1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Tegra20 External Memory Controller driver
4 *
5 * Author: Dmitry Osipenko <digetx@gmail.com>
6 */
7
8 #include <linux/clk.h>
9 #include <linux/clk/tegra.h>
10 #include <linux/debugfs.h>
11 #include <linux/devfreq.h>
12 #include <linux/err.h>
13 #include <linux/interconnect-provider.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/iopoll.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/mutex.h>
20 #include <linux/of.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_opp.h>
23 #include <linux/slab.h>
24 #include <linux/sort.h>
25 #include <linux/types.h>
26
27 #include <soc/tegra/common.h>
28 #include <soc/tegra/fuse.h>
29
30 #include "mc.h"
31
32 #define EMC_INTSTATUS 0x000
33 #define EMC_INTMASK 0x004
34 #define EMC_DBG 0x008
35 #define EMC_TIMING_CONTROL 0x028
36 #define EMC_RC 0x02c
37 #define EMC_RFC 0x030
38 #define EMC_RAS 0x034
39 #define EMC_RP 0x038
40 #define EMC_R2W 0x03c
41 #define EMC_W2R 0x040
42 #define EMC_R2P 0x044
43 #define EMC_W2P 0x048
44 #define EMC_RD_RCD 0x04c
45 #define EMC_WR_RCD 0x050
46 #define EMC_RRD 0x054
47 #define EMC_REXT 0x058
48 #define EMC_WDV 0x05c
49 #define EMC_QUSE 0x060
50 #define EMC_QRST 0x064
51 #define EMC_QSAFE 0x068
52 #define EMC_RDV 0x06c
53 #define EMC_REFRESH 0x070
54 #define EMC_BURST_REFRESH_NUM 0x074
55 #define EMC_PDEX2WR 0x078
56 #define EMC_PDEX2RD 0x07c
57 #define EMC_PCHG2PDEN 0x080
58 #define EMC_ACT2PDEN 0x084
59 #define EMC_AR2PDEN 0x088
60 #define EMC_RW2PDEN 0x08c
61 #define EMC_TXSR 0x090
62 #define EMC_TCKE 0x094
63 #define EMC_TFAW 0x098
64 #define EMC_TRPAB 0x09c
65 #define EMC_TCLKSTABLE 0x0a0
66 #define EMC_TCLKSTOP 0x0a4
67 #define EMC_TREFBW 0x0a8
68 #define EMC_QUSE_EXTRA 0x0ac
69 #define EMC_ODT_WRITE 0x0b0
70 #define EMC_ODT_READ 0x0b4
71 #define EMC_FBIO_CFG5 0x104
72 #define EMC_FBIO_CFG6 0x114
73 #define EMC_STAT_CONTROL 0x160
74 #define EMC_STAT_LLMC_CONTROL 0x178
75 #define EMC_STAT_PWR_CLOCK_LIMIT 0x198
76 #define EMC_STAT_PWR_CLOCKS 0x19c
77 #define EMC_STAT_PWR_COUNT 0x1a0
78 #define EMC_AUTO_CAL_INTERVAL 0x2a8
79 #define EMC_CFG_2 0x2b8
80 #define EMC_CFG_DIG_DLL 0x2bc
81 #define EMC_DLL_XFORM_DQS 0x2c0
82 #define EMC_DLL_XFORM_QUSE 0x2c4
83 #define EMC_ZCAL_REF_CNT 0x2e0
84 #define EMC_ZCAL_WAIT_CNT 0x2e4
85 #define EMC_CFG_CLKTRIM_0 0x2d0
86 #define EMC_CFG_CLKTRIM_1 0x2d4
87 #define EMC_CFG_CLKTRIM_2 0x2d8
88
89 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0)
90 #define EMC_CLKCHANGE_PD_ENABLE BIT(1)
91 #define EMC_CLKCHANGE_SR_ENABLE BIT(2)
92
93 #define EMC_TIMING_UPDATE BIT(0)
94
95 #define EMC_REFRESH_OVERFLOW_INT BIT(3)
96 #define EMC_CLKCHANGE_COMPLETE_INT BIT(4)
97
98 #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0)
99 #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1)
100 #define EMC_DBG_FORCE_UPDATE BIT(2)
101 #define EMC_DBG_READ_DQM_CTRL BIT(9)
102 #define EMC_DBG_CFG_PRIORITY BIT(24)
103
104 #define EMC_FBIO_CFG5_DRAM_WIDTH_X16 BIT(4)
105
106 #define EMC_PWR_GATHER_CLEAR (1 << 8)
107 #define EMC_PWR_GATHER_DISABLE (2 << 8)
108 #define EMC_PWR_GATHER_ENABLE (3 << 8)
109
110 static const u16 emc_timing_registers[] = {
111 EMC_RC,
112 EMC_RFC,
113 EMC_RAS,
114 EMC_RP,
115 EMC_R2W,
116 EMC_W2R,
117 EMC_R2P,
118 EMC_W2P,
119 EMC_RD_RCD,
120 EMC_WR_RCD,
121 EMC_RRD,
122 EMC_REXT,
123 EMC_WDV,
124 EMC_QUSE,
125 EMC_QRST,
126 EMC_QSAFE,
127 EMC_RDV,
128 EMC_REFRESH,
129 EMC_BURST_REFRESH_NUM,
130 EMC_PDEX2WR,
131 EMC_PDEX2RD,
132 EMC_PCHG2PDEN,
133 EMC_ACT2PDEN,
134 EMC_AR2PDEN,
135 EMC_RW2PDEN,
136 EMC_TXSR,
137 EMC_TCKE,
138 EMC_TFAW,
139 EMC_TRPAB,
140 EMC_TCLKSTABLE,
141 EMC_TCLKSTOP,
142 EMC_TREFBW,
143 EMC_QUSE_EXTRA,
144 EMC_FBIO_CFG6,
145 EMC_ODT_WRITE,
146 EMC_ODT_READ,
147 EMC_FBIO_CFG5,
148 EMC_CFG_DIG_DLL,
149 EMC_DLL_XFORM_DQS,
150 EMC_DLL_XFORM_QUSE,
151 EMC_ZCAL_REF_CNT,
152 EMC_ZCAL_WAIT_CNT,
153 EMC_AUTO_CAL_INTERVAL,
154 EMC_CFG_CLKTRIM_0,
155 EMC_CFG_CLKTRIM_1,
156 EMC_CFG_CLKTRIM_2,
157 };
158
159 struct emc_timing {
160 unsigned long rate;
161 u32 data[ARRAY_SIZE(emc_timing_registers)];
