * test)1270 static int mmc_test_xfersize_read(struct mmc_test_card *test)
1271 {
1272 int ret;
1273
1274 ret = mmc_test_set_blksize(test, 512);
1275 if (ret)
1276 return ret;
1277
1278 return mmc_test_broken_transfer(test, 1, 512, 0);
1279 }
1280
mmc_test_multi_xfersize_write(struct mmc_test_card * test)1281 static int mmc_test_multi_xfersize_write(struct mmc_test_card *test)
1282 {
1283 int ret;
1284
1285 if (test->card->host->max_blk_count == 1)
1286 return RESULT_UNSUP_HOST;
1287
1288 ret = mmc_test_set_blksize(test, 512);
1289 if (ret)
1290 return ret;
1291
1292 return mmc_test_broken_transfer(test, 2, 512, 1);
1293 }
1294
mmc_test_multi_xfersize_read(struct mmc_test_card * test)1295 static int mmc_test_multi_xfersize_read(struct mmc_test_card *test)
1296 {
1297 int ret;
1298
1299 if (test->card->host->max_blk_count == 1)
1300 return RESULT_UNSUP_HOST;
1301
1302 ret = mmc_test_set_blksize(test, 512);
1303 if (ret)
1304 return ret;
1305
1306 return mmc_test_broken_transfer(test, 2, 512, 0);
1307 }
1308
1309 #ifdef CONFIG_HIGHMEM
1310
mmc_test_write_high(struct mmc_test_card * test)1311 static int mmc_test_write_high(struct mmc_test_card *test)
1312 {
1313 struct scatterlist sg;
1314
1315 sg_init_table(&sg, 1);
1316 sg_set_page(&sg, test->highmem, 512, 0);
1317
1318 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 1);
1319 }
1320
mmc_test_read_high(struct mmc_test_card * test)1321 static int mmc_test_read_high(struct mmc_test_card *test)
1322 {
1323 struct scatterlist sg;
1324
1325 sg_init_table(&sg, 1);
1326 sg_set_page(&sg, test->highmem, 512, 0);
1327
1328 return mmc_test_transfer(test, &sg, 1, 0, 1, 512, 0);
1329 }
1330
mmc_test_multi_write_high(struct mmc_test_card * test)1331 static int mmc_test_multi_write_high(struct mmc_test_card *test)
1332 {
1333 unsigned int size;
1334 struct scatterlist sg;
1335
1336 if (test->card->host->max_blk_count == 1)
1337 return RESULT_UNSUP_HOST;
1338
1339 size = PAGE_SIZE * 2;
1340 size = min(size, test->card->host->max_req_size);
1341 size = min(size, test->card->host->max_seg_size);
1342 size = min(size, test->card->host->max_blk_count * 512);
1343
1344 if (size < 1024)
1345 return RESULT_UNSUP_HOST;
1346
1347 sg_init_table(&sg, 1);
1348 sg_set_page(&sg, test->highmem, size, 0);
1349
1350 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 1);
1351 }
1352
mmc_test_multi_read_high(struct mmc_test_card * test)1353 static int mmc_test_multi_read_high(struct mmc_test_card *test)
1354 {
1355 unsigned int size;
1356 struct scatterlist sg;
1357
1358 if (test->card->host->max_blk_count == 1)
1359 return RESULT_UNSUP_HOST;
1360
1361 size = PAGE_SIZE * 2;
1362 size = min(size, test->card->host->max_req_size);
1363 size = min(size, test->card->host->max_seg_size);
1364 size = min(size, test->card->host->max_blk_count * 512);
1365
1366 if (size < 1024)
1367 return RESULT_UNSUP_HOST;
1368
1369 sg_init_table(&sg, 1);
1370 sg_set_page(&sg, test->highmem, size, 0);
1371
1372 return mmc_test_transfer(test, &sg, 1, 0, size / 512, 512, 0);
1373 }
1374
1375 #else
1376
mmc_test_no_highmem(struct mmc_test_card * test)1377 static int mmc_test_no_highmem(struct mmc_test_card *test)
1378 {
1379 pr_info("%s: Highmem not configured - test skipped\n",
1380 mmc_hostname(test->card->host));
1381 return 0;
1382 }
1383
1384 #endif /* CONFIG_HIGHMEM */
1385
1386 /*
1387 * Map sz bytes so that it can be transferred.
1388 */
mmc_test_area_map(struct mmc_test_card * test,unsigned long sz,int max_scatter,int min_sg_len,bool nonblock)1389 static int mmc_test_area_map(struct mmc_test_card *test, unsigned long sz,
1390 int max_scatter, int min_sg_len, bool nonblock)
1391 {
1392 struct mmc_test_area *t = &test->area;
1393 int err;
1394 unsigned int sg_len = 0;
1395
1396 t->blocks = sz >> 9;
1397
1398 if (max_scatter) {
1399 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg,
1400 t->max_segs, t->max_seg_sz,
1401 &t->sg_len);
1402 } else {
1403 err = mmc_test_map_sg(t->mem, sz, t->sg, 1, t->max_segs,
1404 t->max_seg_sz, &t->sg_len, min_sg_len);
1405 }
1406
1407 if (err || !nonblock)
1408 goto err;
1409
1410 if (max_scatter) {
1411 err = mmc_test_map_sg_max_scatter(t->mem, sz, t->sg_areq,
1412 t->max_segs, t->max_seg_sz,
1413 &sg_len);
1414 } else {
1415 err = mmc_test_map_sg(t->mem, sz, t->sg_areq, 1, t->max_segs,
1416 t->max_seg_sz, &sg_len, min_sg_len);
1417 }
1418 if (!err && sg_len != t->sg_len)
1419 err = -EINVAL;
1420
1421 err:
1422 if (err)
1423 pr_info("%s: Failed to map sg list\n",
1424 mmc_hostname(test->card->host));
1425 return err;
1426 }
1427
1428 /*
1429 * Transfer bytes mapped by mmc_test_area_map().
1430 */
mmc_test_area_transfer(struct mmc_test_card * test,unsigned int dev_addr,int write)1431 static int mmc_test_area_transfer(struct mmc_test_card *test,
1432 unsigned int dev_addr, int write)
1433 {
1434 struct mmc_test_area *t = &test->area;
1435
1436 return mmc_test_simple_transfer(test, t->sg, t->sg_len, dev_addr,
1437 t->blocks, 512, write);
1438 }
1439
1440 /*
1441 * Map and transfer bytes for multiple transfers.
1442 */
mmc_test_area_io_seq(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed,int count,bool nonblock,int min_sg_len)1443 static int mmc_test_area_io_seq(struct mmc_test_card *test, unsigned long sz,
1444 unsigned int dev_addr, int write,
1445 int max_scatter, int timed, int count,
1446 bool nonblock, int min_sg_len)
1447 {
1448 struct timespec64 ts1, ts2;
1449 int ret = 0;
1450 int i;
1451
1452 /*
1453 * In the case of a maximally scattered transfer, the maximum transfer
1454 * size is further limited by using PAGE_SIZE segments.
1455 */
1456 if (max_scatter) {
1457 struct mmc_test_area *t = &test->area;
1458 unsigned long max_tfr;
1459
1460 if (t->max_seg_sz >= PAGE_SIZE)
1461 max_tfr = t->max_segs * PAGE_SIZE;
1462 else
1463 max_tfr = t->max_segs * t->max_seg_sz;
1464 if (sz > max_tfr)
1465 sz = max_tfr;
1466 }
1467
1468 ret = mmc_test_area_map(test, sz, max_scatter, min_sg_len, nonblock);
1469 if (ret)
1470 return ret;
1471
1472 if (timed)
1473 ktime_get_ts64(&ts1);
1474 if (nonblock)
1475 ret = mmc_test_nonblock_transfer(test, dev_addr, write, count);
1476 else
1477 for (i = 0; i < count && ret == 0; i++) {
1478 ret = mmc_test_area_transfer(test, dev_addr, write);
1479 dev_addr += sz >> 9;
1480 }
1481
1482 if (ret)
1483 return ret;
1484
1485 if (timed)
1486 ktime_get_ts64(&ts2);
1487
1488 if (timed)
1489 mmc_test_print_avg_rate(test, sz, count, &ts1, &ts2);
1490
1491 return 0;
1492 }
1493
mmc_test_area_io(struct mmc_test_card * test,unsigned long sz,unsigned int dev_addr,int write,int max_scatter,int timed)1494 static int mmc_test_area_io(struct mmc_test_card *test, unsigned long sz,
1495 unsigned int dev_addr, int write, int max_scatter,
1496 int timed)
1497 {
1498 return mmc_test_area_io_seq(test, sz, dev_addr, write, max_scatter,
1499 timed, 1, false, 0);
1500 }
1501
1502 /*
1503 * Write the test area entirely.
1504 */
mmc_test_area_fill(struct mmc_test_card * test)1505 static int mmc_test_area_fill(struct mmc_test_card *test)
1506 {
1507 struct mmc_test_area *t = &test->area;
1508
1509 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, 1, 0, 0);
1510 }
1511
1512 /*
1513 * Erase the test area entirely.
