1 /*
2 * Copyright (C) 2014 Facebook. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7 #include <linux/device-mapper.h>
8
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/blkdev.h>
12 #include <linux/bio.h>
13 #include <linux/dax.h>
14 #include <linux/slab.h>
15 #include <linux/kthread.h>
16 #include <linux/freezer.h>
17 #include <linux/uio.h>
18
19 #define DM_MSG_PREFIX "log-writes"
20
21 /*
22 * This target will sequentially log all writes to the target device onto the
23 * log device. This is helpful for replaying writes to check for fs consistency
24 * at all times. This target provides a mechanism to mark specific events to
25 * check data at a later time. So for example you would:
26 *
27 * write data
28 * fsync
29 * dmsetup message /dev/whatever mark mymark
30 * unmount /mnt/test
31 *
32 * Then replay the log up to mymark and check the contents of the replay to
33 * verify it matches what was written.
34 *
35 * We log writes only after they have been flushed, this makes the log describe
36 * close to the order in which the data hits the actual disk, not its cache. So
37 * for example the following sequence (W means write, C means complete)
38 *
39 * Wa,Wb,Wc,Cc,Ca,FLUSH,FUAd,Cb,CFLUSH,CFUAd
40 *
41 * Would result in the log looking like this:
42 *
43 * c,a,b,flush,fuad,<other writes>,<next flush>
44 *
45 * This is meant to help expose problems where file systems do not properly wait
46 * on data being written before invoking a FLUSH. FUA bypasses cache so once it
47 * completes it is added to the log as it should be on disk.
48 *
49 * We treat DISCARDs as if they don't bypass cache so that they are logged in
50 * order of completion along with the normal writes. If we didn't do it this
51 * way we would process all the discards first and then write all the data, when
52 * in fact we want to do the data and the discard in the order that they
53 * completed.
54 */
55 #define LOG_FLUSH_FLAG (1 << 0)
56 #define LOG_FUA_FLAG (1 << 1)
57 #define LOG_DISCARD_FLAG (1 << 2)
58 #define LOG_MARK_FLAG (1 << 3)
59 #define LOG_METADATA_FLAG (1 << 4)
60
61 #define WRITE_LOG_VERSION 1ULL
62 #define WRITE_LOG_MAGIC 0x6a736677736872ULL
63 #define WRITE_LOG_SUPER_SECTOR 0
64
65 /*
66 * The disk format for this is braindead simple.
67 *
68 * At byte 0 we have our super, followed by the following sequence for
69 * nr_entries:
70 *
71 * [ 1 sector ][ entry->nr_sectors ]
72 * [log_write_entry][ data written ]
73 *
74 * The log_write_entry takes up a full sector so we can have arbitrary length
75 * marks and it leaves us room for extra content in the future.
76 */
77
78 /*
79 * Basic info about the log for userspace.
80 */
81 struct log_write_super {
82 __le64 magic;
83 __le64 version;
84 __le64 nr_entries;
85 __le32 sectorsize;
86 };
87
88 /*
89 * sector - the sector we wrote.
90 * nr_sectors - the number of sectors we wrote.
91 * flags - flags for this log entry.
92 * data_len - the size of the data in this log entry, this is for private log
93 * entry stuff, the MARK data provided by userspace for example.
94 */
95 struct log_write_entry {
96 __le64 sector;
97 __le64 nr_sectors;
98 __le64 flags;
99 __le64 data_len;
100 };
101
102 struct log_writes_c {
103 struct dm_dev *dev;
104 struct dm_dev *logdev;
105 u64 logged_entries;
106 u32 sectorsize;
107 u32 sectorshift;
108 atomic_t io_blocks;
109 atomic_t pending_blocks;
110 sector_t next_sector;
111 sector_t end_sector;
112 bool logging_enabled;
113 bool device_supports_discard;
114 spinlock_t blocks_lock;
115 struct list_head unflushed_blocks;
116 struct list_head logging_blocks;
117 wait_queue_head_t wait;
118 struct task_struct *log_kthread;
119 struct completion super_done;
120 };
121
122 struct pending_block {
123 int vec_cnt;
124 u64 flags;
125 sector_t sector;
126 sector_t nr_sectors;
127 char *data;
128 u32 datalen;
129 struct list_head list;
130 struct bio_vec vecs[];
131 };
132
133 struct per_bio_data {
134 struct pending_block *block;
135 };
136
bio_to_dev_sectors(struct log_writes_c * lc,sector_t sectors)137 static inline sector_t bio_to_dev_sectors(struct log_writes_c *lc,
138 sector_t sectors)
139 {
140 return sectors >> (lc->sectorshift - SECTOR_SHIFT);
141 }
142