162 };
163
164 enum emc_rate_request_type {
165 EMC_RATE_DEVFREQ,
166 EMC_RATE_DEBUG,
167 EMC_RATE_ICC,
168 EMC_RATE_TYPE_MAX,
169 };
170
171 struct emc_rate_request {
172 unsigned long min_rate;
173 unsigned long max_rate;
174 };
175
176 struct tegra_emc {
177 struct device *dev;
178 struct tegra_mc *mc;
179 struct icc_provider provider;
180 struct notifier_block clk_nb;
181 struct clk *clk;
182 void __iomem *regs;
183 unsigned int dram_bus_width;
184
185 struct emc_timing *timings;
186 unsigned int num_timings;
187
188 struct {
189 struct dentry *root;
190 unsigned long min_rate;
191 unsigned long max_rate;
192 } debugfs;
193
194 /*
195 * There are multiple sources in the EMC driver which could request
196 * a min/max clock rate, these rates are contained in this array.
197 */
198 struct emc_rate_request requested_rate[EMC_RATE_TYPE_MAX];
199
200 /* protect shared rate-change code path */
201 struct mutex rate_lock;
202
203 struct devfreq_simple_ondemand_data ondemand_data;
204 };
205
tegra_emc_isr(int irq,void * data)206 static irqreturn_t tegra_emc_isr(int irq, void *data)
207 {
208 struct tegra_emc *emc = data;
209 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
210 u32 status;
211
212 status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask;
213 if (!status)
214 return IRQ_NONE;
215
216 /* notify about HW problem */
217 if (status & EMC_REFRESH_OVERFLOW_INT)
218 dev_err_ratelimited(emc->dev,
219 "refresh request overflow timeout\n");
220
221 /* clear interrupts */
222 writel_relaxed(status, emc->regs + EMC_INTSTATUS);
223
224 return IRQ_HANDLED;
225 }
226
tegra_emc_find_timing(struct tegra_emc * emc,unsigned long rate)227 static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc,
228 unsigned long rate)
229 {
230 struct emc_timing *timing = NULL;
231 unsigned int i;
232
233 for (i = 0; i < emc->num_timings; i++) {
234 if (emc->timings[i].rate >= rate) {
235 timing = &emc->timings[i];
236 break;
237 }
238 }
239
240 if (!timing) {
241 dev_err(emc->dev, "no timing for rate %lu\n", rate);
242 return NULL;
243 }
244
245 return timing;
246 }
247
emc_prepare_timing_change(struct tegra_emc * emc,unsigned long rate)248 static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate)
249 {
250 struct emc_timing *timing = tegra_emc_find_timing(emc, rate);
251 unsigned int i;
252
253 if (!timing)
254 return -EINVAL;
255
256 dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n",
257 __func__, timing->rate, rate);
258
259 /* program shadow registers */
260 for (i = 0; i < ARRAY_SIZE(timing->data); i++)
261 writel_relaxed(timing->data[i],
262 emc->regs + emc_timing_registers[i]);
263
264 /* wait until programming has settled */
265 readl_relaxed(emc->regs + emc_timing_registers[i - 1]);
266
267 return 0;
268 }
269
emc_complete_timing_change(struct tegra_emc * emc,bool flush)270 static int emc_complete_timing_change(struct tegra_emc *emc, bool flush)
271 {
272 int err;
273 u32 v;
274
275 dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush);
276
277 if (flush) {
278 /* manually initiate memory timing update */
279 writel_relaxed(EMC_TIMING_UPDATE,
280 emc->regs + EMC_TIMING_CONTROL);
281 return 0;
282 }
283
284 err = readl_relaxed_poll_timeout_atomic(emc->regs + EMC_INTSTATUS, v,
285 v & EMC_CLKCHANGE_COMPLETE_INT,
286 1, 100);
287 if (err) {
288 dev_err(emc->dev, "emc-car handshake timeout: %d\n", err);
289 return err;
290 }
291
292 return 0;
293 }
294
tegra_emc_clk_change_notify(struct notifier_block * nb,unsigned long msg,void * data)295 static int tegra_emc_clk_change_notify(struct notifier_block *nb,
296 unsigned long msg, void *data)
297 {
298 struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb);
299 struct clk_notifier_data *cnd = data;
300 int err;
301
302 switch (msg) {
303 case PRE_RATE_CHANGE:
304 err = emc_prepare_timing_change(emc, cnd->new_rate);
305 break;
306
307 case ABORT_RATE_CHANGE:
308 err = emc_prepare_timing_change(emc, cnd->old_rate);
309 if (err)
310 break;
311
312 err = emc_complete_timing_change(emc, true);
313 break;
314