1514 */
mmc_test_area_erase(struct mmc_test_card * test)1515 static int mmc_test_area_erase(struct mmc_test_card *test)
1516 {
1517 struct mmc_test_area *t = &test->area;
1518
1519 if (!mmc_can_erase(test->card))
1520 return 0;
1521
1522 return mmc_erase(test->card, t->dev_addr, t->max_sz >> 9,
1523 MMC_ERASE_ARG);
1524 }
1525
1526 /*
1527 * Cleanup struct mmc_test_area.
1528 */
mmc_test_area_cleanup(struct mmc_test_card * test)1529 static int mmc_test_area_cleanup(struct mmc_test_card *test)
1530 {
1531 struct mmc_test_area *t = &test->area;
1532
1533 kfree(t->sg);
1534 kfree(t->sg_areq);
1535 mmc_test_free_mem(t->mem);
1536
1537 return 0;
1538 }
1539
1540 /*
1541 * Initialize an area for testing large transfers. The test area is set to the
1542 * middle of the card because cards may have different characteristics at the
1543 * front (for FAT file system optimization). Optionally, the area is erased
1544 * (if the card supports it) which may improve write performance. Optionally,
1545 * the area is filled with data for subsequent read tests.
1546 */
mmc_test_area_init(struct mmc_test_card * test,int erase,int fill)1547 static int mmc_test_area_init(struct mmc_test_card *test, int erase, int fill)
1548 {
1549 struct mmc_test_area *t = &test->area;
1550 unsigned long min_sz = 64 * 1024, sz;
1551 int ret;
1552
1553 ret = mmc_test_set_blksize(test, 512);
1554 if (ret)
1555 return ret;
1556
1557 /* Make the test area size about 4MiB */
1558 sz = (unsigned long)test->card->pref_erase << 9;
1559 t->max_sz = sz;
1560 while (t->max_sz < 4 * 1024 * 1024)
1561 t->max_sz += sz;
1562 while (t->max_sz > TEST_AREA_MAX_SIZE && t->max_sz > sz)
1563 t->max_sz -= sz;
1564
1565 t->max_segs = test->card->host->max_segs;
1566 t->max_seg_sz = test->card->host->max_seg_size;
1567 t->max_seg_sz -= t->max_seg_sz % 512;
1568
1569 t->max_tfr = t->max_sz;
1570 if (t->max_tfr >> 9 > test->card->host->max_blk_count)
1571 t->max_tfr = test->card->host->max_blk_count << 9;
1572 if (t->max_tfr > test->card->host->max_req_size)
1573 t->max_tfr = test->card->host->max_req_size;
1574 if (t->max_tfr / t->max_seg_sz > t->max_segs)
1575 t->max_tfr = t->max_segs * t->max_seg_sz;
1576
1577 /*
1578 * Try to allocate enough memory for a max. sized transfer. Less is OK
1579 * because the same memory can be mapped into the scatterlist more than
1580 * once. Also, take into account the limits imposed on scatterlist
1581 * segments by the host driver.
1582 */
1583 t->mem = mmc_test_alloc_mem(min_sz, t->max_tfr, t->max_segs,
1584 t->max_seg_sz);
1585 if (!t->mem)
1586 return -ENOMEM;
1587
1588 t->sg = kmalloc_array(t->max_segs, sizeof(*t->sg), GFP_KERNEL);
1589 if (!t->sg) {
1590 ret = -ENOMEM;
1591 goto out_free;
1592 }
1593
1594 t->sg_areq = kmalloc_array(t->max_segs, sizeof(*t->sg_areq),
1595 GFP_KERNEL);
1596 if (!t->sg_areq) {
1597 ret = -ENOMEM;
1598 goto out_free;
1599 }
1600
1601 t->dev_addr = mmc_test_capacity(test->card) / 2;
1602 t->dev_addr -= t->dev_addr % (t->max_sz >> 9);
1603
1604 if (erase) {
1605 ret = mmc_test_area_erase(test);
1606 if (ret)
1607 goto out_free;
1608 }
1609
1610 if (fill) {
1611 ret = mmc_test_area_fill(test);
1612 if (ret)
1613 goto out_free;
1614 }
1615
1616 return 0;
1617
1618 out_free:
1619 mmc_test_area_cleanup(test);
1620 return ret;
1621 }
1622
1623 /*
1624 * Prepare for large transfers. Do not erase the test area.
1625 */
mmc_test_area_prepare(struct mmc_test_card * test)1626 static int mmc_test_area_prepare(struct mmc_test_card *test)
1627 {
1628 return mmc_test_area_init(test, 0, 0);
1629 }
1630
1631 /*
1632 * Prepare for large transfers. Do erase the test area.
1633 */
mmc_test_area_prepare_erase(struct mmc_test_card * test)1634 static int mmc_test_area_prepare_erase(struct mmc_test_card *test)
1635 {
1636 return mmc_test_area_init(test, 1, 0);
1637 }
1638
1639 /*
1640 * Prepare for large transfers. Erase and fill the test area.
1641 */
mmc_test_area_prepare_fill(struct mmc_test_card * test)1642 static int mmc_test_area_prepare_fill(struct mmc_test_card *test)
1643 {
1644 return mmc_test_area_init(test, 1, 1);
1645 }
1646
1647 /*
1648 * Test best-case performance. Best-case performance is expected from
1649 * a single large transfer.
1650 *
1651 * An additional option (max_scatter) allows the measurement of the same
1652 * transfer but with no contiguous pages in the scatter list. This tests
1653 * the efficiency of DMA to handle scattered pages.
1654 */
mmc_test_best_performance(struct mmc_test_card * test,int write,int max_scatter)1655 static int mmc_test_best_performance(struct mmc_test_card *test, int write,
1656 int max_scatter)
1657 {
1658 struct mmc_test_area *t = &test->area;
1659
1660 return mmc_test_area_io(test, t->max_tfr, t->dev_addr, write,
1661 max_scatter, 1);
1662 }
1663
1664 /*
1665 * Best-case read performance.
1666 */
mmc_test_best_read_performance(struct mmc_test_card * test)1667 static int mmc_test_best_read_performance(struct mmc_test_card *test)
1668 {
1669 return mmc_test_best_performance(test, 0, 0);
1670 }
1671
1672 /*
1673 * Best-case write performance.
1674 */
mmc_test_best_write_performance(struct mmc_test_card * test)1675 static int mmc_test_best_write_performance(struct mmc_test_card *test)
1676 {
1677 return mmc_test_best_performance(test, 1, 0);
1678 }
1679
1680 /*
1681 * Best-case read performance into scattered pages.
1682 */
mmc_test_best_read_perf_max_scatter(struct mmc_test_card * test)1683 static int mmc_test_best_read_perf_max_scatter(struct mmc_test_card *test)
1684 {
1685 return mmc_test_best_performance(test, 0, 1);
1686 }
1687
1688 /*
1689 * Best-case write performance from scattered pages.
1690 */
mmc_test_best_write_perf_max_scatter(struct mmc_test_card * test)1691 static int mmc_test_best_write_perf_max_scatter(struct mmc_test_card *test)
1692 {
1693 return mmc_test_best_performance(test, 1, 1);
1694 }
1695
1696 /*
1697 * Single read performance by transfer size.
1698 */
mmc_test_profile_read_perf(struct mmc_test_card * test)1699 static int mmc_test_profile_read_perf(struct mmc_test_card *test)
1700 {
1701 struct mmc_test_area *t = &test->area;
1702 unsigned long sz;
1703 unsigned int dev_addr;
1704 int ret;
1705
1706 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1707 dev_addr = t->dev_addr + (sz >> 9);
1708 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1709 if (ret)
1710 return ret;
1711 }
1712 sz = t->max_tfr;
1713 dev_addr = t->dev_addr;
1714 return mmc_test_area_io(test, sz, dev_addr, 0, 0, 1);
1715 }
1716
1717 /*
1718 * Single write performance by transfer size.
1719 */
mmc_test_profile_write_perf(struct mmc_test_card * test)1720 static int mmc_test_profile_write_perf(struct mmc_test_card *test)
1721 {
1722 struct mmc_test_area *t = &test->area;
1723 unsigned long sz;
1724 unsigned int dev_addr;
1725 int ret;
1726
1727 ret = mmc_test_area_erase(test);
1728 if (ret)
1729 return ret;
1730 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1731 dev_addr = t->dev_addr + (sz >> 9);
1732 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1733 if (ret)
1734 return ret;
1735 }
1736 ret = mmc_test_area_erase(test);
1737 if (ret)
1738 return ret;
1739 sz = t->max_tfr;
1740 dev_addr = t->dev_addr;
1741 return mmc_test_area_io(test, sz, dev_addr, 1, 0, 1);
1742 }
1743
1744 /*
1745 * Single trim performance by transfer size.