dev_to_bio_sectors(struct log_writes_c * lc,sector_t sectors)143 static inline sector_t dev_to_bio_sectors(struct log_writes_c *lc,
144 sector_t sectors)
145 {
146 return sectors << (lc->sectorshift - SECTOR_SHIFT);
147 }
148
put_pending_block(struct log_writes_c * lc)149 static void put_pending_block(struct log_writes_c *lc)
150 {
151 if (atomic_dec_and_test(&lc->pending_blocks)) {
152 smp_mb__after_atomic();
153 if (waitqueue_active(&lc->wait))
154 wake_up(&lc->wait);
155 }
156 }
157
put_io_block(struct log_writes_c * lc)158 static void put_io_block(struct log_writes_c *lc)
159 {
160 if (atomic_dec_and_test(&lc->io_blocks)) {
161 smp_mb__after_atomic();
162 if (waitqueue_active(&lc->wait))
163 wake_up(&lc->wait);
164 }
165 }
166
log_end_io(struct bio * bio)167 static void log_end_io(struct bio *bio)
168 {
169 struct log_writes_c *lc = bio->bi_private;
170
171 if (bio->bi_status) {
172 unsigned long flags;
173
174 DMERR("Error writing log block, error=%d", bio->bi_status);
175 spin_lock_irqsave(&lc->blocks_lock, flags);
176 lc->logging_enabled = false;
177 spin_unlock_irqrestore(&lc->blocks_lock, flags);
178 }
179
180 bio_free_pages(bio);
181 put_io_block(lc);
182 bio_put(bio);
183 }
184
log_end_super(struct bio * bio)185 static void log_end_super(struct bio *bio)
186 {
187 struct log_writes_c *lc = bio->bi_private;
188
189 complete(&lc->super_done);
190 log_end_io(bio);
191 }
192
193 /*
194 * Meant to be called if there is an error, it will free all the pages
195 * associated with the block.
196 */
free_pending_block(struct log_writes_c * lc,struct pending_block * block)197 static void free_pending_block(struct log_writes_c *lc,
198 struct pending_block *block)
199 {
200 int i;
201
202 for (i = 0; i < block->vec_cnt; i++) {
203 if (block->vecs[i].bv_page)
204 __free_page(block->vecs[i].bv_page);
205 }
206 kfree(block->data);
207 kfree(block);
208 put_pending_block(lc);
209 }
210
write_metadata(struct log_writes_c * lc,void * entry,size_t entrylen,void * data,size_t datalen,sector_t sector)211 static int write_metadata(struct log_writes_c *lc, void *entry,
212 size_t entrylen, void *data, size_t datalen,
213 sector_t sector)
214 {
215 struct bio *bio;
216 struct page *page;
217 void *ptr;
218 size_t ret;
219
220 bio = bio_alloc(GFP_KERNEL, 1);
221 if (!bio) {
222 DMERR("Couldn't alloc log bio");
223 goto error;
224 }
225 bio->bi_iter.bi_size = 0;
226 bio->bi_iter.bi_sector = sector;
227 bio_set_dev(bio, lc->logdev->bdev);
228 bio->bi_end_io = (sector == WRITE_LOG_SUPER_SECTOR) ?
229 log_end_super : log_end_io;
230 bio->bi_private = lc;
231 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
232
233 page = alloc_page(GFP_KERNEL);
234 if (!page) {
235 DMERR("Couldn't alloc log page");
236 bio_put(bio);
237 goto error;
238 }
239
240 ptr = kmap_atomic(page);
241 memcpy(ptr, entry, entrylen);
242 if (datalen)
243 memcpy(ptr + entrylen, data, datalen);
244 memset(ptr + entrylen + datalen, 0,
245 lc->sectorsize - entrylen - datalen);
246 kunmap_atomic(ptr);
247
248 ret = bio_add_page(bio, page, lc->sectorsize, 0);
249 if (ret != lc->sectorsize) {
250 DMERR("Couldn't add page to the log block");
251 goto error_bio;
252 }
253 submit_bio(bio);
254 return 0;
255 error_bio:
256 bio_put(bio);
257 __free_page(page);
258 error:
259 put_io_block(lc);
260 return -1;
261 }
262
write_inline_data(struct log_writes_c * lc,void * entry,size_t entrylen,void * data,size_t datalen,sector_t sector)263 static int write_inline_data(struct log_writes_c *lc, void *entry,
264 size_t entrylen, void *data, size_t datalen,
265 sector_t sector)
266 {
267 int bio_pages, pg_datalen, pg_sectorlen, i;
268 struct page *page;
269 struct bio *bio;
270 size_t ret;
271 void *ptr;
272
273 while (datalen) {
274 bio_pages = bio_max_segs(DIV_ROUND_UP(datalen, PAGE_SIZE));
275
276 atomic_inc(&lc->io_blocks);
277
278 bio = bio_alloc(GFP_KERNEL, bio_pages);
279 if (!bio) {
280 DMERR("Couldn't alloc inline data bio");
281 goto error;
282 }
283
284 bio->bi_iter.bi_size = 0;
285 bio->bi_iter.bi_sector = sector;
286 bio_set_dev(bio, lc->logdev->bdev);
287 bio->bi_end_io = log_end_io;
288 bio->bi_private = lc;
289 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
290
