1 // SPDX-License-Identifier: GPL-2.0
2 
3 /*
4  * Copyright 2016-2019 HabanaLabs, Ltd.
5  * All Rights Reserved.
6  */
7 
8 #include "habanalabs.h"
9 
10 #include <linux/slab.h>
11 
hl_encaps_handle_do_release(struct kref * ref)12 void hl_encaps_handle_do_release(struct kref *ref)
13 {
14 	struct hl_cs_encaps_sig_handle *handle =
15 		container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
16 	struct hl_ctx *ctx = handle->hdev->compute_ctx;
17 	struct hl_encaps_signals_mgr *mgr = &ctx->sig_mgr;
18 
19 	spin_lock(&mgr->lock);
20 	idr_remove(&mgr->handles, handle->id);
21 	spin_unlock(&mgr->lock);
22 
23 	kfree(handle);
24 }
25 
hl_encaps_handle_do_release_sob(struct kref * ref)26 static void hl_encaps_handle_do_release_sob(struct kref *ref)
27 {
28 	struct hl_cs_encaps_sig_handle *handle =
29 		container_of(ref, struct hl_cs_encaps_sig_handle, refcount);
30 	struct hl_ctx *ctx = handle->hdev->compute_ctx;
31 	struct hl_encaps_signals_mgr *mgr = &ctx->sig_mgr;
32 
33 	/* if we're here, then there was a signals reservation but cs with
34 	 * encaps signals wasn't submitted, so need to put refcount
35 	 * to hw_sob taken at the reservation.
36 	 */
37 	hw_sob_put(handle->hw_sob);
38 
39 	spin_lock(&mgr->lock);
40 	idr_remove(&mgr->handles, handle->id);
41 	spin_unlock(&mgr->lock);
42 
43 	kfree(handle);
44 }
45 
hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr * mgr)46 static void hl_encaps_sig_mgr_init(struct hl_encaps_signals_mgr *mgr)
47 {
48 	spin_lock_init(&mgr->lock);
49 	idr_init(&mgr->handles);
50 }
51 
hl_encaps_sig_mgr_fini(struct hl_device * hdev,struct hl_encaps_signals_mgr * mgr)52 static void hl_encaps_sig_mgr_fini(struct hl_device *hdev,
53 			struct hl_encaps_signals_mgr *mgr)
54 {
55 	struct hl_cs_encaps_sig_handle *handle;
56 	struct idr *idp;
57 	u32 id;
58 
59 	idp = &mgr->handles;
60 
61 	if (!idr_is_empty(idp)) {
62 		dev_warn(hdev->dev, "device released while some encaps signals handles are still allocated\n");
63 		idr_for_each_entry(idp, handle, id)
64 			kref_put(&handle->refcount,
65 					hl_encaps_handle_do_release_sob);
66 	}
67 
68 	idr_destroy(&mgr->handles);
69 }
70 
hl_ctx_fini(struct hl_ctx * ctx)71 static void hl_ctx_fini(struct hl_ctx *ctx)
72 {
73 	struct hl_device *hdev = ctx->hdev;
74 	int i;
75 
76 	/* Release all allocated HW block mapped list entries and destroy
77 	 * the mutex.
78 	 */
79 	hl_hw_block_mem_fini(ctx);
80 
81 	/*
82 	 * If we arrived here, there are no jobs waiting for this context
83 	 * on its queues so we can safely remove it.
84 	 * This is because for each CS, we increment the ref count and for
85 	 * every CS that was finished we decrement it and we won't arrive
86 	 * to this function unless the ref count is 0
87 	 */
88 
89 	for (i = 0 ; i < hdev->asic_prop.max_pending_cs ; i++)
90 		hl_fence_put(ctx->cs_pending[i]);
91 
92 	kfree(ctx->cs_pending);
93 
94 	if (ctx->asid != HL_KERNEL_ASID_ID) {
95 		dev_dbg(hdev->dev, "closing user context %d\n", ctx->asid);
96 
97 		/* The engines are stopped as there is no executing CS, but the
98 		 * Coresight might be still working by accessing addresses
99 		 * related to the stopped engines. Hence stop it explicitly.
