1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
4 *
5 * This file is released under the GPL.
6 */
7
8 #include "dm-core.h"
9
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/string.h>
16 #include <linux/slab.h>
17 #include <linux/interrupt.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/atomic.h>
21 #include <linux/blk-mq.h>
22 #include <linux/mount.h>
23 #include <linux/dax.h>
24
25 #define DM_MSG_PREFIX "table"
26
27 #define NODE_SIZE L1_CACHE_BYTES
28 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
29 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
30
31 /*
32 * Similar to ceiling(log_size(n))
33 */
int_log(unsigned int n,unsigned int base)34 static unsigned int int_log(unsigned int n, unsigned int base)
35 {
36 int result = 0;
37
38 while (n > 1) {
39 n = dm_div_up(n, base);
40 result++;
41 }
42
43 return result;
44 }
45
46 /*
47 * Calculate the index of the child node of the n'th node k'th key.
48 */
get_child(unsigned int n,unsigned int k)49 static inline unsigned int get_child(unsigned int n, unsigned int k)
50 {
51 return (n * CHILDREN_PER_NODE) + k;
52 }
53
54 /*
55 * Return the n'th node of level l from table t.
56 */
get_node(struct dm_table * t,unsigned int l,unsigned int n)57 static inline sector_t *get_node(struct dm_table *t,
58 unsigned int l, unsigned int n)
59 {
60 return t->index[l] + (n * KEYS_PER_NODE);
61 }
62
63 /*
64 * Return the highest key that you could lookup from the n'th
65 * node on level l of the btree.
66 */
high(struct dm_table * t,unsigned int l,unsigned int n)67 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
68 {
69 for (; l < t->depth - 1; l++)
70 n = get_child(n, CHILDREN_PER_NODE - 1);
71
72 if (n >= t->counts[l])
73 return (sector_t) - 1;
74
75 return get_node(t, l, n)[KEYS_PER_NODE - 1];
76 }
77
78 /*
79 * Fills in a level of the btree based on the highs of the level
80 * below it.
81 */
setup_btree_index(unsigned int l,struct dm_table * t)82 static int setup_btree_index(unsigned int l, struct dm_table *t)
83 {
84 unsigned int n, k;
85 sector_t *node;
86
87 for (n = 0U; n < t->counts[l]; n++) {
88 node = get_node(t, l, n);
89
90 for (k = 0U; k < KEYS_PER_NODE; k++)
91 node[k] = high(t, l + 1, get_child(n, k));
92 }
93
94 return 0;
95 }
96
97 /*
98 * highs, and targets are managed as dynamic arrays during a
99 * table load.
100 */
alloc_targets(struct dm_table * t,unsigned int num)101 static int alloc_targets(struct dm_table *t, unsigned int num)
102 {
103 sector_t *n_highs;
104 struct dm_target *n_targets;
105
106 /*
107 * Allocate both the target array and offset array at once.
108 */
109 n_highs = kvcalloc(num, sizeof(struct dm_target) + sizeof(sector_t),
110 GFP_KERNEL);
111 if (!n_highs)
112 return -ENOMEM;
113
114 n_targets = (struct dm_target *) (n_highs + num);
115
116 memset(n_highs, -1, sizeof(*n_highs) * num);
117 kvfree(t->highs);
118
119 t->num_allocated = num;
120 t->highs = n_highs;
121 t->targets = n_targets;
122
123 return 0;
124 }
125
dm_table_create(struct dm_table ** result,fmode_t mode,unsigned num_targets,struct mapped_device * md)126 int dm_table_create(struct dm_table **result, fmode_t mode,
127 unsigned num_targets, struct mapped_device *md)
128 {
129 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
130
131 if (!t)
132 return -ENOMEM;
133
134 INIT_LIST_HEAD(&t->devices);
135
136 if (!num_targets)
137 num_targets = KEYS_PER_NODE;
138
139 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
140
141 if (!num_targets) {
142 kfree(t);
143 return -ENOMEM;
144 }
145
146 if (alloc_targets(t, num_targets)) {
147 kfree(t);
148 return -ENOMEM;
149 }
150
151 t->type = DM_TYPE_NONE;
152 t->mode = mode;
153 t->md = md;
154 *result = t;
155 return 0;
156 }
157
free_devices(struct list_head * devices,struct mapped_device * md)158 static void free_devices(struct list_head *devices, struct mapped_device *md)
159 {
160 struct list_head *tmp, *next;
161
162 list_for_each_safe(tmp, next, devices) {
163 struct dm_dev_internal *dd =
164 list_entry(tmp, struct dm_dev_internal, list);
165 DMWARN("%s: dm_table_destroy: dm_put_device call missing for %s",
166 dm_device_name(md), dd->dm_dev->name);
167 dm_put_table_device(md, dd->dm_dev);
168 kfree(dd);
169 }
170 }
171
172 static void dm_table_destroy_keyslot_manager(struct dm_table *t);
173
dm_table_destroy(struct dm_table * t)174 void dm_table_destroy(struct dm_table *t)
175 {
176 unsigned int i;
177
178 if (!t)
179 return;
180
181 /* free the indexes */
182 if (t->depth >= 2)
183 kvfree(t->index[t->depth - 2]);
184
185 /* free the targets */
186 for (i = 0; i < t->num_targets; i++) {
187 struct dm_target *tgt = t->targets + i;
188
189 if (tgt->type->dtr)
190 tgt->type->dtr(tgt);
191
192 dm_put_target_type(tgt->type);
193 }
194
195 kvfree(t->highs);
196
197 /* free the device list */
198 free_devices(&t->devices, t->md);
199
200 dm_free_md_mempools(t->mempools);
201
202 dm_table_destroy_keyslot_manager(t);
203
204 kfree(t);
205 }
206
207 /*
208 * See if we've already got a device in the list.
209 */
find_device(struct list_head * l,dev_t dev)210 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
211 {
212 struct dm_dev_internal *dd;
213
214 list_for_each_entry (dd, l, list)
215 if (dd->dm_dev->bdev->bd_dev == dev)
216 return dd;
217
218 return NULL;
219 }
220
221 /*
222 * If possible, this checks an area of a destination device is invalid.
223 */
device_area_is_invalid(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)224 static int device_area_is_invalid(struct dm_target *ti, struct dm_dev *dev,
225 sector_t start, sector_t len, void *data)
226 {
227 struct queue_limits *limits = data;
228 struct block_device *bdev = dev->bdev;
229 sector_t dev_size =
230 i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
231 unsigned short logical_block_size_sectors =
232 limits->logical_block_size >> SECTOR_SHIFT;
233 char b[BDEVNAME_SIZE];
234
235 if (!dev_size)
236 return 0;
237
238 if ((start >= dev_size) || (start + len > dev_size)) {
239 DMWARN("%s: %s too small for target: "
240 "start=%llu, len=%llu, dev_size=%llu",
241 dm_device_name(ti->table->md), bdevname(bdev, b),
242 (unsigned long long)start,
243 (unsigned long long)len,
244 (unsigned long long)dev_size);
245 return 1;
246 }
247
248 /*
249 * If the target is mapped to zoned block device(s), check
250 * that the zones are not partially mapped.
251 */
252 if (bdev_is_zoned(bdev)) {
253 unsigned int zone_sectors = bdev_zone_sectors(bdev);
254
255 if (start & (zone_sectors - 1)) {
256 DMWARN("%s: start=%llu not aligned to h/w zone size %u of %s",
257 dm_device_name(ti->table->md),
258 (unsigned long long)start,
259 zone_sectors, bdevname(bdev, b));
260 return 1;
261 }
262
263 /*
264 * Note: The last zone of a zoned block device may be smaller
265 * than other zones. So for a target mapping the end of a
266 * zoned block device with such a zone, len would not be zone
267 * aligned. We do not allow such last smaller zone to be part
268 * of the mapping here to ensure that mappings with multiple
269 * devices do not end up with a smaller zone in the middle of
270 * the sector range.
271 */
272 if (len & (zone_sectors - 1)) {
273 DMWARN("%s: len=%llu not aligned to h/w zone size %u of %s",
274 dm_device_name(ti->table->md),
275 (unsigned long long)len,
276 zone_sectors, bdevname(bdev, b));
277 return 1;
278 }
279 }
280
281 if (logical_block_size_sectors <= 1)
282 return 0;
283
284 if (start & (logical_block_size_sectors - 1)) {
285 DMWARN("%s: start=%llu not aligned to h/w "
286 "logical block size %u of %s",
287 dm_device_name(ti->table->md),
288 (unsigned long long)start,
289 limits->logical_block_size, bdevname(bdev, b));
290 return 1;
291 }
292
293 if (len & (logical_block_size_sectors - 1)) {
294 DMWARN("%s: len=%llu not aligned to h/w "
295 "logical block size %u of %s",
296 dm_device_name(ti->table->md),
297 (unsigned long long)len,
298 limits->logical_block_size, bdevname(bdev, b));
299 return 1;
300 }
301
302 return 0;
303 }
304
305 /*
306 * This upgrades the mode on an already open dm_dev, being
307 * careful to leave things as they were if we fail to reopen the
308 * device and not to touch the existing bdev field in case
309 * it is accessed concurrently.