291 for (i = 0; i < bio_pages; i++) {
292 pg_datalen = min_t(int, datalen, PAGE_SIZE);
293 pg_sectorlen = ALIGN(pg_datalen, lc->sectorsize);
294
295 page = alloc_page(GFP_KERNEL);
296 if (!page) {
297 DMERR("Couldn't alloc inline data page");
298 goto error_bio;
299 }
300
301 ptr = kmap_atomic(page);
302 memcpy(ptr, data, pg_datalen);
303 if (pg_sectorlen > pg_datalen)
304 memset(ptr + pg_datalen, 0, pg_sectorlen - pg_datalen);
305 kunmap_atomic(ptr);
306
307 ret = bio_add_page(bio, page, pg_sectorlen, 0);
308 if (ret != pg_sectorlen) {
309 DMERR("Couldn't add page of inline data");
310 __free_page(page);
311 goto error_bio;
312 }
313
314 datalen -= pg_datalen;
315 data += pg_datalen;
316 }
317 submit_bio(bio);
318
319 sector += bio_pages * PAGE_SECTORS;
320 }
321 return 0;
322 error_bio:
323 bio_free_pages(bio);
324 bio_put(bio);
325 error:
326 put_io_block(lc);
327 return -1;
328 }
329
log_one_block(struct log_writes_c * lc,struct pending_block * block,sector_t sector)330 static int log_one_block(struct log_writes_c *lc,
331 struct pending_block *block, sector_t sector)
332 {
333 struct bio *bio;
334 struct log_write_entry entry;
335 size_t metadatalen, ret;
336 int i;
337
338 entry.sector = cpu_to_le64(block->sector);
339 entry.nr_sectors = cpu_to_le64(block->nr_sectors);
340 entry.flags = cpu_to_le64(block->flags);
341 entry.data_len = cpu_to_le64(block->datalen);
342
343 metadatalen = (block->flags & LOG_MARK_FLAG) ? block->datalen : 0;
344 if (write_metadata(lc, &entry, sizeof(entry), block->data,
345 metadatalen, sector)) {
346 free_pending_block(lc, block);
347 return -1;
348 }
349
350 sector += dev_to_bio_sectors(lc, 1);
351
352 if (block->datalen && metadatalen == 0) {
353 if (write_inline_data(lc, &entry, sizeof(entry), block->data,
354 block->datalen, sector)) {
355 free_pending_block(lc, block);
356 return -1;
357 }
358 /* we don't support both inline data & bio data */
359 goto out;
360 }
361
362 if (!block->vec_cnt)
363 goto out;
364
365 atomic_inc(&lc->io_blocks);
366 bio = bio_alloc(GFP_KERNEL, bio_max_segs(block->vec_cnt));
367 if (!bio) {
368 DMERR("Couldn't alloc log bio");
369 goto error;
370 }
371 bio->bi_iter.bi_size = 0;
372 bio->bi_iter.bi_sector = sector;
373 bio_set_dev(bio, lc->logdev->bdev);
374 bio->bi_end_io = log_end_io;
375 bio->bi_private = lc;
376 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
377
378 for (i = 0; i < block->vec_cnt; i++) {
379 /*
380 * The page offset is always 0 because we allocate a new page
381 * for every bvec in the original bio for simplicity sake.
382 */
383 ret = bio_add_page(bio, block->vecs[i].bv_page,
384 block->vecs[i].bv_len, 0);
385 if (ret != block->vecs[i].bv_len) {
386 atomic_inc(&lc->io_blocks);
387 submit_bio(bio);
388 bio = bio_alloc(GFP_KERNEL,
389 bio_max_segs(block->vec_cnt - i));
390 if (!bio) {
391 DMERR("Couldn't alloc log bio");
392 goto error;
393 }
394 bio->bi_iter.bi_size = 0;
395 bio->bi_iter.bi_sector = sector;
396 bio_set_dev(bio, lc->logdev->bdev);
397 bio->bi_end_io = log_end_io;
398 bio->bi_private = lc;
399 bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
400
401 ret = bio_add_page(bio, block->vecs[i].bv_page,
402 block->vecs[i].bv_len, 0);
403 if (ret != block->vecs[i].bv_len) {
404 DMERR("Couldn't add page on new bio?");
405 bio_put(bio);
406 goto error;
407 }
408 }
409 sector += block->vecs[i].bv_len >> SECTOR_SHIFT;
410 }
411 submit_bio(bio);
412 out:
413 kfree(block->data);
414 kfree(block);
415 put_pending_block(lc);
416 return 0;
417 error:
418 free_pending_block(lc, block);
419 put_io_block(lc);
420 return -1;
421 }
422
log_super(struct log_writes_c * lc)423 static int log_super(struct log_writes_c *lc)
424 {
425 struct log_write_super super;
426
427 super.magic = cpu_to_le64(WRITE_LOG_MAGIC);
428 super.version = cpu_to_le64(WRITE_LOG_VERSION);
429 super.nr_entries = cpu_to_le64(lc->logged_entries);
430 super.sectorsize = cpu_to_le32(lc->sectorsize);
431
432 if (write_metadata(lc, &super, sizeof(super), NULL, 0,
433 WRITE_LOG_SUPER_SECTOR)) {
434 DMERR("Couldn't write super");
435 return -1;
436 }
437
438 /*
439 * Super sector should be writen in-order, otherwise the
440 * nr_entries could be rewritten incorrectly by an old bio.