1746 */
mmc_test_profile_trim_perf(struct mmc_test_card * test)1747 static int mmc_test_profile_trim_perf(struct mmc_test_card *test)
1748 {
1749 struct mmc_test_area *t = &test->area;
1750 unsigned long sz;
1751 unsigned int dev_addr;
1752 struct timespec64 ts1, ts2;
1753 int ret;
1754
1755 if (!mmc_can_trim(test->card))
1756 return RESULT_UNSUP_CARD;
1757
1758 if (!mmc_can_erase(test->card))
1759 return RESULT_UNSUP_HOST;
1760
1761 for (sz = 512; sz < t->max_sz; sz <<= 1) {
1762 dev_addr = t->dev_addr + (sz >> 9);
1763 ktime_get_ts64(&ts1);
1764 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1765 if (ret)
1766 return ret;
1767 ktime_get_ts64(&ts2);
1768 mmc_test_print_rate(test, sz, &ts1, &ts2);
1769 }
1770 dev_addr = t->dev_addr;
1771 ktime_get_ts64(&ts1);
1772 ret = mmc_erase(test->card, dev_addr, sz >> 9, MMC_TRIM_ARG);
1773 if (ret)
1774 return ret;
1775 ktime_get_ts64(&ts2);
1776 mmc_test_print_rate(test, sz, &ts1, &ts2);
1777 return 0;
1778 }
1779
mmc_test_seq_read_perf(struct mmc_test_card * test,unsigned long sz)1780 static int mmc_test_seq_read_perf(struct mmc_test_card *test, unsigned long sz)
1781 {
1782 struct mmc_test_area *t = &test->area;
1783 unsigned int dev_addr, i, cnt;
1784 struct timespec64 ts1, ts2;
1785 int ret;
1786
1787 cnt = t->max_sz / sz;
1788 dev_addr = t->dev_addr;
1789 ktime_get_ts64(&ts1);
1790 for (i = 0; i < cnt; i++) {
1791 ret = mmc_test_area_io(test, sz, dev_addr, 0, 0, 0);
1792 if (ret)
1793 return ret;
1794 dev_addr += (sz >> 9);
1795 }
1796 ktime_get_ts64(&ts2);
1797 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1798 return 0;
1799 }
1800
1801 /*
1802 * Consecutive read performance by transfer size.
1803 */
mmc_test_profile_seq_read_perf(struct mmc_test_card * test)1804 static int mmc_test_profile_seq_read_perf(struct mmc_test_card *test)
1805 {
1806 struct mmc_test_area *t = &test->area;
1807 unsigned long sz;
1808 int ret;
1809
1810 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1811 ret = mmc_test_seq_read_perf(test, sz);
1812 if (ret)
1813 return ret;
1814 }
1815 sz = t->max_tfr;
1816 return mmc_test_seq_read_perf(test, sz);
1817 }
1818
mmc_test_seq_write_perf(struct mmc_test_card * test,unsigned long sz)1819 static int mmc_test_seq_write_perf(struct mmc_test_card *test, unsigned long sz)
1820 {
1821 struct mmc_test_area *t = &test->area;
1822 unsigned int dev_addr, i, cnt;
1823 struct timespec64 ts1, ts2;
1824 int ret;
1825
1826 ret = mmc_test_area_erase(test);
1827 if (ret)
1828 return ret;
1829 cnt = t->max_sz / sz;
1830 dev_addr = t->dev_addr;
1831 ktime_get_ts64(&ts1);
1832 for (i = 0; i < cnt; i++) {
1833 ret = mmc_test_area_io(test, sz, dev_addr, 1, 0, 0);
1834 if (ret)
1835 return ret;
1836 dev_addr += (sz >> 9);
1837 }
1838 ktime_get_ts64(&ts2);
1839 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1840 return 0;
1841 }
1842
1843 /*
1844 * Consecutive write performance by transfer size.
1845 */
mmc_test_profile_seq_write_perf(struct mmc_test_card * test)1846 static int mmc_test_profile_seq_write_perf(struct mmc_test_card *test)
1847 {
1848 struct mmc_test_area *t = &test->area;
1849 unsigned long sz;
1850 int ret;
1851
1852 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1853 ret = mmc_test_seq_write_perf(test, sz);
1854 if (ret)
1855 return ret;
1856 }
1857 sz = t->max_tfr;
1858 return mmc_test_seq_write_perf(test, sz);
1859 }
1860
1861 /*
1862 * Consecutive trim performance by transfer size.
1863 */
mmc_test_profile_seq_trim_perf(struct mmc_test_card * test)1864 static int mmc_test_profile_seq_trim_perf(struct mmc_test_card *test)
1865 {
1866 struct mmc_test_area *t = &test->area;
1867 unsigned long sz;
1868 unsigned int dev_addr, i, cnt;
1869 struct timespec64 ts1, ts2;
1870 int ret;
1871
1872 if (!mmc_can_trim(test->card))
1873 return RESULT_UNSUP_CARD;
1874
1875 if (!mmc_can_erase(test->card))
1876 return RESULT_UNSUP_HOST;
1877
1878 for (sz = 512; sz <= t->max_sz; sz <<= 1) {
1879 ret = mmc_test_area_erase(test);
1880 if (ret)
1881 return ret;
1882 ret = mmc_test_area_fill(test);
1883 if (ret)
1884 return ret;
1885 cnt = t->max_sz / sz;
1886 dev_addr = t->dev_addr;
1887 ktime_get_ts64(&ts1);
1888 for (i = 0; i < cnt; i++) {
1889 ret = mmc_erase(test->card, dev_addr, sz >> 9,
1890 MMC_TRIM_ARG);
1891 if (ret)
1892 return ret;
1893 dev_addr += (sz >> 9);
1894 }
1895 ktime_get_ts64(&ts2);
1896 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1897 }
1898 return 0;
1899 }
1900
1901 static unsigned int rnd_next = 1;
1902
mmc_test_rnd_num(unsigned int rnd_cnt)1903 static unsigned int mmc_test_rnd_num(unsigned int rnd_cnt)
1904 {
1905 uint64_t r;
1906
1907 rnd_next = rnd_next * 1103515245 + 12345;
1908 r = (rnd_next >> 16) & 0x7fff;
1909 return (r * rnd_cnt) >> 15;
1910 }
1911
mmc_test_rnd_perf(struct mmc_test_card * test,int write,int print,unsigned long sz)1912 static int mmc_test_rnd_perf(struct mmc_test_card *test, int write, int print,
1913 unsigned long sz)
1914 {
1915 unsigned int dev_addr, cnt, rnd_addr, range1, range2, last_ea = 0, ea;
1916 unsigned int ssz;
1917 struct timespec64 ts1, ts2, ts;
1918 int ret;
1919
1920 ssz = sz >> 9;
1921
1922 rnd_addr = mmc_test_capacity(test->card) / 4;
1923 range1 = rnd_addr / test->card->pref_erase;
1924 range2 = range1 / ssz;
1925
1926 ktime_get_ts64(&ts1);
1927 for (cnt = 0; cnt < UINT_MAX; cnt++) {
1928 ktime_get_ts64(&ts2);
1929 ts = timespec64_sub(ts2, ts1);
1930 if (ts.tv_sec >= 10)
1931 break;
1932 ea = mmc_test_rnd_num(range1);
1933 if (ea == last_ea)
1934 ea -= 1;
1935 last_ea = ea;
1936 dev_addr = rnd_addr + test->card->pref_erase * ea +
1937 ssz * mmc_test_rnd_num(range2);
1938 ret = mmc_test_area_io(test, sz, dev_addr, write, 0, 0);
1939 if (ret)
1940 return ret;
1941 }
1942 if (print)
1943 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
1944 return 0;
1945 }
1946
mmc_test_random_perf(struct mmc_test_card * test,int write)1947 static int mmc_test_random_perf(struct mmc_test_card *test, int write)
1948 {
1949 struct mmc_test_area *t = &test->area;
1950 unsigned int next;
1951 unsigned long sz;
1952 int ret;
1953
1954 for (sz = 512; sz < t->max_tfr; sz <<= 1) {
1955 /*
1956 * When writing, try to get more consistent results by running
1957 * the test twice with exactly the same I/O but outputting the
1958 * results only for the 2nd run.
1959 */
1960 if (write) {
1961 next = rnd_next;
1962 ret = mmc_test_rnd_perf(test, write, 0, sz);
1963 if (ret)
1964 return ret;
1965 rnd_next = next;
1966 }
1967 ret = mmc_test_rnd_perf(test, write, 1, sz);
1968 if (ret)
1969 return ret;
1970 }
1971 sz = t->max_tfr;
1972 if (write) {
1973 next = rnd_next;
1974 ret = mmc_test_rnd_perf(test, write, 0, sz);
1975 if (ret)
1976 return ret;
1977 rnd_next = next;
1978 }
1979 return mmc_test_rnd_perf(test, write, 1, sz);
1980 }
1981
1982 /*
1983 * Random read performance by transfer size.
1984 */
mmc_test_random_read_perf(struct mmc_test_card * test)1985 static int mmc_test_random_read_perf(struct mmc_test_card *test)
1986 {
1987 return mmc_test_random_perf(test, 0);
1988 }
1989
1990 /*
1991 * Random write performance by transfer size.
1992 */
mmc_test_random_write_perf(struct mmc_test_card * test)1993 static int mmc_test_random_write_perf(struct mmc_test_card *test)
1994 {
1995 return mmc_test_random_perf(test, 1);
1996 }
1997
mmc_test_seq_perf(struct mmc_test_card * test,int write,unsigned int tot_sz,int max_scatter)1998 static int mmc_test_seq_perf(struct mmc_test_card *test, int write,
1999 unsigned int tot_sz, int max_scatter)
2000 {
2001 struct mmc_test_area *t = &test->area;
2002 unsigned int dev_addr, i, cnt, sz, ssz;
2003 struct timespec64 ts1, ts2;
2004 int ret;
2005
2006 sz = t->max_tfr;
2007
2008 /*
2009 * In the case of a maximally scattered transfer, the maximum transfer
2010 * size is further limited by using PAGE_SIZE segments.