310 */
upgrade_mode(struct dm_dev_internal * dd,fmode_t new_mode,struct mapped_device * md)311 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
312 struct mapped_device *md)
313 {
314 int r;
315 struct dm_dev *old_dev, *new_dev;
316
317 old_dev = dd->dm_dev;
318
319 r = dm_get_table_device(md, dd->dm_dev->bdev->bd_dev,
320 dd->dm_dev->mode | new_mode, &new_dev);
321 if (r)
322 return r;
323
324 dd->dm_dev = new_dev;
325 dm_put_table_device(md, old_dev);
326
327 return 0;
328 }
329
330 /*
331 * Convert the path to a device
332 */
dm_get_dev_t(const char * path)333 dev_t dm_get_dev_t(const char *path)
334 {
335 dev_t dev;
336
337 if (lookup_bdev(path, &dev))
338 dev = name_to_dev_t(path);
339 return dev;
340 }
341 EXPORT_SYMBOL_GPL(dm_get_dev_t);
342
343 /*
344 * Add a device to the list, or just increment the usage count if
345 * it's already present.
346 */
dm_get_device(struct dm_target * ti,const char * path,fmode_t mode,struct dm_dev ** result)347 int dm_get_device(struct dm_target *ti, const char *path, fmode_t mode,
348 struct dm_dev **result)
349 {
350 int r;
351 dev_t dev;
352 unsigned int major, minor;
353 char dummy;
354 struct dm_dev_internal *dd;
355 struct dm_table *t = ti->table;
356
357 BUG_ON(!t);
358
359 if (sscanf(path, "%u:%u%c", &major, &minor, &dummy) == 2) {
360 /* Extract the major/minor numbers */
361 dev = MKDEV(major, minor);
362 if (MAJOR(dev) != major || MINOR(dev) != minor)
363 return -EOVERFLOW;
364 } else {
365 dev = dm_get_dev_t(path);
366 if (!dev)
367 return -ENODEV;
368 }
369
370 dd = find_device(&t->devices, dev);
371 if (!dd) {
372 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
373 if (!dd)
374 return -ENOMEM;
375
376 if ((r = dm_get_table_device(t->md, dev, mode, &dd->dm_dev))) {
377 kfree(dd);
378 return r;
379 }
380
381 refcount_set(&dd->count, 1);
382 list_add(&dd->list, &t->devices);
383 goto out;
384
385 } else if (dd->dm_dev->mode != (mode | dd->dm_dev->mode)) {
386 r = upgrade_mode(dd, mode, t->md);
387 if (r)
388 return r;
389 }
390 refcount_inc(&dd->count);
391 out:
392 *result = dd->dm_dev;
393 return 0;
394 }
395 EXPORT_SYMBOL(dm_get_device);
396
dm_set_device_limits(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)397 static int dm_set_device_limits(struct dm_target *ti, struct dm_dev *dev,
398 sector_t start, sector_t len, void *data)
399 {
400 struct queue_limits *limits = data;
401 struct block_device *bdev = dev->bdev;
402 struct request_queue *q = bdev_get_queue(bdev);
403 char b[BDEVNAME_SIZE];
404
405 if (unlikely(!q)) {
406 DMWARN("%s: Cannot set limits for nonexistent device %s",
407 dm_device_name(ti->table->md), bdevname(bdev, b));
408 return 0;
409 }
410
411 if (blk_stack_limits(limits, &q->limits,
412 get_start_sect(bdev) + start) < 0)
413 DMWARN("%s: adding target device %s caused an alignment inconsistency: "
414 "physical_block_size=%u, logical_block_size=%u, "
415 "alignment_offset=%u, start=%llu",
416 dm_device_name(ti->table->md), bdevname(bdev, b),
417 q->limits.physical_block_size,
418 q->limits.logical_block_size,
419 q->limits.alignment_offset,
420 (unsigned long long) start << SECTOR_SHIFT);
421 return 0;
422 }
423
424 /*
425 * Decrement a device's use count and remove it if necessary.
426 */
dm_put_device(struct dm_target * ti,struct dm_dev * d)427 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
428 {
429 int found = 0;
430 struct list_head *devices = &ti->table->devices;
431 struct dm_dev_internal *dd;
432
433 list_for_each_entry(dd, devices, list) {
434 if (dd->dm_dev == d) {
435 found = 1;
436 break;
437 }
438 }
439 if (!found) {
440 DMWARN("%s: device %s not in table devices list",
441 dm_device_name(ti->table->md), d->name);
442 return;
443 }
444 if (refcount_dec_and_test(&dd->count)) {
445 dm_put_table_device(ti->table->md, d);
446 list_del(&dd->list);
447 kfree(dd);
448 }
449 }
450 EXPORT_SYMBOL(dm_put_device);
451
452 /*
453 * Checks to see if the target joins onto the end of the table.
454 */
adjoin(struct dm_table * table,struct dm_target * ti)455 static int adjoin(struct dm_table *table, struct dm_target *ti)
456 {
457 struct dm_target *prev;
458
459 if (!table->num_targets)
460 return !ti->begin;
461
462 prev = &table->targets[table->num_targets - 1];
463 return (ti->begin == (prev->begin + prev->len));
464 }
465
466 /*
467 * Used to dynamically allocate the arg array.
468 *
469 * We do first allocation with GFP_NOIO because dm-mpath and dm-thin must
470 * process messages even if some device is suspended. These messages have a
471 * small fixed number of arguments.
472 *
473 * On the other hand, dm-switch needs to process bulk data using messages and
474 * excessive use of GFP_NOIO could cause trouble.
475 */
realloc_argv(unsigned * size,char ** old_argv)476 static char **realloc_argv(unsigned *size, char **old_argv)
477 {
478 char **argv;
479 unsigned new_size;
480 gfp_t gfp;
481
482 if (*size) {
483 new_size = *size * 2;
484 gfp = GFP_KERNEL;
485 } else {
486 new_size = 8;
487 gfp = GFP_NOIO;
488 }
489 argv = kmalloc_array(new_size, sizeof(*argv), gfp);
490 if (argv && old_argv) {
491 memcpy(argv, old_argv, *size * sizeof(*argv));
492 *size = new_size;
493 }
494
495 kfree(old_argv);
496 return argv;
497 }
498
499 /*
500 * Destructively splits up the argument list to pass to ctr.
501 */
dm_split_args(int * argc,char *** argvp,char * input)502 int dm_split_args(int *argc, char ***argvp, char *input)
503 {
504 char *start, *end = input, *out, **argv = NULL;
505 unsigned array_size = 0;
506
507 *argc = 0;
508
509 if (!input) {
510 *argvp = NULL;
511 return 0;
512 }
513
514 argv = realloc_argv(&array_size, argv);
515 if (!argv)
516 return -ENOMEM;
517
518 while (1) {
519 /* Skip whitespace */
520 start = skip_spaces(end);
521
522 if (!*start)
523 break; /* success, we hit the end */
524
525 /* 'out' is used to remove any back-quotes */
526 end = out = start;
527 while (*end) {
528 /* Everything apart from '\0' can be quoted */
529 if (*end == '\\' && *(end + 1)) {
530 *out++ = *(end + 1);
531 end += 2;
532 continue;
533 }
534
535 if (isspace(*end))
536 break; /* end of token */
537
538 *out++ = *end++;
539 }
540
541 /* have we already filled the array ? */
542 if ((*argc + 1) > array_size) {
543 argv = realloc_argv(&array_size, argv);
544 if (!argv)
545 return -ENOMEM;
546 }
547
548 /* we know this is whitespace */
549 if (*end)
550 end++;
551
552 /* terminate the string and put it in the array */
553 *out = '\0';
554 argv[*argc] = start;
555 (*argc)++;
556 }
557
558 *argvp = argv;
559 return 0;
560 }
561
562 /*
563 * Impose necessary and sufficient conditions on a devices's table such
564 * that any incoming bio which respects its logical_block_size can be
565 * processed successfully. If it falls across the boundary between
566 * two or more targets, the size of each piece it gets split into must
567 * be compatible with the logical_block_size of the target processing it.
568 */
validate_hardware_logical_block_alignment(struct dm_table * table,struct queue_limits * limits)569 static int validate_hardware_logical_block_alignment(struct dm_table *table,
570 struct queue_limits *limits)
571 {
572 /*
573 * This function uses arithmetic modulo the logical_block_size
574 * (in units of 512-byte sectors).
575 */
576 unsigned short device_logical_block_size_sects =
577 limits->logical_block_size >> SECTOR_SHIFT;
578
579 /*
580 * Offset of the start of the next table entry, mod logical_block_size.
581 */
582 unsigned short next_target_start = 0;
583
584 /*
585 * Given an aligned bio that extends beyond the end of a
586 * target, how many sectors must the next target handle?
587 */
588 unsigned short remaining = 0;
589
590 struct dm_target *ti;
591 struct queue_limits ti_limits;
592 unsigned i;
593
594 /*
595 * Check each entry in the table in turn.
596 */
597 for (i = 0; i < dm_table_get_num_targets(table); i++) {
598 ti = dm_table_get_target(table, i);
599
600 blk_set_stacking_limits(&ti_limits);
601
602 /* combine all target devices' limits */
603 if (ti->type->iterate_devices)
604 ti->type->iterate_devices(ti, dm_set_device_limits,
605 &ti_limits);
606
607 /*
608 * If the remaining sectors fall entirely within this
609 * table entry are they compatible with its logical_block_size?
610 */
611 if (remaining < ti->len &&
612 remaining & ((ti_limits.logical_block_size >>
613 SECTOR_SHIFT) - 1))
614 break; /* Error */
615
616 next_target_start =
617 (unsigned short) ((next_target_start + ti->len) &
618 (device_logical_block_size_sects - 1));
619 remaining = next_target_start ?