441 */
442 wait_for_completion_io(&lc->super_done);
443
444 return 0;
445 }
446
logdev_last_sector(struct log_writes_c * lc)447 static inline sector_t logdev_last_sector(struct log_writes_c *lc)
448 {
449 return i_size_read(lc->logdev->bdev->bd_inode) >> SECTOR_SHIFT;
450 }
451
log_writes_kthread(void * arg)452 static int log_writes_kthread(void *arg)
453 {
454 struct log_writes_c *lc = (struct log_writes_c *)arg;
455 sector_t sector = 0;
456
457 while (!kthread_should_stop()) {
458 bool super = false;
459 bool logging_enabled;
460 struct pending_block *block = NULL;
461 int ret;
462
463 spin_lock_irq(&lc->blocks_lock);
464 if (!list_empty(&lc->logging_blocks)) {
465 block = list_first_entry(&lc->logging_blocks,
466 struct pending_block, list);
467 list_del_init(&block->list);
468 if (!lc->logging_enabled)
469 goto next;
470
471 sector = lc->next_sector;
472 if (!(block->flags & LOG_DISCARD_FLAG))
473 lc->next_sector += dev_to_bio_sectors(lc, block->nr_sectors);
474 lc->next_sector += dev_to_bio_sectors(lc, 1);
475
476 /*
477 * Apparently the size of the device may not be known
478 * right away, so handle this properly.
479 */
480 if (!lc->end_sector)
481 lc->end_sector = logdev_last_sector(lc);
482 if (lc->end_sector &&
483 lc->next_sector >= lc->end_sector) {
484 DMERR("Ran out of space on the logdev");
485 lc->logging_enabled = false;
486 goto next;
487 }
488 lc->logged_entries++;
489 atomic_inc(&lc->io_blocks);
490
491 super = (block->flags & (LOG_FUA_FLAG | LOG_MARK_FLAG));
492 if (super)
493 atomic_inc(&lc->io_blocks);
494 }
495 next:
496 logging_enabled = lc->logging_enabled;
497 spin_unlock_irq(&lc->blocks_lock);
498 if (block) {
499 if (logging_enabled) {
500 ret = log_one_block(lc, block, sector);
501 if (!ret && super)
502 ret = log_super(lc);
503 if (ret) {
504 spin_lock_irq(&lc->blocks_lock);
505 lc->logging_enabled = false;
506 spin_unlock_irq(&lc->blocks_lock);
507 }
508 } else
509 free_pending_block(lc, block);
510 continue;
511 }
512
513 if (!try_to_freeze()) {
514 set_current_state(TASK_INTERRUPTIBLE);
515 if (!kthread_should_stop() &&
516 list_empty(&lc->logging_blocks))
517 schedule();
518 __set_current_state(TASK_RUNNING);
519 }
520 }
521 return 0;
522 }
523
524 /*
525 * Construct a log-writes mapping:
526 * log-writes <dev_path> <log_dev_path>
527 */
log_writes_ctr(struct dm_target * ti,unsigned int argc,char ** argv)528 static int log_writes_ctr(struct dm_target *ti, unsigned int argc, char **argv)
529 {
530 struct log_writes_c *lc;
531 struct dm_arg_set as;
532 const char *devname, *logdevname;
533 int ret;
534
535 as.argc = argc;
536 as.argv = argv;
537
538 if (argc < 2) {
539 ti->error = "Invalid argument count";
540 return -EINVAL;
541 }
542
543 lc = kzalloc(sizeof(struct log_writes_c), GFP_KERNEL);
544 if (!lc) {
545 ti->error = "Cannot allocate context";
546 return -ENOMEM;
547 }
548 spin_lock_init(&lc->blocks_lock);
549 INIT_LIST_HEAD(&lc->unflushed_blocks);
550 INIT_LIST_HEAD(&lc->logging_blocks);
551 init_waitqueue_head(&lc->wait);
552 init_completion(&lc->super_done);
553 atomic_set(&lc->io_blocks, 0);
554 atomic_set(&lc->pending_blocks, 0);
555
556 devname = dm_shift_arg(&as);
557 ret = dm_get_device(ti, devname, dm_table_get_mode(ti->table), &lc->dev);
558 if (ret) {
559 ti->error = "Device lookup failed";
560 goto bad;
561 }
562
563 logdevname = dm_shift_arg(&as);
564 ret = dm_get_device(ti, logdevname, dm_table_get_mode(ti->table),
565 &lc->logdev);
566 if (ret) {
567 ti->error = "Log device lookup failed";
568 dm_put_device(ti, lc->dev);
569 goto bad;
570 }
571
572 lc->sectorsize = bdev_logical_block_size(lc->dev->bdev);
573 lc->sectorshift = ilog2(lc->sectorsize);
574 lc->log_kthread = kthread_run(log_writes_kthread, lc, "log-write");
575 if (IS_ERR(lc->log_kthread)) {
576 ret = PTR_ERR(lc->log_kthread);
577 ti->error = "Couldn't alloc kthread";
578 dm_put_device(ti, lc->dev);
579 dm_put_device(ti, lc->logdev);
580 goto bad;
581 }
582
583 /*
584 * next_sector is in 512b sectors to correspond to what bi_sector expects.
