1 /*
2 * Copyright (C) 2003 Jana Saout <jana@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
4 * Copyright (C) 2006-2020 Red Hat, Inc. All rights reserved.
5 * Copyright (C) 2013-2020 Milan Broz <gmazyland@gmail.com>
6 *
7 * This file is released under the GPL.
8 */
9
10 #include <linux/completion.h>
11 #include <linux/err.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/key.h>
16 #include <linux/bio.h>
17 #include <linux/blkdev.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/crypto.h>
21 #include <linux/workqueue.h>
22 #include <linux/kthread.h>
23 #include <linux/backing-dev.h>
24 #include <linux/atomic.h>
25 #include <linux/scatterlist.h>
26 #include <linux/rbtree.h>
27 #include <linux/ctype.h>
28 #include <asm/page.h>
29 #include <asm/unaligned.h>
30 #include <crypto/hash.h>
31 #include <crypto/md5.h>
32 #include <crypto/algapi.h>
33 #include <crypto/skcipher.h>
34 #include <crypto/aead.h>
35 #include <crypto/authenc.h>
36 #include <linux/rtnetlink.h> /* for struct rtattr and RTA macros only */
37 #include <linux/key-type.h>
38 #include <keys/user-type.h>
39 #include <keys/encrypted-type.h>
40 #include <keys/trusted-type.h>
41
42 #include <linux/device-mapper.h>
43
44 #define DM_MSG_PREFIX "crypt"
45
46 /*
47 * context holding the current state of a multi-part conversion
48 */
49 struct convert_context {
50 struct completion restart;
51 struct bio *bio_in;
52 struct bio *bio_out;
53 struct bvec_iter iter_in;
54 struct bvec_iter iter_out;
55 u64 cc_sector;
56 atomic_t cc_pending;
57 union {
58 struct skcipher_request *req;
59 struct aead_request *req_aead;
60 } r;
61
62 };
63
64 /*
65 * per bio private data
66 */
67 struct dm_crypt_io {
68 struct crypt_config *cc;
69 struct bio *base_bio;
70 u8 *integrity_metadata;
71 bool integrity_metadata_from_pool;
72 struct work_struct work;
73 struct tasklet_struct tasklet;
74
75 struct convert_context ctx;
76
77 atomic_t io_pending;
78 blk_status_t error;
79 sector_t sector;
80
81 struct rb_node rb_node;
82 } CRYPTO_MINALIGN_ATTR;
83
84 struct dm_crypt_request {
85 struct convert_context *ctx;
86 struct scatterlist sg_in[4];
87 struct scatterlist sg_out[4];
88 u64 iv_sector;
89 };
90
91 struct crypt_config;
92
93 struct crypt_iv_operations {
94 int (*ctr)(struct crypt_config *cc, struct dm_target *ti,
95 const char *opts);
96 void (*dtr)(struct crypt_config *cc);
97 int (*init)(struct crypt_config *cc);
98 int (*wipe)(struct crypt_config *cc);
99 int (*generator)(struct crypt_config *cc, u8 *iv,
100 struct dm_crypt_request *dmreq);
101 int (*post)(struct crypt_config *cc, u8 *iv,
102 struct dm_crypt_request *dmreq);
103 };
104
105 struct iv_benbi_private {
106 int shift;
107 };
108
109 #define LMK_SEED_SIZE 64 /* hash + 0 */
110 struct iv_lmk_private {
111 struct crypto_shash *hash_tfm;
112 u8 *seed;
113 };
114
115 #define TCW_WHITENING_SIZE 16
116 struct iv_tcw_private {
117 struct crypto_shash *crc32_tfm;
118 u8 *iv_seed;
119 u8 *whitening;
120 };
121
122 #define ELEPHANT_MAX_KEY_SIZE 32
123 struct iv_elephant_private {
124 struct crypto_skcipher *tfm;
125 };
126
127 /*
128 * Crypt: maps a linear range of a block device
129 * and encrypts / decrypts at the same time.
130 */
131 enum flags { DM_CRYPT_SUSPENDED, DM_CRYPT_KEY_VALID,
132 DM_CRYPT_SAME_CPU, DM_CRYPT_NO_OFFLOAD,
133 DM_CRYPT_NO_READ_WORKQUEUE, DM_CRYPT_NO_WRITE_WORKQUEUE,
134 DM_CRYPT_WRITE_INLINE };
135
136 enum cipher_flags {
137 CRYPT_MODE_INTEGRITY_AEAD, /* Use authenticated mode for cipher */
138 CRYPT_IV_LARGE_SECTORS, /* Calculate IV from sector_size, not 512B sectors */
139 CRYPT_ENCRYPT_PREPROCESS, /* Must preprocess data for encryption (elephant) */
140 };
141
142 /*
143 * The fields in here must be read only after initialization.
144 */
145 struct crypt_config {
146 struct dm_dev *dev;
147 sector_t start;
148
149 struct percpu_counter n_allocated_pages;
150
151 struct workqueue_struct *io_queue;
152 struct workqueue_struct *crypt_queue;
153
154 spinlock_t write_thread_lock;
155 struct task_struct *write_thread;
156 struct rb_root write_tree;
157
158 char *cipher_string;
159 char *cipher_auth;
160 char *key_string;
161
162 const struct crypt_iv_operations *iv_gen_ops;
163 union {
164 struct iv_benbi_private benbi;
165 struct iv_lmk_private lmk;
166 struct iv_tcw_private tcw;
167 struct iv_elephant_private elephant;
168 } iv_gen_private;
169 u64 iv_offset;
170 unsigned int iv_size;
171 unsigned short int sector_size;
172 unsigned char sector_shift;
173
174 union {
175 struct crypto_skcipher **tfms;
176 struct crypto_aead **tfms_aead;
177 } cipher_tfm;
178 unsigned tfms_count;
179 unsigned long cipher_flags;
180
181 /*
182 * Layout of each crypto request:
183 *
184 * struct skcipher_request
185 * context
186 * padding
187 * struct dm_crypt_request
188 * padding
189 * IV
190 *
191 * The padding is added so that dm_crypt_request and the IV are
192 * correctly aligned.
193 */
194 unsigned int dmreq_start;
195
196 unsigned int per_bio_data_size;
197
198 unsigned long flags;
199 unsigned int key_size;
200 unsigned int key_parts; /* independent parts in key buffer */
201 unsigned int key_extra_size; /* additional keys length */
202 unsigned int key_mac_size; /* MAC key size for authenc(...) */
203
204 unsigned int integrity_tag_size;
205 unsigned int integrity_iv_size;
206 unsigned int on_disk_tag_size;
207
208 /*
209 * pool for per bio private data, crypto requests,
210 * encryption requeusts/buffer pages and integrity tags
211 */
212 unsigned tag_pool_max_sectors;
213 mempool_t tag_pool;
214 mempool_t req_pool;
215 mempool_t page_pool;
216
217 struct bio_set bs;
218 struct mutex bio_alloc_lock;
219
220 u8 *authenc_key; /* space for keys in authenc() format (if used) */
221 u8 key[];
222 };
223
224 #define MIN_IOS 64
225 #define MAX_TAG_SIZE 480
226 #define POOL_ENTRY_SIZE 512
227
228 static DEFINE_SPINLOCK(dm_crypt_clients_lock);
229 static unsigned dm_crypt_clients_n = 0;
230 static volatile unsigned long dm_crypt_pages_per_client;
231 #define DM_CRYPT_MEMORY_PERCENT 2
232 #define DM_CRYPT_MIN_PAGES_PER_CLIENT (BIO_MAX_VECS * 16)
233
234 static void clone_init(struct dm_crypt_io *, struct bio *);
235 static void kcryptd_queue_crypt(struct dm_crypt_io *io);
236 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
237 struct scatterlist *sg);
238
239 static bool crypt_integrity_aead(struct crypt_config *cc);
240
241 /*
242 * Use this to access cipher attributes that are independent of the key.
243 */
any_tfm(struct crypt_config * cc)244 static struct crypto_skcipher *any_tfm(struct crypt_config *cc)
245 {
246 return cc->cipher_tfm.tfms[0];
247 }
248
any_tfm_aead(struct crypt_config * cc)249 static struct crypto_aead *any_tfm_aead(struct crypt_config *cc)
250 {
251 return cc->cipher_tfm.tfms_aead[0];
252 }
253
254 /*
255 * Different IV generation algorithms:
256 *
257 * plain: the initial vector is the 32-bit little-endian version of the sector
258 * number, padded with zeros if necessary.
259 *
260 * plain64: the initial vector is the 64-bit little-endian version of the sector
261 * number, padded with zeros if necessary.
262 *
263 * plain64be: the initial vector is the 64-bit big-endian version of the sector
264 * number, padded with zeros if necessary.
265 *
266 * essiv: "encrypted sector|salt initial vector", the sector number is
267 * encrypted with the bulk cipher using a salt as key. The salt
268 * should be derived from the bulk cipher's key via hashing.
269 *
270 * benbi: the 64-bit "big-endian 'narrow block'-count", starting at 1
271 * (needed for LRW-32-AES and possible other narrow block modes)
272 *
273 * null: the initial vector is always zero. Provides compatibility with
274 * obsolete loop_fish2 devices. Do not use for new devices.
275 *
276 * lmk: Compatible implementation of the block chaining mode used
277 * by the Loop-AES block device encryption system
278 * designed by Jari Ruusu. See http://loop-aes.sourceforge.net/
279 * It operates on full 512 byte sectors and uses CBC
280 * with an IV derived from the sector number, the data and
281 * optionally extra IV seed.
282 * This means that after decryption the first block
283 * of sector must be tweaked according to decrypted data.
284 * Loop-AES can use three encryption schemes:
285 * version 1: is plain aes-cbc mode
286 * version 2: uses 64 multikey scheme with lmk IV generator
287 * version 3: the same as version 2 with additional IV seed
288 * (it uses 65 keys, last key is used as IV seed)
289 *
290 * tcw: Compatible implementation of the block chaining mode used
291 * by the TrueCrypt device encryption system (prior to version 4.1).
292 * For more info see: https://gitlab.com/cryptsetup/cryptsetup/wikis/TrueCryptOnDiskFormat
293 * It operates on full 512 byte sectors and uses CBC
294 * with an IV derived from initial key and the sector number.
295 * In addition, whitening value is applied on every sector, whitening
296 * is calculated from initial key, sector number and mixed using CRC32.
297 * Note that this encryption scheme is vulnerable to watermarking attacks
298 * and should be used for old compatible containers access only.
299 *
300 * eboiv: Encrypted byte-offset IV (used in Bitlocker in CBC mode)
301 * The IV is encrypted little-endian byte-offset (with the same key
302 * and cipher as the volume).
303 *
304 * elephant: The extended version of eboiv with additional Elephant diffuser
305 * used with Bitlocker CBC mode.
306 * This mode was used in older Windows systems
307 * https://download.microsoft.com/download/0/2/3/0238acaf-d3bf-4a6d-b3d6-0a0be4bbb36e/bitlockercipher200608.pdf
308 */
309
crypt_iv_plain_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)310 static int crypt_iv_plain_gen(struct crypt_config *cc, u8 *iv,
311 struct dm_crypt_request *dmreq)
312 {
313 memset(iv, 0, cc->iv_size);
314 *(__le32 *)iv = cpu_to_le32(dmreq->iv_sector & 0xffffffff);
315
316 return 0;
317 }
318
crypt_iv_plain64_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)319 static int crypt_iv_plain64_gen(struct crypt_config *cc, u8 *iv,
320 struct dm_crypt_request *dmreq)
321 {
322 memset(iv, 0, cc->iv_size);
323 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
324
325 return 0;
326 }
327
crypt_iv_plain64be_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)328 static int crypt_iv_plain64be_gen(struct crypt_config *cc, u8 *iv,
329 struct dm_crypt_request *dmreq)
330 {
331 memset(iv, 0, cc->iv_size);
332 /* iv_size is at least of size u64; usually it is 16 bytes */
333 *(__be64 *)&iv[cc->iv_size - sizeof(u64)] = cpu_to_be64(dmreq->iv_sector);
334
335 return 0;
336 }
337
crypt_iv_essiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)338 static int crypt_iv_essiv_gen(struct crypt_config *cc, u8 *iv,
339 struct dm_crypt_request *dmreq)
340 {
341 /*
342 * ESSIV encryption of the IV is now handled by the crypto API,
343 * so just pass the plain sector number here.
344 */
345 memset(iv, 0, cc->iv_size);
346 *(__le64 *)iv = cpu_to_le64(dmreq->iv_sector);
347
348 return 0;
349 }
350
crypt_iv_benbi_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)351 static int crypt_iv_benbi_ctr(struct crypt_config *cc, struct dm_target *ti,
352 const char *opts)
353 {
354 unsigned bs;
355 int log;
356
357 if (crypt_integrity_aead(cc))
358 bs = crypto_aead_blocksize(any_tfm_aead(cc));
359 else
360 bs = crypto_skcipher_blocksize(any_tfm(cc));
361 log = ilog2(bs);
362
363 /* we need to calculate how far we must shift the sector count
364 * to get the cipher block count, we use this shift in _gen */
365
366 if (1 << log != bs) {
367 ti->error = "cypher blocksize is not a power of 2";
368 return -EINVAL;
369 }
370
371 if (log > 9) {
372 ti->error = "cypher blocksize is > 512";
373 return -EINVAL;
374 }
375
376 cc->iv_gen_private.benbi.shift = 9 - log;
377
378 return 0;
379 }
380
crypt_iv_benbi_dtr(struct crypt_config * cc)381 static void crypt_iv_benbi_dtr(struct crypt_config *cc)
382 {
383 }
384
crypt_iv_benbi_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)385 static int crypt_iv_benbi_gen(struct crypt_config *cc, u8 *iv,
386 struct dm_crypt_request *dmreq)
387 {
388 __be64 val;
389
390 memset(iv, 0, cc->iv_size - sizeof(u64)); /* rest is cleared below */
391
392 val = cpu_to_be64(((u64)dmreq->iv_sector << cc->iv_gen_private.benbi.shift) + 1);
393 put_unaligned(val, (__be64 *)(iv + cc->iv_size - sizeof(u64)));
394
395 return 0;
396 }
397
crypt_iv_null_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)398 static int crypt_iv_null_gen(struct crypt_config *cc, u8 *iv,
399 struct dm_crypt_request *dmreq)
400 {
401 memset(iv, 0, cc->iv_size);
402
403 return 0;
404 }
405
crypt_iv_lmk_dtr(struct crypt_config * cc)406 static void crypt_iv_lmk_dtr(struct crypt_config *cc)
407 {
408 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
409
410 if (lmk->hash_tfm && !IS_ERR(lmk->hash_tfm))
411 crypto_free_shash(lmk->hash_tfm);
412 lmk->hash_tfm = NULL;
413
414 kfree_sensitive(lmk->seed);
415 lmk->seed = NULL;
416 }
417
crypt_iv_lmk_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)418 static int crypt_iv_lmk_ctr(struct crypt_config *cc, struct dm_target *ti,
419 const char *opts)
420 {
421 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
422
423 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
424 ti->error = "Unsupported sector size for LMK";
425 return -EINVAL;
426 }
427
428 lmk->hash_tfm = crypto_alloc_shash("md5", 0,
429 CRYPTO_ALG_ALLOCATES_MEMORY);
430 if (IS_ERR(lmk->hash_tfm)) {
431 ti->error = "Error initializing LMK hash";
432 return PTR_ERR(lmk->hash_tfm);
433 }
434
435 /* No seed in LMK version 2 */
436 if (cc->key_parts == cc->tfms_count) {
437 lmk->seed = NULL;
438 return 0;
439 }
440
441 lmk->seed = kzalloc(LMK_SEED_SIZE, GFP_KERNEL);
442 if (!lmk->seed) {
443 crypt_iv_lmk_dtr(cc);
444 ti->error = "Error kmallocing seed storage in LMK";
445 return -ENOMEM;
446 }
447
448 return 0;
449 }
450
crypt_iv_lmk_init(struct crypt_config * cc)451 static int crypt_iv_lmk_init(struct crypt_config *cc)
452 {
453 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
454 int subkey_size = cc->key_size / cc->key_parts;
455
456 /* LMK seed is on the position of LMK_KEYS + 1 key */
457 if (lmk->seed)
458 memcpy(lmk->seed, cc->key + (cc->tfms_count * subkey_size),
459 crypto_shash_digestsize(lmk->hash_tfm));
460
461 return 0;
462 }
463
crypt_iv_lmk_wipe(struct crypt_config * cc)464 static int crypt_iv_lmk_wipe(struct crypt_config *cc)
465 {
466 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
467
468 if (lmk->seed)
469 memset(lmk->seed, 0, LMK_SEED_SIZE);
470
471 return 0;
472 }
473
crypt_iv_lmk_one(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq,u8 * data)474 static int crypt_iv_lmk_one(struct crypt_config *cc, u8 *iv,
475 struct dm_crypt_request *dmreq,
476 u8 *data)
477 {
478 struct iv_lmk_private *lmk = &cc->iv_gen_private.lmk;
479 SHASH_DESC_ON_STACK(desc, lmk->hash_tfm);
480 struct md5_state md5state;
481 __le32 buf[4];
482 int i, r;
483
484 desc->tfm = lmk->hash_tfm;
485
486 r = crypto_shash_init(desc);
487 if (r)
488 return r;
489
490 if (lmk->seed) {
491 r = crypto_shash_update(desc, lmk->seed, LMK_SEED_SIZE);
492 if (r)
493 return r;
494 }
495
496 /* Sector is always 512B, block size 16, add data of blocks 1-31 */
497 r = crypto_shash_update(desc, data + 16, 16 * 31);
498 if (r)
499 return r;
500
501 /* Sector is cropped to 56 bits here */
502 buf[0] = cpu_to_le32(dmreq->iv_sector & 0xFFFFFFFF);
503 buf[1] = cpu_to_le32((((u64)dmreq->iv_sector >> 32) & 0x00FFFFFF) | 0x80000000);