620 device_logical_block_size_sects - next_target_start : 0;
621 }
622
623 if (remaining) {
624 DMWARN("%s: table line %u (start sect %llu len %llu) "
625 "not aligned to h/w logical block size %u",
626 dm_device_name(table->md), i,
627 (unsigned long long) ti->begin,
628 (unsigned long long) ti->len,
629 limits->logical_block_size);
630 return -EINVAL;
631 }
632
633 return 0;
634 }
635
dm_table_add_target(struct dm_table * t,const char * type,sector_t start,sector_t len,char * params)636 int dm_table_add_target(struct dm_table *t, const char *type,
637 sector_t start, sector_t len, char *params)
638 {
639 int r = -EINVAL, argc;
640 char **argv;
641 struct dm_target *tgt;
642
643 if (t->singleton) {
644 DMERR("%s: target type %s must appear alone in table",
645 dm_device_name(t->md), t->targets->type->name);
646 return -EINVAL;
647 }
648
649 BUG_ON(t->num_targets >= t->num_allocated);
650
651 tgt = t->targets + t->num_targets;
652 memset(tgt, 0, sizeof(*tgt));
653
654 if (!len) {
655 DMERR("%s: zero-length target", dm_device_name(t->md));
656 return -EINVAL;
657 }
658
659 tgt->type = dm_get_target_type(type);
660 if (!tgt->type) {
661 DMERR("%s: %s: unknown target type", dm_device_name(t->md), type);
662 return -EINVAL;
663 }
664
665 if (dm_target_needs_singleton(tgt->type)) {
666 if (t->num_targets) {
667 tgt->error = "singleton target type must appear alone in table";
668 goto bad;
669 }
670 t->singleton = true;
671 }
672
673 if (dm_target_always_writeable(tgt->type) && !(t->mode & FMODE_WRITE)) {
674 tgt->error = "target type may not be included in a read-only table";
675 goto bad;
676 }
677
678 if (t->immutable_target_type) {
679 if (t->immutable_target_type != tgt->type) {
680 tgt->error = "immutable target type cannot be mixed with other target types";
681 goto bad;
682 }
683 } else if (dm_target_is_immutable(tgt->type)) {
684 if (t->num_targets) {
685 tgt->error = "immutable target type cannot be mixed with other target types";
686 goto bad;
687 }
688 t->immutable_target_type = tgt->type;
689 }
690
691 if (dm_target_has_integrity(tgt->type))
692 t->integrity_added = 1;
693
694 tgt->table = t;
695 tgt->begin = start;
696 tgt->len = len;
697 tgt->error = "Unknown error";
698
699 /*
700 * Does this target adjoin the previous one ?
701 */
702 if (!adjoin(t, tgt)) {
703 tgt->error = "Gap in table";
704 goto bad;
705 }
706
707 r = dm_split_args(&argc, &argv, params);
708 if (r) {
709 tgt->error = "couldn't split parameters (insufficient memory)";
710 goto bad;
711 }
712
713 r = tgt->type->ctr(tgt, argc, argv);
714 kfree(argv);
715 if (r)
716 goto bad;
717
718 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
719
720 if (!tgt->num_discard_bios && tgt->discards_supported)
721 DMWARN("%s: %s: ignoring discards_supported because num_discard_bios is zero.",
722 dm_device_name(t->md), type);
723
724 return 0;
725
726 bad:
727 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
728 dm_put_target_type(tgt->type);
729 return r;
730 }
731
732 /*
733 * Target argument parsing helpers.
734 */
validate_next_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error,unsigned grouped)735 static int validate_next_arg(const struct dm_arg *arg,
736 struct dm_arg_set *arg_set,
737 unsigned *value, char **error, unsigned grouped)
738 {
739 const char *arg_str = dm_shift_arg(arg_set);
740 char dummy;
741
742 if (!arg_str ||
743 (sscanf(arg_str, "%u%c", value, &dummy) != 1) ||
744 (*value < arg->min) ||
745 (*value > arg->max) ||
746 (grouped && arg_set->argc < *value)) {
747 *error = arg->error;
748 return -EINVAL;
749 }
750
751 return 0;
752 }
753
dm_read_arg(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)754 int dm_read_arg(const struct dm_arg *arg, struct dm_arg_set *arg_set,
755 unsigned *value, char **error)
756 {
757 return validate_next_arg(arg, arg_set, value, error, 0);
758 }
759 EXPORT_SYMBOL(dm_read_arg);
760
dm_read_arg_group(const struct dm_arg * arg,struct dm_arg_set * arg_set,unsigned * value,char ** error)761 int dm_read_arg_group(const struct dm_arg *arg, struct dm_arg_set *arg_set,
762 unsigned *value, char **error)
763 {
764 return validate_next_arg(arg, arg_set, value, error, 1);
765 }
766 EXPORT_SYMBOL(dm_read_arg_group);
767
dm_shift_arg(struct dm_arg_set * as)768 const char *dm_shift_arg(struct dm_arg_set *as)
769 {
770 char *r;
771
772 if (as->argc) {
773 as->argc--;
774 r = *as->argv;
775 as->argv++;
776 return r;
777 }
778
779 return NULL;
780 }
781 EXPORT_SYMBOL(dm_shift_arg);
782
dm_consume_args(struct dm_arg_set * as,unsigned num_args)783 void dm_consume_args(struct dm_arg_set *as, unsigned num_args)
784 {
785 BUG_ON(as->argc < num_args);
786 as->argc -= num_args;
787 as->argv += num_args;
788 }
789 EXPORT_SYMBOL(dm_consume_args);
790
__table_type_bio_based(enum dm_queue_mode table_type)791 static bool __table_type_bio_based(enum dm_queue_mode table_type)
792 {
793 return (table_type == DM_TYPE_BIO_BASED ||
794 table_type == DM_TYPE_DAX_BIO_BASED);
795 }
796
__table_type_request_based(enum dm_queue_mode table_type)797 static bool __table_type_request_based(enum dm_queue_mode table_type)
798 {
799 return table_type == DM_TYPE_REQUEST_BASED;
800 }
801
dm_table_set_type(struct dm_table * t,enum dm_queue_mode type)802 void dm_table_set_type(struct dm_table *t, enum dm_queue_mode type)
803 {
804 t->type = type;
805 }
806 EXPORT_SYMBOL_GPL(dm_table_set_type);
807
808 /* validate the dax capability of the target device span */
device_not_dax_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)809 int device_not_dax_capable(struct dm_target *ti, struct dm_dev *dev,
810 sector_t start, sector_t len, void *data)
811 {
812 int blocksize = *(int *) data;
813
814 return !dax_supported(dev->dax_dev, dev->bdev, blocksize, start, len);
815 }
816
817 /* Check devices support synchronous DAX */
device_not_dax_synchronous_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)818 static int device_not_dax_synchronous_capable(struct dm_target *ti, struct dm_dev *dev,
819 sector_t start, sector_t len, void *data)
820 {
821 return !dev->dax_dev || !dax_synchronous(dev->dax_dev);
822 }
823
dm_table_supports_dax(struct dm_table * t,iterate_devices_callout_fn iterate_fn,int * blocksize)824 bool dm_table_supports_dax(struct dm_table *t,
825 iterate_devices_callout_fn iterate_fn, int *blocksize)
826 {
827 struct dm_target *ti;
828 unsigned i;
829
830 /* Ensure that all targets support DAX. */
831 for (i = 0; i < dm_table_get_num_targets(t); i++) {
832 ti = dm_table_get_target(t, i);
833
834 if (!ti->type->direct_access)
835 return false;
836
837 if (!ti->type->iterate_devices ||
838 ti->type->iterate_devices(ti, iterate_fn, blocksize))
839 return false;
840 }
841
842 return true;
843 }
844
device_is_rq_stackable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)845 static int device_is_rq_stackable(struct dm_target *ti, struct dm_dev *dev,
846 sector_t start, sector_t len, void *data)
847 {
848 struct block_device *bdev = dev->bdev;
849 struct request_queue *q = bdev_get_queue(bdev);
850
851 /* request-based cannot stack on partitions! */
852 if (bdev_is_partition(bdev))
853 return false;
854
855 return queue_is_mq(q);
856 }
857
dm_table_determine_type(struct dm_table * t)858 static int dm_table_determine_type(struct dm_table *t)
859 {
860 unsigned i;
861 unsigned bio_based = 0, request_based = 0, hybrid = 0;
862 struct dm_target *tgt;
863 struct list_head *devices = dm_table_get_devices(t);
864 enum dm_queue_mode live_md_type = dm_get_md_type(t->md);
865 int page_size = PAGE_SIZE;
866
867 if (t->type != DM_TYPE_NONE) {
868 /* target already set the table's type */
869 if (t->type == DM_TYPE_BIO_BASED) {
870 /* possibly upgrade to a variant of bio-based */
871 goto verify_bio_based;
872 }
873 BUG_ON(t->type == DM_TYPE_DAX_BIO_BASED);
874 goto verify_rq_based;
875 }
876
877 for (i = 0; i < t->num_targets; i++) {
878 tgt = t->targets + i;
879 if (dm_target_hybrid(tgt))
880 hybrid = 1;
881 else if (dm_target_request_based(tgt))
882 request_based = 1;
883 else
884 bio_based = 1;
885
886 if (bio_based && request_based) {
887 DMERR("Inconsistent table: different target types"
888 " can't be mixed up");
889 return -EINVAL;
890 }
891 }
892
893 if (hybrid && !bio_based && !request_based) {
894 /*
895 * The targets can work either way.