315 case POST_RATE_CHANGE:
316 err = emc_complete_timing_change(emc, false);
317 break;
318
319 default:
320 return NOTIFY_DONE;
321 }
322
323 return notifier_from_errno(err);
324 }
325
load_one_timing_from_dt(struct tegra_emc * emc,struct emc_timing * timing,struct device_node * node)326 static int load_one_timing_from_dt(struct tegra_emc *emc,
327 struct emc_timing *timing,
328 struct device_node *node)
329 {
330 u32 rate;
331 int err;
332
333 if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) {
334 dev_err(emc->dev, "incompatible DT node: %pOF\n", node);
335 return -EINVAL;
336 }
337
338 err = of_property_read_u32(node, "clock-frequency", &rate);
339 if (err) {
340 dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n",
341 node, err);
342 return err;
343 }
344
345 err = of_property_read_u32_array(node, "nvidia,emc-registers",
346 timing->data,
347 ARRAY_SIZE(emc_timing_registers));
348 if (err) {
349 dev_err(emc->dev,
350 "timing %pOF: failed to read emc timing data: %d\n",
351 node, err);
352 return err;
353 }
354
355 /*
356 * The EMC clock rate is twice the bus rate, and the bus rate is
357 * measured in kHz.
358 */
359 timing->rate = rate * 2 * 1000;
360
361 dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n",
362 __func__, node, timing->rate);
363
364 return 0;
365 }
366
cmp_timings(const void * _a,const void * _b)367 static int cmp_timings(const void *_a, const void *_b)
368 {
369 const struct emc_timing *a = _a;
370 const struct emc_timing *b = _b;
371
372 if (a->rate < b->rate)
373 return -1;
374
375 if (a->rate > b->rate)
376 return 1;
377
378 return 0;
379 }
380
tegra_emc_load_timings_from_dt(struct tegra_emc * emc,struct device_node * node)381 static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc,
382 struct device_node *node)
383 {
384 struct device_node *child;
385 struct emc_timing *timing;
386 int child_count;
387 int err;
388
389 child_count = of_get_child_count(node);
390 if (!child_count) {
391 dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node);
392 return -EINVAL;
393 }
394
395 emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing),
396 GFP_KERNEL);
397 if (!emc->timings)
398 return -ENOMEM;
399
400 emc->num_timings = child_count;
401 timing = emc->timings;
402
403 for_each_child_of_node(node, child) {
404 err = load_one_timing_from_dt(emc, timing++, child);
405 if (err) {
406 of_node_put(child);
407 return err;
408 }
409 }
410
411 sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings,
412 NULL);
413
414 dev_info_once(emc->dev,
415 "got %u timings for RAM code %u (min %luMHz max %luMHz)\n",
416 emc->num_timings,
417 tegra_read_ram_code(),
418 emc->timings[0].rate / 1000000,
419 emc->timings[emc->num_timings - 1].rate / 1000000);
420
421 return 0;
422 }
423
424 static struct device_node *
tegra_emc_find_node_by_ram_code(struct device * dev)425 tegra_emc_find_node_by_ram_code(struct device *dev)
426 {
427 struct device_node *np;
428 u32 value, ram_code;
429 int err;
430
431 if (of_get_child_count(dev->of_node) == 0) {
432 dev_info_once(dev, "device-tree doesn't have memory timings\n");
433 return NULL;
434 }
435
436 if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code"))
437 return of_node_get(dev->of_node);
438
439 ram_code = tegra_read_ram_code();
440
441 for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np;
442 np = of_find_node_by_name(np, "emc-tables")) {
443 err = of_property_read_u32(np, "nvidia,ram-code", &value);
444 if (err || value != ram_code) {
445 of_node_put(np);
446 continue;
447 }
448
449 return np;
450 }
451
452 dev_err(dev, "no memory timings for RAM code %u found in device tree\n",
453 ram_code);
454
455 return NULL;
456 }
457
emc_setup_hw(struct tegra_emc * emc)458 static int emc_setup_hw(struct tegra_emc *emc)
459 {
460 u32 intmask = EMC_REFRESH_OVERFLOW_INT;
461 u32 emc_cfg, emc_dbg, emc_fbio;
462
463 emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2);
464
465 /*
466 * Depending on a memory type, DRAM should enter either self-refresh
467 * or power-down state on EMC clock change.