585 * The super starts at sector 0, and the next_sector is the next logical
586 * one based on the sectorsize of the device.
587 */
588 lc->next_sector = lc->sectorsize >> SECTOR_SHIFT;
589 lc->logging_enabled = true;
590 lc->end_sector = logdev_last_sector(lc);
591 lc->device_supports_discard = true;
592
593 ti->num_flush_bios = 1;
594 ti->flush_supported = true;
595 ti->num_discard_bios = 1;
596 ti->discards_supported = true;
597 ti->per_io_data_size = sizeof(struct per_bio_data);
598 ti->private = lc;
599 return 0;
600
601 bad:
602 kfree(lc);
603 return ret;
604 }
605
log_mark(struct log_writes_c * lc,char * data)606 static int log_mark(struct log_writes_c *lc, char *data)
607 {
608 struct pending_block *block;
609 size_t maxsize = lc->sectorsize - sizeof(struct log_write_entry);
610
611 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
612 if (!block) {
613 DMERR("Error allocating pending block");
614 return -ENOMEM;
615 }
616
617 block->data = kstrndup(data, maxsize - 1, GFP_KERNEL);
618 if (!block->data) {
619 DMERR("Error copying mark data");
620 kfree(block);
621 return -ENOMEM;
622 }
623 atomic_inc(&lc->pending_blocks);
624 block->datalen = strlen(block->data);
625 block->flags |= LOG_MARK_FLAG;
626 spin_lock_irq(&lc->blocks_lock);
627 list_add_tail(&block->list, &lc->logging_blocks);
628 spin_unlock_irq(&lc->blocks_lock);
629 wake_up_process(lc->log_kthread);
630 return 0;
631 }
632
log_writes_dtr(struct dm_target * ti)633 static void log_writes_dtr(struct dm_target *ti)
634 {
635 struct log_writes_c *lc = ti->private;
636
637 spin_lock_irq(&lc->blocks_lock);
638 list_splice_init(&lc->unflushed_blocks, &lc->logging_blocks);
639 spin_unlock_irq(&lc->blocks_lock);
640
641 /*
642 * This is just nice to have since it'll update the super to include the
643 * unflushed blocks, if it fails we don't really care.
644 */
645 log_mark(lc, "dm-log-writes-end");
646 wake_up_process(lc->log_kthread);
647 wait_event(lc->wait, !atomic_read(&lc->io_blocks) &&
648 !atomic_read(&lc->pending_blocks));
649 kthread_stop(lc->log_kthread);
650
651 WARN_ON(!list_empty(&lc->logging_blocks));
652 WARN_ON(!list_empty(&lc->unflushed_blocks));
653 dm_put_device(ti, lc->dev);
654 dm_put_device(ti, lc->logdev);
655 kfree(lc);
656 }
657
normal_map_bio(struct dm_target * ti,struct bio * bio)658 static void normal_map_bio(struct dm_target *ti, struct bio *bio)
659 {
660 struct log_writes_c *lc = ti->private;
661
662 bio_set_dev(bio, lc->dev->bdev);
663 }
664
log_writes_map(struct dm_target * ti,struct bio * bio)665 static int log_writes_map(struct dm_target *ti, struct bio *bio)
666 {
667 struct log_writes_c *lc = ti->private;
668 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
669 struct pending_block *block;
670 struct bvec_iter iter;
671 struct bio_vec bv;
672 size_t alloc_size;
673 int i = 0;
674 bool flush_bio = (bio->bi_opf & REQ_PREFLUSH);
675 bool fua_bio = (bio->bi_opf & REQ_FUA);
676 bool discard_bio = (bio_op(bio) == REQ_OP_DISCARD);
677 bool meta_bio = (bio->bi_opf & REQ_META);
678
679 pb->block = NULL;
680
681 /* Don't bother doing anything if logging has been disabled */
682 if (!lc->logging_enabled)
683 goto map_bio;
684
685 /*
686 * Map reads as normal.