896 * Determine the type from the live device.
897 * Default to bio-based if device is new.
898 */
899 if (__table_type_request_based(live_md_type))
900 request_based = 1;
901 else
902 bio_based = 1;
903 }
904
905 if (bio_based) {
906 verify_bio_based:
907 /* We must use this table as bio-based */
908 t->type = DM_TYPE_BIO_BASED;
909 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size) ||
910 (list_empty(devices) && live_md_type == DM_TYPE_DAX_BIO_BASED)) {
911 t->type = DM_TYPE_DAX_BIO_BASED;
912 }
913 return 0;
914 }
915
916 BUG_ON(!request_based); /* No targets in this table */
917
918 t->type = DM_TYPE_REQUEST_BASED;
919
920 verify_rq_based:
921 /*
922 * Request-based dm supports only tables that have a single target now.
923 * To support multiple targets, request splitting support is needed,
924 * and that needs lots of changes in the block-layer.
925 * (e.g. request completion process for partial completion.)
926 */
927 if (t->num_targets > 1) {
928 DMERR("request-based DM doesn't support multiple targets");
929 return -EINVAL;
930 }
931
932 if (list_empty(devices)) {
933 int srcu_idx;
934 struct dm_table *live_table = dm_get_live_table(t->md, &srcu_idx);
935
936 /* inherit live table's type */
937 if (live_table)
938 t->type = live_table->type;
939 dm_put_live_table(t->md, srcu_idx);
940 return 0;
941 }
942
943 tgt = dm_table_get_immutable_target(t);
944 if (!tgt) {
945 DMERR("table load rejected: immutable target is required");
946 return -EINVAL;
947 } else if (tgt->max_io_len) {
948 DMERR("table load rejected: immutable target that splits IO is not supported");
949 return -EINVAL;
950 }
951
952 /* Non-request-stackable devices can't be used for request-based dm */
953 if (!tgt->type->iterate_devices ||
954 !tgt->type->iterate_devices(tgt, device_is_rq_stackable, NULL)) {
955 DMERR("table load rejected: including non-request-stackable devices");
956 return -EINVAL;
957 }
958
959 return 0;
960 }
961
dm_table_get_type(struct dm_table * t)962 enum dm_queue_mode dm_table_get_type(struct dm_table *t)
963 {
964 return t->type;
965 }
966
dm_table_get_immutable_target_type(struct dm_table * t)967 struct target_type *dm_table_get_immutable_target_type(struct dm_table *t)
968 {
969 return t->immutable_target_type;
970 }
971
dm_table_get_immutable_target(struct dm_table * t)972 struct dm_target *dm_table_get_immutable_target(struct dm_table *t)
973 {
974 /* Immutable target is implicitly a singleton */
975 if (t->num_targets > 1 ||
976 !dm_target_is_immutable(t->targets[0].type))
977 return NULL;
978
979 return t->targets;
980 }
981
dm_table_get_wildcard_target(struct dm_table * t)982 struct dm_target *dm_table_get_wildcard_target(struct dm_table *t)
983 {
984 struct dm_target *ti;
985 unsigned i;
986
987 for (i = 0; i < dm_table_get_num_targets(t); i++) {
988 ti = dm_table_get_target(t, i);
989 if (dm_target_is_wildcard(ti->type))
990 return ti;
991 }
992
993 return NULL;
994 }
995
dm_table_bio_based(struct dm_table * t)996 bool dm_table_bio_based(struct dm_table *t)
997 {
998 return __table_type_bio_based(dm_table_get_type(t));
999 }
1000
dm_table_request_based(struct dm_table * t)1001 bool dm_table_request_based(struct dm_table *t)
1002 {
1003 return __table_type_request_based(dm_table_get_type(t));
1004 }
1005
dm_table_alloc_md_mempools(struct dm_table * t,struct mapped_device * md)1006 static int dm_table_alloc_md_mempools(struct dm_table *t, struct mapped_device *md)
1007 {
1008 enum dm_queue_mode type = dm_table_get_type(t);
1009 unsigned per_io_data_size = 0;
1010 unsigned min_pool_size = 0;
1011 struct dm_target *ti;
1012 unsigned i;
1013
1014 if (unlikely(type == DM_TYPE_NONE)) {
1015 DMWARN("no table type is set, can't allocate mempools");
1016 return -EINVAL;
1017 }
1018
1019 if (__table_type_bio_based(type))
1020 for (i = 0; i < t->num_targets; i++) {
1021 ti = t->targets + i;
1022 per_io_data_size = max(per_io_data_size, ti->per_io_data_size);
1023 min_pool_size = max(min_pool_size, ti->num_flush_bios);
1024 }
1025
1026 t->mempools = dm_alloc_md_mempools(md, type, t->integrity_supported,
1027 per_io_data_size, min_pool_size);
1028 if (!t->mempools)
1029 return -ENOMEM;
1030
1031 return 0;
1032 }
1033
dm_table_free_md_mempools(struct dm_table * t)1034 void dm_table_free_md_mempools(struct dm_table *t)
1035 {
1036 dm_free_md_mempools(t->mempools);
1037 t->mempools = NULL;
1038 }
1039
dm_table_get_md_mempools(struct dm_table * t)1040 struct dm_md_mempools *dm_table_get_md_mempools(struct dm_table *t)
1041 {
1042 return t->mempools;
1043 }
1044
setup_indexes(struct dm_table * t)1045 static int setup_indexes(struct dm_table *t)
1046 {
1047 int i;
1048 unsigned int total = 0;
1049 sector_t *indexes;
1050
1051 /* allocate the space for *all* the indexes */
1052 for (i = t->depth - 2; i >= 0; i--) {
1053 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
1054 total += t->counts[i];
1055 }
1056
1057 indexes = kvcalloc(total, NODE_SIZE, GFP_KERNEL);
1058 if (!indexes)
1059 return -ENOMEM;
1060
1061 /* set up internal nodes, bottom-up */
1062 for (i = t->depth - 2; i >= 0; i--) {
1063 t->index[i] = indexes;
1064 indexes += (KEYS_PER_NODE * t->counts[i]);
1065 setup_btree_index(i, t);
1066 }
1067
1068 return 0;
1069 }
1070
1071 /*
1072 * Builds the btree to index the map.
1073 */
dm_table_build_index(struct dm_table * t)1074 static int dm_table_build_index(struct dm_table *t)
1075 {
1076 int r = 0;
1077 unsigned int leaf_nodes;
1078
1079 /* how many indexes will the btree have ? */
1080 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
1081 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
1082
1083 /* leaf layer has already been set up */
1084 t->counts[t->depth - 1] = leaf_nodes;
1085 t->index[t->depth - 1] = t->highs;
1086
1087 if (t->depth >= 2)
1088 r = setup_indexes(t);
1089
1090 return r;
1091 }
1092
integrity_profile_exists(struct gendisk * disk)1093 static bool integrity_profile_exists(struct gendisk *disk)
1094 {
1095 return !!blk_get_integrity(disk);
1096 }
1097
1098 /*
1099 * Get a disk whose integrity profile reflects the table's profile.
1100 * Returns NULL if integrity support was inconsistent or unavailable.
1101 */
dm_table_get_integrity_disk(struct dm_table * t)1102 static struct gendisk * dm_table_get_integrity_disk(struct dm_table *t)
1103 {
1104 struct list_head *devices = dm_table_get_devices(t);
1105 struct dm_dev_internal *dd = NULL;
1106 struct gendisk *prev_disk = NULL, *template_disk = NULL;
1107 unsigned i;
1108
1109 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1110 struct dm_target *ti = dm_table_get_target(t, i);
1111 if (!dm_target_passes_integrity(ti->type))
1112 goto no_integrity;
1113 }
1114
1115 list_for_each_entry(dd, devices, list) {
1116 template_disk = dd->dm_dev->bdev->bd_disk;
1117 if (!integrity_profile_exists(template_disk))
1118 goto no_integrity;
1119 else if (prev_disk &&
1120 blk_integrity_compare(prev_disk, template_disk) < 0)
1121 goto no_integrity;
1122 prev_disk = template_disk;
1123 }
1124
1125 return template_disk;
1126
1127 no_integrity:
1128 if (prev_disk)
1129 DMWARN("%s: integrity not set: %s and %s profile mismatch",
1130 dm_device_name(t->md),
1131 prev_disk->disk_name,
1132 template_disk->disk_name);
1133 return NULL;
1134 }
1135
1136 /*
1137 * Register the mapped device for blk_integrity support if the
1138 * underlying devices have an integrity profile. But all devices may
1139 * not have matching profiles (checking all devices isn't reliable
1140 * during table load because this table may use other DM device(s) which
1141 * must be resumed before they will have an initialized integity
1142 * profile). Consequently, stacked DM devices force a 2 stage integrity
1143 * profile validation: First pass during table load, final pass during
1144 * resume.
1145 */
dm_table_register_integrity(struct dm_table * t)1146 static int dm_table_register_integrity(struct dm_table *t)
1147 {
1148 struct mapped_device *md = t->md;
1149 struct gendisk *template_disk = NULL;
1150
1151 /* If target handles integrity itself do not register it here. */
1152 if (t->integrity_added)
1153 return 0;
1154
1155 template_disk = dm_table_get_integrity_disk(t);
1156 if (!template_disk)
1157 return 0;
1158
1159 if (!integrity_profile_exists(dm_disk(md))) {
1160 t->integrity_supported = true;
1161 /*
1162 * Register integrity profile during table load; we can do
1163 * this because the final profile must match during resume.