468 */
469 if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) &&
470 !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) {
471 dev_err(emc->dev,
472 "bootloader didn't specify DRAM auto-suspend mode\n");
473 return -EINVAL;
474 }
475
476 /* enable EMC and CAR to handshake on PLL divider/source changes */
477 emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE;
478 writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2);
479
480 /* initialize interrupt */
481 writel_relaxed(intmask, emc->regs + EMC_INTMASK);
482 writel_relaxed(intmask, emc->regs + EMC_INTSTATUS);
483
484 /* ensure that unwanted debug features are disabled */
485 emc_dbg = readl_relaxed(emc->regs + EMC_DBG);
486 emc_dbg |= EMC_DBG_CFG_PRIORITY;
487 emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY;
488 emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE;
489 emc_dbg &= ~EMC_DBG_FORCE_UPDATE;
490 writel_relaxed(emc_dbg, emc->regs + EMC_DBG);
491
492 emc_fbio = readl_relaxed(emc->regs + EMC_FBIO_CFG5);
493
494 if (emc_fbio & EMC_FBIO_CFG5_DRAM_WIDTH_X16)
495 emc->dram_bus_width = 16;
496 else
497 emc->dram_bus_width = 32;
498
499 dev_info_once(emc->dev, "%ubit DRAM bus\n", emc->dram_bus_width);
500
501 return 0;
502 }
503
emc_round_rate(unsigned long rate,unsigned long min_rate,unsigned long max_rate,void * arg)504 static long emc_round_rate(unsigned long rate,
505 unsigned long min_rate,
506 unsigned long max_rate,
507 void *arg)
508 {
509 struct emc_timing *timing = NULL;
510 struct tegra_emc *emc = arg;
511 unsigned int i;
512
513 if (!emc->num_timings)
514 return clk_get_rate(emc->clk);
515
516 min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate);
517
518 for (i = 0; i < emc->num_timings; i++) {
519 if (emc->timings[i].rate < rate && i != emc->num_timings - 1)
520 continue;
521
522 if (emc->timings[i].rate > max_rate) {
523 i = max(i, 1u) - 1;
524
525 if (emc->timings[i].rate < min_rate)
526 break;
527 }
528
529 if (emc->timings[i].rate < min_rate)
530 continue;
531
532 timing = &emc->timings[i];
533 break;
534 }
535
536 if (!timing) {
537 dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n",
538 rate, min_rate, max_rate);
539 return -EINVAL;
540 }
541
542 return timing->rate;
543 }
544
tegra_emc_rate_requests_init(struct tegra_emc * emc)545 static void tegra_emc_rate_requests_init(struct tegra_emc *emc)
546 {
547 unsigned int i;
548
549 for (i = 0; i < EMC_RATE_TYPE_MAX; i++) {
550 emc->requested_rate[i].min_rate = 0;
551 emc->requested_rate[i].max_rate = ULONG_MAX;
552 }
553 }
554
emc_request_rate(struct tegra_emc * emc,unsigned long new_min_rate,unsigned long new_max_rate,enum emc_rate_request_type type)555 static int emc_request_rate(struct tegra_emc *emc,
556 unsigned long new_min_rate,
557 unsigned long new_max_rate,
558 enum emc_rate_request_type type)
559 {
560 struct emc_rate_request *req = emc->requested_rate;
561 unsigned long min_rate = 0, max_rate = ULONG_MAX;
562 unsigned int i;
563 int err;
564
565 /* select minimum and maximum rates among the requested rates */
566 for (i = 0; i < EMC_RATE_TYPE_MAX; i++, req++) {
567 if (i == type) {
568 min_rate = max(new_min_rate, min_rate);
569 max_rate = min(new_max_rate, max_rate);
570 } else {
571 min_rate = max(req->min_rate, min_rate);
572 max_rate = min(req->max_rate, max_rate);
573 }
574 }
575
576 if (min_rate > max_rate) {
577 dev_err_ratelimited(emc->dev, "%s: type %u: out of range: %lu %lu\n",
578 __func__, type, min_rate, max_rate);
579 return -ERANGE;
580 }
581
582 /*
583 * EMC rate-changes should go via OPP API because it manages voltage
584 * changes.