687 */
688 if (bio_data_dir(bio) == READ)
689 goto map_bio;
690
691 /* No sectors and not a flush? Don't care */
692 if (!bio_sectors(bio) && !flush_bio)
693 goto map_bio;
694
695 /*
696 * Discards will have bi_size set but there's no actual data, so just
697 * allocate the size of the pending block.
698 */
699 if (discard_bio)
700 alloc_size = sizeof(struct pending_block);
701 else
702 alloc_size = struct_size(block, vecs, bio_segments(bio));
703
704 block = kzalloc(alloc_size, GFP_NOIO);
705 if (!block) {
706 DMERR("Error allocating pending block");
707 spin_lock_irq(&lc->blocks_lock);
708 lc->logging_enabled = false;
709 spin_unlock_irq(&lc->blocks_lock);
710 return DM_MAPIO_KILL;
711 }
712 INIT_LIST_HEAD(&block->list);
713 pb->block = block;
714 atomic_inc(&lc->pending_blocks);
715
716 if (flush_bio)
717 block->flags |= LOG_FLUSH_FLAG;
718 if (fua_bio)
719 block->flags |= LOG_FUA_FLAG;
720 if (discard_bio)
721 block->flags |= LOG_DISCARD_FLAG;
722 if (meta_bio)
723 block->flags |= LOG_METADATA_FLAG;
724
725 block->sector = bio_to_dev_sectors(lc, bio->bi_iter.bi_sector);
726 block->nr_sectors = bio_to_dev_sectors(lc, bio_sectors(bio));
727
728 /* We don't need the data, just submit */
729 if (discard_bio) {
730 WARN_ON(flush_bio || fua_bio);
731 if (lc->device_supports_discard)
732 goto map_bio;
733 bio_endio(bio);
734 return DM_MAPIO_SUBMITTED;
735 }
736
737 /* Flush bio, splice the unflushed blocks onto this list and submit */
738 if (flush_bio && !bio_sectors(bio)) {
739 spin_lock_irq(&lc->blocks_lock);
740 list_splice_init(&lc->unflushed_blocks, &block->list);
741 spin_unlock_irq(&lc->blocks_lock);
742 goto map_bio;
743 }
744
745 /*
746 * We will write this bio somewhere else way later so we need to copy
747 * the actual contents into new pages so we know the data will always be
748 * there.
749 *
750 * We do this because this could be a bio from O_DIRECT in which case we
751 * can't just hold onto the page until some later point, we have to
752 * manually copy the contents.
753 */
754 bio_for_each_segment(bv, bio, iter) {
755 struct page *page;
756 void *src, *dst;
757
758 page = alloc_page(GFP_NOIO);
759 if (!page) {
760 DMERR("Error allocing page");
761 free_pending_block(lc, block);
762 spin_lock_irq(&lc->blocks_lock);
763 lc->logging_enabled = false;
764 spin_unlock_irq(&lc->blocks_lock);
765 return DM_MAPIO_KILL;
766 }
767
768 src = kmap_atomic(bv.bv_page);
769 dst = kmap_atomic(page);
770 memcpy(dst, src + bv.bv_offset, bv.bv_len);
771 kunmap_atomic(dst);
772 kunmap_atomic(src);
773 block->vecs[i].bv_page = page;
774 block->vecs[i].bv_len = bv.bv_len;
775 block->vec_cnt++;
776 i++;
777 }
778
779 /* Had a flush with data in it, weird */
780 if (flush_bio) {
781 spin_lock_irq(&lc->blocks_lock);
782 list_splice_init(&lc->unflushed_blocks, &block->list);
783 spin_unlock_irq(&lc->blocks_lock);
784 }
785 map_bio:
786 normal_map_bio(ti, bio);
787 return DM_MAPIO_REMAPPED;
788 }
789
normal_end_io(struct dm_target * ti,struct bio * bio,blk_status_t * error)790 static int normal_end_io(struct dm_target *ti, struct bio *bio,
791 blk_status_t *error)
792 {
793 struct log_writes_c *lc = ti->private;
794 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
795
796 if (bio_data_dir(bio) == WRITE && pb->block) {
797 struct pending_block *block = pb->block;
798 unsigned long flags;
799
800 spin_lock_irqsave(&lc->blocks_lock, flags);
801 if (block->flags & LOG_FLUSH_FLAG) {
802 list_splice_tail_init(&block->list, &lc->logging_blocks);
803 list_add_tail(&block->list, &lc->logging_blocks);
804 wake_up_process(lc->log_kthread);
805 } else if (block->flags & LOG_FUA_FLAG) {
806 list_add_tail(&block->list, &lc->logging_blocks);
807 wake_up_process(lc->log_kthread);
808 } else
809 list_add_tail(&block->list, &lc->unflushed_blocks);
810 spin_unlock_irqrestore(&lc->blocks_lock, flags);
811 }
812
813 return DM_ENDIO_DONE;
814 }
815
816 /*
817 * INFO format: <logged entries> <highest allocated sector>
818 */
log_writes_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)819 static void log_writes_status(struct dm_target *ti, status_type_t type,
820 unsigned status_flags, char *result,
821 unsigned maxlen)
822 {
823 unsigned sz = 0;
824 struct log_writes_c *lc = ti->private;
825
826 switch (type) {
827 case STATUSTYPE_INFO:
828 DMEMIT("%llu %llu", lc->logged_entries,
829 (unsigned long long)lc->next_sector - 1);
830 if (!lc->logging_enabled)
831 DMEMIT(" logging_disabled");
832 break;
833
834 case STATUSTYPE_TABLE:
835 DMEMIT("%s %s", lc->dev->name, lc->logdev->name);
836 break;
837
838 case STATUSTYPE_IMA:
839 *result = '\0';
840 break;
841 }
842 }
843
log_writes_prepare_ioctl(struct dm_target * ti,struct block_device ** bdev)844 static int log_writes_prepare_ioctl(struct dm_target *ti,
845 struct block_device **bdev)
846 {
847 struct log_writes_c *lc = ti->private;
848 struct dm_dev *dev = lc->dev;
849
850 *bdev = dev->bdev;
851 /*
852 * Only pass ioctls through if the device sizes match exactly.