1164 */
1165 blk_integrity_register(dm_disk(md),
1166 blk_get_integrity(template_disk));
1167 return 0;
1168 }
1169
1170 /*
1171 * If DM device already has an initialized integrity
1172 * profile the new profile should not conflict.
1173 */
1174 if (blk_integrity_compare(dm_disk(md), template_disk) < 0) {
1175 DMWARN("%s: conflict with existing integrity profile: "
1176 "%s profile mismatch",
1177 dm_device_name(t->md),
1178 template_disk->disk_name);
1179 return 1;
1180 }
1181
1182 /* Preserve existing integrity profile */
1183 t->integrity_supported = true;
1184 return 0;
1185 }
1186
1187 #ifdef CONFIG_BLK_INLINE_ENCRYPTION
1188
1189 struct dm_keyslot_manager {
1190 struct blk_keyslot_manager ksm;
1191 struct mapped_device *md;
1192 };
1193
1194 struct dm_keyslot_evict_args {
1195 const struct blk_crypto_key *key;
1196 int err;
1197 };
1198
dm_keyslot_evict_callback(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1199 static int dm_keyslot_evict_callback(struct dm_target *ti, struct dm_dev *dev,
1200 sector_t start, sector_t len, void *data)
1201 {
1202 struct dm_keyslot_evict_args *args = data;
1203 int err;
1204
1205 err = blk_crypto_evict_key(bdev_get_queue(dev->bdev), args->key);
1206 if (!args->err)
1207 args->err = err;
1208 /* Always try to evict the key from all devices. */
1209 return 0;
1210 }
1211
1212 /*
1213 * When an inline encryption key is evicted from a device-mapper device, evict
1214 * it from all the underlying devices.
1215 */
dm_keyslot_evict(struct blk_keyslot_manager * ksm,const struct blk_crypto_key * key,unsigned int slot)1216 static int dm_keyslot_evict(struct blk_keyslot_manager *ksm,
1217 const struct blk_crypto_key *key, unsigned int slot)
1218 {
1219 struct dm_keyslot_manager *dksm = container_of(ksm,
1220 struct dm_keyslot_manager,
1221 ksm);
1222 struct mapped_device *md = dksm->md;
1223 struct dm_keyslot_evict_args args = { key };
1224 struct dm_table *t;
1225 int srcu_idx;
1226 int i;
1227 struct dm_target *ti;
1228
1229 t = dm_get_live_table(md, &srcu_idx);
1230 if (!t)
1231 return 0;
1232 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1233 ti = dm_table_get_target(t, i);
1234 if (!ti->type->iterate_devices)
1235 continue;
1236 ti->type->iterate_devices(ti, dm_keyslot_evict_callback, &args);
1237 }
1238 dm_put_live_table(md, srcu_idx);
1239 return args.err;
1240 }
1241
1242 static const struct blk_ksm_ll_ops dm_ksm_ll_ops = {
1243 .keyslot_evict = dm_keyslot_evict,
1244 };
1245
device_intersect_crypto_modes(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1246 static int device_intersect_crypto_modes(struct dm_target *ti,
1247 struct dm_dev *dev, sector_t start,
1248 sector_t len, void *data)
1249 {
1250 struct blk_keyslot_manager *parent = data;
1251 struct blk_keyslot_manager *child = bdev_get_queue(dev->bdev)->ksm;
1252
1253 blk_ksm_intersect_modes(parent, child);
1254 return 0;
1255 }
1256
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1257 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1258 {
1259 struct dm_keyslot_manager *dksm = container_of(ksm,
1260 struct dm_keyslot_manager,
1261 ksm);
1262
1263 if (!ksm)
1264 return;
1265
1266 blk_ksm_destroy(ksm);
1267 kfree(dksm);
1268 }
1269
dm_table_destroy_keyslot_manager(struct dm_table * t)1270 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1271 {
1272 dm_destroy_keyslot_manager(t->ksm);
1273 t->ksm = NULL;
1274 }
1275
1276 /*
1277 * Constructs and initializes t->ksm with a keyslot manager that
1278 * represents the common set of crypto capabilities of the devices
1279 * described by the dm_table. However, if the constructed keyslot
1280 * manager does not support a superset of the crypto capabilities
1281 * supported by the current keyslot manager of the mapped_device,
1282 * it returns an error instead, since we don't support restricting
1283 * crypto capabilities on table changes. Finally, if the constructed
1284 * keyslot manager doesn't actually support any crypto modes at all,
1285 * it just returns NULL.
1286 */
dm_table_construct_keyslot_manager(struct dm_table * t)1287 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1288 {
1289 struct dm_keyslot_manager *dksm;
1290 struct blk_keyslot_manager *ksm;
1291 struct dm_target *ti;
1292 unsigned int i;
1293 bool ksm_is_empty = true;
1294
1295 dksm = kmalloc(sizeof(*dksm), GFP_KERNEL);
1296 if (!dksm)
1297 return -ENOMEM;
1298 dksm->md = t->md;
1299
1300 ksm = &dksm->ksm;
1301 blk_ksm_init_passthrough(ksm);
1302 ksm->ksm_ll_ops = dm_ksm_ll_ops;
1303 ksm->max_dun_bytes_supported = UINT_MAX;
1304 memset(ksm->crypto_modes_supported, 0xFF,
1305 sizeof(ksm->crypto_modes_supported));
1306
1307 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1308 ti = dm_table_get_target(t, i);
1309
1310 if (!dm_target_passes_crypto(ti->type)) {
1311 blk_ksm_intersect_modes(ksm, NULL);
1312 break;
1313 }
1314 if (!ti->type->iterate_devices)
1315 continue;
1316 ti->type->iterate_devices(ti, device_intersect_crypto_modes,
1317 ksm);
1318 }
1319
1320 if (t->md->queue && !blk_ksm_is_superset(ksm, t->md->queue->ksm)) {
1321 DMWARN("Inline encryption capabilities of new DM table were more restrictive than the old table's. This is not supported!");
1322 dm_destroy_keyslot_manager(ksm);
1323 return -EINVAL;
1324 }
1325
1326 /*
1327 * If the new KSM doesn't actually support any crypto modes, we may as
1328 * well represent it with a NULL ksm.
1329 */
1330 ksm_is_empty = true;
1331 for (i = 0; i < ARRAY_SIZE(ksm->crypto_modes_supported); i++) {
1332 if (ksm->crypto_modes_supported[i]) {
1333 ksm_is_empty = false;
1334 break;
1335 }
1336 }
1337
1338 if (ksm_is_empty) {
1339 dm_destroy_keyslot_manager(ksm);
1340 ksm = NULL;
1341 }
1342
1343 /*
1344 * t->ksm is only set temporarily while the table is being set
1345 * up, and it gets set to NULL after the capabilities have
1346 * been transferred to the request_queue.
1347 */
1348 t->ksm = ksm;
1349
1350 return 0;
1351 }
1352
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1353 static void dm_update_keyslot_manager(struct request_queue *q,
1354 struct dm_table *t)
1355 {
1356 if (!t->ksm)
1357 return;
1358
1359 /* Make the ksm less restrictive */
1360 if (!q->ksm) {
1361 blk_ksm_register(t->ksm, q);
1362 } else {
1363 blk_ksm_update_capabilities(q->ksm, t->ksm);
1364 dm_destroy_keyslot_manager(t->ksm);
1365 }
1366 t->ksm = NULL;
1367 }
1368
1369 #else /* CONFIG_BLK_INLINE_ENCRYPTION */
1370
dm_table_construct_keyslot_manager(struct dm_table * t)1371 static int dm_table_construct_keyslot_manager(struct dm_table *t)
1372 {
1373 return 0;
1374 }
1375
dm_destroy_keyslot_manager(struct blk_keyslot_manager * ksm)1376 void dm_destroy_keyslot_manager(struct blk_keyslot_manager *ksm)
1377 {
1378 }
1379
dm_table_destroy_keyslot_manager(struct dm_table * t)1380 static void dm_table_destroy_keyslot_manager(struct dm_table *t)
1381 {
1382 }
1383
dm_update_keyslot_manager(struct request_queue * q,struct dm_table * t)1384 static void dm_update_keyslot_manager(struct request_queue *q,
1385 struct dm_table *t)
1386 {
1387 }
1388
1389 #endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1390
1391 /*
1392 * Prepares the table for use by building the indices,
1393 * setting the type, and allocating mempools.