585 */
586 err = dev_pm_opp_set_rate(emc->dev, min_rate);
587 if (err)
588 return err;
589
590 emc->requested_rate[type].min_rate = new_min_rate;
591 emc->requested_rate[type].max_rate = new_max_rate;
592
593 return 0;
594 }
595
emc_set_min_rate(struct tegra_emc * emc,unsigned long rate,enum emc_rate_request_type type)596 static int emc_set_min_rate(struct tegra_emc *emc, unsigned long rate,
597 enum emc_rate_request_type type)
598 {
599 struct emc_rate_request *req = &emc->requested_rate[type];
600 int ret;
601
602 mutex_lock(&emc->rate_lock);
603 ret = emc_request_rate(emc, rate, req->max_rate, type);
604 mutex_unlock(&emc->rate_lock);
605
606 return ret;
607 }
608
emc_set_max_rate(struct tegra_emc * emc,unsigned long rate,enum emc_rate_request_type type)609 static int emc_set_max_rate(struct tegra_emc *emc, unsigned long rate,
610 enum emc_rate_request_type type)
611 {
612 struct emc_rate_request *req = &emc->requested_rate[type];
613 int ret;
614
615 mutex_lock(&emc->rate_lock);
616 ret = emc_request_rate(emc, req->min_rate, rate, type);
617 mutex_unlock(&emc->rate_lock);
618
619 return ret;
620 }
621
622 /*
623 * debugfs interface
624 *
625 * The memory controller driver exposes some files in debugfs that can be used
626 * to control the EMC frequency. The top-level directory can be found here:
627 *
628 * /sys/kernel/debug/emc
629 *
630 * It contains the following files:
631 *
632 * - available_rates: This file contains a list of valid, space-separated
633 * EMC frequencies.
634 *
635 * - min_rate: Writing a value to this file sets the given frequency as the
636 * floor of the permitted range. If this is higher than the currently
637 * configured EMC frequency, this will cause the frequency to be
638 * increased so that it stays within the valid range.
639 *
640 * - max_rate: Similarily to the min_rate file, writing a value to this file
641 * sets the given frequency as the ceiling of the permitted range. If
642 * the value is lower than the currently configured EMC frequency, this
643 * will cause the frequency to be decreased so that it stays within the
644 * valid range.
645 */
646
tegra_emc_validate_rate(struct tegra_emc * emc,unsigned long rate)647 static bool tegra_emc_validate_rate(struct tegra_emc *emc, unsigned long rate)
648 {
649 unsigned int i;
650
651 for (i = 0; i < emc->num_timings; i++)
652 if (rate == emc->timings[i].rate)
653 return true;
654
655 return false;
656 }
657
tegra_emc_debug_available_rates_show(struct seq_file * s,void * data)658 static int tegra_emc_debug_available_rates_show(struct seq_file *s, void *data)
659 {
660 struct tegra_emc *emc = s->private;
661 const char *prefix = "";
662 unsigned int i;
663
664 for (i = 0; i < emc->num_timings; i++) {
665 seq_printf(s, "%s%lu", prefix, emc->timings[i].rate);
666 prefix = " ";
667 }
668
669 seq_puts(s, "\n");
670
671 return 0;
672 }
673
tegra_emc_debug_available_rates_open(struct inode * inode,struct file * file)674 static int tegra_emc_debug_available_rates_open(struct inode *inode,
675 struct file *file)
676 {
677 return single_open(file, tegra_emc_debug_available_rates_show,
678 inode->i_private);
679 }
680
681 static const struct file_operations tegra_emc_debug_available_rates_fops = {
682 .open = tegra_emc_debug_available_rates_open,
683 .read = seq_read,
684 .llseek = seq_lseek,
685 .release = single_release,
686 };
687
tegra_emc_debug_min_rate_get(void * data,u64 * rate)688 static int tegra_emc_debug_min_rate_get(void *data, u64 *rate)
689 {
690 struct tegra_emc *emc = data;
691
692 *rate = emc->debugfs.min_rate;
693
694 return 0;
695 }
696
tegra_emc_debug_min_rate_set(void * data,u64 rate)697 static int tegra_emc_debug_min_rate_set(void *data, u64 rate)
698 {
699 struct tegra_emc *emc = data;
700 int err;
701
702 if (!tegra_emc_validate_rate(emc, rate))
703 return -EINVAL;
704
705 err = emc_set_min_rate(emc, rate, EMC_RATE_DEBUG);
706 if (err < 0)
707 return err;
708