2011 */
2012 if (max_scatter) {
2013 unsigned long max_tfr;
2014
2015 if (t->max_seg_sz >= PAGE_SIZE)
2016 max_tfr = t->max_segs * PAGE_SIZE;
2017 else
2018 max_tfr = t->max_segs * t->max_seg_sz;
2019 if (sz > max_tfr)
2020 sz = max_tfr;
2021 }
2022
2023 ssz = sz >> 9;
2024 dev_addr = mmc_test_capacity(test->card) / 4;
2025 if (tot_sz > dev_addr << 9)
2026 tot_sz = dev_addr << 9;
2027 cnt = tot_sz / sz;
2028 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2029
2030 ktime_get_ts64(&ts1);
2031 for (i = 0; i < cnt; i++) {
2032 ret = mmc_test_area_io(test, sz, dev_addr, write,
2033 max_scatter, 0);
2034 if (ret)
2035 return ret;
2036 dev_addr += ssz;
2037 }
2038 ktime_get_ts64(&ts2);
2039
2040 mmc_test_print_avg_rate(test, sz, cnt, &ts1, &ts2);
2041
2042 return 0;
2043 }
2044
mmc_test_large_seq_perf(struct mmc_test_card * test,int write)2045 static int mmc_test_large_seq_perf(struct mmc_test_card *test, int write)
2046 {
2047 int ret, i;
2048
2049 for (i = 0; i < 10; i++) {
2050 ret = mmc_test_seq_perf(test, write, 10 * 1024 * 1024, 1);
2051 if (ret)
2052 return ret;
2053 }
2054 for (i = 0; i < 5; i++) {
2055 ret = mmc_test_seq_perf(test, write, 100 * 1024 * 1024, 1);
2056 if (ret)
2057 return ret;
2058 }
2059 for (i = 0; i < 3; i++) {
2060 ret = mmc_test_seq_perf(test, write, 1000 * 1024 * 1024, 1);
2061 if (ret)
2062 return ret;
2063 }
2064
2065 return ret;
2066 }
2067
2068 /*
2069 * Large sequential read performance.
2070 */
mmc_test_large_seq_read_perf(struct mmc_test_card * test)2071 static int mmc_test_large_seq_read_perf(struct mmc_test_card *test)
2072 {
2073 return mmc_test_large_seq_perf(test, 0);
2074 }
2075
2076 /*
2077 * Large sequential write performance.
2078 */
mmc_test_large_seq_write_perf(struct mmc_test_card * test)2079 static int mmc_test_large_seq_write_perf(struct mmc_test_card *test)
2080 {
2081 return mmc_test_large_seq_perf(test, 1);
2082 }
2083
mmc_test_rw_multiple(struct mmc_test_card * test,struct mmc_test_multiple_rw * tdata,unsigned int reqsize,unsigned int size,int min_sg_len)2084 static int mmc_test_rw_multiple(struct mmc_test_card *test,
2085 struct mmc_test_multiple_rw *tdata,
2086 unsigned int reqsize, unsigned int size,
2087 int min_sg_len)
2088 {
2089 unsigned int dev_addr;
2090 struct mmc_test_area *t = &test->area;
2091 int ret = 0;
2092
2093 /* Set up test area */
2094 if (size > mmc_test_capacity(test->card) / 2 * 512)
2095 size = mmc_test_capacity(test->card) / 2 * 512;
2096 if (reqsize > t->max_tfr)
2097 reqsize = t->max_tfr;
2098 dev_addr = mmc_test_capacity(test->card) / 4;
2099 if ((dev_addr & 0xffff0000))
2100 dev_addr &= 0xffff0000; /* Round to 64MiB boundary */
2101 else
2102 dev_addr &= 0xfffff800; /* Round to 1MiB boundary */
2103 if (!dev_addr)
2104 goto err;
2105
2106 if (reqsize > size)
2107 return 0;
2108
2109 /* prepare test area */
2110 if (mmc_can_erase(test->card) &&
2111 tdata->prepare & MMC_TEST_PREP_ERASE) {
2112 ret = mmc_erase(test->card, dev_addr,
2113 size / 512, test->card->erase_arg);
2114 if (ret)
2115 ret = mmc_erase(test->card, dev_addr,
2116 size / 512, MMC_ERASE_ARG);
2117 if (ret)
2118 goto err;
2119 }
2120
2121 /* Run test */
2122 ret = mmc_test_area_io_seq(test, reqsize, dev_addr,
2123 tdata->do_write, 0, 1, size / reqsize,
2124 tdata->do_nonblock_req, min_sg_len);
2125 if (ret)
2126 goto err;
2127
2128 return ret;
2129 err:
2130 pr_info("[%s] error\n", __func__);
2131 return ret;
2132 }
2133
mmc_test_rw_multiple_size(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2134 static int mmc_test_rw_multiple_size(struct mmc_test_card *test,
2135 struct mmc_test_multiple_rw *rw)
2136 {
2137 int ret = 0;
2138 int i;
2139 void *pre_req = test->card->host->ops->pre_req;
2140 void *post_req = test->card->host->ops->post_req;
2141
2142 if (rw->do_nonblock_req &&
2143 ((!pre_req && post_req) || (pre_req && !post_req))) {
2144 pr_info("error: only one of pre/post is defined\n");
2145 return -EINVAL;
2146 }
2147
2148 for (i = 0 ; i < rw->len && ret == 0; i++) {
2149 ret = mmc_test_rw_multiple(test, rw, rw->bs[i], rw->size, 0);
2150 if (ret)
2151 break;
2152 }
2153 return ret;
2154 }
2155
mmc_test_rw_multiple_sg_len(struct mmc_test_card * test,struct mmc_test_multiple_rw * rw)2156 static int mmc_test_rw_multiple_sg_len(struct mmc_test_card *test,
2157 struct mmc_test_multiple_rw *rw)
2158 {
2159 int ret = 0;
2160 int i;
2161
2162 for (i = 0 ; i < rw->len && ret == 0; i++) {
2163 ret = mmc_test_rw_multiple(test, rw, 512 * 1024, rw->size,
2164 rw->sg_len[i]);
2165 if (ret)
2166 break;
2167 }
2168 return ret;
2169 }
2170
2171 /*
2172 * Multiple blocking write 4k to 4 MB chunks
2173 */
mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card * test)2174 static int mmc_test_profile_mult_write_blocking_perf(struct mmc_test_card *test)
2175 {
2176 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2177 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2178 struct mmc_test_multiple_rw test_data = {
2179 .bs = bs,
2180 .size = TEST_AREA_MAX_SIZE,
2181 .len = ARRAY_SIZE(bs),
2182 .do_write = true,
2183 .do_nonblock_req = false,
2184 .prepare = MMC_TEST_PREP_ERASE,
2185 };
2186
2187 return mmc_test_rw_multiple_size(test, &test_data);
2188 };
2189
2190 /*
2191 * Multiple non-blocking write 4k to 4 MB chunks
2192 */
mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card * test)2193 static int mmc_test_profile_mult_write_nonblock_perf(struct mmc_test_card *test)
2194 {
2195 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2196 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2197 struct mmc_test_multiple_rw test_data = {
2198 .bs = bs,
2199 .size = TEST_AREA_MAX_SIZE,
2200 .len = ARRAY_SIZE(bs),
2201 .do_write = true,
2202 .do_nonblock_req = true,
2203 .prepare = MMC_TEST_PREP_ERASE,
2204 };
2205
2206 return mmc_test_rw_multiple_size(test, &test_data);
2207 }
2208
2209 /*
2210 * Multiple blocking read 4k to 4 MB chunks
2211 */
mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card * test)2212 static int mmc_test_profile_mult_read_blocking_perf(struct mmc_test_card *test)
2213 {
2214 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2215 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2216 struct mmc_test_multiple_rw test_data = {
2217 .bs = bs,
2218 .size = TEST_AREA_MAX_SIZE,
2219 .len = ARRAY_SIZE(bs),
2220 .do_write = false,
2221 .do_nonblock_req = false,
2222 .prepare = MMC_TEST_PREP_NONE,
2223 };
2224
2225 return mmc_test_rw_multiple_size(test, &test_data);
2226 }
2227
2228 /*
2229 * Multiple non-blocking read 4k to 4 MB chunks
2230 */
mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card * test)2231 static int mmc_test_profile_mult_read_nonblock_perf(struct mmc_test_card *test)
2232 {
2233 unsigned int bs[] = {1 << 12, 1 << 13, 1 << 14, 1 << 15, 1 << 16,
2234 1 << 17, 1 << 18, 1 << 19, 1 << 20, 1 << 22};
2235 struct mmc_test_multiple_rw test_data = {
2236 .bs = bs,
2237 .size = TEST_AREA_MAX_SIZE,
2238 .len = ARRAY_SIZE(bs),
2239 .do_write = false,
2240 .do_nonblock_req = true,
2241 .prepare = MMC_TEST_PREP_NONE,
2242 };
2243
2244 return mmc_test_rw_multiple_size(test, &test_data);
2245 }
2246
2247 /*
2248 * Multiple blocking write 1 to 512 sg elements
2249 */
mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card * test)2250 static int mmc_test_profile_sglen_wr_blocking_perf(struct mmc_test_card *test)
2251 {
2252 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2253 1 << 7, 1 << 8, 1 << 9};
2254 struct mmc_test_multiple_rw test_data = {
2255 .sg_len = sg_len,