100 		 * Stop only if this is the compute context, as there can be
101 		 * only one compute context
102 		 */
103 		if ((hdev->in_debug) && (hdev->compute_ctx == ctx))
104 			hl_device_set_debug_mode(hdev, false);
105 
106 		hdev->asic_funcs->ctx_fini(ctx);
107 		hl_cb_va_pool_fini(ctx);
108 		hl_vm_ctx_fini(ctx);
109 		hl_asid_free(hdev, ctx->asid);
110 		hl_encaps_sig_mgr_fini(hdev, &ctx->sig_mgr);
111 
112 		/* Scrub both SRAM and DRAM */
113 		hdev->asic_funcs->scrub_device_mem(hdev, 0, 0);
114 	} else {
115 		dev_dbg(hdev->dev, "closing kernel context\n");
116 		hdev->asic_funcs->ctx_fini(ctx);
117 		hl_vm_ctx_fini(ctx);
118 		hl_mmu_ctx_fini(ctx);
119 	}
120 }
121 
hl_ctx_do_release(struct kref * ref)122 void hl_ctx_do_release(struct kref *ref)
123 {
124 	struct hl_ctx *ctx;
125 
126 	ctx = container_of(ref, struct hl_ctx, refcount);
127 
128 	hl_ctx_fini(ctx);
129 
130 	if (ctx->hpriv)
131 		hl_hpriv_put(ctx->hpriv);
132 
133 	kfree(ctx);
134 }
135 
hl_ctx_create(struct hl_device * hdev,struct hl_fpriv * hpriv)136 int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv)
137 {
138 	struct hl_ctx_mgr *mgr = &hpriv->ctx_mgr;
139 	struct hl_ctx *ctx;
140 	int rc;
141 
142 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
143 	if (!ctx) {
144 		rc = -ENOMEM;
145 		goto out_err;
146 	}
147 
148 	mutex_lock(&mgr->ctx_lock);
149 	rc = idr_alloc(&mgr->ctx_handles, ctx, 1, 0, GFP_KERNEL);
150 	mutex_unlock(&mgr->ctx_lock);
151 
152 	if (rc < 0) {
153 		dev_err(hdev->dev, "Failed to allocate IDR for a new CTX\n");
154 		goto free_ctx;
155 	}
156 
157 	ctx->handle = rc;
158 
159 	rc = hl_ctx_init(hdev, ctx, false);
160 	if (rc)
161 		goto remove_from_idr;
162 
163 	hl_hpriv_get(hpriv);
164 	ctx->hpriv = hpriv;
165 
166 	/* TODO: remove for multiple contexts per process */
167 	hpriv->ctx = ctx;
168 
169 	/* TODO: remove the following line for multiple process support */
170 	hdev->compute_ctx = ctx;
171 
172 	return 0;
173 
174 remove_from_idr:
175 	mutex_lock(&mgr->ctx_lock);
176 	idr_remove(&mgr->ctx_handles, ctx->handle);
177 	mutex_unlock(&mgr->ctx_lock);
178 free_ctx:
179 	kfree(ctx);
180 out_err:
181 	return rc;
182 }
183 
hl_ctx_free(struct hl_device * hdev,struct hl_ctx * ctx)184 void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx)
185 {
186 	if (kref_put(&ctx->refcount, hl_ctx_do_release) == 1)
187 		return;
188 }
189 
hl_ctx_init(struct hl_device * hdev,struct hl_ctx * ctx,bool is_kernel_ctx)190 int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx)
191 {
192 	int rc = 0;
193 
194 	ctx->hdev = hdev;
195 