709 emc->debugfs.min_rate = rate;
710
711 return 0;
712 }
713
714 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_min_rate_fops,
715 tegra_emc_debug_min_rate_get,
716 tegra_emc_debug_min_rate_set, "%llu\n");
717
tegra_emc_debug_max_rate_get(void * data,u64 * rate)718 static int tegra_emc_debug_max_rate_get(void *data, u64 *rate)
719 {
720 struct tegra_emc *emc = data;
721
722 *rate = emc->debugfs.max_rate;
723
724 return 0;
725 }
726
tegra_emc_debug_max_rate_set(void * data,u64 rate)727 static int tegra_emc_debug_max_rate_set(void *data, u64 rate)
728 {
729 struct tegra_emc *emc = data;
730 int err;
731
732 if (!tegra_emc_validate_rate(emc, rate))
733 return -EINVAL;
734
735 err = emc_set_max_rate(emc, rate, EMC_RATE_DEBUG);
736 if (err < 0)
737 return err;
738
739 emc->debugfs.max_rate = rate;
740
741 return 0;
742 }
743
744 DEFINE_SIMPLE_ATTRIBUTE(tegra_emc_debug_max_rate_fops,
745 tegra_emc_debug_max_rate_get,
746 tegra_emc_debug_max_rate_set, "%llu\n");
747
tegra_emc_debugfs_init(struct tegra_emc * emc)748 static void tegra_emc_debugfs_init(struct tegra_emc *emc)
749 {
750 struct device *dev = emc->dev;
751 unsigned int i;
752 int err;
753
754 emc->debugfs.min_rate = ULONG_MAX;
755 emc->debugfs.max_rate = 0;
756
757 for (i = 0; i < emc->num_timings; i++) {
758 if (emc->timings[i].rate < emc->debugfs.min_rate)
759 emc->debugfs.min_rate = emc->timings[i].rate;
760
761 if (emc->timings[i].rate > emc->debugfs.max_rate)
762 emc->debugfs.max_rate = emc->timings[i].rate;
763 }
764
765 if (!emc->num_timings) {
766 emc->debugfs.min_rate = clk_get_rate(emc->clk);
767 emc->debugfs.max_rate = emc->debugfs.min_rate;
768 }
769
770 err = clk_set_rate_range(emc->clk, emc->debugfs.min_rate,
771 emc->debugfs.max_rate);
772 if (err < 0) {
773 dev_err(dev, "failed to set rate range [%lu-%lu] for %pC\n",
774 emc->debugfs.min_rate, emc->debugfs.max_rate,
775 emc->clk);
776 }
777
778 emc->debugfs.root = debugfs_create_dir("emc", NULL);
779
780 debugfs_create_file("available_rates", 0444, emc->debugfs.root,
781 emc, &tegra_emc_debug_available_rates_fops);
782 debugfs_create_file("min_rate", 0644, emc->debugfs.root,
783 emc, &tegra_emc_debug_min_rate_fops);
784 debugfs_create_file("max_rate", 0644, emc->debugfs.root,
785 emc, &tegra_emc_debug_max_rate_fops);
786 }
787
788 static inline struct tegra_emc *
to_tegra_emc_provider(struct icc_provider * provider)789 to_tegra_emc_provider(struct icc_provider *provider)
790 {
791 return container_of(provider, struct tegra_emc, provider);
792 }
793
794 static struct icc_node_data *
emc_of_icc_xlate_extended(struct of_phandle_args * spec,void * data)795 emc_of_icc_xlate_extended(struct of_phandle_args *spec, void *data)
796 {
797 struct icc_provider *provider = data;
798 struct icc_node_data *ndata;
799 struct icc_node *node;
800
801 /* External Memory is the only possible ICC route */
802 list_for_each_entry(node, &provider->nodes, node_list) {
803 if (node->id != TEGRA_ICC_EMEM)
804 continue;
805
806 ndata = kzalloc(sizeof(*ndata), GFP_KERNEL);
807 if (!ndata)
808 return ERR_PTR(-ENOMEM);
809
810 /*
811 * SRC and DST nodes should have matching TAG in order to have
812 * it set by default for a requested path.
813 */
814 ndata->tag = TEGRA_MC_ICC_TAG_ISO;
815 ndata->node = node;
816
817 return ndata;
818 }
819
820 return ERR_PTR(-EPROBE_DEFER);
821 }
822
emc_icc_set(struct icc_node * src,struct icc_node * dst)823 static int emc_icc_set(struct icc_node *src, struct icc_node *dst)
824 {
825 struct tegra_emc *emc = to_tegra_emc_provider(dst->provider);
826 unsigned long long peak_bw = icc_units_to_bps(dst->peak_bw);
827 unsigned long long avg_bw = icc_units_to_bps(dst->avg_bw);
828 unsigned long long rate = max(avg_bw, peak_bw);
829 unsigned int dram_data_bus_width_bytes;
830 int err;
831
832 /*
833 * Tegra20 EMC runs on x2 clock rate of SDRAM bus because DDR data
834 * is sampled on both clock edges. This means that EMC clock rate
835 * equals to the peak data-rate.