504 buf[2] = cpu_to_le32(4024);
505 buf[3] = 0;
506 r = crypto_shash_update(desc, (u8 *)buf, sizeof(buf));
507 if (r)
508 return r;
509
510 /* No MD5 padding here */
511 r = crypto_shash_export(desc, &md5state);
512 if (r)
513 return r;
514
515 for (i = 0; i < MD5_HASH_WORDS; i++)
516 __cpu_to_le32s(&md5state.hash[i]);
517 memcpy(iv, &md5state.hash, cc->iv_size);
518
519 return 0;
520 }
521
crypt_iv_lmk_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)522 static int crypt_iv_lmk_gen(struct crypt_config *cc, u8 *iv,
523 struct dm_crypt_request *dmreq)
524 {
525 struct scatterlist *sg;
526 u8 *src;
527 int r = 0;
528
529 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
530 sg = crypt_get_sg_data(cc, dmreq->sg_in);
531 src = kmap_atomic(sg_page(sg));
532 r = crypt_iv_lmk_one(cc, iv, dmreq, src + sg->offset);
533 kunmap_atomic(src);
534 } else
535 memset(iv, 0, cc->iv_size);
536
537 return r;
538 }
539
crypt_iv_lmk_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)540 static int crypt_iv_lmk_post(struct crypt_config *cc, u8 *iv,
541 struct dm_crypt_request *dmreq)
542 {
543 struct scatterlist *sg;
544 u8 *dst;
545 int r;
546
547 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE)
548 return 0;
549
550 sg = crypt_get_sg_data(cc, dmreq->sg_out);
551 dst = kmap_atomic(sg_page(sg));
552 r = crypt_iv_lmk_one(cc, iv, dmreq, dst + sg->offset);
553
554 /* Tweak the first block of plaintext sector */
555 if (!r)
556 crypto_xor(dst + sg->offset, iv, cc->iv_size);
557
558 kunmap_atomic(dst);
559 return r;
560 }
561
crypt_iv_tcw_dtr(struct crypt_config * cc)562 static void crypt_iv_tcw_dtr(struct crypt_config *cc)
563 {
564 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
565
566 kfree_sensitive(tcw->iv_seed);
567 tcw->iv_seed = NULL;
568 kfree_sensitive(tcw->whitening);
569 tcw->whitening = NULL;
570
571 if (tcw->crc32_tfm && !IS_ERR(tcw->crc32_tfm))
572 crypto_free_shash(tcw->crc32_tfm);
573 tcw->crc32_tfm = NULL;
574 }
575
crypt_iv_tcw_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)576 static int crypt_iv_tcw_ctr(struct crypt_config *cc, struct dm_target *ti,
577 const char *opts)
578 {
579 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
580
581 if (cc->sector_size != (1 << SECTOR_SHIFT)) {
582 ti->error = "Unsupported sector size for TCW";
583 return -EINVAL;
584 }
585
586 if (cc->key_size <= (cc->iv_size + TCW_WHITENING_SIZE)) {
587 ti->error = "Wrong key size for TCW";
588 return -EINVAL;
589 }
590
591 tcw->crc32_tfm = crypto_alloc_shash("crc32", 0,
592 CRYPTO_ALG_ALLOCATES_MEMORY);
593 if (IS_ERR(tcw->crc32_tfm)) {
594 ti->error = "Error initializing CRC32 in TCW";
595 return PTR_ERR(tcw->crc32_tfm);
596 }
597
598 tcw->iv_seed = kzalloc(cc->iv_size, GFP_KERNEL);
599 tcw->whitening = kzalloc(TCW_WHITENING_SIZE, GFP_KERNEL);
600 if (!tcw->iv_seed || !tcw->whitening) {
601 crypt_iv_tcw_dtr(cc);
602 ti->error = "Error allocating seed storage in TCW";
603 return -ENOMEM;
604 }
605
606 return 0;
607 }
608
crypt_iv_tcw_init(struct crypt_config * cc)609 static int crypt_iv_tcw_init(struct crypt_config *cc)
610 {
611 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
612 int key_offset = cc->key_size - cc->iv_size - TCW_WHITENING_SIZE;
613
614 memcpy(tcw->iv_seed, &cc->key[key_offset], cc->iv_size);
615 memcpy(tcw->whitening, &cc->key[key_offset + cc->iv_size],
616 TCW_WHITENING_SIZE);
617
618 return 0;
619 }
620
crypt_iv_tcw_wipe(struct crypt_config * cc)621 static int crypt_iv_tcw_wipe(struct crypt_config *cc)
622 {
623 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
624
625 memset(tcw->iv_seed, 0, cc->iv_size);
626 memset(tcw->whitening, 0, TCW_WHITENING_SIZE);
627
628 return 0;
629 }
630
crypt_iv_tcw_whitening(struct crypt_config * cc,struct dm_crypt_request * dmreq,u8 * data)631 static int crypt_iv_tcw_whitening(struct crypt_config *cc,
632 struct dm_crypt_request *dmreq,
633 u8 *data)
634 {
635 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
636 __le64 sector = cpu_to_le64(dmreq->iv_sector);
637 u8 buf[TCW_WHITENING_SIZE];
638 SHASH_DESC_ON_STACK(desc, tcw->crc32_tfm);
639 int i, r;
640
641 /* xor whitening with sector number */
642 crypto_xor_cpy(buf, tcw->whitening, (u8 *)§or, 8);
643 crypto_xor_cpy(&buf[8], tcw->whitening + 8, (u8 *)§or, 8);
644
645 /* calculate crc32 for every 32bit part and xor it */
646 desc->tfm = tcw->crc32_tfm;
647 for (i = 0; i < 4; i++) {
648 r = crypto_shash_init(desc);
649 if (r)
650 goto out;
651 r = crypto_shash_update(desc, &buf[i * 4], 4);
652 if (r)
653 goto out;
654 r = crypto_shash_final(desc, &buf[i * 4]);
655 if (r)
656 goto out;
657 }
658 crypto_xor(&buf[0], &buf[12], 4);
659 crypto_xor(&buf[4], &buf[8], 4);
660
661 /* apply whitening (8 bytes) to whole sector */
662 for (i = 0; i < ((1 << SECTOR_SHIFT) / 8); i++)
663 crypto_xor(data + i * 8, buf, 8);
664 out:
665 memzero_explicit(buf, sizeof(buf));
666 return r;
667 }
668
crypt_iv_tcw_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)669 static int crypt_iv_tcw_gen(struct crypt_config *cc, u8 *iv,
670 struct dm_crypt_request *dmreq)
671 {
672 struct scatterlist *sg;
673 struct iv_tcw_private *tcw = &cc->iv_gen_private.tcw;
674 __le64 sector = cpu_to_le64(dmreq->iv_sector);
675 u8 *src;
676 int r = 0;
677
678 /* Remove whitening from ciphertext */
679 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
680 sg = crypt_get_sg_data(cc, dmreq->sg_in);
681 src = kmap_atomic(sg_page(sg));
682 r = crypt_iv_tcw_whitening(cc, dmreq, src + sg->offset);
683 kunmap_atomic(src);
684 }
685
686 /* Calculate IV */
687 crypto_xor_cpy(iv, tcw->iv_seed, (u8 *)§or, 8);
688 if (cc->iv_size > 8)
689 crypto_xor_cpy(&iv[8], tcw->iv_seed + 8, (u8 *)§or,
690 cc->iv_size - 8);
691
692 return r;
693 }
694
crypt_iv_tcw_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)695 static int crypt_iv_tcw_post(struct crypt_config *cc, u8 *iv,
696 struct dm_crypt_request *dmreq)
697 {
698 struct scatterlist *sg;
699 u8 *dst;
700 int r;
701
702 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
703 return 0;
704
705 /* Apply whitening on ciphertext */
706 sg = crypt_get_sg_data(cc, dmreq->sg_out);
707 dst = kmap_atomic(sg_page(sg));
708 r = crypt_iv_tcw_whitening(cc, dmreq, dst + sg->offset);
709 kunmap_atomic(dst);
710
711 return r;
712 }
713
crypt_iv_random_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)714 static int crypt_iv_random_gen(struct crypt_config *cc, u8 *iv,
715 struct dm_crypt_request *dmreq)
716 {
717 /* Used only for writes, there must be an additional space to store IV */
718 get_random_bytes(iv, cc->iv_size);
719 return 0;
720 }
721
crypt_iv_eboiv_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)722 static int crypt_iv_eboiv_ctr(struct crypt_config *cc, struct dm_target *ti,
723 const char *opts)
724 {
725 if (crypt_integrity_aead(cc)) {
726 ti->error = "AEAD transforms not supported for EBOIV";
727 return -EINVAL;
728 }
729
730 if (crypto_skcipher_blocksize(any_tfm(cc)) != cc->iv_size) {
731 ti->error = "Block size of EBOIV cipher does "
732 "not match IV size of block cipher";
733 return -EINVAL;
734 }
735
736 return 0;
737 }
738
crypt_iv_eboiv_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)739 static int crypt_iv_eboiv_gen(struct crypt_config *cc, u8 *iv,
740 struct dm_crypt_request *dmreq)
741 {
742 u8 buf[MAX_CIPHER_BLOCKSIZE] __aligned(__alignof__(__le64));
743 struct skcipher_request *req;
744 struct scatterlist src, dst;
745 DECLARE_CRYPTO_WAIT(wait);
746 int err;
747
748 req = skcipher_request_alloc(any_tfm(cc), GFP_NOIO);
749 if (!req)
750 return -ENOMEM;
751
752 memset(buf, 0, cc->iv_size);
753 *(__le64 *)buf = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
754
755 sg_init_one(&src, page_address(ZERO_PAGE(0)), cc->iv_size);
756 sg_init_one(&dst, iv, cc->iv_size);
757 skcipher_request_set_crypt(req, &src, &dst, cc->iv_size, buf);
758 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
759 err = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
760 skcipher_request_free(req);
761
762 return err;
763 }
764
crypt_iv_elephant_dtr(struct crypt_config * cc)765 static void crypt_iv_elephant_dtr(struct crypt_config *cc)
766 {
767 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
768
769 crypto_free_skcipher(elephant->tfm);
770 elephant->tfm = NULL;
771 }
772
crypt_iv_elephant_ctr(struct crypt_config * cc,struct dm_target * ti,const char * opts)773 static int crypt_iv_elephant_ctr(struct crypt_config *cc, struct dm_target *ti,
774 const char *opts)
775 {
776 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
777 int r;
778
779 elephant->tfm = crypto_alloc_skcipher("ecb(aes)", 0,
780 CRYPTO_ALG_ALLOCATES_MEMORY);
781 if (IS_ERR(elephant->tfm)) {
782 r = PTR_ERR(elephant->tfm);
783 elephant->tfm = NULL;
784 return r;
785 }
786
787 r = crypt_iv_eboiv_ctr(cc, ti, NULL);
788 if (r)
789 crypt_iv_elephant_dtr(cc);
790 return r;
791 }
792
diffuser_disk_to_cpu(u32 * d,size_t n)793 static void diffuser_disk_to_cpu(u32 *d, size_t n)
794 {
795 #ifndef __LITTLE_ENDIAN
796 int i;
797
798 for (i = 0; i < n; i++)
799 d[i] = le32_to_cpu((__le32)d[i]);
800 #endif
801 }
802
diffuser_cpu_to_disk(__le32 * d,size_t n)803 static void diffuser_cpu_to_disk(__le32 *d, size_t n)
804 {
805 #ifndef __LITTLE_ENDIAN
806 int i;
807
808 for (i = 0; i < n; i++)
809 d[i] = cpu_to_le32((u32)d[i]);
810 #endif
811 }
812
diffuser_a_decrypt(u32 * d,size_t n)813 static void diffuser_a_decrypt(u32 *d, size_t n)
814 {
815 int i, i1, i2, i3;
816
817 for (i = 0; i < 5; i++) {
818 i1 = 0;
819 i2 = n - 2;
820 i3 = n - 5;
821
822 while (i1 < (n - 1)) {
823 d[i1] += d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
824 i1++; i2++; i3++;
825
826 if (i3 >= n)
827 i3 -= n;
828
829 d[i1] += d[i2] ^ d[i3];
830 i1++; i2++; i3++;
831
832 if (i2 >= n)
833 i2 -= n;
834
835 d[i1] += d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
836 i1++; i2++; i3++;
837
838 d[i1] += d[i2] ^ d[i3];
839 i1++; i2++; i3++;
840 }
841 }
842 }
843
diffuser_a_encrypt(u32 * d,size_t n)844 static void diffuser_a_encrypt(u32 *d, size_t n)
845 {
846 int i, i1, i2, i3;
847
848 for (i = 0; i < 5; i++) {
849 i1 = n - 1;
850 i2 = n - 2 - 1;
851 i3 = n - 5 - 1;
852
853 while (i1 > 0) {
854 d[i1] -= d[i2] ^ d[i3];
855 i1--; i2--; i3--;
856
857 d[i1] -= d[i2] ^ (d[i3] << 13 | d[i3] >> 19);
858 i1--; i2--; i3--;
859
860 if (i2 < 0)
861 i2 += n;
862
863 d[i1] -= d[i2] ^ d[i3];
864 i1--; i2--; i3--;
865
866 if (i3 < 0)
867 i3 += n;
868
869 d[i1] -= d[i2] ^ (d[i3] << 9 | d[i3] >> 23);
870 i1--; i2--; i3--;
871 }
872 }
873 }
874
diffuser_b_decrypt(u32 * d,size_t n)875 static void diffuser_b_decrypt(u32 *d, size_t n)
876 {
877 int i, i1, i2, i3;
878
879 for (i = 0; i < 3; i++) {
880 i1 = 0;
881 i2 = 2;
882 i3 = 5;
883
884 while (i1 < (n - 1)) {
885 d[i1] += d[i2] ^ d[i3];
886 i1++; i2++; i3++;
887
888 d[i1] += d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
889 i1++; i2++; i3++;
890
891 if (i2 >= n)
892 i2 -= n;
893
894 d[i1] += d[i2] ^ d[i3];
895 i1++; i2++; i3++;
896
897 if (i3 >= n)
898 i3 -= n;
899
900 d[i1] += d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
901 i1++; i2++; i3++;
902 }
903 }
904 }
905
diffuser_b_encrypt(u32 * d,size_t n)906 static void diffuser_b_encrypt(u32 *d, size_t n)
907 {
908 int i, i1, i2, i3;
909
910 for (i = 0; i < 3; i++) {
911 i1 = n - 1;
912 i2 = 2 - 1;
913 i3 = 5 - 1;
914
915 while (i1 > 0) {
916 d[i1] -= d[i2] ^ (d[i3] << 25 | d[i3] >> 7);
917 i1--; i2--; i3--;
918
919 if (i3 < 0)
920 i3 += n;
921
922 d[i1] -= d[i2] ^ d[i3];
923 i1--; i2--; i3--;
924
925 if (i2 < 0)
926 i2 += n;
927
928 d[i1] -= d[i2] ^ (d[i3] << 10 | d[i3] >> 22);
929 i1--; i2--; i3--;
930
931 d[i1] -= d[i2] ^ d[i3];
932 i1--; i2--; i3--;
933 }
934 }
935 }
936
crypt_iv_elephant(struct crypt_config * cc,struct dm_crypt_request * dmreq)937 static int crypt_iv_elephant(struct crypt_config *cc, struct dm_crypt_request *dmreq)
938 {
939 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
940 u8 *es, *ks, *data, *data2, *data_offset;
941 struct skcipher_request *req;
942 struct scatterlist *sg, *sg2, src, dst;
943 DECLARE_CRYPTO_WAIT(wait);
944 int i, r;
945
946 req = skcipher_request_alloc(elephant->tfm, GFP_NOIO);
947 es = kzalloc(16, GFP_NOIO); /* Key for AES */
948 ks = kzalloc(32, GFP_NOIO); /* Elephant sector key */
949
950 if (!req || !es || !ks) {
951 r = -ENOMEM;
952 goto out;
953 }
954
955 *(__le64 *)es = cpu_to_le64(dmreq->iv_sector * cc->sector_size);
956
957 /* E(Ks, e(s)) */
958 sg_init_one(&src, es, 16);
959 sg_init_one(&dst, ks, 16);
960 skcipher_request_set_crypt(req, &src, &dst, 16, NULL);
961 skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
962 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
963 if (r)
964 goto out;
965
966 /* E(Ks, e'(s)) */
967 es[15] = 0x80;
968 sg_init_one(&dst, &ks[16], 16);
969 r = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
970 if (r)
971 goto out;
972
973 sg = crypt_get_sg_data(cc, dmreq->sg_out);
974 data = kmap_atomic(sg_page(sg));
975 data_offset = data + sg->offset;
976
977 /* Cannot modify original bio, copy to sg_out and apply Elephant to it */
978 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
979 sg2 = crypt_get_sg_data(cc, dmreq->sg_in);
980 data2 = kmap_atomic(sg_page(sg2));
981 memcpy(data_offset, data2 + sg2->offset, cc->sector_size);
982 kunmap_atomic(data2);
983 }
984
985 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE) {
986 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
987 diffuser_b_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
988 diffuser_a_decrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
989 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
990 }
991
992 for (i = 0; i < (cc->sector_size / 32); i++)
993 crypto_xor(data_offset + i * 32, ks, 32);
994
995 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
996 diffuser_disk_to_cpu((u32*)data_offset, cc->sector_size / sizeof(u32));
997 diffuser_a_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
998 diffuser_b_encrypt((u32*)data_offset, cc->sector_size / sizeof(u32));
999 diffuser_cpu_to_disk((__le32*)data_offset, cc->sector_size / sizeof(u32));
1000 }
1001
1002 kunmap_atomic(data);
1003 out:
1004 kfree_sensitive(ks);
1005 kfree_sensitive(es);
1006 skcipher_request_free(req);
1007 return r;
1008 }
1009
crypt_iv_elephant_gen(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1010 static int crypt_iv_elephant_gen(struct crypt_config *cc, u8 *iv,
1011 struct dm_crypt_request *dmreq)
1012 {
1013 int r;
1014
1015 if (bio_data_dir(dmreq->ctx->bio_in) == WRITE) {
1016 r = crypt_iv_elephant(cc, dmreq);
1017 if (r)
1018 return r;
1019 }
1020
1021 return crypt_iv_eboiv_gen(cc, iv, dmreq);
1022 }
1023
crypt_iv_elephant_post(struct crypt_config * cc,u8 * iv,struct dm_crypt_request * dmreq)1024 static int crypt_iv_elephant_post(struct crypt_config *cc, u8 *iv,
1025 struct dm_crypt_request *dmreq)
1026 {
1027 if (bio_data_dir(dmreq->ctx->bio_in) != WRITE)
1028 return crypt_iv_elephant(cc, dmreq);
1029
1030 return 0;
1031 }
1032
crypt_iv_elephant_init(struct crypt_config * cc)1033 static int crypt_iv_elephant_init(struct crypt_config *cc)
1034 {
1035 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1036 int key_offset = cc->key_size - cc->key_extra_size;
1037
1038 return crypto_skcipher_setkey(elephant->tfm, &cc->key[key_offset], cc->key_extra_size);
1039 }
1040
crypt_iv_elephant_wipe(struct crypt_config * cc)1041 static int crypt_iv_elephant_wipe(struct crypt_config *cc)
1042 {
1043 struct iv_elephant_private *elephant = &cc->iv_gen_private.elephant;