196 	kref_init(&ctx->refcount);
197 
198 	ctx->cs_sequence = 1;
199 	spin_lock_init(&ctx->cs_lock);
200 	atomic_set(&ctx->thread_ctx_switch_token, 1);
201 	ctx->thread_ctx_switch_wait_token = 0;
202 	ctx->cs_pending = kcalloc(hdev->asic_prop.max_pending_cs,
203 				sizeof(struct hl_fence *),
204 				GFP_KERNEL);
205 	if (!ctx->cs_pending)
206 		return -ENOMEM;
207 
208 	hl_hw_block_mem_init(ctx);
209 
210 	if (is_kernel_ctx) {
211 		ctx->asid = HL_KERNEL_ASID_ID; /* Kernel driver gets ASID 0 */
212 		rc = hl_vm_ctx_init(ctx);
213 		if (rc) {
214 			dev_err(hdev->dev, "Failed to init mem ctx module\n");
215 			rc = -ENOMEM;
216 			goto err_hw_block_mem_fini;
217 		}
218 
219 		rc = hdev->asic_funcs->ctx_init(ctx);
220 		if (rc) {
221 			dev_err(hdev->dev, "ctx_init failed\n");
222 			goto err_vm_ctx_fini;
223 		}
224 	} else {
225 		ctx->asid = hl_asid_alloc(hdev);
226 		if (!ctx->asid) {
227 			dev_err(hdev->dev, "No free ASID, failed to create context\n");
228 			rc = -ENOMEM;
229 			goto err_hw_block_mem_fini;
230 		}
231 
232 		rc = hl_vm_ctx_init(ctx);
233 		if (rc) {
234 			dev_err(hdev->dev, "Failed to init mem ctx module\n");
235 			rc = -ENOMEM;
236 			goto err_asid_free;
237 		}
238 
239 		rc = hl_cb_va_pool_init(ctx);
240 		if (rc) {
241 			dev_err(hdev->dev,
242 				"Failed to init VA pool for mapped CB\n");
243 			goto err_vm_ctx_fini;
244 		}
245 
246 		rc = hdev->asic_funcs->ctx_init(ctx);
247 		if (rc) {
248 			dev_err(hdev->dev, "ctx_init failed\n");
249 			goto err_cb_va_pool_fini;
250 		}
251 
252 		hl_encaps_sig_mgr_init(&ctx->sig_mgr);
253 
254 		dev_dbg(hdev->dev, "create user context %d\n", ctx->asid);
255 	}
256 
257 	return 0;
258 
259 err_cb_va_pool_fini:
260 	hl_cb_va_pool_fini(ctx);
261 err_vm_ctx_fini:
262 	hl_vm_ctx_fini(ctx);
263 err_asid_free:
264 	if (ctx->asid != HL_KERNEL_ASID_ID)
265 		hl_asid_free(hdev, ctx->asid);
266 err_hw_block_mem_fini:
267 	hl_hw_block_mem_fini(ctx);
268 	kfree(ctx->cs_pending);
269 
270 	return rc;
271 }
272 
hl_ctx_get(struct hl_device * hdev,struct hl_ctx * ctx)273 void hl_ctx_get(struct hl_device *hdev, struct hl_ctx *ctx)
274 {
275 	kref_get(&ctx->refcount);
276 }
277 
hl_ctx_put(struct hl_ctx * ctx)278 int hl_ctx_put(struct hl_ctx *ctx)
279 {
280 	return kref_put(&ctx->refcount, hl_ctx_do_release);
281 }
282 
283 /*
284  * hl_ctx_get_fence_locked - get CS fence under CS lock
285  *
286  * @ctx: pointer to the context structure.
287  * @seq: CS sequences number
288  *
289  * @return valid fence pointer on success, NULL if fence is gone, otherwise
290  *         error pointer.