2256 .size = TEST_AREA_MAX_SIZE,
2257 .len = ARRAY_SIZE(sg_len),
2258 .do_write = true,
2259 .do_nonblock_req = false,
2260 .prepare = MMC_TEST_PREP_ERASE,
2261 };
2262
2263 return mmc_test_rw_multiple_sg_len(test, &test_data);
2264 };
2265
2266 /*
2267 * Multiple non-blocking write 1 to 512 sg elements
2268 */
mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card * test)2269 static int mmc_test_profile_sglen_wr_nonblock_perf(struct mmc_test_card *test)
2270 {
2271 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2272 1 << 7, 1 << 8, 1 << 9};
2273 struct mmc_test_multiple_rw test_data = {
2274 .sg_len = sg_len,
2275 .size = TEST_AREA_MAX_SIZE,
2276 .len = ARRAY_SIZE(sg_len),
2277 .do_write = true,
2278 .do_nonblock_req = true,
2279 .prepare = MMC_TEST_PREP_ERASE,
2280 };
2281
2282 return mmc_test_rw_multiple_sg_len(test, &test_data);
2283 }
2284
2285 /*
2286 * Multiple blocking read 1 to 512 sg elements
2287 */
mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card * test)2288 static int mmc_test_profile_sglen_r_blocking_perf(struct mmc_test_card *test)
2289 {
2290 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2291 1 << 7, 1 << 8, 1 << 9};
2292 struct mmc_test_multiple_rw test_data = {
2293 .sg_len = sg_len,
2294 .size = TEST_AREA_MAX_SIZE,
2295 .len = ARRAY_SIZE(sg_len),
2296 .do_write = false,
2297 .do_nonblock_req = false,
2298 .prepare = MMC_TEST_PREP_NONE,
2299 };
2300
2301 return mmc_test_rw_multiple_sg_len(test, &test_data);
2302 }
2303
2304 /*
2305 * Multiple non-blocking read 1 to 512 sg elements
2306 */
mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card * test)2307 static int mmc_test_profile_sglen_r_nonblock_perf(struct mmc_test_card *test)
2308 {
2309 unsigned int sg_len[] = {1, 1 << 3, 1 << 4, 1 << 5, 1 << 6,
2310 1 << 7, 1 << 8, 1 << 9};
2311 struct mmc_test_multiple_rw test_data = {
2312 .sg_len = sg_len,
2313 .size = TEST_AREA_MAX_SIZE,
2314 .len = ARRAY_SIZE(sg_len),
2315 .do_write = false,
2316 .do_nonblock_req = true,
2317 .prepare = MMC_TEST_PREP_NONE,
2318 };
2319
2320 return mmc_test_rw_multiple_sg_len(test, &test_data);
2321 }
2322
2323 /*
2324 * eMMC hardware reset.
2325 */
mmc_test_reset(struct mmc_test_card * test)2326 static int mmc_test_reset(struct mmc_test_card *test)
2327 {
2328 struct mmc_card *card = test->card;
2329 struct mmc_host *host = card->host;
2330 int err;
2331
2332 err = mmc_hw_reset(host);
2333 if (!err) {
2334 /*
2335 * Reset will re-enable the card's command queue, but tests
2336 * expect it to be disabled.
2337 */
2338 if (card->ext_csd.cmdq_en)
2339 mmc_cmdq_disable(card);
2340 return RESULT_OK;
2341 } else if (err == -EOPNOTSUPP) {
2342 return RESULT_UNSUP_HOST;
2343 }
2344
2345 return RESULT_FAIL;
2346 }
2347
mmc_test_send_status(struct mmc_test_card * test,struct mmc_command * cmd)2348 static int mmc_test_send_status(struct mmc_test_card *test,
2349 struct mmc_command *cmd)
2350 {
2351 memset(cmd, 0, sizeof(*cmd));
2352
2353 cmd->opcode = MMC_SEND_STATUS;
2354 if (!mmc_host_is_spi(test->card->host))
2355 cmd->arg = test->card->rca << 16;
2356 cmd->flags = MMC_RSP_SPI_R2 | MMC_RSP_R1 | MMC_CMD_AC;
2357
2358 return mmc_wait_for_cmd(test->card->host, cmd, 0);
2359 }
2360
mmc_test_ongoing_transfer(struct mmc_test_card * test,unsigned int dev_addr,int use_sbc,int repeat_cmd,int write,int use_areq)2361 static int mmc_test_ongoing_transfer(struct mmc_test_card *test,
2362 unsigned int dev_addr, int use_sbc,
2363 int repeat_cmd, int write, int use_areq)
2364 {
2365 struct mmc_test_req *rq = mmc_test_req_alloc();
2366 struct mmc_host *host = test->card->host;
2367 struct mmc_test_area *t = &test->area;
2368 struct mmc_request *mrq;
2369 unsigned long timeout;
2370 bool expired = false;
2371 int ret = 0, cmd_ret;
2372 u32 status = 0;
2373 int count = 0;
2374
2375 if (!rq)
2376 return -ENOMEM;
2377
2378 mrq = &rq->mrq;
2379 if (use_sbc)
2380 mrq->sbc = &rq->sbc;
2381 mrq->cap_cmd_during_tfr = true;
2382
2383 mmc_test_prepare_mrq(test, mrq, t->sg, t->sg_len, dev_addr, t->blocks,
2384 512, write);
2385
2386 if (use_sbc && t->blocks > 1 && !mrq->sbc) {
2387 ret = mmc_host_cmd23(host) ?
2388 RESULT_UNSUP_CARD :
2389 RESULT_UNSUP_HOST;
2390 goto out_free;
2391 }
2392
2393 /* Start ongoing data request */
2394 if (use_areq) {
2395 ret = mmc_test_start_areq(test, mrq, NULL);
2396 if (ret)
2397 goto out_free;
2398 } else {
2399 mmc_wait_for_req(host, mrq);
2400 }
2401
2402 timeout = jiffies + msecs_to_jiffies(3000);
2403 do {
2404 count += 1;
2405
2406 /* Send status command while data transfer in progress */
2407 cmd_ret = mmc_test_send_status(test, &rq->status);
2408 if (cmd_ret)
2409 break;
2410
2411 status = rq->status.resp[0];
2412 if (status & R1_ERROR) {
2413 cmd_ret = -EIO;
2414 break;
2415 }
2416
2417 if (mmc_is_req_done(host, mrq))
2418 break;
2419
2420 expired = time_after(jiffies, timeout);
2421 if (expired) {
2422 pr_info("%s: timeout waiting for Tran state status %#x\n",
2423 mmc_hostname(host), status);
2424 cmd_ret = -ETIMEDOUT;
2425 break;
2426 }
2427 } while (repeat_cmd && R1_CURRENT_STATE(status) != R1_STATE_TRAN);
2428
2429 /* Wait for data request to complete */
2430 if (use_areq) {
2431 ret = mmc_test_start_areq(test, NULL, mrq);
2432 } else {
2433 mmc_wait_for_req_done(test->card->host, mrq);
2434 }
2435
2436 /*
2437 * For cap_cmd_during_tfr request, upper layer must send stop if
2438 * required.
2439 */
2440 if (mrq->data->stop && (mrq->data->error || !mrq->sbc)) {
2441 if (ret)
2442 mmc_wait_for_cmd(host, mrq->data->stop, 0);
2443 else
2444 ret = mmc_wait_for_cmd(host, mrq->data->stop, 0);
2445 }
2446
2447 if (ret)
2448 goto out_free;
2449
2450 if (cmd_ret) {
2451 pr_info("%s: Send Status failed: status %#x, error %d\n",
2452 mmc_hostname(test->card->host), status, cmd_ret);
2453 }
2454
2455 ret = mmc_test_check_result(test, mrq);
2456 if (ret)
2457 goto out_free;
2458
2459 ret = mmc_test_wait_busy(test);
2460 if (ret)
2461 goto out_free;
2462
2463 if (repeat_cmd && (t->blocks + 1) << 9 > t->max_tfr)
2464 pr_info("%s: %d commands completed during transfer of %u blocks\n",
2465 mmc_hostname(test->card->host), count, t->blocks);
2466
2467 if (cmd_ret)
2468 ret = cmd_ret;
2469 out_free:
2470 kfree(rq);
2471
2472 return ret;
2473 }
2474
__mmc_test_cmds_during_tfr(struct mmc_test_card * test,unsigned long sz,int use_sbc,int write,int use_areq)2475 static int __mmc_test_cmds_during_tfr(struct mmc_test_card *test,
2476 unsigned long sz, int use_sbc, int write,
2477 int use_areq)
2478 {
2479 struct mmc_test_area *t = &test->area;
2480 int ret;
2481
2482 if (!(test->card->host->caps & MMC_CAP_CMD_DURING_TFR))
2483 return RESULT_UNSUP_HOST;
2484
2485 ret = mmc_test_area_map(test, sz, 0, 0, use_areq);
2486 if (ret)
2487 return ret;
2488
2489 ret = mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 0, write,
2490 use_areq);
2491 if (ret)
2492 return ret;
2493
2494 return mmc_test_ongoing_transfer(test, t->dev_addr, use_sbc, 1, write,
2495 use_areq);
2496 }
2497
mmc_test_cmds_during_tfr(struct mmc_test_card * test,int use_sbc,int write,int use_areq)2498 static int mmc_test_cmds_during_tfr(struct mmc_test_card *test, int use_sbc,
2499 int write, int use_areq)
2500 {
2501 struct mmc_test_area *t = &test->area;
2502 unsigned long sz;
2503 int ret;
2504
2505 for (sz = 512; sz <= t->max_tfr; sz += 512) {
2506 ret = __mmc_test_cmds_during_tfr(test, sz, use_sbc, write,
2507 use_areq);
2508 if (ret)
2509 return ret;
2510 }
2511 return 0;
2512 }
2513
2514 /*
2515 * Commands during read - no Set Block Count (CMD23).