1044 u8 key[ELEPHANT_MAX_KEY_SIZE];
1045
1046 memset(key, 0, cc->key_extra_size);
1047 return crypto_skcipher_setkey(elephant->tfm, key, cc->key_extra_size);
1048 }
1049
1050 static const struct crypt_iv_operations crypt_iv_plain_ops = {
1051 .generator = crypt_iv_plain_gen
1052 };
1053
1054 static const struct crypt_iv_operations crypt_iv_plain64_ops = {
1055 .generator = crypt_iv_plain64_gen
1056 };
1057
1058 static const struct crypt_iv_operations crypt_iv_plain64be_ops = {
1059 .generator = crypt_iv_plain64be_gen
1060 };
1061
1062 static const struct crypt_iv_operations crypt_iv_essiv_ops = {
1063 .generator = crypt_iv_essiv_gen
1064 };
1065
1066 static const struct crypt_iv_operations crypt_iv_benbi_ops = {
1067 .ctr = crypt_iv_benbi_ctr,
1068 .dtr = crypt_iv_benbi_dtr,
1069 .generator = crypt_iv_benbi_gen
1070 };
1071
1072 static const struct crypt_iv_operations crypt_iv_null_ops = {
1073 .generator = crypt_iv_null_gen
1074 };
1075
1076 static const struct crypt_iv_operations crypt_iv_lmk_ops = {
1077 .ctr = crypt_iv_lmk_ctr,
1078 .dtr = crypt_iv_lmk_dtr,
1079 .init = crypt_iv_lmk_init,
1080 .wipe = crypt_iv_lmk_wipe,
1081 .generator = crypt_iv_lmk_gen,
1082 .post = crypt_iv_lmk_post
1083 };
1084
1085 static const struct crypt_iv_operations crypt_iv_tcw_ops = {
1086 .ctr = crypt_iv_tcw_ctr,
1087 .dtr = crypt_iv_tcw_dtr,
1088 .init = crypt_iv_tcw_init,
1089 .wipe = crypt_iv_tcw_wipe,
1090 .generator = crypt_iv_tcw_gen,
1091 .post = crypt_iv_tcw_post
1092 };
1093
1094 static const struct crypt_iv_operations crypt_iv_random_ops = {
1095 .generator = crypt_iv_random_gen
1096 };
1097
1098 static const struct crypt_iv_operations crypt_iv_eboiv_ops = {
1099 .ctr = crypt_iv_eboiv_ctr,
1100 .generator = crypt_iv_eboiv_gen
1101 };
1102
1103 static const struct crypt_iv_operations crypt_iv_elephant_ops = {
1104 .ctr = crypt_iv_elephant_ctr,
1105 .dtr = crypt_iv_elephant_dtr,
1106 .init = crypt_iv_elephant_init,
1107 .wipe = crypt_iv_elephant_wipe,
1108 .generator = crypt_iv_elephant_gen,
1109 .post = crypt_iv_elephant_post
1110 };
1111
1112 /*
1113 * Integrity extensions
1114 */
crypt_integrity_aead(struct crypt_config * cc)1115 static bool crypt_integrity_aead(struct crypt_config *cc)
1116 {
1117 return test_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
1118 }
1119
crypt_integrity_hmac(struct crypt_config * cc)1120 static bool crypt_integrity_hmac(struct crypt_config *cc)
1121 {
1122 return crypt_integrity_aead(cc) && cc->key_mac_size;
1123 }
1124
1125 /* Get sg containing data */
crypt_get_sg_data(struct crypt_config * cc,struct scatterlist * sg)1126 static struct scatterlist *crypt_get_sg_data(struct crypt_config *cc,
1127 struct scatterlist *sg)
1128 {
1129 if (unlikely(crypt_integrity_aead(cc)))
1130 return &sg[2];
1131
1132 return sg;
1133 }
1134
dm_crypt_integrity_io_alloc(struct dm_crypt_io * io,struct bio * bio)1135 static int dm_crypt_integrity_io_alloc(struct dm_crypt_io *io, struct bio *bio)
1136 {
1137 struct bio_integrity_payload *bip;
1138 unsigned int tag_len;
1139 int ret;
1140
1141 if (!bio_sectors(bio) || !io->cc->on_disk_tag_size)
1142 return 0;
1143
1144 bip = bio_integrity_alloc(bio, GFP_NOIO, 1);
1145 if (IS_ERR(bip))
1146 return PTR_ERR(bip);
1147
1148 tag_len = io->cc->on_disk_tag_size * (bio_sectors(bio) >> io->cc->sector_shift);
1149
1150 bip->bip_iter.bi_size = tag_len;
1151 bip->bip_iter.bi_sector = io->cc->start + io->sector;
1152
1153 ret = bio_integrity_add_page(bio, virt_to_page(io->integrity_metadata),
1154 tag_len, offset_in_page(io->integrity_metadata));
1155 if (unlikely(ret != tag_len))
1156 return -ENOMEM;
1157
1158 return 0;
1159 }
1160
crypt_integrity_ctr(struct crypt_config * cc,struct dm_target * ti)1161 static int crypt_integrity_ctr(struct crypt_config *cc, struct dm_target *ti)
1162 {
1163 #ifdef CONFIG_BLK_DEV_INTEGRITY
1164 struct blk_integrity *bi = blk_get_integrity(cc->dev->bdev->bd_disk);
1165 struct mapped_device *md = dm_table_get_md(ti->table);
1166
1167 /* From now we require underlying device with our integrity profile */
1168 if (!bi || strcasecmp(bi->profile->name, "DM-DIF-EXT-TAG")) {
1169 ti->error = "Integrity profile not supported.";
1170 return -EINVAL;
1171 }
1172
1173 if (bi->tag_size != cc->on_disk_tag_size ||
1174 bi->tuple_size != cc->on_disk_tag_size) {
1175 ti->error = "Integrity profile tag size mismatch.";
1176 return -EINVAL;
1177 }
1178 if (1 << bi->interval_exp != cc->sector_size) {
1179 ti->error = "Integrity profile sector size mismatch.";
1180 return -EINVAL;
1181 }
1182
1183 if (crypt_integrity_aead(cc)) {
1184 cc->integrity_tag_size = cc->on_disk_tag_size - cc->integrity_iv_size;
1185 DMDEBUG("%s: Integrity AEAD, tag size %u, IV size %u.", dm_device_name(md),
1186 cc->integrity_tag_size, cc->integrity_iv_size);
1187
1188 if (crypto_aead_setauthsize(any_tfm_aead(cc), cc->integrity_tag_size)) {
1189 ti->error = "Integrity AEAD auth tag size is not supported.";
1190 return -EINVAL;
1191 }
1192 } else if (cc->integrity_iv_size)
1193 DMDEBUG("%s: Additional per-sector space %u bytes for IV.", dm_device_name(md),
1194 cc->integrity_iv_size);
1195
1196 if ((cc->integrity_tag_size + cc->integrity_iv_size) != bi->tag_size) {
1197 ti->error = "Not enough space for integrity tag in the profile.";
1198 return -EINVAL;
1199 }
1200
1201 return 0;
1202 #else
1203 ti->error = "Integrity profile not supported.";
1204 return -EINVAL;
1205 #endif
1206 }
1207
crypt_convert_init(struct crypt_config * cc,struct convert_context * ctx,struct bio * bio_out,struct bio * bio_in,sector_t sector)1208 static void crypt_convert_init(struct crypt_config *cc,
1209 struct convert_context *ctx,
1210 struct bio *bio_out, struct bio *bio_in,
1211 sector_t sector)
1212 {
1213 ctx->bio_in = bio_in;
1214 ctx->bio_out = bio_out;
1215 if (bio_in)
1216 ctx->iter_in = bio_in->bi_iter;
1217 if (bio_out)
1218 ctx->iter_out = bio_out->bi_iter;
1219 ctx->cc_sector = sector + cc->iv_offset;
1220 init_completion(&ctx->restart);
1221 }
1222
dmreq_of_req(struct crypt_config * cc,void * req)1223 static struct dm_crypt_request *dmreq_of_req(struct crypt_config *cc,
1224 void *req)
1225 {
1226 return (struct dm_crypt_request *)((char *)req + cc->dmreq_start);
1227 }
1228
req_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1229 static void *req_of_dmreq(struct crypt_config *cc, struct dm_crypt_request *dmreq)
1230 {
1231 return (void *)((char *)dmreq - cc->dmreq_start);
1232 }
1233
iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1234 static u8 *iv_of_dmreq(struct crypt_config *cc,
1235 struct dm_crypt_request *dmreq)
1236 {
1237 if (crypt_integrity_aead(cc))
1238 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1239 crypto_aead_alignmask(any_tfm_aead(cc)) + 1);
1240 else
1241 return (u8 *)ALIGN((unsigned long)(dmreq + 1),
1242 crypto_skcipher_alignmask(any_tfm(cc)) + 1);
1243 }
1244
org_iv_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1245 static u8 *org_iv_of_dmreq(struct crypt_config *cc,
1246 struct dm_crypt_request *dmreq)
1247 {
1248 return iv_of_dmreq(cc, dmreq) + cc->iv_size;
1249 }
1250
org_sector_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1251 static __le64 *org_sector_of_dmreq(struct crypt_config *cc,
1252 struct dm_crypt_request *dmreq)
1253 {
1254 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size + cc->iv_size;
1255 return (__le64 *) ptr;
1256 }
1257
org_tag_of_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1258 static unsigned int *org_tag_of_dmreq(struct crypt_config *cc,
1259 struct dm_crypt_request *dmreq)
1260 {
1261 u8 *ptr = iv_of_dmreq(cc, dmreq) + cc->iv_size +
1262 cc->iv_size + sizeof(uint64_t);
1263 return (unsigned int*)ptr;
1264 }
1265
tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1266 static void *tag_from_dmreq(struct crypt_config *cc,
1267 struct dm_crypt_request *dmreq)
1268 {
1269 struct convert_context *ctx = dmreq->ctx;
1270 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
1271
1272 return &io->integrity_metadata[*org_tag_of_dmreq(cc, dmreq) *
1273 cc->on_disk_tag_size];
1274 }
1275
iv_tag_from_dmreq(struct crypt_config * cc,struct dm_crypt_request * dmreq)1276 static void *iv_tag_from_dmreq(struct crypt_config *cc,
1277 struct dm_crypt_request *dmreq)
1278 {
1279 return tag_from_dmreq(cc, dmreq) + cc->integrity_tag_size;
1280 }
1281
crypt_convert_block_aead(struct crypt_config * cc,struct convert_context * ctx,struct aead_request * req,unsigned int tag_offset)1282 static int crypt_convert_block_aead(struct crypt_config *cc,
1283 struct convert_context *ctx,
1284 struct aead_request *req,
1285 unsigned int tag_offset)
1286 {
1287 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1288 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1289 struct dm_crypt_request *dmreq;
1290 u8 *iv, *org_iv, *tag_iv, *tag;
1291 __le64 *sector;
1292 int r = 0;
1293
1294 BUG_ON(cc->integrity_iv_size && cc->integrity_iv_size != cc->iv_size);
1295
1296 /* Reject unexpected unaligned bio. */
1297 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1298 return -EIO;
1299
1300 dmreq = dmreq_of_req(cc, req);
1301 dmreq->iv_sector = ctx->cc_sector;
1302 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1303 dmreq->iv_sector >>= cc->sector_shift;
1304 dmreq->ctx = ctx;
1305
1306 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1307
1308 sector = org_sector_of_dmreq(cc, dmreq);
1309 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1310
1311 iv = iv_of_dmreq(cc, dmreq);
1312 org_iv = org_iv_of_dmreq(cc, dmreq);
1313 tag = tag_from_dmreq(cc, dmreq);
1314 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1315
1316 /* AEAD request:
1317 * |----- AAD -------|------ DATA -------|-- AUTH TAG --|
1318 * | (authenticated) | (auth+encryption) | |
1319 * | sector_LE | IV | sector in/out | tag in/out |
1320 */
1321 sg_init_table(dmreq->sg_in, 4);
1322 sg_set_buf(&dmreq->sg_in[0], sector, sizeof(uint64_t));
1323 sg_set_buf(&dmreq->sg_in[1], org_iv, cc->iv_size);
1324 sg_set_page(&dmreq->sg_in[2], bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1325 sg_set_buf(&dmreq->sg_in[3], tag, cc->integrity_tag_size);
1326
1327 sg_init_table(dmreq->sg_out, 4);
1328 sg_set_buf(&dmreq->sg_out[0], sector, sizeof(uint64_t));
1329 sg_set_buf(&dmreq->sg_out[1], org_iv, cc->iv_size);
1330 sg_set_page(&dmreq->sg_out[2], bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1331 sg_set_buf(&dmreq->sg_out[3], tag, cc->integrity_tag_size);
1332
1333 if (cc->iv_gen_ops) {
1334 /* For READs use IV stored in integrity metadata */
1335 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1336 memcpy(org_iv, tag_iv, cc->iv_size);
1337 } else {
1338 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1339 if (r < 0)
1340 return r;
1341 /* Store generated IV in integrity metadata */
1342 if (cc->integrity_iv_size)
1343 memcpy(tag_iv, org_iv, cc->iv_size);
1344 }
1345 /* Working copy of IV, to be modified in crypto API */
1346 memcpy(iv, org_iv, cc->iv_size);
1347 }
1348
1349 aead_request_set_ad(req, sizeof(uint64_t) + cc->iv_size);
1350 if (bio_data_dir(ctx->bio_in) == WRITE) {
1351 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1352 cc->sector_size, iv);
1353 r = crypto_aead_encrypt(req);
1354 if (cc->integrity_tag_size + cc->integrity_iv_size != cc->on_disk_tag_size)
1355 memset(tag + cc->integrity_tag_size + cc->integrity_iv_size, 0,
1356 cc->on_disk_tag_size - (cc->integrity_tag_size + cc->integrity_iv_size));
1357 } else {
1358 aead_request_set_crypt(req, dmreq->sg_in, dmreq->sg_out,
1359 cc->sector_size + cc->integrity_tag_size, iv);
1360 r = crypto_aead_decrypt(req);
1361 }
1362
1363 if (r == -EBADMSG) {
1364 char b[BDEVNAME_SIZE];
1365 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
1366 (unsigned long long)le64_to_cpu(*sector));
1367 }
1368
1369 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1370 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1371
1372 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1373 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1374
1375 return r;
1376 }
1377
crypt_convert_block_skcipher(struct crypt_config * cc,struct convert_context * ctx,struct skcipher_request * req,unsigned int tag_offset)1378 static int crypt_convert_block_skcipher(struct crypt_config *cc,
1379 struct convert_context *ctx,
1380 struct skcipher_request *req,
1381 unsigned int tag_offset)
1382 {
1383 struct bio_vec bv_in = bio_iter_iovec(ctx->bio_in, ctx->iter_in);
1384 struct bio_vec bv_out = bio_iter_iovec(ctx->bio_out, ctx->iter_out);
1385 struct scatterlist *sg_in, *sg_out;
1386 struct dm_crypt_request *dmreq;
1387 u8 *iv, *org_iv, *tag_iv;
1388 __le64 *sector;
1389 int r = 0;
1390
1391 /* Reject unexpected unaligned bio. */
1392 if (unlikely(bv_in.bv_len & (cc->sector_size - 1)))
1393 return -EIO;
1394
1395 dmreq = dmreq_of_req(cc, req);
1396 dmreq->iv_sector = ctx->cc_sector;
1397 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
1398 dmreq->iv_sector >>= cc->sector_shift;
1399 dmreq->ctx = ctx;
1400
1401 *org_tag_of_dmreq(cc, dmreq) = tag_offset;
1402
1403 iv = iv_of_dmreq(cc, dmreq);
1404 org_iv = org_iv_of_dmreq(cc, dmreq);
1405 tag_iv = iv_tag_from_dmreq(cc, dmreq);
1406
1407 sector = org_sector_of_dmreq(cc, dmreq);
1408 *sector = cpu_to_le64(ctx->cc_sector - cc->iv_offset);
1409
1410 /* For skcipher we use only the first sg item */
1411 sg_in = &dmreq->sg_in[0];
1412 sg_out = &dmreq->sg_out[0];
1413
1414 sg_init_table(sg_in, 1);
1415 sg_set_page(sg_in, bv_in.bv_page, cc->sector_size, bv_in.bv_offset);
1416
1417 sg_init_table(sg_out, 1);
1418 sg_set_page(sg_out, bv_out.bv_page, cc->sector_size, bv_out.bv_offset);
1419
1420 if (cc->iv_gen_ops) {
1421 /* For READs use IV stored in integrity metadata */
1422 if (cc->integrity_iv_size && bio_data_dir(ctx->bio_in) != WRITE) {
1423 memcpy(org_iv, tag_iv, cc->integrity_iv_size);
1424 } else {
1425 r = cc->iv_gen_ops->generator(cc, org_iv, dmreq);
1426 if (r < 0)
1427 return r;
1428 /* Data can be already preprocessed in generator */
1429 if (test_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags))
1430 sg_in = sg_out;
1431 /* Store generated IV in integrity metadata */
1432 if (cc->integrity_iv_size)
1433 memcpy(tag_iv, org_iv, cc->integrity_iv_size);
1434 }
1435 /* Working copy of IV, to be modified in crypto API */
1436 memcpy(iv, org_iv, cc->iv_size);
1437 }
1438
1439 skcipher_request_set_crypt(req, sg_in, sg_out, cc->sector_size, iv);
1440
1441 if (bio_data_dir(ctx->bio_in) == WRITE)
1442 r = crypto_skcipher_encrypt(req);
1443 else
1444 r = crypto_skcipher_decrypt(req);
1445
1446 if (!r && cc->iv_gen_ops && cc->iv_gen_ops->post)
1447 r = cc->iv_gen_ops->post(cc, org_iv, dmreq);
1448
1449 bio_advance_iter(ctx->bio_in, &ctx->iter_in, cc->sector_size);
1450 bio_advance_iter(ctx->bio_out, &ctx->iter_out, cc->sector_size);
1451
1452 return r;
1453 }
1454
1455 static void kcryptd_async_done(struct crypto_async_request *async_req,
1456 int error);
1457
crypt_alloc_req_skcipher(struct crypt_config * cc,struct convert_context * ctx)1458 static int crypt_alloc_req_skcipher(struct crypt_config *cc,
1459 struct convert_context *ctx)
1460 {
1461 unsigned key_index = ctx->cc_sector & (cc->tfms_count - 1);
1462
1463 if (!ctx->r.req) {
1464 ctx->r.req = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1465 if (!ctx->r.req)
1466 return -ENOMEM;
1467 }
1468
1469 skcipher_request_set_tfm(ctx->r.req, cc->cipher_tfm.tfms[key_index]);
1470
1471 /*
1472 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1473 * requests if driver request queue is full.