836 */
837 dram_data_bus_width_bytes = emc->dram_bus_width / 8;
838 do_div(rate, dram_data_bus_width_bytes);
839 rate = min_t(u64, rate, U32_MAX);
840
841 err = emc_set_min_rate(emc, rate, EMC_RATE_ICC);
842 if (err)
843 return err;
844
845 return 0;
846 }
847
tegra_emc_interconnect_init(struct tegra_emc * emc)848 static int tegra_emc_interconnect_init(struct tegra_emc *emc)
849 {
850 const struct tegra_mc_soc *soc;
851 struct icc_node *node;
852 int err;
853
854 emc->mc = devm_tegra_memory_controller_get(emc->dev);
855 if (IS_ERR(emc->mc))
856 return PTR_ERR(emc->mc);
857
858 soc = emc->mc->soc;
859
860 emc->provider.dev = emc->dev;
861 emc->provider.set = emc_icc_set;
862 emc->provider.data = &emc->provider;
863 emc->provider.aggregate = soc->icc_ops->aggregate;
864 emc->provider.xlate_extended = emc_of_icc_xlate_extended;
865
866 err = icc_provider_add(&emc->provider);
867 if (err)
868 goto err_msg;
869
870 /* create External Memory Controller node */
871 node = icc_node_create(TEGRA_ICC_EMC);
872 if (IS_ERR(node)) {
873 err = PTR_ERR(node);
874 goto del_provider;
875 }
876
877 node->name = "External Memory Controller";
878 icc_node_add(node, &emc->provider);
879
880 /* link External Memory Controller to External Memory (DRAM) */
881 err = icc_link_create(node, TEGRA_ICC_EMEM);
882 if (err)
883 goto remove_nodes;
884
885 /* create External Memory node */
886 node = icc_node_create(TEGRA_ICC_EMEM);
887 if (IS_ERR(node)) {
888 err = PTR_ERR(node);
889 goto remove_nodes;
890 }
891
892 node->name = "External Memory (DRAM)";
893 icc_node_add(node, &emc->provider);
894
895 return 0;
896
897 remove_nodes:
898 icc_nodes_remove(&emc->provider);
899 del_provider:
900 icc_provider_del(&emc->provider);
901 err_msg:
902 dev_err(emc->dev, "failed to initialize ICC: %d\n", err);
903
904 return err;
905 }
906
devm_tegra_emc_unset_callback(void * data)907 static void devm_tegra_emc_unset_callback(void *data)
908 {
909 tegra20_clk_set_emc_round_callback(NULL, NULL);
910 }
911
devm_tegra_emc_unreg_clk_notifier(void * data)912 static void devm_tegra_emc_unreg_clk_notifier(void *data)
913 {
914 struct tegra_emc *emc = data;
915
916 clk_notifier_unregister(emc->clk, &emc->clk_nb);
917 }
918
tegra_emc_init_clk(struct tegra_emc * emc)919 static int tegra_emc_init_clk(struct tegra_emc *emc)
920 {
921 int err;
922
923 tegra20_clk_set_emc_round_callback(emc_round_rate, emc);
924
925 err = devm_add_action_or_reset(emc->dev, devm_tegra_emc_unset_callback,
926 NULL);
927 if (err)
928 return err;
929
930 emc->clk = devm_clk_get(emc->dev, NULL);
931 if (IS_ERR(emc->clk)) {
932 dev_err(emc->dev, "failed to get EMC clock: %pe\n", emc->clk);
933 return PTR_ERR(emc->clk);
934 }
935
936 err = clk_notifier_register(emc->clk, &emc->clk_nb);
937 if (err) {
938 dev_err(emc->dev, "failed to register clk notifier: %d\n", err);
939 return err;
940 }
941
942 err = devm_add_action_or_reset(emc->dev,
943 devm_tegra_emc_unreg_clk_notifier, emc);
944 if (err)
945 return err;
946
947 return 0;
948 }
949
tegra_emc_devfreq_target(struct device * dev,unsigned long * freq,u32 flags)950 static int tegra_emc_devfreq_target(struct device *dev, unsigned long *freq,
951 u32 flags)
952 {
953 struct tegra_emc *emc = dev_get_drvdata(dev);
954 struct dev_pm_opp *opp;
955 unsigned long rate;
956
957 opp = devfreq_recommended_opp(dev, freq, flags);
958 if (IS_ERR(opp)) {
959 dev_err(dev, "failed to find opp for %lu Hz\n", *freq);
960 return PTR_ERR(opp);
961 }
962
963 rate = dev_pm_opp_get_freq(opp);
964 dev_pm_opp_put(opp);
965
966 return emc_set_min_rate(emc, rate, EMC_RATE_DEVFREQ);
967 }
968
tegra_emc_devfreq_get_dev_status(struct device * dev,struct devfreq_dev_status * stat)969 static int tegra_emc_devfreq_get_dev_status(struct device *dev,
970 struct devfreq_dev_status *stat)
971 {
972 struct tegra_emc *emc = dev_get_drvdata(dev);
973
974 /* freeze counters */
975 writel_relaxed(EMC_PWR_GATHER_DISABLE, emc->regs + EMC_STAT_CONTROL);
976
977 /*
978 * busy_time: number of clocks EMC request was accepted
979 * total_time: number of clocks PWR_GATHER control was set to ENABLE
980 */
981 stat->busy_time = readl_relaxed(emc->regs + EMC_STAT_PWR_COUNT);
982 stat->total_time = readl_relaxed(emc->regs + EMC_STAT_PWR_CLOCKS);
983 stat->current_frequency = clk_get_rate(emc->clk);
984
985 /* clear counters and restart */
986 writel_relaxed(EMC_PWR_GATHER_CLEAR, emc->regs + EMC_STAT_CONTROL);
987 writel_relaxed(EMC_PWR_GATHER_ENABLE, emc->regs + EMC_STAT_CONTROL);
988
989 return 0;
990 }
991
992 static struct devfreq_dev_profile tegra_emc_devfreq_profile = {
993 .polling_ms = 30,
994 .target = tegra_emc_devfreq_target,
995 .get_dev_status = tegra_emc_devfreq_get_dev_status,
996 };
997
tegra_emc_devfreq_init(struct tegra_emc * emc)998 static int tegra_emc_devfreq_init(struct tegra_emc *emc)
999 {
1000 struct devfreq *devfreq;
1001
1002 /*
1003 * PWR_COUNT is 1/2 of PWR_CLOCKS at max, and thus, the up-threshold
1004 * should be less than 50. Secondly, multiple active memory clients
1005 * may cause over 20% of lost clock cycles due to stalls caused by
1006 * competing memory accesses. This means that threshold should be
1007 * set to a less than 30 in order to have a properly working governor.