291  *
292  * NOTE: this function shall be called with cs_lock locked
293  */
hl_ctx_get_fence_locked(struct hl_ctx * ctx,u64 seq)294 static struct hl_fence *hl_ctx_get_fence_locked(struct hl_ctx *ctx, u64 seq)
295 {
296 	struct asic_fixed_properties *asic_prop = &ctx->hdev->asic_prop;
297 	struct hl_fence *fence;
298 
299 	if (seq >= ctx->cs_sequence)
300 		return ERR_PTR(-EINVAL);
301 
302 	if (seq + asic_prop->max_pending_cs < ctx->cs_sequence)
303 		return NULL;
304 
305 	fence = ctx->cs_pending[seq & (asic_prop->max_pending_cs - 1)];
306 	hl_fence_get(fence);
307 	return fence;
308 }
309 
hl_ctx_get_fence(struct hl_ctx * ctx,u64 seq)310 struct hl_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq)
311 {
312 	struct hl_fence *fence;
313 
314 	spin_lock(&ctx->cs_lock);
315 
316 	fence = hl_ctx_get_fence_locked(ctx, seq);
317 
318 	spin_unlock(&ctx->cs_lock);
319 
320 	return fence;
321 }
322 
323 /*
324  * hl_ctx_get_fences - get multiple CS fences under the same CS lock
325  *
326  * @ctx: pointer to the context structure.
327  * @seq_arr: array of CS sequences to wait for
328  * @fence: fence array to store the CS fences
329  * @arr_len: length of seq_arr and fence_arr
330  *
331  * @return 0 on success, otherwise non 0 error code
332  */
hl_ctx_get_fences(struct hl_ctx * ctx,u64 * seq_arr,struct hl_fence ** fence,u32 arr_len)333 int hl_ctx_get_fences(struct hl_ctx *ctx, u64 *seq_arr,
334 				struct hl_fence **fence, u32 arr_len)
335 {
336 	struct hl_fence **fence_arr_base = fence;
337 	int i, rc = 0;
338 
339 	spin_lock(&ctx->cs_lock);
340 
341 	for (i = 0; i < arr_len; i++, fence++) {
342 		u64 seq = seq_arr[i];
343 
344 		*fence = hl_ctx_get_fence_locked(ctx, seq);
345 
346 		if (IS_ERR(*fence)) {
347 			dev_err(ctx->hdev->dev,
348 				"Failed to get fence for CS with seq 0x%llx\n",
349 					seq);
350 			rc = PTR_ERR(*fence);
351 			break;
352 		}
353 	}
354 
355 	spin_unlock(&ctx->cs_lock);
356 
357 	if (rc)
358 		hl_fences_put(fence_arr_base, i);
359 
360 	return rc;
361 }
362 
363 /*
364  * hl_ctx_mgr_init - initialize the context manager
365  *
366  * @mgr: pointer to context manager structure
367  *
368  * This manager is an object inside the hpriv object of the user process.
369  * The function is called when a user process opens the FD.
370  */
hl_ctx_mgr_init(struct hl_ctx_mgr * mgr)371 void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr)
372 {
373 	mutex_init(&mgr->ctx_lock);
374 	idr_init(&mgr->ctx_handles);
375 }
376 
377 /*
378  * hl_ctx_mgr_fini - finalize the context manager
379  *
380  * @hdev: pointer to device structure
381  * @mgr: pointer to context manager structure
382  *
383  * This function goes over all the contexts in the manager and frees them.
384  * It is called when a process closes the FD.
385  */
hl_ctx_mgr_fini(struct hl_device * hdev,struct hl_ctx_mgr * mgr)386 void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr)
387 {
388 	struct hl_ctx *ctx;
389 	struct idr *idp;
390 	u32 id;
391 
392 	idp = &mgr->ctx_handles;
393 
394 	idr_for_each_entry(idp, ctx, id)
395 		hl_ctx_free(hdev, ctx);
396 
397 	idr_destroy(&mgr->ctx_handles);
398 	mutex_destroy(&mgr->ctx_lock);
399 }
400