1474 */
1475 skcipher_request_set_callback(ctx->r.req,
1476 CRYPTO_TFM_REQ_MAY_BACKLOG,
1477 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req));
1478
1479 return 0;
1480 }
1481
crypt_alloc_req_aead(struct crypt_config * cc,struct convert_context * ctx)1482 static int crypt_alloc_req_aead(struct crypt_config *cc,
1483 struct convert_context *ctx)
1484 {
1485 if (!ctx->r.req_aead) {
1486 ctx->r.req_aead = mempool_alloc(&cc->req_pool, in_interrupt() ? GFP_ATOMIC : GFP_NOIO);
1487 if (!ctx->r.req_aead)
1488 return -ENOMEM;
1489 }
1490
1491 aead_request_set_tfm(ctx->r.req_aead, cc->cipher_tfm.tfms_aead[0]);
1492
1493 /*
1494 * Use REQ_MAY_BACKLOG so a cipher driver internally backlogs
1495 * requests if driver request queue is full.
1496 */
1497 aead_request_set_callback(ctx->r.req_aead,
1498 CRYPTO_TFM_REQ_MAY_BACKLOG,
1499 kcryptd_async_done, dmreq_of_req(cc, ctx->r.req_aead));
1500
1501 return 0;
1502 }
1503
crypt_alloc_req(struct crypt_config * cc,struct convert_context * ctx)1504 static int crypt_alloc_req(struct crypt_config *cc,
1505 struct convert_context *ctx)
1506 {
1507 if (crypt_integrity_aead(cc))
1508 return crypt_alloc_req_aead(cc, ctx);
1509 else
1510 return crypt_alloc_req_skcipher(cc, ctx);
1511 }
1512
crypt_free_req_skcipher(struct crypt_config * cc,struct skcipher_request * req,struct bio * base_bio)1513 static void crypt_free_req_skcipher(struct crypt_config *cc,
1514 struct skcipher_request *req, struct bio *base_bio)
1515 {
1516 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1517
1518 if ((struct skcipher_request *)(io + 1) != req)
1519 mempool_free(req, &cc->req_pool);
1520 }
1521
crypt_free_req_aead(struct crypt_config * cc,struct aead_request * req,struct bio * base_bio)1522 static void crypt_free_req_aead(struct crypt_config *cc,
1523 struct aead_request *req, struct bio *base_bio)
1524 {
1525 struct dm_crypt_io *io = dm_per_bio_data(base_bio, cc->per_bio_data_size);
1526
1527 if ((struct aead_request *)(io + 1) != req)
1528 mempool_free(req, &cc->req_pool);
1529 }
1530
crypt_free_req(struct crypt_config * cc,void * req,struct bio * base_bio)1531 static void crypt_free_req(struct crypt_config *cc, void *req, struct bio *base_bio)
1532 {
1533 if (crypt_integrity_aead(cc))
1534 crypt_free_req_aead(cc, req, base_bio);
1535 else
1536 crypt_free_req_skcipher(cc, req, base_bio);
1537 }
1538
1539 /*
1540 * Encrypt / decrypt data from one bio to another one (can be the same one)
1541 */
crypt_convert(struct crypt_config * cc,struct convert_context * ctx,bool atomic,bool reset_pending)1542 static blk_status_t crypt_convert(struct crypt_config *cc,
1543 struct convert_context *ctx, bool atomic, bool reset_pending)
1544 {
1545 unsigned int tag_offset = 0;
1546 unsigned int sector_step = cc->sector_size >> SECTOR_SHIFT;
1547 int r;
1548
1549 /*
1550 * if reset_pending is set we are dealing with the bio for the first time,
1551 * else we're continuing to work on the previous bio, so don't mess with
1552 * the cc_pending counter
1553 */
1554 if (reset_pending)
1555 atomic_set(&ctx->cc_pending, 1);
1556
1557 while (ctx->iter_in.bi_size && ctx->iter_out.bi_size) {
1558
1559 r = crypt_alloc_req(cc, ctx);
1560 if (r) {
1561 complete(&ctx->restart);
1562 return BLK_STS_DEV_RESOURCE;
1563 }
1564
1565 atomic_inc(&ctx->cc_pending);
1566
1567 if (crypt_integrity_aead(cc))
1568 r = crypt_convert_block_aead(cc, ctx, ctx->r.req_aead, tag_offset);
1569 else
1570 r = crypt_convert_block_skcipher(cc, ctx, ctx->r.req, tag_offset);
1571
1572 switch (r) {
1573 /*
1574 * The request was queued by a crypto driver
1575 * but the driver request queue is full, let's wait.
1576 */
1577 case -EBUSY:
1578 if (in_interrupt()) {
1579 if (try_wait_for_completion(&ctx->restart)) {
1580 /*
1581 * we don't have to block to wait for completion,
1582 * so proceed
1583 */
1584 } else {
1585 /*
1586 * we can't wait for completion without blocking
1587 * exit and continue processing in a workqueue
1588 */
1589 ctx->r.req = NULL;
1590 ctx->cc_sector += sector_step;
1591 tag_offset++;
1592 return BLK_STS_DEV_RESOURCE;
1593 }
1594 } else {
1595 wait_for_completion(&ctx->restart);
1596 }
1597 reinit_completion(&ctx->restart);
1598 fallthrough;
1599 /*
1600 * The request is queued and processed asynchronously,
1601 * completion function kcryptd_async_done() will be called.
1602 */
1603 case -EINPROGRESS:
1604 ctx->r.req = NULL;
1605 ctx->cc_sector += sector_step;
1606 tag_offset++;
1607 continue;
1608 /*
1609 * The request was already processed (synchronously).
1610 */
1611 case 0:
1612 atomic_dec(&ctx->cc_pending);
1613 ctx->cc_sector += sector_step;
1614 tag_offset++;
1615 if (!atomic)
1616 cond_resched();
1617 continue;
1618 /*
1619 * There was a data integrity error.
1620 */
1621 case -EBADMSG:
1622 atomic_dec(&ctx->cc_pending);
1623 return BLK_STS_PROTECTION;
1624 /*
1625 * There was an error while processing the request.
1626 */
1627 default:
1628 atomic_dec(&ctx->cc_pending);
1629 return BLK_STS_IOERR;
1630 }
1631 }
1632
1633 return 0;
1634 }
1635
1636 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone);
1637
1638 /*
1639 * Generate a new unfragmented bio with the given size
1640 * This should never violate the device limitations (but only because
1641 * max_segment_size is being constrained to PAGE_SIZE).
1642 *
1643 * This function may be called concurrently. If we allocate from the mempool
1644 * concurrently, there is a possibility of deadlock. For example, if we have
1645 * mempool of 256 pages, two processes, each wanting 256, pages allocate from
1646 * the mempool concurrently, it may deadlock in a situation where both processes
1647 * have allocated 128 pages and the mempool is exhausted.
1648 *
1649 * In order to avoid this scenario we allocate the pages under a mutex.
1650 *
1651 * In order to not degrade performance with excessive locking, we try
1652 * non-blocking allocations without a mutex first but on failure we fallback
1653 * to blocking allocations with a mutex.
1654 */
crypt_alloc_buffer(struct dm_crypt_io * io,unsigned size)1655 static struct bio *crypt_alloc_buffer(struct dm_crypt_io *io, unsigned size)
1656 {
1657 struct crypt_config *cc = io->cc;
1658 struct bio *clone;
1659 unsigned int nr_iovecs = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1660 gfp_t gfp_mask = GFP_NOWAIT | __GFP_HIGHMEM;
1661 unsigned i, len, remaining_size;
1662 struct page *page;
1663
1664 retry:
1665 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1666 mutex_lock(&cc->bio_alloc_lock);
1667
1668 clone = bio_alloc_bioset(GFP_NOIO, nr_iovecs, &cc->bs);
1669 if (!clone)
1670 goto out;
1671
1672 clone_init(io, clone);
1673
1674 remaining_size = size;
1675
1676 for (i = 0; i < nr_iovecs; i++) {
1677 page = mempool_alloc(&cc->page_pool, gfp_mask);
1678 if (!page) {
1679 crypt_free_buffer_pages(cc, clone);
1680 bio_put(clone);
1681 gfp_mask |= __GFP_DIRECT_RECLAIM;
1682 goto retry;
1683 }
1684
1685 len = (remaining_size > PAGE_SIZE) ? PAGE_SIZE : remaining_size;
1686
1687 bio_add_page(clone, page, len, 0);
1688
1689 remaining_size -= len;
1690 }
1691
1692 /* Allocate space for integrity tags */
1693 if (dm_crypt_integrity_io_alloc(io, clone)) {
1694 crypt_free_buffer_pages(cc, clone);
1695 bio_put(clone);
1696 clone = NULL;
1697 }
1698 out:
1699 if (unlikely(gfp_mask & __GFP_DIRECT_RECLAIM))
1700 mutex_unlock(&cc->bio_alloc_lock);
1701
1702 return clone;
1703 }
1704
crypt_free_buffer_pages(struct crypt_config * cc,struct bio * clone)1705 static void crypt_free_buffer_pages(struct crypt_config *cc, struct bio *clone)
1706 {
1707 struct bio_vec *bv;
1708 struct bvec_iter_all iter_all;
1709
1710 bio_for_each_segment_all(bv, clone, iter_all) {
1711 BUG_ON(!bv->bv_page);
1712 mempool_free(bv->bv_page, &cc->page_pool);
1713 }
1714 }
1715
crypt_io_init(struct dm_crypt_io * io,struct crypt_config * cc,struct bio * bio,sector_t sector)1716 static void crypt_io_init(struct dm_crypt_io *io, struct crypt_config *cc,
1717 struct bio *bio, sector_t sector)
1718 {
1719 io->cc = cc;
1720 io->base_bio = bio;
1721 io->sector = sector;
1722 io->error = 0;
1723 io->ctx.r.req = NULL;
1724 io->integrity_metadata = NULL;
1725 io->integrity_metadata_from_pool = false;
1726 atomic_set(&io->io_pending, 0);
1727 }
1728
crypt_inc_pending(struct dm_crypt_io * io)1729 static void crypt_inc_pending(struct dm_crypt_io *io)
1730 {
1731 atomic_inc(&io->io_pending);
1732 }
1733
kcryptd_io_bio_endio(struct work_struct * work)1734 static void kcryptd_io_bio_endio(struct work_struct *work)
1735 {
1736 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1737 bio_endio(io->base_bio);
1738 }
1739
1740 /*
1741 * One of the bios was finished. Check for completion of
1742 * the whole request and correctly clean up the buffer.
1743 */
crypt_dec_pending(struct dm_crypt_io * io)1744 static void crypt_dec_pending(struct dm_crypt_io *io)
1745 {
1746 struct crypt_config *cc = io->cc;
1747 struct bio *base_bio = io->base_bio;
1748 blk_status_t error = io->error;
1749
1750 if (!atomic_dec_and_test(&io->io_pending))
1751 return;
1752
1753 if (io->ctx.r.req)
1754 crypt_free_req(cc, io->ctx.r.req, base_bio);
1755
1756 if (unlikely(io->integrity_metadata_from_pool))
1757 mempool_free(io->integrity_metadata, &io->cc->tag_pool);
1758 else
1759 kfree(io->integrity_metadata);
1760
1761 base_bio->bi_status = error;
1762
1763 /*
1764 * If we are running this function from our tasklet,
1765 * we can't call bio_endio() here, because it will call
1766 * clone_endio() from dm.c, which in turn will
1767 * free the current struct dm_crypt_io structure with
1768 * our tasklet. In this case we need to delay bio_endio()
1769 * execution to after the tasklet is done and dequeued.
1770 */
1771 if (tasklet_trylock(&io->tasklet)) {
1772 tasklet_unlock(&io->tasklet);
1773 bio_endio(base_bio);
1774 return;
1775 }
1776
1777 INIT_WORK(&io->work, kcryptd_io_bio_endio);
1778 queue_work(cc->io_queue, &io->work);
1779 }
1780
1781 /*
1782 * kcryptd/kcryptd_io:
1783 *
1784 * Needed because it would be very unwise to do decryption in an
1785 * interrupt context.
1786 *
1787 * kcryptd performs the actual encryption or decryption.
1788 *
1789 * kcryptd_io performs the IO submission.
1790 *
1791 * They must be separated as otherwise the final stages could be
1792 * starved by new requests which can block in the first stages due
1793 * to memory allocation.
1794 *
1795 * The work is done per CPU global for all dm-crypt instances.
1796 * They should not depend on each other and do not block.
1797 */
crypt_endio(struct bio * clone)1798 static void crypt_endio(struct bio *clone)
1799 {
1800 struct dm_crypt_io *io = clone->bi_private;
1801 struct crypt_config *cc = io->cc;
1802 unsigned rw = bio_data_dir(clone);
1803 blk_status_t error;
1804
1805 /*
1806 * free the processed pages
1807 */
1808 if (rw == WRITE)
1809 crypt_free_buffer_pages(cc, clone);
1810
1811 error = clone->bi_status;
1812 bio_put(clone);
1813
1814 if (rw == READ && !error) {
1815 kcryptd_queue_crypt(io);
1816 return;
1817 }
1818
1819 if (unlikely(error))
1820 io->error = error;
1821
1822 crypt_dec_pending(io);
1823 }
1824
clone_init(struct dm_crypt_io * io,struct bio * clone)1825 static void clone_init(struct dm_crypt_io *io, struct bio *clone)
1826 {
1827 struct crypt_config *cc = io->cc;
1828
1829 clone->bi_private = io;
1830 clone->bi_end_io = crypt_endio;
1831 bio_set_dev(clone, cc->dev->bdev);
1832 clone->bi_opf = io->base_bio->bi_opf;
1833 }
1834
kcryptd_io_read(struct dm_crypt_io * io,gfp_t gfp)1835 static int kcryptd_io_read(struct dm_crypt_io *io, gfp_t gfp)
1836 {
1837 struct crypt_config *cc = io->cc;
1838 struct bio *clone;
1839
1840 /*
1841 * We need the original biovec array in order to decrypt
1842 * the whole bio data *afterwards* -- thanks to immutable
1843 * biovecs we don't need to worry about the block layer
1844 * modifying the biovec array; so leverage bio_clone_fast().