1008 */
1009 emc->ondemand_data.upthreshold = 20;
1010
1011 /*
1012 * Reset statistic gathers state, select global bandwidth for the
1013 * statistics collection mode and set clocks counter saturation
1014 * limit to maximum.
1015 */
1016 writel_relaxed(0x00000000, emc->regs + EMC_STAT_CONTROL);
1017 writel_relaxed(0x00000000, emc->regs + EMC_STAT_LLMC_CONTROL);
1018 writel_relaxed(0xffffffff, emc->regs + EMC_STAT_PWR_CLOCK_LIMIT);
1019
1020 devfreq = devm_devfreq_add_device(emc->dev, &tegra_emc_devfreq_profile,
1021 DEVFREQ_GOV_SIMPLE_ONDEMAND,
1022 &emc->ondemand_data);
1023 if (IS_ERR(devfreq)) {
1024 dev_err(emc->dev, "failed to initialize devfreq: %pe", devfreq);
1025 return PTR_ERR(devfreq);
1026 }
1027
1028 return 0;
1029 }
1030
tegra_emc_probe(struct platform_device * pdev)1031 static int tegra_emc_probe(struct platform_device *pdev)
1032 {
1033 struct tegra_core_opp_params opp_params = {};
1034 struct device_node *np;
1035 struct tegra_emc *emc;
1036 int irq, err;
1037
1038 irq = platform_get_irq(pdev, 0);
1039 if (irq < 0) {
1040 dev_err(&pdev->dev, "please update your device tree\n");
1041 return irq;
1042 }
1043
1044 emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL);
1045 if (!emc)
1046 return -ENOMEM;
1047
1048 mutex_init(&emc->rate_lock);
1049 emc->clk_nb.notifier_call = tegra_emc_clk_change_notify;
1050 emc->dev = &pdev->dev;
1051
1052 np = tegra_emc_find_node_by_ram_code(&pdev->dev);
1053 if (np) {
1054 err = tegra_emc_load_timings_from_dt(emc, np);
1055 of_node_put(np);
1056 if (err)
1057 return err;
1058 }
1059
1060 emc->regs = devm_platform_ioremap_resource(pdev, 0);
1061 if (IS_ERR(emc->regs))
1062 return PTR_ERR(emc->regs);
1063
1064 err = emc_setup_hw(emc);
1065 if (err)
1066 return err;
1067
1068 err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0,
1069 dev_name(&pdev->dev), emc);
1070 if (err) {
1071 dev_err(&pdev->dev, "failed to request IRQ: %d\n", err);
1072 return err;
1073 }
1074
1075 err = tegra_emc_init_clk(emc);
1076 if (err)
1077 return err;
1078
1079 opp_params.init_state = true;
1080
1081 err = devm_tegra_core_dev_init_opp_table(&pdev->dev, &opp_params);
1082 if (err)
1083 return err;
1084
1085 platform_set_drvdata(pdev, emc);
1086 tegra_emc_rate_requests_init(emc);
1087 tegra_emc_debugfs_init(emc);
1088 tegra_emc_interconnect_init(emc);
1089 tegra_emc_devfreq_init(emc);
1090
1091 /*
1092 * Don't allow the kernel module to be unloaded. Unloading adds some
1093 * extra complexity which doesn't really worth the effort in a case of
1094 * this driver.
1095 */
1096 try_module_get(THIS_MODULE);
1097
1098 return 0;
1099 }
1100
1101 static const struct of_device_id tegra_emc_of_match[] = {
1102 { .compatible = "nvidia,tegra20-emc", },
1103 {},
1104 };
1105 MODULE_DEVICE_TABLE(of, tegra_emc_of_match);
1106
1107 static struct platform_driver tegra_emc_driver = {
1108 .probe = tegra_emc_probe,
1109 .driver = {
1110 .name = "tegra20-emc",
1111 .of_match_table = tegra_emc_of_match,
1112 .suppress_bind_attrs = true,
1113 .sync_state = icc_sync_state,
1114 },
1115 };
1116 module_platform_driver(tegra_emc_driver);
1117
1118 MODULE_AUTHOR("Dmitry Osipenko <digetx@gmail.com>");
1119 MODULE_DESCRIPTION("NVIDIA Tegra20 EMC driver");
1120 MODULE_LICENSE("GPL v2");
1121