2516 */
mmc_test_cmds_during_read(struct mmc_test_card * test)2517 static int mmc_test_cmds_during_read(struct mmc_test_card *test)
2518 {
2519 return mmc_test_cmds_during_tfr(test, 0, 0, 0);
2520 }
2521
2522 /*
2523 * Commands during write - no Set Block Count (CMD23).
2524 */
mmc_test_cmds_during_write(struct mmc_test_card * test)2525 static int mmc_test_cmds_during_write(struct mmc_test_card *test)
2526 {
2527 return mmc_test_cmds_during_tfr(test, 0, 1, 0);
2528 }
2529
2530 /*
2531 * Commands during read - use Set Block Count (CMD23).
2532 */
mmc_test_cmds_during_read_cmd23(struct mmc_test_card * test)2533 static int mmc_test_cmds_during_read_cmd23(struct mmc_test_card *test)
2534 {
2535 return mmc_test_cmds_during_tfr(test, 1, 0, 0);
2536 }
2537
2538 /*
2539 * Commands during write - use Set Block Count (CMD23).
2540 */
mmc_test_cmds_during_write_cmd23(struct mmc_test_card * test)2541 static int mmc_test_cmds_during_write_cmd23(struct mmc_test_card *test)
2542 {
2543 return mmc_test_cmds_during_tfr(test, 1, 1, 0);
2544 }
2545
2546 /*
2547 * Commands during non-blocking read - use Set Block Count (CMD23).
2548 */
mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card * test)2549 static int mmc_test_cmds_during_read_cmd23_nonblock(struct mmc_test_card *test)
2550 {
2551 return mmc_test_cmds_during_tfr(test, 1, 0, 1);
2552 }
2553
2554 /*
2555 * Commands during non-blocking write - use Set Block Count (CMD23).
2556 */
mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card * test)2557 static int mmc_test_cmds_during_write_cmd23_nonblock(struct mmc_test_card *test)
2558 {
2559 return mmc_test_cmds_during_tfr(test, 1, 1, 1);
2560 }
2561
2562 static const struct mmc_test_case mmc_test_cases[] = {
2563 {
2564 .name = "Basic write (no data verification)",
2565 .run = mmc_test_basic_write,
2566 },
2567
2568 {
2569 .name = "Basic read (no data verification)",
2570 .run = mmc_test_basic_read,
2571 },
2572
2573 {
2574 .name = "Basic write (with data verification)",
2575 .prepare = mmc_test_prepare_write,
2576 .run = mmc_test_verify_write,
2577 .cleanup = mmc_test_cleanup,
2578 },
2579
2580 {
2581 .name = "Basic read (with data verification)",
2582 .prepare = mmc_test_prepare_read,
2583 .run = mmc_test_verify_read,
2584 .cleanup = mmc_test_cleanup,
2585 },
2586
2587 {
2588 .name = "Multi-block write",
2589 .prepare = mmc_test_prepare_write,
2590 .run = mmc_test_multi_write,
2591 .cleanup = mmc_test_cleanup,
2592 },
2593
2594 {
2595 .name = "Multi-block read",
2596 .prepare = mmc_test_prepare_read,
2597 .run = mmc_test_multi_read,
2598 .cleanup = mmc_test_cleanup,
2599 },
2600
2601 {
2602 .name = "Power of two block writes",
2603 .prepare = mmc_test_prepare_write,
2604 .run = mmc_test_pow2_write,
2605 .cleanup = mmc_test_cleanup,
2606 },
2607
2608 {
2609 .name = "Power of two block reads",
2610 .prepare = mmc_test_prepare_read,
2611 .run = mmc_test_pow2_read,
2612 .cleanup = mmc_test_cleanup,
2613 },
2614
2615 {
2616 .name = "Weird sized block writes",
2617 .prepare = mmc_test_prepare_write,
2618 .run = mmc_test_weird_write,
2619 .cleanup = mmc_test_cleanup,
2620 },
2621
2622 {
2623 .name = "Weird sized block reads",
2624 .prepare = mmc_test_prepare_read,
2625 .run = mmc_test_weird_read,
2626 .cleanup = mmc_test_cleanup,
2627 },
2628
2629 {
2630 .name = "Badly aligned write",
2631 .prepare = mmc_test_prepare_write,
2632 .run = mmc_test_align_write,
2633 .cleanup = mmc_test_cleanup,
2634 },
2635
2636 {
2637 .name = "Badly aligned read",
2638 .prepare = mmc_test_prepare_read,
2639 .run = mmc_test_align_read,
2640 .cleanup = mmc_test_cleanup,
2641 },
2642
2643 {
2644 .name = "Badly aligned multi-block write",
2645 .prepare = mmc_test_prepare_write,
2646 .run = mmc_test_align_multi_write,
2647 .cleanup = mmc_test_cleanup,
2648 },
2649
2650 {
2651 .name = "Badly aligned multi-block read",
2652 .prepare = mmc_test_prepare_read,
2653 .run = mmc_test_align_multi_read,
2654 .cleanup = mmc_test_cleanup,
2655 },
2656
2657 {
2658 .name = "Proper xfer_size at write (start failure)",
2659 .run = mmc_test_xfersize_write,
2660 },
2661
2662 {
2663 .name = "Proper xfer_size at read (start failure)",
2664 .run = mmc_test_xfersize_read,
2665 },
2666
2667 {
2668 .name = "Proper xfer_size at write (midway failure)",
2669 .run = mmc_test_multi_xfersize_write,
2670 },
2671
2672 {
2673 .name = "Proper xfer_size at read (midway failure)",
2674 .run = mmc_test_multi_xfersize_read,
2675 },
2676
2677 #ifdef CONFIG_HIGHMEM
2678
2679 {
2680 .name = "Highmem write",
2681 .prepare = mmc_test_prepare_write,
2682 .run = mmc_test_write_high,
2683 .cleanup = mmc_test_cleanup,
2684 },
2685
2686 {
2687 .name = "Highmem read",
2688 .prepare = mmc_test_prepare_read,
2689 .run = mmc_test_read_high,
2690 .cleanup = mmc_test_cleanup,
2691 },
2692
2693 {
2694 .name = "Multi-block highmem write",
2695 .prepare = mmc_test_prepare_write,
2696 .run = mmc_test_multi_write_high,
2697 .cleanup = mmc_test_cleanup,
2698 },
2699
2700 {
2701 .name = "Multi-block highmem read",
2702 .prepare = mmc_test_prepare_read,
2703 .run = mmc_test_multi_read_high,
2704 .cleanup = mmc_test_cleanup,
2705 },
2706
2707 #else
2708
2709 {
2710 .name = "Highmem write",
2711 .run = mmc_test_no_highmem,
2712 },
2713
2714 {
2715 .name = "Highmem read",
2716 .run = mmc_test_no_highmem,
2717 },
2718
2719 {
2720 .name = "Multi-block highmem write",
2721 .run = mmc_test_no_highmem,
2722 },
2723
2724 {
2725 .name = "Multi-block highmem read",
2726 .run = mmc_test_no_highmem,
2727 },
2728
2729 #endif /* CONFIG_HIGHMEM */
2730
2731 {
2732 .name = "Best-case read performance",
2733 .prepare = mmc_test_area_prepare_fill,
2734 .run = mmc_test_best_read_performance,
2735 .cleanup = mmc_test_area_cleanup,
2736 },
2737
2738 {
2739 .name = "Best-case write performance",
2740 .prepare = mmc_test_area_prepare_erase,
2741 .run = mmc_test_best_write_performance,
2742 .cleanup = mmc_test_area_cleanup,
2743 },
2744
2745 {
2746 .name = "Best-case read performance into scattered pages",
2747 .prepare = mmc_test_area_prepare_fill,
2748 .run = mmc_test_best_read_perf_max_scatter,
2749 .cleanup = mmc_test_area_cleanup,
2750 },
2751
2752 {
2753 .name = "Best-case write performance from scattered pages",
2754 .prepare = mmc_test_area_prepare_erase,
2755 .run = mmc_test_best_write_perf_max_scatter,
2756 .cleanup = mmc_test_area_cleanup,
2757 },
2758
2759 {
2760 .name = "Single read performance by transfer size",