1394 */
dm_table_complete(struct dm_table * t)1395 int dm_table_complete(struct dm_table *t)
1396 {
1397 int r;
1398
1399 r = dm_table_determine_type(t);
1400 if (r) {
1401 DMERR("unable to determine table type");
1402 return r;
1403 }
1404
1405 r = dm_table_build_index(t);
1406 if (r) {
1407 DMERR("unable to build btrees");
1408 return r;
1409 }
1410
1411 r = dm_table_register_integrity(t);
1412 if (r) {
1413 DMERR("could not register integrity profile.");
1414 return r;
1415 }
1416
1417 r = dm_table_construct_keyslot_manager(t);
1418 if (r) {
1419 DMERR("could not construct keyslot manager.");
1420 return r;
1421 }
1422
1423 r = dm_table_alloc_md_mempools(t, t->md);
1424 if (r)
1425 DMERR("unable to allocate mempools");
1426
1427 return r;
1428 }
1429
1430 static DEFINE_MUTEX(_event_lock);
dm_table_event_callback(struct dm_table * t,void (* fn)(void *),void * context)1431 void dm_table_event_callback(struct dm_table *t,
1432 void (*fn)(void *), void *context)
1433 {
1434 mutex_lock(&_event_lock);
1435 t->event_fn = fn;
1436 t->event_context = context;
1437 mutex_unlock(&_event_lock);
1438 }
1439
dm_table_event(struct dm_table * t)1440 void dm_table_event(struct dm_table *t)
1441 {
1442 mutex_lock(&_event_lock);
1443 if (t->event_fn)
1444 t->event_fn(t->event_context);
1445 mutex_unlock(&_event_lock);
1446 }
1447 EXPORT_SYMBOL(dm_table_event);
1448
dm_table_get_size(struct dm_table * t)1449 inline sector_t dm_table_get_size(struct dm_table *t)
1450 {
1451 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
1452 }
1453 EXPORT_SYMBOL(dm_table_get_size);
1454
dm_table_get_target(struct dm_table * t,unsigned int index)1455 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
1456 {
1457 if (index >= t->num_targets)
1458 return NULL;
1459
1460 return t->targets + index;
1461 }
1462
1463 /*
1464 * Search the btree for the correct target.
1465 *
1466 * Caller should check returned pointer for NULL
1467 * to trap I/O beyond end of device.
1468 */
dm_table_find_target(struct dm_table * t,sector_t sector)1469 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
1470 {
1471 unsigned int l, n = 0, k = 0;
1472 sector_t *node;
1473
1474 if (unlikely(sector >= dm_table_get_size(t)))
1475 return NULL;
1476
1477 for (l = 0; l < t->depth; l++) {
1478 n = get_child(n, k);
1479 node = get_node(t, l, n);
1480
1481 for (k = 0; k < KEYS_PER_NODE; k++)
1482 if (node[k] >= sector)
1483 break;
1484 }
1485
1486 return &t->targets[(KEYS_PER_NODE * n) + k];
1487 }
1488
1489 /*
1490 * type->iterate_devices() should be called when the sanity check needs to
1491 * iterate and check all underlying data devices. iterate_devices() will
1492 * iterate all underlying data devices until it encounters a non-zero return
1493 * code, returned by whether the input iterate_devices_callout_fn, or
1494 * iterate_devices() itself internally.
1495 *
1496 * For some target type (e.g. dm-stripe), one call of iterate_devices() may
1497 * iterate multiple underlying devices internally, in which case a non-zero
1498 * return code returned by iterate_devices_callout_fn will stop the iteration
1499 * in advance.
1500 *
1501 * Cases requiring _any_ underlying device supporting some kind of attribute,
1502 * should use the iteration structure like dm_table_any_dev_attr(), or call
1503 * it directly. @func should handle semantics of positive examples, e.g.
1504 * capable of something.
1505 *
1506 * Cases requiring _all_ underlying devices supporting some kind of attribute,
1507 * should use the iteration structure like dm_table_supports_nowait() or
1508 * dm_table_supports_discards(). Or introduce dm_table_all_devs_attr() that
1509 * uses an @anti_func that handle semantics of counter examples, e.g. not
1510 * capable of something. So: return !dm_table_any_dev_attr(t, anti_func, data);
1511 */
dm_table_any_dev_attr(struct dm_table * t,iterate_devices_callout_fn func,void * data)1512 static bool dm_table_any_dev_attr(struct dm_table *t,
1513 iterate_devices_callout_fn func, void *data)
1514 {
1515 struct dm_target *ti;
1516 unsigned int i;
1517
1518 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1519 ti = dm_table_get_target(t, i);
1520
1521 if (ti->type->iterate_devices &&
1522 ti->type->iterate_devices(ti, func, data))
1523 return true;
1524 }
1525
1526 return false;
1527 }
1528
count_device(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1529 static int count_device(struct dm_target *ti, struct dm_dev *dev,
1530 sector_t start, sector_t len, void *data)
1531 {
1532 unsigned *num_devices = data;
1533
1534 (*num_devices)++;
1535
1536 return 0;
1537 }
1538
1539 /*
1540 * Check whether a table has no data devices attached using each
1541 * target's iterate_devices method.
1542 * Returns false if the result is unknown because a target doesn't
1543 * support iterate_devices.
1544 */
dm_table_has_no_data_devices(struct dm_table * table)1545 bool dm_table_has_no_data_devices(struct dm_table *table)
1546 {
1547 struct dm_target *ti;
1548 unsigned i, num_devices;
1549
1550 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1551 ti = dm_table_get_target(table, i);
1552
1553 if (!ti->type->iterate_devices)
1554 return false;
1555
1556 num_devices = 0;
1557 ti->type->iterate_devices(ti, count_device, &num_devices);
1558 if (num_devices)
1559 return false;
1560 }
1561
1562 return true;
1563 }
1564
device_not_zoned_model(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1565 static int device_not_zoned_model(struct dm_target *ti, struct dm_dev *dev,
1566 sector_t start, sector_t len, void *data)
1567 {
1568 struct request_queue *q = bdev_get_queue(dev->bdev);
1569 enum blk_zoned_model *zoned_model = data;
1570
1571 return blk_queue_zoned_model(q) != *zoned_model;
1572 }
1573
1574 /*
1575 * Check the device zoned model based on the target feature flag. If the target
1576 * has the DM_TARGET_ZONED_HM feature flag set, host-managed zoned devices are
1577 * also accepted but all devices must have the same zoned model. If the target
1578 * has the DM_TARGET_MIXED_ZONED_MODEL feature set, the devices can have any
1579 * zoned model with all zoned devices having the same zone size.
1580 */
dm_table_supports_zoned_model(struct dm_table * t,enum blk_zoned_model zoned_model)1581 static bool dm_table_supports_zoned_model(struct dm_table *t,
1582 enum blk_zoned_model zoned_model)
1583 {
1584 struct dm_target *ti;
1585 unsigned i;
1586
1587 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1588 ti = dm_table_get_target(t, i);
1589
1590 if (dm_target_supports_zoned_hm(ti->type)) {
1591 if (!ti->type->iterate_devices ||
1592 ti->type->iterate_devices(ti, device_not_zoned_model,
1593 &zoned_model))
1594 return false;
1595 } else if (!dm_target_supports_mixed_zoned_model(ti->type)) {
1596 if (zoned_model == BLK_ZONED_HM)
1597 return false;
1598 }
1599 }
1600
1601 return true;
1602 }
1603
device_not_matches_zone_sectors(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1604 static int device_not_matches_zone_sectors(struct dm_target *ti, struct dm_dev *dev,
1605 sector_t start, sector_t len, void *data)
1606 {
1607 struct request_queue *q = bdev_get_queue(dev->bdev);
1608 unsigned int *zone_sectors = data;
1609
1610 if (!blk_queue_is_zoned(q))
1611 return 0;
1612
1613 return blk_queue_zone_sectors(q) != *zone_sectors;
1614 }
1615
1616 /*
1617 * Check consistency of zoned model and zone sectors across all targets. For
1618 * zone sectors, if the destination device is a zoned block device, it shall
1619 * have the specified zone_sectors.
1620 */
validate_hardware_zoned_model(struct dm_table * table,enum blk_zoned_model zoned_model,unsigned int zone_sectors)1621 static int validate_hardware_zoned_model(struct dm_table *table,
1622 enum blk_zoned_model zoned_model,
1623 unsigned int zone_sectors)
1624 {
1625 if (zoned_model == BLK_ZONED_NONE)
1626 return 0;
1627
1628 if (!dm_table_supports_zoned_model(table, zoned_model)) {
1629 DMERR("%s: zoned model is not consistent across all devices",
1630 dm_device_name(table->md));
1631 return -EINVAL;
1632 }
1633
1634 /* Check zone size validity and compatibility */
1635 if (!zone_sectors || !is_power_of_2(zone_sectors))
1636 return -EINVAL;
1637
1638 if (dm_table_any_dev_attr(table, device_not_matches_zone_sectors, &zone_sectors)) {
1639 DMERR("%s: zone sectors is not consistent across all zoned devices",
1640 dm_device_name(table->md));
1641 return -EINVAL;
1642 }
1643
1644 return 0;
1645 }
1646
1647 /*
1648 * Establish the new table's queue_limits and validate them.
1649 */
dm_calculate_queue_limits(struct dm_table * table,struct queue_limits * limits)1650 int dm_calculate_queue_limits(struct dm_table *table,
1651 struct queue_limits *limits)
1652 {
1653 struct dm_target *ti;
1654 struct queue_limits ti_limits;
1655 unsigned i;
1656 enum blk_zoned_model zoned_model = BLK_ZONED_NONE;
1657 unsigned int zone_sectors = 0;
1658
1659 blk_set_stacking_limits(limits);
1660
1661 for (i = 0; i < dm_table_get_num_targets(table); i++) {
1662 blk_set_stacking_limits(&ti_limits);
1663
1664 ti = dm_table_get_target(table, i);
1665
1666 if (!ti->type->iterate_devices)
1667 goto combine_limits;
1668
1669 /*
1670 * Combine queue limits of all the devices this target uses.
1671 */
1672 ti->type->iterate_devices(ti, dm_set_device_limits,
1673 &ti_limits);
1674
1675 if (zoned_model == BLK_ZONED_NONE && ti_limits.zoned != BLK_ZONED_NONE) {
1676 /*
1677 * After stacking all limits, validate all devices
1678 * in table support this zoned model and zone sectors.