853 */
854 if (ti->len != i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT)
855 return 1;
856 return 0;
857 }
858
log_writes_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)859 static int log_writes_iterate_devices(struct dm_target *ti,
860 iterate_devices_callout_fn fn,
861 void *data)
862 {
863 struct log_writes_c *lc = ti->private;
864
865 return fn(ti, lc->dev, 0, ti->len, data);
866 }
867
868 /*
869 * Messages supported:
870 * mark <mark data> - specify the marked data.
871 */
log_writes_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)872 static int log_writes_message(struct dm_target *ti, unsigned argc, char **argv,
873 char *result, unsigned maxlen)
874 {
875 int r = -EINVAL;
876 struct log_writes_c *lc = ti->private;
877
878 if (argc != 2) {
879 DMWARN("Invalid log-writes message arguments, expect 2 arguments, got %d", argc);
880 return r;
881 }
882
883 if (!strcasecmp(argv[0], "mark"))
884 r = log_mark(lc, argv[1]);
885 else
886 DMWARN("Unrecognised log writes target message received: %s", argv[0]);
887
888 return r;
889 }
890
log_writes_io_hints(struct dm_target * ti,struct queue_limits * limits)891 static void log_writes_io_hints(struct dm_target *ti, struct queue_limits *limits)
892 {
893 struct log_writes_c *lc = ti->private;
894 struct request_queue *q = bdev_get_queue(lc->dev->bdev);
895
896 if (!q || !blk_queue_discard(q)) {
897 lc->device_supports_discard = false;
898 limits->discard_granularity = lc->sectorsize;
899 limits->max_discard_sectors = (UINT_MAX >> SECTOR_SHIFT);
900 }
901 limits->logical_block_size = bdev_logical_block_size(lc->dev->bdev);
902 limits->physical_block_size = bdev_physical_block_size(lc->dev->bdev);
903 limits->io_min = limits->physical_block_size;
904 }
905
906 #if IS_ENABLED(CONFIG_DAX_DRIVER)
log_dax(struct log_writes_c * lc,sector_t sector,size_t bytes,struct iov_iter * i)907 static int log_dax(struct log_writes_c *lc, sector_t sector, size_t bytes,
908 struct iov_iter *i)
909 {
910 struct pending_block *block;
911
912 if (!bytes)
913 return 0;
914
915 block = kzalloc(sizeof(struct pending_block), GFP_KERNEL);
916 if (!block) {
917 DMERR("Error allocating dax pending block");
918 return -ENOMEM;
919 }
920
921 block->data = kzalloc(bytes, GFP_KERNEL);
922 if (!block->data) {
923 DMERR("Error allocating dax data space");
924 kfree(block);
925 return -ENOMEM;
926 }
927
928 /* write data provided via the iterator */
929 if (!copy_from_iter(block->data, bytes, i)) {
930 DMERR("Error copying dax data");
931 kfree(block->data);
932 kfree(block);
933 return -EIO;
934 }
935
936 /* rewind the iterator so that the block driver can use it */
937 iov_iter_revert(i, bytes);
938
939 block->datalen = bytes;
940 block->sector = bio_to_dev_sectors(lc, sector);
941 block->nr_sectors = ALIGN(bytes, lc->sectorsize) >> lc->sectorshift;
942
943 atomic_inc(&lc->pending_blocks);
944 spin_lock_irq(&lc->blocks_lock);
945 list_add_tail(&block->list, &lc->unflushed_blocks);
946 spin_unlock_irq(&lc->blocks_lock);
947 wake_up_process(lc->log_kthread);
948
949 return 0;
950 }
951
log_writes_dax_direct_access(struct dm_target * ti,pgoff_t pgoff,long nr_pages,void ** kaddr,pfn_t * pfn)952 static long log_writes_dax_direct_access(struct dm_target *ti, pgoff_t pgoff,
953 long nr_pages, void **kaddr, pfn_t *pfn)
954 {
955 struct log_writes_c *lc = ti->private;
956 sector_t sector = pgoff * PAGE_SECTORS;
957 int ret;
958
959 ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages * PAGE_SIZE, &pgoff);