2761 .prepare = mmc_test_area_prepare_fill,
2762 .run = mmc_test_profile_read_perf,
2763 .cleanup = mmc_test_area_cleanup,
2764 },
2765
2766 {
2767 .name = "Single write performance by transfer size",
2768 .prepare = mmc_test_area_prepare,
2769 .run = mmc_test_profile_write_perf,
2770 .cleanup = mmc_test_area_cleanup,
2771 },
2772
2773 {
2774 .name = "Single trim performance by transfer size",
2775 .prepare = mmc_test_area_prepare_fill,
2776 .run = mmc_test_profile_trim_perf,
2777 .cleanup = mmc_test_area_cleanup,
2778 },
2779
2780 {
2781 .name = "Consecutive read performance by transfer size",
2782 .prepare = mmc_test_area_prepare_fill,
2783 .run = mmc_test_profile_seq_read_perf,
2784 .cleanup = mmc_test_area_cleanup,
2785 },
2786
2787 {
2788 .name = "Consecutive write performance by transfer size",
2789 .prepare = mmc_test_area_prepare,
2790 .run = mmc_test_profile_seq_write_perf,
2791 .cleanup = mmc_test_area_cleanup,
2792 },
2793
2794 {
2795 .name = "Consecutive trim performance by transfer size",
2796 .prepare = mmc_test_area_prepare,
2797 .run = mmc_test_profile_seq_trim_perf,
2798 .cleanup = mmc_test_area_cleanup,
2799 },
2800
2801 {
2802 .name = "Random read performance by transfer size",
2803 .prepare = mmc_test_area_prepare,
2804 .run = mmc_test_random_read_perf,
2805 .cleanup = mmc_test_area_cleanup,
2806 },
2807
2808 {
2809 .name = "Random write performance by transfer size",
2810 .prepare = mmc_test_area_prepare,
2811 .run = mmc_test_random_write_perf,
2812 .cleanup = mmc_test_area_cleanup,
2813 },
2814
2815 {
2816 .name = "Large sequential read into scattered pages",
2817 .prepare = mmc_test_area_prepare,
2818 .run = mmc_test_large_seq_read_perf,
2819 .cleanup = mmc_test_area_cleanup,
2820 },
2821
2822 {
2823 .name = "Large sequential write from scattered pages",
2824 .prepare = mmc_test_area_prepare,
2825 .run = mmc_test_large_seq_write_perf,
2826 .cleanup = mmc_test_area_cleanup,
2827 },
2828
2829 {
2830 .name = "Write performance with blocking req 4k to 4MB",
2831 .prepare = mmc_test_area_prepare,
2832 .run = mmc_test_profile_mult_write_blocking_perf,
2833 .cleanup = mmc_test_area_cleanup,
2834 },
2835
2836 {
2837 .name = "Write performance with non-blocking req 4k to 4MB",
2838 .prepare = mmc_test_area_prepare,
2839 .run = mmc_test_profile_mult_write_nonblock_perf,
2840 .cleanup = mmc_test_area_cleanup,
2841 },
2842
2843 {
2844 .name = "Read performance with blocking req 4k to 4MB",
2845 .prepare = mmc_test_area_prepare,
2846 .run = mmc_test_profile_mult_read_blocking_perf,
2847 .cleanup = mmc_test_area_cleanup,
2848 },
2849
2850 {
2851 .name = "Read performance with non-blocking req 4k to 4MB",
2852 .prepare = mmc_test_area_prepare,
2853 .run = mmc_test_profile_mult_read_nonblock_perf,
2854 .cleanup = mmc_test_area_cleanup,
2855 },
2856
2857 {
2858 .name = "Write performance blocking req 1 to 512 sg elems",
2859 .prepare = mmc_test_area_prepare,
2860 .run = mmc_test_profile_sglen_wr_blocking_perf,
2861 .cleanup = mmc_test_area_cleanup,
2862 },
2863
2864 {
2865 .name = "Write performance non-blocking req 1 to 512 sg elems",
2866 .prepare = mmc_test_area_prepare,
2867 .run = mmc_test_profile_sglen_wr_nonblock_perf,
2868 .cleanup = mmc_test_area_cleanup,
2869 },
2870
2871 {
2872 .name = "Read performance blocking req 1 to 512 sg elems",
2873 .prepare = mmc_test_area_prepare,
2874 .run = mmc_test_profile_sglen_r_blocking_perf,
2875 .cleanup = mmc_test_area_cleanup,
2876 },
2877
2878 {
2879 .name = "Read performance non-blocking req 1 to 512 sg elems",
2880 .prepare = mmc_test_area_prepare,
2881 .run = mmc_test_profile_sglen_r_nonblock_perf,
2882 .cleanup = mmc_test_area_cleanup,
2883 },
2884
2885 {
2886 .name = "Reset test",
2887 .run = mmc_test_reset,
2888 },
2889
2890 {
2891 .name = "Commands during read - no Set Block Count (CMD23)",
2892 .prepare = mmc_test_area_prepare,
2893 .run = mmc_test_cmds_during_read,
2894 .cleanup = mmc_test_area_cleanup,
2895 },
2896
2897 {
2898 .name = "Commands during write - no Set Block Count (CMD23)",
2899 .prepare = mmc_test_area_prepare,
2900 .run = mmc_test_cmds_during_write,
2901 .cleanup = mmc_test_area_cleanup,
2902 },
2903
2904 {
2905 .name = "Commands during read - use Set Block Count (CMD23)",
2906 .prepare = mmc_test_area_prepare,
2907 .run = mmc_test_cmds_during_read_cmd23,
2908 .cleanup = mmc_test_area_cleanup,
2909 },
2910
2911 {
2912 .name = "Commands during write - use Set Block Count (CMD23)",
2913 .prepare = mmc_test_area_prepare,
2914 .run = mmc_test_cmds_during_write_cmd23,
2915 .cleanup = mmc_test_area_cleanup,
2916 },
2917
2918 {
2919 .name = "Commands during non-blocking read - use Set Block Count (CMD23)",
2920 .prepare = mmc_test_area_prepare,
2921 .run = mmc_test_cmds_during_read_cmd23_nonblock,
2922 .cleanup = mmc_test_area_cleanup,
2923 },
2924
2925 {
2926 .name = "Commands during non-blocking write - use Set Block Count (CMD23)",
2927 .prepare = mmc_test_area_prepare,
2928 .run = mmc_test_cmds_during_write_cmd23_nonblock,
2929 .cleanup = mmc_test_area_cleanup,
2930 },
2931 };
2932
2933 static DEFINE_MUTEX(mmc_test_lock);
2934
2935 static LIST_HEAD(mmc_test_result);
2936
mmc_test_run(struct mmc_test_card * test,int testcase)2937 static void mmc_test_run(struct mmc_test_card *test, int testcase)
2938 {
2939 int i, ret;
2940
2941 pr_info("%s: Starting tests of card %s...\n",
2942 mmc_hostname(test->card->host), mmc_card_id(test->card));
2943
2944 mmc_claim_host(test->card->host);
2945
2946 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++) {
2947 struct mmc_test_general_result *gr;
2948
2949 if (testcase && ((i + 1) != testcase))
2950 continue;
2951
2952 pr_info("%s: Test case %d. %s...\n",
2953 mmc_hostname(test->card->host), i + 1,
2954 mmc_test_cases[i].name);
2955
2956 if (mmc_test_cases[i].prepare) {
2957 ret = mmc_test_cases[i].prepare(test);
2958 if (ret) {
2959 pr_info("%s: Result: Prepare stage failed! (%d)\n",
2960 mmc_hostname(test->card->host),
2961 ret);
2962 continue;
2963 }
2964 }
2965
2966 gr = kzalloc(sizeof(*gr), GFP_KERNEL);
2967 if (gr) {
2968 INIT_LIST_HEAD(&gr->tr_lst);
2969
2970 /* Assign data what we know already */
2971 gr->card = test->card;
2972 gr->testcase = i;
2973
2974 /* Append container to global one */
2975 list_add_tail(&gr->link, &mmc_test_result);
2976
2977 /*
2978 * Save the pointer to created container in our private
2979 * structure.