1679 */
1680 zoned_model = ti_limits.zoned;
1681 zone_sectors = ti_limits.chunk_sectors;
1682 }
1683
1684 /* Set I/O hints portion of queue limits */
1685 if (ti->type->io_hints)
1686 ti->type->io_hints(ti, &ti_limits);
1687
1688 /*
1689 * Check each device area is consistent with the target's
1690 * overall queue limits.
1691 */
1692 if (ti->type->iterate_devices(ti, device_area_is_invalid,
1693 &ti_limits))
1694 return -EINVAL;
1695
1696 combine_limits:
1697 /*
1698 * Merge this target's queue limits into the overall limits
1699 * for the table.
1700 */
1701 if (blk_stack_limits(limits, &ti_limits, 0) < 0)
1702 DMWARN("%s: adding target device "
1703 "(start sect %llu len %llu) "
1704 "caused an alignment inconsistency",
1705 dm_device_name(table->md),
1706 (unsigned long long) ti->begin,
1707 (unsigned long long) ti->len);
1708 }
1709
1710 /*
1711 * Verify that the zoned model and zone sectors, as determined before
1712 * any .io_hints override, are the same across all devices in the table.
1713 * - this is especially relevant if .io_hints is emulating a disk-managed
1714 * zoned model (aka BLK_ZONED_NONE) on host-managed zoned block devices.
1715 * BUT...
1716 */
1717 if (limits->zoned != BLK_ZONED_NONE) {
1718 /*
1719 * ...IF the above limits stacking determined a zoned model
1720 * validate that all of the table's devices conform to it.
1721 */
1722 zoned_model = limits->zoned;
1723 zone_sectors = limits->chunk_sectors;
1724 }
1725 if (validate_hardware_zoned_model(table, zoned_model, zone_sectors))
1726 return -EINVAL;
1727
1728 return validate_hardware_logical_block_alignment(table, limits);
1729 }
1730
1731 /*
1732 * Verify that all devices have an integrity profile that matches the
1733 * DM device's registered integrity profile. If the profiles don't
1734 * match then unregister the DM device's integrity profile.
1735 */
dm_table_verify_integrity(struct dm_table * t)1736 static void dm_table_verify_integrity(struct dm_table *t)
1737 {
1738 struct gendisk *template_disk = NULL;
1739
1740 if (t->integrity_added)
1741 return;
1742
1743 if (t->integrity_supported) {
1744 /*
1745 * Verify that the original integrity profile
1746 * matches all the devices in this table.
1747 */
1748 template_disk = dm_table_get_integrity_disk(t);
1749 if (template_disk &&
1750 blk_integrity_compare(dm_disk(t->md), template_disk) >= 0)
1751 return;
1752 }
1753
1754 if (integrity_profile_exists(dm_disk(t->md))) {
1755 DMWARN("%s: unable to establish an integrity profile",
1756 dm_device_name(t->md));
1757 blk_integrity_unregister(dm_disk(t->md));
1758 }
1759 }
1760
device_flush_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1761 static int device_flush_capable(struct dm_target *ti, struct dm_dev *dev,
1762 sector_t start, sector_t len, void *data)
1763 {
1764 unsigned long flush = (unsigned long) data;
1765 struct request_queue *q = bdev_get_queue(dev->bdev);
1766
1767 return (q->queue_flags & flush);
1768 }
1769
dm_table_supports_flush(struct dm_table * t,unsigned long flush)1770 static bool dm_table_supports_flush(struct dm_table *t, unsigned long flush)
1771 {
1772 struct dm_target *ti;
1773 unsigned i;
1774
1775 /*
1776 * Require at least one underlying device to support flushes.
1777 * t->devices includes internal dm devices such as mirror logs
1778 * so we need to use iterate_devices here, which targets
1779 * supporting flushes must provide.
1780 */
1781 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1782 ti = dm_table_get_target(t, i);
1783
1784 if (!ti->num_flush_bios)
1785 continue;
1786
1787 if (ti->flush_supported)
1788 return true;
1789
1790 if (ti->type->iterate_devices &&
1791 ti->type->iterate_devices(ti, device_flush_capable, (void *) flush))
1792 return true;
1793 }
1794
1795 return false;
1796 }
1797
device_dax_write_cache_enabled(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1798 static int device_dax_write_cache_enabled(struct dm_target *ti,
1799 struct dm_dev *dev, sector_t start,
1800 sector_t len, void *data)
1801 {
1802 struct dax_device *dax_dev = dev->dax_dev;
1803
1804 if (!dax_dev)
1805 return false;
1806
1807 if (dax_write_cache_enabled(dax_dev))
1808 return true;
1809 return false;
1810 }
1811
device_is_rotational(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1812 static int device_is_rotational(struct dm_target *ti, struct dm_dev *dev,
1813 sector_t start, sector_t len, void *data)
1814 {
1815 struct request_queue *q = bdev_get_queue(dev->bdev);
1816
1817 return !blk_queue_nonrot(q);
1818 }
1819
device_is_not_random(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1820 static int device_is_not_random(struct dm_target *ti, struct dm_dev *dev,
1821 sector_t start, sector_t len, void *data)
1822 {
1823 struct request_queue *q = bdev_get_queue(dev->bdev);
1824
1825 return !blk_queue_add_random(q);
1826 }
1827
device_not_write_same_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1828 static int device_not_write_same_capable(struct dm_target *ti, struct dm_dev *dev,
1829 sector_t start, sector_t len, void *data)
1830 {
1831 struct request_queue *q = bdev_get_queue(dev->bdev);
1832
1833 return !q->limits.max_write_same_sectors;
1834 }
1835
dm_table_supports_write_same(struct dm_table * t)1836 static bool dm_table_supports_write_same(struct dm_table *t)
1837 {
1838 struct dm_target *ti;
1839 unsigned i;
1840
1841 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1842 ti = dm_table_get_target(t, i);
1843
1844 if (!ti->num_write_same_bios)
1845 return false;
1846
1847 if (!ti->type->iterate_devices ||
1848 ti->type->iterate_devices(ti, device_not_write_same_capable, NULL))
1849 return false;
1850 }
1851
1852 return true;
1853 }
1854
device_not_write_zeroes_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1855 static int device_not_write_zeroes_capable(struct dm_target *ti, struct dm_dev *dev,
1856 sector_t start, sector_t len, void *data)
1857 {
1858 struct request_queue *q = bdev_get_queue(dev->bdev);
1859
1860 return !q->limits.max_write_zeroes_sectors;
1861 }
1862
dm_table_supports_write_zeroes(struct dm_table * t)1863 static bool dm_table_supports_write_zeroes(struct dm_table *t)
1864 {
1865 struct dm_target *ti;
1866 unsigned i = 0;
1867
1868 while (i < dm_table_get_num_targets(t)) {
1869 ti = dm_table_get_target(t, i++);
1870
1871 if (!ti->num_write_zeroes_bios)
1872 return false;
1873
1874 if (!ti->type->iterate_devices ||
1875 ti->type->iterate_devices(ti, device_not_write_zeroes_capable, NULL))
1876 return false;
1877 }
1878
1879 return true;
1880 }
1881
device_not_nowait_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1882 static int device_not_nowait_capable(struct dm_target *ti, struct dm_dev *dev,
1883 sector_t start, sector_t len, void *data)
1884 {
1885 struct request_queue *q = bdev_get_queue(dev->bdev);
1886
1887 return !blk_queue_nowait(q);
1888 }
1889
dm_table_supports_nowait(struct dm_table * t)1890 static bool dm_table_supports_nowait(struct dm_table *t)
1891 {
1892 struct dm_target *ti;
1893 unsigned i = 0;
1894
1895 while (i < dm_table_get_num_targets(t)) {
1896 ti = dm_table_get_target(t, i++);
1897
1898 if (!dm_target_supports_nowait(ti->type))
1899 return false;
1900
1901 if (!ti->type->iterate_devices ||
1902 ti->type->iterate_devices(ti, device_not_nowait_capable, NULL))
1903 return false;
1904 }
1905
1906 return true;
1907 }
1908
device_not_discard_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1909 static int device_not_discard_capable(struct dm_target *ti, struct dm_dev *dev,
1910 sector_t start, sector_t len, void *data)
1911 {
1912 struct request_queue *q = bdev_get_queue(dev->bdev);
1913
1914 return !blk_queue_discard(q);
1915 }
1916
dm_table_supports_discards(struct dm_table * t)1917 static bool dm_table_supports_discards(struct dm_table *t)
1918 {
1919 struct dm_target *ti;
1920 unsigned i;
1921
1922 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1923 ti = dm_table_get_target(t, i);
1924
1925 if (!ti->num_discard_bios)
1926 return false;
1927
1928 /*
1929 * Either the target provides discard support (as implied by setting
1930 * 'discards_supported') or it relies on _all_ data devices having
1931 * discard support.