960 if (ret)
961 return ret;
962 return dax_direct_access(lc->dev->dax_dev, pgoff, nr_pages, kaddr, pfn);
963 }
964
log_writes_dax_copy_from_iter(struct dm_target * ti,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)965 static size_t log_writes_dax_copy_from_iter(struct dm_target *ti,
966 pgoff_t pgoff, void *addr, size_t bytes,
967 struct iov_iter *i)
968 {
969 struct log_writes_c *lc = ti->private;
970 sector_t sector = pgoff * PAGE_SECTORS;
971 int err;
972
973 if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
974 return 0;
975
976 /* Don't bother doing anything if logging has been disabled */
977 if (!lc->logging_enabled)
978 goto dax_copy;
979
980 err = log_dax(lc, sector, bytes, i);
981 if (err) {
982 DMWARN("Error %d logging DAX write", err);
983 return 0;
984 }
985 dax_copy:
986 return dax_copy_from_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
987 }
988
log_writes_dax_copy_to_iter(struct dm_target * ti,pgoff_t pgoff,void * addr,size_t bytes,struct iov_iter * i)989 static size_t log_writes_dax_copy_to_iter(struct dm_target *ti,
990 pgoff_t pgoff, void *addr, size_t bytes,
991 struct iov_iter *i)
992 {
993 struct log_writes_c *lc = ti->private;
994 sector_t sector = pgoff * PAGE_SECTORS;
995
996 if (bdev_dax_pgoff(lc->dev->bdev, sector, ALIGN(bytes, PAGE_SIZE), &pgoff))
997 return 0;
998 return dax_copy_to_iter(lc->dev->dax_dev, pgoff, addr, bytes, i);
999 }
1000
log_writes_dax_zero_page_range(struct dm_target * ti,pgoff_t pgoff,size_t nr_pages)1001 static int log_writes_dax_zero_page_range(struct dm_target *ti, pgoff_t pgoff,
1002 size_t nr_pages)
1003 {
1004 int ret;
1005 struct log_writes_c *lc = ti->private;
1006 sector_t sector = pgoff * PAGE_SECTORS;
1007
1008 ret = bdev_dax_pgoff(lc->dev->bdev, sector, nr_pages << PAGE_SHIFT,
1009 &pgoff);
1010 if (ret)
1011 return ret;
1012 return dax_zero_page_range(lc->dev->dax_dev, pgoff,
1013 nr_pages << PAGE_SHIFT);
1014 }
1015
1016 #else
1017 #define log_writes_dax_direct_access NULL
1018 #define log_writes_dax_copy_from_iter NULL
1019 #define log_writes_dax_copy_to_iter NULL
1020 #define log_writes_dax_zero_page_range NULL
1021 #endif
1022
1023 static struct target_type log_writes_target = {
1024 .name = "log-writes",
1025 .version = {1, 1, 0},
1026 .module = THIS_MODULE,
1027 .ctr = log_writes_ctr,
1028 .dtr = log_writes_dtr,
1029 .map = log_writes_map,
1030 .end_io = normal_end_io,
1031 .status = log_writes_status,
1032 .prepare_ioctl = log_writes_prepare_ioctl,
1033 .message = log_writes_message,
1034 .iterate_devices = log_writes_iterate_devices,
1035 .io_hints = log_writes_io_hints,
1036 .direct_access = log_writes_dax_direct_access,
1037 .dax_copy_from_iter = log_writes_dax_copy_from_iter,
1038 .dax_copy_to_iter = log_writes_dax_copy_to_iter,
1039 .dax_zero_page_range = log_writes_dax_zero_page_range,
1040 };
1041
dm_log_writes_init(void)1042 static int __init dm_log_writes_init(void)
1043 {
1044 int r = dm_register_target(&log_writes_target);
1045
1046 if (r < 0)
1047 DMERR("register failed %d", r);
1048
1049 return r;
1050 }
1051
dm_log_writes_exit(void)1052 static void __exit dm_log_writes_exit(void)
1053 {
1054 dm_unregister_target(&log_writes_target);
1055 }
1056
1057 module_init(dm_log_writes_init);
1058 module_exit(dm_log_writes_exit);
1059
1060 MODULE_DESCRIPTION(DM_NAME " log writes target");
1061 MODULE_AUTHOR("Josef Bacik <jbacik@fb.com>");
1062 MODULE_LICENSE("GPL");
1063