1845 */
1846 clone = bio_clone_fast(io->base_bio, gfp, &cc->bs);
1847 if (!clone)
1848 return 1;
1849
1850 crypt_inc_pending(io);
1851
1852 clone_init(io, clone);
1853 clone->bi_iter.bi_sector = cc->start + io->sector;
1854
1855 if (dm_crypt_integrity_io_alloc(io, clone)) {
1856 crypt_dec_pending(io);
1857 bio_put(clone);
1858 return 1;
1859 }
1860
1861 submit_bio_noacct(clone);
1862 return 0;
1863 }
1864
kcryptd_io_read_work(struct work_struct * work)1865 static void kcryptd_io_read_work(struct work_struct *work)
1866 {
1867 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
1868
1869 crypt_inc_pending(io);
1870 if (kcryptd_io_read(io, GFP_NOIO))
1871 io->error = BLK_STS_RESOURCE;
1872 crypt_dec_pending(io);
1873 }
1874
kcryptd_queue_read(struct dm_crypt_io * io)1875 static void kcryptd_queue_read(struct dm_crypt_io *io)
1876 {
1877 struct crypt_config *cc = io->cc;
1878
1879 INIT_WORK(&io->work, kcryptd_io_read_work);
1880 queue_work(cc->io_queue, &io->work);
1881 }
1882
kcryptd_io_write(struct dm_crypt_io * io)1883 static void kcryptd_io_write(struct dm_crypt_io *io)
1884 {
1885 struct bio *clone = io->ctx.bio_out;
1886
1887 submit_bio_noacct(clone);
1888 }
1889
1890 #define crypt_io_from_node(node) rb_entry((node), struct dm_crypt_io, rb_node)
1891
dmcrypt_write(void * data)1892 static int dmcrypt_write(void *data)
1893 {
1894 struct crypt_config *cc = data;
1895 struct dm_crypt_io *io;
1896
1897 while (1) {
1898 struct rb_root write_tree;
1899 struct blk_plug plug;
1900
1901 spin_lock_irq(&cc->write_thread_lock);
1902 continue_locked:
1903
1904 if (!RB_EMPTY_ROOT(&cc->write_tree))
1905 goto pop_from_list;
1906
1907 set_current_state(TASK_INTERRUPTIBLE);
1908
1909 spin_unlock_irq(&cc->write_thread_lock);
1910
1911 if (unlikely(kthread_should_stop())) {
1912 set_current_state(TASK_RUNNING);
1913 break;
1914 }
1915
1916 schedule();
1917
1918 set_current_state(TASK_RUNNING);
1919 spin_lock_irq(&cc->write_thread_lock);
1920 goto continue_locked;
1921
1922 pop_from_list:
1923 write_tree = cc->write_tree;
1924 cc->write_tree = RB_ROOT;
1925 spin_unlock_irq(&cc->write_thread_lock);
1926
1927 BUG_ON(rb_parent(write_tree.rb_node));
1928
1929 /*
1930 * Note: we cannot walk the tree here with rb_next because
1931 * the structures may be freed when kcryptd_io_write is called.
1932 */
1933 blk_start_plug(&plug);
1934 do {
1935 io = crypt_io_from_node(rb_first(&write_tree));
1936 rb_erase(&io->rb_node, &write_tree);
1937 kcryptd_io_write(io);
1938 } while (!RB_EMPTY_ROOT(&write_tree));
1939 blk_finish_plug(&plug);
1940 }
1941 return 0;
1942 }
1943
kcryptd_crypt_write_io_submit(struct dm_crypt_io * io,int async)1944 static void kcryptd_crypt_write_io_submit(struct dm_crypt_io *io, int async)
1945 {
1946 struct bio *clone = io->ctx.bio_out;
1947 struct crypt_config *cc = io->cc;
1948 unsigned long flags;
1949 sector_t sector;
1950 struct rb_node **rbp, *parent;
1951
1952 if (unlikely(io->error)) {
1953 crypt_free_buffer_pages(cc, clone);
1954 bio_put(clone);
1955 crypt_dec_pending(io);
1956 return;
1957 }
1958
1959 /* crypt_convert should have filled the clone bio */
1960 BUG_ON(io->ctx.iter_out.bi_size);
1961
1962 clone->bi_iter.bi_sector = cc->start + io->sector;
1963
1964 if ((likely(!async) && test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags)) ||
1965 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags)) {
1966 submit_bio_noacct(clone);
1967 return;
1968 }
1969
1970 spin_lock_irqsave(&cc->write_thread_lock, flags);
1971 if (RB_EMPTY_ROOT(&cc->write_tree))
1972 wake_up_process(cc->write_thread);
1973 rbp = &cc->write_tree.rb_node;
1974 parent = NULL;
1975 sector = io->sector;
1976 while (*rbp) {
1977 parent = *rbp;
1978 if (sector < crypt_io_from_node(parent)->sector)
1979 rbp = &(*rbp)->rb_left;
1980 else
1981 rbp = &(*rbp)->rb_right;
1982 }
1983 rb_link_node(&io->rb_node, parent, rbp);
1984 rb_insert_color(&io->rb_node, &cc->write_tree);
1985 spin_unlock_irqrestore(&cc->write_thread_lock, flags);
1986 }
1987
kcryptd_crypt_write_inline(struct crypt_config * cc,struct convert_context * ctx)1988 static bool kcryptd_crypt_write_inline(struct crypt_config *cc,
1989 struct convert_context *ctx)
1990
1991 {
1992 if (!test_bit(DM_CRYPT_WRITE_INLINE, &cc->flags))
1993 return false;
1994
1995 /*
1996 * Note: zone append writes (REQ_OP_ZONE_APPEND) do not have ordering
1997 * constraints so they do not need to be issued inline by
1998 * kcryptd_crypt_write_convert().
1999 */
2000 switch (bio_op(ctx->bio_in)) {
2001 case REQ_OP_WRITE:
2002 case REQ_OP_WRITE_SAME:
2003 case REQ_OP_WRITE_ZEROES:
2004 return true;
2005 default:
2006 return false;
2007 }
2008 }
2009
kcryptd_crypt_write_continue(struct work_struct * work)2010 static void kcryptd_crypt_write_continue(struct work_struct *work)
2011 {
2012 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2013 struct crypt_config *cc = io->cc;
2014 struct convert_context *ctx = &io->ctx;
2015 int crypt_finished;
2016 sector_t sector = io->sector;
2017 blk_status_t r;
2018
2019 wait_for_completion(&ctx->restart);
2020 reinit_completion(&ctx->restart);
2021
2022 r = crypt_convert(cc, &io->ctx, true, false);
2023 if (r)
2024 io->error = r;
2025 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2026 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2027 /* Wait for completion signaled by kcryptd_async_done() */
2028 wait_for_completion(&ctx->restart);
2029 crypt_finished = 1;
2030 }
2031
2032 /* Encryption was already finished, submit io now */
2033 if (crypt_finished) {
2034 kcryptd_crypt_write_io_submit(io, 0);
2035 io->sector = sector;
2036 }
2037
2038 crypt_dec_pending(io);
2039 }
2040
kcryptd_crypt_write_convert(struct dm_crypt_io * io)2041 static void kcryptd_crypt_write_convert(struct dm_crypt_io *io)
2042 {
2043 struct crypt_config *cc = io->cc;
2044 struct convert_context *ctx = &io->ctx;
2045 struct bio *clone;
2046 int crypt_finished;
2047 sector_t sector = io->sector;
2048 blk_status_t r;
2049
2050 /*
2051 * Prevent io from disappearing until this function completes.
2052 */
2053 crypt_inc_pending(io);
2054 crypt_convert_init(cc, ctx, NULL, io->base_bio, sector);
2055
2056 clone = crypt_alloc_buffer(io, io->base_bio->bi_iter.bi_size);
2057 if (unlikely(!clone)) {
2058 io->error = BLK_STS_IOERR;
2059 goto dec;
2060 }
2061
2062 io->ctx.bio_out = clone;
2063 io->ctx.iter_out = clone->bi_iter;
2064
2065 sector += bio_sectors(clone);
2066
2067 crypt_inc_pending(io);
2068 r = crypt_convert(cc, ctx,
2069 test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags), true);
2070 /*
2071 * Crypto API backlogged the request, because its queue was full
2072 * and we're in softirq context, so continue from a workqueue
2073 * (TODO: is it actually possible to be in softirq in the write path?)
2074 */
2075 if (r == BLK_STS_DEV_RESOURCE) {
2076 INIT_WORK(&io->work, kcryptd_crypt_write_continue);
2077 queue_work(cc->crypt_queue, &io->work);
2078 return;
2079 }
2080 if (r)
2081 io->error = r;
2082 crypt_finished = atomic_dec_and_test(&ctx->cc_pending);
2083 if (!crypt_finished && kcryptd_crypt_write_inline(cc, ctx)) {
2084 /* Wait for completion signaled by kcryptd_async_done() */
2085 wait_for_completion(&ctx->restart);
2086 crypt_finished = 1;
2087 }
2088
2089 /* Encryption was already finished, submit io now */
2090 if (crypt_finished) {
2091 kcryptd_crypt_write_io_submit(io, 0);
2092 io->sector = sector;
2093 }
2094
2095 dec:
2096 crypt_dec_pending(io);
2097 }
2098
kcryptd_crypt_read_done(struct dm_crypt_io * io)2099 static void kcryptd_crypt_read_done(struct dm_crypt_io *io)
2100 {
2101 crypt_dec_pending(io);
2102 }
2103
kcryptd_crypt_read_continue(struct work_struct * work)2104 static void kcryptd_crypt_read_continue(struct work_struct *work)
2105 {
2106 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2107 struct crypt_config *cc = io->cc;
2108 blk_status_t r;
2109
2110 wait_for_completion(&io->ctx.restart);
2111 reinit_completion(&io->ctx.restart);
2112
2113 r = crypt_convert(cc, &io->ctx, true, false);
2114 if (r)
2115 io->error = r;
2116
2117 if (atomic_dec_and_test(&io->ctx.cc_pending))
2118 kcryptd_crypt_read_done(io);
2119
2120 crypt_dec_pending(io);
2121 }
2122
kcryptd_crypt_read_convert(struct dm_crypt_io * io)2123 static void kcryptd_crypt_read_convert(struct dm_crypt_io *io)
2124 {
2125 struct crypt_config *cc = io->cc;
2126 blk_status_t r;
2127
2128 crypt_inc_pending(io);
2129
2130 crypt_convert_init(cc, &io->ctx, io->base_bio, io->base_bio,
2131 io->sector);
2132
2133 r = crypt_convert(cc, &io->ctx,
2134 test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags), true);
2135 /*
2136 * Crypto API backlogged the request, because its queue was full
2137 * and we're in softirq context, so continue from a workqueue
2138 */
2139 if (r == BLK_STS_DEV_RESOURCE) {
2140 INIT_WORK(&io->work, kcryptd_crypt_read_continue);
2141 queue_work(cc->crypt_queue, &io->work);
2142 return;
2143 }
2144 if (r)
2145 io->error = r;
2146
2147 if (atomic_dec_and_test(&io->ctx.cc_pending))
2148 kcryptd_crypt_read_done(io);
2149
2150 crypt_dec_pending(io);
2151 }
2152
kcryptd_async_done(struct crypto_async_request * async_req,int error)2153 static void kcryptd_async_done(struct crypto_async_request *async_req,
2154 int error)
2155 {
2156 struct dm_crypt_request *dmreq = async_req->data;
2157 struct convert_context *ctx = dmreq->ctx;
2158 struct dm_crypt_io *io = container_of(ctx, struct dm_crypt_io, ctx);
2159 struct crypt_config *cc = io->cc;
2160
2161 /*
2162 * A request from crypto driver backlog is going to be processed now,
2163 * finish the completion and continue in crypt_convert().
2164 * (Callback will be called for the second time for this request.)
2165 */
2166 if (error == -EINPROGRESS) {
2167 complete(&ctx->restart);
2168 return;
2169 }
2170
2171 if (!error && cc->iv_gen_ops && cc->iv_gen_ops->post)
2172 error = cc->iv_gen_ops->post(cc, org_iv_of_dmreq(cc, dmreq), dmreq);
2173
2174 if (error == -EBADMSG) {
2175 char b[BDEVNAME_SIZE];
2176 DMERR_LIMIT("%s: INTEGRITY AEAD ERROR, sector %llu", bio_devname(ctx->bio_in, b),
2177 (unsigned long long)le64_to_cpu(*org_sector_of_dmreq(cc, dmreq)));
2178 io->error = BLK_STS_PROTECTION;
2179 } else if (error < 0)
2180 io->error = BLK_STS_IOERR;
2181
2182 crypt_free_req(cc, req_of_dmreq(cc, dmreq), io->base_bio);
2183
2184 if (!atomic_dec_and_test(&ctx->cc_pending))
2185 return;
2186
2187 /*
2188 * The request is fully completed: for inline writes, let
2189 * kcryptd_crypt_write_convert() do the IO submission.
2190 */
2191 if (bio_data_dir(io->base_bio) == READ) {
2192 kcryptd_crypt_read_done(io);
2193 return;
2194 }
2195
2196 if (kcryptd_crypt_write_inline(cc, ctx)) {
2197 complete(&ctx->restart);
2198 return;
2199 }
2200
2201 kcryptd_crypt_write_io_submit(io, 1);
2202 }
2203
kcryptd_crypt(struct work_struct * work)2204 static void kcryptd_crypt(struct work_struct *work)
2205 {
2206 struct dm_crypt_io *io = container_of(work, struct dm_crypt_io, work);
2207
2208 if (bio_data_dir(io->base_bio) == READ)
2209 kcryptd_crypt_read_convert(io);
2210 else
2211 kcryptd_crypt_write_convert(io);
2212 }
2213
kcryptd_crypt_tasklet(unsigned long work)2214 static void kcryptd_crypt_tasklet(unsigned long work)
2215 {
2216 kcryptd_crypt((struct work_struct *)work);
2217 }
2218
kcryptd_queue_crypt(struct dm_crypt_io * io)2219 static void kcryptd_queue_crypt(struct dm_crypt_io *io)
2220 {
2221 struct crypt_config *cc = io->cc;
2222
2223 if ((bio_data_dir(io->base_bio) == READ && test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags)) ||
2224 (bio_data_dir(io->base_bio) == WRITE && test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))) {
2225 /*
2226 * in_hardirq(): Crypto API's skcipher_walk_first() refuses to work in hard IRQ context.
2227 * irqs_disabled(): the kernel may run some IO completion from the idle thread, but
2228 * it is being executed with irqs disabled.
2229 */
2230 if (in_hardirq() || irqs_disabled()) {
2231 tasklet_init(&io->tasklet, kcryptd_crypt_tasklet, (unsigned long)&io->work);
2232 tasklet_schedule(&io->tasklet);
2233 return;
2234 }
2235
2236 kcryptd_crypt(&io->work);
2237 return;
2238 }
2239
2240 INIT_WORK(&io->work, kcryptd_crypt);
2241 queue_work(cc->crypt_queue, &io->work);
2242 }
2243
crypt_free_tfms_aead(struct crypt_config * cc)2244 static void crypt_free_tfms_aead(struct crypt_config *cc)
2245 {
2246 if (!cc->cipher_tfm.tfms_aead)
2247 return;
2248
2249 if (cc->cipher_tfm.tfms_aead[0] && !IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2250 crypto_free_aead(cc->cipher_tfm.tfms_aead[0]);
2251 cc->cipher_tfm.tfms_aead[0] = NULL;
2252 }
2253
2254 kfree(cc->cipher_tfm.tfms_aead);
2255 cc->cipher_tfm.tfms_aead = NULL;
2256 }
2257
crypt_free_tfms_skcipher(struct crypt_config * cc)2258 static void crypt_free_tfms_skcipher(struct crypt_config *cc)
2259 {
2260 unsigned i;
2261
2262 if (!cc->cipher_tfm.tfms)
2263 return;
2264
2265 for (i = 0; i < cc->tfms_count; i++)
2266 if (cc->cipher_tfm.tfms[i] && !IS_ERR(cc->cipher_tfm.tfms[i])) {
2267 crypto_free_skcipher(cc->cipher_tfm.tfms[i]);
2268 cc->cipher_tfm.tfms[i] = NULL;
2269 }
2270
2271 kfree(cc->cipher_tfm.tfms);
2272 cc->cipher_tfm.tfms = NULL;
2273 }
2274
crypt_free_tfms(struct crypt_config * cc)2275 static void crypt_free_tfms(struct crypt_config *cc)
2276 {
2277 if (crypt_integrity_aead(cc))
2278 crypt_free_tfms_aead(cc);
2279 else
2280 crypt_free_tfms_skcipher(cc);
2281 }
2282
crypt_alloc_tfms_skcipher(struct crypt_config * cc,char * ciphermode)2283 static int crypt_alloc_tfms_skcipher(struct crypt_config *cc, char *ciphermode)
2284 {
2285 unsigned i;
2286 int err;
2287
2288 cc->cipher_tfm.tfms = kcalloc(cc->tfms_count,
2289 sizeof(struct crypto_skcipher *),
2290 GFP_KERNEL);
2291 if (!cc->cipher_tfm.tfms)
2292 return -ENOMEM;
2293
2294 for (i = 0; i < cc->tfms_count; i++) {
2295 cc->cipher_tfm.tfms[i] = crypto_alloc_skcipher(ciphermode, 0,
2296 CRYPTO_ALG_ALLOCATES_MEMORY);
2297 if (IS_ERR(cc->cipher_tfm.tfms[i])) {
2298 err = PTR_ERR(cc->cipher_tfm.tfms[i]);
2299 crypt_free_tfms(cc);
2300 return err;
2301 }
2302 }
2303
2304 /*
2305 * dm-crypt performance can vary greatly depending on which crypto
2306 * algorithm implementation is used. Help people debug performance
2307 * problems by logging the ->cra_driver_name.
2308 */
2309 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2310 crypto_skcipher_alg(any_tfm(cc))->base.cra_driver_name);
2311 return 0;
2312 }
2313
crypt_alloc_tfms_aead(struct crypt_config * cc,char * ciphermode)2314 static int crypt_alloc_tfms_aead(struct crypt_config *cc, char *ciphermode)
2315 {
2316 int err;
2317
2318 cc->cipher_tfm.tfms = kmalloc(sizeof(struct crypto_aead *), GFP_KERNEL);
2319 if (!cc->cipher_tfm.tfms)
2320 return -ENOMEM;
2321
2322 cc->cipher_tfm.tfms_aead[0] = crypto_alloc_aead(ciphermode, 0,
2323 CRYPTO_ALG_ALLOCATES_MEMORY);
2324 if (IS_ERR(cc->cipher_tfm.tfms_aead[0])) {
2325 err = PTR_ERR(cc->cipher_tfm.tfms_aead[0]);
2326 crypt_free_tfms(cc);
2327 return err;
2328 }
2329
2330 DMDEBUG_LIMIT("%s using implementation \"%s\"", ciphermode,
2331 crypto_aead_alg(any_tfm_aead(cc))->base.cra_driver_name);
2332 return 0;
2333 }
2334
crypt_alloc_tfms(struct crypt_config * cc,char * ciphermode)2335 static int crypt_alloc_tfms(struct crypt_config *cc, char *ciphermode)
2336 {
2337 if (crypt_integrity_aead(cc))
2338 return crypt_alloc_tfms_aead(cc, ciphermode);
2339 else
2340 return crypt_alloc_tfms_skcipher(cc, ciphermode);
2341 }
2342
crypt_subkey_size(struct crypt_config * cc)2343 static unsigned crypt_subkey_size(struct crypt_config *cc)
2344 {
2345 return (cc->key_size - cc->key_extra_size) >> ilog2(cc->tfms_count);
2346 }
2347
crypt_authenckey_size(struct crypt_config * cc)2348 static unsigned crypt_authenckey_size(struct crypt_config *cc)
2349 {
2350 return crypt_subkey_size(cc) + RTA_SPACE(sizeof(struct crypto_authenc_key_param));
2351 }
2352
2353 /*
2354 * If AEAD is composed like authenc(hmac(sha256),xts(aes)),
2355 * the key must be for some reason in special format.