1932 */
1933 if (!ti->discards_supported &&
1934 (!ti->type->iterate_devices ||
1935 ti->type->iterate_devices(ti, device_not_discard_capable, NULL)))
1936 return false;
1937 }
1938
1939 return true;
1940 }
1941
device_not_secure_erase_capable(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1942 static int device_not_secure_erase_capable(struct dm_target *ti,
1943 struct dm_dev *dev, sector_t start,
1944 sector_t len, void *data)
1945 {
1946 struct request_queue *q = bdev_get_queue(dev->bdev);
1947
1948 return !blk_queue_secure_erase(q);
1949 }
1950
dm_table_supports_secure_erase(struct dm_table * t)1951 static bool dm_table_supports_secure_erase(struct dm_table *t)
1952 {
1953 struct dm_target *ti;
1954 unsigned int i;
1955
1956 for (i = 0; i < dm_table_get_num_targets(t); i++) {
1957 ti = dm_table_get_target(t, i);
1958
1959 if (!ti->num_secure_erase_bios)
1960 return false;
1961
1962 if (!ti->type->iterate_devices ||
1963 ti->type->iterate_devices(ti, device_not_secure_erase_capable, NULL))
1964 return false;
1965 }
1966
1967 return true;
1968 }
1969
device_requires_stable_pages(struct dm_target * ti,struct dm_dev * dev,sector_t start,sector_t len,void * data)1970 static int device_requires_stable_pages(struct dm_target *ti,
1971 struct dm_dev *dev, sector_t start,
1972 sector_t len, void *data)
1973 {
1974 struct request_queue *q = bdev_get_queue(dev->bdev);
1975
1976 return blk_queue_stable_writes(q);
1977 }
1978
dm_table_set_restrictions(struct dm_table * t,struct request_queue * q,struct queue_limits * limits)1979 int dm_table_set_restrictions(struct dm_table *t, struct request_queue *q,
1980 struct queue_limits *limits)
1981 {
1982 bool wc = false, fua = false;
1983 int page_size = PAGE_SIZE;
1984 int r;
1985
1986 /*
1987 * Copy table's limits to the DM device's request_queue
1988 */
1989 q->limits = *limits;
1990
1991 if (dm_table_supports_nowait(t))
1992 blk_queue_flag_set(QUEUE_FLAG_NOWAIT, q);
1993 else
1994 blk_queue_flag_clear(QUEUE_FLAG_NOWAIT, q);
1995
1996 if (!dm_table_supports_discards(t)) {
1997 blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q);
1998 /* Must also clear discard limits... */
1999 q->limits.max_discard_sectors = 0;
2000 q->limits.max_hw_discard_sectors = 0;
2001 q->limits.discard_granularity = 0;
2002 q->limits.discard_alignment = 0;
2003 q->limits.discard_misaligned = 0;
2004 } else
2005 blk_queue_flag_set(QUEUE_FLAG_DISCARD, q);
2006
2007 if (dm_table_supports_secure_erase(t))
2008 blk_queue_flag_set(QUEUE_FLAG_SECERASE, q);
2009
2010 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_WC))) {
2011 wc = true;
2012 if (dm_table_supports_flush(t, (1UL << QUEUE_FLAG_FUA)))
2013 fua = true;
2014 }
2015 blk_queue_write_cache(q, wc, fua);
2016
2017 if (dm_table_supports_dax(t, device_not_dax_capable, &page_size)) {
2018 blk_queue_flag_set(QUEUE_FLAG_DAX, q);
2019 if (dm_table_supports_dax(t, device_not_dax_synchronous_capable, NULL))
2020 set_dax_synchronous(t->md->dax_dev);
2021 }
2022 else
2023 blk_queue_flag_clear(QUEUE_FLAG_DAX, q);
2024
2025 if (dm_table_any_dev_attr(t, device_dax_write_cache_enabled, NULL))
2026 dax_write_cache(t->md->dax_dev, true);
2027
2028 /* Ensure that all underlying devices are non-rotational. */
2029 if (dm_table_any_dev_attr(t, device_is_rotational, NULL))
2030 blk_queue_flag_clear(QUEUE_FLAG_NONROT, q);
2031 else
2032 blk_queue_flag_set(QUEUE_FLAG_NONROT, q);
2033
2034 if (!dm_table_supports_write_same(t))
2035 q->limits.max_write_same_sectors = 0;
2036 if (!dm_table_supports_write_zeroes(t))
2037 q->limits.max_write_zeroes_sectors = 0;
2038
2039 dm_table_verify_integrity(t);
2040
2041 /*
2042 * Some devices don't use blk_integrity but still want stable pages
2043 * because they do their own checksumming.
2044 * If any underlying device requires stable pages, a table must require
2045 * them as well. Only targets that support iterate_devices are considered:
2046 * don't want error, zero, etc to require stable pages.
2047 */
2048 if (dm_table_any_dev_attr(t, device_requires_stable_pages, NULL))
2049 blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, q);
2050 else
2051 blk_queue_flag_clear(QUEUE_FLAG_STABLE_WRITES, q);
2052
2053 /*
2054 * Determine whether or not this queue's I/O timings contribute
2055 * to the entropy pool, Only request-based targets use this.
2056 * Clear QUEUE_FLAG_ADD_RANDOM if any underlying device does not
2057 * have it set.
2058 */
2059 if (blk_queue_add_random(q) &&
2060 dm_table_any_dev_attr(t, device_is_not_random, NULL))
2061 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, q);
2062
2063 /*
2064 * For a zoned target, setup the zones related queue attributes
2065 * and resources necessary for zone append emulation if necessary.
2066 */
2067 if (blk_queue_is_zoned(q)) {
2068 r = dm_set_zones_restrictions(t, q);
2069 if (r)
2070 return r;
2071 }
2072
2073 dm_update_keyslot_manager(q, t);
2074 disk_update_readahead(t->md->disk);
2075
2076 return 0;
2077 }
2078
dm_table_get_num_targets(struct dm_table * t)2079 unsigned int dm_table_get_num_targets(struct dm_table *t)
2080 {
2081 return t->num_targets;
2082 }
2083
dm_table_get_devices(struct dm_table * t)2084 struct list_head *dm_table_get_devices(struct dm_table *t)
2085 {
2086 return &t->devices;
2087 }
2088
dm_table_get_mode(struct dm_table * t)2089 fmode_t dm_table_get_mode(struct dm_table *t)
2090 {
2091 return t->mode;
2092 }
2093 EXPORT_SYMBOL(dm_table_get_mode);
2094
2095 enum suspend_mode {
2096 PRESUSPEND,
2097 PRESUSPEND_UNDO,
2098 POSTSUSPEND,
2099 };
2100
suspend_targets(struct dm_table * t,enum suspend_mode mode)2101 static void suspend_targets(struct dm_table *t, enum suspend_mode mode)
2102 {
2103 int i = t->num_targets;
2104 struct dm_target *ti = t->targets;
2105
2106 lockdep_assert_held(&t->md->suspend_lock);
2107
2108 while (i--) {
2109 switch (mode) {
2110 case PRESUSPEND:
2111 if (ti->type->presuspend)
2112 ti->type->presuspend(ti);
2113 break;
2114 case PRESUSPEND_UNDO:
2115 if (ti->type->presuspend_undo)
2116 ti->type->presuspend_undo(ti);
2117 break;
2118 case POSTSUSPEND:
2119 if (ti->type->postsuspend)
2120 ti->type->postsuspend(ti);
2121 break;
2122 }
2123 ti++;
2124 }
2125 }
2126
dm_table_presuspend_targets(struct dm_table * t)2127 void dm_table_presuspend_targets(struct dm_table *t)
2128 {
2129 if (!t)
2130 return;
2131
2132 suspend_targets(t, PRESUSPEND);
2133 }
2134
dm_table_presuspend_undo_targets(struct dm_table * t)2135 void dm_table_presuspend_undo_targets(struct dm_table *t)
2136 {
2137 if (!t)
2138 return;
2139
2140 suspend_targets(t, PRESUSPEND_UNDO);
2141 }
2142
dm_table_postsuspend_targets(struct dm_table * t)2143 void dm_table_postsuspend_targets(struct dm_table *t)
2144 {
2145 if (!t)
2146 return;
2147
2148 suspend_targets(t, POSTSUSPEND);
2149 }
2150
dm_table_resume_targets(struct dm_table * t)2151 int dm_table_resume_targets(struct dm_table *t)
2152 {
2153 int i, r = 0;
2154
2155 lockdep_assert_held(&t->md->suspend_lock);
2156
2157 for (i = 0; i < t->num_targets; i++) {
2158 struct dm_target *ti = t->targets + i;
2159
2160 if (!ti->type->preresume)
2161 continue;
2162
2163 r = ti->type->preresume(ti);
2164 if (r) {
2165 DMERR("%s: %s: preresume failed, error = %d",
2166 dm_device_name(t->md), ti->type->name, r);
2167 return r;
2168 }
2169 }
2170
2171 for (i = 0; i < t->num_targets; i++) {
2172 struct dm_target *ti = t->targets + i;
2173
2174 if (ti->type->resume)
2175 ti->type->resume(ti);
2176 }
2177
2178 return 0;
2179 }
2180
dm_table_get_md(struct dm_table * t)2181 struct mapped_device *dm_table_get_md(struct dm_table *t)
2182 {
2183 return t->md;
2184 }
2185 EXPORT_SYMBOL(dm_table_get_md);
2186
dm_table_device_name(struct dm_table * t)2187 const char *dm_table_device_name(struct dm_table *t)
2188 {
2189 return dm_device_name(t->md);
2190 }
2191 EXPORT_SYMBOL_GPL(dm_table_device_name);
2192
dm_table_run_md_queue_async(struct dm_table * t)2193 void dm_table_run_md_queue_async(struct dm_table *t)
2194 {
2195 if (!dm_table_request_based(t))
2196 return;
2197
2198 if (t->md->queue)
2199 blk_mq_run_hw_queues(t->md->queue, true);
2200 }
2201 EXPORT_SYMBOL(dm_table_run_md_queue_async);
2202
2203