2980 */
2981 test->gr = gr;
2982 }
2983
2984 ret = mmc_test_cases[i].run(test);
2985 switch (ret) {
2986 case RESULT_OK:
2987 pr_info("%s: Result: OK\n",
2988 mmc_hostname(test->card->host));
2989 break;
2990 case RESULT_FAIL:
2991 pr_info("%s: Result: FAILED\n",
2992 mmc_hostname(test->card->host));
2993 break;
2994 case RESULT_UNSUP_HOST:
2995 pr_info("%s: Result: UNSUPPORTED (by host)\n",
2996 mmc_hostname(test->card->host));
2997 break;
2998 case RESULT_UNSUP_CARD:
2999 pr_info("%s: Result: UNSUPPORTED (by card)\n",
3000 mmc_hostname(test->card->host));
3001 break;
3002 default:
3003 pr_info("%s: Result: ERROR (%d)\n",
3004 mmc_hostname(test->card->host), ret);
3005 }
3006
3007 /* Save the result */
3008 if (gr)
3009 gr->result = ret;
3010
3011 if (mmc_test_cases[i].cleanup) {
3012 ret = mmc_test_cases[i].cleanup(test);
3013 if (ret) {
3014 pr_info("%s: Warning: Cleanup stage failed! (%d)\n",
3015 mmc_hostname(test->card->host),
3016 ret);
3017 }
3018 }
3019 }
3020
3021 mmc_release_host(test->card->host);
3022
3023 pr_info("%s: Tests completed.\n",
3024 mmc_hostname(test->card->host));
3025 }
3026
mmc_test_free_result(struct mmc_card * card)3027 static void mmc_test_free_result(struct mmc_card *card)
3028 {
3029 struct mmc_test_general_result *gr, *grs;
3030
3031 mutex_lock(&mmc_test_lock);
3032
3033 list_for_each_entry_safe(gr, grs, &mmc_test_result, link) {
3034 struct mmc_test_transfer_result *tr, *trs;
3035
3036 if (card && gr->card != card)
3037 continue;
3038
3039 list_for_each_entry_safe(tr, trs, &gr->tr_lst, link) {
3040 list_del(&tr->link);
3041 kfree(tr);
3042 }
3043
3044 list_del(&gr->link);
3045 kfree(gr);
3046 }
3047
3048 mutex_unlock(&mmc_test_lock);
3049 }
3050
3051 static LIST_HEAD(mmc_test_file_test);
3052
mtf_test_show(struct seq_file * sf,void * data)3053 static int mtf_test_show(struct seq_file *sf, void *data)
3054 {
3055 struct mmc_card *card = (struct mmc_card *)sf->private;
3056 struct mmc_test_general_result *gr;
3057
3058 mutex_lock(&mmc_test_lock);
3059
3060 list_for_each_entry(gr, &mmc_test_result, link) {
3061 struct mmc_test_transfer_result *tr;
3062
3063 if (gr->card != card)
3064 continue;
3065
3066 seq_printf(sf, "Test %d: %d\n", gr->testcase + 1, gr->result);
3067
3068 list_for_each_entry(tr, &gr->tr_lst, link) {
3069 seq_printf(sf, "%u %d %llu.%09u %u %u.%02u\n",
3070 tr->count, tr->sectors,
3071 (u64)tr->ts.tv_sec, (u32)tr->ts.tv_nsec,
3072 tr->rate, tr->iops / 100, tr->iops % 100);
3073 }
3074 }
3075
3076 mutex_unlock(&mmc_test_lock);
3077
3078 return 0;
3079 }
3080
mtf_test_open(struct inode * inode,struct file * file)3081 static int mtf_test_open(struct inode *inode, struct file *file)
3082 {
3083 return single_open(file, mtf_test_show, inode->i_private);
3084 }
3085
mtf_test_write(struct file * file,const char __user * buf,size_t count,loff_t * pos)3086 static ssize_t mtf_test_write(struct file *file, const char __user *buf,
3087 size_t count, loff_t *pos)
3088 {
3089 struct seq_file *sf = (struct seq_file *)file->private_data;
3090 struct mmc_card *card = (struct mmc_card *)sf->private;
3091 struct mmc_test_card *test;
3092 long testcase;
3093 int ret;
3094
3095 ret = kstrtol_from_user(buf, count, 10, &testcase);
3096 if (ret)
3097 return ret;
3098
3099 test = kzalloc(sizeof(*test), GFP_KERNEL);
3100 if (!test)
3101 return -ENOMEM;
3102
3103 /*
3104 * Remove all test cases associated with given card. Thus we have only
3105 * actual data of the last run.
3106 */
3107 mmc_test_free_result(card);
3108
3109 test->card = card;
3110
3111 test->buffer = kzalloc(BUFFER_SIZE, GFP_KERNEL);
3112 #ifdef CONFIG_HIGHMEM
3113 test->highmem = alloc_pages(GFP_KERNEL | __GFP_HIGHMEM, BUFFER_ORDER);
3114 #endif
3115
3116 #ifdef CONFIG_HIGHMEM
3117 if (test->buffer && test->highmem) {
3118 #else
3119 if (test->buffer) {
3120 #endif
3121 mutex_lock(&mmc_test_lock);
3122 mmc_test_run(test, testcase);
3123 mutex_unlock(&mmc_test_lock);
3124 }
3125
3126 #ifdef CONFIG_HIGHMEM
3127 __free_pages(test->highmem, BUFFER_ORDER);
3128 #endif
3129 kfree(test->buffer);
3130 kfree(test);
3131
3132 return count;
3133 }
3134
3135 static const struct file_operations mmc_test_fops_test = {
3136 .open = mtf_test_open,
3137 .read = seq_read,
3138 .write = mtf_test_write,
3139 .llseek = seq_lseek,
3140 .release = single_release,
3141 };
3142
3143 static int mtf_testlist_show(struct seq_file *sf, void *data)
3144 {
3145 int i;
3146
3147 mutex_lock(&mmc_test_lock);
3148
3149 seq_puts(sf, "0:\tRun all tests\n");
3150 for (i = 0; i < ARRAY_SIZE(mmc_test_cases); i++)
3151 seq_printf(sf, "%d:\t%s\n", i + 1, mmc_test_cases[i].name);
3152
3153 mutex_unlock(&mmc_test_lock);
3154
3155 return 0;
3156 }
3157
3158 DEFINE_SHOW_ATTRIBUTE(mtf_testlist);
3159
3160 static void mmc_test_free_dbgfs_file(struct mmc_card *card)
3161 {
3162 struct mmc_test_dbgfs_file *df, *dfs;
3163
3164 mutex_lock(&mmc_test_lock);
3165
3166 list_for_each_entry_safe(df, dfs, &mmc_test_file_test, link) {
3167 if (card && df->card != card)
3168 continue;
3169 debugfs_remove(df->file);
3170 list_del(&df->link);
3171 kfree(df);
3172 }
3173
3174 mutex_unlock(&mmc_test_lock);
3175 }
3176
3177 static int __mmc_test_register_dbgfs_file(struct mmc_card *card,
3178 const char *name, umode_t mode, const struct file_operations *fops)
3179 {
3180 struct dentry *file = NULL;
3181 struct mmc_test_dbgfs_file *df;
3182
3183 if (card->debugfs_root)
3184 debugfs_create_file(name, mode, card->debugfs_root, card, fops);
3185
3186 df = kmalloc(sizeof(*df), GFP_KERNEL);
3187 if (!df) {
3188 debugfs_remove(file);
3189 return -ENOMEM;
3190 }
3191
3192 df->card = card;
3193 df->file = file;
3194
3195 list_add(&df->link, &mmc_test_file_test);
3196 return 0;
3197 }
3198
3199 static int mmc_test_register_dbgfs_file(struct mmc_card *card)
3200 {
3201 int ret;
3202
3203 mutex_lock(&mmc_test_lock);
3204
3205 ret = __mmc_test_register_dbgfs_file(card, "test", S_IWUSR | S_IRUGO,
3206 &mmc_test_fops_test);
3207 if (ret)
3208 goto err;
3209
3210 ret = __mmc_test_register_dbgfs_file(card, "testlist", S_IRUGO,
3211 &mtf_testlist_fops);
3212 if (ret)
3213 goto err;
3214
3215 err:
3216 mutex_unlock(&mmc_test_lock);
3217
3218 return ret;
3219 }
3220
3221 static int mmc_test_probe(struct mmc_card *card)
3222 {
3223 int ret;
3224
3225 if (!mmc_card_mmc(card) && !mmc_card_sd(card))
3226 return -ENODEV;
3227
3228 ret = mmc_test_register_dbgfs_file(card);
3229 if (ret)
3230 return ret;
3231
3232 if (card->ext_csd.cmdq_en) {
3233 mmc_claim_host(card->host);
3234 ret = mmc_cmdq_disable(card);
3235 mmc_release_host(card->host);
3236 if (ret)
3237 return ret;
3238 }
3239
3240 dev_info(&card->dev, "Card claimed for testing.\n");
3241
3242 return 0;
3243 }
3244
3245 static void mmc_test_remove(struct mmc_card *card)
3246 {
3247 if (card->reenable_cmdq) {
3248 mmc_claim_host(card->host);
3249 mmc_cmdq_enable(card);
3250 mmc_release_host(card->host);
3251 }
3252 mmc_test_free_result(card);
3253 mmc_test_free_dbgfs_file(card);
3254 }
3255
3256 static struct mmc_driver mmc_driver = {
3257 .drv = {
3258 .name = "mmc_test",
3259 },
3260 .probe = mmc_test_probe,
3261 .remove = mmc_test_remove,
3262 };
3263
3264 static int __init mmc_test_init(void)
3265 {
3266 return mmc_register_driver(&mmc_driver);
3267 }
3268
3269 static void __exit mmc_test_exit(void)
3270 {
3271 /* Clear stalled data if card is still plugged */
3272 mmc_test_free_result(NULL);
3273 mmc_test_free_dbgfs_file(NULL);
3274
3275 mmc_unregister_driver(&mmc_driver);
3276 }
3277
3278 module_init(mmc_test_init);
3279 module_exit(mmc_test_exit);
3280
3281 MODULE_LICENSE("GPL");
3282 MODULE_DESCRIPTION("Multimedia Card (MMC) host test driver");
3283 MODULE_AUTHOR("Pierre Ossman");
3284