2356 * This funcion converts cc->key to this special format.
2357 */
crypt_copy_authenckey(char * p,const void * key,unsigned enckeylen,unsigned authkeylen)2358 static void crypt_copy_authenckey(char *p, const void *key,
2359 unsigned enckeylen, unsigned authkeylen)
2360 {
2361 struct crypto_authenc_key_param *param;
2362 struct rtattr *rta;
2363
2364 rta = (struct rtattr *)p;
2365 param = RTA_DATA(rta);
2366 param->enckeylen = cpu_to_be32(enckeylen);
2367 rta->rta_len = RTA_LENGTH(sizeof(*param));
2368 rta->rta_type = CRYPTO_AUTHENC_KEYA_PARAM;
2369 p += RTA_SPACE(sizeof(*param));
2370 memcpy(p, key + enckeylen, authkeylen);
2371 p += authkeylen;
2372 memcpy(p, key, enckeylen);
2373 }
2374
crypt_setkey(struct crypt_config * cc)2375 static int crypt_setkey(struct crypt_config *cc)
2376 {
2377 unsigned subkey_size;
2378 int err = 0, i, r;
2379
2380 /* Ignore extra keys (which are used for IV etc) */
2381 subkey_size = crypt_subkey_size(cc);
2382
2383 if (crypt_integrity_hmac(cc)) {
2384 if (subkey_size < cc->key_mac_size)
2385 return -EINVAL;
2386
2387 crypt_copy_authenckey(cc->authenc_key, cc->key,
2388 subkey_size - cc->key_mac_size,
2389 cc->key_mac_size);
2390 }
2391
2392 for (i = 0; i < cc->tfms_count; i++) {
2393 if (crypt_integrity_hmac(cc))
2394 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2395 cc->authenc_key, crypt_authenckey_size(cc));
2396 else if (crypt_integrity_aead(cc))
2397 r = crypto_aead_setkey(cc->cipher_tfm.tfms_aead[i],
2398 cc->key + (i * subkey_size),
2399 subkey_size);
2400 else
2401 r = crypto_skcipher_setkey(cc->cipher_tfm.tfms[i],
2402 cc->key + (i * subkey_size),
2403 subkey_size);
2404 if (r)
2405 err = r;
2406 }
2407
2408 if (crypt_integrity_hmac(cc))
2409 memzero_explicit(cc->authenc_key, crypt_authenckey_size(cc));
2410
2411 return err;
2412 }
2413
2414 #ifdef CONFIG_KEYS
2415
contains_whitespace(const char * str)2416 static bool contains_whitespace(const char *str)
2417 {
2418 while (*str)
2419 if (isspace(*str++))
2420 return true;
2421 return false;
2422 }
2423
set_key_user(struct crypt_config * cc,struct key * key)2424 static int set_key_user(struct crypt_config *cc, struct key *key)
2425 {
2426 const struct user_key_payload *ukp;
2427
2428 ukp = user_key_payload_locked(key);
2429 if (!ukp)
2430 return -EKEYREVOKED;
2431
2432 if (cc->key_size != ukp->datalen)
2433 return -EINVAL;
2434
2435 memcpy(cc->key, ukp->data, cc->key_size);
2436
2437 return 0;
2438 }
2439
set_key_encrypted(struct crypt_config * cc,struct key * key)2440 static int set_key_encrypted(struct crypt_config *cc, struct key *key)
2441 {
2442 const struct encrypted_key_payload *ekp;
2443
2444 ekp = key->payload.data[0];
2445 if (!ekp)
2446 return -EKEYREVOKED;
2447
2448 if (cc->key_size != ekp->decrypted_datalen)
2449 return -EINVAL;
2450
2451 memcpy(cc->key, ekp->decrypted_data, cc->key_size);
2452
2453 return 0;
2454 }
2455
set_key_trusted(struct crypt_config * cc,struct key * key)2456 static int set_key_trusted(struct crypt_config *cc, struct key *key)
2457 {
2458 const struct trusted_key_payload *tkp;
2459
2460 tkp = key->payload.data[0];
2461 if (!tkp)
2462 return -EKEYREVOKED;
2463
2464 if (cc->key_size != tkp->key_len)
2465 return -EINVAL;
2466
2467 memcpy(cc->key, tkp->key, cc->key_size);
2468
2469 return 0;
2470 }
2471
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2472 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2473 {
2474 char *new_key_string, *key_desc;
2475 int ret;
2476 struct key_type *type;
2477 struct key *key;
2478 int (*set_key)(struct crypt_config *cc, struct key *key);
2479
2480 /*
2481 * Reject key_string with whitespace. dm core currently lacks code for
2482 * proper whitespace escaping in arguments on DM_TABLE_STATUS path.
2483 */
2484 if (contains_whitespace(key_string)) {
2485 DMERR("whitespace chars not allowed in key string");
2486 return -EINVAL;
2487 }
2488
2489 /* look for next ':' separating key_type from key_description */
2490 key_desc = strpbrk(key_string, ":");
2491 if (!key_desc || key_desc == key_string || !strlen(key_desc + 1))
2492 return -EINVAL;
2493
2494 if (!strncmp(key_string, "logon:", key_desc - key_string + 1)) {
2495 type = &key_type_logon;
2496 set_key = set_key_user;
2497 } else if (!strncmp(key_string, "user:", key_desc - key_string + 1)) {
2498 type = &key_type_user;
2499 set_key = set_key_user;
2500 } else if (IS_ENABLED(CONFIG_ENCRYPTED_KEYS) &&
2501 !strncmp(key_string, "encrypted:", key_desc - key_string + 1)) {
2502 type = &key_type_encrypted;
2503 set_key = set_key_encrypted;
2504 } else if (IS_ENABLED(CONFIG_TRUSTED_KEYS) &&
2505 !strncmp(key_string, "trusted:", key_desc - key_string + 1)) {
2506 type = &key_type_trusted;
2507 set_key = set_key_trusted;
2508 } else {
2509 return -EINVAL;
2510 }
2511
2512 new_key_string = kstrdup(key_string, GFP_KERNEL);
2513 if (!new_key_string)
2514 return -ENOMEM;
2515
2516 key = request_key(type, key_desc + 1, NULL);
2517 if (IS_ERR(key)) {
2518 kfree_sensitive(new_key_string);
2519 return PTR_ERR(key);
2520 }
2521
2522 down_read(&key->sem);
2523
2524 ret = set_key(cc, key);
2525 if (ret < 0) {
2526 up_read(&key->sem);
2527 key_put(key);
2528 kfree_sensitive(new_key_string);
2529 return ret;
2530 }
2531
2532 up_read(&key->sem);
2533 key_put(key);
2534
2535 /* clear the flag since following operations may invalidate previously valid key */
2536 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2537
2538 ret = crypt_setkey(cc);
2539
2540 if (!ret) {
2541 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2542 kfree_sensitive(cc->key_string);
2543 cc->key_string = new_key_string;
2544 } else
2545 kfree_sensitive(new_key_string);
2546
2547 return ret;
2548 }
2549
get_key_size(char ** key_string)2550 static int get_key_size(char **key_string)
2551 {
2552 char *colon, dummy;
2553 int ret;
2554
2555 if (*key_string[0] != ':')
2556 return strlen(*key_string) >> 1;
2557
2558 /* look for next ':' in key string */
2559 colon = strpbrk(*key_string + 1, ":");
2560 if (!colon)
2561 return -EINVAL;
2562
2563 if (sscanf(*key_string + 1, "%u%c", &ret, &dummy) != 2 || dummy != ':')
2564 return -EINVAL;
2565
2566 *key_string = colon;
2567
2568 /* remaining key string should be :<logon|user>:<key_desc> */
2569
2570 return ret;
2571 }
2572
2573 #else
2574
crypt_set_keyring_key(struct crypt_config * cc,const char * key_string)2575 static int crypt_set_keyring_key(struct crypt_config *cc, const char *key_string)
2576 {
2577 return -EINVAL;
2578 }
2579
get_key_size(char ** key_string)2580 static int get_key_size(char **key_string)
2581 {
2582 return (*key_string[0] == ':') ? -EINVAL : strlen(*key_string) >> 1;
2583 }
2584
2585 #endif /* CONFIG_KEYS */
2586
crypt_set_key(struct crypt_config * cc,char * key)2587 static int crypt_set_key(struct crypt_config *cc, char *key)
2588 {
2589 int r = -EINVAL;
2590 int key_string_len = strlen(key);
2591
2592 /* Hyphen (which gives a key_size of zero) means there is no key. */
2593 if (!cc->key_size && strcmp(key, "-"))
2594 goto out;
2595
2596 /* ':' means the key is in kernel keyring, short-circuit normal key processing */
2597 if (key[0] == ':') {
2598 r = crypt_set_keyring_key(cc, key + 1);
2599 goto out;
2600 }
2601
2602 /* clear the flag since following operations may invalidate previously valid key */
2603 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2604
2605 /* wipe references to any kernel keyring key */
2606 kfree_sensitive(cc->key_string);
2607 cc->key_string = NULL;
2608
2609 /* Decode key from its hex representation. */
2610 if (cc->key_size && hex2bin(cc->key, key, cc->key_size) < 0)
2611 goto out;
2612
2613 r = crypt_setkey(cc);
2614 if (!r)
2615 set_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2616
2617 out:
2618 /* Hex key string not needed after here, so wipe it. */
2619 memset(key, '0', key_string_len);
2620
2621 return r;
2622 }
2623
crypt_wipe_key(struct crypt_config * cc)2624 static int crypt_wipe_key(struct crypt_config *cc)
2625 {
2626 int r;
2627
2628 clear_bit(DM_CRYPT_KEY_VALID, &cc->flags);
2629 get_random_bytes(&cc->key, cc->key_size);
2630
2631 /* Wipe IV private keys */
2632 if (cc->iv_gen_ops && cc->iv_gen_ops->wipe) {
2633 r = cc->iv_gen_ops->wipe(cc);
2634 if (r)
2635 return r;
2636 }
2637
2638 kfree_sensitive(cc->key_string);
2639 cc->key_string = NULL;
2640 r = crypt_setkey(cc);
2641 memset(&cc->key, 0, cc->key_size * sizeof(u8));
2642
2643 return r;
2644 }
2645
crypt_calculate_pages_per_client(void)2646 static void crypt_calculate_pages_per_client(void)
2647 {
2648 unsigned long pages = (totalram_pages() - totalhigh_pages()) * DM_CRYPT_MEMORY_PERCENT / 100;
2649
2650 if (!dm_crypt_clients_n)
2651 return;
2652
2653 pages /= dm_crypt_clients_n;
2654 if (pages < DM_CRYPT_MIN_PAGES_PER_CLIENT)
2655 pages = DM_CRYPT_MIN_PAGES_PER_CLIENT;
2656 dm_crypt_pages_per_client = pages;
2657 }
2658
crypt_page_alloc(gfp_t gfp_mask,void * pool_data)2659 static void *crypt_page_alloc(gfp_t gfp_mask, void *pool_data)
2660 {
2661 struct crypt_config *cc = pool_data;
2662 struct page *page;
2663
2664 /*
2665 * Note, percpu_counter_read_positive() may over (and under) estimate
2666 * the current usage by at most (batch - 1) * num_online_cpus() pages,
2667 * but avoids potential spinlock contention of an exact result.
2668 */
2669 if (unlikely(percpu_counter_read_positive(&cc->n_allocated_pages) >= dm_crypt_pages_per_client) &&
2670 likely(gfp_mask & __GFP_NORETRY))
2671 return NULL;
2672
2673 page = alloc_page(gfp_mask);
2674 if (likely(page != NULL))
2675 percpu_counter_add(&cc->n_allocated_pages, 1);
2676
2677 return page;
2678 }
2679
crypt_page_free(void * page,void * pool_data)2680 static void crypt_page_free(void *page, void *pool_data)
2681 {
2682 struct crypt_config *cc = pool_data;
2683
2684 __free_page(page);
2685 percpu_counter_sub(&cc->n_allocated_pages, 1);
2686 }
2687
crypt_dtr(struct dm_target * ti)2688 static void crypt_dtr(struct dm_target *ti)
2689 {
2690 struct crypt_config *cc = ti->private;
2691
2692 ti->private = NULL;
2693
2694 if (!cc)
2695 return;
2696
2697 if (cc->write_thread)
2698 kthread_stop(cc->write_thread);
2699
2700 if (cc->io_queue)
2701 destroy_workqueue(cc->io_queue);
2702 if (cc->crypt_queue)
2703 destroy_workqueue(cc->crypt_queue);
2704
2705 crypt_free_tfms(cc);
2706
2707 bioset_exit(&cc->bs);
2708
2709 mempool_exit(&cc->page_pool);
2710 mempool_exit(&cc->req_pool);
2711 mempool_exit(&cc->tag_pool);
2712
2713 WARN_ON(percpu_counter_sum(&cc->n_allocated_pages) != 0);
2714 percpu_counter_destroy(&cc->n_allocated_pages);
2715
2716 if (cc->iv_gen_ops && cc->iv_gen_ops->dtr)
2717 cc->iv_gen_ops->dtr(cc);
2718
2719 if (cc->dev)
2720 dm_put_device(ti, cc->dev);
2721
2722 kfree_sensitive(cc->cipher_string);
2723 kfree_sensitive(cc->key_string);
2724 kfree_sensitive(cc->cipher_auth);
2725 kfree_sensitive(cc->authenc_key);
2726
2727 mutex_destroy(&cc->bio_alloc_lock);
2728
2729 /* Must zero key material before freeing */
2730 kfree_sensitive(cc);
2731
2732 spin_lock(&dm_crypt_clients_lock);
2733 WARN_ON(!dm_crypt_clients_n);
2734 dm_crypt_clients_n--;
2735 crypt_calculate_pages_per_client();
2736 spin_unlock(&dm_crypt_clients_lock);
2737 }
2738
crypt_ctr_ivmode(struct dm_target * ti,const char * ivmode)2739 static int crypt_ctr_ivmode(struct dm_target *ti, const char *ivmode)
2740 {
2741 struct crypt_config *cc = ti->private;
2742
2743 if (crypt_integrity_aead(cc))
2744 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2745 else
2746 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2747
2748 if (cc->iv_size)
2749 /* at least a 64 bit sector number should fit in our buffer */
2750 cc->iv_size = max(cc->iv_size,
2751 (unsigned int)(sizeof(u64) / sizeof(u8)));
2752 else if (ivmode) {
2753 DMWARN("Selected cipher does not support IVs");
2754 ivmode = NULL;
2755 }
2756
2757 /* Choose ivmode, see comments at iv code. */
2758 if (ivmode == NULL)
2759 cc->iv_gen_ops = NULL;
2760 else if (strcmp(ivmode, "plain") == 0)
2761 cc->iv_gen_ops = &crypt_iv_plain_ops;
2762 else if (strcmp(ivmode, "plain64") == 0)
2763 cc->iv_gen_ops = &crypt_iv_plain64_ops;
2764 else if (strcmp(ivmode, "plain64be") == 0)
2765 cc->iv_gen_ops = &crypt_iv_plain64be_ops;
2766 else if (strcmp(ivmode, "essiv") == 0)
2767 cc->iv_gen_ops = &crypt_iv_essiv_ops;
2768 else if (strcmp(ivmode, "benbi") == 0)
2769 cc->iv_gen_ops = &crypt_iv_benbi_ops;
2770 else if (strcmp(ivmode, "null") == 0)
2771 cc->iv_gen_ops = &crypt_iv_null_ops;
2772 else if (strcmp(ivmode, "eboiv") == 0)
2773 cc->iv_gen_ops = &crypt_iv_eboiv_ops;
2774 else if (strcmp(ivmode, "elephant") == 0) {
2775 cc->iv_gen_ops = &crypt_iv_elephant_ops;
2776 cc->key_parts = 2;
2777 cc->key_extra_size = cc->key_size / 2;
2778 if (cc->key_extra_size > ELEPHANT_MAX_KEY_SIZE)
2779 return -EINVAL;
2780 set_bit(CRYPT_ENCRYPT_PREPROCESS, &cc->cipher_flags);
2781 } else if (strcmp(ivmode, "lmk") == 0) {
2782 cc->iv_gen_ops = &crypt_iv_lmk_ops;
2783 /*
2784 * Version 2 and 3 is recognised according
2785 * to length of provided multi-key string.
2786 * If present (version 3), last key is used as IV seed.
2787 * All keys (including IV seed) are always the same size.
2788 */
2789 if (cc->key_size % cc->key_parts) {
2790 cc->key_parts++;
2791 cc->key_extra_size = cc->key_size / cc->key_parts;
2792 }
2793 } else if (strcmp(ivmode, "tcw") == 0) {
2794 cc->iv_gen_ops = &crypt_iv_tcw_ops;
2795 cc->key_parts += 2; /* IV + whitening */
2796 cc->key_extra_size = cc->iv_size + TCW_WHITENING_SIZE;
2797 } else if (strcmp(ivmode, "random") == 0) {
2798 cc->iv_gen_ops = &crypt_iv_random_ops;
2799 /* Need storage space in integrity fields. */
2800 cc->integrity_iv_size = cc->iv_size;
2801 } else {
2802 ti->error = "Invalid IV mode";
2803 return -EINVAL;
2804 }
2805
2806 return 0;
2807 }
2808
2809 /*
2810 * Workaround to parse HMAC algorithm from AEAD crypto API spec.
2811 * The HMAC is needed to calculate tag size (HMAC digest size).
2812 * This should be probably done by crypto-api calls (once available...)
2813 */
crypt_ctr_auth_cipher(struct crypt_config * cc,char * cipher_api)2814 static int crypt_ctr_auth_cipher(struct crypt_config *cc, char *cipher_api)
2815 {
2816 char *start, *end, *mac_alg = NULL;
2817 struct crypto_ahash *mac;
2818
2819 if (!strstarts(cipher_api, "authenc("))
2820 return 0;
2821
2822 start = strchr(cipher_api, '(');
2823 end = strchr(cipher_api, ',');
2824 if (!start || !end || ++start > end)
2825 return -EINVAL;
2826
2827 mac_alg = kzalloc(end - start + 1, GFP_KERNEL);
2828 if (!mac_alg)
2829 return -ENOMEM;
2830 strncpy(mac_alg, start, end - start);
2831
2832 mac = crypto_alloc_ahash(mac_alg, 0, CRYPTO_ALG_ALLOCATES_MEMORY);
2833 kfree(mac_alg);
2834
2835 if (IS_ERR(mac))
2836 return PTR_ERR(mac);
2837
2838 cc->key_mac_size = crypto_ahash_digestsize(mac);
2839 crypto_free_ahash(mac);
2840
2841 cc->authenc_key = kmalloc(crypt_authenckey_size(cc), GFP_KERNEL);
2842 if (!cc->authenc_key)
2843 return -ENOMEM;
2844
2845 return 0;
2846 }
2847
crypt_ctr_cipher_new(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2848 static int crypt_ctr_cipher_new(struct dm_target *ti, char *cipher_in, char *key,
2849 char **ivmode, char **ivopts)
2850 {
2851 struct crypt_config *cc = ti->private;
2852 char *tmp, *cipher_api, buf[CRYPTO_MAX_ALG_NAME];
2853 int ret = -EINVAL;
2854
2855 cc->tfms_count = 1;
2856
2857 /*
2858 * New format (capi: prefix)
2859 * capi:cipher_api_spec-iv:ivopts
2860 */
2861 tmp = &cipher_in[strlen("capi:")];
2862
2863 /* Separate IV options if present, it can contain another '-' in hash name */
2864 *ivopts = strrchr(tmp, ':');
2865 if (*ivopts) {
2866 **ivopts = '\0';
2867 (*ivopts)++;
2868 }
2869 /* Parse IV mode */
2870 *ivmode = strrchr(tmp, '-');
2871 if (*ivmode) {
2872 **ivmode = '\0';
2873 (*ivmode)++;
2874 }
2875 /* The rest is crypto API spec */
2876 cipher_api = tmp;
2877
2878 /* Alloc AEAD, can be used only in new format. */
2879 if (crypt_integrity_aead(cc)) {
2880 ret = crypt_ctr_auth_cipher(cc, cipher_api);
2881 if (ret < 0) {
2882 ti->error = "Invalid AEAD cipher spec";
2883 return -ENOMEM;
2884 }
2885 }
2886
2887 if (*ivmode && !strcmp(*ivmode, "lmk"))
2888 cc->tfms_count = 64;
2889
2890 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2891 if (!*ivopts) {
2892 ti->error = "Digest algorithm missing for ESSIV mode";
2893 return -EINVAL;
2894 }
2895 ret = snprintf(buf, CRYPTO_MAX_ALG_NAME, "essiv(%s,%s)",
2896 cipher_api, *ivopts);
2897 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2898 ti->error = "Cannot allocate cipher string";
2899 return -ENOMEM;
2900 }
2901 cipher_api = buf;
2902 }
2903
2904 cc->key_parts = cc->tfms_count;
2905
2906 /* Allocate cipher */
2907 ret = crypt_alloc_tfms(cc, cipher_api);
2908 if (ret < 0) {
2909 ti->error = "Error allocating crypto tfm";
2910 return ret;
2911 }
2912
2913 if (crypt_integrity_aead(cc))
2914 cc->iv_size = crypto_aead_ivsize(any_tfm_aead(cc));
2915 else
2916 cc->iv_size = crypto_skcipher_ivsize(any_tfm(cc));
2917
2918 return 0;
2919 }
2920
crypt_ctr_cipher_old(struct dm_target * ti,char * cipher_in,char * key,char ** ivmode,char ** ivopts)2921 static int crypt_ctr_cipher_old(struct dm_target *ti, char *cipher_in, char *key,
2922 char **ivmode, char **ivopts)
2923 {
2924 struct crypt_config *cc = ti->private;
2925 char *tmp, *cipher, *chainmode, *keycount;
2926 char *cipher_api = NULL;
2927 int ret = -EINVAL;
2928 char dummy;
2929
2930 if (strchr(cipher_in, '(') || crypt_integrity_aead(cc)) {
2931 ti->error = "Bad cipher specification";
2932 return -EINVAL;
2933 }
2934
2935 /*
2936 * Legacy dm-crypt cipher specification
2937 * cipher[:keycount]-mode-iv:ivopts
2938 */
2939 tmp = cipher_in;
2940 keycount = strsep(&tmp, "-");
2941 cipher = strsep(&keycount, ":");
2942
2943 if (!keycount)
2944 cc->tfms_count = 1;
2945 else if (sscanf(keycount, "%u%c", &cc->tfms_count, &dummy) != 1 ||
2946 !is_power_of_2(cc->tfms_count)) {
2947 ti->error = "Bad cipher key count specification";
2948 return -EINVAL;
2949 }
2950 cc->key_parts = cc->tfms_count;
2951
2952 chainmode = strsep(&tmp, "-");
2953 *ivmode = strsep(&tmp, ":");
2954 *ivopts = tmp;
2955
2956 /*
2957 * For compatibility with the original dm-crypt mapping format, if
2958 * only the cipher name is supplied, use cbc-plain.
2959 */
2960 if (!chainmode || (!strcmp(chainmode, "plain") && !*ivmode)) {
2961 chainmode = "cbc";
2962 *ivmode = "plain";
2963 }
2964
2965 if (strcmp(chainmode, "ecb") && !*ivmode) {
2966 ti->error = "IV mechanism required";
2967 return -EINVAL;
2968 }
2969
2970 cipher_api = kmalloc(CRYPTO_MAX_ALG_NAME, GFP_KERNEL);
2971 if (!cipher_api)
2972 goto bad_mem;
2973
2974 if (*ivmode && !strcmp(*ivmode, "essiv")) {
2975 if (!*ivopts) {
2976 ti->error = "Digest algorithm missing for ESSIV mode";
2977 kfree(cipher_api);
2978 return -EINVAL;
2979 }
2980 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2981 "essiv(%s(%s),%s)", chainmode, cipher, *ivopts);
2982 } else {
2983 ret = snprintf(cipher_api, CRYPTO_MAX_ALG_NAME,
2984 "%s(%s)", chainmode, cipher);
2985 }
2986 if (ret < 0 || ret >= CRYPTO_MAX_ALG_NAME) {
2987 kfree(cipher_api);
2988 goto bad_mem;
2989 }
2990
2991 /* Allocate cipher */
2992 ret = crypt_alloc_tfms(cc, cipher_api);
2993 if (ret < 0) {
2994 ti->error = "Error allocating crypto tfm";
2995 kfree(cipher_api);
2996 return ret;
2997 }
2998 kfree(cipher_api);
2999
3000 return 0;
3001 bad_mem:
3002 ti->error = "Cannot allocate cipher strings";
3003 return -ENOMEM;
3004 }
3005
crypt_ctr_cipher(struct dm_target * ti,char * cipher_in,char * key)3006 static int crypt_ctr_cipher(struct dm_target *ti, char *cipher_in, char *key)
3007 {
3008 struct crypt_config *cc = ti->private;
3009 char *ivmode = NULL, *ivopts = NULL;
3010 int ret;
3011
3012 cc->cipher_string = kstrdup(cipher_in, GFP_KERNEL);
3013 if (!cc->cipher_string) {
3014 ti->error = "Cannot allocate cipher strings";
3015 return -ENOMEM;
3016 }
3017
3018 if (strstarts(cipher_in, "capi:"))
3019 ret = crypt_ctr_cipher_new(ti, cipher_in, key, &ivmode, &ivopts);
3020 else
3021 ret = crypt_ctr_cipher_old(ti, cipher_in, key, &ivmode, &ivopts);
3022 if (ret)
3023 return ret;
3024
3025 /* Initialize IV */
3026 ret = crypt_ctr_ivmode(ti, ivmode);
3027 if (ret < 0)
3028 return ret;
3029
3030 /* Initialize and set key */
3031 ret = crypt_set_key(cc, key);
3032 if (ret < 0) {
3033 ti->error = "Error decoding and setting key";
3034 return ret;
3035 }
3036
3037 /* Allocate IV */
3038 if (cc->iv_gen_ops && cc->iv_gen_ops->ctr) {
3039 ret = cc->iv_gen_ops->ctr(cc, ti, ivopts);
3040 if (ret < 0) {
3041 ti->error = "Error creating IV";
3042 return ret;
3043 }
3044 }
3045
3046 /* Initialize IV (set keys for ESSIV etc) */
3047 if (cc->iv_gen_ops && cc->iv_gen_ops->init) {
3048 ret = cc->iv_gen_ops->init(cc);
3049 if (ret < 0) {
3050 ti->error = "Error initialising IV";
3051 return ret;
3052 }
3053 }
3054
3055 /* wipe the kernel key payload copy */
3056 if (cc->key_string)
3057 memset(cc->key, 0, cc->key_size * sizeof(u8));
3058
3059 return ret;
3060 }
3061
crypt_ctr_optional(struct dm_target * ti,unsigned int argc,char ** argv)3062 static int crypt_ctr_optional(struct dm_target *ti, unsigned int argc, char **argv)
3063 {
3064 struct crypt_config *cc = ti->private;
3065 struct dm_arg_set as;
3066 static const struct dm_arg _args[] = {
3067 {0, 8, "Invalid number of feature args"},
3068 };
3069 unsigned int opt_params, val;
3070 const char *opt_string, *sval;
3071 char dummy;
3072 int ret;
3073
3074 /* Optional parameters */
3075 as.argc = argc;
3076 as.argv = argv;
3077
3078 ret = dm_read_arg_group(_args, &as, &opt_params, &ti->error);
3079 if (ret)
3080 return ret;
3081
3082 while (opt_params--) {
3083 opt_string = dm_shift_arg(&as);
3084 if (!opt_string) {
3085 ti->error = "Not enough feature arguments";
3086 return -EINVAL;
3087 }
3088
3089 if (!strcasecmp(opt_string, "allow_discards"))
3090 ti->num_discard_bios = 1;
3091
3092 else if (!strcasecmp(opt_string, "same_cpu_crypt"))
3093 set_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3094
3095 else if (!strcasecmp(opt_string, "submit_from_crypt_cpus"))
3096 set_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3097 else if (!strcasecmp(opt_string, "no_read_workqueue"))
3098 set_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3099 else if (!strcasecmp(opt_string, "no_write_workqueue"))
3100 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3101 else if (sscanf(opt_string, "integrity:%u:", &val) == 1) {
3102 if (val == 0 || val > MAX_TAG_SIZE) {
3103 ti->error = "Invalid integrity arguments";
3104 return -EINVAL;
3105 }
3106 cc->on_disk_tag_size = val;
3107 sval = strchr(opt_string + strlen("integrity:"), ':') + 1;
3108 if (!strcasecmp(sval, "aead")) {
3109 set_bit(CRYPT_MODE_INTEGRITY_AEAD, &cc->cipher_flags);
3110 } else if (strcasecmp(sval, "none")) {
3111 ti->error = "Unknown integrity profile";
3112 return -EINVAL;
3113 }
3114
3115 cc->cipher_auth = kstrdup(sval, GFP_KERNEL);
3116 if (!cc->cipher_auth)
3117 return -ENOMEM;
3118 } else if (sscanf(opt_string, "sector_size:%hu%c", &cc->sector_size, &dummy) == 1) {
3119 if (cc->sector_size < (1 << SECTOR_SHIFT) ||
3120 cc->sector_size > 4096 ||
3121 (cc->sector_size & (cc->sector_size - 1))) {
3122 ti->error = "Invalid feature value for sector_size";
3123 return -EINVAL;
3124 }
3125 if (ti->len & ((cc->sector_size >> SECTOR_SHIFT) - 1)) {
3126 ti->error = "Device size is not multiple of sector_size feature";
3127 return -EINVAL;
3128 }
3129 cc->sector_shift = __ffs(cc->sector_size) - SECTOR_SHIFT;
3130 } else if (!strcasecmp(opt_string, "iv_large_sectors"))
3131 set_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3132 else {
3133 ti->error = "Invalid feature arguments";
3134 return -EINVAL;
3135 }
3136 }
3137
3138 return 0;
3139 }
3140
3141 #ifdef CONFIG_BLK_DEV_ZONED
crypt_report_zones(struct dm_target * ti,struct dm_report_zones_args * args,unsigned int nr_zones)3142 static int crypt_report_zones(struct dm_target *ti,
3143 struct dm_report_zones_args *args, unsigned int nr_zones)
3144 {
3145 struct crypt_config *cc = ti->private;
3146
3147 return dm_report_zones(cc->dev->bdev, cc->start,
3148 cc->start + dm_target_offset(ti, args->next_sector),
3149 args, nr_zones);
3150 }
3151 #else
3152 #define crypt_report_zones NULL
3153 #endif
3154
3155 /*
3156 * Construct an encryption mapping:
3157 * <cipher> [<key>|:<key_size>:<user|logon>:<key_description>] <iv_offset> <dev_path> <start>
3158 */
crypt_ctr(struct dm_target * ti,unsigned int argc,char ** argv)3159 static int crypt_ctr(struct dm_target *ti, unsigned int argc, char **argv)
3160 {
3161 struct crypt_config *cc;
3162 const char *devname = dm_table_device_name(ti->table);
3163 int key_size;
3164 unsigned int align_mask;
3165 unsigned long long tmpll;
3166 int ret;
3167 size_t iv_size_padding, additional_req_size;
3168 char dummy;
3169
3170 if (argc < 5) {
3171 ti->error = "Not enough arguments";
3172 return -EINVAL;
3173 }
3174
3175 key_size = get_key_size(&argv[1]);
3176 if (key_size < 0) {
3177 ti->error = "Cannot parse key size";
3178 return -EINVAL;
3179 }
3180
3181 cc = kzalloc(struct_size(cc, key, key_size), GFP_KERNEL);
3182 if (!cc) {
3183 ti->error = "Cannot allocate encryption context";
3184 return -ENOMEM;
3185 }
3186 cc->key_size = key_size;
3187 cc->sector_size = (1 << SECTOR_SHIFT);
3188 cc->sector_shift = 0;
3189
3190 ti->private = cc;
3191
3192 spin_lock(&dm_crypt_clients_lock);
3193 dm_crypt_clients_n++;
3194 crypt_calculate_pages_per_client();
3195 spin_unlock(&dm_crypt_clients_lock);
3196
3197 ret = percpu_counter_init(&cc->n_allocated_pages, 0, GFP_KERNEL);
3198 if (ret < 0)
3199 goto bad;
3200
3201 /* Optional parameters need to be read before cipher constructor */
3202 if (argc > 5) {
3203 ret = crypt_ctr_optional(ti, argc - 5, &argv[5]);
3204 if (ret)
3205 goto bad;
3206 }
3207
3208 ret = crypt_ctr_cipher(ti, argv[0], argv[1]);
3209 if (ret < 0)
3210 goto bad;
3211
3212 if (crypt_integrity_aead(cc)) {
3213 cc->dmreq_start = sizeof(struct aead_request);
3214 cc->dmreq_start += crypto_aead_reqsize(any_tfm_aead(cc));
3215 align_mask = crypto_aead_alignmask(any_tfm_aead(cc));
3216 } else {
3217 cc->dmreq_start = sizeof(struct skcipher_request);
3218 cc->dmreq_start += crypto_skcipher_reqsize(any_tfm(cc));
3219 align_mask = crypto_skcipher_alignmask(any_tfm(cc));
3220 }
3221 cc->dmreq_start = ALIGN(cc->dmreq_start, __alignof__(struct dm_crypt_request));
3222
3223 if (align_mask < CRYPTO_MINALIGN) {
3224 /* Allocate the padding exactly */
3225 iv_size_padding = -(cc->dmreq_start + sizeof(struct dm_crypt_request))
3226 & align_mask;
3227 } else {
3228 /*
3229 * If the cipher requires greater alignment than kmalloc
3230 * alignment, we don't know the exact position of the
3231 * initialization vector. We must assume worst case.
3232 */
3233 iv_size_padding = align_mask;
3234 }
3235
3236 /* ...| IV + padding | original IV | original sec. number | bio tag offset | */
3237 additional_req_size = sizeof(struct dm_crypt_request) +
3238 iv_size_padding + cc->iv_size +
3239 cc->iv_size +
3240 sizeof(uint64_t) +
3241 sizeof(unsigned int);
3242
3243 ret = mempool_init_kmalloc_pool(&cc->req_pool, MIN_IOS, cc->dmreq_start + additional_req_size);
3244 if (ret) {
3245 ti->error = "Cannot allocate crypt request mempool";
3246 goto bad;
3247 }
3248
3249 cc->per_bio_data_size = ti->per_io_data_size =
3250 ALIGN(sizeof(struct dm_crypt_io) + cc->dmreq_start + additional_req_size,
3251 ARCH_KMALLOC_MINALIGN);
3252
3253 ret = mempool_init(&cc->page_pool, BIO_MAX_VECS, crypt_page_alloc, crypt_page_free, cc);
3254 if (ret) {
3255 ti->error = "Cannot allocate page mempool";
3256 goto bad;
3257 }
3258
3259 ret = bioset_init(&cc->bs, MIN_IOS, 0, BIOSET_NEED_BVECS);
3260 if (ret) {
3261 ti->error = "Cannot allocate crypt bioset";
3262 goto bad;
3263 }
3264
3265 mutex_init(&cc->bio_alloc_lock);
3266
3267 ret = -EINVAL;
3268 if ((sscanf(argv[2], "%llu%c", &tmpll, &dummy) != 1) ||
3269 (tmpll & ((cc->sector_size >> SECTOR_SHIFT) - 1))) {
3270 ti->error = "Invalid iv_offset sector";
3271 goto bad;
3272 }
3273 cc->iv_offset = tmpll;
3274
3275 ret = dm_get_device(ti, argv[3], dm_table_get_mode(ti->table), &cc->dev);
3276 if (ret) {
3277 ti->error = "Device lookup failed";
3278 goto bad;
3279 }
3280
3281 ret = -EINVAL;
3282 if (sscanf(argv[4], "%llu%c", &tmpll, &dummy) != 1 || tmpll != (sector_t)tmpll) {
3283 ti->error = "Invalid device sector";
3284 goto bad;
3285 }
3286 cc->start = tmpll;
3287
3288 if (bdev_is_zoned(cc->dev->bdev)) {
3289 /*
3290 * For zoned block devices, we need to preserve the issuer write
3291 * ordering. To do so, disable write workqueues and force inline
3292 * encryption completion.
3293 */
3294 set_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3295 set_bit(DM_CRYPT_WRITE_INLINE, &cc->flags);
3296
3297 /*
3298 * All zone append writes to a zone of a zoned block device will
3299 * have the same BIO sector, the start of the zone. When the
3300 * cypher IV mode uses sector values, all data targeting a
3301 * zone will be encrypted using the first sector numbers of the
3302 * zone. This will not result in write errors but will
3303 * cause most reads to fail as reads will use the sector values
3304 * for the actual data locations, resulting in IV mismatch.
3305 * To avoid this problem, ask DM core to emulate zone append
3306 * operations with regular writes.
3307 */
3308 DMDEBUG("Zone append operations will be emulated");
3309 ti->emulate_zone_append = true;
3310 }
3311
3312 if (crypt_integrity_aead(cc) || cc->integrity_iv_size) {
3313 ret = crypt_integrity_ctr(cc, ti);
3314 if (ret)
3315 goto bad;
3316
3317 cc->tag_pool_max_sectors = POOL_ENTRY_SIZE / cc->on_disk_tag_size;
3318 if (!cc->tag_pool_max_sectors)
3319 cc->tag_pool_max_sectors = 1;
3320
3321 ret = mempool_init_kmalloc_pool(&cc->tag_pool, MIN_IOS,
3322 cc->tag_pool_max_sectors * cc->on_disk_tag_size);
3323 if (ret) {
3324 ti->error = "Cannot allocate integrity tags mempool";
3325 goto bad;
3326 }
3327
3328 cc->tag_pool_max_sectors <<= cc->sector_shift;
3329 }
3330
3331 ret = -ENOMEM;
3332 cc->io_queue = alloc_workqueue("kcryptd_io/%s", WQ_MEM_RECLAIM, 1, devname);
3333 if (!cc->io_queue) {
3334 ti->error = "Couldn't create kcryptd io queue";
3335 goto bad;
3336 }
3337
3338 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3339 cc->crypt_queue = alloc_workqueue("kcryptd/%s", WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM,
3340 1, devname);
3341 else
3342 cc->crypt_queue = alloc_workqueue("kcryptd/%s",
3343 WQ_CPU_INTENSIVE | WQ_MEM_RECLAIM | WQ_UNBOUND,
3344 num_online_cpus(), devname);
3345 if (!cc->crypt_queue) {
3346 ti->error = "Couldn't create kcryptd queue";
3347 goto bad;
3348 }
3349
3350 spin_lock_init(&cc->write_thread_lock);
3351 cc->write_tree = RB_ROOT;
3352
3353 cc->write_thread = kthread_create(dmcrypt_write, cc, "dmcrypt_write/%s", devname);
3354 if (IS_ERR(cc->write_thread)) {
3355 ret = PTR_ERR(cc->write_thread);
3356 cc->write_thread = NULL;
3357 ti->error = "Couldn't spawn write thread";
3358 goto bad;
3359 }
3360 wake_up_process(cc->write_thread);
3361
3362 ti->num_flush_bios = 1;
3363 ti->limit_swap_bios = true;
3364
3365 return 0;
3366
3367 bad:
3368 crypt_dtr(ti);
3369 return ret;
3370 }
3371
crypt_map(struct dm_target * ti,struct bio * bio)3372 static int crypt_map(struct dm_target *ti, struct bio *bio)
3373 {
3374 struct dm_crypt_io *io;
3375 struct crypt_config *cc = ti->private;
3376
3377 /*
3378 * If bio is REQ_PREFLUSH or REQ_OP_DISCARD, just bypass crypt queues.
3379 * - for REQ_PREFLUSH device-mapper core ensures that no IO is in-flight
3380 * - for REQ_OP_DISCARD caller must use flush if IO ordering matters
3381 */
3382 if (unlikely(bio->bi_opf & REQ_PREFLUSH ||
3383 bio_op(bio) == REQ_OP_DISCARD)) {
3384 bio_set_dev(bio, cc->dev->bdev);
3385 if (bio_sectors(bio))
3386 bio->bi_iter.bi_sector = cc->start +
3387 dm_target_offset(ti, bio->bi_iter.bi_sector);
3388 return DM_MAPIO_REMAPPED;
3389 }
3390
3391 /*
3392 * Check if bio is too large, split as needed.
3393 */
3394 if (unlikely(bio->bi_iter.bi_size > (BIO_MAX_VECS << PAGE_SHIFT)) &&
3395 (bio_data_dir(bio) == WRITE || cc->on_disk_tag_size))
3396 dm_accept_partial_bio(bio, ((BIO_MAX_VECS << PAGE_SHIFT) >> SECTOR_SHIFT));
3397
3398 /*
3399 * Ensure that bio is a multiple of internal sector encryption size
3400 * and is aligned to this size as defined in IO hints.
3401 */
3402 if (unlikely((bio->bi_iter.bi_sector & ((cc->sector_size >> SECTOR_SHIFT) - 1)) != 0))
3403 return DM_MAPIO_KILL;
3404
3405 if (unlikely(bio->bi_iter.bi_size & (cc->sector_size - 1)))
3406 return DM_MAPIO_KILL;
3407
3408 io = dm_per_bio_data(bio, cc->per_bio_data_size);
3409 crypt_io_init(io, cc, bio, dm_target_offset(ti, bio->bi_iter.bi_sector));
3410
3411 if (cc->on_disk_tag_size) {
3412 unsigned tag_len = cc->on_disk_tag_size * (bio_sectors(bio) >> cc->sector_shift);
3413
3414 if (unlikely(tag_len > KMALLOC_MAX_SIZE) ||
3415 unlikely(!(io->integrity_metadata = kmalloc(tag_len,
3416 GFP_NOIO | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN)))) {
3417 if (bio_sectors(bio) > cc->tag_pool_max_sectors)
3418 dm_accept_partial_bio(bio, cc->tag_pool_max_sectors);
3419 io->integrity_metadata = mempool_alloc(&cc->tag_pool, GFP_NOIO);
3420 io->integrity_metadata_from_pool = true;
3421 }
3422 }
3423
3424 if (crypt_integrity_aead(cc))
3425 io->ctx.r.req_aead = (struct aead_request *)(io + 1);
3426 else
3427 io->ctx.r.req = (struct skcipher_request *)(io + 1);
3428
3429 if (bio_data_dir(io->base_bio) == READ) {
3430 if (kcryptd_io_read(io, GFP_NOWAIT))
3431 kcryptd_queue_read(io);
3432 } else
3433 kcryptd_queue_crypt(io);
3434
3435 return DM_MAPIO_SUBMITTED;
3436 }
3437
crypt_status(struct dm_target * ti,status_type_t type,unsigned status_flags,char * result,unsigned maxlen)3438 static void crypt_status(struct dm_target *ti, status_type_t type,
3439 unsigned status_flags, char *result, unsigned maxlen)
3440 {
3441 struct crypt_config *cc = ti->private;
3442 unsigned i, sz = 0;
3443 int num_feature_args = 0;
3444
3445 switch (type) {
3446 case STATUSTYPE_INFO:
3447 result[0] = '\0';
3448 break;
3449
3450 case STATUSTYPE_TABLE:
3451 DMEMIT("%s ", cc->cipher_string);
3452
3453 if (cc->key_size > 0) {
3454 if (cc->key_string)
3455 DMEMIT(":%u:%s", cc->key_size, cc->key_string);
3456 else
3457 for (i = 0; i < cc->key_size; i++)
3458 DMEMIT("%02x", cc->key[i]);
3459 } else
3460 DMEMIT("-");
3461
3462 DMEMIT(" %llu %s %llu", (unsigned long long)cc->iv_offset,
3463 cc->dev->name, (unsigned long long)cc->start);
3464
3465 num_feature_args += !!ti->num_discard_bios;
3466 num_feature_args += test_bit(DM_CRYPT_SAME_CPU, &cc->flags);
3467 num_feature_args += test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags);
3468 num_feature_args += test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags);
3469 num_feature_args += test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags);
3470 num_feature_args += cc->sector_size != (1 << SECTOR_SHIFT);
3471 num_feature_args += test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags);
3472 if (cc->on_disk_tag_size)
3473 num_feature_args++;
3474 if (num_feature_args) {
3475 DMEMIT(" %d", num_feature_args);
3476 if (ti->num_discard_bios)
3477 DMEMIT(" allow_discards");
3478 if (test_bit(DM_CRYPT_SAME_CPU, &cc->flags))
3479 DMEMIT(" same_cpu_crypt");
3480 if (test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags))
3481 DMEMIT(" submit_from_crypt_cpus");
3482 if (test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags))
3483 DMEMIT(" no_read_workqueue");
3484 if (test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags))
3485 DMEMIT(" no_write_workqueue");
3486 if (cc->on_disk_tag_size)
3487 DMEMIT(" integrity:%u:%s", cc->on_disk_tag_size, cc->cipher_auth);
3488 if (cc->sector_size != (1 << SECTOR_SHIFT))
3489 DMEMIT(" sector_size:%d", cc->sector_size);
3490 if (test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags))
3491 DMEMIT(" iv_large_sectors");
3492 }
3493 break;
3494
3495 case STATUSTYPE_IMA:
3496 DMEMIT_TARGET_NAME_VERSION(ti->type);
3497 DMEMIT(",allow_discards=%c", ti->num_discard_bios ? 'y' : 'n');
3498 DMEMIT(",same_cpu_crypt=%c", test_bit(DM_CRYPT_SAME_CPU, &cc->flags) ? 'y' : 'n');
3499 DMEMIT(",submit_from_crypt_cpus=%c", test_bit(DM_CRYPT_NO_OFFLOAD, &cc->flags) ?
3500 'y' : 'n');
3501 DMEMIT(",no_read_workqueue=%c", test_bit(DM_CRYPT_NO_READ_WORKQUEUE, &cc->flags) ?
3502 'y' : 'n');
3503 DMEMIT(",no_write_workqueue=%c", test_bit(DM_CRYPT_NO_WRITE_WORKQUEUE, &cc->flags) ?
3504 'y' : 'n');
3505 DMEMIT(",iv_large_sectors=%c", test_bit(CRYPT_IV_LARGE_SECTORS, &cc->cipher_flags) ?
3506 'y' : 'n');
3507
3508 if (cc->on_disk_tag_size)
3509 DMEMIT(",integrity_tag_size=%u,cipher_auth=%s",
3510 cc->on_disk_tag_size, cc->cipher_auth);
3511 if (cc->sector_size != (1 << SECTOR_SHIFT))
3512 DMEMIT(",sector_size=%d", cc->sector_size);
3513 if (cc->cipher_string)
3514 DMEMIT(",cipher_string=%s", cc->cipher_string);
3515
3516 DMEMIT(",key_size=%u", cc->key_size);
3517 DMEMIT(",key_parts=%u", cc->key_parts);
3518 DMEMIT(",key_extra_size=%u", cc->key_extra_size);
3519 DMEMIT(",key_mac_size=%u", cc->key_mac_size);
3520 DMEMIT(";");
3521 break;
3522 }
3523 }
3524
crypt_postsuspend(struct dm_target * ti)3525 static void crypt_postsuspend(struct dm_target *ti)
3526 {
3527 struct crypt_config *cc = ti->private;
3528
3529 set_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3530 }
3531
crypt_preresume(struct dm_target * ti)3532 static int crypt_preresume(struct dm_target *ti)
3533 {
3534 struct crypt_config *cc = ti->private;
3535
3536 if (!test_bit(DM_CRYPT_KEY_VALID, &cc->flags)) {
3537 DMERR("aborting resume - crypt key is not set.");
3538 return -EAGAIN;
3539 }
3540
3541 return 0;
3542 }
3543
crypt_resume(struct dm_target * ti)3544 static void crypt_resume(struct dm_target *ti)
3545 {
3546 struct crypt_config *cc = ti->private;
3547
3548 clear_bit(DM_CRYPT_SUSPENDED, &cc->flags);
3549 }
3550
3551 /* Message interface
3552 * key set <key>
3553 * key wipe
3554 */
crypt_message(struct dm_target * ti,unsigned argc,char ** argv,char * result,unsigned maxlen)3555 static int crypt_message(struct dm_target *ti, unsigned argc, char **argv,
3556 char *result, unsigned maxlen)
3557 {
3558 struct crypt_config *cc = ti->private;
3559 int key_size, ret = -EINVAL;
3560
3561 if (argc < 2)
3562 goto error;
3563
3564 if (!strcasecmp(argv[0], "key")) {
3565 if (!test_bit(DM_CRYPT_SUSPENDED, &cc->flags)) {
3566 DMWARN("not suspended during key manipulation.");
3567 return -EINVAL;
3568 }
3569 if (argc == 3 && !strcasecmp(argv[1], "set")) {
3570 /* The key size may not be changed. */
3571 key_size = get_key_size(&argv[2]);
3572 if (key_size < 0 || cc->key_size != key_size) {
3573 memset(argv[2], '0', strlen(argv[2]));
3574 return -EINVAL;
3575 }
3576
3577 ret = crypt_set_key(cc, argv[2]);
3578 if (ret)
3579 return ret;
3580 if (cc->iv_gen_ops && cc->iv_gen_ops->init)
3581 ret = cc->iv_gen_ops->init(cc);
3582 /* wipe the kernel key payload copy */
3583 if (cc->key_string)
3584 memset(cc->key, 0, cc->key_size * sizeof(u8));
3585 return ret;
3586 }
3587 if (argc == 2 && !strcasecmp(argv[1], "wipe"))
3588 return crypt_wipe_key(cc);
3589 }
3590
3591 error:
3592 DMWARN("unrecognised message received.");
3593 return -EINVAL;
3594 }
3595
crypt_iterate_devices(struct dm_target * ti,iterate_devices_callout_fn fn,void * data)3596 static int crypt_iterate_devices(struct dm_target *ti,
3597 iterate_devices_callout_fn fn, void *data)
3598 {
3599 struct crypt_config *cc = ti->private;
3600
3601 return fn(ti, cc->dev, cc->start, ti->len, data);
3602 }
3603
crypt_io_hints(struct dm_target * ti,struct queue_limits * limits)3604 static void crypt_io_hints(struct dm_target *ti, struct queue_limits *limits)
3605 {
3606 struct crypt_config *cc = ti->private;
3607
3608 /*
3609 * Unfortunate constraint that is required to avoid the potential
3610 * for exceeding underlying device's max_segments limits -- due to
3611 * crypt_alloc_buffer() possibly allocating pages for the encryption
3612 * bio that are not as physically contiguous as the original bio.
3613 */
3614 limits->max_segment_size = PAGE_SIZE;
3615
3616 limits->logical_block_size =
3617 max_t(unsigned, limits->logical_block_size, cc->sector_size);
3618 limits->physical_block_size =
3619 max_t(unsigned, limits->physical_block_size, cc->sector_size);
3620 limits->io_min = max_t(unsigned, limits->io_min, cc->sector_size);
3621 }
3622
3623 static struct target_type crypt_target = {
3624 .name = "crypt",
3625 .version = {1, 23, 0},
3626 .module = THIS_MODULE,
3627 .ctr = crypt_ctr,
3628 .dtr = crypt_dtr,
3629 .features = DM_TARGET_ZONED_HM,
3630 .report_zones = crypt_report_zones,
3631 .map = crypt_map,
3632 .status = crypt_status,
3633 .postsuspend = crypt_postsuspend,
3634 .preresume = crypt_preresume,
3635 .resume = crypt_resume,
3636 .message = crypt_message,
3637 .iterate_devices = crypt_iterate_devices,
3638 .io_hints = crypt_io_hints,
3639 };
3640
dm_crypt_init(void)3641 static int __init dm_crypt_init(void)
3642 {
3643 int r;
3644
3645 r = dm_register_target(&crypt_target);
3646 if (r < 0)
3647 DMERR("register failed %d", r);
3648
3649 return r;
3650 }
3651
dm_crypt_exit(void)3652 static void __exit dm_crypt_exit(void)
3653 {
3654 dm_unregister_target(&crypt_target);
3655 }
3656
3657 module_init(dm_crypt_init);
3658 module_exit(dm_crypt_exit);
3659
3660 MODULE_AUTHOR("Jana Saout <jana@saout.de>");
3661 MODULE_DESCRIPTION(DM_NAME " target for transparent encryption / decryption");
3662 MODULE_LICENSE("GPL");
3663